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ABSTRACT 

The wetlands of coastal Louisiana are disappearing at a rate of 65 to 80 km2yr-1.  

Most of the loss is the conversion of emergent marsh to shallow marsh ponds.  Terracing 

is one restoration technique that has been used frequently in recent years.  Terraces are 

small intertidal ridges built in shallow marsh ponds to reduce wave action.  It is assumed 

that this will slow erosion of adjacent emergent marsh and increase Submerged Aquatic 

Vegetation (SAV) production, a key habitat component for many marsh fauna.  Yet both 

relevant previous studies failed to show that terraces increased SAV abundance.  In April 

of 2004 this study was initiated to test this assumption.  Three study sites with paired 

terraced and unterraced ponds were selected in southwest Louisiana; two at Rockefeller 

State Wildlife Refuge and one at Sabine National Wildlife Refuge.  SAV abundance was 

estimated every other month for one year.  SAV biomass and frequency were 

significantly higher in terraced ponds.  SAV frequency in unterraced ponds averaged 

20% (SE 13 to 33%) but frequency for unterraced ponds was 9% (SE 5 to 14%).  

Terraced ponds had approximately three and half times the biomass of unterraced ponds.  

This indicates that terraces improve SAV production as had been suspected.  Turbidity 

and organic matter content were lower in terraced ponds indicating a possible causal 

mechanism.  My results confirm some assumptions of wetland restoration planners who 

have used terraces. 
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INTRODUCTION 

 Louisiana coastal wetlands stretch from Texas to Mississippi and inland for over 

twenty miles.  These wetlands make up approximately 40% of the nation’s coastal 

wetlands, but have experienced 80% of losses since the 1930’s (Boesch et al. 1994).  

Unlike other parts of the country, most of these losses have not resulted from 

development.  Instead, most of the marsh loss in Louisiana results from conversion of 

emergent marsh to shallow ponds (Sasser et al. 1986, Leibowitz and Hill 1987, Turner 

and Rao 1990).  Several natural factors, including subsidence, sea-level rise, erosion 

(Boesch et al 1994) and processes associated with the delta lobe cycle (Coleman 1988) 

are partially responsible.  Various anthropogenic changes such as levees, canals, 

diversions, and dredging also contribute to the loss (Boesch et al. 1994). 

In 1989, the Louisiana legislature created a state coastal wetland restoration 

program and the Wetlands Conservation and Restoration Fund, commonly referred to as 

the Wetlands Trust Fund (CWPPRA 2003) to restore and protect coastal wetlands.  This 

was followed in 1990 by the creation of the federal Coastal Wetland Planning, Protection 

Restoration Act (Public Law 101-646, Title III—CWPPRA) by the U.S. Congress.  This 

act created funding for coastal restoration and protection.  Nongovernmental 

Organizations, such as Ducks Unlimited, and state agencies, such as the Louisiana 

Department of Wildlife and Fisheries are also funding restoration in the coastal marshes.  

Other restoration projects are the result of mitigation to replace wetlands lost to 

development.  Together, these funding sources support the construction of various 

projects to conserve and restore wetlands in Louisiana. 
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Restoration in Louisiana usually focuses on using various methods to introduce 

freshwater and sediment from rivers because much of the marsh loss results from a lack 

of sediment input.  But in many places, especially southwest Louisiana, marshes are too 

far from rivers for these methods to be feasible.  Terraces are a relatively new technique 

that was developed to address this issue in the late 1980’s (Steyer 1993).  Terracing has 

been used frequently in recent years (Table 1). 

Terraces are small ridges built within shallow tidal ponds to reduce wave action, 

prevent erosion, and enhance marsh interspersion (Fig. 1) (Steyer 1993, Boesch 1994).  

Generally, they are constructed using local sediment from the bottom of the ponds.  They 

are designed to be inundated during normal high tide (i.e. the same elevation as the 

surrounding marsh).  Arrangements differ, but most are perpendicular to the prevailing 

winds of the area.  The ridges are not continuous; they have openings to allow water flow 

and ingress and egress of marine organisms (Steyer 1993).  The tops of terraces are 

vegetated with marsh grasses such as Spartina alterniflora (Ait.) Muhl. to prevent erosion 

and enhance marsh interspersion (Fig. 1). 

  Terraces create a small amount of emergent marsh and increase the amount of 

marsh interface (Steyer 1993).  They also increase nekton abundance (Rozas et al. 2001, 

Bush et al. 2003, Gossman 2005).  Terraces are assumed to increase the abundance of 

submerged aquatic vegetation (SAV) and reduce erosion of adjacent marsh (Underwood 

et al. 1991) by reducing wave fetch and turbidity.  The assumed effect on SAV is based 

on research that shows SAV growth and distribution is significantly affected by turbidity 

(Livingston et al. 1998, Onuff 1994) and wave fetch (Koch 2001). 1 
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Table 1. Wetland restoration and mitigation projects in Louisiana where terraces were 
built or planned 

Project Name Marsh type 

Length of 
Terraces 

(m) 
…CWPPRA Restoration Projects…   

LaBranche Wetlands Terracing, Plantings, and (PO-28) intermediate 21,330
Little Vermilion Bay Sediment Trapping (TE-12) fresh 7,110
Sweet Lake/Willow Lake Shoreline Protection (C/S-11b) fresh 23,360
Plowed Terrace Demonstration Project (C/S-25) intermediate 16,450
Brown Lake Hydrologic Restoration (C/S-09) brackish 7,630
East Sabine Lake Hydrologic Restoration (C/S-32) brackish undecided
Four Mile Canal Terracing and Sediment … (TV-18) fresh 19,500
Pecan Island Terracing (ME-14) brackish 60,890
Sabine Terraces (C/S-ST) brackish undecided
Sediment Trapping at the Jaws (TV-15) fresh 18,600
  

…Coastal Impact Assistance Program Projects…  
Oyster Lake Terracing, Marsh Island Refuge brackish 4,430
  

