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ABSTRACT 

The first objective of the current study was to evaluate genetic trends from 10 years of the 

American Brahman Breeders Association Carcass Evaluation Program from 2004 to 2013. 

Changes of performance in growth, carcass composition, and carcass quality traits were 

evaluated. Overall means were calculated to report the total average for each trait along with an 

average rate of change per year. Growth traits evaluated included feedlot entrance weight 

(INWT), harvest weight (HRVWT), and average daily gain (ADG). Carcass composition and 

quality traits evaluated included hot carcass weight (HCW), rib eye area (REA), marbling score 

(MARB), dressing percent (DP), quality grade (QG), yield grade (YG), and Warner-Bratzler 

shear force score (WBS). Trends indicated that over the 10 year period of improved sire 

selection, Brahman cattle began entering the feedlot lighter, exited heavier, and improved 

average daily gain. Furthermore, all carcass composition and quality traits showed overall 

improvement with the exception of shear force scores. Further investigation of shear force score 

showed WBS had in fact been experiencing a favorable downward trend since 2009.  

 The second objective of this study was to evaluate SNP located on six candidate genes 

and their potential association with growth, carcass composition, and carcass quality traits in a 

population of Brahman and Brahman-influenced steers that participated in the ABBA carcass 

evaluation program. Traits analyzed included birth weight (BW), weaning weight (WW), hip 

height (HH), days on feed (DOF), and the previously mentioned feedlot and carcass traits INWT, 

HRVWT, ADG, HCW, REA, MARB, DP, QG, YG, and WBS. Single nucleotide 

polymorphisms (SNP) were chosen for analysis within six candidate genes including 

Thyroglobulin (TG, Adiponectin (ADIPOQ), Calpastatin (CAST), Calpain-3 (CAPN3), Insulin 

like growth factor-1 (IGF1), and Growth Hormone gene (GH1). Analysis revealed representation 
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of all six candidate genes in the 41 SNP found to have 58 significant associations (p<.05) with 

growth and feedlot traits BW, WW, HH, INWT, HRVWT, DOF, and ADG. Furthermore, all six 

candidate genes were represented in the 32 SNP found to have 49 significant associations with 

carcass composition and quality traits HCW, REA, YG, MARB, QG, and WBS. No markers 

showed association with DP.  
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CHAPTER I 

INTRODUCTION 

 Improvement in the Brahman breed has been sought after for some time now, as can be seen through the 

participation by producers in the American Brahman Breeders Association Carcass Evaluation Program. 

Brahman cattle have reportedly produced less tender meat, lower marbling scores, and lower carcass quality 

grades as opposed to Bos taurus cattle. (DeRouen et al, 2014; Wheeler et al, 2001). Because sire selection can 

affect the performance of a herd as a whole, the ABBA worked with producers to help them realize the impact 

of sire selection on economically important traits. The research presented here evaluated feedlot growth traits, 

carcass composition, and carcass quality traits of Brahman and Brahman influenced steers participating in the 

ABBA carcass evaluation program. Growth traits included feedlot entrance weight (INWT), harvest weight 

(HRVWT), and average daily gain (ADG). Carcass composition and quality traits included hot carcass weight 

(HCW), ribeye area (REA), marbling score (MARB), yield grade (YG), quality grade (QG), dressing percent 

(DP), and Warner-Bratzler shear force score (WBS).  

 The identification and use of molecular markers has been used to increase the rate of genetic 

improvement in economically important traits in beef cattle (Davis et al, 1998). Using candidate genes of 

known physiological function to evaluate single nucleotide polymorphisms (SNP) allows analysis of potential 

associations with economically important traits. This is especially useful for lowly heritable traits, and traits that 

are difficult to measure. The current study evaluated SNP located on six candidate genes and their potential 

association with growth, carcass composition, and carcass quality traits in a population of Brahman and 

Brahman-influenced steers. The candidate genes chosen included Adiponectin (ADIPOQ), Thyroglobulin (TG), 

Calpain 3 (CAPN3), Calpastatin (CAST), Insulin like Growth Factor 1 (IGF1), and Growth Hormone gene 

(GH1). The candidate genes utilized were previously reported to be associated with growth and carcass traits 

(Mullen et al., 2010; Pereira et al., 2005; Machado et al., 2003; Casas et al., 2005; Schenkel et al., 2006; 

Koohmaraie et al., 2002; Barendse et al., 1999). Traits used in analysis included birth weight (BW), weaning 
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weight (WW), hip height (HH), days on feed (DOF), and the previously mentioned traits entrance weight 

(INWT), harvest weight (HRVWT), average daily gain (ADG), hot carcass weight (HCW), ribeye area (REA), 

marbling score (MARB), yield grade (YG), quality grade (QG), dressing percent (DP), and Warner-Bratzler 

shear force (WBS). 
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CHAPTER II 

REVIEW OF LITERATURE 

Performance Testing 

Historically, centralized performance bull tests has been utilized as a tool for producers to evaluate 

young bulls’ performance that may be introduced as herd sires. Centralized performance testing allows a group 

of bulls to be evaluated solely based upon performance in a uniform environment. Comparisons among test 

subjects are made possible through a standard testing environment, regardless of differences in cattle such as 

management background or breed (Auchtung et al., 2001). Prior to the testing process, the Beef Improvement 

Federation has suggested cattle be afforded a 21-day adjustment period to become accustomed to their new 

environment and diet (BIF, 2010). This time period allows for compensatory gain to take place, which is 

characterized by a more rapid weight gain after a period of restricted nutrition (Sainz et al.,1995). Because 

compensatory gain does not appear in test data, the centralized performance tests allow cattle to showcase their 

individual growth ability and productivity between weaning and yearling age through uniform evaluation 

(Auchtung et al 2001). 

Data is collected on bulls every 28 days for the duration of the 112-day test in order to evaluate the 

individual growth curve of each animal. The growth and production traits typically evaluated include average 

daily gain (ADG), 112 day weight, feed-to-gain ratio, weight per day of age, yearling hip height, and carcass 

ultrasound data are measured and/or calculated (Simpson et al, 1986; BIF, 2010). Scrotal circumference (SC) is 

also measured due to its relationship with age at puberty (Cammack et al., 2009), and age at first calving 

(Martínez-Velázquez et al, 2003). 

As Wheeler and associates (1997) reported, no single breed excels in all traits that are important to beef 

production, thus diversity is needed to develop and utilize heterosis and breed complementarity in the many 
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different facets of the beef industry (Wheeler et al, 1997). Performance testing provides a method to select sires 

best suited for specific types of beef cattle operations. 

Genetic trends in beef cattle 

Genetic improvement directly results from selection and breeding specifically aimed at promoting 

improvements in breed performance attributes (Garrick et al., 2009). Thus, identifying and understanding the 

additive genetic merit of livestock is key to improving subsequent generations of beef cattle through 

replacement breeding animals (Golden et al, 2009). Through various national cattle evaluation programs and 

breed associations, producers have increased accuracy of selection using technologies available to them such as 

breed-specific performance indices or economic indices (Bullock et al., 2009)(Garrick et al., 2009).  

Improvement of economically important traits can be seen through the evolution of genetic trends in 

British cattle as reported by MacNeil and Northcutt in 2008. The study reported an increase in standardized 

breeding value for marbling score, rib eye area, and subcutaneous fat depth from 1990 to 2006 through analysis 

of postslaughter data collection.  

A second study evaluated trend improvement in the beef industry, including analysis of growth traits of 

Brahman cattle from 1968 to 1996 (Plasse et al., 2002). Through specific selection methods aimed at improving 

growth performance over a 30 year period, positive phenotypic changes were observed in growth traits 

including birth weight, 205-d weaning weight and 18 month weight. Furthermore, Thornton and associates 

reported (2010) that due to improved genetic selection, global beef production has more than doubled since the 

1960s, and carcass weights have increased by 30 percent.  

Carcass Characteristics 

Carcass traits are collected to measure carcass composition, yield, and quality. Carcass composition 

traits include hot carcass weight (HCW), rib eye area (REA), backfat thickness, intramuscular fat (IMF), and 

kidney, pelvic, and heart fat (KPH). Carcass yield traits include dressing percent, and yield grade. Carcass 
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quality traits evaluated include quality grade (QG), marbling score, and meat tenderness via Warner-Bratzler 

Shear Force measurement (WBS).  

Carcass composition traits are measured during harvest along the disassembly line. Hot carcass weight is 

measured directly after evisceration and hide removal, but before chilling or any further carcass processing. Rib 

eye area is measured between the 12th and 13th rib, as is backfat thickness and marbling score. KPH fat in the 

visceral cavity is measured as a percentage of hot carcass weight upon removal from the carcass during 

disassembly.  

Yield Grade is a reflection of the amount of boneless closely trimmed retailed cuts (BCTRC) in a 

carcass, and is also called cutability. The formula uses HCW, backfat thickness, KPH fat, and ribeye area to 

assign a number between 1 and 5. The lower the numerical value of the USDA YG, the higher the yield of 

BCTRC. A carcass with a YG of 5 contains the most fat, least muscle, and is less desirable from a retail 

standpoint, expecting less than 45% BCTRC. A carcass with a YG 1 is the leanest, most trim carcass, and 

expects a yield of greater than 52% BCTRC. The industry average is around a YG 3, expecting between 47.5% 

and 50% BCTRC (Hale et al., 2007). 

Dressing percentage (DP) is a reflection of the amount of carcass in relation to live weight, and is 

calculated by dividing HCW by live weight, and multiplying by 100. The average DP for a steer is 62% 

(USDA, 1997).  

Marbling scores are assigned based on the amount of intramuscular fat observed in the ribeye after the 

hanging carcass has been ribbed between the 12th and 13th rib. This measurement is further utilized to calculate 

a carcass quality grade. Marbling score ranges include devoid, traces, slight, small, modest, moderate, slightly 

abundant, moderately abundant, and abundant. These are used in conjunction with carcass maturity to assign a 

USDA Quality Grade. Quality Grades range from worst quality to best quality as follows: Utility, Commercial, 

Standard, Select, Choice, and Prime. (Hale et al., 2007)(USDA, 1997) 



 
 

6 
 

Another component to palatability of carcasses is meat tenderness, which is measured using a Warner-

Bratzler shear force instrument. This requires a process of preparing and cooking steaks, then extracting core 

samples from the cooked steaks to be sheared perpendicular to muscle fiber direction (Silva et al., 2014). With 

this test, the amount of force required to shear through each core sample is measured in kilograms. A lower 

measurement equates to more tender core samples than higher scored, tougher core samples (Wheeler et al., 

1998).  

In recent years, the U.S. Department of Agriculture (USDA) has collaborated with beef industry leaders 

in academia and the private sector to develop a tenderness system similar to that of the Quality Grading system 

of Prime, Choice, Select, etc. The objective was to establish thresholds for beef to be marketed as USDA 

Certified Tender or USDA Certified Very Tender based upon shear force values of the longissimus dorsi, or 

ribeye muscle, using the Warner-Bratzler (WBSF), or Slice Shear Force (SSF) reading (www.ams.usda.gov). 

Minimum Tenderness Threshold Values (MTTV) were set for USDA Tender and USDA Very Tender beef. The 

MTTV for USDA Tender was set at 4.4kg WBSF or 20.0kg SSF. The threshold for USDA Very Tender beef 

was set as 3.9kg for WBSF or 15.3kg for SSF.  In 2012, the Agriculture Marketing Service sector of the USDA 

began collaborating with segments of the industry to implement the new Tenderness Marketing Claim at the 

retail level (www.ams.usda.gov). Companies may request approval to use the USDA Certified Tender claim, 

and once approved, may promote their meat products as USDA-Certified Tender or Very Tender using product 

labeling and marketing.  

Genetic markers 

Genetic marker technologies are being utilized to aid in improved selection and product improvement. A 

genetic marker is a DNA sequence mutation within an individual’s genome, and can be utilized in investigating 

genetic variations between individuals (Yang et al., 2013). Genetic markers have a definite physical location on 

a gene and may be inherited together. These markers may have no known function. According to the National 
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Human Genome Research Institute (NHGRI), genetic markers can be used to identify and track the inheritance 

of a gene that has not been identified yet but whose approximate location is known to be near the genetic 

marker. Three of the most common genetic markers utilized are microsatellites, single nucleotide 

polymorphisms, and restriction fragment length polymorphisms (RFLP) (Yang et al., 2013). Yang and 

associates (2013) reported that utilization of RFLP’s was first developed by Grodzicker et al. in 1974 and was 

utilized to identify mutations among individuals through DNA fragments of varying size, that were generated 

through the use of known restriction enzymes. Microsatellites are short tandem repeats in the DNA sequence 

commonly between one and six base pairs, repeated in tandem several times through a DNA strand (Litt et al., 

1989). Microsatellites are used in paternity testing for a multitude of species including in beef production 

(McClure et al., 2012). The repetition of microsatellites in DNA allows for identification of regions that may 

harbor genes or mutations associated with performance traits. Finally, a single nucleotide polymorphism (SNP) 

is defined by the National Human Genome Research Institute as a single nucleotide base change at a specific 

location in a DNA sequence. An SNP may be in the form of an insertion, deletion, transition, or transversion 

(Yang et al., 2013; Vignal et al., 2002). The DNA bases are read in triplets to determine which amino acids will 

be produced in a specific location, therefore SNPs have the ability to alter the amino acids being made 

(Crawford et al., 2005). Single Nucleotide Polymorphism association studies aim to evaluate SNPs as a possible 

source of variation, and whether that variation has an effect on whether an animal is pre-disposed to superior or 

inferior performance in an economically important trait (Yang et al., 2013). 

Quantitative Trait Loci 

 Quantitative trait loci (QTL) are specific regions on a chromosome containing genes or mutations that 

may be responsible for variation in economically important traits. A quantitative trait is a phenotypic trait which 

can be measured numerically. Genetic markers and linkage maps have aided in identification of QTLs 

associated with traits of economic importance (Casas et al., 2000). For example, QTL affecting carcass quality 
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and composition traits have been previously mapped to chromosomes 1, 2, 5, 13, and 14 (Stone et al., 1999). 

Mapping QTLs depends on the genetic dominant or recessive nature of the trait, heritability of the trait, and the 

number of genes affecting the trait (Members of the Complex Trait Consortium, 2003). In addition, mapping 

accuracy depends on marker distribution throughout the genome, so the efficiency of QTL mapping also relies 

on large numbers of markers per chromosome (van Ooijen et al., 1992).  Using QTLs in genetic selection may 

improve selection for economical traits in other technologies such as marker assisted selection or whole genome 

selection (Andersson et al., 2001; Soller et al., 1983). 

