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coordinates (t1, V1) and (t2, V2).  The linear interpolation is the straight line between these 

points.  The value Vx at time tx in the interval (t1, t2) is calculated with the equation: 

                          (3) 

Compared to the nearest neighbor’s value interpolation, the linear interpolation gives 

more accurate values with a simple algorithm.  

 

Figure 4.13 An example of linear interpolation (Vx  is related to tx’s distance to t1 and t2). 

3. Spline interpolation 

Spline interpolation takes a set of points and fits multiple piece-wise continuous 

functions (known as splines) to these points. The most common functions to fit are 

polynomials. Most of the time, spline interpolation is preferred over general polynomial 

interpolation, because the interpolation error can be kept small even when using lower degree 

polynomials for the spline. Thus, spline interpolation avoids the problem of Runge's 

phenomenon (1901) which occurs, when using higher order polynomials. The most common 

spline interpolations are linear, quadratic, and cubic splines.  
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 In general, higher precision requires higher order polynomials. But higher order 

polynomials cause computations to increase significantly, thereby getting worse performance. 

In most circumstances, cubic function is the minimum number of polynomials to get a smooth 

curve over all data.  

 

Figure 4.14 An example of quadratic spline interpolation. 

 Figure 4.14 is an example of the quadratic spline interpolation. The dashed line is the 

interpolated curve calculated based on five values: V1, V2, V3, V4, and V5. Except for the 

linear spline, spline interpolation results in a smooth interpolation among a series of data sets, 

and should have a better interpolation performance than the other two methods mentioned 

above.  

In this data model, linear interpolation is selected as the interpolation method. The 

linear interpolation gives more accurate values than the nearest neighbor algorithm. It is a 

simple algorithm, which requires only a little bit more computing expenses. Spline 

interpolation may result in more accurate and smooth interpolated values than linear 

interpolation, but it needs much more complex computations, especially when using higher 

order polynomials.  
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The linear interpolation just needs two observed values in two consecutively known 

time steps, which are usually from before and after the interpolated time step. Spline 

interpolation usually involves more than two points to compute a reasonable result. That 

means data from more than two time steps need to be employed. In addition, the spatial 

interpolation for each point and at each time step, the computation expenses are significantly 

increased and the performance is heavily and negatively impacted. Based on these 

considerations, linear interpolation is implemented in this data model as the temporal 

interpolation method.   

In summary, this data model integrates both spatial and temporal interpolation 

methods. The Inverse Distance Weighting (IDW) is applied as the main algorithm for the 

spatial interpolation.  In addition, the minimum bounding rectangle (MBR) is also used to 

help the spatial interpolation performance. The linear interpolation algorithm is applied as the 

main algorithm for multi-time step data interpolation.  

4.7 Conclusion 

Driven by the ontology analysis of oceanographic model data, a new data model based 

on contour tree and OO modeling technique is proposed in this chapter. The dynamic process 

is represented by a series of contour trees. Each contour tree stores the spatial and temporal 

information for a snapshot at a time step. The spatio-temporal topology changes between 

contour trees are also stored in contour trees. Interpolation techniques are used to represent 

the values, which are not represented between contours on the same contour tree and between 

consecutive neighboring contour trees.   
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Chapter 5 Data Model Design Implementation and Evaluation 

Chapter 4 introduced the main algorithm of the new spatio-temporal data model 

designed to represent oceanographic data. This chapter explores the proposed model’s 

implementation in detail.  In addition, an analysis of this data model in supporting special 

challenges from oceanographic data is evaluated.  A case study will be provided as part of the 

evaluation of this model in support of spatial and temporal related query applications.  

5.1 Evaluation of the Data Model for Special Challenges 

In Chapter 2, some special spatio-temporal considerations for oceanographic model 

data have been discussed: (1) Field-object characteristics of oceanographic model data; (2) 

constant change pattern; (3) complicated spatio-temporal change types; (4) inexactness 

(uncertainty); and (5) identity persistence. These considerations are also unique challenges in 

designing new data models. 

Some of these challenges, such as field-object characteristics, have already been 

discussed in previous chapters. However, other challenges still have not been addressed in 

details. After the main algorithm has been proposed, it is necessary to evaluate the new data 

model, especially if it can be shown that the challenges have been met by the new data model. 

