2004

Watermarking using decimal sequences

Navneet Kumar Mandhani
Louisiana State University and Agricultural and Mechanical College, nmandhani@yahoo.com

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses

Part of the Electrical and Computer Engineering Commons

Recommended Citation
https://digitalcommons.lsu.edu/gradschool_theses/3915

This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact gradetdl@lsu.edu.
WATERMARKING USING DECIMAL SEQUENCES

A Thesis

Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering

in

The Department of Electrical and Computer Engineering

By

Navneet Kumar Mandhani
Bachelor of Engineering, Andhra University, 2002
Visakhapatnam, India
August 2004
Acknowledgements

I would like to acknowledge certain people who have encouraged, supported and helped me complete my thesis at LSU.

I am very grateful to my advisor Dr. Subhash C. Kak for his guidance, patience and understanding throughout this work. His suggestions, discussions and constant encouragement have helped me to get a deep insight in the field of Watermarking. I would like to thank Dr. Suresh Rai and Dr. Xue Bin Liang for sparing their time to be a part of my thesis advisory committee. I am very thankful to Dr. Stevan G. Hall for all his support, financial and technical throughout my thesis. I take this opportunity to thank my friends Archit, Pradeep, Naveed, Sameer, Radhika and Pallavi for their help and encouragement. I would also like to thank all my friends here who made my stay at LSU an enjoyable and a memorable one.
Table of Contents

<table>
<thead>
<tr>
<th>Acknowledgements</th>
<th>ii</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Tables</td>
<td>v</td>
</tr>
<tr>
<td>List of Figures</td>
<td>vi</td>
</tr>
<tr>
<td>Abstract</td>
<td>ix</td>
</tr>
</tbody>
</table>

Chapter

1. Introduction | 1 |
 1.1 Background | 2 |
 1.2 Cryptography, Steganography and Watermark | 2 |
 1.2.1 Cryptography | 2 |
 1.2.2 Steganography | 3 |
 1.2.3 Watermark | 5 |
 1.3 Applications of Watermark | 7 |
 1.4 Outline of Thesis | 8 |

2. Basic Watermarking Techniques | 10 |
 2.1 Requirements of a Good Watermark | 10 |
 2.2 Basic Watermarking Techniques | 11 |
 2.2.1 Visible Watermark | 11 |
 2.2.2 Invisible Watermark | 12 |

3. Watermarking Using PN Sequences | 16 |
 3.1 What is CDMA? | 16 |
 3.2 PN Sequences | 17 |
 3.3 Properties of PN Sequences | 19 |
 3.4 Watermarking Using PN Sequences | 21 |
 3.4.1 Embedding and Decoding | 22 |
 3.4.2 Observations | 30 |

4. Watermarking Using Decimal Sequences | 31 |
 4.1 Introduction | 31 |
 4.2 Properties of Decimal Sequences | 31 |
 4.3 Generation of Decimal Sequences | 36 |
 4.4 Watermarking Using Decimal Sequences | 39 |
 4.4.1 Embedding and Recovery Using D-Sequences | 39 |

5. Analysis of Results | 45 |
 5.1 Performance Analysis | 45 |
 5.2 Correlation Analysis | 48 |
 5.3 Observations | 51 |
6. Conclusions... 55
Bibliography... 56
Vita..58
List of Tables

3.1 Outputs of a 3-stage shift register…………………………………………… 19

4.1 Sample results for various prime numbers used to generate d-sequences for watermarking………………………………………………………………… 44

5.1 Mean and standard deviation analysis for 256 × 256 Lena image………… 51
List of Figures

1.1 Cryptography for secure communication... 3
1.2 A Steganographic system.. 4
1.3 Digital Watermarking – Embedding.. 6
1.4 Digital Watermarking – Decoding.. 6
2.1 Lena 256 × 256 Image... 12
2.2 Watermark Image (Visible watermark)... 12
2.3 Watermarked Image (Visible watermark)....................................... 12
2.4 Lena 256 × 256 Image... 14
2.5 Watermark Image (LSB Substitution)... 14
2.6 Watermarked Image... 14
2.7 Watermark recovery... 14
3.1 Linear Feedback Shift Register... 18
3.2 Embedding process... 22
3.3 Decoding process... 23
3.4 Lena 256 × 256 image... 28
3.5 Watermarked image with gain 3... 28
3.6 Watermarked image with gain 5... 29
3.7 Watermarked image with gain 3 (High pass filtered Lena).......... 29
3.8 Original watermark... 29
3.9 Recovered watermark for gain 3... 29
3.10 Recovered watermark for gain 5... 30
3.11 Recovered watermark for gain 3 (for high pass lena)............... 30
4.1 Autocorrelation graph for q = 293 ...34
4.2 Cross correlation graph for q = 5 with zero shift35
4.3 Generation of d-sequences ...37
4.4 Grey scale Lena image ...40
4.5 Watermark object ..40
4.6 Embedding output for q = 283 ...40
4.7 Decoding output for q = 283 ..40
4.8 Embedding output for q = 167 ...41
4.9 Decoding output for q = 167 ..41
4.10 Embedding output for q = 263 ...41
4.11 Decoding output for q = 263 ..41
4.12 Embedding output for q = 293 ...42
4.13 Decoding output for q = 293 ..42
4.14 Embedding output for q = 1879 ...42
4.15 Decoding output for q = 1879 ...42
4.16 Watermarked image for circular shift = 50 ..43
4.17 Retrieved watermark ..43
4.18 Watermarked image for circular shift = 146 ..43
4.19 Retrieved watermark ..43
5.1 Embedding output for q = 277 ...45
5.2 Decoding output for q = 277 ..45
5.3 Autocorrelation for q = 277 ..46
5.4 Embedding output for q = 257 ...47
5.5 Decoding output for q = 257 ... 47
5.6 Autocorrelation for q = 257 ... 47
5.7 Correlation graph for q = 293 ... 49
5.8 Correlation graph for q = 277 ... 50
5.9 Correlation graph for q = 257 ... 50
Abstract

This thesis introduces the use of decimal sequences in watermarking to hide information for authentication. The underlying system is based on code division multiple access (CDMA), which is a form of spread spectrum communication. Different algorithms for the use of decimal sequences have been formulated for use in black and white images. The watermark is spread across the carrier image by using the d-sequences of optimal period and retrieval is made by the use of correlation. Matlab version 6.5 was used to implement the algorithms discussed in this thesis. The advantage of using d-sequences over PN sequences is that one can choose from a variety of prime numbers which provides a more flexible system. Different methods for adding the random sequence to the image were investigated and results for random shifts and cyclic shifts have also been discussed.
Chapter 1

Introduction

Cryptography and steganography have been used throughout history as means to add secrecy to communications during times of war and peace [6]. Some of the early methods to hide information include text written on wax-covered tablets, invisible writing using invisible ink and shaving the head of a messenger and tattooing the message on the scalp. In World War II null ciphers were used in which the secret was camouflaged in an innocent sounding message as in the example below [22]

 Apparently neutral’s protest is thoroughly discounted and ignored. Islam hard hit. Blockade issue affects pretext for embargo on byproducts, ejecting suets and vegetable oils.

Taking the second letter in each word the following message emerges:

Pershing sails from NY June 1

As technology developed and detection methods improved, more effective methods of hiding information were developed. The Germans invented microdot technology for covert communication in 1941. In microdots, the messages were neither hidden nor encrypted but their size was too small to be seen by the naked eye [22]. Advances in microdot technology still continue to this day, the latest development being the embedding of a message in a strand of DNA by the use of the technique of genomic steganography [23].

With the advent of the internet, steganography has found new applications. But, at the same time it is also vulnerable to more powerful attacks since the medium is relatively insecure. To overcome this limitation, watermarking comes into picture. The
chief difference between the two techniques is the superior robustness capability of watermarking schemes.

The following sections explain the basic concepts of cryptography, steganography and watermarking. It also lists some of the most common applications of watermarking in today’s world.

1.1 Background

Digital watermarking includes a number of techniques that are used to imperceptibly convey information by embedding it into the cover data [1]. There has always been a problem in establishing the identity of the owner of an object. In case of a dispute, identity was established by either printing the name or logo on the objects. But in the modern era where things have been patented or the rights are reserved (copyrighted), more modern techniques to establish the identity and leave it untampered have come into picture.

