




From these figures, we find that while both the sequences work reasonably well to preserve
the input polarization states for both the Gaussian and hyperbolic tangent refractive index
profiles, the rectangular refractive index profile gives the worst fidelity in both the cases. In
fact, this profile never gives perfect fidelity with the CPMG sequence. In general, the fidelity
is preserved better for the case of XY-4 sequence (Figure 3.9) than CPMG (Figure 3.10).
This is due to the fact that the phase errors due to the finite width of the waveplates get
partially cancelled due to the alternating π rotations around two orthogonal optic axes (X
and Y ) in a XY-4 sequence. It is also interesting to note that the fidelity in general improves
with increasing number of pulses (waveplates) in both cases showing the robustness of these
schemes in the sense that the pulse errors tend to cancel each other instead of getting added
up.

Due to finite widths of the wave plates, the actual angle of rotation deviates from π, and
this constitutes the flip angle error in the polarization state of the photon. In Figure 3.11,
we plot the variations of fidelity with respect to the standard deviation of the birefringent
dephasing ∆φ and flip angle errors for both the sequences. Here large flip angle errors up
to 50% are considered, and the contour plot shows that the input state is preserved up to
fidelity close to one for a large variation of the dephasing error as well as for flip angle errors.

Figure 3.11: Contour plots of the fidelity in presence of finite width errors. We show the
contour plots of the fidelity with the variations of the standard deviations of the random
birefringent dephasing ∆φ and the flip angle error for CPMG (Left) and XY-4 (Right). The
simulations are done with fixed number of waveplates (1000) and total length of the fiber
L = 10 km, and the average fidelity is obtained by taking 500 randomly generated phase
profiles.
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3.6 Conclusion

A quantum system is susceptible to inevitable interactions with its surrounding environment,
and in quantum information processing it is important to have robust control on the quantum
system such that it is effectively isolated from the environment. Dynamical decoupling is a
technique that can be used to suppress such effects of the environment by applying a sequence
of control pulses to the system. We considered the polarization photon qubits propagating
through optical fibers, and demonstrated that dephasing errors, contributed by both the fiber
birefringence and the finite widths of the waveplates implementing the pulse sequence, could
be suppressed by suitable dynamical decoupling methods. For a large range of rotational
error and random birefringent dephasing, our scheme provides a practical way to tackle them
as long as appropriate wave plate separations are maintained.

As we have dealt with noises due to random fluctuations caused by any possible source
such as temperature, stress, etc., the prescribed DD methods can be applied without an
experimentalist having a detailed, quantitative knowledge of the decohering environment. To
implement our proposed method experimentally to preserve the polarization qubits, several
familiar techniques could be suitable depending on the range of fiber lengths one wishes to
use. The wave plates may be directly incorporated into the fiber during the manufacturing
process. Other methods include writing a Bragg transmission grating periodically into the
fiber [76, 77], or twisting the fiber in controlled ways causing suitable mechanical stress [78].
Periodic modulations or perturbations in the refractive index in the graded index optical
fiber, implementing the desired profiles, can be generated by the techniques described in the
References [126, 127, 128].
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Chapter 4
Amplification and attenuation of Gaus-
sian entangled states

Quantum entanglement is one of the most fundamental quantum mechanical resources, and
it has wide range of applications in teleportation, cryptography, and super-sensitive and
super-resolving precision measurement. In this chapter, we will see that the propagation
of entangled light through an absorbing or amplifying medium significantly affects the non-
classical properties of the field. In particular, we consider the two-mode squeezed vacuum
state which is a well-studied entangled Gaussian state. This entangled state is easy to
produce and has been widely used in continuous-variable quantum information processing
including quantum metrology, quantum teleportation, quantum cryptography, quantum illu-
mination, etc. We study how the entanglement properties of an input field represented by
such entangled Gaussian states are affected by optical amplifiers and attenuators.

As an application of the above study, we present our work where we seek to exploit the
loss of the entanglement of the two-mode squeezed vacuum state in a lossy and noisy medium
to provide an estimate of the tolerable noise present in the medium for a given entanglement
to be preserved, and also to determine whether a target is present in the noisy medium.
The noisy environment, through which the signal mode is transmitted, is modeled as an
attenuator, and the optical amplifier is used to compensate the loss of the signal amplitude
in the attenuator.

In this chapter, we first briefly discuss the two-mode Gaussian states, particularly the
two-mode squeezed vacuum state, and their entanglement properties. We then provide an
overview of the models for an optical phase-insensitive amplifier and an attenuator and
their effects on the entanglement of the two-mode squeezed vacuum states in Section 4.2.
In Section 4.3, we present the model describing the propagation of the signal mode of a
two-mode squeezed vacuum state through a noisy medium (that may or may not contain a
weakly reflecting target) while the ancilla mode is retained. Section 4.4 contains our results
with the loss of entanglement where we use the covariance matrix formalism to characterize
the two-mode squeezed vacuum state, and the logarithmic negativity as a measure of the
entanglement present in the entangled system. We also discuss how the loss of entanglement
can be used as a direct signature of the presence or absence of a target in the noisy medium.

4.1 Gaussian States

Gaussian states are widely used in both quantum optics and quantum information theory.
They can be described by simple analytical formulas and their entanglement criteria are well-
developed [129, 130, 131]. A two-mode Gaussian state ρ with modes a and b is completely
characterized by its first and second statistical moments.
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4.1.1 Covariance matrix formalism

Let us first define the set of quadrature operators {xa, ya, xb, yb} as

xj = (aj + a†j)/
√

2, yj = (aj − a†j)/
√

2i, (4.1)

where j = a, b is the index for denoting the modes a and b. Let X denote a row vector
with elements (xa, ya, xb, yb) defined above. The first moment of the state ρ is called the
displacement vector (or the mean value)

X̄ = 〈X〉 = Tr(Xρ), (4.2)

while the second moment is given by the covariance matrix σ of the normalized Wigner
distribution [132]

W (X) =
e−(X−〈X〉)σ−1(X−〈X〉)T /2

(2π)n
√

det(σ)
, (4.3)

whose elements can be written as

σij =
1

2
〈(XiXj +XjXi)〉 − 〈Xi〉〈Xj〉. (4.4)

The expression in Equation (4.3) is valid for any n-mode Gaussian state.
The covariance matrix for an n-mode Gaussian state is, by definition, a real positive

symmetric matrix, and therefore one can make use of Williamson’s theorem [134]. This
theorem states that any real positive matrix of even dimension can be expressed in diagonal
form by using a symplectic transformation. By this theorem, for the n-mode covariance
matrix σ, there exists a symplectic matrix S such that

σ = Sσ⊕ST , σ⊕ = ⊕nk=1νkÎ , (4.5)

where the diagonal matrix σ⊕ is known as the Williamson form of the covariance matrix σ,
and its diagonal entries νk (k = 1, . . . , n) are the symplectic eigenvalues of σ.

4.1.2 Entanglement measures from the covariance matrix

From the symplectic eigenvalue spectra {νk} defined in Equation (4.5), one can define the
von Neumann entropy H(ρ) of the n-mode Gaussian state ρ as

H(ρ) =
n∑
k=1

g(νk), (4.6)

where g(x) ≡
(
x+1

2

)
log
(
x+1

2

)
−
(
x−1

2

)
log
(
x−1

2

)
. The von Neumann entropy of the reduced

state, for a bipartite state ρA,B, defines the entropy of entanglement which serves as a measure
of the entanglement [135].

The symplectic eigenvalues, when evaluated for the partially transposed density matrix,
can be used to characterize the conditions for separability (or rather the signature of the
entanglement) for bipartite Gaussian quantum states [129, 130, 136, 137]. In fact, if a quan-
tum state is separable, then its partial transpose is positive, and the positivity of the partial
transpose serves as a necessary condition for its separability.
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In the following, we discuss another quantitative measure of the entanglement known as
the logarithmic negativity that can also be evaluated from the symplectic eigenvalues of the
covariance matrix. For the sake of simplicity, let us consider the two-mode Gaussian state
case (n = 2). In this case, the covariance matrix has the following form

σ =

(
α γ
γT β

)
,

where α = αT , β = βT and γ are all 2 × 2 real matrices. In this case, the two symplectic
eigenvalues of the covariance matrix associated with its partial transpose ρ̃ are given by,

ν± =

√√√√∆̃(σ)±
√

∆̃(σ)2 − 4 det(σ)

2
, (4.7)

where ∆̃(σ) = det(α) + det(β) − 2 det(γ). If ν< denotes the smaller of the two symplectic
eigenvalues, then the necessary and sufficient condition for the corresponding quantum to be
entangled is

ν< <
1

2
. (4.8)

The associated quantitative measure of entanglement, the logarithmic negativity is given by
EN = max[0,− ln(2ν<)] [138, 131].

4.1.3 Two-mode squeezed vacuum state

We now consider the two-mode squeezed vacuum state |ξ〉 that can be generated by applying
the unitary two-mode squeezing operator

Ŝ(ξ) = exp
(
ξâ†b̂† − ξ∗âb̂

)
, (4.9)

on the two-mode vacuum state, i.e

|ξ〉 = Ŝ(ξ)|0, 0〉, (4.10)

where â and b̂ denote the annihilation operators corresponding to the modes a and b, respec-
tively.

The density matrix corresponding to this state can be written as ρ = Ŝ(ξ)|0, 0〉〈0, 0|Ŝ†(ξ),
where ξ = reiθ. The parameter r is called the squeezing parameter. The two symplectic eigen-
values are evaluated to be ν± = e±2r/2, and thus the quantum entanglement as quantified
by the logarithmic negativity EN = 2r is proportional to the squeezing parameter r.

4.2 Optical amplifier and attenuator models

An optical amplifier can be modeled as a bath containing N two-level atoms where N1

atoms are in the excited state while N2 are in the ground state. Here N1 + N2 = N , and
N1 > N2. Consider a single mode a of radiation (with annihilation and creation operators â
and â†, respectively) incident on the amplifier and in resonance with the atomic transition.
We assume that width of the atomic transition is large, and also the bath of N atoms is
maintained at the steady state [132, 139].
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In the interaction picture, the evolution of the density operator ρ for the mode a can be
described by the following master equation [132, 139, 140]

∂ρ

∂t
= −κN1(ââ†ρ− 2â†ρâ+ ρââ†)− κN2(â†âρ− 2âρâ† + ρâ†â). (4.11)

In the above master equation, an input Gaussian state evolves into a Gaussian state, preserv-
ing its Gaussian character. The gain of the amplifier is written as |G|2 = exp[2κt(N1−N2)].
Moreover, it has been shown that under the condition |G|2 < 2N1

N1+N2
, both the squeezing and

sub-Poisonnian statistics of an input state are preserved [141].
The optical amplifier described above adds quantum noise to the input field. As a result,

the Heisenberg-like evolution equation for the mode a can be written as

a(t) = Ga(0) + f †, (4.12)

where f † represents the noise added by the amplifier with the noise correlations 〈ff †〉 =
(1 + η)(|G|2 − 1) and 〈f †f〉 = η(|G|2 − 1) that follow from the commutation-preserving
relations. Here η = N2

N1−N2
.