The following discussion covers a detailed analysis of these issues. 

1) Support of field-object characteristics in oceanographic model data 

As mentioned in the previous chapter, this data model is based on the contour tree — 

an object view data model, which can be generated from the raw data. All contour tree nodes 

correspond to isolines, represented as objects. The topological changes and spatial movements 

can be retrieved in a practical way. But when representing the values not stored as nodes on 

the contour tree, this data model applies interpolation methods to calculate them. From a GIS 
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data view model perspective, these values are treated as field. Basically, they are point-based 

and attribute changes are more easily to be tracked than spatial geometry and topology. In this 

sense, this data model can reduce data redundancy and simplify the data process. 

2) Support constant change pattern 

Since it is an object-view based data model, a single object (node) can represent the 

whole history of an entity (isoline). By using snapshots to record changes in a lifespan with 

short time intervals, it can represent and track spatio-temporary topological changes. Adding 

spatial and temporal interpolation for missed values, the spatial and temporal attribute 

changes can be represented constantly. 

3) Support complicated spatio-temporal change types (geometry, topology, and 

attribute) 

Since the contour tree stores topological relationships, the topological change is easily 

supported. Each node on the contour tree stores spatial information and attributes, and 

changes in these two parameters are also tractable. Furthermore, the values of these three 

parameters are stored independently. If more than two types of changes happen 

simultaneously, then they still can be represented. Apparently, the previous statements only 

work for entities represented as nodes on contour trees. For the entities which cannot be 

represented by nodes, these change types cannot be represented. The only exception is that the 

attribute change for a fixed spatial point position can be represented by the integrated spatial 

and temporal interpolation. 
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4)  Inexactness (uncertainty) 

To solve the inexactness challenge in the spatial and temporal domain, this data model 

has integrated interpolation algorithms. The interpolated values are not the same as real values, 

but should be very similar, and eventually will increase the data quality.  

5) Identity persistence 

The review of spatio-temporal data models in Chapter 2 has shown the advantages of 

OO based models. One advantage is that one object can represent an entity and manipulate it 

during its whole lifespan. Since usually other entities or variables are dependent on this object, 

it is an important improvement in the data model design. 

Another critical issue in identity persistence that has been discussed in the previous 

chapter is the splitting and merging of objects in contour tree evolvement. In oceanographic 

data, these issues are related to attributes and spatial values. The better solution is to let the 

application to deal with identity persistence in splitting and merging processes. 

In brief, the new spatio-temporal data model can handle the special challenges from 

representing the complicated geospatial changes as related to oceanographic model data.  

5.2 Spatio-Temporal Data Model Design 

The main idea and key algorithms of the new data model have been discussed in the 

previous chapter.  More detailed information about the model design will be discussed here.  

From the perspective of software engineering, the design is illustrated by class models with 

related functions and attributes. The UML (Unified Modeling Language) class diagram will 

be utilized in the introduction of the design implementation.  

UML is a graphical modeling language and consists of different types of diagrams 

specifying the structure or behavior of a system. The most commonly used type of diagram in 
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modeling geographic data is the static class diagram. It describes the structure and static 

relations of a system (the data model in this research) by using classes, attributes, and 

methods.   

The classes are the basic elements of the class diagram. Each class is represented with 

a box (rectangle) containing three parts: The name of the class, attributes of the class, and 

methods or operations that the class can take. The three parts are separated by lines and 

ordered from top to bottom. Among them, only class names are necessary. Sometimes in 

order to simplify a class diagram and show the most import parts of the structure, only class 

names and selected attributes and methods are shown in the diagram.  

The UML class diagram in Figure 5.1 shows the conceptual design of the main class 

modules of the new data model. In order to keep the diagram concise and focused on the most 

important parts, only class names and important attributes are listed. The main methods and 

other related information are provided in each class’s explanation.  

When a user designs detailed modeling in a practical application, the class modules in 

the conceptual design are often split into a number of subclasses. 

The following part is a brief explanation of the major modules in the new data model 

for oceanographic data. 

 STobj  

STobj class is the main entrance of the data model. It stores the whole time series of 

the contour trees in a list of ContourTree objects, and it stores all time spots with data in a list 

of TimeStep objects.   
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Figure 5.1 UML class diagram of the main class modules. 