Unlike printed watermarks, digital watermarking is a technique where bits of information are embedded in such a way that they are completely invisible. The problem with the traditional way of printing logos or names is that they may be easily tampered or duplicated. In digital watermarking, the actual bits are scattered in the image in such a way that they cannot be identified and show resilience against attempts to remove the hidden data [1].

1.2 Cryptography, Steganography and Watermarking

1.2.1 Cryptography

Cryptography as the study of secret (crypto) writing (graphy) can be defined as the science of using mathematics to encrypt and decrypt data back [2]. It allows two
people, commonly known as Alice and Bob, to communicate with each other securely. This means that an eavesdropper known as Eve will not be able to listen in on their communication. Cryptography also enables Bob to check that the message sent by Alice was not modified by Eve and that the message he receives was really sent by Alice [3].

A message is known as a plaintext or cleartext. The method of disguising the plaintext in such a way as to hide its information is encryption and the encrypted text is also known as a ciphertext. The process of reverting ciphertext back to its original text is decryption. This is shown in figure 1.1 [4].

![Cryptography for secure communication](image)

Figure 1.1 Cryptography for secure communication

1.2.2 Steganography

While cryptography is about protecting the content of the messages, steganography is about concealing their very existence. Steganography comes from a Greek word that means covered writing \((stego = covered + graphy = writing)\) [5].

Examples can be thought as messages exchanged between drug dealers via emails in encrypted forms, or messages exchanged by spies in covert communication. Steganography hides the fact that the communication ever occurred as shown in Figure 1.2.
Let us consider that Alice, who wants to share a secret message \(m \) with Bob, selects randomly a harmless message or a cover object \(C \). The message to be shared is then embedded into \(C \), by using key \(K \) (called stego-key), and the cover object \(C \) is transformed to stego object \(S \). This stego object can be transmitted to Bob without raising any suspicion. This should be done in such a way that a third party knowing only the apparently harmless message \(S \) cannot detect the existence of the secret. The cover object could be any data such as image files, written text or digital sound. In a perfect system, a normal cover object should not be distinguishable from the stego object, neither by a human nor by a computer looking for statistical patterns [1].

![Steganographic System Diagram](image)

Alice transmits the stego object \(S \) to Bob over an insecure channel. Bob can reconstruct the message \(m \) by using the same key \(K \) as used by Alice during embedding the message in the cover object. The extraction process should not need any knowledge of the cover object.
Any person watching the communication should not be able to decide whether the sender is sending covers with messages embedded into them. In other words, a person with a number of cover objects C_1, C_2, \ldots, C_n should not be able to tell which cover object C_i has the message embedded in it, and the security of invisible communication lies in the inability to distinguish cover objects from the stego objects [1] [5]. However, not all the cover objects can be used to hide the data for covert communication, since the modifications done after the data is hidden should not be visible to anyone not involved in the communication. The cover object needs to have sufficient redundant data, which can be replaced by secret information [1].

1.2.3 Watermarking

Although steganography and watermarking both describe techniques used for covert communication, steganography typically relates only to covert point to point communication between two parties [6]. Steganographic methods are not robust against attacks or modification of data that might occur during transmission, storage or format conversion [1].

Watermarking, as opposed to steganography, has an additional requirement of robustness against possible attacks. An ideal steganographic system would embed a large amount of information perfectly securely, with no visible degradation to the cover object.

An ideal watermarking system, however, would embed an amount of information that could not be removed or altered without making the cover object entirely unusable. As a side effect of these different requirements, a watermarking system will often trade capacity and perhaps even some security for additional robustness [5].

The working principle of the watermarking techniques is similar to the steganography methods. A watermarking system is made up of a watermark embedding
system and a watermark recovery system. The system also has a key which could be either a public or a secret key. The key is used to enforce security, which is prevention of unauthorized parties from manipulating or recovering the watermark. The embedding and recovery processes of watermarking are shown in Figure 1.3 and 1.4. [7].

For the embedding process the inputs are the watermark, cover object and the secret or the public key. The watermark used can be text, numbers or an image. The resulting final data received is the watermarked data W.

The inputs during the decoding process are the watermark or the original data, the watermarked data and the secret or the public key. The output is the recovered watermark W.
1.3 Applications of Watermarking

The requirements that a watermarking system needs to comply with depends upon the specific type of application. A few most common applications involve:

1. **Owner Identification**: The owner identification can be printed on the covers or mentioned somewhere on the item. Examples are the identification mark of an audio company on the CD case or the mark of the paper manufacturer on top corner of the paper. These types of watermarks can be easily removed by cropping the image or by tearing the part that has the identification. Digital watermarking helps to overcome this problem by embedding the watermark in the form of bits and forming an integral part of the content. The device reads the CD and identifies the watermark. For having further access to the CD the owner should have a license or he should have paid a fee to access the copyrighted work.

2. **Copy Protection**: To prevent the data from being copied a watermark can be introduced in the data with a copy protect bit. When the copying device reads the data, the watermark detecting circuitry should detect the watermark and stop recording. This would need all the copying machines to have the watermark circuitry to identify the watermark and act accordingly [1].

3. **Broadcast Monitoring**: A commercial advertisement may be watermarked by putting a unique watermark in each video or sound clip prior to broadcast. Automated monitoring systems can then receive broadcasts and check for these watermarks, identifying when and where each clip appears. This proves very helpful for the advertisers as they actually pay for only the number of times the advertisement was actually relayed [10].
4. **Medical applications**: Names of the patients can be printed on the X-ray reports and MRI scans using techniques of visible watermarking. The medical reports play a very important role in the treatment offered to the patient. If there is a mix up in the reports of two patients this could lead to a disaster.

5. **Fingerprinting**: A fingerprinting technique can be used to trace the source of illegal copy. Every copy available can be watermarked with a unique bit sequence. Now, if a copy is made illegally the source can be easily tracked since each original copy had a unique bit sequence embedded into it [8].

6. **Data Authentication**: A given set of data (images) can be easily tampered without even being detected. To avoid this and maintain the originality of the image a watermark like signature, a set of words, may be embedded into the image. If the image is now being tampered it can be easily detected as the pixel values of the embedded data would change and not match the original pixel values. If the image is being copied it would lose its authentication as the embedded data would not be copied along with the image.

1.4 **Outline of the Thesis**

The central idea of this thesis is to develop algorithms for using decimal sequences in watermarking for application to black and white images. Chapter 2 introduces the basic watermarking techniques like visible watermarking and least significant bit substitution (LSB). Some of the possible attacks are also discussed. Chapter 3 starts with a brief background on how code division multiple access (CDMA) is used for classical watermarking based on pseudonoise (PN) sequences. Some examples of such watermarking using different techniques to shift the sequence are presented and the chapter concludes with a brief section on discussion of results and drawbacks and how
they can be improved by using decimal sequences. Chapter 4 focuses on properties of
decimal sequences, followed by methods to generate them. Then it shows how to embed
and recover hidden information using decimal sequences in black and white images for
different shifts and prime numbers. Some sample outputs are presented. Chapter 5 deals
with analysis of results obtained using decimal sequences. It compares the output
obtained for various prime numbers with periods of \((q-1), (q-1)/2, (q-1)/3\ldots\) and also
compares the correlation graphs for good and bad recovery of watermark to throw more
light on the analysis of results. This chapter ends with conclusions and future scope for
study.
Chapter 2

Basic Watermarking Techniques

This chapter presents requirements for a good watermark and discusses some basic techniques like visible watermarking and the least significant bit substitution (LSB) method.

2.1 Requirements of a Good Watermark

1) **Robustness:** Robustness means that the watermarking scheme employed should be able to preserve the watermark under various attacks. The attack could be anything like rotation, translation, cropping, scaling or passing the image through various types of filters. There might be some noise introduced by this processing but this should not affect the retrieval of the watermark.

2) **Quality of the image:** Watermarking should be done in a way such that it does not affect the quality of the image or the hidden data after watermarking. The changes in the image should not be noticeable to the naked eye.