Marker Assisted Selection  

 Marker Assisted Selection (MAS) is the process of utilizing genetic markers that have been associated 

with economically important quantitative traits. This has the potential to allow for early and accurate 

identification of animals that are genetically predisposed to have increased performance for economically 

important traits. Through early identification of these individuals, producers may decrease costs associated with 

raising and performance testing inferior animals (BIF, 2010). When comparing MAS to the use of Expected 

Progeny Differences (EPDs) or phenotypic selection, the rate of improvement via MAS may increase especially 

in those traits deemed lowly heritable (Davis et al., 1998). Through the use of genotyping technologies, MAS 

would decrease the amount of time producers would typically have to wait to apply selection strategies in the 

beef production process, such as early detection of superior animals for tenderness or marbling (Lu et al., 2013; 

Macneil et al., 2001). Marker Assisted Selection is most useful when the marker accounts for the highest degree 

of variation for the evaluated trait. Rocha and associates (1992) further reported that if genetic markers 

associated with genetic variability can be identified and selected for, then selection accuracy can be increased. 

However, this increased level of performance is influenced by numerous variables.  

One variable that must be considered is the number of markers. Too few markers may result in a low 

power to detect any significant effect, whereas too many markers may result in low significance levels for any 
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one marker (Davis et al., 1998). An optimum number of markers allow for maximum response to be returned. 

Additionally, the interaction of markers associated with quantitative traits and the level of heritability of the trait 

must be considered to improve accuracy of selection (Davis et al., 1998).  

Whole Genome Selection 

 Whole Genome Selection (WGS) is a selection tool utilizing all markers known to account for 

variability within a trait. Whole Genome Selection is similar to Marker Assisted Selection, with the exception 

that WGS uses all identified genetic markers associated with a trait spanning the entire genome whereas MAS 

only utilizes a small number of associated markers (Goddard et al., 2007). Furthermore, WGS can result in a 

large improvement in selection accuracy compared to parental average breeding values (Lu et al., 2013). 

Thallman reported (2009) that there are a larger amount of genes with small phenotypic effects throughout the 

genome, than there are genes with large phenotypic effects. Whole Genome Selection uses all associated 

markers, emphasizes regions with more effect, thereby accounting for more genetic variation (Thallman, 2009).  

In the cattle industry, WGS is used in harnessing large amounts of data and predicting genetic merit values 

(Matukumalli et al., 2009). Goddard et al (2007) credit the practicality of WGS to new methods to efficiently 

genotype large numbers of single nucleotide polymorphisms. This implementation of new and existing 

technologies can increase animal selection accuracy, and aid producers in lowering financial expenditure and 

economic risk due to poor selection (Harris, 1998).   

 Single Nucleotide Polymorphisms 

 A single nucleotide polymorphism (SNP) is a single nucleotide base change at a specific location in a 

DNA sequence. Deoxyribonucleic acid bases include adenine, cytosine, guanine, and thymine. Single base 

changes, insertions, and deletions are all types of SNPs (Vignal et al., 2002). Single Nucleotide Polymorphism 

association studies aim to evaluate SNPs as a possible source of variation, and whether that variation has an 

effect on whether an animal is pre-disposed to superior or inferior performance in an economically important 
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trait (Yang et al., 2013). Identification of SNPs associated with economically important traits could lead to an 

understanding of the predisposition of certain individuals to perform differently. For example, Page and 

associates (2002) reported SNPs on bovine CAPN1 associated with variation in meat tenderness in a population 

of crossbred cattle. Using SNPs in genetic selection may improve selection for economical traits in other 

technologies such as candidate gene approach (Magee et al., 2010).  

Candidate Gene 

 A candidate gene is a gene of known physiological function and has previously described association 

with a specific trait of interest (NHGRI). Candidate genes can be utilized when testing for association with 

complex traits in which genes have small effects on the complex trait (Karisa et al., 2013). Candidate genes can 

be identified using numerous approaches including linkage studies, gene expression studies, and genome wide 

association studies. Large QTL regions may harbor candidate genes thought to have large effects on 

economically important traits (Saatchi et al., 2014). Identifying a single nucleotide polymorphism (SNP) within 

a gene can be used to narrow the region of interest on the gene. The variant may be the direct cause of the 

change, or could be in linkage disequilibrium with the gene that is the cause of the alteration (Tabor et al., 

2002).  

Thyroglobulin Gene 

Thyroglobulin (TG) gene, located in the centromeric region upstream from the promoter on bovine 

chromosome 14, encodes the glycoprotein precursor to thyroid hormones (Wood et al., 2006). A polymorphism 

in the 5’ promoter region of the bovine Thyroglobulin gene (TG5) has been associated with marbling variations 

in beef cattle (Casas et al., 2005). Cattle homozygous or heterozygous for the Thiamine (T) allele showed 

higher marbling scores than cattle homozygous for Cytosine (C) allele (Barendse et al., 1999). Brahman cattle 

showed lower frequencies of the favorable T allele, and lower marbling scores than their Bos taurus 
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counterparts (Casas et al., 2005).  Casas et al reported (2005) that there is a lack of evaluation of these markers 

with carcass composition traits in Bos indicus cattle outside of their study. 

Adiponectin Gene 

The Adiponectin gene (ADIPOQ) is located on Bos taurus autosome 1, in close proximity to a QTL 

associated with carcass traits such as marbling, ribeye area, and backfat thickness (Morsci et al., 2006). 

Adiponectin modulates lipid and glucose metabolism, energy homeostasis, inhibits lipogenesis, acts as an anti-

atherogenic agent, and is a neoglucogenic inhibitor (Morsci et al., 2006; Shin and Chung, 2013).  It has been 

reported that expression of adiponectin by white adipose tissue into the bloodstream is negatively correlated 

with adipose tissue mass (Kadowaki et al., 2005; Morsci et al., 2006). Fatty acid presence and composition of 

adipose tissue associated with meat are important to meat quality and palatability (Kelly et al., 2014). Previous 

research showed two SNP significantly associated with increased ribeye area and backfat thickness in Hanwoo 

cattle (Shin and Chung, 2013). Adiponectin has also been reported to play a role in bone biology (Berner et al., 

2004). Oshima and associates (2005) reported adiponectin increased bone mass in rats by suppressing 

osteoclastogenesis and activating osteoblastogenesis. The association between adiponectin and bodily processes 

indicate ADIPOQ as a promising candidate gene for further research with growth, carcass quality and 

composition traits.  

Calpastatin Gene 

The Calpastatin (CAST) Gene is located on Bos taurus autosome 7 (BTA7), and has been reported as a 

candidate gene for beef tenderness. Miller et al (1995) reported that tenderness is the most important trait to 

consumers in regards to meat quality. The CAST gene has been associated with calpastatin, a protein that 

inhibits the normal tenderization of meat as it ages postmortem (Shenkel et al., 2006). Calpastatin inhibits 

calpain, and regulates muscle cell protein proteolysis, thus its association with meat tenderness. While Calpain 

accelerates protein breakdown, Calpastatin inhibits it in post-mortem protein degradation (Koohmaraie et al., 
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2002). Shackelford and associates reported (1995) this Calpain-Calpastatin complex plays a role in the ability of 

Brahmans to thrive in adverse conditions, but results in tougher meat as compared to comparable meat from Bos 

taurus cattle. Café and associates reported (2010) the favorable CAST allele was associated with lower Warner-

Bratzler shear force scores in steaks from Brahman cattle. Higher frequency of the favorable allele showed a 

lower percentage of tough steaks but also increased fat and decreased rib eye area (Shenkel et al., 2006).  

Calpain Gene 

 Calpain III (CAPN3) is located on BTA10. Of over a dozen isoforms of calpain, CAPN3 is the only 

isoform that is specific to skeletal muscle tissue (http://www.ncbi.nlm.nih.gov). A previously reported variant in 

the CAPN3 gene causes loss of catalytic activity of CAPN3 gene (Kramerova et al., 2004). Koohmaraie and 

associates reported (2002) that proteolytic degradation of myofibrillar proteins cause weakening of myofibrils 

and thus tenderization of meat in beef cattle. Calpain is responsible for the breakdown of myofibrillar protein 

(Wheeler and Koohmaraie, 1994), and plays a role in differentiation of preadipocytes to adipocytes (Patel et al., 

1999), which are both closely related to meat tenderness. Calpastatin (CAST) inhibits calpain activity, thus 

regulating postmortem proteolysis (Schenkel et al., 2006).A previously reported polymorphism in the CAPN3 

gene was found to be more common in zebu cattle than taurine cattle, which may contribute to the variation in 

tenderness in zebu or tropically adapted composite cattle (Barendse et al., 2008).  

Insulin-like Growth Factor 1 Gene 

The Insulin-like Growth Factor gene (IGF1) has been mapped to BTA5 (Grosse et al., 1999). Insulin-

like growth factor is a protein hormone in the somatomedin family, which is synthesized and released by target 

tissues, mainly the liver, upon stimulation by growth hormone. As a result, insulin-like growth factor is 

considered a somatotropin-dependent somatomedin (Bauman, 1992). Machado and associates (2003) 

investigated an association of the IGF1 gene with growth traits including birthweight, weaning weight, and 

yearling weight in Canchim cattle. Islam and associates (2009) reported a significant association in an IGF1 
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SNP and varying fat content in Angus cattle. Angus cattle with the ‘CC’ genotype showed a higher fat depth 

and lower lean meat yield than cattle with the ‘TT’ genotype.  

Growth Hormone Gene 

Directly or indirectly, growth hormone (GH) is the main regulator of postnatal growth, including cell 

division, skeletal growth and protein synthesis (Curi et al., 2005; Trenkle and Topel, 1978). Synthesis of the 

protein hormone GH by somatotroph cells on the anterior pituitary is stimulated by growth hormone releasing 

hormone (GHRH) from the hypothalamus (Bauman, 1992; Trenkle and Topel, 1978). Growth hormone targets 

the liver where Insulin-like Growth Factor 1 (IGF1) is released and plays a role in tissue partitioning and 

nutrient use (Bauman, 1992). It has been previously described that the use of somatotropin increases muscle 

tissue accretion in growing animals (Etherton et al, 1998). The growth hormone gene (GH1) is located on 

BTA19 and has been previously associated with traits including growth and carcass quality (Pereira et al., 2005; 

Mullen et al, 2010). Previous reports suggest GH1 mutations are associated with varying levels of GH found in 

plasma, indicating GH1 as a candidate gene for improvement in various growth and carcass traits (Mullen et al., 

2010) 

Bos indicus / Brahman characteristics 

 Beef cattle production in subtropical regions of the United States must rely on cattle that can maintain a 

high level of performance for economically important traits under hot and humid climatic conditions (Elzo et 

al., 2012). Bos indicus and Bos indicus influenced cattle have been important to the U.S. and global beef 

industries due to their adaptability to heat and parasite stresses, which would limit Bos taurus productivity 

(Turner, 1980; Lyons et al., 2014; Thrift and Thrift, 2003).  

 Historically, animal performance was considerably enhanced by inclusion of Bos indicus breeds in a 

crossbred animal in subtropical climates (Garrick et al., 2009). Crossing Brahman with Bos taurus contributes 

to reproductive and maternal advantages of crossbred cows (Franke et al., 2001). Elzo and associates (2011) 
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reported purebred Brahman cattle exhibited higher dressing percents, lower intramuscular fat content, smaller 

ribeye area, contained more connective tissue and was less tender beef, whereas Brahman/Bos taurus cross 

showed increase in ribeye area, fat over the ribeye, intramuscular fat, and hot carcass weight. However high 

proportions of Brahman inheritance tend to be less tender and have lower carcass quality grades than cattle with 

less Brahman influence (Smith et al., 2009).   

Brahman cattle tend to have a delayed age at puberty, less intramuscular fat, and less tender beef as 

compared with Bos taurus breeds (Herring et al, 1996; Wheeler et al., 1990). Bos indicus cattle have been 

previously described as also having delayed maturity and longer gestation lengths than Bos taurus breeds 

(Wheeler et al., 2005). Understanding factors that affect these traits such as rate of maturity could thereby aide 

in the identification of the optimal genetic variants needed for beef cattle production in specific environments 

and systems. (Luna-Nevarez et al., 2010). For example, Bos indicus heifers reach puberty at an older age than 

Bos taurus heifers, and scrotal circumference of bulls is a trait reported to be favorably associated with heifer 

age at puberty (Eler et al., 2004; Brinks et al., 1978). 
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CHAPTER III 

AN EVALUATION OF TEN YEARS OF CARCASS AND FEEDLOT PERFORMANCE IN 

BRAHMAN AND BRAHMAN INFLUENCED STEERS TESTED BY THE AMERICAN BRAHMAN 

BREEDERS ASSOCIATION (ABBA) NATIONAL CARCASS EVALUATION PROGRAM 

Introduction 

  Brahman cattle are an economically important breed globally and are extensively utilized in beef 

production systems in tropical and sub-tropic regions. The breed’s popularity is due to their parasite resistance 

and ability to tolerate hot, humid environments (Lyons et al., 2014). However, Brahman and Brahman-

influenced cattle have been reported to produce less tender meat (DeRouen et al., 2014), exhibited lower 

marbling scores, and yielded lower carcass quality grades as compared to Bos taurus breeds (Wheeler et al., 

2001).  

Cammack et al. reported (2009) that sire selection affects performance of the herd as a whole. Beginning 

in 2004 the American Brahman Breeders Association (ABBA) made a concerted effort to improve the growth 

traits, carcass quality, and composition traits of Brahman and Brahman-influenced cattle. The ABBA has 

collaborated with producers to help them realize the impact of sire selection on carcass quality traits, including 

meat tenderness, through data gathered from the ABBA Carcass Evaluation Program. The Carcass Evaluation 

Program has provided an excellent avenue for educating cattle producers on breed improvement through proper 

selection practices. By incorporating superior cattle into breeding programs and improving culling practices 

based on progeny feedlot performance, these efforts show that improvements may be made on a breed-wide 

basis in traits that have proven to be advantageous for the Brahman breed. 

The objective of the current study was to evaluate genetic trends from 10 years of the ABBA Carcass 

Evaluation Program for 10 traits including growth, carcass composition, and carcass quality traits.  
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Materials & Methods 

The steers were nominated in the Carcass Evaluation Program by the producer, and therefore the steers 

were subjected to specific background guidelines such as birthdate and lineage, and completed the health 

program outlined by ABBA prior to entrance into the feedlot. Steers from the program were evaluated for 10 

traits, including growth, carcass composition, and carcass quality traits. Growth traits assessed included Feedlot 

entrance weight, harvest weight, and average daily gain. Carcass composition traits included hot carcass weight, 

dressing percent, rib eye area, and marbling score. Carcass quality traits analyzed were Quality Grade, Yield 

Grade, and Warner-Bratzler Shear Force for meat tenderness analysis.  