 ContourTree 

The ContourTree class represents a contour tree at a time spot. It has a collection of 

Arc objects in a contour tree. In these Arc objects, the top and bottom objects in a contour tree 

are marked separately.  
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 Arc 

An Arc class represents an arc on the contour tree. It includes a list of Node objects 

and functions to traverse these Nodes. Each Arc class also stores a TopNode object and a 

BottomNode object, which represent two critical nodes on the arc. 

 Node 

The node class represents a node on the contour tree. It stores node related information, 

like contour values and their spatial information (geometry, MBR, etc). The node class has 

two subclasses, including TopNode and BottomNode. These two subclasses represent the two 

critical points at the end of each arc. The two subclasses have some attributes and functions to 

store and visit their connected arcs. These are the upArc for arcs in the direction going upward 

and downArc for arcs in the direction going downward.  In the example in Figure 5.2, Node C 

has two upArcs(AC and BC) and one downArc(CD) . Based on the analysis of upArc and 

downArc, the local extreme values (peaks or holes) and saddles can be retrieved.    

 

 

 

 

 

 

 

Figure 5.2 Critical nodes and related UpArc and DownArc in arc CE. 

 

TopNode          C 

UpArc AC, BC Peaks A, B 

DownArc CD Hole D 

 

BottomNode       C 

UpArc EG Peak G 

DownArc EF Hole F 
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 TimeStep 

The TimeStep class stores all temporal information related to Nodes and Arcs. The 

two subclasses, including StartTime and EndTime represent the start time spot and end time 

spot, respectively.  

 SpatialInterpolation & TemporalInterpolation 

These two modules include the main spatial interpolation and the temporal 

interpolation algorithms. These modules invoke related Arcs and Nodes in ContourTree with 

TimeStep to do the interpolation.  

 Contour, Geometry, MBR 

The Contour class stores a contour’s attributes (e.g., wave height, water level, etc.). It 

also includes a class representing its spatial information, namely Geometry.  The Geometry 

class stores a contour’s spatial extent and related attributes, including area and length. It refers 

to the MBR class as the minimum bounding rectangle (MBR). 

5.3 A Case Study for the Spatio-Temporal Queries 

As Pelekis et al. (2005) pointed out, ―a rigorous data model must anticipate spatio-

temporal queries and analytical methods to be performed in the spatio-temporal Information 

System.‖ As part of the evaluation, a case study involving spatio-temporal queries in the 

application of the data model will be conducted in this subchapter. 

Yuan (1997) argued that there are six major types of spatial and/or temporal changes 

in geographic information. A spatio-temporal data model should support some, if not all, of 

the queries for these types of changes.  The queries of such changes can be categorized into 

three types, including spatially-based queries, temporally-based queries, and 

attributes/objects-based queries.  
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Spatially-based queries refer to queries for a fixed space, including queries of 

attributes at a specific point in time, or attribute variations during a specific time period. In 

oceanography research, a typical spatially-based query could be to find changes in the wave 

height during a certain period at a specific position.   

Temporally-based queries refer to queries for a fixed point in time, including queries 

of spatial locations for certain attributes/objects at a point in time. In oceanography research, a 

typical temporally-based query could be to find the highest wave in an area at a specific point 

in time. 

Attributes/objects based queries refer to queries of the spatial change and the temporal 

information of selected attributes/objects. In oceanography research, this type of query could 

be applied to find the wave height area, the movement track, and the spatial change, such as 

tracking the wave heights in the hurricane season. This type of query is the most challenging 

of all three types.  

Most of the previously proposed spatio-temporal GIS data models only support part of 

the query functions. In particular, these model have difficulty in supporting complex spatio-

temporal queries, especially the type of queries exemplified above as the third type (Yuan 

1999). 

The proposed data model in this research has the ability to support all three types of 

queries mentioned above.  In this subsection, a case study will show how the new data model 

supports these queries. Figure 5.3 includes four images selected from the oceanography model 

MIKE21 output for the wave height and wave direction forecasting in the Gulf of Mexico. 