…Mitigation Projects of which I am aware…  
Cameron Creole NWR, brackish unknown
Rockefeller State Wildlife Refuge, Unit 4 brackish unknown
Rockefeller State Wildlife Refuge, Unit 5 brackish unknown
Sabine NWR, Unit 6 brackish 16,000
Sabine NWR, Unit 7 brackish 6,020
Sweet Lake brackish unknown
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Figure 1. Cross-section of a Typical Terrace (from: Steyer 1993) 
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SAV is important to waterfowl, fish, and invertebrates as habitat and as food 

(Stutzenbaker 1999, Castellanos and Rozas 2001, Kanouse 2003).  A number of factors 

affect SAV, including water temperature, salinity, soil nutrient content, water nutrient 

content, herbivory, desiccation, wave fetch, organic matter, turbidity, water depth and 

competition (Anderson 1986, Onuf 1994, Koch 2001, Merino 2005).   

The Wetland Value Assessment (WVA), which is used by agencies in Louisiana 

to rank restoration alternatives, ranks aquatic vegetation as the second most important 

variable in computation of its habitat suitability index (EWG 1998).  For this reason, and 

because of their relatively low costs, projects that incorporate terraces (theoretically 

increasing SAV) in their restoration plans often rank higher than other restoration 

projects (J. Nyman personal observation).   

However, there are few data to support the assumed increase in SAV abundance 

with terracing.  Steyer (1993) found that, of the three species planted near terraces in his 

study, only Halodule beaudettei den Hartog. had any significant survival.  H. beaudettei 

had survival rates twice as high in an unterraced control pond as in two terraced ponds.  

Caldwell (2003) concluded that terraces did not increase SAV abundance above that 

found in open water.   

Steyer (1993) and Caldwell (2003) are the only two studies to quantify the effects 

of terraces on SAV.  Neither study supports the assumption that terraces increase SAV 

abundance, yet both studies had limitations that lessen their applicability to other sites.  

First, the natural pond in Steyer’s (1993) study was deeper than the two terraced 

ponds and was further from Calcasieu Lake, which was a source of turbidity.  In addition, 

the SAV in the terraced ponds in Steyer’s study was also exposed on mudflats 
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occasionally while the control, SAV in the unterraced pond, was not (Steyer 1993).  This 

could also explain the poorer survival of SAV in the terraced ponds, because desiccation 

negatively impacts vascular SAV (Harwell 2003).  Also, the ponds used in Steyer’s 

(1993) study were located in salt marsh.  Few terraces have been built in salt marshes 

since then, further reducing it’s applicability to today’s restoration efforts.     

Perhaps the most limiting factor of Steyer’s study is that SAV was only sampled 

once, two months after planting, in August of 1991.   It is unlikely that sediments 

disturbed during terrace construction had settled by that time (Onuf 1994).  So it is 

possible that higher turbidity in the terraced ponds lowered SAV survival (Steyer 1993).  

Sampling only once for SAV is impractical for other reasons as well.  SAV abundance 

depends on a variety of environmental factors that can change over the course of days, 

weeks, or months (Koch 2001, Merino 2005).  For example, Ruppia maritima L. 

(Widgeon grass), can act as an annual or perennial depending on water temperature, 

salinity, and a variety of other factors (Kantrud 1991).  So Steyer’s (1993) study could 

have sampled when SAV was not abundant because of factors unrelated to terraces. 

In Caldwell’s (2003) study, even though SAV frequency near natural marsh was 

significantly higher than near terraces, this effect was only seen once out of 5 sampling 

periods.  SAV abundance was extremely low in the other four sampling periods for all 

habitat types (Caldwell 2003).  In addition, the Caldwell (2003) study was limited to one 

pond. 

These two studies were both confined to a single terrace project.  From a 

restoration perspective, the lack of replication is important because it limits their 

applicability.  Wave fetch, turbidity, and other factors vary widely.  Consequently, the 
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amount, distribution, and species of SAV also vary widely.  Single site studies also do not 

take into account the effects that different terrace designs may have on SAV.  The goal of 

this study was to incorporate multiple study sites in brackish marsh in one study to test 

the null hypothesis that there is no difference in SAV abundance between terrace SAV 

samples and unterraced SAV samples.  I sampled every other month for one year to 

account for SAV variability over time.  I chose sites within brackish marshes because 

today most terraces are built in brackish marsh.   
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STUDY AREA 

 My study was conducted in three sets of terraced ponds (experimental) and 

unterraced ponds (control) in marsh dominated by Spartina patens (Ait.) Muhl. 

(Marshhay cordgrass) an indicator of brackish marsh.  Each pair was hydrologically 

unique and separate from the other study areas.  Two pairs of ponds were located on the 

Rockefeller State Wildlife Refuge and one pair was found on the Sabine National 

Wildlife Refuge (Fig. 2).  Rockefeller State Wildlife Refuge is near Grand Chenier, 

Louisiana on the Gulf Coast, 49 miles south southeast of Lake Charles.  Sabine National 

Wildlife Refuge is south of Hackberry, Louisiana on the east side of the Sabine River and 

Sabine Lake and north of state highway 82. 

Site Selection 

 Four criteria were used for site selection.  The first criterion was location within S. 

patens dominated marsh.  The second criterion was that the terraces had to be at least 

twelve months old.  This age criterion was to ensure that sediments disturbed by 

construction had time to settle (Onuff 1994).  As a further criterion for selection, only 

terraced ponds that had nearby unterraced ponds with similar size and hydrology.  In 

addition, sites for this study were limited to areas where we were able to obtain 

permission to study.  Other sites that were available but were not used for various reasons 

include: Black Bayou, Cameron Prairie, Sweet Lake, and Pecan Island. 