3) **Payload capacity of the image:** It is very important to find the maximum amount of information that can be safely hidden in an image. Various applications have different sizes of the data that is to be hidden. This directly affects the robustness and the perceptual impact. If too much of the data is hidden in the image (much more than the payload capacity) it is harmful for the quality of image as the resolution of the images reduces drastically.

4) **Reliability of the watermark:** There is always a possibility that the user knows the exact algorithm for detecting and rendering the watermark inactive. The only way to secure the watermark then lies in the selection of the key used for watermarking. Now, even if the user on the other side knows the exact algorithm...
it should be practically impossible to find the exact key to match with the one during embedding. This counts for the reliability or strength of the watermark.

2.2 Basic Watermarking Techniques

Watermarks do not always need to be hidden. Watermarking can be broadly classified in two categories:

- Visible watermarking
- Invisible or imperceptible watermarking

Most of the literature has focused on the invisible digital watermarking as it has more applications in today’s digital world. Visible digital watermarks are strongly linked to the original paper watermarks that have been traced back to the end of 13th century [1].

2.2.1 Visible Watermarking

Visible watermarking was the first and most primitive way of watermarking. In this method the cover object is taken and the watermark is added on it. This makes the watermark visible on the cover object. This was good for identification purposes but not for steganography.

Visible watermarks were created by using Lena’s images as the cover images. These images were 8-bit gray scale images. The watermark was chosen as a monochrome image exactly of the same size as the cover object. The watermarked image was achieved by changing the pixel intensity values in the cover image corresponding to white pixels in the watermark.

Though visible watermarking has been used since a very long time it is not a secure form of watermarking for applications such as copy protection and copyrighting. The algorithm used for visible watermarking cannot be kept secret. This form of
watermarking could only be used for owner identification purposes. For all other applications invisible watermarking is used.

![Fig 2.1 Lena 256x256 Image](image1)

![Fig 2.2 Watermark Image](image2)

![Fig 2.3 Watermarked Image](image3)

2.2.2 Invisible Watermarking

Invisible watermarking can be implemented by using a number of techniques. The simplest technique used for hidden watermarking is to hide the message bits in the Least
Significant Bits (LSB) of the cover object. The advantage with this method is that even if a part of the stego image is cropped the receiver can still get the required message, as the message is embedded a number of times. The message for this case is considered to be very small as compared to the cover object.

For example, for an 8 bit file, each pixel is represented by 8 bits:

- 10001100
- The most significant bits (MSB) are to the left and the least significant bits (LSB) are to the right.
- If you change the MSB it will have a big impact on the color, however, if you change the LSB, it will have minimal effect.

Now to take this method a step further, if we change only 1 or 2 least significant bits in the image, it will have a minimal effect because the human eye can only detect around 6 bits of color. In other words, the human eye could not tell the difference of the last 2 bits being changed. For example, if we take 10001100 and change it to 10001111 or 10001110, it will all seem like the same color to the human eye. So we would only embed data in those bits. An example of this is:

If the message converted to binary is $1101\ 0010$, the first 8 pixels will be modified as follows:

- $1100\ 0101$ becomes $1100\ 01\ 11$
- $1111\ 0010$ becomes $1111\ 00\ 01$
- $1010\ 1111$ becomes $1010\ 11\ 00$
- $0010\ 0010$ becomes $0010\ 00\ 10$
Fig 2.4 Lena 256×256 image Fig 2.5 Watermark image

Fig 2.6 Watermarked Image Fig 2.7 Watermark recovery

(LSB Substitution)

Drawbacks

The *LSB* substitution method can be very powerful when subjected to cropping or any of the filters. Even if most of the multiple watermarks are lost in those attacks the retrieval of a single watermark would be considered as a success. But the simplest attack
to render the watermark useless would be to change all the least significant bits as 1. One more fact under consideration should be that once the algorithm is discovered by the attacker it would be easy for him to change the watermark.

This system has a major drawback as it cannot use a key to hide the data. The pseudo random number generator can be used to generate the PN sequences according to a given key that helps to determine the pixel positions where the data can be embedded safely in the cover object.
Chapter 3

Watermarking Using PN Sequences

To overcome the limitations in watermarking due to methods like LSB substitution and to make the system more robust against attacks, the watermark can be spread across the cover object by using more number of bits than the minimum required. This scheme of hiding the data uses the concepts of code division multiple access (CDMA). This technique ensures the survival of watermark under various attacks due to redundancy. Each of the data bits is represented by using a large number of bits out of which a significant portion may be lost without totally losing the watermark information.

3.1 What is CDMA?

The CDMA technique is a spread spectrum technique, that spreads the transmitted or the narrowband message over a wide frequency band, which is much wider than the actual minimum bandwidth required and this large bandwidth signal is called as the spreading signal. One method of widening the bandwidth is by use of modulation. Pseudorandom sequences or the PN sequences are used as the spreading sequences. For watermarking application, a pseudorandom number generator is used to determine the pixels for embedding the watermark data using a “seed” or a “key”.

Example: Consider that “A” wants to transmit ‘0’ or ‘1’. A has a code word assigned to it. If A wants to transmit 1 then it sends the codeword else it sends the complement of the codeword.

A’s codeword = 1 -1 -1 1 -1 1

To send a 1 bit A sends the codeword = 1 -1 -1 1 -1 1
To send a 0 bit A sends the complement of the codeword = -1 1 1 -1 1 -1
At the receiver as the receiving party knows that A has transmitted the data and has access to the codeword it can detect whether the transmitted bit was a 1 or a 0.

At the receiver: \((A's \text{ codeword}) \times (\text{received bit pattern})\)

If 1 is sent:
\[
(1 -1 -1 1 -1 1) \times (1 -1 -1 1 -1 1) = 6
\]

If 0 is sent:
\[
(1 -1 -1 1 -1 1) \times (-1 1 1 -1 1 -1) = -6
\]

If 6 is the sum then the receiver knows that bit 1 was transmitted by A and if -6 is the sum then a 0 was transmitted.

One might think that using spread spectrum technique is an apparent waste of spectrum. But there are a few things gained by this wastage.

- Immunity from noise and multipath distortion.
- Can be used for hiding and encrypting signals, this property helps in the principle of watermarking using CDMA.
- Several users can use independently the same higher bandwidth with very little interference.
- The low values of the autocorrelation and cross correlation of PN sequences make them a useful tool for watermarking.

3.2 PN Sequences

A pseudorandom noise (PN) sequence is a sequence of binary numbers, e.g. \(\pm 1\), which appears to be random, but is in fact perfectly deterministic. The sequence appears to be random in the sense that the binary values and groups or runs of the same binary value occur in the sequence in the same proportion, if the sequence were being generated based on a fair "coin tossing" experiment. In the experiment, each head could result in one binary value and a tail the other value.
Pseudorandom sequences can be generated by using a Linear Feedback Shift Register (LFSR) circuit i.e. when a shift register has a non-zero initial state and the output is fed back to the input, the unit acts as a periodic shift register [11].

Example:

![Linear Feedback Shift Register Diagram](image)

Figure 3.1. Linear Feedback Shift Register

Figure 3.1 shows a LFSR that uses a three stage shift register where the second and the third cells are tapped and modulo-2 added and fed back to the first stage

\[M_1 = M_2 \oplus M_3 \]

The contents of the shift register are shifted with each clock pulse. The output of the LFSR is taken from the m3 stage. The outputs of the three shift registers in shown in the Table 3.1 below.

<table>
<thead>
<tr>
<th>Clock Pulses</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The output from the Linear Feedback Shift Register is a seven bit sequence 1 1 1 0 0 1 0, which repeats periodically thereafter. In general the period is

\[N = 2^n - 1 \]

Where, \(N \) is the period and \(n \) is the number of shift registers.

If appropriate feedback tap connections are made, then an \(n \)-bit shift register can produce a maximal length sequence using the above equation. In fact, the above sequence
generated for a three feedback shift register stage is a maximum length (M) sequence. The maximum length sequences are also known as the pseudonoise or the PN sequences.

Table 3.1 Outputs of 3 shift registers

<table>
<thead>
<tr>
<th>M_1</th>
<th>M_2</th>
<th>M_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

3.3 Properties of PN Sequences

Maximum length sequences have the following properties [12]:

- Except the zero state, all of the 2^n possible states will exist during the sequence generation.

- **Balance Property**: For each sequence generated by the feedback shift registers the number of ones and zeros is approximately equal.