The model output includes a series of images representing the dynamic change during a 

specific period (from 03/26/2010 0:00 AM to 03/29/2010 12:00 PM in this example). These 
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Figure 5.4 Data model query application work flow chart
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5.4 Conclusion 

This chapter first evaluates specific challenges related to the data model for 

oceanographic data and then introduces the main class modules of the data model using UML 

class diagram. Subsequently, the main attributes and functions in implementations are 

explored, and finally a case study is applied that illustrates how this data model supports 

complicated spatio-temporal queries in a real-world application.  
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Chapter 6 Contour Tree Simplification 

Due to the existence of complicated geospatial phenomena in oceanography, the data 

model representing static isosurfaces can produce unmanageable large contour trees. When 

highly dynamic changes are involved, the temporal information to be integrated into contour 

trees will be even more complex. Small details increase the size of a contour tree dramatically. 

However, these details are not always necessary for automatic processing or visualization 

purposes. It is thus advantageous to simplify contour trees for practical applications in order 

to reduce its complexity, while keeping the fundamental structures of interest intact. 

6.1 Review on Contour Tree Simplification 

For different applications, several algorithms of contour tree simplification have been 

proposed. Carr et al. (2004) explained two basic operations in the contour tree simplification, 

such as leaf pruning and node reduction. Leaf pruning removes a leaf and the arc incident to 

the leaf from the contour tree. Removing an arc from the contour tree discards the 

corresponding contours from further consideration in the rendering process. Node reduction 

removes regular nodes without changing the essential structure of the contour tree.  This does 

not affect the contours or values in the data set. Pruning and reduction are performed in an 

order that minimizes the error based on a local geometric measure, with node reduction to be 

carried out prior to leaf pruning. The geometric measures used in the contour tree 

simplification include persistence, volume, and hypervolume.  

Pascucci et al. (2004) presented a multi-resolution data structure for representing 

contour trees and an algorithm for its construction. The multi-resolution data structure uses 

branch decomposition, an efficient way for storing a hierarchy of contour tree simplifications. 

Pruning a branch from the branch decomposition is equivalent to performing a node pruning 
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operation in the scheme of Carr et al. (2004). Takahashi et al. (2004) simplified the contour 

tree by pruning leaves to determine the ―most important‖ isovalues for a volume rendering 

transfer function. The priority in leaves pruning is based on a new weight value. The new 

weight value is the product of the volume swept by the isosurface component in the subtree 

that is discarded and the difference in the scalar field between end critical nodes of the subtree.  

The new weight value is used as an important measure to simplify the contour tree. Saddles 

are processed until only a few of them remain, then a transfer function is constructed based on 

the simplified contour tree.  

 Zhou and Takatsuka (2008) presented an importance-driven method which combines 

different measures of importance into a single contour tree simplification pipeline through an 

importance triangle (ITri). The ITri is set up based on an importance measure vector, whose 

components include different measures of importance. In addition, the Extended Gaussian 

Image (EGI) and a map projection method are used to map the importance measure vector to 

a point onto a 2D plane, in order to differentiate branches of interest from other branches. The 

contour tree simplification depends not only on the priority value (e.g., the size of the ITri), 

but on every component of the importance measure vector. So the proposed approach of 

contour tree simplification is an importance-driven and user-directed process.  

6.2 Temporal Information in Contour Tree Simplification 

The methods/algorithms of contour tree simplification explored in the above examples 

only focus on the single static independent contour tree. These methods did not consider 

contour trees with inter connections, such as the temporal information integrated into contour 

trees as proposed in this research. These contour trees are connected and organized in a group 

to represent a series of time-varying data from complex geospatial phenomena. The need for 
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simplification (contour tree pruning) is rather challenging. In this research, the simplification 

methods are considered from two sides, namely from the spatially-and the temporally-based 

sides.  

6.3 Basic Simplification Operations 

The basic simplification operations define the most direct and fundamental operations 

on contour trees. The two operations proposed by Carr et al. (2004), leaf pruning and node 

reduction, are used in this research. Leaf pruning removes a leaf of the tree, changing the tree 

structure and reducing the complexity of the tree. Node reduction deletes a node (critical node) 

from the contour tree without changing the essential structure of the contour tree
3
. 