Site 1 

One site was located in management Unit 4 of Rockefeller State Wildlife Refuge 

(Fig. 3).  The management unit contained a brackish marsh that was hydrologically 

isolated by a levee and water control structures (Fig. 4). 
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Figure 2. Vicinity Map of Study 
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Emergent vegetation consisted primarily of S.  patens, with Scirpus robustus 

Pursh, syn. Scirpus maritimus L. (Saltmarsh bulrush), Spartina alterniflora (Smooth 

cordgrass), Scirpus californicus (C.A. Meyer) Steud. (California bulrush), and various 

Cyperus species intermixed.  Phragmites australis (Cav.) Trin ex Steud., syn. Phragmites 

communis Trin., (Roseau cane), formed dense stands in several areas.  Common SAV 

were Ruppia maritima, Potamageton pusilus L. (Thin-leaf pondweed), and Myriophyllum 

spicatum L. (Eurasian water-milfoil) with some Ceratophyllum demersum L. (Coontail) 

intermixed.  Chlorophyta (Filamentous algae) were common at times.  R. maritima was 

the most common SAV but was not always present.  R. maritima may have been 

functioning as an annual with two growing seasons at this site, as other studies have 

suggested (Joanen and Glasgow 1965).  SAV and emergent vegetation were both 

indicative of brackish marsh (Chabreck 1970, Chabreck 1971). 

The terraced pond was in the northwest region of the management unit (UTM 

1984, Zone 15N, coordinates: 0523597 East and 3284941 North), and the control pond 

was located south of the terraced pond (UTM 1984, Zone 15N, coordinates: 0523706 

East and 3283839 North).  The terraced pond was approximately 32,348 ha and the 

portion of the unterraced pond used was approximately 65,462 ha.  The terraces were 

constructed in August of 2002 (personal communication, Melancon 2005).  

Site 2 

 Another site was in management Unit 5 of Rockefeller Wildlife Refuge (Fig. 5).  

The management unit contained a brackish marsh that was surrounded by a levee with 

water control structures on three sides and separated from the gulf on the south by a 

natural, low beach rim (Fig. 6).   
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Site 1 

Figure 3. Site 1, Rockefeller Wildlife Refuge, Marsh Management Unit 4 
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Terraced 
Pond 

Unterraced 
Pond 

Figure 4. Site 1, Rockefeller State Wildlife Refuge, Management Unit 4, Terraced and 
Unterraced Pond Pair 
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Emergent vegetation at Site 2 consisted primarily of S.  patens with S.  robustus, 

S. alterniflora, S.  californicus and various Cyperus species intermixed.  Phragmites 

australis was also present but was not abundant.  Common SAV in the unit were Ruppia 

maritima, Potamogeton pusilus, and filamentous algae. R. maritima was the most 

common SAV but was not always present.  R. maritima may have been functioning as an 

annual with two growing seasons at this site, as other studies have suggested (Joanen and 

Glasgow 1965).  SAV and emergent vegetation were both indicative of brackish marsh 

(Chabreck 1970, Chabreck 1971). 

The terraced pond was in the north central portion of the management unit (UTM 

1984, Zone 15N, coordinates: 0525399 East and 3280830 North) and the control pond 

(UTM 1984, Zone 15N, coordinates: 0524183 East and 3281185 North) was west of the 

terraced pond.  The terraces were constructed in June of 2000 (personal communication, 

Melancon 2005).  The terraced pond was approximately 58,791 ha and the portion of the 

unterraced pond used was approximately 50,749 ha.   

The terraces of site 2 were in good condition when it was selected for the study in 

August of 2003.  Unfortunately, by the time the study started in April 2004 the terraces 

had begun to deteriorate.  In June 2005 they had deteriorated considerably and by April 

2005 only one terrace still had emergent vegetation and only a few strips less than a 

meter in length remained of the other terraces.  However, I retained Site 2 for my analysis 

for two reasons.  First, I assumed that the terrace ridges could still be having an effect on 

wave action without vegetation.  Second, I also concluded that including Site 2 in my 

analysis would make detecting a terrace effect on SAV more difficult- making all tests 

for differences between terraced and unterraced ponds more conservative. 
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Figure 5. Site 2, Rockefeller State Wildlife Refuge, Management Unit 5 
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Terraced 
Pond 

Unterraced 
Pond 

Figure 6. Site 2, Rockefeller State Wildlife Refuge, Wildlife Management Unit 4, 
Terraced and Unterraced Pond Pair 
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Site 3 

One site was in Units 5 and 6 of Sabine National Wildlife Refuge (Fig. 7).  The 

terraced pond was in Unit 6 and the unterraced pond was in Unit 5 (Fig. 8).  The ponds 

were approximately 5.5 km from each other.  The units were not separated by levees, and 

had similar physical characteristics.   

Major emergent species in both units were P. australis, S.  americanus Pers., Syn. 

Scirpus olneyi E. and G., (Olney three-square), S.  patens, and S.  alterniflora.  Various  

Cyperus species, Cladium jamaicense Crantz. (Sawgrass), and S.  californicus, were 

present in small patches.  Common SAV in the unit were M. spicatum, Najas 

guadalupensis, (Spreng.) Magnus, Chara spp., Nitella spp., and filamentous algae.  

Myriophyllum spicatum was the most common SAV and was always present in the 

terraced pond.  Myriophyllum spicatum was probably functioning as a perennial at this 

site.  SAV and emergent vegetation were both indicative of brackish marsh (Chabreck 

1970, Chabreck 1971).  

The terraces were constructed in 2001.  The terraced pond was in the north east 

portion of management unit 6 (UTM 1984, Zone 15N, coordinates: 0434212 East and 

3304478 North) and the control pond (UTM 1984, Zone 15N, coordinates: 0434609 East 

and 3311970 North) was in the north end of Unit 5.  The area of the terraced pond was 

approximately 482,016 ha and the area of the unterraced pond was approximately 

1,259,785 ha.  Shortly after I completed field sampling, construction began on terraces in 

the unterraced pond. 
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Figure 7. Site 3, Sabine National Wildlife Refuge, Management Units 5 and 6 
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Terraced 
Pond 

Unterraced 
Pond 

Figure 8. Site 3, Sabine National Wildlife Refuge, Management Units 5 and 6 Terraced 
and Unterraced Pond Pair 
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METHODS 

Selection of Sampling Points 

There were two randomly selected points in each terraced and unterraced pond.    