Let us now consider the two-mode case, for instance, the two-mode squeezed vacuum

state Ŝ(ξ) = exp
(
ξâ†b̂† − ξ∗âb̂

)
, and subject both modes a and b to the optical amplifier

with gain G. The associated mode transformation equations are

a −→ Ga+ c†, b −→ Gb+ d†. (4.13)

The elements of the covariance matrix, as defined in Equation (4.4), can be obtained as [139]

α = β =
|G|2 cosh 2r + (1 + 2η)(|G|2 − 1)

2

(
1 0
0 1

)
, (4.14)

γ =
1

2
|G|2 sinh 2r

(
cos θ sin θ
− sin θ cos θ

)
. (4.15)

which gives

ν< =
|G|2(e−2r + (1 + 2η))− (1 + 2η)

2
. (4.16)

For the output state to be an entangled state, i.e. ν< < 1/2, the gain of the amplifier must
satisfy

|G|2 < 2

(1 + e−2r)
=

2

(1 + e−EN )
. (4.17)

Note that in the limit r →∞, the above condition becomes |G|2 < 2.
We now consider the case when only one mode (say a) is amplified, i.e. a −→ Ga +

c†, b −→ b. In this case, the elements of the covariance matrix are given by

α =
|G|2 cosh 2r + (1 + 2η)(|G|2 − 1)

2

(
1 0
0 1

)
, (4.18)

β =
cosh 2r

2

(
1 0
0 1

)
, (4.19)

γ =
1

2
|G|2 sinh 2r

(
cos θ sin θ
− sin θ cos θ

)
. (4.20)
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We can then obtain the following lowest symplectic eigenvalue

ν< =
1

4
(|G|2 + 1) cosh 2r + (1 + 2η)(|G|2 − 1)

−
√

(|G|2 − 1)2(cosh 2r + 1 + 2η)2 + 4|G|2 sinh2 2r), (4.21)

and find that ν< < 1/2 is satisfied for η = 0 (ideal amplification), i.e. the entanglement
survives regardless of the value of the gain. For η 6= 0, however, there exists a threshold gain,
and above this value of the gain, the entanglement disappears.

An attenuator which results in absorption of the radiation field can be described using the
same model as above but with N2 > N1 in the master equation in Equation (4.11). The ideal
attenuation corresponds to the case when N2 = N,N1 = 0. The Heisenberg-like evolution
equation for the mode a can be written as

a(t) = Ta(0) + g, T (t) = e−iωt−κt, (4.22)

where g represents the noise added by the amplifier with the noise correlation 〈g(t)g†(t)〉 =
1− |T (t)|2.

In this case, the elements of the covariance matrix can be obtained as

α = β =

(
e−2κt sinh2 r +

1

2

)(
1 0
0 1

)
, (4.23)

γ =
1

2
e−2κt sinh 2r

(
−1 0
0 1

)
, (4.24)

which gives

ν< =
1

2
e−2κt(e−2r + e2κt − 1). (4.25)

Here the eigenvalues ν< are always less than 1/2, implying that although both the amplifier
and the attenuator add noise to the modes of the entangled light, the effect of the attenuator
is less severe on the entanglement (or other non-classical properties) than is the amplifier’s
effect.

4.3 Propagation of Gaussian entangled state through noisy, lossy medium

4.3.1 Initial state—two mode squeezed vacuum

We consider quantum entanglement between different optical modes of radiation field, and
denote the two modes of the field by a0 and b0. An optical parametric amplifier (OPA)
produces two-mode squeezed vacuum states of the two modes a0 and b0, a prominent example
of Gaussian entangled continuous-variable states.

After the two-mode squeezed vacuum state |ξ〉 = exp
(
ξâ†0b̂

†
0 − ξ∗â0b̂0

)
(where |ξ〉 = reiθ)

is generated by the OPA, one of the modes (say b0) is retained, and we transmit the signal
mode a0 through a noisy environment (or atmosphere) toward a spatial region that may or
may not contain a weakly reflecting target.
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4.3.2 Propagation through noisy environment

We model the noisy environment as an attenuator with attenuation factor T , along with a
classical noise A that represents the overall noise or turbulence in the atmosphere. When the
signal mode a0 is transmitted through an atmosphere, the signal mode is attenuated by the
factor T , as shown in Figure 4.1.

Amplifier 

Attenuator 

TARGET 

Noisy medium 
Pump 

OPA 

Figure 4.1: Schematic diagram of propagation of the signal mode through noisy medium. The
signal mode a0 propagates through through the noisy medium which is modeled by an atten-
uator, and to compensate the loss a phase-insensitive amplifier is used. The entanglement is
calculated between the retained mode b0 and the mode a1 after propagation.

For such an attenuator with attenuation factor T and intrinsic noise g, we can write a
Heisenberg-like evolution equation for the mode a0 as

a0(t) = Ta0(0) + g(t), T (t) = e−iωt−κt, (4.26)

〈g(t)〉 = 0, 〈g†(t)g(t)〉 = 0, 〈g(t)g†(t)〉 = 1− |T (t)|2. (4.27)

If there is some additional ambient noise present in the medium, that further aggravates
the loss of entanglement when an initially entangled state propagates through the medium.
Let us denote such classical noise, which can represent the turbulence noise in atmosphere
for instance, by A and assume that this noise is Gaussian in nature. Adding this noise to
Equation (4.26), we can write

a′0(t) = Ta0(0) + g(t) + A. (4.28)

The signal-to-noise ratio for the mode at the output of the attenuator further decreases
due to this added noise. We will see in the next section (see Section 4.4) that it also degrades
the entanglement of the quantum state being transmitted, and it is possible to provide a
range of the tolerable noise from the information of the entanglement calculated between the
transmitted mode and the retained mode.

56



As we model the atmosphere or the noisy environment with the attenuator, the input
signal consisting of the two-mode squeezed vacuum |ξ〉 is affected by the loss and attenuation
and eventually the signal itself is lost. For the sake of practical applications, one therefore
needs to preserve the amplitude of the signal by employing optical amplifiers.

An optical amplifier, as the name suggests, amplifies the optical mode in the signal but
also adds quantum noise to the signal. As a matter of fact, the optical amplifier adds more
noise photons to the signal than the attenuator, affecting its non-classical characteristics in
a more severe way than the attenuator. Hence, the amplifier with a gain G can be used to
compensate the attenuation effects T (with TG ≈ 1) to preserve the signal amplitude with
the trade-off of having a more rapid decay of entanglement.

In the previous section (see Section 4.2), we have discussed the effects of such optical
amplifiers on the entanglement of the Gaussian entangled states. Here in order to quantify
the degradation of the entanglement affected by an optical amplifier (adding the quantum
noise denoted by f) in conjunction with the attenuator, we first write the expression for the
output mode

a1 = G(Ta0 + g + A) + f = TGa0 +G(g + A) + f. (4.29)

We use the logarithmic negativity (see Section 4.2) as the measure of the entanglement for
the two-mode squeezed vacuum, and calculate the symplectic eigenvalues of the covariance
matrix using Equation (4.29).

4.4 Covariance matrix and entanglement calculation

In the following, we calculate the entanglement (or the loss thereof) between the modes a0

after propagation and the retained mode b0 that will depend on the noise terms, depicting
the loss of entanglement due to such propagation. In other words, the loss of entanglement
(quantified by the logarithmic negativity) due to the propagation through the attenuator
followed by the amplifier will have the signature of the noise present in the medium.

The signal mode a0 that is propagated through the noisy medium satisfies the commuta-
tion relation [a0, a

†
0] = 1. The mean photon number in this mode is given by

〈a†0a0〉 = sinh2 r, (4.30)

while the correlation between the modes a0 and b0 is

〈a0b0〉 = cosh r sinh reiθ, (4.31)

r being the squeezing parameter.
The covariance matrix σ in the present case is a 4× 4 real symmetric matrix which can

be written as [132]

σ =


A 0 B C
0 A C −B
B C A′ 0
C −B 0 A′

 , (4.32)

where the lowest symplectic eigenvalue ν< can be written as

ν< =
1

2

[
(A+ A′)−

√
(A− A′)2 + 4(B2 + C2)

]
. (4.33)
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In order to evaluate the elements of the covariance matrix shown above, we first calculate
〈a†1a1〉 and 〈a1a

†
1〉 for the transmitted mode a1. From Equation (4.29), we obtain

〈a†1a1〉 = T 2G2〈a†0a0〉+ (|G|2 − 1) + |G|2|A|2, (4.34)

〈a1a
†
1〉 = T 2G2〈a0a

†
0〉+ (1− |T |2) + |G|2|A|2, (4.35)

which gives the elements of the covariance matrix as

σ11 =
1

2

[
T 2G2 cosh 2r + |G|2(1 + 2|A|2)− |T |2

]
= σ22, (4.36)

σ12 = σ21 = σ34 = σ43 = 0, (4.37)

σ13 = σ31 =
TG sinh 2r cos θ

2
, (4.38)

σ14 = σ41 =
TG sinh 2r sin θ

2
, (4.39)

where σij = 1
2
〈(XiXj + XjXi)〉 − 〈Xi〉〈Xj〉 for the quadratures Xi and Xj (see Section 4.3)

of the two modes a1 and b0. Thus,

A =
1

2

[
T 2G2 cosh 2r + |G|2(1 + 2|A|2)− |T |2

]
, (4.40)

A′ =
cosh 2r

2
, B =

TG sinh 2r cos θ

2
, C =

TG sinh 2r sin θ

2
. (4.41)

The lowest symplectic eigenvalue is ν< is evaluated as

ν< =
1

2

(T 2G2 + 1) cosh 2r + F

2
−
√(

(T 2G2 − 1) cosh 2r + F

2

)2

+ T 2G2 sinh2 2r

 ,
(4.42)

where the combined effect of the noise is given by the noise term

F = |G|2(1 + 2|A|2)− |T |2. (4.43)

The expression of ν< in Equation (4.42) serves as a measure of the entanglement between
the optical modes a1 after propagation and the retained mode b0, and it also yields information
about the noisy environment as described below. In this sense, using the entanglement
calculation, we can provide a precise way of probing (or remote mapping) noisy medium.