 

Figure 6.1 Leaf pruning and node reduction (Source: Carr et al., 2004) 

Figure 6.1 shows the example of leaf pruning and node reduction. As indicated in this figure, 

a leaf (branch arc) #80 is pruned from the tree on the left to produce the tree in the middle 

graphic. The node #50 is removed from the tree in the middle graphic to produce the tree on 

the right side. After the leaf and node are removed, the left two arcs merge into one new arc. 

Through these basic operations contour trees can be simplified to any desired size.  

  

                                                           
3What is taken off here is not the regular node but the critical node. The node reduction only 

applies to the critical node, not the regular node.  This usually happens after the leaf pruning, 

without directly changing the structure of the contour tree.  However, it changes the contour 

tree structure along with leaf pruning. 
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6.4 Rules of Simplification 

In Carr et al. (2004), and Zhou and Takatsuka’s (2008) methods of contour tree 

simplification, the rules of pruning leafs/arcs and nodes are based on different measures of 

importance. Carr et al. (2004) used local geometric measures (perimeter, cross-sectional area, 

volume, and surface area) separately to define the importance values. Zhou and Takatsuka 

(2008) combined different importance measures together into a single value.  

The importance of each contour or region is measured depending on the application 

(Zhou and Takatsuka 2008). For example, in 3D visualization, the importance is related to the 

visibility of an object within the volume data.   

In this research, the simplification method is also based on the importance values. The 

importance values are measured based on each leaf (branch arc) of the contour tree.   In 

addition, the simplification method introduces the temporal dimension into the importance 

value. The importance values used in this research are ―contour value difference‖, ―base 

contour area‖, and ―contour profile‖. The contour value difference is the difference between 

the absolute parameter values in end nodes in the branch arc of contour trees. It is defined as:  

f =  (Vmax) – (Vjs)                                                                         (1) 

with f: the contour value difference; Vmax: the local extreme value; and Vjs: the value at 

joined or split nodes. This simplification method describes the 1-D value change. When 

applied to oceanography, these contour values are wave height, water level, etc. The base 

contour area is the region enclosed by the contour at the joined or split nodes of the contour 

tree. It describes the 2-D area (spatial extent) of the selected value. The contour profile is 

defined by the ratio of the two importance values mentioned above. Formula 2 defines a 3-D 

property, depicting the trend in contour changes to see whether the enclosed volume (hump or 
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pit) contours are flat or steep. To distinguish the upward arcs (peaks) from the downward arcs 

(holes), the importance values of the downward arcs are given negative values.  

                                           (2) 

Formula 2. The profile value is based on the difference between local values (two end nodes 

of the arc) and the base contour area (joined or split node)  

Figure 6.2 illustrates how these importance values are measured. The extreme local 

values (v1 and v2) and the joined or split nodes (v0) are selected to calculate the value 

difference between contours. Regular nodes are not considered. The importance value of the 

base contour area is calculated from the connecting nodes (joined or split nodes) of each leaf 

on the contour tree (s1, s2, and s3). The contour profile describes the shape property of the 

 

Figure 6.2 Examples of importance values in contour tree simplification. The importance values for 

three examples are shown, including humps (left and middle) and one pit (right).  

1)  The contour value difference: The left and middle humps have the same value v1-v0, 

whereas the right hump has v2-v0.  

2) The base contour area:  While the left hump has a base contour with an area value S1, the 

base contour of the middle hump and the right pit have the same area (|S2|= |S3|), with S3 

being negative.  

3) The contour profile: The left hump has a smaller profile value than the middle hump, 

which indicates a flatter hump.  Since the middle hump and the right pit have the same 

area, the profile value is determined by the contour value v1 and v2. 
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volume of the enclosed branch contours, including both critical nodes and regular nodes. The 

large contour profile values (absolute values) indicate a steep and slim hump (S2) or a pit (S3), 

and small contour profile values indicate a flat hump (S1) or a pit. In oceanography research, 

the application of the profile can help to define hurricane affected sea surface area and time 

period. 