Experimental Animals 

Performance data was evaluated from 10 years of data from 2004-2013 provided by the American 

Brahman Breeders Association (ABBA) Carcass Evaluation Program. A total of 595 Brahman steers were 

nominated by beef cattle producers from across southeastern United States and evaluated in the current study.  

A set of requirements set forth by ABBA must be met by producers wishing to participate in the ABBA 

Carcass Evaluation Program. Steers must be able to be registered by ABBA and must be born between January 

and May, must be weaned and have completed the ABBA outlined health program to enhance immunity and 

increase resistance to viruses, bacteria, and respiratory problems. The health program includes vaccination, de-

worming, castration, and dehorning protocols, and must be completed 45 to 60 days prior to delivery to Graham 

Land & Cattle Company in Gonzales, Texas.  

Upon arrival to Graham feedyard, steers are individually identified, processed, and weighed for an 

entrance weight (INWT). Steers are sorted into groups based on weight, frame size, and body condition before 

beginning on feed. Steers remain in feedlot for a period of time until feedyard manager determines harvest 

weight (HRVWT) has been reached. Using entrance weight, harvest weight, and number of days on feed, 

average daily gain (ADG) is calculated as amount of weight gain per day on feed. 
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At the conclusion of the feeding period, steers are sent to Sam Kane Beef Processors in Corpus Christi, 

Texas for harvest. Carcass composition and quality traits are collected and recorded. Composition and quality 

traits include hot carcass weight (HCW), rib eye area (REA), marbling score, dressing percent, quality grade, 

yield grade, and Warner-Bratzler shear force (WBS) as a measure of meat tenderness.  

Statistical Analysis 

The regression analysis procedures of SAS (version 9.2, SAS Institute, Cary, NC) were utilized to 

evaluate rate of positive or negative change of performance in each trait per year for steers nominated in the 

Carcass Evaluating Project from 2004 to 2013. Entrance weight (InWt), harvest weight (HrvWt), average daily 

gain (ADG), hot carcass weight (HCW), ribeye area (REA), marbling score (MARB), dressing percent (DP), 

yield grade (YG), quality grade (QG), and Warner-Bratzler shear force (WBS) were set as random variables, 

while year was set as fixed variable. Overall means were calculated to report the total average for each trait after 

completion of 10 years of improved sire selection.  

Results 

Evaluation of the feedlot traits revealed that harvest weight and average daily gain exhibited an increase 

every year, whereas feedlot entrance weight has actually been decreasing over the 10 year period. Specifically, 

feedlot entrance weight decreased at a rate of 0.76kg per year, with a decade average of 253.48kg (Figure 3.1). 

Harvest weight increased at a rate of 7.72kg per year and averaged 556.02kg over the ten year period (Figure 

3.2), and average daily gain exhibited an increase of 0.05kg per year, with a ten year average of 1.31kg (Figure 

3.3).  

In analyzing the carcass composition traits, positive rates of change were observed in all traits. 

Specifically, hot carcass weight realized a 5.64kg increase per year with a decade average of 338.32kg (Figure 

3.4). Rib eye area also showed a positive trend, increasing at a rate of 0.28cm2 yearly and averaging 33.54cm2 



18 

Figure 3.1: Mean of feedlot entrance weight, kg, for steers participating in the ABBA carcass evaluation 

program for years 2004-2013 

over the ten year span (Figure 3.5). Finally, as seen in Figure 3.6, yield grade increased at a rate of 0.7 units per 

year with a decade average of a 2.39 YG score. 

Analyses of the carcass quality traits revealed that marbling score, quality grade, dressing percent, and 

Warner-Bratzler shear force showed an average increase over the ten year span of data collection. Specifically, 

marbling score increased at a rate of 0.86 scoring units per year, with a decade average of 370.70 (Figure 3.7). 

Quality grade also increased, ascending at a rate of 0.066 units per year and averaged a quality grade of 657.05 

over the ten year period (Figure 3.8). Dressing percent also improved, rising at an average of 0.163 percent each 

year to a decade average dressing percent of 63.71 percent (Figure 3.9). Finally, an unfavorable increase was 

seen in Warner-Bratzler shear force scores, indicating a negative trend for tender beef. Warner-Bratzler shear 

force scores increased at a rate of 0.27kg per year, for a decade average of 7.86kg as can be seen in Figure 3.10. 
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Figure 3.2: Mean of harvest weight, kg, for steers participating in the ABBA carcass evaluation program for 

years    2004-2013 

Figure 3.3: Mean of average daily gain, kg, for steers participating in the ABBA carcass evaluation program for 

years 2004-2013 
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Figure 3.4: Mean of hot carcass weight, kg, for steers participating in the ABBA carcass evaluation program 

for years 2004-2013 

Figure 3.5: Mean of rib eye area, cm2, for steers participating in the ABBA carcass evaluation program for 

years 2004-2013 
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Figure 3.6: Mean of yield grade, units, for steers participating in the ABBA carcass evaluation program for 

years 2004-2013 

Figure 3.7: Mean of marbling score, units, for steers participating in the ABBA carcass evaluation program for 

years 2004-2013 

Marbling score (units) 

Average: 370.70 

Slope: 0.86 

Yield grade (units) 

Average: 2.39 

Slope: 0.066 



22 

Figure 3.8: Mean of quality grade, units, for steers participating in the ABBA carcass evaluation program for 

years 2004-2013 

Figure 3.9: Mean of dressing percent, units, for steers participating in the ABBA carcass evaluation program 

for years 2004-2013 
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Figure 3.10: Mean of Warner-Bratzler shear force, kg, for steers participating in the ABBA carcass evaluation 

program for years 2004-2013 

Discussion 

A total of 595 steers were included in this trend study of the American Brahman Breeders Association 

carcass evaluation program. The study plotted data from years 2004-2013 in order to track improvement in 

performance and efficiency in the feedlot, as well as improvement in carcass quality and composition traits. 

Positive, favorable changes were seen in eight of the ten economically important traits reported. The increases 

in yield and quality measurements indicate that improvements have in fact been made in Brahman carcasses 

over this 10 year period. 

The positive slopes of all feedlot traits with the exception of INWT indicates an increased level of 

performance seen in the feedlot. A decrease in INWT suggests cattle entered the carcass evaluation program at 

lighter weights in recent years, but an increase in ADG and harvest weight indicate favorable improvement in 

feedlot efficiency for Brahman cattle. 
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Carcass quality and composition traits saw favorable increases except for shear force scores. Marbling, 

quality grade, yield grade, rib eye area, and hot carcass weights all showed positive improvement. An increase 

in quality grade is promising, as Brahman cattle have also been reported to have lower quality grades (Wheeler 

et al., 2001). While the slope was positive like the rest of the favorable upturns, the increase in shear force is 

highly unfavorable. An increase in Warner-Bratzler shear force score is an implication of less tender meat, 

which Brahman cattle have previously been reported to have as compared to their Bos taurus counterparts 

(DeRouen et al., 2014). However, shear force scores in the carcass evaluation program have been on a 

downward trend since 2009 according to Figure 3.10. In years to come with proper genetic selection, the 

average yearly change could become negative, as would be favorable for more tender beef.  

This study detailed the improvements and retrogressions made in the feedlot performance of the 

Brahman breed in the first 10 years of the carcass evaluation program. The ABBA carcass evaluation program 

and Brahman producers have made improvements in production, efficiency, and carcass traits in a relatively 

short period of time. After ten years of evaluation, Brahman cattle are entering the feedlot lighter, but gaining 

more and harvesting heavier than they were in the beginning of the program in 2004. Also, not only are 

Brahman steers harvesting heavier than in years past, they are yielding improved carcasses on many fronts. This 

is apparent in the rising marbling scores, dressing percentages, and quality grade scores, but additional 

improvement is still needed in relation to tenderness. Through this program, participating Brahman breeders can 

visualize the changes in the breed achieved as a direct result of refined genetic selection practices. Continued 

priority for breed improvement will likely make the Brahman breed competitive in performance, quality, 

productivity, and profitability in comparison with other beef cattle breeds.   
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CHAPTER IV 

AN SNP ASSOCIATION STUDY EVALUATING BRAHMAN AND BRAHMAN-INFLUENCED 

STEERS FOR GROWTH AND CARCASS TRAITS 

Introduction 

Multiple tools have been developed to improve accuracy of animal selection and rate of improvement in 

economically important traits in beef cattle. Identification and utilization of molecular markers has been 

reported to increase the rate of genetic improvement as compared to other currently utilized selection tools 

(Davis et al., 1998). The candidate gene approach evaluates single nucleotide polymorphisms (SNPs) located on 

genes of known physiological function, and analyzes potential associations with economically important traits. 

This may be especially useful for Bos indicus cattle, who are known to exhibit less desirable growth, 

performance, and carcass characteristics when compared to Bos taurus cattle (Wheeler et al., 2001). 

Economically important traits have been reported to vary in heritability 

(www.uaex.edu/publications/pdf/mp184/chapter4.pdf). This makes improving traits such as fertility and carcass 

traits, which are lowly heritable and difficult to measure, a challenge within the Brahman breed.  The use of 

molecular markers may increase the rate of improvement within these problematic traits. 

The current study evaluated SNP’s located on six candidate to evaluate potential associations with 

growth traits, feedlot performance, and carcass traits. The candidate genes included Adiponectin (ADIPOQ), 

Thyroglobulin (TG), Calpain-III (CAPN3), Calpastatin (CAST), Insulin like Growth Factor (IGF1), and Growth 

Hormone (GH1). Adiponectin was selected because of previous reports indicating its proximity to a QTL on 

BTA1 associated with marbling, ribeye area, and backfat thickness in Angus cattle (Morsci et al., 2006). 

Furthermore, a separate study identified two SNP significantly associated with increased ribeye area and 

backfat thickness in Hanwoo cattle (Shin and Chung, 2013). 

The Calpain (CAPN3) and Calpastatin (CAST) genes were selected because of previously reported 

associations with meat tenderness. Calpain is a skeletal muscle specific calcium-activated protease previously 
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associated with myofibrillar protein breakdown (Wheeler and Koohmaraie, 1994). Barendse and associates 

reported (2008) a higher frequency of the CAPN3 SNP in zebu cattle than taurine cattle, and attributed the 

variation in tenderness of Bos indicus cattle to the higher frequency of that allele. Calpastatin is a protein that 

inhibits protein degradation postmortem and has been associated with the CAST gene and meat tenderness 

(Shenkel et al., 2006; Koohmaraie et al., 2002). Jointly, CAPN3 and CAST interact together to contribute to 

meat tenderness. Calpain accelerates protein breakdown, calpastatin inhibits calpain activity, thus playing a 

regulatory role in postmortem proteolysis (Koohmaraie et al., 2002; Schenkel et al., 2006).  This calpain-

calpastatin complex has been reported to play a role in Brahmans ability to thrive in tropical conditions, but 

results in tougher meat than taurine cattle (Schenkel et al., 2006). These independent associations along with 

these joint interactions make CAPN3 and CAST likely candidate genes for carcass quality and composition 

traits. 

The Thyroglobulin (TG) gene which is located on BTA14 was selected as it has been previously 

reported influence on marbling measurements in beef cattle (Casas et al., 2005).  A higher frequency of the 

favorable T allele reportedly showed higher marbling scores (Barendse et al., 1999). Brahman cattle have 

exhibited lower frequencies of the previously reported favorable T allele than Bos taurus cattle and Wagyu 

cattle (Casas et al., 2005; van Enennaam et al., 2007). 

Insulin like Growth Factor (IGF1) which is located on BTA 5 was evaluated in the current study as 

previous research has indicated the gene’s influence on growth traits and carcass traits in beef cattle (Machado 

et al., 2003; Pereira et al., 2005). IGF1 is released from the liver upon stimulation by growth hormone and is 

involved in mediating bodily growth and development. IGF1 plays a role in stimulating protein metabolism, 

cellular proliferation, and differentiation (Bauman, 1992). 

The Growth Hormone gene (GH1) selected as a candidate gene in the current study as it has been 

associated with growth regulation, the mammalian growth curve, carcass quality, and composition (Mullen et 
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al., 2010; Pereira et al., 2005). Located on BTA19, GH1 has been significantly associated with the level of 

growth hormone found in plasma, which stimulates IGF1 production and release upon reaching the liver 

(Mullen et al., 2010). 

The objective of this study was to evaluate SNP located on six candidate genes and their potential 

association with growth, carcass composition, and carcass quality traits in a population of Brahman and 

Brahman-influenced steers. 

Experimental Animals 

The population of animals utilized herein included forty-two Brahman and Brahman influenced steers 

born between 2009-2014, at the LSU AgCenter Central Research Station located in Baton Rouge, Louisiana. 

Specifically, 31 were purebred Brahman and 11 were F1 Brahman crosses. Steers were evaluated for growth 

and carcass traits through the American Brahman Breeders Association (ABBA) Carcass Evaluation Project in 

Gonzales, Texas.  

Growth and Carcass Characteristics 

Data collected at the Central Research Station included sire and dam, sex, birth weight (BW), weaning 

weight (WW), and hip height (HH). All bull calves were weighed and castrated within 24 hours of birth. 

Spring-born calves were weaned at approximately 205 days, when weaning weights and hip heights were 

recorded. Steers that met criteria for nomination to the ABBA National Carcass Evaluation Program completed 

a backgrounding program 45 to 60 days prior to being shipped (http://www.brahman.org/wp-

content/uploads/2014/10/ABBA-Carcass-Evaluation-Program-Guidelines.pdf). Steers were delivered to 

Graham Land and Cattle Company in Gonzales, Texas, for evaluation of feedlot performance. 

 Feedlot performance traits measured included feedyard entrance weight (INWT), harvest weight (HRVWT), 

and average daily gain (ADG). Steers were processed individually upon arrival to the feedyard and were sorted 

into an appropriate pen based upon weight, frame size, and condition. When individual pens reached an average 
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weight and body condition deemed acceptable (one centimeter of backfat and 544 kilograms body weight) 

animals were sent to a commercial packing plant for the collection of carcass quality and composition traits. 

Carcass traits collected included hot carcass weight (HCW), ribeye area (REA), marbling score (MARB), yield 

grade (YG), quality grade (QG), dressing percent (DP), and Warner-Bratzler shear force score (WBS).  

DNA Extraction 

 Twenty milliliters of blood was collected from each steer via jugular venipuncture. After collection, 

blood was transferred to two 15ml tubes and centrifuged at 4000rpm for 20 minutes at 4 degrees Celsius. White 

blood cell buffy coats were then extracted and deposited into 1.5 milliliter micro centrifuge tubes. DNA was 

then extracted from buffy coats using a Saturated Salt Procedure previously described by Miller and associates 

(1988) (Appendix A). Purified DNA were diluted into 25ng/µl working solutions in preparation for genotyping.  