- **Run Property**: A run is defined as a sequence of single type of digit. Any maximum length sequence will have one half of its runs of length 1, one quarter of its runs of length 2, one eighth of its runs of length 3, so on. Or the relative
frequencies of runs “0 0 0 0 …. 0” and “1 1 1 … 1” of length n approximately equal \(1/2^n\) each.

- **Shift Property**: The number of agreements and disagreements between each sequence and its cyclically shifted versions are approximately the same.

 \[
 \begin{array}{cccccc}
 1 & 1 & 1 & 0 & 0 & 1 \\
 0 & 1 & 1 & 1 & 0 & 0 \\
 \end{array}
 \]

 Consider + as agreement and – as disagreement. Then, the number of agreements i.e. + is approximately the same as the number of disagreements -.

- **Autocorrelation Property**: The autocorrelation properties of pseudonoise sequences are similar to the correlation properties of random noise, i.e. there is a single autocorrelation peak. The autocorrelation of a sequence ‘S’ is given by:

 \[
 R_S(l) = \frac{1}{n} \left(\sum_{n=0}^{N-1} S_n S_n^{(l)} \right)
 \]

Let \(S^{(l)}\) denote the l times cyclically right shifted version of \(S\).

Let \(S = (1, 1, 1, -1, 1, -1, -1)\)

Then \(S^2 = (-1, -1, 1, 1, 1, -1, 1)\)

\[
R_S(2) = \frac{1}{n} \sum (S \times S^2) = \sum (-1, -1, 1, -1, 1, 1, -1) = -1/7.
\]

The autocorrelation of a binary sequence \(S\) may also be defined as the difference between the agreements and the disagreements between the sequence \(S\) and its cyclically shifted version \(S^{(l)}\).

A few important properties of \(R_S(l)\):

1. \(R_S(0) = N\)
2. \(R_S(l) \leq R_S(0) = N\)
• **Cross-correlation Property**: The cross correlation property compares the sequences from two different sources rather than a shifted copy of the sequence with itself. Let \(a = (a_0, \ldots, a_{N-1}) \) and \(b = (b_0, \ldots, b_{N-1}) \) denote two binary sequences of length \(N \). The cross correlation between \(a \) and \(b \) is then given by:

\[
R_{a,b(l)} = \sum_{n=0}^{N-1} a_n b_n^{(l)}
\]

\(R_{a,b(l)} \) is a measure of resemblance between \(a \) and \(b^{(l)} \).

The cross correlation between the two sequences \(a \) and \(b^{(l)} \) is equal to zero when \(a \) and \(b \) are orthogonal and it is equal to \(N \) when \(a = \pm b \).

3.4 Watermarking Using PN Sequences

Psuedonoise sequences are used for watermarking because of their very good correlation properties, noise like characteristics and resistance to interference [13]. Each data bit of the watermark is represented by a large number of bits, out of which a significant portion may be lost without losing the watermark thoroughly. This method ensures the survival of watermark because of redundancy. Pseudonoise sequences are a good tool for watermarking because of the following reasons [14]:

• PN generator produces periodic sequences that appear to be random.

• PN sequences are generated by an algorithm that uses an initial seed.

• The PN sequence generated is actually not statically random but will pass many tests of randomness.

• Unless the algorithm and seed are known, the sequence is impractical to predict.

A general method that is followed for watermarking using PN sequences is embedding a PN sequences into the data where every PN sequence represents one bit of watermarking information. For the watermark extraction the sequence of marked bits are correlated with known PN sequence. To robustly embed one bit of watermark
information with this method the PN sequence length should be much greater than the square of the maximum data values [15].

3.4.1 Embedding and Decoding

A pseudorandom noise sequence is generated using the \textit{rand} function in Matlab. The PN sequence generated is used for embedding the data in the cover image. This helps us exploit the correlation properties of the PN sequences. The addition of the PN sequences to the cover image is done according to the equation:

\[I_w(x, y) = I(x, y) + k \times W(x, y) \]

Where,

- \(I_w(x, y) \) denotes the watermarked image.
- \(I(x, y) \) denotes the actual cover image.
- \(W(x, y) \) denotes a pseudorandom noise pattern that is added to the image.
- \(K \) denotes the gain factor.

To show how the above method works consider watermark image \((a(x,y))\) as the information bearing data signal and PN sequence \((b(x,y))\) as the spreading signal. The desired modulation is achieved by applying both the watermark image and the PN sequence to a product modulator. The resultant signal \(W(x,y)\) is a pseudorandom noise...
pattern that is added to the cover image \(I(x,y)\) to produce the resultant watermarked image \(I_w(x,y)\).

Hence \(I_w(x,y) = K \times W(x,y) + I(x,y)\)

\[= a(x,y) \times b(x,y) + I(x,y)\]

To recover the original watermark \(a(x,y)\), the watermarked image \(I_w(x,y)\) is multiplied at the receiver again with a pseudonoise sequence which is an exact replica of that used for embedding the data.

\[\text{Fig. 3.3 Recovery process}\]

The multiplier output \(C\) is given by

\[C = I_w(x,y) \times b(x,y)\]

\[= (a(x,y) \times b(x,y) + I(x,y)) \times b(x,y)\]

\[= a(x,y) \times b^2(x,y) + I(x,y) \times b(x,y)\]

The above equation shows that the watermark image \(a(x,y)\) is multiplied twice with the noise signal \(b(x,y)\), whereas the unwanted or the cover image \(I(x,y)\) is multiplied only once with the noise signal. So \(b^2(x,y)\) becomes 1 and the product \(I(x,y) \times b(x,y)\) is the unwanted noise signal that can be filtered out during the process of correlation by setting the threshold as mean of correlation. Hence, at the receiver we recover the watermark image \(a(x,y)\) [23].
The cover image used for the watermarking is a Lena 256 × 256, 8 bit gray scale, bitmap image. The watermark used is a monochrome image of size 16 × 16. Key and the gain are fixed before the generation of PN sequences. The watermark is then converted to a string of zeroes and ones. A PN sequence of size equal to the original cover image is generated for each of the pixel in the watermark vector. If the pixel in the watermark vector is zero then the PN sequence with appropriate gain is added to the cover image else zeroes are added. For retrieval of the watermark the PN sequences are generated with the same key as used during the embedding process. The correlation is calculated between the generated PN sequence matrix and the watermarked image for each of the pixels in the watermark string and if it exceeds a particular threshold then the watermark is said to be detected.

The robustness of the watermarked image increases as the gain K increases. But, with the increase in the gain K, there is a reduction in the quality of the final watermarked image. Therefore, there is a tradeoff between the robustness and the quality of the image.

PN sequences can be added to the cover image either by applying a random shift or circular shift. A mathematical example for embedding and recovery of watermark is shown below.

Example 1: This example illustrates the application of circular shift of one to the generated PN sequence. Let $I(x,y)$ be the cover object:

$$I(x,y) = \begin{pmatrix}
1 & 2 & 0 & 1 \\
2 & 1 & 2 & 0 \\
3 & 1 & 3 & 0 \\
1 & 2 & 1 & 3
\end{pmatrix}$$
Watermark vector = (1 0 0 1)

Let a, b, c, d be the PN sequences generated for each of the elements in the watermark vector 1, 0, 0 and 1.

\[
\begin{align*}
 a &= \begin{pmatrix}
 0 & 1 & 1 & 1 \\
 1 & 0 & 0 & 0 \\
 1 & 1 & 0 & 1 \\
 0 & 0 & 1 & 0
 \end{pmatrix} &
 b &= \begin{pmatrix}
 0 & 0 & 1 & 1 \\
 1 & 1 & 0 & 0 \\
 0 & 1 & 1 & 0 \\
 1 & 0 & 0 & 1
 \end{pmatrix} \\
 c &= \begin{pmatrix}
 1 & 0 & 0 & 1 \\
 1 & 1 & 1 & 0 \\
 0 & 0 & 1 & 1 \\
 0 & 1 & 0 & 0
 \end{pmatrix} &
 d &= \begin{pmatrix}
 0 & 1 & 0 & 0 \\
 1 & 1 & 1 & 1 \\
 0 & 0 & 0 & 1 \\
 1 & 0 & 1 & 0
 \end{pmatrix}
\end{align*}
\]