6.5 Simplification Algorithm 

The simplification operation in this research also uses the branch decomposition 

method to hierarchically represent the contour tree introduced by Pascucci et al. (2004). This 

method decomposes contour trees into sets of branches with hierarchical relationships (child-

parent).  As illustrated by Figure 6.3, the contour tree is decomposed into four sets of 

branches.  Branch A1 is the root branch. All other branches (A2, A3, and A4) are connected 

by a saddle node or joint node.  Branches can be removed by a parent-child priority. A1 is the 

parent of A2 and A4 and since both A2 and A4 have one end node, they are dependent on A1. 

Similarly, A2 is the parent of A3. A branch can be simplified only when there is no connected 

child branch. Therefore, branches A3 and A4 can be removed independently. But the branch 

A2 cannot be removed before A3 has been removed.  

 

Figure 6.3 Hierarchical decomposition of a contour tree (Pascucci et al. 2004). 
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The simplification algorithm and the data structure are based on branches. The 

importance values are stored on the critical nodes of each branch and can be extracted from 

the branches. The previous simplification methods focus on a single contour tree, but in this 

data model multiple contour trees are connected by temporal information. The simplification 

algorithms thus need to take this into consideration. In a dynamic process, the importance 

values integrated with each branch on contour trees are also changing.  For example, an 

upward branch on a contour tree may represent a high wave zone. The end node value may 

vary in a series of contour trees related to different time periods. The shape and size of 

contours represented at the joined node may also change, and this leads to a change in the area. 

Subsequently, the profile values related to these two values are also changing.  

To store the importance value related to the change, a new variable is added to the data 

model. This new variable is referred to as the global importance value (GIV). As mentioned 

in Chapter 4, the data model presented in this research assigns the same ID to each branch arc 

identified as the same object in different contour trees. The ID helps tracking the branch arc at 

different time steps and if the GIV is related to the ID, the importance values change can also 

be tracked. In this data model, each arc’s ID has a corresponding GIV. The GIV stores the 

highest importance values (lowest if value is negative) of the corresponding arc during the 

whole lifespan. Based on different applications, the GIVs are selected and calculated from the 

three importance parameters mentioned above.  

For example, if the contour value difference is used as importance value, and the 

importance values of a branch arc on contour trees for its entire lifespan are c1,c2,c3, …cn  in 

time series, then the GIV can be defined as: 

GIV= max (|c1|, |c2|, |c3|… |cn|)                                                 (3) 
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This formula can also be applied to other importance parameters, including the base 

contour area and the contour profile. 

By comparing the GIV with a preset threshold value, the unnecessary branches are 

removed from the contour trees. This simplification algorithm can thus be distinguished from 

other methods in that it does not only focus on the single contour tree, but extends its 

applicability by considering the links of branches on multiple contour trees. If a branch is 

selected to be removed from a contour tree at one point in time, all branches with the same ID 

on all contour trees in this branch’s lifespan are removed.  

As suggested in Pascucci et al. (2004) and Carr et al. (2004), a priority queue is used 

as a standard data-structure to store all branch arcs and it always pops out the branch arc with 

the smallest GIV.  The priority queue is used in one of the most important processes to 

retrieve a valid branch to be simplified. The main steps of this process are described below: 

1) Iterate all contour trees and calculate the GIV for each branch arc. Store the branch 

arcs and their GIVs into a priority queue.  

2) Pop the top element of the queue, which is the branch with the smallest GIV value 

from the contour trees during their entire lifespans.  

3) Compare the GIV value with the threshold value and define whether that branch needs 

to be simplified. If not, discard this element and go back to step 2. 

4) Fetch the temporal information (starting and end points of time) from that branch. 

Retrieve the branches from the contour trees between start and end points of time. 

5) Check if each of these branches can be simplified. The three pre-required criteria to 

simplify a branch include (a) leaf arcs without any child; (b) the branch only has one 

end node connected to other arcs at the joined or split node; and (c) not the root branch 
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arc. If any of these three criteria is not met, discard all of these elements and go back 

to step 2. 

6) If branches can be removed, remove these branches from their contour trees. Then 

update the importance values of the merged branches connected to the removed 

branches. 

The above process ensures that the first branch that represents a valid cancellation 

from the queue can be found. Unlike the  method used by Pascucci et al. (2004), in which 

nodes are updated only when they are pop out of the queue, in this method the update of  

importance value related to the merged branches is processed right after the branch is 

removed.  