Random selection consisted of using Arcview 3.2 (ESRI, Redlands, CA) to overlay a grid 

on a georeferenced aerial photo of each pond and then using excel to generate random 

numbers that corresponded to squares within that grid.  Once the points were marked in 

Arcview 3.2 (ESRI, Redlands, CA) the grid coordinates from the geo-referenced map 

were entered into a Garmin GPS 76 (Garmin Ltd, Salem, OR) which was used to find that 

point in the pond and mark it with a PVC pole.  The random points were then used as the 

starting point of transects in the two habitat types: near edge and far from edge. 

At each point in terraced ponds, transects parallel to the terrace ridges were used 

to collect core and rake samples.  One transect at approximately 1m from the edge of the 

emergent vegetation on the terrace (hereafter referred to as Terraced Near), and one at the 

midpoint between that terrace and the nearest parallel terrace, or 50m if terraces were 

more than 100m apart (hereafter referred to as Terraced Far). 

The method used to randomly select sampling locations in the terraced pond also 

was used to randomly place two points and four transects in the unterraced pond.  Two 

adjacent to the shore (Unterraced Near) and two in the open water at least fifty meters 

from shore (Unterraced Far).  All transects paralleled the closest shoreline.  

Pond Characterization 

 A vial of water was collected upon arrival at each point within a pond to measure 

turbidity.  Water was collected before sampling SAV, from the front of the boat, to 

minimize the effects of disturbance by the airboat on turbidity.  A HI 93703 turbidity 
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meter (Hanna Instruments, Inc, Woonsocket, RI) was then used to measure the turbidity 

of the water in the vial.  The HI 93703 was calibrated in the lab prior to each field trip.  

However, during the June 2004 trip the HI 93703 was contaminated with salt water and 

had to be replaced.  In all subsequent trips an Aquafluor Turbidimeter (Turner Designs, 

Sunnyvale, CA) was used to measure turbidity.   

At each transect, whether terraced or unterraced, water temperature, salinity, and 

conductivity was measured using the YSI 63 (Yellow Springs Instruments Incorporated, 

Yellow Springs, OH).  The sensor was placed into the water over the edge of the airboat 

near the center of each transect.  Water depth was recorded using a meter stick. 

At the end of the study a core was taken at each transect to determine soil 

characteristics.  Each soil core was weighed then placed in a 350° furnace to combust 

organic matter.  The remaining mineral matter was used to calculate the percentage of 

organic matter in the soil.   

SAV Abundance 

 Abundance of SAV was estimated April 2004, June-July 2004, August 2004, 

October 2004, December 2004, February 2005, and in April 2005 using the rake method 

(Chabreck and Hoffpauir 1962, Nyman and Chabreck 1996, Hunter 2000, Caldwell 

2003), the core method (Gallagher 1974, Ellison et al. 1986, Caldwell 2003), and the 1-

m2 throw trap (Kanouse 2003, Gossman 2005).  The rake method estimated SAV 

frequency and the core and 1-m2 throw trap samples were used to estimate SAV biomass.  

Sampling was spread out from June 2004 to July 2004 because of airboat failure.  

In October 2004 Site 3 was not sampled due to airboat failure.  In December 2004 1-m2 

throw trap samples were not collected because of airboat failure. 
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 I estimated frequency and biomass to account for the variation in SAV over time.  

Merino (2005) found that frequency estimates were more valuable if SAV was 

uncommon within a pond and that biomass estimates were more valuable if SAV was 

common.  I collected samples over the course of the entire year because Merino (2005) in 

her study did not observe two growing seasons as had previously been reported (Joanen 

and Glasgow 1965). 

Rake  Eight transects were raked at each site: two Terraced Near (1m from terrace edge), 

two Terraced Far (transects 50m from, or halfway between terraces), two Unterraced 

Near (1m from natural marsh edge), and two Unterraced Far (at least 50m from marsh 

edge in open water).   

The rake was a garden rake with the tines painted white.  It is used to measure 

SAV frequency in coastal Louisiana marshes because the water is often too turbid for 

visual estimations (Chabreck and Hoffpauir 1962, Nyman and Chabreck 1996, Caldwell 

2003, Merino et al. 2005).  It was touched to the bottom of the pond and lifted thirty 

times as the airboat idled along transects.  Presence or absence of SAV was recorded each 

time the rake was lifted.  If there was SAV on any of the tines, the species present were 

recorded.  Frequency was then estimated using the following formula (Fig. 9).  

 

# times SAV is found on tines after dipping rake 
       # times rake is touched to the bottom 
Example: A rake is touched to the pond bottom 30 times and 12 times it has SAV on 
the tines.  The SAV frequency is 40%. 

= SAV Frequency

Figure 9. SAV Frequency Formula 

 
Core  Three cores were collected at each transect for a total of 24 per site.  Altogether six 

Terraced Near, six Terraced Far, six Unterraced Near, and six Unterraced Far were 

collected for each terraced and unterraced pond pair.   
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Cores were collected with a 10-cm diameter PVC pipe that was open on one end 

and had a cap on the other end with a small hole in the center.  The open end of the pipe 

was pressed into the upper 20-cm of soil and a rubber plug was inserted into the hole on 

the other end to create suction.  This allowed removal of all the SAV within the water 

column as well as the upper layer of soil.  The sample was presifted in the field through a 

2-mm mesh sieve to remove water and small soil particles.  Larger pieces of soil were 

removed by hand and then the SAV and the soil that remained were placed into a 

numbered Ziploc bag.  The samples were kept on ice in the field and refrigerated in the 

lab to slow decomposition.  In the lab, all living plant material retained by a 2-mm sieve 

was separated by species, weighed, dried in an oven, and reweighed.  The dry weight of 

the SAV and the area of the core were then used to estimate biomass (g/m2). 