SNP and Genotyping 

 Previously described SNP’s were selected equidistantly across the TG, ADIPOQ, CAST, CAPN3, IGF-

1, and GH1 genes for genotyping from the dbSNP website (http://www.ncbi.nlm.nih.gov/projects/SNP/). 

Equidistant spacing was conducted to account for possible linkage between selected SNP’s and a potential 

causative SNP accounting for a large degree of variation in the trait.  Genotyping was performed by Neogen, 

Inc. in Lincoln, Nebraska using the Sequenom genotyping platform. Single nucleotide polymorphisms, allele 

substitutions, and upstream and downstream sequences for genotyped SNP’s are reported in tables 4.1, 4.2, 4.3, 

4.4, 4.5, and 4.6. 

Statistical Analysis 

 The mixed model procedure of SAS (version 9.4, SAS Institute, Cary, NC) was used to evaluate 

potential SNP associations from candidate genes ADIPOQ, CAPN3, CAST, TG, IGF1, and GH1 with growth 

traits, feedlot performance, and carcass traits. Models were fitted individually for each trait. Dependent 

variables in the model included birth weight (BW), weaning weight (WW), hip height (HH), entrance weight  
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Table 4.1: Single nucleotide polymorphisms ID, allele substitution, forward and reverse primer sequences utilized for amplification 

and visualization of genotypes for TG. 

SNP ID Allele Substitution Upstream Sequence Downstream Sequence 

rs110501231 C/T ACGATTGGGATGTTTCTGTACCAAGG CACTTTGGGTGGAAGGGGAGAATGA 

rs135059985 C/T GTCTTGAGCACTGGAACTTCATTTGA CATCTAAGATGGCAGTCCTGCACTTG 

rs136379742 C/T CAGGCCCCCAGGGTCTTCTCGCTGTG CCCCATCAGAACAGGAGCCCTTGGC 

rs378567477 C/T TGAGGAGCTCCTGTCAAGCTGAAAA CTCAGCCCCAGCATCACCTCCCCCAG 

rs383724494 C/T AAGTGGACGGTGGAGGGCTCACCAC TCACATCCAGACCACAGAGGCGGCA 

rs136849694 A/G CTGGCCACAGCGGTGGGGAGGCGGG GGGGCCCCCACCGGAAGTGGACGGT 

rs379996188 C/T CTGACCCAGAAGGCCTTCCTGGGTGC GGCACAAAGGTACAGGTGAGGGGG 

rs110999400 C/G GCTATATTCCCACGTCTAATATCAAG TGGAAAGACGGAAGAGTGAGGGGC 

rs133473042 C/G CCTTCTGTGACTCACTTCACTCAGTA GACAATCTCTGGGCCCATCCATGTTG 

rs110191002 C/T CTTTTAATCTTCTCTCCATTTGCTGCA AGTGGGTTCTTGTTGGTTATCCATTC 

rs109182502 C/T GGATGTTTCTGTCCAGCCATTGCTCC GTGGCTCTGTTTCAGGGACCGGCTG 

rs382252585 A/G AAAGTAATTTCCAAATTACAACTTGT AAAGTGCCTAGGTACCTGGATGTTTC 

rs380627374 A/G TTCATACACACACGCAGTAGGGGAA TGTCGCCTTTGAAAAGTAATTTCCAA 

rs132813094 A/C TAAAAGGTAATACCCTGACTCCTGGC AAGGCAACGGCCGCCTTCTGATTTCA 

rs133980693 A/G CCCTTCTCCTGACATCTCTGGCAAAC CTCCTTCCCACCTGGCTCGGTTACAA 

rs377997897 C/G ACTTAAATACAATTTTCTGAGTCAAG AGCAATGACTGTGAGATATTGTTAGC 

rs109830314 C/T CGTCTCCTGCACTGCAGGTGGATTTT TGACCACTGAACTAGCAGGGAAACC 

rs29021775 A/G CAGTGGCTATGCCTGCTTTCCTCTCA CAAGAGTCAGGTTATATTTTAGTAAG 

rs109188488 C/G GTGGGTTCTGGTTCTGGTCAGTCTCA GGTGGCTTTTCCATGCCACAGACTTA 

rs110946911 G/T CACAGAGCTTTGTCTTTCACGAGCTC CCTAGGCTGTAATTCATCCCTGCAGT 

rs110553649 A/C ACGAGTCAGCAACTCACATACATAG CCTTGTTAGTGTCCTTTGAATATCAG 

rs110187386 C/G ACTCTGCAAACTAAAGCAAGAGATA ACTTCAAAAAAAAAAATCTTCTATAC 

rs378900777 C/T CTGGGTTTATTGTTACTGTTTGGTCA GTCCAACTCTTTTGTGATGCCATAGA 

rs381723399 C/T TTTCTTCCCAACCCAGGGATCAAACT GAATCTCCTGCATTGCAGGCAGATTC 

rs384062524 C/G CTGCGTGGGATGAACAGGAGAGGTC TGTCTGAAGCAGGGATTACCACAGA 

rs110616947 A/C AGAATTAACTAATCCATCCATTGATT ATCCATCCATTCACTTACACAGTTGCT 

rs109068240 C/T TCTCCAACACTGCAGCTCAAAAGCAT GATTCTTCAACTCAGCCTTCTTTATGG 

rs379467464 C/T AGTGAATGGCTGGATGGCTGACTGA GGCTGCGTGGGATGAACAGGAGAG 

rs386026054 C/G ACTCTGCAAACTAAAGCAAGAGATA ACTTCAAAAAAAAAAATCTTCTATAC 

rs134743669 A/G GGTAGACTACAACCGAGGGGGTCGC AAGAGTCAGACACGAGTCAGCAACT 
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Table 4.2: Single nucleotide polymorphisms ID, allele substitution, forward and reverse primer sequences utilized for amplification 

and visualization of genotypes for ADIPOQ. 

SNP ID Allele Substitution Upstream Sequence Downstream Sequence 

rs380209068 A/G AAAACACCCTAACAATTCCCAAACT TTGATTACTAAATCCAAAACTACCTCT 

rs209727017 C/T ACCAATTTGAAACACTCTACTGAGA AGATACTTTGTTGTTAAGAAAGGGA 

rs380391978 A/C AAATAATGCAAATAGAAGGAAATA AATTTCCCAAATTTTATTTGGGGCAG 

rs208856619 C/T CTGGTCTCTCCTGGTTGCCAGCTCCT TCTTAGGATGGGGGTACCCAGGAAA 

rs383535987 A/G CATTGCTCCTCTGTGCCTGTGCACAG TGTCCTTCTCTTTCCTCTCCACTTGGA 

rs133746968 A/G AGCTTCATGCACACTGGCTGTGGGG CCAAAGGAGGCCATGTCTGTCAAGC 

rs385926794 C/T GAAGGAGTGAAAGGATCAGGGACA AGCCAGGAAGGGGCTGGAGAATTCC 

rs385383313 A/G CCCTCCCTTTAGGGAAGGAATCTGC CAACCTTTCAAGGGTTTCTGAATGCA 

rs210865525 C/T ATGTTGTTAATGCAGCAATGGACTC GACTGCTTAGAAAAACCCCAATCTGT 

rs208093103 A/G CGGTACAAGAGACACAGGAGACGC GGTTTGATGCCTGGGTCAGGAAGAT 

rs378178622 C/T CAGTAGCCTGGGTGACCTGGAAGGC ACTGTGTATAAGCCCCTGGAAAAGA 

rs209050698 A/G TTCCAAGTACACAACACGTATTATT ACTAGAGGCCCATGACCCAGTTTTGA 

rs382192949 A/G CTGATGCTCAGCTTTAGAGTACTGC TTAGCAACTCATGTTTTAAAAAATAA 

rs208699764 C/G AAATACATGTGAGCCTTTCCTCCAG GTGTGTCATGGTTACCATTCAGTCCC 

rs211230641 A/T TTTAGTCCCCAAATCGCATGGCTAC GTGCTTACCTGGCTGTCAGACAGGA 

rs378724414 A/T CGCCAATATTTTATTTTTATTGTGGC TCTCTGATTTATTTTGGGTTTGTATTA 

rs382701614 C/T GCGACTTAGCAGCAGCAGCAGCACA GCTAGTAAAGTAATGCTCAAAATTCT 

rs386011953 A/G GTGAAAGTGCTGCACTCAATATGCC GCAAATTTGGAAAACTCAGCAGTGT 

rs379059851 C/T CATGTGAATGCAGAGTTCCAAAGAA AGCAAGAAGAGATAAGAAAGCCTTC 

rs381854487 A/G GGCTTTGGCGTAGTCAATAAAGCAG AATAGATGTTTTTCTGGAACTCTCTT 

rs383391069 C/T TTTTAATTTCATGGCTGCAGTCACCA CTGCAGTGATTTTGGAGCCCAGAAA 

rs380790166 C/T TTTCAGTCCAAGGGACTCTCAAGAG CTTCTACCTCACCACAGTTCAAAAGC 

rs382644882 C/G TTTGCCAAGACAGAGTTCAAGGTGA GAACACTGCCACTTTAAATCTAAGCC 

rs381911082 G/T GGTGGTACAAGTGGTATAGAACCAC TTATGCCAATACAGAAGACACAAGA 

rs209420330 C/T GGGAACTGCAGTATAGCAAGAAATA AATACATCCTTTCCTCTCTGGCCTGAA 

rs210607551 C/T CCCTGGCAGCTCCTTTGGCTTGCCAC CCAGGGAACCTGGTGCAACCCAGTT 

rs384076273 C/T AGAACTTGAATCAGTCGTCCTTACC TCAGGTGTGGAATCAGAGCCACAGA 

rs209743114 C/G CTATTAATAGACTATTTCACAATACT TTGTGAGAACAGGTTCACTTAAAGTA 

rs210601764 C/T GTGCAGAGATGCTGAACTTTCAATT ATTTTAAAACTGTGTGTGCTCCCTATT 

rs210258853 A/G GGAAATACAGAGAGAGGAGGGAAG AGGAAGGAAAAGAGAAAGGAAGAG 
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Table 4.3: Single nucleotide polymorphisms ID, allele substitution, forward and reverse primer sequences utilized for amplification 

and visualization of genotypes for CAST. 

SNP ID Allele Substitution Upstream Sequence Downstream Sequence 

rs137780582 G/T TAAGAAAATAAAAAAAAAAAAGAAC CTTAACCCCACGATCAGAAAATAACC 

rs137777861 G/T CTGGTGAATGAATAAACTAATATATG TGAATTGAGCCATCACGTAATACTCA 

rs137726884 A/G AAACTTACCATTTAAATGTTCCCCTG AAGTTGCAAGTCTTTGATAGACTCCA 

rs137722600 C/T CCAAGCAGAAGACGTGGGTTCTATCT GGGGTTGGAAAGATCCCCTGGAGAA 

rs137711215 A/G AAAATGTTAGAGAAAAGCAAAGGGA TTCAGGGAAACATGAGGATTTCAGA 

rs137662301 C/T ATGGGGTCACAAAGAGTCAGACATG CTCAGCAGTCAGACAAACAGCAAGG 

rs137601357 C/T AGAACTCAGGCTGGTGAAAAAGCCC GGTCCCCAAGGTCAGTCATTTCCTGG 

rs137561617 A/T ATTGAATTTAACTTTTACATGCTGAT TTCAGTATCTAAAGGATATTTATTGC 

rs137374423 G/C ATCATTTTCCTTTCTGTTCCTCAGACT TATAATTTCAGTTGTCCTATTTTTGAT 

rs137330201 A/G GCTCATCTGCTCACCCTTTATCATTTT TTGATTCTTTGCTAGCAGTATTGGCA 

rs137265200 C/T CAAAGAGTCAGACATGTCTCAGCAG CAGACAAACAGCAAGGGTGTTAATG 

rs137211570 A/C CCAGGCCTCCCTGTCCATCACCAACT CCGGAGTTTACTCAAACTCATGTCCA 

rs137151719 G/T AGTTCAAGTGTAAGTGTATTCTTCCA AAGGAAAAGCATTTCCTTATCTCTCC 

rs137140434 G/T TTTCAGTTATTATATGTCTCCACTCTA AATTTTTTTTTGGTTTCTTTTTAGATG 

rs137104571 G/C AGTGGTTCTGCTTCTGGGCCAAAGAG GCTGAAAAGTGAATTCTCTCAGTCGT 

rs136982429 C/T CAGGCAAGAATACTGGAGTGGGTTG CATTTCCTCCTCCAGGAGATCTTCCCA 

rs136882857 C/T CAGATCTCCTGCCTGGGAAGGGCCTT ATTCATTTCATTCATTCAAACTCTTGG 

rs136875549 C/T CATAACTTCCACCTTTTGTGGCTTTTT CCTAAGCGTTTGGGGTGCTCCTGTGT 

rs136882857 C/T CTCCCGAACTACAGGCGGATTCTTTA GAACTGAGCTAGGAGGGAAGCCCA 

rs110496242 A/G CCTTTGGTAGATAAACGAAAGAGAA GGAACCTACTGTAGGAAATCATCAA 

rs134030456 C/T CAGTGGAGTTACTCTGATCCCCCGC GCACACTTTTCCGTATGCTGTTATG 

rs109702795 G/T CATCAGGAAATAYGGTCCAGCACAC GGATGTTTTCAACAGTGTAACTAAT 

rs110136749 A/G AAATTAGAAATCTGTCTTTGCAAAA GGTTCTAGGTGCTTCTATTTATAAA 

rs110374623 C/T AGTCTGAATTTTGCTTGAAAAGATA TTGTATTGACAGAAAAATTTGCGGT 

rs133120980 A/C GAAGGAGCACCTAGGCTGAGGATAG CCCGGGACTGGGAGCTGAGGGAGCT 

rs133891017 A/T ATCAAGCAGAAACTAAAGATCAGAG GTTTAAGTAGCTTGCCCAAGATTAT 

rs137371179 C/T CTCACTCAAACATATCAGAAAAAGA AGTCTCTTCTCTCATATCCTGGAAT 

rs109020860 A/G CTGTCGTCCTGAGTGTGACTGCCAG GCTTAAGAGCAAGTTAGCTCCTTTC 

rs110386026 C/T AGCCAGGCCTTTGAAATAAAGTCAG TTGAAAATGTGCTTTCTCTGCTCAG 

rs136873074 C/T TCCCGAACTACAGGCGGATTCTTTA GAACTGAGCTAGGAGGGAAGCCCA 
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Table 4.4: Single nucleotide polymorphisms ID, allele substitution, forward and reverse primer sequences utilized for amplification 