The effect of the classical noise A on the entanglement is depicted in Figure 4.2, where
one can see that the entanglement measure ν< is plotted as a function of the gain |G|2 of
the amplifier for a fixed value of the attenuation |T |2 = 0.5. We see that the entanglement
decreases as the value of the classical noise |A|2 is increased from |A|2 = 0 (no classical noise)
to |A|2 = 0.3. The solid red line marks the value of ν< = 1/2 beyond which the entanglement
between the modes a1 and b0 vanishes. Larger values of the noise |A|2 results in more rapid
decay of entanglement.

In Figure 4.3, we plot the entanglement measure ν< as a function of the squeezing param-
eter r for different classical noise values keeping the attenuation factor the same |T |2 = 0.5.
The plots in this figure also reflects the detrimental effects of the noise |A|2 on the entangle-
ment.
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Figure 4.2: Plot of the eigenvalue ν< as a function of the gain |G|2 of the amplifier. We
show the variation of ν< for different values of the classical noise |A|2. As the value of |A|2
increases, the entanglement between the optical modes starts to disappear faster.

We also compare the results of the entanglement for one attenuator without any amplifier,
(i.e., |G| = 1) and with the ones where amplifier is used to compensate the effect of the loss on
the signal amplitude (by making the approximation |T ||G| = 1). These results are plotted in
Figure 4.4, where we can see that although adding an amplifier to the attenuator is important
for practical purposes, it affects the entanglement between the optical modes in a more severe
way than the attenuator. The solid red line marks the value of ν< = 1/2 beyond which, thus
providing a reference for the comparing the plots in the figure. Note that |T |2 = exp(−2κt)
can be varied from 0 to 1.

Since presence of noise, be it the intrinsic quantum noise of the amplifiers or the attenua-
tors or the classical turbulence noise, is generally unavoidable in most practical applications,
one might also be interested in determining the allowable ranges of the classical noise for a
given attenuation (or vice versa) for preserving a given entanglement in order to maintain its
usefulness in the presence of such noise. In other words, the entanglemenet can be regarded
as a probe for the noise present in the medium. Using the contour plot in Figure 4.5, we
show that it is possible to provide an estimate for the range of noises |T |2 and |A|2 one can
allow for the transmission of the signal mode through the noisy atmosphere.

In Figure 4.6, we compare the variations of the entanglement measure ν< for different
values of the initial entanglement (i.e. different values of the squeezing parameter r). Higher
values of r imply higher initial entanglement (note that EN = 2r initially, i.e. initial entan-
glement is proportional to r), and we find that if one starts with higher values of squeezing
parameter r, a larger classical noise |A|2 can be tolerated before the output state becomes
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Figure 4.3: Plot of the eigenvalue ν< for different values of the classical noise |A|2. We plot
ν< as a function of the squeezing parameter r for different values of classical noise |A|2 with
the same |T |2 = 0.5.

Figure 4.4: Plot of the eigenvalue ν< without and with optical amplifier for different noise.
We compare ν< for r=1, without any amplifier and with optical amplifier for different values
of the classical noise |A|2.

unentangled. The solid brown line marks the ν< = 1/2, beyond which the entanglement
disappears.
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Figure 4.5: Contour plot of the eigenvalue ν< for different noise with fixed r = 1.5. We
plot ν< as a function of the classical noise |A|2 and the attenuation |T |2 for the squeezing
parameter r = 1.5.

Figure 4.6: Eigenvalue ν< for different values of the squeezing parameter r.
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4.5 Entanglement as a tool for target detection

In the above we showed how the entanglement calculation can be useful for providing an
estimate of the noise and losses in the medium through which the signal mode has been
propagated. In the following, we show how we can exploit this information about the entan-
glement to detect the presence of an object. The conventional way to detect the presence
of an object to shine light (coherent laser source) in the direction where the object is likely
to be present and to see if any light is reflected off. Lloyd et al. showed that using en-
tangled photons in such scenario can provide substantial advantage, despite the complete
loss of entanglement in a highly lossy and noisy medium, over the unentangled or coherent
light [142, 143]. This is also known as quantum illumination where it is possible to get sig-
nificant improvement in the signal-to-background noise ratio in detecting a target embedded
in the noisy medium.

In a typical setup for target detection using entangled light, an entangled state is prepared
with a signal photon and an ancilla photon, and the signal photon is used only to detect the
target, while the ancilla photon is retained. If the target is immersed in noise or thermal
radiation, the signal photon will be affected by such noise and as a result, entanglement
between the signal photon and the ancilla photon will be significantly deteriorated. When
we detect the signal photon at the detector, the final entanglement between the detected
signal photon and the retained ancilla photon will carry all the information about the noisy
environment as well the information regarding whether the object is present or not. In this
sense, entanglement can be used as a direct measure of the presence of the target, despite
the presence of entanglement-destroying loss and noise.

The intuitive reason behind the enhancement of sensitivity for photon counting, according
to the References [142, 143], is that if the signal is entangled with the ancilla, then it is harder
for the noise to masquerade as the returning signal. This intuition turns out to be correct
in our case too, as we argue in the following, with the calculation of final entanglement
between the modes at the detector even though the noise and loss completely destroy the
entanglement; hence it also can justify one’s choice of using entangled Gaussian state over
conventional light for the purpose of precise detection of the target.

After transmitting the signal mode a0 through the noisy environment modeled by the
attenuator (and followed by the amplifier to compensate the loss), the output mode a1 given
by Equation (4.29). For the attenuation factor T = 0, we see that the signal is lost in the
noisy medium, and we get only the (amplified) noise at the output. In other words, the initial
entanglement is completely lost which is also reflected in the following covariance matrix

σT=0 =
1

2


(1 + 2|A|2) 0 0 0

0 (1 + 2|A|2) 0 0
0 0 cosh 2r 0
0 0 0 cosh 2r

 , (4.44)

when we consider propagation through the attenuator, without the amplifier (using amplifier
merely adds one constant factor in the diagonal terms as can be seen from Equation (4.29)).
Note that the off-diagonal terms in the covariance matrix disappear in this case implying the
complete loss of entanglement. This corresponds to the case of the presence of the target
in the medium when only the noise photons arrive at the detector. While for the T 6= 0
case, the non-zero off-diagonal terms effectively carry the signature of the cross-correlations
present between the mode a1 after propagation and the retained idler mode b0. The latter
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case, i.e. T 6= 0, corresponds to when the entanglement is still present between these two
modes, and the total signal at the detector consists of the signal and the noise. For T = 0,
however, since all the entanglement present in the initial two-mode squeezed vacuum state
is lost, the output signal at the detector consists of only noise photons. Furthermore, we can
expect intuitively the entanglement reduces as |T |2 6= 0 decreases.

In Figure 4.7, we plot the entanglement measure ν< as a function of the squeezing pa-
rameter r for different values of |T |2 (with same classical noise |A|2). The solid red line
corresponds to |T |2 = 0, while the initial entanglement between the modes a0 and b0 is also
plotted for comparison as the solid blue line. For T = 0, we see that ν< is always greater than
1/2 regardless of the value of the squeezing parameter r, i.e., the output mode is no longer
entangled with the retained mode even if we start with a highly entangled initial state. In
this sense, the entanglement measure ν< can be considered to carry a signature of the absence
or the presence of the target.

Figure 4.7: Entanglement as a tool for target detection . We plot the variation of the sym-
plectic eigenvalue ν< as a function of the squeezing parameter r for different |T |2. The solid
red line marks the T = 0, that corresponds to the no target case where all the entanglement
has been lost, i.e. ν< > 1/2 for all values of r.

4.6 Conclusion

In this chapter, we have discussed how the optical amplifiers and attenuators affect the
entanglement properties of Gaussian entangled state by adding quantum noise to the state
propagating through them. The detrimental effects of the added noise is shown in terms of
the entanglement measure known as the logarithmic negativity that follows from the well-
studied covariance matrix (or symplectic) formalism for general Gaussian continuous variable
quantum states.

We considered a noisy medium that has been modeled by an attenuator followed by an
optical amplifier to compensate the loss, and analyzed the loss of entanglement for the two-
mode squeezed vacuum state using a necessary and sufficient condition for the entanglement
to be present. We showed how the loss of entanglement in such a noisy medium can be
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used to predict the absence or presence of a target embedded in the medium. However, this
proposed scheme to detect the target requires, in principle, reconstruction of the covariance
matrix which can be implemented, for example, by means of a single homodyne detector [144].
This is in contrast to the case analyzed by Shapiro et al. where the quantum target detection
problem is considered to be a quantum binary hypothesis testing problem by performing
joint quantum measurement on the received states at the detector [143, 145]. In both cases,
however, we note that the non-classical cross-correlation signature between the modes can
effectively be exploited to distinguish between the presence or absence of such a target.
Furthermore, we also showed that the entanglement calculation can be useful to provide an
estimate of the tolerable noise for a given entanglement to be preserved.
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Chapter 5
Noisy quantum channels and limits

on the rate of communication 1

Any communication system aims to transfer information reliably from one point to another.
Such transfer of information is typically done by modulating the information into an electro-
magnetic wave (carrier), which is then transmitted through a noisy communication channel.
The receiver, upon receiving the signal, demodulates the received state in order to recover
the information sent. In reality, however, noise present in the communication channels limit
the performance of such communication systems based on electromagnetic wave propaga-
tion. Hence, determining the information-carrying capacity of noisy quantum communication
channels is of practical relevance.

A quantum model for optical communication systems (e.g., the ones that are based on
fiber or free-space communication) is provided by the lossy bosonic channels, where the modes
of the electromagnetic field are used as the information carrier interacting with thermal-like
noisy environments. Gaussian bosonic channels are used to represent realistic models of
noise in many communication protocols [146, 6, 147], and in this chapter we will consider the
transmission of classical messages through such channels.

For the last few decades, extensive efforts have been put in the field of quantum infor-
mation theory to investigate the ultimate limits on reliable communication through noisy
quantum communication channels. In quantum information theory, the classical capacity of
a quantum channel is the maximum rate at which a sender can transmit classical messages
over the quantum channel such that the error probability decreases to zero in the limit of
many independent uses of the channel. This notion of the classical capacity is inspired by
the Shannon’s seminal work [5] that established the capacity theorem for a classical channel.
Holevo, Schumacher, and Westmoreland (HSW) later proved that a quantum generaliza-
tion of Shannon’s formula characterizes the capacity of a quantum channel [6, 7]. Many
of the open questions in quantum information, quantum communication, and quantum op-
tics communities revolve around identifying a tractable formula for the capacity of quantum
communication channels.

