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Lorentz Transformation of Blackbody Radiation.

G. W. Ford

Department of Physics, University of Michigan, Ann Arbor, MI 48109-1040 USA

R. F. O’Connell

Department of Physics and Astronomy,

Louisiana State University, Baton Rouge, LA 70803-4001 USA

(Dated: October 30, 2018)

Abstract

We present a simple calculation of the Lorentz transformation of the spectral distribution of

blackbody radiation at temperature T . Here we emphasize that T is the temperature in the

blackbody rest frame and does not change. We thus avoid the confused and confusing question

of how temperature transforms. We show by explicit calculation that at zero temperature the

spectral distribution is invariant. At finite temperature we find the well known result familiar in

discussions of the the 2.7◦ K cosmic radiation.

PACS numbers: 03.65.-w, 12.20.-m, 05.40.-a
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Here we present a straightforward derivation of the spectral distribution of blackbody

radiation as seen in a moving frame. A key feature of our discussion is the notion of the

temperature in the blackbody rest frame: the frame in which the energy-momentum tensor

is diagonal and the spectral distribution is isotropic. This temperature is fixed, does not

change under Lorentz transformation. In this way we avoid the confused and confusing

question of how temperature transforms.[1] An important result is that at zero temperature

the spectral distribution is invariant under Lorentz transformation. This is not an entirely

new result, it has long been recognized that in quantum electrodynamics the vacuum state

is invariant, but our derivation is explicit. Finally, at finite temperature the result agrees

with that obtained nearly half a century ago in connection with the problem of detection of

the earth’s motion through the 2.7◦ K cosmic radiation.[2] However, as discussed in detail in

[1], there is a wide variety of opinion among the different authors in [2], in addition to many

previous authors, as to how T transforms, if at all. Thus, our resolution of this question is

an important part of our presentation.

We begin with the familiar expressions of quantum electrodynamics for the free electric

and magnetic field operators: [3]

E (r, t) =
∑

k,α

√

2πh̄ω

V

(

iak,αêαe
i(k·r−ωt) − ia†

k,αê
∗
αe

−i(k·r−ωt)
)

,

B (r, t) =
∑

k,α

√

2πh̄ω

V

(

iak,αk̂× êαe
i(k·r−ωt) − ia†

k,αk̂× ê∗αe
−i(k·r−ωt)

)

, (1)

where ak,α and a†
k,α are the usual lowering and raising operators for the field oscillators.

Here we should keep in mind that ω = ck. The expressions (1) were obtained by quantizing

in a box of volume V . We have in mind that the box is at rest with walls at temperature T .

The radiation within comes to equilibrium at that temperature and we obtain the familiar

result:[4]
〈

ak,αa
†
k′,α′ + a†

k′,α′ak,α

〉

= coth

(

h̄ω

2kT

)

δk,k′δα,α′ , (2)

where the braces 〈· · · 〉 indicate the thermal equilibrium expectation value. We shall need
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the correlation functions of the field fluctuations:

C
(el-el)
jm (r− r′, t− t′) =

1

2
〈Ej (r, t)Em (r′, t′) + Em (r′, t′)Ej (r, t)〉 ,

C
(mag-mag)
jm (r− r′, t− t′) =

1

2
〈Bj (r, t)Bm (r′, t′) +Bm (r′, t′)Bj (r, t)〉 ,

C
(el-mag)
jm (r− r′, t− t′) =

1

2
〈Ej (r, t)Bm (r′, t′) +Bm (r′, t′)Ej (r, t)〉 . (3)

With the expressions (1) for the fields and (2) for the thermal expectation of the operators

we use the prescription
∑

k → V

(2π)3

∫

dk to form the limit V → ∞ and obtain the explicit

results:

C
(el-el)
jm (r, t) = C

(mag-mag)
jm (r, t)

=
h̄

(2π)2

∫

dkω coth
h̄ω

2kT

(

δjm − k̂jk̂m

)

cos (k · r− ωt) ,

C
(el-mag)
jm (r, t) =

h̄

(2π)2

∫

dkω coth
h̄ω

2kT
ejmlk̂l cos (k · r− ωt) . (4)

As a first application of these results, we calculate the spectral distribution of blackbody

radiation. The energy density of the electromagnetic field in thermal equilibrium is given

by

W =
〈E2〉+ 〈B2〉

8π
=

C
(el-el)
jj (0, 0)

4π
. (5)

We can write

W =

∫ ∞

0

dω

∫

dΩρ
(

ω, k̂
)

, (6)

where ρ
(

ω, k̂
)

dωdΩ is the energy density of radiation with frequency in the interval dω and

propagating in solid angle dΩ about the direction k̂ . With the explicit results (4) we find

that the spectral distribution in the rest frame is given by

ρ
(

ω, k̂
)

=
h̄

(2πc)3
ω3 coth

h̄ω

2kT
. (7)

Of course, this is independent of the direction of propagation and, except for a factor of 4π,

is just the Planck spectrum with the inclusion of the zero point fluctuations.