Now, considering gain $(k) = 2$ we apply the formula $I_w(x, y) = I(x, y) + k \times W(x, y)$. It is easy to observe that the sequences b and c are to be added to the original cover object along with the appropriate gain factor because these are the sequences generated for black pixels in the watermark vector.

\[
I_w(x, y) = I(x, y) + (2 \times b)
\]

\[
\begin{pmatrix}
 1 & 2 & 2 & 3 \\
 4 & 3 & 2 & 0 \\
 3 & 3 & 5 & 0 \\
 3 & 2 & 1 & 5
\end{pmatrix}
\]

\[
I_w(x, y) = I(x, y) + (2 \times c)
\]

\[
\begin{pmatrix}
 3 & 2 & 2 & 5 \\
 6 & 5 & 4 & 0 \\
 3 & 3 & 7 & 2 \\
 3 & 4 & 1 & 5
\end{pmatrix}
\]
This gives the resultant watermarked image after embedding the PN sequences for each black pixel in the watermark vector. For recovery of the pixels the same PN sequences are generated at the receiver and correlated with the watermarked image. The threshold is set as the mean of the correlation value for all the pixels.

corr2 \((I_w(x, y), a) = -0.2428 \)

corr2 \((I_w(x, y), b) = 0.5897 \)

corr2 \((I_w(x, y), c) = 0.5897 \)

corr2 \((I_w(x, y), d) = -0.3122 \)

Average correlation or the threshold = 0.1561

So the pixels b and c are marked as black pixels and the pixels a and d are marked as the white pixels for the recovery.

Example 2: This example illustrates the application of random shift to the generated PN sequence. To show that both the methods of shifting the sequences work we consider the same cover image and watermark vector.

\[
I(x,y) = \begin{pmatrix}
1 & 2 & 0 & 1 \\
2 & 1 & 2 & 0 \\
3 & 1 & 3 & 0 \\
1 & 2 & 1 & 3
\end{pmatrix}
\]

Watermark vector = (1 0 0 1)

Let a, b, c, d be the PN sequences generated for each of the elements in the watermark vector 1, 0, 0 and 1.

\[
a = \begin{pmatrix}
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0
\end{pmatrix}
\]

\[
b = \begin{pmatrix}
0 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 \\
0 & 0 & 1 & 0
\end{pmatrix}
\]
Now, considering gain \(k = 2 \) we apply the formula \(I_w (x, y) = I (x, y) + k \times W (x, y) \). From the above example we have to add PN sequences \(b \) and \(c \) multiplied with a gain factor of 2 to the cover image

\[
I_w (x, y) = I(x, y) + (2 \times b)
\]

\[
\begin{pmatrix}
1 & 2 & 0 & 3 \\
2 & 3 & 4 & 0 \\
5 & 3 & 5 & 2 \\
1 & 2 & 3 & 3
\end{pmatrix}
\]

\[
I_w (x, y) = I(x, y) + (2 \times c)
\]

\[
\begin{pmatrix}
1 & 4 & 0 & 3 \\
4 & 5 & 6 & 2 \\
5 & 5 & 7 & 2 \\
3 & 2 & 3 & 3
\end{pmatrix}
\]

This gives the resultant watermarked image after embedding the PN sequences for each black pixel in the watermark vector. For recovery of the pixels the same PN sequences are generated at the receiver and correlated with the watermarked image. The threshold is set as the mean of the correlation value for all the pixels.

\[
corr2 (I_w (x, y), a) = -0.1041
\]

\[
corr2 (I_w (x, y), b) = 0.5897
\]

\[
corr2 (I_w (x, y), c) = 0.5897
\]
corr2 \((I_w (x, y), d) = -0.1041 \)

Average correlation or the threshold = 0.2428

So the pixels \(b \) and \(c \) are marked as black pixels and the pixels \(a \) and \(d \) are marked as the white pixels for the recover.

A few sample results for the above mentioned examples are shown below:

![Watermarked Image](image-url)

Fig 3.4
Lena 256×256 image

![Watermarked Image](image-url)

Fig 3.5
Watermarked Image
Gain = 3
Fig 3.6
Watermarked Image
Gain = 5

Fig 3.7
Watermarked image
Gain = 3
High pass filtered Lena Image

Fig 3.8
Original watermark
16 × 16
Monochrome image

Fig 3.9
Recovered watermark
For gain = 3
3.4.2. Observations

Although watermarking using pseudonoise sequences is effective it has some disadvantages associated with it. The sequence period is typically greater than the image size and, therefore, the correlation at recovery is incomplete. This leads to a tradeoff between the gain and the robustness of watermarked image. As the gain is increased from 3 to 5 in the Figures 3.5 and 3.6, the recovery of the watermark improves, but at the cost of distorting the watermarked image. An improvement can be achieved by passing the image through a high pass filter before applying the watermark, because reducing the correlation between the cover image and the PN sequence increases the immunity to noise. But this has an effect on the initial cover image, which loses its brightness and appears dull. This is even more accentuated after the cover image is treated with the watermark.

Fig 3.10
Recovered Watermark
For gain = 5

Fig 3.11
Recovered watermark
For Lena passed through
High pass filter
Gain = 3
Chapter 4

Watermarking Using Decimal Sequences

In this chapter, we introduce the technique of watermarking using decimal sequences. Decimal sequences have better autocorrelation properties for some specific shifts as compared to the pseudonoise sequences [16], so the results of watermark recovery is expected to be better than the method using PN sequences.

4.1 Introduction

Decimal sequences are obtained when a number is represented in a decimal form in a base r and they may terminate, repeat or be aperiodic. As these sequences are periodic their randomness needs to be checked only in one period. For a certain class of decimal sequences of $1/q$, q prime, the digits spaced half a period apart add up to $r-1$, where r is the base in which the sequence is expressed. These properties of decimal sequences have made it possible to establish an upper bound on the autocorrelation function. Decimal sequences are also known to have good cross correlation properties and they can be used in applications involving PN sequences [16] [17]. In the following sections we describe a few properties of decimal sequences, their generation using feedback shift registers that allow carry and their application to watermarking.

4.2 Properties of Decimal Sequences

A few of the properties of the decimal sequences are stated in the form of theorems from the well known results of number theory [17].

Any positive number x may be expressed as a decimal in the base r

$$A_1A_2........A_{s+1},a_1a_2........$$
Where $0 \leq A_i < r$, $0 \leq a_i < r$, not all A and a are zero, and an infinity of the a_i less than $(r-1)$.

There exists a one to one correspondence between the numbers and the decimals and

$$x = A_1 r^s + A_2 r^{s-1} + \ldots + A_{s+1} + a_1/r + a_2/r^2$$

Decimal sequences of rational and irrational numbers may be possibly used to generate pseudonoise sequences.

Theorem 1: A maximum length decimal sequence $\{1/q\}$ when multiplied by p, $p<q$, is a cyclic permutation of itself.

Definition: If q is a prime number, and r is a primitive root of q, then the decimal sequence for $1/q$ is termed a maximal length decimal sequence in the base r. Maximal length sequences may often be represented by the string of their first $q-1$ digits without showing the decimal, or as $\{1/q\}$.

Proof: The remainders 1, 2, 3,.., $q-1$ obtained during the division of $1/q$ map into the coefficients 0,1,2,.....,$r-1$. Since, p/q starts off with a remainder $rp \pmod{q}$ instead of $r \pmod{q}$, there would be a correspondence shift of decimal sequence.

Example: Consider $x = \{1/7\}$. The decimal sequence for x in base 10 is maximal length because $10^2 \not\equiv 1 \pmod{7}$, $10^3 \not\equiv 1 \pmod{7}$. Of course $10^6 \equiv 1 \pmod{7}$.

The decimal sequence is 1 4 2 8 5 7, which corresponds to the remainder sequence 3 2 6 4 5 1. The remainder sequence has a considerable structure. Thus, 3, 3^2, 3^3, 3^4, 3^5, 3^6 all computed modulo seven yields the successive digits of the sequence. If $x = \{3/7\}$ the remainder sequence starts with 30 $\equiv 2 \pmod{7}$ and is now 2 6 4 5 3 1, and the decimal sequence for 3/7 is 4 2 8 5 7 1. This example suggests that the structure of remainder sequence must also show up in the decimal sequence.
Theorem 2: If the decimal sequence in the base r of $p/q; (p, q) = 1, p < q$ and $(r, p) = 1$ is shifted to the left in a cyclic manner l times, the resulting sequence corresponds to the number p'/q, $(p', q) = 1, p' < q$ where $p' \equiv r' \times p \pmod{q}$.

