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5.3.5 Transmission Electron Microscopy 

Preliminary results of TEM were reported here. ASCs at day 0 without any induction was a 

round cell containing well-developed organelles, mainly composed of large quantities of 

mitochondria, endoplasmic reticulum, lipid droplets, and few ribosomes in cytoplasm. ASC 

was observed with two set of euchromatin in its notched nucleus, which was filled with 

prominent nucleoli. Cell processes were present at the ASCs surface. All these characteristics 

indicated a very active cell metabolism (Fig. 36A).  Compared with ASC without any 

induction, induced ASC for 14 days revealed a distinct difference with larger lipid droplets 

and less structured cell organelles.  Cell did not have processes at the surface. Although the 

size of cell was bigger than ASC at day 0, the euchromatin was much smaller (Fig. 36B).  

 

Figure 36 TEM demonstration of ASCs after day 0 (A) and day 14 (B) of osteogenic 
induction.  

TEM demonstration of ASC without any induction (A) and ASCs under 14 days of 
osteogenic induction (1- nucleus, 2-mitochondria, 3- endoplasmic reticulum, 4-a lipid 
droplet, 5-a ribosome, 6-euchromatin) 
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ASCs on three scaffolds after 14 days of induction did not reveal any substantial differences 

between each other as well as compared with ASCs control. ASC on PLLA/PEG/HA/β-TCP, 

however, contained much larger quantities of lipid droplets. On the contrary, ASC on HA/β-

TCP contained the least amount of lipid droplets. ASCs of all groups contained a number of 

mitochondria, a sign for active cell metabolism (Fig. 37).        

 

Figure 37 TEM demonstration of ASC constructs of all three scaffolds as well as ASCs 
only as control after 14 days of osteogenic induction.  

TEM demonstration of ASC constructs of all three scaffolds (A. PLLA/PEG, B. 
PLLA/PEG/HA/β-TCP, C. HA/β-TCP) as well as ASCs only as control after 14 days of 
osteogenic induction. 
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5.4 Discussion 

This pilot study demonstrated the osteogenic lineage differentiation potential of both equine 

BMSCs and ASCs in vitro on three bioscaffolds suitable for bone regeneration.  It was 

preliminarily confirmed that all three scaffolds are suitable for cell adhesion, proliferation 

and differentiation into functional osteo-specific tissue during in vitro development.   

The pooled BMSCs and ASCs showed similar immunophenotype and had positive 

expressions for three mesenchymal stromal cell markers. ALP staining solved the difficulties 

that researchers encountered when referred to histology to confirm cell differentiation. 

Because of the fragile structure of polymers and hardness of ceramics, it was very difficult to 

obtain intact pieces of constructs on slides to investigate their microstructure. ALP staining 

of the whole constructs not only avoided unsuccessful sectioning but also provided three-

dimensional view to demonstrate cell distribution on the scaffolds.  It was confirmed by ALP 

staining that both cells can committee osteogenic differentiaton on all three bioscaffolds 

under appropriate induction as early as day 7, which did not reveal dissimilarities from 

differentiation at day 21. Moreover, much less stain on the inner surface of HA/β-TCP 

scaffold for both cell types indicated the insufficient cell migration into the scaffolds that 

may be caused by its lack of micro-pores.  The fact that cell metabolic activities was 

significantly increased at day 21 compared with day 7 for all BMSC constructs and for ASC-

HA/ β-TCP constructs may suggest that parts of cells at day 7 still maintain its ability of self-

renewal.   

The ultrastructure of all three scaffolds revealed the advantages of polymer components of 

scaffolds, which showed interconnected pore structures suitable for cell attachment.  

However, the dense structure composed by HA may indicate better mechanical properties.   
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The polygonal shaped cells existed for both cell-HA/β-TCP constructs with more developed 

extra cellular structure on ASC constructs. This indicated that compromised pore structures 

of HA/β-TCP did not cause insufficient cell adhesion onto the surface of this scaffolds.  

Moreover, this scaffolds provided excellent support for extra cellular matrix formation.  

However, there were no recognizable SEM images to demonstrate cell adhesion and extra 

cellular matrix formation on the other two scaffolds due to their structures.  

In order to examine and compare cell progression into osteogenic lineages among all three 

scaffolds, TEM was introduced to compensate the incomplete results from SEM.  Due to few 

technique issues, this preliminary study only included ASCs on all three scaffolds after 14 

days of induction.  Overall, it was obvious that ASCs under induction on all three scaffolds 

showed distinct cellular structure compared with ASCs without any induction.  Besides, the 

differences existed among different constructs, which need further investigation to reveal the 

underlying mechanism.  