1-m2 Throw Trap  The 1-m2 throw trap is a large metal frame one meter on a side and one 

meter tall.  The sides are fitted with netting and the top and bottom are open.  This trap 

was thrown from the airboat.  Its primary function was to capture nekton for a concurrent 

study (Gossman 2005).  One throw trap was used for each point at all sites.  SAV was 

removed by hand and placed in numbered Ziploc bags.  The samples were kept on ice in 

the field and refrigerated in the lab to slow decomposition.  Samples were separated by 

species, weighed, dried in an oven, and reweighed.  The dry weight and the area of the 

core were then used to estimate biomass (g/m2). 

Experimental Design   

Ponds were the experimental unit for this research.  The experimental design was 

a Randomized Block Design with repeated measures.  I blocked by site and sampled 

every other month.  Sampling started in April 2004 and concluded in April 2005.  
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 I tested the assumption that SAV would be more abundant near terraced or natural 

marsh edge (Appendix A).  That test led me to conclude that edge and far habitats 

differed in unterraced ponds, but not in terraced ponds.  I used 10m for edge estimates 

because edge associated nekton species, which I assumed where correlated to SAV, are 

found out to that distance (Minello and Rozas 2002).   

 I used ArcMap (ESRI, Redlands, CA) to determine the percentage of each pond 

that was edge and open (Fig. 10).  For this analysis edge was defined as ten meters from 

terrace or natural marsh shoreline.  In unterraced ponds, the percentages were then used 

to weight estimates for each sampling technique (i.e. g/m2 for the cores and 1-m2 throw 

trap and % frequency for the rake) based on habitat type (i.e. Terraced Near, Unterracced 

Near, etc.) because near and far habitats differed in SAV abundance in unterraced ponds.  

Statistical analysis was then used to determine SAV abundance and frequency at each 

pond on each of the sampling dates. 

Statistical Analysis   

Water depth, salinity, temperature, and turbidity were analyzed using the Proc 

Mixed procedure of SAS statistical software.  Proc Mixed is based on a mixed linear 

model and was used because variance was not homogenous, variation differed by 

sampling period.  The null hypothesis that there was no difference between terraced pond 

water parameters and the unterraced pond water parameters was tested.  Least-squares 

means for each water quality parameter were then graphed by date using SigmaPlot 

graphing software.  Statistically different means revealed by the graphs were confirmed 

using a Tukey-Kramer adjusted means comparison test in Proc Mixed (Kramer 1956). 

 23 



 

 

Figure 10. Map of Site One Terraced Pond, Illustrating Habitat Polygons used to 
Estimate Percentage of Edge and Open Habitat for Weighting SAV Estimates by Habitat 
Type 
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 Initial analysis indicated that SAV samples did not meet the assumptions of 

parametric statistics.  The residuals were not normally distributed and variances were not 

homogenous (variance differed between sampling periods).  After determining this, the 

Proc Glimmix procedure of SAS 9.1 (SAS Institute Inc., Cary, NC) statistical software 

was used to determine the distribution that best fit my data.  Proc Glimmix is a general 

mixed model program that allows the user to fit a model with non-normal distributions.  

Models for all data had the lowest AIC scores using the lognormal distribution.   

 Once lognormal was determined to be the distribution that best fit the data, the 

models were run again using the Proc Mixed procedure after being log transformed.  This 

allowed us to use the distribution suggested by the Proc Glimmix procedure while taking 

advantage of Proc Mixed procedure’s more robust method of handling non-homogenous 

variance.  It allowed us to treat months as a repeated measure and to specify that variance 

differed for each month.  All means presented for SAV are back-transformed from 

logarithmic distribution with back-transformed standard errors. 

 Initial analysis (Appendix A) indicated that terraced habitat types did not differ 

from one another but unterraced habitat types did.  Terraced Near and Terraced Far were 

similar for all three sampling techniques and Unterraced Near and Unterraced Far were 

dissimilar for all three sampling techniques.  Because I had intentionally placed far 

sampling points further than I assumed edge effects on SAV extended.  This was rather 

surprising.  Taking this information into account I pooled my estimates for the terraced 

ponds rather than weighting them by habitat type.    
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RESULTS 

Pond Characterization 

 Water depth averaged 43 ± 7 cm in terraced ponds and 43 ± 7 cm in the 

unterraced ponds.  The difference between treatments was not significant (AIC = 1268.7, 

df = 1, 2.92, pwater depth = .9070) (Fig. 11).  Salinity differed between terraced and 

unterraced ponds on some dates (AIC = 519.3, df = 6, 36.6, psalinity*date < .0001).  Salinity 

was lower in terraced ponds in October (Fig. 12).  Water temperature differed 

significantly between terraced and unterraced ponds and among dates but the interaction 

was insignificant (AIC = 761.3, df = 1, 28.8, ptemperature = 0.0051, df = 6,31, pdate < .0001,  

df = 6,32.7, ptemperature*date = .5346, respectively).  Water temperature averaged 21.65 ± 

1.28 Cº in the terraced ponds and 23.723 ± 1.30 Cº in the unterraced ponds.  The 

interaction of turbidity and date was significant (AIC = 917.1, df = 6, 33.5, pturbidity*date = 

.0003).  Terraced ponds were less turbid in April 2004 and February 2005 (Fig. 14).    

There was a significant inverse relationship between turbidity and SAV estimates from 

all three sampling techniques (prake < .0001, r = -.399, pcores = .0002, r = -.3430, pthrowtrap = 

.0009, r = -.309, n = 114).  For soil composition, the interaction of treatment (terraced or 

unterraced) and habitat types (near or far) was significant (AIC = 1112.8, df = 1,144, 

ptreatment*habitat  <.0001).  Mean organic matter was 12 ± 5% for Terraced Near, 21 ± 5% for 

Terraced Far, 36 ±5% for Unterraced Near, and 25 ± 5% for Unterraced Far (Fig. 15).  