The above definition of the classical capacity suggests that (a) for any rate below capac-
ity, one can communicate error free in the limit of many channel uses, and (b) there cannot
exist an error-free communication scheme in the limit of many channel uses when the rate
of communication exceeds the capacity. However, this definition leaves open the possibility
to increase the communication rate R by allowing for some error ε > 0, whenever the rate R
exceeds the capacity. Leaving room for the possibility of such a trade-off between the rate R
and the error ε is the hallmark of a “weak converse,” and the corresponding capacity is some-

1Parts of this chapter previously appeared as B. Roy Bardhan and M. M. Wilde, Physical Review A 89,
022302 (2014) (Copyright(2014) American Physical Society) [158] and B. Roy Bardhan, R. Garcia-Patron,
M. M. Wilde, and A. Winter, Proceedings of IEEE International Symposium on Information Theory (ISIT),
pages 726-730 (2014)(Copyright(2014) IEEE) [159]. They are reprinted by permission from the publishers
See Appendix C for details.
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times called the weak capacity. A strong converse, on the contrary, establishes the capacity
as a very sharp threshold, so that there is no such room for a trade-off between rate and error
in the limit of many independent uses of the channel. The strong converse thus guarantees
that the error probability of any communication scheme asymptotically converges to one if
its rate exceeds the classical capacity. A conceptual illustration of this idea is provided in
Figure 5.1, where we also demonstrate the achievability of the rate of communication and the
weak converse part. Note that this plot should be interpreted in the limit of large n where n
is the number of channel uses.

Figure 5.1: Weak versus strong converse for communication through quantum channels. Here,
we illustrate the idea that the error probability converges to one in the limit of many channel
uses if a communication rate corresponds to a strong converse rate, whereas establishing a
communication rate as a weak converse rate suggests that there exists room for a trade-off
between communication rate and error proability. Achievable rates are such that there exists
a communication scheme whose error probability converges to zero in the limit of many
channel uses.

Despite their significance in understanding the ultimate information-carrying capacity
of noisy communication channels, strong converse theorems are known to hold only for a
handful of quantum channels [148, 149, 150]. Strong converse theorems have been shown
to hold for quantum memoryless channels with classical inputs and quantum outputs [151,
152]. Recently, a strong converse theorem has been proved to hold for the classical capacity
of the pure-loss bosonic channel [153]. These studies have provided an estimate of the
communication rate for the respective channels above which it is not possible to transmit
reliably the messages from the sender to the receiver of the channel. The strong converse
results are also helpful in establishing the security for particular models of cryptography in
which the eavesdropper is limited to having noisy storage [154].

In this chapter, we consider the transmission of classical messages through phase-insensitive
Gaussian channels. These channels are considered to be the most practically relevant mod-
els to describe free space or optical fiber transmission, or transmission of classical messages
through dielectric media, etc. The recent works in References [155, 156] have established
the exact expressions of the classical capacities of these channels under the constraint on the
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mean photon number of the input signal states. For instance, consider the thermal noise
channel represented by a beamsplitter with transmissivity η ∈ [0, 1] mixing signaling pho-
tons (with mean photon number NS) with a thermal state of mean photon number NB. The
results in References [155, 157, 156] imply that the classical capacity of this channel is

g(ηNS + (1− η)NB)− g((1− η)NB), (5.1)

where g(x) ≡ (x+1) log2(x+1)−x log2 x is the entropy of a bosonic thermal state with mean
photon number x. However, the corresponding converse theorem, which can be inferred as a
further implication of their work, is only a weak converse, in the sense that the upper bound
on the communication rate R of any coding scheme for the thermal noise channel can be
written as

R ≤ 1

1− ε [g(ηNS + (1− η)NB)− g((1− η)NB) + h2(ε)],

where ε is the error probability, and h2(ε) is the binary entropy with the property that
limε→0h2(ε) = 0. That is, only in the limit ε→ 0 the above expression serves as the classical
capacity of the channel, leaving room for a possible trade-off between rate and error proba-
bility. We prove a strong converse theorem for the classical capacity of all phase-insensitive
Gaussian channels that completely rules out such possibility of trade-off guaranteeing that the
success probability of correctly decoding the transmitted message asymptotically converges
to zero when the rate of communication exceeds the capacity of such channels.

This chapter is structured as follows. First, we present a brief review of bosonic Gaus-
sian channels, and specify the capacities of a few canonical bosonic Gaussian channels in
Section 5.1. In Section 5.2, we review some preliminary ideas and notations on the classical
capacity of noisy bosonic quantum channels. Section 5.3 contains our main result that the
strong converse property holds for the capacity of noisy bosonic Gaussian channels when im-
posing a maximum photon number constraint on the signal photon states. We then conclude
this chapter with a brief summary and a few potential applications of our results.

5.1 Noisy Bosonic Channel Models

Bosonic Gaussian channels play a very significant role in modeling optical communication
channels that rely on optical fibers or free space transmission. In general, an N mode
bosonic channel can be represented by N quantized modes of the electromagnetic field in
a tensor-product Hilbert space H⊗N = ⊗Nk=1Hk with N pairs of bosonic field operators
{âk, â†k} (k = 1, . . . , N). These bosonic field operators âk and â†k are known as the annihilation
and the creation operators of the k th mode of the field, respectively.

In the following discussion, we will restrict ourselves to memoryless Gaussian channels, in
which each mode of the field transmitted through the noisy channel is affected independently
and identically with respect to each other. This simplifies the description of the channel in the
sense that it is now sufficient to consider the individual modes of the field resulting in a single-
mode description of the noisy communication channel. However, the corresponding multi-
mode descriptions of the same channel can be constructed from tensor-product structures
using the single-mode channels.

Bosonic Gaussian channels are represented by completely positive and trace preserving
(CPTP) maps and they evolve Gaussian input states into Gaussian output states [160, 146,
161]. We note that a Gaussian state (e.g., the vacuum state or the thermal state) is completely
characterized by a mean vector and a covariance matrix [160]), which are necessarily the first
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and second moments of the quantum state ρ̂ representing the Gaussian state. Since it is
easy to characterize the Gaussian states in this manner, it turns out that the action of the
Gaussian channels on such states are also easy to describe. Single-mode Gaussian channels
are characterized by two matrices X and Y acting on the covariance matrix Γ of a single-mode
Gaussian state in the following way:

Γ −→ Γ′ = XΓXT + Y, (5.2)

where XT is the transpose of the matrix X. Here X and Y are both 2× 2 real matrices, and
in order for the map to be a CPTP map, they must satisfy

Y ≥ 0, detY ≥ (detX − 1)2.

A bosonic Gaussian quantum channel is said to be ‘quantum-limited’ if the above inequality
(involving detX and detY ) is saturated [162, 163, 155, 156].

Phase-insensitive Gaussian channels are invariant with respect to phase space rotations
[164, 161, 147, 163], and they are considered to be one of the most practically relevant models
to describe free space or optical fiber transmission, or transmission of classical messages
through dielectric media, etc. In fact, phase-insensitive Gaussian channels constitute a broad
class of noisy bosonic channels, encompassing all of the following: thermal noise channels,
additive noise channels , and noisy amplifier channels [164, 155, 156, 165]. In general, the
phase-insensitive channels can be characterized by the following matrices

X = diag
(√

τ ,
√
τ
)
, (5.3)

Y = diag (ν, ν) ,

with τ, ν ≥ 0 obeying the constraint above. The action of such phase-insensitive channels on
an input signal mode can be uniquely described by their transformation of the symmetrically
ordered characteristic function, defined as

χ(µ) ≡ Tr[ρD(µ)], (5.4)

where D(µ) ≡ exp(µâ†−µ∗â) is the displacement operator for the input signal mode â [160].
For the Gaussian channels, the transformed characteristic function at the output is given by
χ′(µ) = χ(

√
τµ) exp(−ν |µ|2 /2) [156, 155, 146].

In the following, we discuss some examples of phase-insensitive Gaussian channels.

5.1.1 Thermal noise channel

For the thermal noise channel, the environmental mode b̂ is in the thermal state, i.e., an
isotropic Gaussian mixture of coherent states with average photon number NB > 0. In the
number state representation, the density matrix of the thermal state ρb can be written as

ρb =

∫
d2α

exp(−|α|2/NB)

πNB

|α〉〈α| = 1

(NB + 1)

∞∑
l=0

(
NB

NB + 1

)l
|l〉〈l|. (5.5)

The interaction of signal photons with the thermal channel Eη,NB can be modeled by a
beamsplitter of transmissivity η coupling the signal with a thermal state with mean photon
number NB. The parameter η ∈ [0, 1] of the beamsplitter characterizes the fraction of input
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photons that make it to the output on average. The special case NB = 0 (zero-temperature
reservoir) corresponds to the pure-loss bosonic channel Eη,0, in which each input photon has
probability η of reaching the output.

The beamsplitter transformation corresponding to the thermal channel can be written as
the following Heisenberg-like evolution of the signal mode â and the environmental mode b̂:

â −→ √ηâ+
√

1− ηb̂
b̂ −→ √ηb̂−

√
1− ηâ. (5.6)

The unitary evolution operator U for the above transformation is given by the following

matrix U :=

( √
η

√
1− η

−√1− η √
η

)
. Tracing out the environmental mode b̂ from it yields the

CP map Eη,NB for the thermal noise channel

Eη,NB = Trb̂
[
U(ρa ⊗ ρb)U †

]
, (5.7)

where ρa and ρb correspond to the input state and the environmental thermal state, respec-
tively, and ρb is given by Equation (5.5).

The vacuum state at the input of the thermal channel produces a thermal output state
given by

Eη,NB(|0〉〈0|) =
1

((1− η)NB + 1)

(
(1− η)NB

(1− η)NB + 1

)â†â
. (5.8)

5.1.2 Additive noise channel

The additive noise channel is another example of a noisy bosonic channel, which is given by
the following completely-positive (CP) map:

Nn̄(ρ) =

∫
d2αPn̄(α)D(α)ρD†(α), (5.9)

where Pn̄(α) =
exp(−|α|2/n̄)

πn̄
, and D(α) = exp(αâ† − α∗â) is the displacement operator for

the input signal mode â. Pn̄(α) the Gaussian probability distribution representing a random
displacement of the signal mode â in phase space. For this channel, a classical Gaussian noise
is superimposed on the signal mode, resulting in the displacement in phase space.