Theorem 3: For a maximal length decimal sequence $\{1/q\} = a_1a_2a_3...a_k$, $k = q-1$ in base r:

$$a_i + a_{k/2 + l} = r - 1$$

Example: Take $x = \{1/17\}$ in base $r = 10$

$$x = 0 5 8 8 2 3 5 2 9 4 1 1 7 6 4 7$$

Note that $a_i + a_8 + l = r - l = 9$.

Take $x = \{1/19\}$ in base $r = 2$

$$x = 0 0 0 0 1 1 0 1 0 1 1 1 0 0 1 0 1$$

Here $a_i + a_9 + l = r - l = 1$.

The next theorem is an extension to the above theorem.

Theorem 4: If the period k of the decimal sequence of $1/q$, where q is prime, is even in the base r:

$$a_i + a_{k/2 + l} = r - 1.$$

Theorem 5: For a binary decimal sequence $\{1/q\}$, if $2^m > q$, then all $l_i (m)$ are different. For such a sequence, all subsequences of length m are different.

Theorem 6: The Hamming distance d_j between the binary maximal length sequence $\{1/q\}$ and its jth cyclic shift satisfies

$$d_j \geq k/m, j \neq 0, j < k,$$

Where $2^m > q$, $k = q-1$.
From the above theorem, at least one of each \(m \) consecutive digits is going to be different. Hence, the minimum distance between each set of \(m \) digits is one. For a total of \(k \) such group of digits, the distance is \(k \), and since the sequence considered is \(m \) times over, the distance is \(k/m \).

Autocorrelation Property: The autocorrelation property \(C_I(j) \) of the binary maximum length decimal sequence in the symmetric form (1, -1) satisfies \(C_I(j) \leq 1 - 2/m, j \neq 0, j < k \). Since, a lower bound exists on the distance between a sequence and its cyclic shifts, these sequences can be used for error detection and correction. A decimal \((d)\) code for a message expressed as integer \(u \) is defined as \(x = \{u/q\} \) where \(u \leq q - 1 \) and \(\{1/q\} \) is a maximal length sequence.

![Autocorrelation graph for \(q=293 \)](image)

Fig 4.1: Autocorrelation graph for \(q=293 \)

Fig 4.1 is an autocorrelation plot for shifts ranging from 0 to 300 for prime number \(q=293 \) which has a period 292. For good watermarking one must use shifts for
which autocorrelation value is zero. For shifts of the form \(n \times (p/2) \) where \(n \) is an integer and \(p \) is a period the absolute value of the autocorrelation values are very high and the recovery of the watermark would be poor.

Cross Correlation Properties: Let \(C_{12}(\tau) = (1/N) \sum_{i=1}^{N} a_i b_{i+\tau} \) represent the cross correlation function of two maximal length sequences \(a_1 \ldots a_{k_1} \) and \(b_1 \ldots b_{k_2} \). The period of the product sequence \(a_i b_{i+\tau} \) is \(N = \text{lcm}(k_1, k_2) \), where lcm is the least common multiple.

The cross correlation function of two maximal length decimal sequences in the symmetric form is identically equal to zero if the ratio \(k_1/k_2 \) of their periods reduce to an irreducible fraction \(n_1/n_2 \) where either \(n_1 \) or \(n_2 \) is an even number.

This property may be useful for the part of security against unauthorized detection of the watermark by unauthorized users who don’t know the actual decimal sequence.

![Cross Correlation plots for \(q=5 \) with other primes](image)

Fig. 4.2 Cross Correlation plots for \(q=5 \) with other primes
Fig 4.2 shows a plot for cross correlation of d-sequence \((q = 5)\) with other primes up to 2000 for zero shift. The highest value of cross correlation is observed at \(q = 5\) whereas, for the other values of primes the cross correlation is close to zero.

4.3 Generation of Decimal Sequences

Decimal sequences can be generated by using feedback shift registers that allow carry. The simplest way to generate a d–sequence is by using the equation \(a^i = (2^i mod q)\ mod 2\). The hardware used for the generation of decimal sequences is similar to that used for the m–sequences [18]. The algorithm used for the generation of decimal sequences is called the Tirtha algorithm. Tirtha algorithm is used whenever the prime number \(q\) is given in terms of the radix \(r\) as \(q = tr – 1\), where \(t\) is an integer.

Theorem: Consider that \(1/(tr – 1)\) defines the d–sequence \(a_1a_2a_3…a_k\), where \(r\) is the radix or the base. Consider another sequence \(u_1u_2u_3…u_k\), where, for all \(i\), \(u_i < t\), then

\[ru_i + a_i = u_{i+1} + ta_{i+1}\]

Proof: Since the sequences repeats itself \(a_k = 1\) and \(u_k = 0\). The remainder in the long division of 1 by \((tr – 1)\) is therefore \(t\). The quotient \(a_{k-1}\) is given by

\[a_{k-1} (tr – 1) + t = m_{l-1} r\]

This makes \(a_{k-1} = t\), extending the argument the \(a\) and \(u\) sequences, when written in inverse as

\[u_ku_{k-1}…1\]

\[a_1a_{k-1}…0\]

equal

\[00…1\]

\[1t [t^2 mod r]…0\]

Example:
Consider \(\{1/19\} = 1/(2 \times (10 -1)) \) in the base 10. The inverse sequence is then given as

\[
0 0 0 0 1 1 0 1 0 1 1 1 1 0 0 1 0 1 \\
1 2 4 8 6 3 7 4 9 8 7 5 1 3 6 2 5 0
\]

Or, the d–sequence for \(\{1/19\} \) is given by

\[
0 5 2 6 3 1 5 7 8 9 4 7 3 6 8 4 2 1
\]

The circuit for the generation of d–sequences \(1/(tr - 1) \) is given in figure 4.1.

It consists of \(n \) stages of shift registers. The c’s represent carries that are added to the immediately preceding stages. When the carry is generated by the extreme left stage, it is introduced into this stage at the very next clock instant. The sequence generated will be in the inverse order. The same principle can be used to generate binary d–sequence. The number of stages needed for the generation of binary d–sequence \(1/q \) is about \(\log_2 q \). The algorithm also works for the non binary sequences of the type \(1/(tr – 1) \) when the given fraction is multiplied by an appropriate integer so that the standard form can be used.

![Fig 4.3 Generation of d-sequences](image-url)
Although we use all binary d–sequences for watermarking, other types of d–sequences called the generalized d–sequences can also be used.

If \(q \) is a prime number and \(r \) is the base of the sequence, then the generalized d–sequences are generated according to the equation [19]

\[
q \mod r \equiv -k \equiv -1/l
\]

\[
a_i = l[r_i \mod q] \mod r
\]

The generalized d–sequences are categorized into two types based on their definition [20]:

Type 1: The expansion of \(1/q \) in base \(r \) (non binary) in this case is given by:

\[
a_i = [r^i \mod q] \mod r
\]

where, \(q \) is the prime number and \(r \) is the base.

Example: Consider \(q = 17 \) and the base \(r = 5 \), \(1/17 \) base 5

The sequence \(a_i = [3^i \mod 11] \mod 3 \)

\[
= [3 9 5 4 1] \mod 3
\]

\[
= [0 0 2 1 1]
\]

Since the base is 3 the digits in the sequence are 0, 1 and 2 and the period of the sequence is 5 after which the digits repeat.

Type 2: This is the case in which the expansion of \(1/q \) in base \(r \) is given by

\[
a_i = [r^i \mod q] \mod s
\]

where, \(r \) is a non-binary base and \(s = 3 \).