We now consider the question of how this spectral distribution transforms under a Lorentz

transformation. Here we should remind ourselves that the above discussion is understood to

be in the rest frame of the blackbody radiation: the frame in which the energy-momentum

tensor is diagonal and the spectral distribution is isotropic. The temperature T is the

3



temperature in this rest frame and does not transform. We begin with the well-known

expressions for the Lorentz transformation of the fields from a frame at rest to a frame

moving with velocity v: [5]

E′ (r′, t′) = v̂ · E (r, t) v̂ + γ
[

E (r, t)− v̂ · E (r, t) v̂ +
v

c
×B (r, t)

]

,

B′ (r′, t′) = v̂ ·B (r, t) v̂ + γ
[

B (r, t)− v̂ ·B (r, t) v̂ −
v

c
× E (r, t)

]

, (8)

where, as usual, γ = 1/
√

1− v2/c2. With this we find for the energy density in the moving

frame:

W ′ =
〈E ′2〉+ 〈B′2〉

8π

=
1

4π

{

C
(el-el)
jj (0, 0) + 2(γ2 − 1)

[

C
(el-el)
jj (0, 0)− v̂j v̂mC

( el-el)
jm (0, 0)

]

+2γ2vl
c
eljmC

( el-mag)
jm (0, 0)

}

. (9)

Using the expressions (4) for the correlation functions together with the expression (7) for

the spectral distribution, we can write this in the form:

∫ ∞

0

dω′

∫

dΩ′ρ′
(

ω′, k̂′
)

=

∫ ∞

0

dω

∫

dΩγ2
(

1− k̂ ·
v

c

)2

ρ
(

ω, k̂
)

. (10)

That is,

ρ′
(

ω′, k̂′
)

= γ2
(

1− k̂ ·
v

c

)2

ρ
(

ω, k̂
) dω

dω′

dΩ

dΩ′
. (11)

To proceed we introduce the Lorentz transformation of the propagation vector:

ω′ = γ (ω − k · v)

k′ = k− v̂ · kv̂ + γ
(

v̂ · kv̂ − ω
v

c2

)

. (12)

For photons ω = ck, which implies ω′ = ck′. In this case we get from the first Lorentz

transform equation the formula for the Doppler shift:

ω′ = γ
(

1− k̂ ·
v

c

)

ω (13)

and from the second the aberration formula:

k̂′ · v̂ =
k̂ · v̂ − v

c

1− k̂ · v

c

. (14)

4



It will be useful to have the inverse of these formulas, obtained by solving the aberration

formula for k̂ · v̂ and then putting the result in the Doppler shift formula. The result is

k̂ · v̂ =
k̂′·v̂ + v

c

1 + k̂′·v
c

, ω = γ
(

1 + k̂′·
v

c

)

ω′ (15)

From these formulas, we find

dω = γ
(

1 + k̂′·
v

c

)

dω′,

dΩ =
dk̂ · v̂

dk̂′·v̂
dΩ′ =

dΩ′.

γ2
(

1 + k̂′·v
c

)2 . (16)

With these results in the right hand side of the identity (11) we find that the spectral

distribution in the moving frame is given by

ρ′
(

ω′, k̂′
)

=
ρ
(

γ
(

1 + k̂′·v
c

)

ω′, k̂
)

γ3
(

1 + k̂′·v
c

)3 , (17)

Finally, with the expression (7) for the spectral distribution in the rest frame, we find that

in the moving frame it takes the explicit form:

ρ′
(

ω′, k̂′
)

= h̄

(

ω′

2πc

)3

coth





h̄γ
(

1 + k̂′ · v

c

)

ω′

2kT



 , (18)

The expression (18) is our key result. First, we note that at zero temperature this spectral

distribution in the moving frame is exactly of the form of that in the rest frame. That is,

the spectral distribution at zero temperature is invariant under Lorentz transformations.

Moreover, at finite temperature our result is exactly of the form long known in discussions

of motion through the 2.7◦ K cosmic radiation.[2] However, our derivation has made it clear

that T is the invariant temperature in the blackbody rest frame. There has therefore been no

need to get into the question of how temperature transforms under Lorentz transformations:

our T is the temperature in the rest frame and does not change.

This work was partially supported by the National Science Foundation under Grant No.

ECCS-1125675.
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