The variance n̄ of this distribution, that characterizes the additive noise channel Nn̄,
represents the number of noise photons added to the mode â by the channel [166]. For n̄ = 0,
the CP map in Equation (5.9) becomes the identity channel, while for n̄ > 0, noise photons
are injected into the channel.

The additive noise channel Nn̄ on a vacuum-state input |0〉 produces a thermal-state
output

Nn̄(|0〉〈0|) =
1

n̄+ 1

(
n̄

n̄+ 1

)â†â
. (5.10)

Note that the additive noise channel can be obtained from the thermal noise channel in the
limit η → 1 and NB →∞, with (1− η)NB → n̄ [167].
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5.1.3 Noisy amplifier channel

The noisy amplifier channel is a widely used model in optical communication— it is not only
extensively used to model noisy communication when the channel provides gain to the signal
amplitude at the cost of added quantum noise, but also to model the optical parametric
amplifier used in various practical receivers.

The amplifier channel ANG is characterized by its gain G ≥ 1 and the mean number of
photons N in the associated ancilla input mode (which is in a thermal state). The correspond-
ing CPTP map for this channel can be obtained from the following commutator-preserving
phase-insensitive amplifier mode transformation relation [162]

ĉ =
√
Gâ+

√
G− 1b̂†, (5.11)

where b̂ is the modal annihilation operator for the noise injected by the amplifier. The
amplifier channel ANG is called quantum-limited when the environment is in its vacuum state
(we will denote such a quantum-limited amplifier by A0

G). This is the case when the minimum
possible noise is introduced by the amplifier to the signal since the environment mode is in
the vacuum state.

The transformed characteristic functions for the above Gaussian channels in phase-space
are given by the following expressions [157, 167, 165]

χ′(µ) =


χ(
√
ηµ)e−(1−η)(NB+1/2)|µ|2 for Eη,NB

χ(µ)e−n̄|µ|
2

for Nn̄
χ(
√
Gµ)e−(G−1)(N+1/2)|µ|2 for ANG .

(5.12)

5.1.4 Structural decompositions

Any phase-insensitive Gaussian bosonic channel P can be written as a concatenation of a
pure-loss channel followed by a quantum-limited amplifier channel [168, 164],

P = A0
G ◦ Eη,0, (5.13)

where Eη,0 is a pure-loss channel with parameter η ∈ [0, 1] and A0
G is a quantum-limited

amplifier whose gain G ≥ 1. We can note that for the above decomposition rule, τ = ηG and
ν = G (1− η) +G− 1 (with τ and ν defined in (5.3)).

For instance, the additive noise channel Nn̄ can be viewed as a cascade of a pure-loss
channel with transmissivity η = 1/(n̄ + 1) followed by a quantum-limited amplifier channel
whose gain G = n̄+ 1 exactly compensates for the loss, i.e.

Nn̄(ρ) = (A0
n̄+1 ◦ E 1

n̄+1
,0)(ρ), (5.14)

Also, we can consider the thermal noise channel Eη,NB as a cascade of a pure-loss channel
with transmissivity η′ = η/G′ followed by a quantum-limited amplifier channel with gain
G′ = (1− η)NB + 1, i.e.

Eη,NB(ρ) = (A0
(1−η)NB+1 ◦ Eη′,0)(ρ). (5.15)

Appendix B contains details on how the above structural decompositions can be obtained
by considering the action of the channels on the covariance matrix Γ.
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5.1.5 Capacitiies of noisy phase-insensitive Gaussian channels

For a single-mode pure-loss bosonic channel (where the environmental mode is in the vacuum
state) when the sender is constrained to use at most NS photons on average per use of the
channel, the capacity is given by g(ηNS) [169], where

g(x) ≡ (x+ 1) log2(x+ 1)− x log2(x) (5.16)

denotes the entropy of a bosonic thermal state with average photon number x. The above
capacity has shown to be achievable with coherent-state encoding with a constraint on the
mean number of photons per use of the channel [169].

The recent breakthrough works in References [155, 156] have provided a solution to the
long-standing minimum output entropy conjecture [147, 167] for all phase-insensitive Gaus-
sian channels, showing that the minimum output entropy for such channels is indeed achieved
by the vacuum input state, i.e., H[P(|0〉〈0|)] ≤ H[P(ρ)] for every ρ, where H(.) is the von
Neumann entropy. As a major implication of this work, the expressions for the classical
capacities of various phase-insensitive channels are known exactly, and are given by,

C(Eη,NB) = g(ηNS + (1− η)NB)− g((1− η)NB), (5.17)

C(Nn̄) = g(NS + n̄)− g(n̄) , (5.18)

C(ANG ) = g(GNS + (G− 1)(N + 1))− g((G− 1)(N + 1)), (5.19)

where NS is the mean input photon number. In general, the classical capacity of any phase-
insensitive Gaussian channel can be expressed as

g(N ′S)− g(N ′B), (5.20)

where N ′S = τNS + (τ + ν − 1) /2 and N ′B = (τ + ν − 1) /2, with τ and ν defined in (5.3). In
the above, N ′S is equal to the mean number of photons at the output when a thermal state
of mean photon number NS is input, and N ′B is equal to the mean number of noise photons
when the vacuum state is transmitted. Note that the capacities in (5.17), (5.18), and (5.19)
all have this particular form as in Equation (5.20). The classical capacities specified above
can be achieved by using coherent-state encoding for the respective channels [147].

5.2 Notations and Definitions

In this section, we present a brief review of the notations and the preliminary ideas that
we will use in the next section to prove our strong converse theorems for the capacity of
phase-insensitive channels.

5.2.1 Quantum Rényi entropy and smooth min-entropy

The quantum Rényi entropy Hα(ρ) of a density operator ρ is defined for 0 < α <∞, α 6= 1
as

Hα(ρ) ≡ 1

1− α log2 Tr[ρα] . (5.21)

It is a monotonic function of the “α-purity” Tr[ρα], and the von Neumann entropy H(ρ) is
recovered from it in the limit α→ 1:

lim
α→1

Hα(ρ) = H(ρ) ≡ −Tr[ρ log2 ρ] .
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The min-entropy of ρ, which is the negative logarithm of its maximum eigenvalue, can also
be recovered from it in the limit as α→∞:

lim
α→∞

Hα(ρ) = Hmin (ρ) ≡ − log2 ‖ρ‖∞ ,

where ‖ρ‖∞ is the infinity norm of ρ defined as

‖ρ‖∞ := max
i
{|λi|}, (5.22)

λi being the eigenvalues of the density operator ρ.
The quantum Rényi entropy of order α > 1 of a thermal state with mean photon number

NB can be written as [170]
log2 [(NB + 1)α −Nα

B]

α− 1
.

For an additive noise channel Nn̄, the Rényi entropy Hα(Nn̄(ρ)) for α > 1 achieves its
minimum value when the input ρ is the vacuum state |0〉〈0| [157]:

min
ρ
Hα(Nn̄(ρ)) = Hα(Nn̄(|0〉〈0|)) =

log2[(n̄+ 1)α − n̄α]

α− 1
for α > 1. (5.23)

Similarly, for the thermal noise channel Eη,NB , the Rényi entropy Hα(Eη,NB(ρ)) for α > 1
achieves its minimum value when the input ρ is the vacuum state |0〉〈0| [157]:

min
ρ
Hα(Eη,NB(ρ)) = Hα(Eη,NB(|0〉〈0|)) =

log2[((1− η)NB + 1)α − ((1− η)NB)α]

α− 1
for α > 1.

(5.24)
Furthermore, using the main result of [157] we can say that the minimum output Rényi
entropy of any phase-insensitive Gaussian channel P is achieved by the vacuum state:

min
ρ(n)

Hα(P⊗n(ρ(n))) = nHα(P(|0〉〈0|). (5.25)

An elegant generalization of the above Rényi entropy is the smooth Rényi entropy. The
smoothed Rényi entropy was first introduced by Renner and Wolf for classical information
sources [171], while it was later generalized to the quantum case by considering the set Bε(ρ)
of density matrices ρ̃ that are ε-close in trace distance to ρ for ε ≥ 0. The ε-smooth quantum
Rényi entropy of order α of a density matrix ρ is defined as [172]

Hε
α(ρ) = inf

ρ̃∈Bε(ρ)
Hα(ρ̃) for 0 ≤ α < 1,

Hε
α(ρ) = sup

ρ̃∈Bε(ρ)

Hα(ρ̃) for 1 < α <∞.

In the limit as α→∞, we recover the smooth min-entropy of ρ [172, 173]:

Hε
min(ρ) ≡ sup

ρ̃∈Bε(ρ)

[− log2 ‖ρ̃‖∞] . (5.26)

From the above, we see that the following relation holds

inf
ρ̃∈Bε(ρ)

‖ρ̃‖∞ = 2−H
ε
min(ρ) . (5.27)
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This relation gives the definition of the smooth min-entropy Hε
min, and we will show in

Section 5.3 that it leads to a strong converse theorem for the capacity of noisy bosonic
channels. A relation between the smooth min-entropy and the Rényi entropy of order α > 1
is given by the following inequality [174]

Hε
min (ρ) ≥ Hα (ρ)− 1

α− 1
log2

(
1

ε

)
. (5.28)

We will exploit this relation, along with the minimum output entropy results from [157], to
prove the strong converse theorem for the classical capacity of all phase-insensitive Gaussian
channels.

5.3 Strong converse for all phase-insensitive Gaussian channels

In the following, we prove that a strong converse theorem holds for the capacity of all phase-
insensitive Gaussian channels when imposing a maximum photon-number constraint. This
means that if we demand that the average code density operator for the codewords, which
are used for transmission of classical messages, is constrained to have a large shadow onto
a subspace with photon number no larger than some fixed amount, then the probability of
successfully decoding the message converges to zero in the limit of many channel uses if the
rate R of communication exceeds the classical capacity of these channels.

We first present the arguments to prove the strong converse theorem for a noiseless qubit
channel [175, 176], illustrating a simple approach for establishing the strong converse property
of classical capacity.

Suppose that any scheme for classical communication over n noiseless qubit channels
consists of an encoding of the message m as a quantum state on n qubits, followed by a
decoding POVM {Λm}. The rate of the code is R = (log2M)/n, and the success probability
for correctly recovering the message by a receiver is given by

1

M

∑
m

Tr{Λmρm} ≤
1

M

∑
m

Tr{Λm}‖ρm‖∞ (5.29)

≤ 1

M

∑
m

Tr{Λm} (5.30)

= M−12n (5.31)

= 2−n(R−1), (5.32)

where ‖ρm‖∞ is the infinity norm of ρm. We have used the facts that the maximum eigenvalue
corresponding to ‖ρm‖∞ is one, and

∑
m Λm = I⊗n for the POVM measurements {Λm}. The

above argument suggests that for a rate R > 1, the average success probability of any
communication scheme decreases exponentially fast to zero with increasing n.