and visualization of genotypes for CAPN3 

SNP ID Allele Substitution Upstream Sequence Downstream Sequence 

rs109372443 A/G TTATCCAAATGTGCTTTTATATGTCA TCCTCAGCATGGTGGAATCTTCAGC 

rs135512997 A/G TCAGGGTGCCATGGGATCAGAAGGCA GGAGAGTTAACCTAGGCCAGAGAGA 

rs43624105 C/G GACTCCCACCTGCCTTACACATTTGT TCATTTATCCATTGGTTCAAAACTC 

rs136324366 A/C GTCTGGTCTGCTTCATCCTGCTGGGG TGGTTTGGTTGGGATGGTCAGGCTG 

rs43624107 A/C ACACAACTTGGGGCCCAAGCATGGGT TGGGCCACACAGGCCATGGAGTGTA 

rs43624108 G/T TTTATAGTCCATTCTGCCATTGGTCG GGCCAAGGAAGGGGAGCTTCTGGCA 

rs109122904 A/G TGCAGCGTTACCAGGGTCCTGGGTCC CCTGGGGCACATCAGGGCACCTCCT 

rs136966673 A/G GACATACAGATGGCTAACAAACACAT AAAAGATGCTCAACATCACTCATCA 

rs134085397 A/G GCTATATTCTCCAGTCTCAGATCTTG GGTCCACTTTCTGCCAACTCCTCCA 

rs137379223 A/G TGCTCAGTTTATGTTTATTTTTAGTG TAAAGATAGCAATTGCCCCAACATT 

rs110247569 C/G ACTGGGAAGACTTACCCAGTGAACAG AGCACAGGGCTTTCCTCTGGGGCAG 

rs109806627 C/G CCTCCCCTCTGCAGTCTCAAAGATGC GTGACATCCCACACGGCACAGCAAA 

rs109337751 C/T GGGTGGTGTGTGTGGTGTGATCTATG ACGACTTTCCATCTAGTAGGTGAGA 

rs134606436 A/C GAACAGCCACGTCATCAGTGCATGCG AGTCACGTGATCAGTGCATGAGAGC 

rs41644730 C/T CCTTGGGTCTACAGGTTCAGAAGCCT GTCCCCCCATCTGCCACCAATTCCA 

rs133798263 C/T AGGACGCCTGCGGCCTTCGTAGGTGA GTAAATTCCCTGCTTTGGAATTTTA 

rs110452450 A/G TGCTAGGTTGATGGGTTTTTGTATCA TTTAAATATTTCAATCCGATCTTTC 

rs135091523 G/T TTCTCAACATTAAATATGATGATAAT GTAGGTCTCTAAAAAAAGGTACATT 

rs110822150 G/T CCTCCTGATGGACAGGCTGCCAGAAT GAGTTTCTCCCCGGGCCAGCTCCTT 

rs109050259 A/G TAAGTCAGATGGATTTAGAAGCAAAC GACCTGGTCGGAACCCTGACTCTGT 
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Table 4.5: Single nucleotide polymorphisms ID, allele substitution, forward and reverse primer sequences utilized for amplification 

and visualization of genotypes for IGF-1. 

SNP ID Allele Substitution Upstream Sequence Downstream Sequence 

rs137605212 A/G CCACTCCCCTGGCAAGGACCCAGGAG AAGATGACCCTCCTTCTGCTTTTTC 

rs137250028 C/T GGACAGAGCACATGACTAGCCAATGA GCTATAATGGAATTGATTAGTTAGT 

rs136493168 A/G AACCACTTCCTGCTCCAAGTACAGGA AAAGCAACAACTTATGGCTAGCTA 

rs135968955 G/T AGATAAAGGAGTCTAAAATGTTCTTT GTCACTATTTGAATCCAAGATTCTC 

rs135711837 G/T GCGTACTTTTGATGGATTAAATATTA AAAATATTAAGGAAATTCAAATCTA 

rs135230510 A/G TGAAACACTAGGCTCGCATTAAGGTG GGAATCTCGGAGGCTGAGGACGGC 

rs134494935 C/T TTCCATCTTTGATTCTGTGTTAAGAA CCCAGCCACTAAGCACCCCATTCTA 

rs133980322 G/T GCATTATTACTGTATCCATTTACAGA GAGGAAATGGAGATTTAGCAAGG 

rs133253110 C/T GGCTTAGAGAATTCCATGGACCATAC CATGGGGTTGCAAAGAGTCGGACA 

rs132951819 G/T CTTTGCAATAATATATTACCAACAAT TCCCTTTGTTGAATGCTTTCTATTA 

rs132665612 A/G CAGTGAGTCAAGTGGACTGGAATAAA TAGGGGAGAATTATTCCTGTCTGA 

rs110959643 A/G TCCCACACAAGATGGAGAGCAGACCC TCCCAGTATTTGGGGAGGCCCATC 

rs110266103 A/G AGCAGTGAAACAATGCAAAGGTGATC TTAAGTTTTTCCACATTGCTACTTG 

rs109327701 A/G AAGAATCGCAGTGTACTGGGTGAGAT TGAACACCCAGCCATGCCTTAAACT 

rs109227434 C/T TCCATTTYCCTTTGGCCTGTCAAGCC GTAGTRGTTGTGTGTACCCATAAGA 

rs109199979 C/T CAGCCTTTCTAGGACCTCAGCTAGAC ACAGGTGAAAGAAGAAAAATCTGA 

rs109074329 C/T TAAGAGGAAGAAAGGRGGAGCATACC GCCCAGCTAGCCCTGTTGACCAACT 

rs109022910 A/G TGCGAGCCTAGTGTTTCAGCGGGGCC TGGCACGTTTTGCAGATTTTGGATG 

rs43434843 A/T AAACAATAAAGAACTTGCTTAGGAAT AAAAAGTTTGAAATGAGTGGCCCCA 

rs43434842 A/G ATATGTGGGGGGCATATGTAAACTCA ATGCCTATCAGAGCCACACAAGTCA 

 

Table 4.6: Single nucleotide polymorphisms ID, allele substitution, forward and reverse primer sequences utilized for amplification 

and visualization of genotypes for GH1. 

SNP ID Allele  Substitution Upstream Sequence Downstream Sequence 

rs133438805 C/T TCCATGCTGGGGGCCATGCCCGCCCT TCCTGGCTTAGCCAGKAGAATGCAC 

rs134389836 C/T ACAGATCCCTGCTCTCTCCCTCTTTC AGCAGTCCAGCCTTGACCCAGGGGA 

rs133403174 A/G CAGGGGAAACCTTTTCCCYTTTTGAA CCTCCTTCCTCGCCCTTCTCCAAGC 

rs137651874 C/T CCTTGACCCAGGGGAAACCTTTTCCC TTTTGAARCCTCCTTCCTCGCCCTT 

rs137252133 A/G CTTCCTCGCCCTTCTCCAAGCCTGTA GGGAGGGTGGAAAATGGAGCGGGC 

rs136132855 C/T ACATGCGCAGTGACGACGCGCTGCT AAGAACTACGGTCTGCTCTCCTGCT 

rs109275907 G/T TTAGCCAGKAGAATGCACGTGGGCT GGGGAGACAGATCCCTGCTCTCTCC 

rs135322669 G/- GGGGTATGAGAAGCTGAAGGACCTG CAGGAGCTGGAAGATGGCACGACA 

rs134687399 A/G ACTTCATGACCCTCAGGTACGTCTCC TCTTATGCAGGTCCTTCCGGAAGCA 
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(INWT), harvest weight (HRVWT), days on feed (DOF), average daily gain (ADG), hot carcass weight (HCW), 

rib eye area (REA), marbling score (MARB), yield grade (YG), quality grade (QG), dressing percent (DP), and 

Warner-Bratzler shear force score (WBS). Independent effects in the model included breed and SNP genotype. 

Sire was fit as a random variable in the model. The LSMeans and the pre-planned pairwise comparisons 

function were used to determine individuals inheriting specific SNP genotypes were significantly different in 

their performance than other individuals inheriting a different genotype for a specific SNP. Any SNP with only 

one genotype was excluded from the analysis due to lack of marker effects. 

Results 

SNP ASSOCIATED WITH GROWTH AND FEEDLOT PERFORMANCE 

Analyses revealed that when evaluating SNP associations with growth traits, a total of 28 SNP were 

found to be significantly associated (P<.05) with birth weight, weaning weight, and/or hip height. Furthermore, 

significant (P <0.05) SNP’s were identified on all six candidate genes utilized in the current study. (Table 4.7). 

Three SNP located on the TG (rs110553649, rs378900777) and ADIPOQ (rs210865525) genes were 

significantly associated (P< .05) with birth weight (Table 4.8). For marker rs210865525 on the ADIPOQ gene, 

heterozygote animals displayed a larger birth weight than those inheriting the major allele genotype. For marker 

rs110553649 on the TG gene, animals inheriting the minor allele genotype displayed a larger birth weight than 

those inheriting the heterozygous or the major allele genotypes. Animals inheriting the heterozygous genotype 

for marker rs378900777 on the TG gene displayed a larger birth weight than those inheriting the major allele 

genotype. 

Fifteen SNP were found to be significantly associated (P< .05) with weaning weight (Table 4.8). Each 

candidate gene was represented, with six SNP from CAPN3, three from TG, two from IGF1, two from CAST, 

and one from each GH1 and ADIPOQ.  (Table 4.8). When evaluating the six SNP associated with weaning 

weight located on the CAPN3 gene, a variety of genotypic effects were observed. Individuals inheriting the 
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heterozygous allele genotype for rs109122904, rs109337751, rs110822150, and rs109806627 had heavier 

weaning weights than those individuals inheriting the respective major allele genotypes. For marker 

rs109050259 on the CAPN3 gene, individuals inheriting the major allele genotype displayed heavier weaning 

weight than the heterozygous or minor allele genotypes. Animals inheriting the minor allele in genotypes from 

the final marker from the CAPN3 gene, rs109372443, displayed decreased weaning weights when compared 

Table 4.7: Level of significance and frequency of animals from each genotype associated with farm growth 

traits 

Traits Gene SNP ID Allele4 

Minor 

Genotype 

Frequency5 

Het 

Genotype 

Frequency5

Major 

Genotype 

Frequency5

SNP 

P-

value

Breed 

P-value 

BW1 ADIPOQ rs210865525 C/T 0 1 40 0.0247 0.9135 

BW TG rs110553649 A/C 2 20 19 0.0162 0.4128 

BW TG rs378900777 T/C 0 2 39 0.0458 0.9770 

WW2 IGF-1 rs109022910 A/G 4 9 26 0.0009 0.0001 

WW IGF-1 rs109227434 T/C 0 16 25 0.0238 0.0032 

WW CAPN3 rs109050259 G/A 2 23 16 0.0118 <0.0001 

WW CAPN3 rs109122904 A/G 0 5 36 0.0001 <0.0001 

WW CAPN3 rs109337751 T/C 0 14 27 0.0159 <0.0001 

WW CAPN3 rs109372443 G/A 11 13 16 0.0316 0.0224 

WW CAPN3 rs110822150 T/G 0 14 27 0.0159 <0.0001 

WW CAPN3 rs109806627 G/C 0 14 25 0.0192 <0.0001 

WW CAST rs110496242 G/A 2 10 29 0.0060 0.1202 

WW CAST rs137140434 G/T 0 5 13 0.0308 0.0838 

WW GH-1 rs137651874 T/C 0 6 29 0.0134 0.0742 

WW ADIPOQ rs383535987 G/A 0 3 38 0.0287 0.0361 

WW TG rs110553649 A/C 2 20 19 0.0083 <0.0001 

WW TG rs378567477 T/C 8 16 9 0.0452 0.0228 

WW TG rs386026054 G/C 3 24 12 0.0092 <0.0001 

HH3 CAPN3 rs109337751 T/C 0 14 27 0.0476 0.5599 

HH CAPN3 rs110822150 T/G 0 14 27 0.0476 0.5599 

HH CAPN3 rs109372443 G/A 11 13 16 0.0028 0.9220 

HH CAPN3 rs109806627 G/C 0 14 25 0.0531 0.5522 

HH CAST rs110496242 G/A 2 10 29 0.0362 0.7902 

HH CAST rs134030456 C/T 0 15 26 0.0552 0.7172 

HH ADIPOQ rs209050698 G/A 1 14 26 0.0217 0.0954 

HH ADIPOQ rs210258853 A/G 1 14 26 0.0213 0.0954 

HH ADIPOQ rs210607551 C/T 0 5 36 0.0037 0.4730 

HH ADIPOQ rs210865525 C/T 0 1 40 0.0004 0.6798 
1Birth weight  
2Weaning weight 
3Hip height 
4Minor allele represented on the left 
5Number of animals inheriting each gene 
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with individuals inheriting the major allele genotype. Three SNP (rs110553649, rs378567447, and 

rs386026054) from the TG gene showed a significant difference in weaning weights between the minor allele 

genotype and the major allele genotype. Markers rs110553649 and rs386026054 displayed larger weaning 

weights in the minor allele genotype than in both the heterozygous and the major allele genotypes. However, 

when evaluating marker rs378567477, the major homozygous genotype exhibited a greater weaning weight than 

in either the heterozygous or the minor allele genotypes. Two genotypes from candidate gene IGF1 showed 

significant differences in weaning weight. Marker rs109022910 on IGF1 showed individuals with the minor 

allele genotype had larger weaning weights than both the heterozygous and major allele genotypes. Individuals 

inheriting the heterozygous genotype from marker rs109227434 were heavier at weaning than individuals 

inheriting the major allele genotype. When evaluating the two SNP associated with weaning weight located on 

the CAST gene (rs110496242, rs137140434), individuals inheriting the major allele genotype for rs110496242 

had significantly greater weaning weights, but were only significantly greater than the heterozygous genotype 

and were not significantly heavier than the minor allele genotype. For the marker rs137140434, animals 

inheriting the heterozygous genotype displayed heavier weaning weights than the major allele genotype. One 

SNP from the GH1 candidate gene and one SNP from the ADIPOQ candidate gene were significantly 

associated with weaning weight. When evaluating markers rs137651874 and rs383535987 analyses revealed 

that animals inheriting the heterozygous genotype exhibited greater weaning weights than those animals 

inheriting the major homozygous genotype. (Table 4.8) 

Of the ten SNP found to be significantly associated with hip height, four were located on the CAPN3 

gene, two on the CAST gene, and four on the ADIPOQ gene. Three markers from the CAPN3 gene 

(rs109337751, rs110822150, rs109806627) and one marker from the CAST gene (rs134030456) revealed a 

higher hip height for individuals inheriting the heterozygous genotype than the individuals inheriting the major 

allele genotype. Analyses of the CAPN3 gene marker rs109372443 and CAST gene marker rs110496242 
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revealed that individuals with the respective minor allele genotypes had larger hip heights than the heterozygous 

genotype individual. The hip heights of the minor allele genotype for CAPN3 marker (rs109372443) was also 

significantly different from the major allele genotype hip heights. 