 Applying this process to build contour trees by using ―join tree‖ and ―split tree‖, a 

contour tree can be created in which each branch represents a valid topological simplification.  

Then a simplified contour tree can be extracted from the previously created contour tree.  

 6.6 Application of Contour Tree Simplification 

As Zhou and Takatsuka (2008) concluded, the application of the contour tree 

simplification is ―a graph simplification algorithm applied to the contour tree. Then this 

simplification is carried back to simplify the input data.‖  

As mentioned above, three types of importance values are used in the simplification of 

the oceanographic model data. In the following part, an example is used to show how the 

application of these importance values works. 

Figure 6.4 is a wave height and direction map from the output of the MIKE21 model 

for the Gulf of Mexico. The contours represent the wave height distribution.  The local 

peak/hole and saddle areas are labeled (A, B … K, L).  Figure 6.5 illustrates the 
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corresponding contour tree and simplified contour trees with different importance parameters 

(the contour trees only represent wave height, not wave direction).  

 

Figure 6.4 A wave height and direction map from the output of the MIKE21 model for the 

Gulf of Mexico 

As shown in the first graphic in Figure 6.5, the original contour tree includes the local 

peaks A, B, D, E, J, K, and L and local holes H and I.  

The second graphic in Figure 6.5 shows the result of the contour value difference 

based simplification. In this graphic the branches with a wave height difference (end node to 

joined/split node) of less than 1.5 feet are removed from the contour tree. Compared with the 

original contour tree, branches with local peaks A, D, L, and K are trimmed. As a result from 

the contour tree decomposition, branches BC and CG as well as EF and FG are merged. But 
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Figure 6.5 Contour tree simplifications: 1. Original contour tree     2. Contour value 

difference-based simplification     3. Base contour area-based simplification     4.  Contour 

profile-based simplification.  

the joined nodes C and F remain for the further construction of the contour tree. Because the 

temporal information for each independent branch arc on multiple contour trees has to be 

tracked, it is easier to keep the temporal information with the branch arcs from the original 

branch structure. The left joined nodes will help track these changes. As discussed above, 

node reduction is one of the basic simplification operations. In this method, it is applied to 

help with the simplification process, but it does not physically remove that node’s information 

from the contour tree. In this example, the C and F nodes still hold the information as there 
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are joined nodes and related arcs (BC and CG, as well as EF and FG). This information is 

necessary for the rebuild of final contour trees. From an application point of view, this method 

removes lower wave height peaks and shallower wave height holes and keeps the wave height 

zones more distinguished.  This method does not take into consideration the zone sizes of 

wave heights. 

The third graphic in Figure 6.5 shows the result of the contour tree after contour area 

based simplification.  All branches whose zone size of wave height is less than 300 square 

feet are removed from the contour tree. So, branches with local peaks L and K are trimmed 

from the contour tree. From an application point of view, this method removes small size 

wave height zones and keeps big size wave height zones. It does not consider the wave height 

change values.  

 The fourth graphic in Figure 6.5 shows the result of contour profile-based 

simplification.  Branches with small profile values are removed from the contour tree. In this 

graphic, all original branches are removed from the contour tree except branch JG. From an 

application point of view, this method considers both wave height values and the spatial 

extent of the wave height zone.  This method removes the flat wave height zones and keeps 

slim (steep) wave height zones.  

 Taking it all together, the three simplification methods result in different outputs and 

are for different applications.  

6.7 Conclusion 

Due to the complicated spatial distribution and highly dynamic changes in 

oceanographic data, contour trees representing oceanographic isosurfaces can produce very 

big size contour trees.  A simplification of original contour trees is thus necessary. In this 
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chapter, a new simplification algorithm is introduced to reduce the complexity of contour 

trees. This algorithm is based on the branch decomposition method and supports temporal 

information integrated into contour trees. In order to meet the requirement from various 

applications, three types of importance values are introduced to be applied to different 

simplification methods. The practical example illustrates how these importance values affect 

the output of the contour tree simplifications.  
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Chapter 7 Conclusion 

7.1 Major Findings 

In oceanographic research, the output data of wave and hydrodynamic numerical 

models represent highly dynamic geospatial phenomena. A data model is the fundamental 

issue in supporting this special application in spatio-temporal GIS. This dissertation focuses 

the research on a spatial-temporal GIS data model applied to oceanographic model data, 

especially to homogeneous isosurface data.  