The above proof for the noiseless qubit channel highlights an interplay of the success
probability of decoding with the strong converse rate, dimension of the encoding space, and
the purity of the channel in terms of the infinity-norm of the output states of the channel.
Our proof of the strong converse theorem for the phase-insensitive channels can be regarded
as a generalization of these arguments but also invites comparison with the proof of the
strong converse for covariant channels with additive minimum output Rényi-entropy [175].
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5.3.1 Strong converse under the maximum photon number constraint

In the context of optical communication, suppose that the sender and receiver are allowed
access to many independent uses of a quantum channel. If we allow the signal states at
the input of the channel to have an arbitrarily large number of photons, then the classical
capacity of the channel would be infinite, which makes this case practically uninteresting.
Therefore, it is essential to restrict the average number of photons of the signal states per
channel use such that the mean number of photons in any codeword transmitted through
the channel should be no larger than some number NS ∈ [0,∞). This is known as the mean
photon number constraint and is commonly used in establishing the information-carrying
capacity of a given channel [147, 169, 155, 156].

However, following the same arguments as in [153] (and later in [158]), we can show that
the strong converse need not hold under such a mean photon number constraint for a phase-
insensitive Gaussian channel. So instead, we prove that the strong converse theorem holds
under a maximum photon number constraint on the number of photons in the input states.

Let ρm denote a codeword of any code for communication over a phase-insensitive Gaus-
sian channel P . The maximum photon number constraint that we impose on the codebook
is to require that the average code density operator 1

M

∑
m ρm (M is the total number of

messages) has a large shadow onto a subspace with photon number no larger than some
fixed amount nNS. Such a constraint on the channel inputs can be defined by introducing a
photon number cutoff projector ΠL that projects onto a subspace of n bosonic modes such
that the total photon number is no larger than L:

ΠL ≡
∑

a1,...,an:
∑
i ai≤L

|a1〉〈a1| ⊗ . . .⊗ |an〉〈an|, (5.33)

where |ai〉 is a photon number state of photon number ai. The rank of the above projector
ΠdnNSe has been shown to be never larger than 2n[g(NS)+δ0] (Lemma 3 in [153]), i.e.,

Tr
{

ΠdnNSe
}
≤ 2n[g(NS)+δ0], (5.34)

where δ0 ≥ 1
n
(log2 e + log2(1 + 1

NS
)), so that δ0 can be chosen arbitrarily small by taking n

large enough.
Mathematically, the maximum photon number constraint can then be written as

1

M

∑
m

Tr
{

ΠdnNSeρm
}
≥ 1− δ1(n), (5.35)

where δ1(n) is a function that decreases to zero as n increases. In fact, the coherent-state
encodings that attain the known capacities of the phase-insensitive channels do indeed satisfy
the maximum photon number constraint, with an exponentially decreasing δ1(n), if coherent
states with mean photon number per mode < NS − δ are used, with δ being a small positive
number (see Reference [153] for an argument along these lines).

The first important step in proving the strong converse is to show that if most of the
probability mass of the input state of the phase-insensitive channel P is in a subspace with
photon number no larger than nNS, then most of the probability mass of the channel output
is in a subspace with photon number no larger than nN ′S, where N ′S is the mean energy of
the output state.
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Lemma 3 Let ρ(n) denote a density operator on n modes that satisfies

Tr{ΠdnNSeρ(n)} ≥ 1− δ1(n),

where δ1(n) is defined in (5.35). Let P be a phase-insensitive Gaussian channel with param-
eters τ and ν as defined in (5.3). Then

Tr{ΠdnN ′S+δ2)eP⊗n(ρ(n))} ≥ 1− δ1(n)− 2
√
δ1(n)− δ3(n),

where N ′S = τNS + (τ + ν − 1) /2, P⊗n represents n instances of P that act on the den-
sity operator ρ(n), δ2 is an arbitrarily small positive constant, and δ3(n) is a function of n
decreasing to zero as n→∞.

Proof. The proof of this lemma is essentially the same as the proof of Lemma 1 of [158],
with some minor modifications. We include the details of it for completeness. We first recall
the structural decomposition in (5.13) for any phase-insensitive channel:

P(ρ) =
(
A0
G ◦ ET

)
(ρ),

i.e., that any phase-insensitive Gaussian channel can be realized as a concatenation of a
pure-loss channel ET of transmissivity T followed by a quantum-limited amplifier channel AG
with gain G, with τ = TG and ν = G (1− T ) +G− 1. Thus, a photon number state |k〉 〈k|
input to the phase-insensitive noise channel leads to an output of the following form:

P (|k〉 〈k|) =
k∑

m=0

p (m)A0
G (|m〉 〈m|) , (5.36)

where

p (m) =

(
k

m

)
Tm (1− T )k−m .

The quantum-limited amplifier channel has the following action on a photon number state
|m〉 [164]:

A0
G (|m〉 〈m|) =

∞∑
l=0

q (l|m) |l〉 〈l| ,

where the conditional probabilities q (l|m) are given by:

q (l|m) =

{
0 l < m

(1− µ2)
m+1

µ2(l−m)
(

l
l−m

)
l ≥ m

,

where µ = tanh r ∈ [0, 1], with r chosen such that G = cosh2 (r).
The conditional distribution q (l|m) has the two important properties of having finite

second moment and exponential decay with increasing photon number. The property of
exponential decay with increasing l follows from(

1− µ2
)m+1

µ2(l−m)

(
l

l −m

)
=
(
1− µ2

)m+1
µ−2m2−2 log2( 1

µ)l
(

l

l −m

)
≤
(
1− µ2

)m+1
µ−2m2−2 log2( 1

µ)l2lh2( l−ml )

=
(
1− µ2

)m+1
µ−2m2−l[2 log2( 1

µ)−h2( l−ml )].
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The inequality applies the bound
(
n
k

)
≤ 2nh2(k/n) (see (11.40) of [177]), where h2 (x) is the

binary entropy with the property that limx→1 h2 (x) = 0. Thus, for large enough l, it will

be the case that 2 log
(

1
µ

)
− h2

(
l−m
l

)
> 0, so that the conditional distribution q (l|m) has

exponential decay with increasing l. We can also then conclude that this distribution has a
finite second moment. It follows from (5.36) that

P (|k〉 〈k|) =
∞∑
l=0

[
k∑

m=0

p (m) q (l|m)

]
|l〉 〈l| . (5.37)

The eigenvalues above (i.e.,
∑k

m=0 p (m) q (l|m) ) represent a distribution over photon
number states at the output of the phase-insensitive channel P , which we can write as
a conditional probability distribution p (l|k) over l given the input with definite photon
number k. This probability distribution has its mean equal to τk + (τ + ν − 1) /2, since the
mean energy of the input state is k. Furthermore, this distribution inherits the properties of
having a finite second moment and an exponential decay to zero as l→∞.

For example, we can consider the thermal noise channel Eη,NB with the structural decom-
position given by (5.15)

Eη,NB(ρ) = (A0
(1−η)NB+1 ◦ Eη/((1−η)NB+1))(ρ).

The mean of the corresponding distribution for this channel when a state of definite photon
number k is input, following the above arguments, is equal to ηk + (1− η)NB.

We now suppose that the input state satisfies the maximum photon-number constraint
in (5.35), and apply the Gentle Measurement Lemma [149, 148] to obtain the following
inequality

Tr
{

ΠdnN ′S+δ2eP
⊗n (ρ(n)

)}
≥ Tr

{
ΠdnN ′S+δ2eP

⊗n (ΠdnNSeρ(n)ΠdnNSe
)}
− 2
√
δ1(n), (5.38)

where N ′S = τNS + (τ + ν − 1) /2. Since there is photodetection at the output (i.e., the
projector ΠdnηN ′S+δ2e is diagonal in the number basis), it suffices for us to consider the input

ΠdnNSeρ
(n)ΠdnNSe to be diagonal in the photon-number basis, and we write this as

ρ(n) =
∑

an:
∑
i ai≤dnNSe

p (an) |an〉 〈an| ,

where |an〉 represents strings of photon number states. We then find that (5.38) is equal to∑
an:
∑
i ai≤dnNSe

p (an) Tr
{(

ΠdnN ′S+δ2e
)
P⊗n (|an〉 〈an|)

}
− 2
√
δ1(n)

=
∑

an:
∑
i ai≤dnNSe

p (an)
∑

ln:
∑
i li≤dnN ′S+δ2e

p (ln|an)− 2
√
δ1(n), (5.39)

where the distribution p (ln|an) ≡
n∏
i=1

p (li|ai) with p (li|ai) coming from (5.37). In order to

obtain a lower bound on the expression in (5.39), we analyze the term∑
ln:
∑
i li≤dnN ′S+δ2e

p (ln|an) (5.40)
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on its own under the assumption that
∑

i ai ≤ dnNSe. Let Li|ai denote a conditional random
variable with distribution p (li|ai), and let Ln|an denote the sum random variable:

Ln|an ≡
∑
i

Li|ai,

so that the term
∑

ln:
∑
i li≤dnN ′S+δ2e p (ln|an) becomes∑

ln:
∑
i li≤dnN ′S+δ2e

p (ln|an) = Pr
{
Ln|an ≤ n(N ′S + δ2)

}
= Pr

{
Ln|an ≤ n (τNS + (τ + ν − 1) /2 + δ2)

}
(5.41)

≥ Pr

{
Ln|an ≤ n

(
τ

1

n

∑
i

ai + (τ + ν − 1) /2 + δ2

)}
, (5.42)

where (τ + ν − 1) /2 represents the mean number of noise photons injected by the channel,
and the inequality follows from the constraint

∑
i ai ≤ dnNSe. Since

E {Li|ai} = τai + (τ + ν − 1) /2,

it follows that

E
{
Ln|an

}
= n

(
τ

1

n

∑
i

ai + (τ + ν − 1) /2

)
,

and so the expression in (5.42) is the probability that a sum of independent random variables
deviates from its mean by no more than δ2. To obtain a bound on the probability in (5.42)
from below, we now follow the approach in [158] employing the truncation method (see
Section 2.1 of [178] for more details), in which each random variable Li|ai is split into two
parts:

(Li|ai)>T0
≡ (Li|ai) I ((Li|ai) > T0) ,

(Li|ai)≤T0
≡ (Li|ai) I ((Li|ai) ≤ T0) ,

where I (·) is the indicator function and T0 is a truncation parameter taken to be very large
(much larger than maxi ai, for example). We can then split the sum random variable into
two parts as well:

Ln|an =
(
Ln|an

)
>T0

+
(
Ln|an

)
≤T0

≡
∑
i

(Li|ai)>T0
+
∑
i

(Li|ai)≤T0
.