Table 4.8: Single nucleotide polymorphisms associated with farm growth traits and least square means estimate 

comparisons between reported genotypes. Differing superscripts indicate a difference of means at P<0.05 within 

rows.  

Traits Gene SNP ID Allele4 

Minor 

Genotype 

Mean 

Het 

Genotype 

Mean 

Major 

Genotype 

Mean 

BW1 ADIPOQ rs210865525 C/T 50.50 6.44a 36.12 2.26b 

BW TG rs110553649 A/C 48.31 5.04a 37.44 2.36b 33.33 2.26b 

BW TG rs378900777 T/C 45.56 5.06a 35.93 2.36b 

WW2 IGF-1 rs109022910 A/G 290.58 16.07a 221.08 11.36b 217.88 7.48b 

WW IGF-1 rs109227434 T/C 232.98 11.21a 195.98 10.96b 

WW CAPN3 rs109050259 G/A 147.98 31.52a 219.29 6.73a 239.76 7.94b 

WW CAPN3 rs109122904 A/G 287.26 14.09a 221.84 5.74b 

WW CAPN3 rs109337751 T/C 240.46 8.35a 213.48 6.62b 

WW CAPN3 rs109372443 G/A 200.79 11.11a 223.26 9.98ab 235.18 9.20b 

WW CAPN3 rs110822150 T/G 240.46 8.35a 213.48 6.62b 

WW CAPN3 rs109806627 G/C 240.46 8.59a 213.33 6.92b 

WW CAST rs110496242 G/A 202.48 23.46ab 180.92 11.48a 227.97 6.70b 

WW CAST rs137140434 G/T 237.25 14.85a 208.13 12.77b 

WW GH-1 rs137651874 T/C 271.47 16.15a 223.58 8.78b 

WW ADIPOQ rs383535987 G/A 274.54 20.19a 224.38 6.42b 

WW TG rs110553649 A/C 291.48 22.62a 231.95 7.43b 210.88 10.06b 

WW TG rs378567477 T/C 198.82 17.43a 216.32 10.16a 256.61 16.50b 

WW TG rs386026054 G/C 282.21 19.08a 228.67 6.84b 198.34 17.33b 

HH3 CAPN3 rs109337751 T/C 114.98 2.64a 109.61 1.77b 

HH CAPN3 rs110822150 T/G 114.98 2.64a 109.61 1.77b 

HH CAPN3 rs109372443 G/A 105.97 2.01a 113.08 1.91b 113.02 1.80b 

HH CAPN3 rs109806627 G/C 115.04 2.72a 109.70 1.85b 

HH CAST rs110496242 G/A 116.87 3.96a 107.68 2.56b 112.38 1.73a 

HH CAST rs134030456 C/T 114.68 2.35a 109.77 1.92b 

HH ADIPOQ rs209050698 G/A 116.84 5.84a 113.68 2.29ab 106.94 1.97b 

HH ADIPOQ rs210258853 A/G 116.84 5.84a 113.68 2.29ab 106.94 1.97b 

HH ADIPOQ rs210607551 C/T 104.48 2.73a 112.41 1.62b 

HH ADIPOQ rs210865525 C/T 94.04 4.72a 111.78 1.68b 

1Birth weight  
2Weaning weight 
3Hip height 
4Minor allele represented on the left 
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Results indicated that two SNP located on the ADIPOQ gene (rs210607551 and rs210865525) showed 

significantly larger hip heights in the animals inheriting the major allele genotype than in the animals inheriting 

the heterozygous genotype. Two SNP located on the ADIPOQ gene, (rs209050698 and rs210258853), showed 

the hip heights of the animals with the heterozygous genotype were significantly larger than the homozygous 

animals, but were not significantly different from the minor allele genotype animals. Also, there was no 

difference between the major and minor allele genotype animals for these two markers (rs209050698 and 

rs210258853). (Table 4.8) 

 When evaluating feedlot performance traits, a total of 30 SNP were identified to be significantly 

associated (P<.05) with the feedlot performance traits that were previously described. Significant SNP’s were 

located on all six candidate genes utilized in the current study as well.  (Table 4.9).  

 Seventeen SNP were found to be significantly associated (P< .05) with feedlot entrance weight (INWT). 

Single nucleotide polymorphisms from 5 of the candidate genes utilized in the current study were significantly 

associated with feedlot entrance weight.  Specifically, two SNP located on the IGF1gene, two located on the 

CAST gene, one from the CAPN3 gene, seven from the TG gene, and five located on the  GH1 gene (Table 

4.10). Analyses of SNP rs109022910 located on the IGF1 gene revealed animals inheriting the minor allele 

genotype had significantly heavier INWT than animals inheriting the heterozygous or major allele genotypes. 

Alternately, an SNP (rs109227434) located on the IGF1 gene showed animals inheriting the heterozygous 

genotype had significantly greater INWT than animals of the major allele genotype. The SNP rs110496242 

located on the CAST gene showed individuals inheriting the major allele and minor allele genotypes had 

significantly heavier INWT than individuals with the heterozygous genotype, however a SNP (rs137265200) 

located on the CAST gene showed individuals inheriting the heterozygous genotype had significantly heavier 

INWT than those of the major allele genotype. The single significant SNP located on the CAPN3 gene  
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Table 4.9: Level of significance and frequency of animals from each genotype associated with feedlot traits 

Traits Gene SNP ID Allele5 

Minor 

Genotype 

Frequency6 

Het 

Genotype 

Frequency6

Major 

Genotype 

Frequency6

SNP 

P-

value

Breed 

P-

value 

INWT1 IGF-1 rs109022910 A/G 4 9 26 0.0420 0.1068 

INWT IGF-1 rs109227434 T/C 0 16 25 0.0223 0.0070 

INWT CAPN3 rs109122904 A/G 0 5 36 0.0120 0.0643 

INWT CAST rs110496242 G/A 2 10 29 0.0065 0.0651 

INWT CAST rs137265200 C/T 0 5 28 0.0051 0.0438 

INWT GH-1 rs133403174 G/A 1 12 28 0.0139 0.0070 

INWT GH-1 rs133438805 G/C 1 12 28 0.0175 0.0070 

INWT GH-1 rs134389836 C/T 1 12 28 0.0158 0.0070 

INWT GH-1 rs136132855 T/C 1 12 28 0.0139 0.0070 

INWT GH-1 rs137252133 A/G 1 12 28 0.0139 0.0070 

INWT TG rs378567477 T/C 8 16 9 0.0123 0.0168 

INWT TG rs133980693 G/A 9 22 10 0.0058 0.0078 

INWT TG rs110501231 C/T 9 22 10 0.0065 0.0078 

INWT TG rs135059985 C/T 9 22 10 0.0064 0.0078 

INWT TG rs110553649 A/C 2 20 19 0.0425 0.0737 

INWT TG rs132813094 A/C 1 7 33 0.0432 0.0670 

INWT TG rs386026054 G/C 3 24 12 0.0022 0.0053 

HRVWT2 CAST rs109702795 G/T 0 10 29 0.0291 0.2385 

HRVWT CAST rs110136749 G/A 0 16 24 0.0509 0.1410 

HRVWT CAST rs110374623 T/C 0 10 28 0.0415 0.1796 

HRVWT CAST rs133120980 C/A 0 10 31 0.0376 0.1721 

HRVWT CAST rs133891017 A/T 0 10 30 0.0376 0.1721 

HRVWT CAST rs134030456 C/T 0 15 26 0.0413 0.1563 

HRVWT CAST rs136875549 T/C 0 15 24 0.0472 0.1229 

HRVWT CAST rs137371179 T/C 0 12 29 0.0310 0.1967 

HRVWT CAST rs137601357 C/T 0 17 24 0.0533 0.1377 

HRVWT CAST rs137726884 A/G 0 8 29 0.0330 0.1643 

DOF3 CAST rs110496242 G/A 2 10 29 0.0362 0.1574 

ADG4 TG rs136849694 G/A 3 0 5 0.0054 0.0229 

ADG ADIPOQ rs210607551 C/T 0 5 36 0.0430 0.7253 
1Feedlot entrance weight 
2Harvest weight  
3Days on feed  
4Average daily gain 
5Minor allele represented on the left 
6Number of animals inheriting each gene 

(rs109122904) showed animals inheriting the heterozygous genotype exhibited heavier INWT than the animals 

inheriting the major allele genotype. When evaluating the seven SNP associated with feedlot entrance weight 

located on the TG gene, a variety of genotypic effects were observed (Table 4.10). Analyses revealed that 

animals inheriting the minor allele genotype from four SNP located on the TG gene (rs110501231, 
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rs133980693, rs386026054, and rs135059985) had significantly heavier INWT than animals inheriting either 

the heterozygous or major allele genotypes. There was also a significant difference in INWT seen between the 

heterozygotes and animals with the major allele genotype.  Markers rs378567477 and rs132813094 on the TG 

gene showed individuals inheriting the major allele genotypes had significantly heavier INWT than both 

heterozygous and minor allele genotype individuals. Alternately, TG marker rs110553649 showed individuals 

inheriting the minor allele genotype had significantly heavier INWT than individuals inheriting the 

heterozygous or major allele genotypes. Five SNP located on the GH1 gene (rs133403174, rs133438805, 

rs134389836, rs136132855, and rs137252133) were significantly associated with feedlot entrance weight 

(Table 4.10). A significant (p<.05) difference was seen between the lighter INWT of the heterozygotes and  the 

heavier INWT of the major allele genotype animals, however both the major allele animals and the 

heterozygotes were not significantly different from the INWT of the minor allele genotypes.  

 A total of ten SNP markers were significantly associated with HRVWT. All ten markers (rs109702795, 

rs110136749, rs110374623, rs133120980, rs133891017, rs134030456, rs136875549, rs137371179, 

rs137601357, and rs137726884) were located on the CAST gene exhibited similar effects on HRVWT. Animals 

inheriting heterozygous genotypes for all ten markers resulted in significantly heavier HRVWT than animals 

inheriting the major allele genotypes. (Table 4.10) 

 A single SNP located on the CAST gene was significantly associated (P< .05) with days on feed (DOF; 

Table 4.10). Specifically, animals inheriting the minor allele genotype for SNP rs110496242, had significantly 

increased number of days on feed as compared to animals inheriting the major allele genotype. There was not a 

significant difference seen, however, in the comparison of the number of days on feed between the 

heterozygous genotype and either of the homozygous genotypes.  
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Table 4.10: Single nucleotide polymorphisms associated with feedlot traits and least square means estimate 

comparisons between reported genotypes. Differing superscripts indicate a difference of means at P<0.05 within 

rows. 
 

Traits 

 

Gene 

 

SNP ID 

 

Allele5 

Minor 

Genotype 

Mean 

Het 

Genotype 

Mean 

Major 

Genotype 

Mean 

INWT1 IGF-1 rs109022910 A/G 587.98 44.85a 503.27 33.54b 479.25 29.57b 

INWT IGF-1 rs109227434 T/C  505.71 23.38a 412.34 31.68b 

INWT CAST rs110496242 G/A 458.79 49.98a 386.23 45.10b 489.56 29.89a 

INWT CAST rs137265200 C/T  534.21 34.34a 476.86 30.59b 

INWT CAPN3 rs109122904 A/G  593.13 42.18a 482.04 29.11b 

INWT TG rs110501231 C/T 617.04 34.57a 498.79 21.58b 417.35 32.26c 

INWT TG rs133980693 G/A 617.04 34.57a 498.79 21.58b 417.35 32.26c 

INWT TG rs378567477 T/C 421.36 34.61a 501.23 24.25a 617.54 36.84b 

INWT TG rs386026054 G/C 631.63 37.45a 498.26 19.68b 416.91 31.33c 

INWT TG rs135059985 C/T 617.04 34.57a 498.79 21.58b 417.35 32.26c 

INWT TG rs110553649 A/C 593.18 46.49a 487.77 27.54b 475.19 30.03b 

INWT TG rs132813094 A/C 375.29 58.74a 395.87 46.91a 489.41 30.18b 

INWT GH-1 rs133403174 G/A 423.24 46.98ab 408.68 32.05a 509.57 19.82b 

INWT GH-1 rs133438805 G/C 423.24 46.98ab 408.68 32.05a 509.57 19.82b 

INWT GH-1 rs134389836 C/T 423.24 46.98ab 408.68 32.05a 509.57 19.82b 

INWT GH-1 rs136132855 T/C 423.24 46.98ab 408.68 32.05a 509.57 19.82b 

INWT GH-1 rs137252133 A/G 423.24 46.98ab 408.68 32.05a 509.57 19.82b 

HRVWT2 CAST rs109702795 G/T  649.66 30.67a 593.26 21.80b 

HRVWT CAST rs110136749 G/A  650.14 22.51a 580.39 17.39b 

HRVWT CAST rs110374623 T/C  656.81 23.85a 582.58 17.48b 

HRVWT CAST rs133120980 C/A  
656.65 23.34a 581.58 16.78b 

HRVWT CAST rs133891017 A/T  656.65 23.34a 578.20 17.62b 

HRVWT CAST rs134030456 C/T  653.39 23.08a 581.04 17.49b 

HRVWT CAST rs136875549 T/C  651.24 23.68a 591.25 21.78b 

HRVWT CAST rs137371179 T/C  645.35 30.12a 580.26 17.56b 

HRVWT CAST rs137601357 C/T  649.25 22.57a 580.45 17.57b 

HRVWT CAST rs137726884 A/G  658.68 24.43a 582.19 16.65b 

DOF3 CAST rs110496242 G/A 310.50 18.78a 282.50 12.83ab 262.88 8.37b 

ADG4 TG rs136849694 G/A 0.83 0.09a  1.46 0.07b 

ADG ADIPOQ rs210607551 C/T  1.36 0.16a 1.19 0.14b 

1Feedlot entrance weight  
2Harvest weight  
3Days on feed  
4Average daily gain  
5Minor allele represented on the left 

 

 Two markers located on the TG and ADPIOQ genes were identified as having significant effects P value 

on average daily gain (ADG). Animals inheriting the major allele genotype showed a larger ADG than animals 
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inheriting the minor allele genotype for marker rs136849694 from the TG gene. Marker rs210607551 from the 

ADIPOQ showed animals inheriting the heterozygous genotype exhibited a larger ADG than animals inheriting 

the major allele genotype (Table 4.10).  