Due to the special challenges from this kind of application, such as field-object 

characteristics, constant temporal change, and complex spatio-temporal change pattern, 

current spatial-temporal data models show deficiencies in supporting such challenges. A 

tentative new data model is proposed in this research.  

As an emerging method, ontological analysis is applied to the study of oceanographic 

data. In this research, ontology has been utilized to extract abstract oceanographic data entities 

to create components for the new data model.  When transferring these components to data 

model design, the contour tree is introduced as the basic data structure for the data model. The 

contour tree can represent the spatial topological relationships of the isosurface data by using 

element components of nodes and arcs. By adding temporal information to each node and 

branch arc of the contour tree, and by using multiple contour trees to represent different time 

steps in the temporal dimension, changes can be stored and tracked by the data model.  

In order to support the field characteristic and reduce the data volume, the new data 

model integrates spatial and temporal interpolation methods. The spatial interpolation 

calculates the data falling between neighboring contours at a single point in time. The inverse 

distance weighting (IDW) is applied as the main algorithm, and the minimum bounding 
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rectangle (MBR) is used to help the spatial interpolation performance. The temporal 

interpolation calculates the data which are not recorded by contour trees and falling between 

consecutive contour trees for subsequent points in time. The linear interpolation algorithm is 

applied because of its modest accuracy and simple implementation.  

The OO (Object-Oriented) design technology has been applied to the model design 

and implementation. The UML class diagram demonstrates the main objects with the main 

attributes and functions. 

To evaluate the supported functions of the new data model, a case study has been 

designed to show how this data model supports complicated spatio-temporal queries in every 

day forecasting applications.  

As an attempt to optimize the data model, this dissertation also shows some attempts 

in contour tree simplification. A new simplification algorithm is introduced to reduce the data 

complexity. This algorithm is based on the branch decomposition method and supports 

temporal information integrated with contour trees. Three types of importance values are 

introduced to run different simplification methods for various applications. 

7.2 Contributions 

The main contribution of this research is a new data model for spatio-temporal GIS 

which is superior to current data models and thus can be applied to isosurface data with highly 

dynamic change patterns. The advantages of this data model are as follows: 

1) The data model supports the unusual field-object characteristics of oceanographic 

model data; 

2) It supports constant temporal change type; 
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3) It supports complex spatio-temporal change patterns (geometry, topology, and 

attributes) ; 

4) It supports strong spatio-temporally related queries; 

5) Overall, it is a balanced data model in data size and complexity. To represent 

similar geospatial phenomena, this data model has a smaller data volume than 

raster data and it can represent more entities than traditional vector data with 

integrated interpolation algorithms. 

 Additional research about the contour tree simplification explores simplification 

algorithms for the temporal information integrated into multiple contour trees. The proposed 

simplification algorithms reduce the data volume and complexity by filtering out less 

significant data.  

Obviously, this new data model can be applied not only to oceanographic data, but 

other dynamic isosurface data or 3-D data values.  

7.3 Future Research 

Although this data model supports oceanographic data very well, there are still some 

worthwhile challenges to pursue. One main problem is that this data model is still incapable 

of fully supporting object-field representations of the complicated oceanographic data. The 

data model developed in this research uses nodes in the contour tree to represent objects 

(contours), but it can hardly represent objects (contours) between these nodes. For example, in 

a wave height contour map if only contours  from 0 to 10 feet with 1 foot interval are stored in 

the contour tree, this data model will have a difficulty in defining  an area to be queried  that 

represents a wave height zone with values in between two contours (e.g., 3.5 feet). It is 
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possible to accomplish this at the application level, but it is better to support this at the data 

model level.  

Another concern of this data model is that the integrated interpolation algorithms 

reduce the quality (e.g., accuracy) of the data model and also make the data model more 

complicated.  Optimization attempts are needed to make the data model more practical. 

Moreover, although this data model does not aim to support vector data, many met-

ocean data used in oceanography research are vector based, such as wave directions. If this 

data model can integrate or partially support vector data, it will be more applicable. 

These three issues are the major shortcomings of this data model and future research 

should focus on solving these shortcomings.  
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