In conclusion, these preliminary data has demonstrated, for the first time, that equine ASCs 

and BMSCs posses osteogenic potential when loaded onto bioscaffolds under induction.  The 

displayed ultrastructure of cell on bioscaffolds further supported this finding. A 

comprehensive study with a deeper insight into the osteogenic differentiaton mechanism may 

help to uncover the interactions between cell and scaffolds and therefore promote the future 

use of equine MSCs in equine regeneration medicine, which may contribute to customized 

biomaterials to match different clinical needs 
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The major contribution of these studies is that they established straightforward and 

reproducible procedures to support customized tissue engineering with proper bioreactors 

loading of easy to be isolated adult MSCs onto suitable bioscaffolds to grow aimed tissue 

type.  The results showed that the suitability of bioscaffolds for MSC growth can be 

confirmed by high MSC viability and increased DNA contents over time.  Furthermore, cell 

differentiation capacity into distinct mesenchymal tissues on bioscaffolds was successfully 

quantified by related mRNA upregulation and ECM formation.  Therefore the optimization 

of cell-scaffold constructs can be achieved to ensure their high efficiency to commit to 

specific tissue lineages.  These achievements expanded the application of equine regenerative 

medicine.  Using proper engraftments of cells on bioscaffolds can expand application of 

equine stem cell therapy, which was previously limited to MSCs administration as a single 

product.  MSCs integration into lesion sites guided by bioscaffolds as a tissue graft will 

significantly increase the efficiency of healing in clinics in near future.   

It was shown by the first in vitro study that both equine BMSCs and ASCs demonstrated 

good cell adhesion and growth on COLI scaffolds. According to the requirement of current 

stem cell therapy, at least 10 million cells are needed for one injection to repair lesions.  To 

obtain this amount of cells, it normally takes 3-4 weeks’ culture.  One reason of doing this 

time-consuming cell culture is because of the fewer cells stayed at lesion sites due to cell 

migrations. Scaffolds play an important role in maintaining sufficient cells on the lesion sites 

for tissue repair. The potential of COLI scaffolds in targeting majority of cells to treat 

injuries in vivo was established by their strong capacity to support cell adhesion and growth 

in vitro. Therefore cell migration can be suppressed and much fewer cells are needed, which 

will shorten the culture time and improve the efficiency of stem cell therapy. Time is 
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important when considering the clinical applications especially for acute injury cases.   

Furthermore, multipotentiality of equine MSCs was supported on COLI scaffolds, which 

accomplished the first critical step to provide comprehensive results to evaluate cell-scaffold 

interactions and establish their potential in multiple tissue repairs.  In summary, this study 

presented important information on how to design engineered tissue and stepped forward 

towards the long-term goal of meeting diverse clinical needs in equine tissue regeneration.  

The developed cell adhesion, growth and induction behavior on COLI scaffolds was further 

applied in vivo using nude mice to investigate their potential in equine tissue regeneration. 

BMSC-COLI constructs under short-term induction produced bone formation 3 weeks after 

subcutaneous implantation while ASCs-COLI constructs required additional induction to 

committee osteogenesis in vivo.  This will accelerate applications of engineered bone-

forming constructs using BMSCs to expedite equine bone repair in near future.  ASC 

constructs produced comparative ECM as that of BMSC constructs but under commitment 

into dermal-like tissue, indicating ASCs more responsive to signal cues encountered 

subcutaneously due to their original niches.  Considering the key advantages of ASCs with 

high harvest rate, easy to isolate and minimal injury to donor site, pre-induction time and 

scaffolds components were further optimized in vitro to improve efficiency of ASCs 

constructs to commit osteogenesis.    

Scaffolds component and porous structure were further confirmed as the two major factors 

that influence the ability of human ASCs to commit osteogenesis.  Compared with COLI 

scaffolds, MG scaffolds added osteoinductive ceramics components while still maintaining 

similar porous structure.  This study established MG as the optimal scaffolds for supporting 

osteogenesis of human ASCs without compromising its ability to maintain good cell 
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adhesion and high cell growth rate.  Furthermore, osteogenesis was significantly enhanced by 

continuous exposure to osteogenic medium. By exploring the molecular mechanism of 

osteogenesis of cell-scaffold constructs, this study preliminarily demonstrated that 

cannabinoid pathway may play an important role in differentiation of osteoprogenitor cells.  

This accomplishment established the important role of human ASCs in osteogenesis under 

optimized conditions.  Further studies are necessary to determine if similar results occur in 

vivo.   

Our research solved the current dilemma of lack of solid-evidence based studies to support 

clinical use of MSCs in equine regenerative medicine.  These studies investigated the 

mechanism of how MSCs function to restore tissue architecture and function and will 

improve the efficiency of stem cell therapy by introducing proper engraftment of MSCs 

through efficient bioreactor loading onto suitable bioscaffolds.  The improved understanding 

of MSCs behaviors on bioscaffolds to commit to specific tissue regeneration especially bone 

regeneration should guide development of future regenerative therapies to address specific 

equine patients need in clinics.       
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