Organic Matter was inversely correlated with all three estimation techniques (prake < 

.0001, r = -.364, pcores = .0052, r = -.253, pthrowtrap < .0001, r = -.422, n = 114). 
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Figure 11. Water Depth of Terraced and Unterraced Ponds by Sampling Date 
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Figure 12 Salinity of Terraced and Unterraced Ponds by Sampling Date 
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Species Composition 

 There were 11 species identified during the study and one species that I was 

unable to identify (Table 2).  Eleven were detected by the 1-m2 throw trap method, 9 by 

the core method, and 9 by the rake method.  Ruppia maritima, Potamogeton pusillus, 

Myriophyllum spicatum, and filamentous algae (Chlorophyta) were the four most 

common species collected. 

Rake 

 The mean frequency of SAV differed significantly between treatments (AIC = 

160.5, df = 1, 32.1, prake = 0.0106, n=40).  The mean frequency of SAV for terraced 

ponds was 20% (SE 13 to 33%) and the mean frequency for unterraced ponds was 9% 

(SE 5 to 14%) (Fig.16).   

Cores 

 Biomass of SAV differed significantly between terraced and unterraced ponds 

(AIC = 160.2, df = 1, 31.7, pcores = 0.0002, n=41).  The mean biomass for terraced ponds 

was 5.6 g/m2 (SE 3.5 to 8.9 g/m2) and 1.6 g/m2 (SE .97 to 2.5 g/m2) for the unterraced 

ponds (Fig. 17). 

1-m2 Throw Trap 

 Biomass of SAV differed significantly between terraced and unterraced ponds 

(AIC = 144 df = 1, 35 pthrowtrap = 0.0003, n=38).  The overall mean biomass for terraced 

ponds is 5.5 g/m2 (SE 3.3 to 9.3g/m2) and 1.6 g/m2 (SE .94 to 2.6 g/m2) for the unterraced 

ponds (Fig. 18). 
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Figure 13. Water Temperature of Terraced and Unterraced Ponds by Sampling Date 
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Figure 14. Turbidity of Terraced and Unterraced Ponds by Sampling Date 
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Figure 15. Percent Organic Matter of Pond Bottom Sediments by Habitat Type 
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  .……Rake Transect……  …..……….Cores……………  .……..1-m2 Throw Trap……… 
Species N Frequency Cover

 (%) 
SD
(%)

N Frequency Biomass
 (g/m2) 

SD N Frequency Biomass 
(g/m2) 

SD 

unidentified ** ** ** ** 477 1 0.016 0.350 150 4 0.0160 0.3500 
Algae 159 72 18 31 477 70 17.849 85.733 150 52 50.3610 278.2193
Ceratophyllum 
demersum 159 5 <1 1 477 1 0.003 0.058 150 4 0.0360 0.3027 
Chara 
spp.* 159 2 <1 2 477 1 0.000 0.006 150 1 0.0140 0.1715 
Echinochloa 
spp.* ** ** ** ** 477 1 0.013 0.292 150 1 0.0003 0.0033 
Eleocharis 
spp.* 159 1 <1 1 477 ** ** ** 150 2 0.1053 1.2737 
Myrophyllum 
spicatum 159 35 15 33 477 73 92.935 294.230 150 30 51.3339 215.9436
Najas 
guadalupensis 159 16 2 10 477 34 2.508 15.600 150 11 0.5891 6.6995 
Nitella 
spp.* 159 6 <1 <1 477 ** ** ** 150 2 0.0000 0.0001 
Potomageton 
pusillus 159 32 4 14 477 36 3.606 37.558 150 39 1.1541 7.8187 
Ruppia  
maritima 159 42 5 14 477 35 3.689 32.936 150 51 1.1695 8.0602 
Vallisneria 
americana ** ** ** ** 477 1 0.075 1.633 150 3 0.0101 0.1073 
* We were unable to identify these specimens beyond Genus             
** This species was not detected by this sampling method             

  

Table 2. Species composition of Submerged Aquatic Vegetation as estimated via three techniques in three pairs of brackish marsh 
ponds in southwest Louisiana averaged over seven sampling dates between April 2004 and April 2005.   
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Figure 16. Rake Sampling Technique, SAV Frequency of Terraced and Unterraced Ponds 
by Sampling Date 
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Figure 17 Core Sampling Technique, SAV Biomass of Terraced and Unterraced Ponds 
by Sampling Date 
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Figure 18. 1-m2 Throw Trap Sampling Technique, SAV Biomass of Terraced and 
Unterraced Ponds by Sampling Date 
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DISCUSSION 

 SAV abundance and frequency differed between terraced and unterraced ponds.  

SAV was found approximately twice as frequently in terraced ponds and terraced ponds 

had approximately three and half times the SAV biomass of unterraced ponds.  It is 

important to note that the average biomass found in terraced ponds was within the SAV 

biomass range for ponds in Merino’s (2005) study while biomass in unterraced ponds 

was lower.  The average biomass is higher than terraced or unterraced habitat types in 

Caldwell’s (2003) study. 

SAV Survey Methods 

 All three sampling techniques were positively correlated.  This indicates that for 

this study the rake, core, and 1-m2 throw trap sampling methods were equal estimators of 

SAV abundance.  These results differ from Merino’s (2005) study, possibly because the 

estimates for SAV were low for unterraced ponds and high for terraced ponds. 