SNP ASSOCIATED WITH CARCASS TRAITS 

 When evaluating SNP associations with  carcass composition traits hot carcass weight, rib eye area, and 

yield grade, a significance association (P<.05) was found for a total of 19 SNP with 5 candidate genes 

represented (TG, CAST, CAPN3, IGF1, and GH1) (Table 4.11). 

 Three SNP were significantly associated (P< .05) with hot carcass weight (HCW; Table 4.12). Located 

on the CAST gene, all markers (rs109702795, rs134030456, and rs137371179) exhibited similar results on 

HCW. Animals inheriting the heterozygous genotypes displayed significantly heavier hot carcass weights when 

compared to animals inheriting the major allele genotypes.  

Fifteen SNP were found to be significantly associated (p<.05) with rib eye area (REA). Single 

nucleotide polymorphisms from 5 of the candidate genes utilized in the current study were significantly 

associated with REA. Specifically, six SNP located on the CAST gene, one SNP located on the IGF1 gene, two 

located on the CAPN3 gene, five located on the TG gene, and one located on the GH1 gene. Analysis of SNP 

located on the CAST gene (rs109020860, rs110386026, rs136873074, rs136882857, rs136982429, and 

rs137561617) revealed animals inheriting the heterozygous genotype displayed significantly larger REA than 

animals inheriting the major allele genotype.  An SNP located on the IGF1 gene (rs109022910) showed animals 

inheriting the minor allele genotype displayed significantly larger REA than animals inheriting the 

heterozygous or minor allele genotypes. Two markers located on the CAPN3 gene (rs109122904, rs137651874) 

showed significant associations with REA. Individuals inheriting the heterozygous genotype for rs109122904 

showed larger REA than animals inheriting the major allele genotype, and CAPN3 marker rs110452450 

revealed animals inheriting the heterozygous or major allele genotypes displayed larger REA than animals  
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Table 4.11: Level of significance and frequency of animals from each genotype associated with carcass 

composition traits 
 

Traits 

 

Gene 

 

SNP ID 

 

Allele4 

Minor  

Genotype 

Frequency5 

Het  

Genotype 

Frequency5 

Major 

Genotype 

Frequency5 

SNP 

P-value 

Breed 

P-value 

HCW1 CAST rs109702795 G/T 0 10 29 0.0303 0.2473 

HCW CAST rs134030456 C/T 0 15 26 0.0544 0.1792 

HCW CAST rs137371179 T/C 0 12 29 0.0324 0.2117 

REA2 CAST rs109020860 A/G 0 5 36 0.0425 0.1612 

REA CAST rs110386026 C/T 0 6 35 0.0425 0.1612 

REA CAST rs136873074 C/T 0 6 34 0.0425 0.1753 

REA CAST rs136882857 C/T 0 6 35 0.0425 0.1612 

REA CAST rs136982429 C/T 0 11 28 0.0032 0.2548 

REA CAST rs137561617 T/A 0 6 31 0.0139 0.1775 

REA IGF-1 rs109022910 A/G 4 9 26 0.0459 0.1891 

REA CAPN3 rs109122904 A/G 0 5 36 0.0354 0.1713 

REA CAPN3 rs110452450 G/A 10 13 13 0.0367 0.0025 

REA TG rs110553649 A/C 2 20 19 0.0333 0.1136 

REA TG rs110946911 T/G 2 17 22 0.0113 0.2394 

REA TG rs132813094 A/C 1 7 33 0.0400 0.1784 

REA TG rs134743669 G/A 0 39 2 0.0076 0.1787 

REA TG rs386026054 G/C 3 24 12 0.0221 0.4712 

REA GH-1 rs137651874 T/C 0 6 29 0.0401 0.3600 

YG3 CAST rs134030456 C/T 0 15 26 0.0443 0.1951 
1Hot carcass weight  
2Rib eye area  
3Yield grade  
4Minor allele represented on the left 
5Number of animals inheriting each gene  

 

inheriting the minor allele genotype. Analysis of five markers located on the TG gene (rs110553649, 

rs110946911, rs132813094, rs134743669, and rs386026054) displayed significant association with REA.  

Analysis of TG markers (rs110946911 and rs386026054) revealed individuals inheriting the minor allele 

genotypes displayed larger REA than those individuals inheriting the respective heterozygous or major allele 

genotypes. Similarly, TG marker rs134743669 revealed individuals inheriting the minor allele genotype showed 

larger REA than individuals with the heterozygous genotype. Marker rs132813094 located on the TG gene 
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displayed a significantly larger REA in animals inheriting the minor allele genotype animals when compared 

with the heterozygous genotype individuals, but no significant difference was seen when comparing the REA of 

 

Table 4.12: Single nucleotide polymorphisms associated with carcass composition traits and least square means 

estimate comparisons between reported genotypes. Differing superscripts indicate a difference of means at 

P<0.05 within rows. 
 

Traits 

 

Gene 

 

SNP ID 

 

Allele4 

Minor  

Genotype 

Mean 

Het  

Genotype 

Mean 

Major 

Genotype 

Mean 

HCW1 CAST rs109702795 G/T  396.30 20.60a 361.85 15.47b 

HCW CAST rs134030456 C/T  401.51 17.97a 350.29 13.45b 

HCW CAST rs137371179 T/C  393.32 20.42a 359.62 15.67b 

REA2 CAST rs109020860 A/G  36.68 1.72a 33.22 0.98b 

REA CAST rs110386026 C/T  36.68 1.72a 33.22 0.98b 

REA CAST rs136873074 C/T  36.81 1.71a 33.32 0.96b 

REA CAST rs136882857 C/T  36.68 1.72a 33.22 0.98b 

REA CAST rs136982429 C/T  36.03 1.29a 32.34 1.08b 

REA CAST rs137561617 T/A  37.26 1.67a 33.05 0.90b 

REA IGF-1 rs109022910 A/G 37.87 1.60a 34.12 1.21b 33.19 0.82b 

REA CAPN3 rs109122904 A/G  36.88 1.56a 33.41 0.84b 

REA CAPN3 rs110452450 G/A 30.51 1.44a 34.68 0.88b 34.84 0.76b 

REA TG rs110553649 A/C 37.45 2.47a 32.50 1.41b 34.93 1.56a 

REA TG rs110946911 T/G 42.18 2.87a 34.49 1.15b 32.64 1.01b 

REA TG rs132813094 A/C 37.14 2.76a 30.68 1.67b 33.42 1.01ab 

REA TG rs134743669 G/A 40.01 2.74a 33.32 0.95b  

REA TG rs386026054 G/C 40.03 2.15a 33.18 1.12b 32.40 1.79b 

REA GH-1 rs137651874 T/C  37.42 1.49a 33.48 0.90b 

YG3 CAST rs134030456 C/T  4.11 0.36a 3.10 0.28b 

1Hot carcass weight  
2Rib eye area  
3Yield grade  
4 Minor allele represented on the left 

  

the major allele genotype animals with the REA of heterozygotes or minor allele genotype animals. The TG 

gene marker rs110553649 revealed animals inheriting the heterozygous genotype exhibited significantly smaller 

REA than either homozygous genotype, and there was no significant difference seen between the REA of the 

major and minor allele genotypes. Finally for REA, one SNP from the GH1 gene (rs137651874) revealed 

animals inheriting the heterozygous genotype displayed significantly larger REA than animals inheriting the 

major allele genotype. (Table 4.12).  
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One SNP located on the CAST gene was significantly associated (P< .05) with yield grade (YG). 

Marker rs134030456 on the CAST gene revealed animals inheriting the heterozygous genotype displayed 

significantly lower yield grade as compared to animals inheriting the major allele genotype (Table 4.12).  

When evaluating SNP associations with carcass quality traits marbling score, quality grade, and Warner-

Bratzler shear force score, a significance association (P<.05) was found. A total of 30 significant SNP were 

located on candidate genes TG, ADIPOQ, CAST, CAPN3, IGF1, and GH1 (Table 4.13). 

A total of 13 SNP were found to be significantly associated (P<.05) with marbling score (MARB).  

Single nucleotide polymorphisms from five candidate genes utilized in the current study were significantly 

associated with marbling score. Specifically, one located on the ADIPOQ gene, one located on the IGF1 gene, 

two located on the CAPN3 gene, one located on the CAST gene, and eight located on the TG gene ( Table 

4.14). Analysis of SNP rs383535987 located on the ADIPOQ gene showed individuals with the heterozygous 

genotype exhibited larger marbling scores than animals inheriting the major allele genotype. One SNP located 

on IGF1 gene (rs109022910) indicated animals with the minor allele genotype had greater marbling scores than 

either the heterozygous or major allele genotype animals, with no significant difference seen between the 

heterozygous and major homozygous genotypes. The significant marker located on the CAST gene 

(rs110496242) showed animals inheriting the major allele genotype exhibited significantly larger marbling 

scores than the heterozygous genotype animals. No significant difference was seen in comparing the minor 

allele genotype with the major or heterozygous genotypes.  Two SNP were observed from the CAPN3 gene 

(rs109050259, rs134085397) Marker rs109050259 indicated animals with the minor allele genotype showed 

significantly smaller marbling scores than the heterozygous or major allele genotypes, with no significant 

difference between the heterozygous and major allele genotypes. Alternately for CAPN3 marker rs134085397, 

animals inheriting the minor allele genotype had significantly larger marbling scores than animals of the major 

allele genotype, and the animals inheriting the heterozygous genotype did not show significant difference in 
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Table 4.13: Level of significance and frequency of animals from each genotype associated with carcass quality 

traits 

 

Traits 

 

Gene 

 

SNP ID 

 

Allele4 

Minor  

Genotype 

Frequency5 

Het  

Genotype 

Frequency5 

Major 

Genotype 

Frequency5 

SNP 

P-value 

Breed 

P-value 

MARB1 IGF-1 rs109022910 A/G 4 9 26 0.0022 0.0005 

MARB CAPN3 rs109050259 G/A 2 23 16 0.0136 0.1924 

MARB CAPN3 rs134085397 G/A 6 21 14 0.0227 0.0948 

MARB CAST rs110496242 G/A 2 10 29 0.0105 0.1457 

MARB TG rs109182502 T/C 0 3 38 0.0047 0.0166 

MARB TG rs110501231 C/T 9 22 10 <0.0001 0.0127 

MARB TG rs110553649 A/C 2 20 19 0.0492 0.2080 

MARB TG rs386026054 G/C 3 24 12 0.0029 0.0017 

MARB TG rs133980693 G/A 9 22 10 <0.0001 0.0127 

MARB TG rs135059985 C/T 9 22 10 <0.0001 0.0127 

MARB TG rs378567477 T/C 8 16 9 0.0007 0.0839 

MARB TG rs378900777 T/C 0 2 39 0.0504 0.1321 

MARB ADIPOQ rs383535987 G/A 0 3 38 0.0039 <0.0001 

QG2 IGF-1 rs109022910 A/G 4 9 26 0.0286 0.0016 

QG CAPN3 rs109050259 G/A 2 23 16 0.0009 0.2217 

QG CAST rs110496242 G/A 2 10 29 0.0003 0.0412 

QG TG rs109182502 T/C 0 3 38 0.0235 0.0098 

QG TG rs110501231 C/T 9 22 10 0.0020 0.0176 

QG TG rs132813094 A/C 1 7 33 0.0416 <0.0001 

QG TG rs386026054 G/C 3 24 12 0.0311 0.0047 

QG TG rs133980693 G/A 9 22 10 0.0020 0.0176 

QG TG rs135059985 C/T 9 22 10 0.0020 0.0176 

QG TG rs378567477 T/C 8 16 9 0.0124 0.1284 

QG GH-1 rs137651874 T/C 0 6 29 0.0218 0.0007 

QG ADIPOQ rs380209068 G/A 0 3 36 0.0363 <0.0001 

QG ADIPOQ rs383535987 G/A 0 3 38 0.0199 <0.0001 

QG ADIPOQ rs384076273 T/C 0 4 37 0.0556 <0.0001 

WBS3 IGF-1 rs110959643 A/G 0 2 39 0.0537 0.3198 

WBS CAST rs137140434 G/T 0 5 13 0.0431 0.7612 

WBS ADIPOQ rs383535987 G/A 0 3 38 0.0293 0.3788 
1Marbling  
2Quality grade  
3Warner-Bratzler shear force  
4Minor allele represented on the left 
5Number of animals inheriting each gene 

 

MARB than animals of either homozygous genotype. When evaluating the eight SNP associated with MARB 

located on the TG gene, a variety of genotypic effects were observed. Individuals inheriting the heterozygous 

genotype for rs109182502 and rs378900777 had higher marbling scores than those individuals inheriting the 

respective major allele genotypes. For marker rs386026054 on the TG gene, individuals inheriting the minor  
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Table 4.14: Single nucleotide polymorphisms associated with carcass quality traits and least square means 

estimate comparisons between reported genotypes. Differing superscripts indicate a difference of means at 

P<0.05 within rows. 