Example: Consider the sequence of \(1/13 \) base 7.

\[
a_i = [7^i \mod 13] \mod 3
\]

\[
= [7 10 5 9 11 12 6 3 8 4 2 1] \mod 3
\]
4.4 Watermarking Using Decimal Sequences

We have noted earlier that PN sequences based watermarking produces noise due to high autocorrelation values as the period of generated PN sequences is too large when compared to the size of the cover image. To improve the recovery in certain cases the original cover image needs to be high pass filtered but this affects the quality of the watermarking. Since d-sequences have zero cross correlation for some prime numbers [16], one would obtain superior performance if different d-sequences are used in the watermark. But, if the same d-sequence is used, the autocorrelation can be as high as 33% during certain shifts of the sequence, but since many other shifts have zero autocorrelation, we can selectively use these shifts to produce better results [21]. The use of decimals sequences also gives the flexibility of trying out various prime numbers until we get satisfactory embedding and recovery of the hidden information.

4.4.1 Embedding and Recovery Using Decimal Sequences

A decimal sequence is generated in Matlab using the function

\[
dseq = [r^i \mod q] \mod r
\]

Where, \(r \) is the radix or the base and \(q \) is the prime number.

The addition of the d–sequences to the cover image is done in a manner similar to that applied for the PN sequences as discussed in chapter 3.

There is a trade off between the robustness and the quality of the image as the gain \(K \) is increased. But, the decimal sequences gives us an option of experimenting with various prime numbers, keeping the gain constant, until we observe a satisfactory result for both encryption of data and its retrieval. For retrieval of the encrypted message the decimal sequences are generated again and then correlated with the watermarked image.
The d-sequences may be added to the cover image by either a circular shift or a random shift.

Sample results for random shifts as defined above are shown below:

Fig 4.4
256 × 256 (8 bit)
Gray scale Lena image

Fig 4.5
8 × 8 Watermark object
Monochrome Image

Fig 4.6
Embedding output, q = 283

Fig 4.7
Decoding output,
Period = 94
Sample results for circular shifts

Fig 4.16 Watermarked image, q=293
 Period = 292
 Circular shift = 50

Fig 4.17 Retrieved Watermark

Fig 4.18 Watermarked Image
 Period = 292
 Circular Shift = 146

Fig 4.19 Retrieved Watermark
Table 4.1
Sample results for various prime numbers used to generate d-sequences for watermarking

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Prime Number q</th>
<th>Base r</th>
<th>Period of d-seq</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>107</td>
<td>2</td>
<td>106</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>131</td>
<td>2</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>139</td>
<td>2</td>
<td>138</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>163</td>
<td>2</td>
<td>163</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>167</td>
<td>2</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>173</td>
<td>2</td>
<td>172</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>179</td>
<td>2</td>
<td>178</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>191</td>
<td>2</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>197</td>
<td>2</td>
<td>196</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>199</td>
<td>2</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>211</td>
<td>2</td>
<td>210</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>223</td>
<td>2</td>
<td>37</td>
<td>Extremely bad recovery</td>
</tr>
<tr>
<td>13</td>
<td>227</td>
<td>2</td>
<td>226</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>229</td>
<td>2</td>
<td>76</td>
<td>Extremely bad recovery</td>
</tr>
<tr>
<td>15</td>
<td>233</td>
<td>2</td>
<td>29</td>
<td>Extremely bad recovery</td>
</tr>
<tr>
<td>16</td>
<td>239</td>
<td>2</td>
<td>119</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>241</td>
<td>2</td>
<td>24</td>
<td>Extremely bad recovery</td>
</tr>
<tr>
<td>18</td>
<td>251</td>
<td>2</td>
<td>50</td>
<td>Extremely bad recovery</td>
</tr>
<tr>
<td>19</td>
<td>257</td>
<td>2</td>
<td>16</td>
<td>Extremely bad recovery</td>
</tr>
<tr>
<td>20</td>
<td>263</td>
<td>2</td>
<td>131</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>269</td>
<td>2</td>
<td>268</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>271</td>
<td>2</td>
<td>135</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>277</td>
<td>2</td>
<td>92</td>
<td>Extremely bad recovery</td>
</tr>
<tr>
<td>24</td>
<td>281</td>
<td>2</td>
<td>70</td>
<td>Extremely bad recovery</td>
</tr>
<tr>
<td>25</td>
<td>283</td>
<td>2</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>293</td>
<td>2</td>
<td>292</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 5

Analysis of Results

In this chapter, we analyse the results of watermarking obtained as in Figures 4.5 to 4.19 and Table 4.1.

5.1 Performance Analysis

To analyse the performance of decimal sequences for watermarking we first consider some extremely bad recovery cases.

Example 1:

For $q = 277$ with $r = 2$

From Fig 5.2 it is evident that the recovered watermark is dominated by noise.

The increase in the number of noise pixels is due to the decrease in the period of decimal sequence.
From Fig 5.3 it is evident that for autocorrelation values lying between the standard deviation range good recovery is possible while for autocorrelation values lying very close to the mean the best possible recovery is obtained. The best possible recovery need not necessarily be the original watermark image because it is also a function of the period of the d-sequence.

Example 2:

$q = 257$ with $r = 2$

This is a case for which the period is extremely small.
Fig 5.4
Embedding output, $q = 257$

Fig 5.5
Decoding output,
Period = 16

From the Fig 5.6 above it is found that the period of the generated decimal sequence for this example is 16 i.e. $(q-1)/16$. The recovered watermark for such a small
period is seen to be filled with all noise pixels and a total black box of size equal to the actual watermark is obtained at recovery. If the period of the d-sequence is such that, the square of the period is equal to the used prime number then the noise in the watermarked image is vertically distributed, equally throughout the image.

As the period for the generated decimal sequence decreases, the amount of noise pixels in the recovered watermark increases. This is directly related to the reduction in randomness of the sequence with a decrease in period and also to the high autocorrelation values.

5.2 Correlation Analysis

In this section, we display some graphs showing the distribution of the pixels of watermark around the mean correlation value. The noise associated with the retrieval of watermark is due to the fact that some pixels have correlation values very close to the mean correlation which is set as the threshold. In that instance, the retrieval algorithm takes it as a black pixel which results as a noise pixel in the recovery. On the other hand, a perfect recovery has exactly the number of black pixels in the watermark above the threshold.

Figure 5.7 shows a correlation graph for watermarking using the prime number $q = 293$ that has a period of 292 or $(q-1)$. The watermark used has 19 black pixels and rest white. The results of embedding and recovery are shown in Figure 4.12 and 4.13 in chapter 4. We observe that there are no noise pixels associated with the recovery of the watermark in Figure 4.11. The mean correlation set as threshold for recovery of watermark was calculated and found as 0.0057. It is evident that there are no pixels scattered around this value and exactly 19 pixels have their correlation values above the
threshold. Hence, these are the only black pixels in the recovery and the recovery is noise free.

Fig 5.7 Correlation graph for $q = 293$

Fig 5.8 shows a correlation graph for the recovery for $q = 277$, where the period of the sequence is 92 or $(q-1)/4$. The recovered watermark as seen in Figure 5.2 is all filled with noise pixels and cannot be clearly identified. The watermark in this case is same as used for all other cases with 19 black pixels. But, the bad recovery is due to the reason that the correlation value calculated exceeds the mean correlation for 31 pixels instead of 19 pixels. The other pixels are all distributed randomly as noise in the recovered watermark. This can be attributed to the small period of the decimal sequence. The mean correlation in this case was found to be as 0.0240.
Fig 5.8 Correlation graph for $q = 277$

Figure 5.9 Correlation graph for $q = 257$
The graph in Figure 5.9 is for prime number \(q = 257 \) that generates a sequence with a period of 16 or \((q-1)/16\). The recovered watermark is a complete black patch that displays all the pixels in the watermark to be black. The mean correlation in this case is found as 0.4946 and all the pixels have a correlation value of 0.5 which is greater than the mean correlation. Therefore, all the pixels are considered as black and the recovery is all black values.

The above graphs indicate that as the period of the generated decimal sequence reduces, the noise associated with the recovery increases. This is in turn associated with reduced randomness of the sequence with reduction in period. This causes a possible increase in the correlation value for pixels and thus causes more noise at the output.

5.3 Observations

Table 5.1 shows results of some simulations carried out for different prime numbers ranging from 100 to 25000. The main aim of this table is to help define a range for the mean and standard deviation across the mean for good and successful recovery of the hidden message. A similar table was shown in chapter 4 to display good and bad recovery of watermark associated with the period of generated decimal sequence.