Turbidity  

 It is unclear how terraces increased SAV abundance.  A priori assumptions that 

SAV production would be improved by lowered turbidity seems to be partially  

verified.  Turbidity was lower in April 2004 and February 2005 in the terraced ponds.  It 

was also inversely correlated to SAV.  These results should be viewed with caution, 

however.  SAV estimates also differed significantly between terraced and unterraced 

ponds in other months when turbidity did not (Fig. 16, 17, 18).  One possible explanation 

is that turbidity differed sufficiently between ponds on days that I did not sample to affect 

SAV growth but was not different on the day I sampled.  This study was not designed to 

detect such differences.  A new study that incorporates continuously recording turbidity 
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meters in paired terraced and unterraced ponds could more definitively answer this 

question.  But differences in SAV estimates between ponds could also have been due to 

other factors, such as organic matter.   

Organic Matter  

 Terraced Near and Terraced Far had soil with significantly less organic matter 

than Unterraced Near.  Terraced Near had significantly less organic matter than  

either unterraced pond habitat type.  High organic matter can inhibit SAV growth and 

survival (Barko and Smart 1986, Koch 2001).  Soils composed of more than 20% organic 

matter is considered detrimental to SAV because of chemicals such as sulfides produced 

by bacteria in the anoxic conditions of pond bottoms (Barko and Smart 1986, Koch 

2001).  This disparity between terraced and unterraced ponds could partly account for the 

differences in SAV abundance seen in this study.  The percentage of organic matter in the 

soil was inversely correlated with all three estimators of SAV.  However, one sampling 

point had a mean biomass of 68.68 g/m2 over the course of the study in soil composed of 

44% organic matter.  This suggests an alternative mechanism for SAV regulation by 

organic matter is responsible differences in SAV estimates between terraced and 

unterraced ponds. 

Wave Fetch and Organic Matter  Recent studies suggest such an alternative mechanism 

for SAV regulation by organic matter.  Schutten et al. (2004 and 2005) found that in lakes 

or ponds where wave action was severe or moderate SAV could be uprooted by wave 

action in organic soils because the sediment shear-strength was insufficient to prevent 

uprooting.  This theory of SAV regulation would help explain how Terraced Far habitat 

types have higher SAV abundance than Unterraced Far in some months even though both 
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contain soils with more than 20% organic matter.  That is, terraces could be causing the 

higher SAV biomasses and frequencies in terraced ponds seen in this study by reducing 

wave energy, thereby preventing SAV uprooting.  However, this study did not address 

wave energy so this would need to be tested in a new study that measures wave energy.   

 In addition to reducing wave fetch and turbidity, the process of constructing 

terraces increased the mineral content of soils near terraces.  This increased soil mineral 

matter could also account for some of the differences between terraced and unterraced 

ponds seen in this study if organic matter regulation by toxic compounds is occurring.  If 

so, this effect should decrease over time as organic matter from emergent matter on the 

terrace ridges accumulates (Craft et al. 1999).  Future terrace studies that take this into 

account would be an excellent way to test these two theories of SAV regulation by 

organic matter. 

Suggestions for Terrace Construction 

 Terraces can affect wave action (by reducing fetch) and thereby reduce turbidity 

also.  SAV, distribution and survival however, is affected by a number of other factors as 

well.  Generally these are broken down into light availability factors (which has chemical 

and biological parameters) and non-light associated factors (which has physical, 

geological, and geochemical parameters) (Koch 2001). 

 Terraces can only mediate wave action and turbidity (and then only to an extent 

determined by the number of terraces and soil type).  It is this author’s suggestion that 

factors terraces cannot address be considered prior to terrace construction and that terrace 

construction be limited to areas where it is appropriate.  For example, light availability 

may be limited by epiphytes and filamentous algae and not turbidity in areas that have 
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high nutrient inflows (Livingston et al. 1998, Koch 2001).  In other areas, water clarity 

may be sufficient for SAV growth but the soil is too sandy and nutrient poor to promote 

SAV growth (Koch 2001).  In general, restoration planners should avoid building terraces 

in these areas and focus on reducing nutrient levels and introducing mineral sediment. 

 The terraces of Site 2 deteriorated and fell apart during this study.  The terraces 

were only four years old then.  That deterioration strongly suggests that an evaluation of 

terraces that have been built to date be conducted to determine the average life span of 

terraces.  However, I also must point out that the terraces of Site 2 were the first terraces 

designed by Rockefeller Refuge Personnel.  The terraces at Site 1 were also designed by 

Rockefeller Refuge Personnel and were in good condition at the end of the study.  

Therefore, the terrace deterioration at Site 2 is probably an exception and not indicative 

of normal terrace longevity.   The terraces at Sabine National Wildlife Refuge that Steyer 

(1993) studied, for example, were still intact over fifteen years after construction (the 

author is unaware of the terraces’ condition post hurricane Rita). 
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APPENDIX A:  HABITAT-LEVEL ANALYSES 

Introduction 

 This appendix summarizes the initial analysis of SAV data to test the assumption 

that SAV abundance did not differ between near-edge and far-from-edge habitats, both of 

which exist in ponds.  If this assumption was true, then pond-level estimates of SAV 

abundance would not need to be weighted to account for amount of near and far habitats.  

These tests also allowed me to test for effects of terraces that existed near terraces, but 

were insignificant at the pond level because too few terraces were constructed in a pond.  

The experimental design called for three sites with paired ponds at each type.  Each site 

was broken into four habitat types: Terraced Near, Terraced Far, Unterraced Near, 

Unterraced Far.  Near samples (Terraced Near and Unterraced Near) represented edge 

habitat.  Far samples (Terraced Far and Unterraced Far) were represented open water 

habitat.  I assumed that terraced edge (Terraced Near) would function better than the 

open water it replaced (Unterraced Far) but not as well as natural marsh edge (Unterraced 

Near).  I also assumed that the terraced edge would not have an effect on SAV 50m from 

the terrace.  My assumption was based on personal observations of SAV occurrence near 

natural marsh edge and SAV predictive models which show the same (Lehmann 1998).  