 

Traits 

 

Gene 

 

SNP ID 

 

Allele4 

Minor  

Genotype 

Mean 

Het  

Genotype 

Mean 

Major 

Genotype 

Mean 

MARB1 ADIPOQ rs383535987 G/A  560.00 37.70a 437.05 12.06b 

MARB IGF-1 rs109022910 A/G 565.00 31.66a 457.08 24.18b 426.56 16.01b 

MARB CAPN3 rs109050259 G/A 285.91 50.09a 422.02 23.75b 440.23 23.94b 

MARB CAPN3 rs134085397 G/A 491.66 29.14a 435.56 20.71ab 395.45 24.39b 

MARB CAST rs110496242 G/A 372.26 48.60ab 335.12 32.79b 441.65 21.33a 

MARB TG rs109182502 T/C  525.46 38.54a 420.27 21.79b 

MARB TG rs110501231 C/T 547.50 21.59a 433.15 16.07b 371.11 32.19b 

MARB TG rs110553649 A/C 558.29 47.64a 444.45 15.65b 416.19 25.54b 

MARB TG rs133980693 G/A 547.50 21.60a 433.15 16.07b 371.11 32.19b 

MARB TG rs135059985 C/T 547.50 21.60a 433.15 16.07b 371.11 32.19b 

MARB TG rs378567477 T/C 372.86 34.61a 446.11 21.58a 547.50 22.89b 

MARB TG rs378900777 T/C  529.80 48.85a 431.69 16.95b 

MARB TG rs386026054 G/C 553.33 36.01a 443.33 14.23b 369.50 32.71c 

QG2 IGF-1 rs109022910 A/G 755.00 19.20a 703.29 14.76b 694.06 9.71b 

QG CAPN3 rs109050259 G/A 595.66 24.70a 699.39 9.16b 704.22 9.43b 

QG CAST rs110496242 G/A 668.14 24.91ab 637.81 13.62a 706.94 8.20b 

QG TG rs109182502 T/C  747.65 21.76a 695.10 7.89b 

QG TG rs110501231 C/T 749.25 13.02a 696.35 9.69b 670.39 19.41b 

QG TG rs386026054 G/C 751.00 21.83a 701.08 8.63b 668.85 19.83b 

QG TG rs132813094 A/C 680.00 38.18ab 656.33 15.59b 701.36 7.10a 

QG TG rs133980693 G/A 749.25 13.02a 696.35 9.69b 670.39 19.41b 

QG TG rs135059985 C/T 749.25 13.02a 696.35 9.69b 670.39 19.41b 

QG TG rs378567477 T/C 671.93 21.56a 701.94 13.45a 749.25 14.26b 

QG GH-1 rs137651874 T/C  742.83 16.17a 798.64 8.42b 

QG ADIPOQ rs380209068 G/A  649.00 22.20a 700.01 7.09b 

QG ADIPOQ rs383535987 G/A  753.33 21.60a 697.82 6.91b 

QG ADIPOQ rs384076273 T/C  655.67 21.81a 700.92 6.65b 

WBS3 IGF-1 rs110959643 A/G  9.92 1.13a 7.79 0.50b 

WBS CAST rs137140434 G/T  5.99 0.61a 7.62 0.38b 

WBS ADIPOQ rs383535987 G/A  5.66 1.10a 8.00 0.54b 

1Marbling score  
2Quality grade  
3Warner-Bratzler shear force  
4 Minor allele represented on the left 

allele genotype displayed larger marbling scores than the heterozygous or major allele genotypes. Also, animals 

inheriting the heterozygous genotype showed significant increase in marbling score as compared to the major 

allele genotype. Marker rs378567477 from the TG gene indicated animals inheriting the minor allele showed 
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significantly smaller marbling scores than animals inheriting the major allele genotype. The final four TG 

markers rs110501231, rs110553649, rs133980693, and rs135059985 indicated animals inheriting the respective 

minor allele genotypes showed significantly larger marbling scores than animals inheriting the respective 

heterozygous genotypes or the major allele genotypes. (Table 4.14)  

A total of 14 SNP were found to be significantly associated (P<.05) with quality grade (QG). All six 

candidate genes were represented with the frequency of one marker from each IGF1, CAPN3, CAST, and GH1, 

three markers from ADIPOQ, and seven markers from TG (Table 4.14).  The marker from IGF1 (rs109022910) 

showed animals inheriting the minor allele genotype exhibited better quality grade scores than animals of either 

the heterozygous or major allele genotypes, and no significant effect was seen between QG of heterozygous and 

major allele genotype animals. Alternately, the CAPN3 marker (rs109050259) showed animals inheriting the 

minor allele genotype had lower QG scores than animals inheriting the heterozygous or major allele genotypes, 

with no significance seen between QG of the major allele genotypes and heterozygous genotypes. The SNP 

from the CAST gene rs110496242 indicated animals inheriting the major allele genotype showed significantly 

higher QG than animals inheriting the heterozygous genotype. No significant difference was seen, however, 

when comparing the QG of the minor allele genotype with the QG of the heterozygous or major allele 

genotypes. Marker rs137651874 from the GH1 candidate gene indicated a significant increase in QG for 

animals inheriting the major allele genotypes as compared to animals with the heterozygous genotypes. Two of 

the three markers from the ADIPOQ candidate gene (rs380209068 and rs384076273) indicated a significant 

increase in QG for animals inheriting the respective major allele genotypes as compared to animals with the 

heterozygous genotypes. The third marker from the ADIPOQ gene (rs383535987) indicated animals with the 

heterozygous genotype showed a larger QG score than did the heirs of the major allele genotype. When 

evaluating the seven SNP associated with QG located on the TG gene, a variety of genotypic effects were 

observed. Individuals inheriting the heterozygous genotype for rs109182502 had higher QG scores than those 
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individuals inheriting the major allele genotype. Individuals inheriting the minor allele genotype for 

rs110501231, rs386026054, rs133980693, and rs135059985 had higher QG scores than those individuals 

inheriting the respective major alleles in their genotypes. No significant difference was realized when 

comparing heterozygous and the respective major allele genotypes for these four markers. Marker rs378567477 

on the TG gene revealed animals with the significantly higher QG inherited the major allele genotype, with no 

significance seen in comparing the heterozygotes with the minor allele homozygotes. Finally, TG marker 

rs132813094 showed animals with the major allele genotype had greater QG scores than animals with the 

heterozygous genotype but had no significant difference compared to the minor allele genotype.  The minor 

allele genotype also showed no significant difference when compared to the heterozygous genotype. (Table 

4.14) 

 Three markers from the candidate genes IGF1, CAST, and ADIPOQ were represented as having a 

significant effect with Warner-Bratzler shear force scores (WBS). Marker rs110959643 from the IGF1 gene 

indicated a significantly higher shear force score for individuals inheriting the heterozygous genotype. 

Alternately, marker rs137140434 from the CAST gene and marker rs383535987 from the ADIPOQ gene 

indicated a significantly lower shear force score for heterozygote individuals when compared to those inheriting 

the respective major allele genotypes. (Table 4.14) 

Discussion 

 Several thyroglobulin (TG) markers were significantly associated (P<.05) with growth traits, feedlot 

performance, and carcass traits. Specifically, these traits include birth weight, weaning weight, feedlot entrance 

weight, average daily gain, rib eye area, marbling score, and quality grade. Limited reports have been found 

associating candidate gene TG with growth traits and feedlot performance in Brahman cattle. Thus the 

identification of SNP located on the TG gene with birth weight, weaning weight, and feedlot entrance weight in 

the current study may be novel and should be further investigated. Average daily gain was previously described 
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to have no association detected with markers on TG gene (Casas et al., 2005), conflicting with the current study. 

Rib eye area has previously been significantly associated with SNP in TG (Casas et al., 2005). Previous studies 

have conflicted in reports of favorable alleles located on the TG gene affecting marbling in Bos indicus and Bos 

taurus cattle (Casas et al., 2005; van Enennaam et al., 2007; Barendse et al., 1999). One study assessing SNP 

effects on carcass composition in Bos indicus cattle suggested the use of molecular marker information 

developed in Bos taurus populations may require further development of appropriate markers for use in Bos 

indicus populations (Casas et al, 2005).   

 Adiponectin (ADIPOQ) markers in this study were significantly associated with growth and carcass 

traits including birth weight, weaning weight, hip height, average daily gain, marbling, quality grade, Warner-

Bratzler shear force scoresThis is in agreement with previous studies that have reported an association between 

ADIPOQ and cattle growth traits such as birth weight, weaning weight, and hip height (Zhang et al.2013). An 

association between ADIPOQ with carcass traits such as rib eye area, marbling, and backfat thickness has 

previously been reported (Shin and Chung, 2013; Morsci et al., 2006) which is in agreement with this study for 

rib eye area and marbling.  

 Several CAST markers were found to be significantly associated with growth and carcass traits. 

Specifially, SNP were identified in the current study with weaning weight, hip height, feedlot entrance weight, 

days on feed, harvest weight, hot carcass weight, ribeye area, yield grade, quality grade, and Warner-Bratzler 

shear force score. Previous studies have reported CAST SNP associations with tenderness in beef cattle (Smith 

et al., 2009; Schenkel et al., 206; Café et al., 2010). Smith and associates (2009) reported an association with 

CAST markers and tenderness in Brahman cattle. Schenkel and associates (2006) reported a higher frequency of 

favorable CAST allele ‘A’ resulted in lower percentage of tough steaks, higher fat content, and a difference in 

ribeye area. Café and associates (2010) reported lower shear force scores in steaks from Brahman cattle 

inheriting the favorable allele. While extensive evaluation have been conducted with the CAST gene and meat 
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tenderness, little has been reported about the CAST genes association with other economically important traits 

(Pintos et al., 2011). Markers reported in this study to be associated with growth traits are novel and should be 

reevaluated with a larger, more diverse population to validate their significance in the current study.  

 Multiple CAPN3 markers were significantly associated (P<.05) with growth traits and carcass traits. 

Specifically, multiple SNP were associated with the traits of  weaning weight, hip height, feedlot entrance 

weight, rib eye area, marbling, and quality grade. A particular SNP of interest was associated with days on feed, 

marbling score, and quality grade score. Café and associates (2010) reported an increase in the frequency of the 

favorable ‘G’ allele increases meat tenderness. This is in agreement with the current study.  

 Analyses revealed that three IGF1 gene SNP were significantly associated (P<.05) with growth traits, 

feedlot performance, and carcass traits. Specifically, these markers (rs109022910, rs109227434, and 

rs110959643) were significantly associated with weaning weight, feedlot entrance weight, rib eye area, 

marbling, quality grade, and Warner-Bratzler shear force score. Previous studies report IGF1 SNP were 

associated with growth and production traits (Pereira et al., 2005; Machado et al., 2003; Chang et al., 2009). 

However, marker rs110959643 with an A/G substitution is of particular interest because it has not been 

previously reported to affect tenderness and/or shear force. Chang and associates (2009) reported significance 

between IGF1 and carcass weight, but no significance between IGF1 and tenderness. Thus the identification of 

SNP located on the IGF-1 gene with tenderness in the current study is novel and should be further investigated.  

 GH1 markers rs133438805, rs134389836, rs133403174, rs137252133, and rs136132855 were found to 

be significantly associated (P<.05) with feedlot entrance weight. The SNP located on the GH1 gene 

(rs137651874) was significantly associated with weaning weight, ribeye area, and quality grade. This is in 

agreement with previous studies that report GH1 is a favorable candidate gene for cattle growth traits and 

carcass traits (Pereira et al., 2005; Mullen et al., 2010). Pereira and associates (2005) reported a significant 

effect on yearling weight without risking an increase in birth weight and decrease in calving ease. Marker 
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rs137651874 is of particular interest as it was found to have a significant effect on rib eye area, as the authors 

did not find any literature previously suggesting this marker as an indicator for ribeye area and quality grade. 

Thus the identification of SNP located on the GH1 gene with rib eye area in the current study is novel and 

should be further investigated. 

 This objective of the current study was to identify SNP from six candidate genes for possible significant 

association with farm growth, feedlot performance, and carcass traits. The SNP identified in the current study 

should be further analyzed to validate the significant associations observed herein. Analysis should be 

performed with a larger, more diverse population with more locations and environments represented to further 

confirm possible significant associations with economically important growth and carcass traits such as those 

reported here. 
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CHAPTER V 

SUMMARY 

 The Carcass Evaluation Program founded by the American Brahman Breeders Association has produced 

10 years of data for evaluation of genetic trends in rate of change for economically important growth and 

carcass traits in Brahman and Brahman influenced steers. Upon interpretation of the data from 2004-2013, 

Brahman cattle have shown improvement in the feedlot traits harvest weight (HRVWT) and average daily gain 

(ADG). These Brahman cattle have also shown improvement in hot carcass weight (HCW), ribeye area (REA), 

marbling score (MARB), yield grade (YG), quality grade (QG), and dressing percent (DP). An improvement 

was not seen in Warner-Bratzler shear force score (WBS) overall, but it is to be noted that shear force score has 

been on a favorable downward trend since 2009.  

 Utilization of candidate genes for SNP association analysis on Brahman and Brahman influenced steers 

that completed the Carcass Evaluation Program identified several markers significantly associated with growth 

and carcass traits. Candidate genes Thyroglobulin (TG), Adiponectin (ADIPOQ), Calpain 3 (CAPN3), 

Calpastatin (CAST), Insulin like Growth Factor 1 (IGF1), and Growth Hormone gene (GH1) were chosen for 

previously reported associations with growth and carcass traits of economic importance (Mullen et al., 2010; 

Pereira et al., 2005; Machado et al., 2003; Casas et al., 2005; Schenkel et al., 2006; Koohmaraie et al., 2002; 

Barendse et al., 1999). Within the study, analysis revealed representation of all six candidate genes in the 41 

SNP found to have 58 significant associations (p<.05) with growth and feedlot traits BW, WW, HH, INWT, 

HRVWT, DOF, and ADG. Furthermore, all six candidate genes were represented in the 32 SNP found to have 

49 significant associations with carcass composition and quality traits HCW, REA, YG, MARB, QG, and WBS. 

No markers showed association with DP. . The SNP identified here should be further analyzed to validate these 

significant associations. Analysis should be performed with a larger, more diverse population to further confirm 
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possible significant associations with economically important growth and carcass traits such as those reported 

here. 
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APPENDIX A: DNA EXTRACTION – SATURATED SALT PROCEDURE 

Based on extraction procedures described in Miller et al., 1998. Nucl. Acids Res. 16: 1215. 

 

Day 1: in 15ml centrifuge tube 

Add: 10-12 ml Lysis buffer (Appendix B) to 250 L white blood cell buffy coat; invert to mix  

Spin: 7000rpm for 10 minutes at 4˚C; aspirate supernatant from pellet  

Add: 3ml Digestion Buffer (Appendix B); shake vigorously to resuspend pellet  

Add: 200μl 1 % SDS and 60μL RNase A (10 mg/ml); invert to mix; incubate for 1 hr at 37˚C with 

gentle shaking  

Add: 25μl Proteinase K (20 mg/ml); invert to mix; incubate overnight at 37˚C with gentle shaking 

 

Day 2: 

 Add: 1ml Saturated NaCl; Shake vigorously by hand for 15 seconds 

 Spin: 2800rpm for 30 min at 4˚C; transfer supernatant to new 15ml tube 

 Add: 2 volumes of 100% Ethanol (stored in freezer); invert gently to mix 

 Remove: DNA with soft pipette; transfer DNA into 1.5ml snap-cap-tube 

Spin: at 10 setting for 10 min in refrigerated bench-top centrifuge; aspirate off most ethanol 

Add: 1ml of 80% ethanol (kept on ice); vortex for 20 seconds; spin 5 min in refrigerated bench-top 

centrifuge; aspirate off most of ethanol 

Add: 500µl of 80% ethanol (kept on ice); vortex for 20 seconds; spin 5 min in refrigerated bench-top 

centrifuge; aspirate off most of ethanol 

 Leave tubes uncovered to allow pellet to dry overnight 

 Add: 350µl Rehydration Buffer (Appendix B) to resuspend DNA 

 Read: on spectrophotometer
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APPENDIX B: BUFFER SOLUTION LABORATORY PROTOCOL 

LYSIS BUFFER (1L) 

7.49g NH4Cl 

2.059g Tris-HCl 

pH to 7.4 

 

 

DIGESTION BUFFER (1L) 

1.211g Tris-HCl 

23.276g NaCl 

0.744g EDTA 

pH to 8.0 

 

 

REHYDRATION BUFFER (1L) 

1.21g Tris-HCl 

0.37g EDTA 
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