Table 5.1 Mean and Standard deviation analysis table for 256 \(\times \) 256 Lena image

<table>
<thead>
<tr>
<th>Prime Number</th>
<th>Period</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>107</td>
<td>106 (q-1)</td>
<td>0.0096</td>
<td>0.0107</td>
<td>Good</td>
</tr>
<tr>
<td>131</td>
<td>130 (q-1)</td>
<td>0.0195</td>
<td>0.0089</td>
<td>OK(2)</td>
</tr>
<tr>
<td>139</td>
<td>138 (q-1)</td>
<td>0.0065</td>
<td>0.0119</td>
<td>Ok (3)</td>
</tr>
<tr>
<td>167</td>
<td>83 (q-1)/2</td>
<td>0.0003</td>
<td>0.0108</td>
<td>Good(1)</td>
</tr>
</tbody>
</table>

(Table Continued…..)
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>173</td>
<td>172</td>
<td>(q-1)</td>
<td>0.0045</td>
<td>0.0104</td>
</tr>
<tr>
<td>179</td>
<td>178</td>
<td>(q-1)</td>
<td>0.0111</td>
<td>0.0097</td>
</tr>
<tr>
<td>191</td>
<td>95</td>
<td>(q-1)/2</td>
<td>0.0013</td>
<td>0.0091</td>
</tr>
<tr>
<td>197</td>
<td>196</td>
<td>(q-1)</td>
<td>0.0015</td>
<td>0.0100</td>
</tr>
<tr>
<td>199</td>
<td>99</td>
<td>(q-1)/2</td>
<td>0.0015</td>
<td>0.0110</td>
</tr>
<tr>
<td>211</td>
<td>210</td>
<td>(q-1)</td>
<td>0.0040</td>
<td>0.0094</td>
</tr>
<tr>
<td>223</td>
<td>37</td>
<td>(q-1)/6</td>
<td>0.0003</td>
<td>0.0122</td>
</tr>
<tr>
<td>227</td>
<td>226</td>
<td>(q-1)</td>
<td>0.0080</td>
<td>0.0095</td>
</tr>
<tr>
<td>229</td>
<td>76</td>
<td>(q-1)/3</td>
<td>0.0258</td>
<td>0.0119</td>
</tr>
<tr>
<td>233</td>
<td>29</td>
<td>(q-1)/8</td>
<td>0.0268</td>
<td>0.0117</td>
</tr>
<tr>
<td>239</td>
<td>119</td>
<td>(q-1)/2</td>
<td>0.0034</td>
<td>0.0096</td>
</tr>
<tr>
<td>241</td>
<td>24</td>
<td>(q-1)/10</td>
<td>0.1200</td>
<td>0.0091</td>
</tr>
<tr>
<td>251</td>
<td>50</td>
<td>(q-1)/5</td>
<td>0.0452</td>
<td>0.0110</td>
</tr>
<tr>
<td>257</td>
<td>16</td>
<td>(q-1)/16</td>
<td>0.4946</td>
<td>0</td>
</tr>
<tr>
<td>263</td>
<td>131</td>
<td>(q-1)/2</td>
<td>0.0008</td>
<td>0.0092</td>
</tr>
<tr>
<td>269</td>
<td>268</td>
<td>(q-1)</td>
<td>0.0057</td>
<td>0.0080</td>
</tr>
<tr>
<td>271</td>
<td>135</td>
<td>(q-1)/2</td>
<td>0.0052</td>
<td>0.0091</td>
</tr>
<tr>
<td>277</td>
<td>92</td>
<td>(q-1)/4</td>
<td>0.0163</td>
<td>0.0139</td>
</tr>
<tr>
<td>281</td>
<td>70</td>
<td>(q-1)/4</td>
<td>0.0037</td>
<td>0.0153</td>
</tr>
<tr>
<td>283</td>
<td>94</td>
<td>(q-1)/3</td>
<td>0.0003</td>
<td>0.0141</td>
</tr>
</tbody>
</table>

(Table Continued……...)
<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>293</td>
<td>292</td>
<td>(q-1)</td>
<td>0.0038</td>
<td>0.0100</td>
<td>Perfect</td>
</tr>
<tr>
<td>1987</td>
<td>1986</td>
<td>(q-1)</td>
<td>0.0047</td>
<td>0.0090</td>
<td>Perfect</td>
</tr>
<tr>
<td>1879</td>
<td>939</td>
<td>(q-1)/2</td>
<td>0.0042</td>
<td>0.0097</td>
<td>Good</td>
</tr>
<tr>
<td>5953</td>
<td>992</td>
<td>(q-1)/6</td>
<td>0.0093</td>
<td>0.0129</td>
<td>Very Bad</td>
</tr>
<tr>
<td>7393</td>
<td>264</td>
<td>(q-1)/28</td>
<td>0.0039</td>
<td>0.0114</td>
<td>Very Bad</td>
</tr>
<tr>
<td>7451</td>
<td>7450</td>
<td>(q-1)</td>
<td>0.0054</td>
<td>0.0092</td>
<td>Good</td>
</tr>
<tr>
<td>14449</td>
<td>84</td>
<td>(q-1)/172</td>
<td>0.0039</td>
<td>0.0182</td>
<td>Very Bad</td>
</tr>
<tr>
<td>14923</td>
<td>14922</td>
<td>(q-1)</td>
<td>0.0054</td>
<td>0.0090</td>
<td>Good(1)</td>
</tr>
<tr>
<td>24841</td>
<td>6210</td>
<td>(q-1)/4</td>
<td>0.0057</td>
<td>0.0093</td>
<td>Good(3)</td>
</tr>
<tr>
<td>24989</td>
<td>24988</td>
<td>(q-1)</td>
<td>0.0057</td>
<td>0.0090</td>
<td>Good(1)</td>
</tr>
</tbody>
</table>

Some important observations

- The mean correlation should be small for good recovery. But this is not the only criterion for a good recovery.
- The standard deviation was found to be in the range of 0.080 to 0.0110 for good recovery of watermark. As the standard deviation increased above this limit, more number of pixels fell in the range near the mean thereby increasing noise. As a special case for q = 257 where the standard deviation is 0 we get a black box as recovered watermark. This is due to the reason that all the pixels have correlation values equal to the mean correlation.
- Very small mean correlation and very large standard deviation would not result in good recovery and large mean and large standard deviation would also not result in good recovery.
• All different black and white images will have different ranges for standard deviation for good recovery as the grey scale varies from image to image.
Chapter 6

Conclusions

This thesis presents techniques of watermarking using decimal sequences. These sequences have zero autocorrelation for certain shifts which could be useful in the recovery of watermarks by using spread spectrum techniques. Use of these sequences over PN sequences provides the following advantages:

- Hardware complexity can be reduced by not incorporating the high pass filter which might be needed in case of PN sequences when the recovery is not optimal.
- Performance of the d-sequence watermarking can be improved by using a variety of prime numbers with varied periods and particular shifts that provide close to zero autocorrelations.
- Decimal sequences exhibit zero cross correlation for some prime numbers and near to zero cross correlation for others, which would be useful if different d-sequences are used in the watermark.
- There is a trade off between robustness and perceptibility of the watermarked image as the gain K is increased for both d-sequences and the PN sequences but, for d-sequences we can use a different prime number with varied periods rather than accepting reduced performance.

This thesis is limited to watermarking of still black and white. Further research can be done for developing watermarking techniques for audio and video images, network packets, software and circuitry.
Bibliography

3. www.iusmentis.com/technology/encryption

4. www.pgi.org/doc/pgintro

11. http://cpk.auc.dk/dicom/Eo2/CDMA.htm

Vita

Navneet Kumar Mandhani was born in the town of Vizianagaram in India. He grew up in the city of Madras, the capital city of the state Tamil Nadu. He graduated from high school in the year 1998. In fall of 1998, he joined the Gandhi Institute of Technology and Management (GITAM) at the steel city Visakhapatnam and obtained his Bachelor of Engineering degree in the department of Electronics and Communications engineering in spring 2002.

He joined Louisiana State University in the fall of year 2002 and is set to obtain his degree of Master of Science in the department of Electrical Engineering in August 2004.