Statistical Analysis 

Data from all three sampling techniques were analyzed initially using Proc GLM 

and Proc Univariate of SAS 9.1 (SAS Institute Inc., Cary, NC) but were determined to 

have non-homogenous variances and nonnormal distribution.  Proc Glimmix was then 

used to determine the distribution that best fit the data.  Lognormal distribution was 

determined to be the best fit.  Once that determination was made Proc Mixed was used 
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after taking the natural log of the data.  This allowed utilization of Proc Mixed’s more 

robust handling of non-homongenous variance.   

The null hypothesis that there was no difference between different treatment 

(terraced and unterraced) and distance (near edge and far from edge) combinations were 

tested.  Combinations of interest were Terraced Near, Terraced Far, Unterraced Near 

(assumed restoration goal), and Unterraced Far (pre-restoration condition).  These 

represented the four habitat types of interest.  If significant, the interactions were further 

analyzed using Tukey-Kramer pairwise comparisons (Kramer 1956).      

Results 

Rake  The interaction of treatment and distance was significant (ptreatment*distance <0.0001, n 

= 159).  SAV frequency for Terraced Near was 15% (SE 7 to 31%), Terraced Far was 

19% (SE 9 to 39%), Unterraced Near was 19% (SE 9 to 40%) and Unterraced Far was 

4% (SE 2 to 9%) (Fig. 19).  

Cores  The interaction of habitat, treatment, and sampling date was significant 

(ptreatment*distance*date = 0.0022, n = 477).  SAV biomass for Terraced Near was 3.95 g/m2 

(SE 2.1 to7.3 g/m2), Terraced Far was 4.9 g/m2 (SE 2.7 to 9.2 g/m2), Unterraced Near 

was 2.1 g/m2 (SE 1.1 to 3.9), and Unterraced Far was 1.0 g/m2 (SE .56 to 1.9 g/m2) (Fig. 

20). 

1-m2 Throw Trap  The interaction of habitat type and treatment was significant 

(ptreatment*distance = 0.0145, n = 150).  SAV biomass for Terraced Near was 4.4 g/m2 (SE 2.5 

to 7.8 g/m2), Terraced Far was 5.1 g/m2 (SE 2.9 to 9.0), Unterraced Near was 2.1 g/m2 

(SE 1.2 to 3.6 g/m2), and Unterraced Far was 1.3 g/m2 (SE .72 to 2.2 g/m2) (Fig. 21). 
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Discussion 

 Estimates from all three sampling techniques indicate SAV abundance and 

frequencies were similar for Terraced habitat types but differed significantly for 

Unterraced habitat types.  SAV estimates for Unterraced Near were significantly higher 

than Unterraced Far habitat.  Terraced Near and Terraced Far were not significantly 

different from one another.  However, Terraced habitat types were not significantly 

different from either Unterraced Near or Unterraced Far indicating that functionally they 

are somewhere between pre-restoration and the restoration goal.  However, in the graphs 

Terraced Near and Terraced Far appear to be functioning as well as or better than 

Unterraced Near (restoration goal) while in some cases Unterraced Near seems to be no 

better than Unterraced Far.  Although this appears to be the case Tukey-Kramer pairwise 

comparisons could only confirm that Unterraced Near and Unterraced Far were different.  

This is likely because the pair-wise comparison test had more degrees of freedom when 

comparing habitat types within ponds than it did when comparing habitat types between 

ponds. 

 These results are similar to my a priori assumptions with one exception.  Terraced 

Near and Terraced Far were not significantly different.  This indicates that the effects of 

terraces extend at least 50m and probably further.  This was unexpected.  Perhaps a future 

study can determine how far the effect of terraces on SAV does extend. 

 Based on this analysis I further refined my analysis by weighting the estimates for 

each habitat type by the percentage of the pond they represented.  This allowed terraced 

pond to unterraced pond comparisons that took into account the additional amount of 
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edge habitat terraces create and the increased SAV production in the open water habitat 

of terraced ponds. 
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Figure 19. Rake Sampling Technique, SAV Frequency of Terraced and Unterraced Ponds 
by Habitat Type 
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Figure 20. Core Sampling Technique, SAV Biomass of Terraced and Unterraced Ponds 
by Habitat Type and Sampling Date 
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Figure 21. 1-m2 Throw Trap Sampling Technique, SAV Biomass of Terraced and 
Unterraced Ponds by Habitat Type 
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APPENDIX B:  ESTIMATES OF SAV ABUNDANCE FOR WVA MODELS 

 This appendix includes the arithmetic means of the three estimation techniques 

with Site 2 excluded and with Site 2 included.  Some users of Wetland Value Assessment 

models (EWG 1998) may prefer estimates of SAV abundance based only upon terraces 

that existed throughout my study.  Those estimates are presented here.   

Rake  When Site 2 was excluded from the data set, SAV frequency was 67% (± 9 %, n = 

13) for terraced ponds and 20% (± 8 %, n = 13) for unterraced ponds.  When Site 2 was 

included, SAV frequency was 45% (± 9 %, n = 20) for terraced ponds and 17% (± 6 %, n 

= 20) for unterraced ponds. 

Cores  When Site 2 was excluded from the data set, SAV biomass was 32.7 g/m2 (± 11.12 

g/m2, n = 13) for terraced ponds and 0.52 g/m2 (± 0.16 g/m2, n = 13) for unterraced 

ponds.  When Site 2 was included, SAV biomass was 21.3 g/m2 (± 7.97g/m2, n = 20) for 

terraced ponds and 0.56 g/m2 (± 0.14 g/m2, n = 20) for unterraced ponds.   

1-m2 Throw Trap  When Site 2 was excluded from the data set, SAV biomass was 30.7 

g/m2 (± 10.95 g/m2, n = 12) for terraced ponds and 1.08 g/m2 (± 0.74 g/m2, n = 12) for 

unterraced ponds.  When Site 2 was included, SAV biomass was 19.4 g/m2 (± 7.65 g/m2, 

n = 19) for terraced ponds and 0.74 g/m2 (± 0.47 g/m2, n = 19) for unterraced ponds.
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