We can use the union bound to argue that

Pr
{
Ln|an ≥ E

{
Ln|an

}
+ nδ2

}
≤ Pr

{(
Ln|an

)
>T0
≥ E

{(
Ln|an

)
>T0

}
+ nδ2/2

}
+ Pr

{(
Ln|an

)
≤T0
≥ E

{(
Ln|an

)
≤T0

}
+ nδ2/2

}
. (5.43)

The idea from here is that for a random variable Li|ai with sufficient decay for large values,
we can bound the first probability for

(
Ln|an

)
>T0

from above by ε/δ2 for ε an arbitrarily small
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positive constant (made small by taking T0 larger) by employing the Markov inequality. We
then bound the second probability for

(
Ln|an

)
≤T0

using a Chernoff bound, since these random
variables are bounded. This latter bound has an exponential decay with increasing n due
to the use of a Chernoff bound. So, the argument is just to make ε arbitrarily small by
increasing the truncation parameter T0, and for n large enough, we obtain an exponential
convergence to zero. We point the reader to Section 2.1 of [178] for more details. By using
either approach, we arrive at the following bound:∑

ln:
∑
i li≤dnN ′S+δ2e

p (ln|an) ≥ 1− δ3(n),

where δ3(n) is a function decreasing to zero as n → ∞. Finally, we put this together with
Equation (5.39) to obtain

Tr
{

ΠdnN ′S+δ2eP
⊗n (ρ(n)

)}
≥

∑
an:
∑
i ai≤dnNSe

p (an)
∑

ln:
∑
i li≤dnN ′S+δ2e

p (ln|an)− 2
√
δ1(n)

≥ (1− δ1(n)) (1− δ3(n))− 2
√
δ1(n)

≥ 1− δ1(n)− δ3(n)− 2
√
δ1(n),

which completes the proof.

Let Λm denote a decoding POVM acting on the output space of n instances of the phase-
insensitive channel. In what follows, we prove the strong converse theorem for the classical
capacity of all phase-insensitive Gaussian channels.

Theorem 1 Let P be a phase-insensitive Gaussian channel with parameters τ and ν as
defined in (5.3). The average success probability psucc of any code for this channel satisfying
(5.35) is bounded as

psucc =
1

M

∑
m

Tr{ΛmP⊗n(ρm)} ≤ 2−nR2
n

[
g(N ′S)−Hα(P(|0〉〈0|))+δ2+

1
n(α−1)

log2(1/ε)

]
+ ε+ δ6(n),

(5.44)

where α > 1, ε ∈ (0, 1), N ′S = τNS + (τ + ν − 1) /2, P⊗n denotes n instances of P, and

δ6(n) = 2
√
δ1(n) + 2

√
δ1(n) + δ3(n). δ1(n) is defined in (5.35), δ2 is an arbitrarily small

positive constant and δ3(n) is a function decreasing with n (both defined in Lemma 3).

Proof. This proof is very similar to the proof of Theorem 2 of [158], with the exception
that we can now invoke the main result of [157] (that the minimum output entropy for Rényi
entropies of arbitrary order is attained by the vacuum state input for any phase-insensitive
Gaussian channel).
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Let us consider the success probability of any code satisfying the maximum photon-
number constraint (5.35). The average success probability can be written as:

1

M

∑
m

Tr{ΛmP⊗n(ρm)} ≤ 1

M

∑
m

Tr{ΛmΠdnN ′SeP
⊗n(ρm)ΠdnN ′Se}

+
1

M

∑
m

∥∥ΠdnN ′SeP
⊗n(ρm)ΠdnN ′Se − P

⊗n(ρm)
∥∥

1

≤ 1

M

∑
m

Tr{ΛmΠdnN ′SeP
⊗n(ρm)ΠdnN ′Se}

+ 2

√
δ1(n) + 2

√
δ1(n) + δ3(n).

The first inequality is a special case of the inequality

Tr{Λσ} ≤ Tr{Λρ}+ ‖ρ− σ‖1 , (5.45)

which holds for 0 ≤ Λ ≤ I, ρ, σ ≥ 0, and Tr{ρ},Tr{σ} ≤ 1. The second inequality is obtained
by invoking Lemma 3 and the Gentle Measurement Lemma [149, 148] for ensembles.

Note that in the above, the second term vanishes as n→∞; hence it suffices to focus on
the first term, which by cyclicity of trace yields

1

M

∑
m

Tr{ΛmΠdnN ′SeP
⊗n(ρm)ΠdnN ′Se} =

1

M

∑
m

Tr{ΠdnN ′SeΛmΠdnN ′SeP
⊗n(ρm)}. (5.46)

At this point, we consider the set of all states σ̃m that are ε-close in trace distance to each
output of the phase-insensitive channel P⊗n (ρm) (let us denote this set by Bε (P⊗n (ρm)).
This consideration will allow us to relate the success probability to the smooth min-entropy.
We find the following upper bound on (5.46):

1

M

∑
m

Tr{ΠdnN ′SeΛmΠdnN ′SeP
⊗n(ρm)} ≤ 1

M

∑
m

Tr{ΠdnN ′SeΛmΠdnN ′Seσ̃m}+ ε

≤ 1

M

∑
m

Tr{ΠdnN ′SeΛmΠdnN ′Se} ‖σ̃m‖∞ + ε.

We can now optimize over all of the states σ̃m that are ε-close to P⊗n (ρm), leading to the
tightest upper bound on the success probability

1

M

∑
m

Tr{ΠdnN ′SeΛmΠdnN ′SeP
⊗n(ρm)} (5.47)

≤ 1

M

∑
m

Tr{ΠdnN ′SeΛmΠdnN ′Se} inf
σ̃m∈Bε(P⊗n(ρm))

‖σ̃m‖∞ + ε. (5.48)

Since the quantity inf σ̃m∈Bε(P⊗n(ρm)) ‖σ̃m‖∞ is related to the smooth min-entropy via

inf
σ̃m∈Bε(P⊗n(ρm))

‖σ̃m‖∞ = 2−H
ε
min(P⊗n(ρm)),
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we can get from the upper bound in (5.48)

1

M

∑
m

Tr{ΠdnN ′SeΛmΠdnN ′Se}2
−Hε

min(P⊗n(ρm)) + ε

≤ 1

M

∑
m

Tr{ΠdnN ′SeΛmΠdnN ′Se} sup
ρ

2−H
ε
min(P⊗n(ρ)) + ε

=
1

M
2− infρHε

min(P⊗n(ρ))Tr{ΠdnN ′Se}+ ε

≤ 2−nR2− infρHε
min(P⊗n(ρ))2n[g(N

′
S)+δ] + ε. (5.49)

The first inequality follows by taking a supremum over all input states. The first equality
follows because

∑
m Λm = I for the set of decoding POVM measurements {Λm}, and the

second inequality is a result of the upper bound on the rank of the photon number cutoff
projector in (5.34). We have also used the fact that the rate of the channel is expressed as
R = (log2M)/n, where M is the number of messages.

Observe that the success probability is now related to the smooth min-entropy, and we
can exploit the following relation between smooth min-entropy and the Rényi entropies for
α > 1 [174]:

Hε
min (ω) ≥ Hα (ω)− 1

α− 1
log2

(
1

ε

)
.

Using the above inequality and the fact that the “strong” Gaussian optimizer conjecture has
been proven for the Rényi entropies of all orders [157] (recall (5.25)), we get that

inf
ρ
Hε

min

(
P⊗n(ρ)

)
≥ n

[
Hα (P(|0〉 〈0|))− 1

n (α− 1)
log2

(
1

ε

)]
. (5.50)

The first term on the right hand side is a result of the fact that the vacuum state minimizes
the Rényi entropy of all orders at the output of a phase-insensitive Gaussian channel.

By tuning the parameters α and ε appropriately, we recover the strong converse theorem:

Corollary 1 (Strong converse) Let P be a phase-insensitive Gaussian channel with pa-
rameters τ and ν as defined in (5.3). The average success probability psucc of any code for
this channel satisfying (5.35) is bounded as

psucc =
1

M

∑
m

Tr{ΛmP⊗n(ρm)} ≤ 2−nR2n[g(N
′
S)−g(N ′B)+δ2+δ5/δ4+δ4C(N ′B)] + 2−nδ5 + δ6(n),

(5.51)

where N ′S = τNS + (τ + ν − 1) /2, N ′B ≡ (τ + ν − 1) /2, P⊗n denotes n instances of P, and

δ6(n) = 2
√
δ1(n) + 2

√
δ1(n) + δ3(n). δ1(n) is defined in (5.35), δ2 is an arbitrarily small

positive constant and δ3(n) is a function decreasing with n (both defined in Lemma 3), δ4 and
δ5 are arbitrarily small positive constants such that δ5/δ4 is arbitrarily small, and C (N ′B) is
a function of N ′B only. Thus, for any rate R > g (N ′S) − g (N ′B), it is possible to choose the
parameters such that the success probability of any family of codes satisfying (5.35) decreases
to zero in the limit of large n.

80



Proof. In Theorem 1, we can pick α = 1 + δ4 and ε = 2−nδ5 , with δ5 > 0 much smaller than
δ4 > 0 such that δ5/δ4 is arbitrarily small, and the terms on the right hand side in (5.50)
simplify to

n

[
H1+δ4 (P(|0〉 〈0|))− δ5

δ4

]
.

The output state P(|0〉 〈0|) for the phase-insensitive channel with the vacuum state as the
input is a thermal state with mean photon number N ′B ≡ (τ + ν − 1) /2. The quantum Rényi
entropy of order α > 1 of a thermal state with mean photon number N ′B is given by [167]

log2 [(N ′B + 1)α −N ′αB ]

α− 1
. (5.52)

Lemma 6.3 of [173] gives us the following inequality for a general state (for α close enough
to one):

Hα (ρ) ≥ H (ρ)− 4 (α− 1) (log2 v)2 ,

where
v ≡ 2−

1
2
H3/2(ρ) + 2

1
2
H1/2(ρ) + 1.

For a thermal state, we find using (5.52) that

H3/2 (ρ) = 2 log2

[
(N ′B + 1)

3/2 −N ′3/2B

]
,

H1/2 (ρ) = −2 log2

[
(N ′B + 1)

1/2 −N ′1/2B

]
,

so that

v (N ′B) =
[
(N ′B + 1)

3/2 −N ′3/2B

]2

+
[
(N ′B + 1)

1/2 −N ′1/2B

]−2

+ 1.

We then find that

H1+δ4 (P(|0〉 〈0|)) ≥ H (P(|0〉 〈0|))− δ4C (N ′B)

= g (N ′B)− δ4C (N ′B) ,

where
C (N ′B) ≡ 4 [log2 v (N ′B)]

2
.

We now recover the bound in the statement of the corollary.
Finally, we recall the capacities of the phase-insensitive channels in (5.17), (5.18), and

(5.19). Comparing them with the statement of Corollary 1, we can conclude that these
expressions indeed represent strong converse rates for these respective channels, since the
success probability when communicating above these rates decreases to zero in the limit
n→∞.

Our results proving the strong converse of all phase-insensitive channels thus establishes
the capacity as a sharp transition between two regimes—one which is an error-free regime for
communication rates below the capacity, and the other in which the probability of correctly
decoding a classical message converges exponentially fast to zero if the communication rate
exceeds the classical capacity.
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5.4 Conclusion

In this chapter, we discussed various phase-insensitive Gaussian channels that represent phys-
ical noise models which are relevant for optical quantum communication, including lossy op-
tical fibers, amplifier and free-space communication. In the context of transmission of the
classical messages through these noisy quantum channels, we established a proof of the strong
converse theorem for these channels by relating the success probability of any code with its
rate of data transmission, the effective dimension of the channel output space, and the purity
of the channel as quantified by the minimum output entropy. For the communication rate
exceeding the capacity, the success probability of correctly decoding classical information has
been shown to asymptotically converge to zero in the limit of many channel uses.

Our result thus establishes the capacity of these channels as a very sharp dividing line
between possible and impossible communication rates through these channels and opens up
the path to applications, one of which could be to prove security of the noisy bounded storage
model of cryptography for optical links [154] for continuous-variable systems. The results
presented in this chapter can also be easily extended to the more general case of multimode
bosonic Gaussian channels [155]. Another area of research where our result might be extended
is in the setting of network information theory—for example, one might consider establish-
ing a strong converse for the classical capacity of the multiple-access bosonic channels, in
which two or more senders communicate to a common receiver over a shared communication
channel [179].
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[112] M. Möttönen, R. de Sousa, J. Zhang, and K. Whaley, “High-fidelity one-qubit opera-
tions under random telegraph noise”, Physical Review A 73 (2006), no. 2, 022332.
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[174] R. Renner and S. Wolf, “Smooth Rényi entropy and applications”, in “Proceedings of
the 2007 International Symposium on Information Theory”, p. 232. 2004.

[175] R. Koenig and S. Wehner, “A Strong Converse for Classical Channel Coding Using En-
tangled Inputs”, Physical Review Letters 103 August (2009) 070504, arXiv:0903.2838.

[176] A. Nayak, “Optimal lower bounds for quantum automata and random access codes”,
in “Proceedings of the 40th Annual Symposium on Foundations of Computer Science”,
pp. 369–376. New York City, NY, USA, October 1999. arXiv:quant-ph/9904093.

[177] T. M. Cover and J. A. Thomas, “Elements of Information Theory”, Wiley-Interscience,
2nd ed., 2006.

[178] T. Tao, “Topics in random matrix theory”, American Mathematical Society,
2012. see also http://terrytao.wordpress.com/2010/01/03/254a-notes-1-concentration-
of-measure.

[179] B. Yen and J. Shapiro, “Multiple-access bosonic communications”, Physical Review A
72 (2005), no. 6, 062312.

94



Appendix A:
Effects of both photon loss and phase
noise on the sensitivity and visibility
2

In this appendix, we provide detailed calculations of the phase sensitivity and the visibility
using the parity detection technique when both photon loss and phase fluctuations are present
in the interferometric setup discussed in Chapter 2.

We consider the N00N and mm′ states, and to model photon loss from the system into
the environment, we add two fictitious beam splitters are added before stage I of our previous
configuration in Chapter 2 (See Fig 2.5). The two fictitious beam splitters have transmittance
Ta and Tb, and reflectance Ra = 1 − Ta and Rb = 1 − Tb, respectively. General Ta and Tb
are used in the following derivation of the density matrix, but later we assume Ra = 0 to
mimic the local path which is well-isolated from the environment. The photon loss entangles
the system with the environment and leaves the system in a mixed state. For a general mm′

input state, the density matrix of the system at stage II can be easily deducted from the
Reference [15] as

ρmm′(t) =
m∑
k=0

m′∑
k′=0

{
|α|2d1(t)|k, k′〉〈k, k′|+ |β|2d2(t)|k′, k〉〈k′, k|

}
(53)

+
m′∑
k=0

m′∑
k′=0

{
αβ∗d3(t)|∆m+ k, k′〉〈k,∆m+ k′|

+α∗βd4(t)|k′,∆m+ k〉〈∆m+ k′, k|
}
.

In the above, α = eim
′φ/
√

2, β = eimφ/
√

2 as before, and the coefficients di(i = 1, 2, 3, 4) are
defined in Reference [15]. m and m′ are the number of photons injected into the two modes
of the interferometer.

Given the system undergoes pure dephasing after stage II, we may use previous result
and show that the evolution of the density matrix ρmm′(t) is

ρ̇mm′(t) =−∆m2Γ×
m′∑

k,k′=0

{
αβ∗d3(t)|∆m+ k, k′〉〈k,∆m+ k′|+ α∗βd4(t)|k′,∆m+ k〉〈∆m+ k′, k|

}
.

2Part of this appendix previously appeared in B. Roy Bardhan, K. Jiang, and J. P. Dowling, Physical
Review A 88, 023857 (2013) (Copyright(2013) American Physical Society) [22]. It is reprinted by permission
of the American Physical Society. See Appendix C for the copyright permission from the publisher.
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From the above, it is then easy to see that

d1(t) = d1(0),

d2(t) = d2(0),

d3(t) = e−∆m2ΓLd3(0),

d4(t) = e−∆m2ΓLd4(0). (54)

Similar to Reference [15], we define

K1(t) =
m′∑
k=0

(d1(k, k, t) + d2(k, k, t)) ,

K2(t) =
m′∑
k=0

(d3(k, k, t) + d4(k, k, t)) , (55)

and it is straightforward to show that K1(t) = K1(0) and K2(t) = K2(0)e−∆m2ΓL. From
Equations (2.10) in Chapter 2 and (53), the parity signal of a mm′ state under both photon
loss and phase fluctuation can be shown to be

〈Π̂mm′〉 = K1(t) + (−1)m+m′K2(t) cos(∆mφ). (56)

This gives rise to the phase-sensitivity for the parity detection for a mm′ state under both
photon-loss and phase fluctuations as

δφmm′ =

√
1− {K1(t) + (−1)m+m′K2(t) cos(∆mφ)}2

{∆mK2(t) sin(∆mφ)}2 , (57)

where linear error propagation method in Equation (12) is employed. Notice that when loss
is negligible this sensitivity recovers Equation (2.13) in Chapter 2.

A relative visibility with respect to both loss and phase fluctuations can be defined as

Vmm′ =
〈Π̂mm′〉max − 〈Π̂mm′〉min

〈Π̂mm′(Γ = 0, L = 0)〉max − 〈Π̂mm′(Γ = 0, L = 0)〉min

,

= K2(0)e−∆m2ΓL (58)

where L = Rb characterizes the loss in the upper path and Ra is set to be zero as aforemen-
tioned. In the limit of L→ 0, K2(0) approaches one and the visibility reduces to the previous
result. Notice the dephasing only affects the off-diagonal terms of the density matrix while
loss affects both diagonal and off-diagonal terms. However, because of the linearity of the
Mach-Zehnder interferometer, the effect from photon loss is independent of that from phase
fluctuation, as expected. All results in this section apply to N00N states with N = m and
m′ = 0.
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Appendix B:
Structural decompositions of the bosonic
Gaussian channels 3

Here we review, for completeness, in detail an argument for the structural decompositions
of the noisy bosonic communication channels using the symplectic formalism [146, 160]. In
this formalism, the action of a Gaussian channel is characterized by two matrices X and Y
which act as follows on covariance matrix Γ

Γ −→ Γ′ = XΓXT + Y, (59)

where XT is the transpose of the matrix X. Such a map is called as the symplectic map
which applies to any Gaussian channel. Below we describe the symplectic transformations
for each of the channels Nn̄, Eη,0, AG, and Eη,NB :

• The additive noise channel Nn̄ with variance n̄ is given by

X = I and Y = 2n̄ I, (60)

where I represents the identity matrix.

• The pure-loss channel Eη,0 with transmissivity η < 1 is given by

X =
√
η I and Y = (1− η) I. (61)

• The thermal noise channel Eη,NB with transmissivity η < 1 and noise photon number
NB is given by

X =
√
η I and Y = (1− η)(2NB + 1) I. (62)

• The amplifier channel AG with gain G > 1 is given by

X =
√
G I and Y = (G− 1) I. (63)

We now show that the additive noise channel Nn̄ can be regarded as a pure-loss bosonic
channel Eη,0 with η = 1/(n̄ + 1) followed by an amplifier channel AG with G = (n̄ + 1). To
do so, we substitute

X1 =
√

1/(n̄+ 1)I,
Y1 = (1− (1/(n̄+ 1)) I,

X2 =
√

(n̄+ 1) I,
Y2 = n̄ I.

3This appendix previously appeared in B. Roy Bardhan and Mark M. Wilde, Physical Review A 89,
022302 (2014) (Copyright(2014) American Physical Society) [158]. It has been updated and adapted to
the disseration format by permission of the American Physical Society. See Appendix C for the copyright
permission from the publisher.
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in (61) and (63), where (X1, Y1) and (X2, Y2) correspond to the pure-loss bosonic channel
Eη,0 and the amplifier channel AG, respectively. The covariance matrix Γ12 for the composite
map (An̄+1 ◦ E 1

n̄+1
,0) is then obtained as Γ12 = X2(X1ΓXT

1 + Y1)XT
2 + Y2 = Γ I+ 2n̄ I, which

represents the additive noise channel Nn̄ [(60)]. Thus, we recover the decomposition in (5.14)

Nn̄(ρ) = (An̄+1 ◦ E 1
n̄+1

,0)(ρ) .

Following a similar approach for the thermal noise channel Eη,NB , we can find the struc-
tural decompositions

Eη,NB(ρ) =
(
N(1−η)NB ◦ Eη,0

)
(ρ),

Eη,NB(ρ) = (AG ◦ Eη,0) (ρ).
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