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MODULAR PERVERSE SHEAVES ON FLAG VARIETIES III:
POSITIVITY CONDITIONS

PRAMOD N. ACHAR AND SIMON RICHE

ABSTRACT. We further develop the general theory of the “mixed modular
derived category” introduced by the authors in a previous paper in this series.
We then use it to study positivity and Q-Koszulity phenomena on flag varieties.

1. INTRODUCTION

1.1. The category P(p)(%,C) of Bruhat-constructible perverse C-sheaves on the
flag variety 2 of a complex connected reductive algebraic group G has been exten-
sively studied for decades, with much of the motivation coming from applications to
the representation theory of complex semisimple Lie algebras. Two salient features
of this category are as follows :

(1)c The stalks and costalks of the simple perverse sheaves ZC,,(C) enjoy a

parity-vanishing property (see [KL]).

(2)c The category Pp)(#,C) admits a Koszul grading (see [BGS]).
It was long expected that the obvious analogues of statements (1)¢ and (2)¢ would
also hold for modular perverse sheaves (i.e. for perverse sheaves with coefficients in a
finite field IF of characteristic £ > 0) under mild restrictions on ¢, with consequences
for the representation theory of algebraic groups; see e.g. [So]. But Williamson’s
work [Wi] implies that both of these statements fail in a large class of examples.

The next question one may want to consider is then: what could take the place
of (1)c and (2)¢ in the setting of modular perverse sheaves? Fix a finite extension
K of Q; whose ring of integers O has F as residue field. In this paper, we consider
the following statements as possible substitutes for those above:

(1)r The stalks of the O-perverse sheaves ZC,,(Q) are torsion-free. Equivalently,
the stalks of the F-perverse sheaves F @ ZC,,(0) enjoy a parity-vanishing
property.

(2)r The category P p)(%,F) admits a standard Q-Koszul grading.

The definition of a standard Q-Koszul category—a generalization of the ordinary
Koszul property, due to Parshall-Scott [PS1]—will be recalled in §2.5. The status
of these conditions in various examples will be discussed at the end of §1.2.

One of the main results of this paper is that statements (1) and (2)r are nearly
equivalent to each other. Statement (1)r may be compared to (and was inspired
by) the Mirkovié—Vilonen conjecture [MV] (now a theorem [ARd, MR]), which as-
serts that spherical ZC-sheaves on the affine Grassmannian have torsion-free stalks.
Statement (2)r is closely related to certain conjectures of Cline, Parshall, and
Scott [CPS, PS1] on representations of algebraic groups.

P.A. was supported by NSF Grant No. DMS-1001594. S.R. was supported by ANR Grants
No. ANR-09-JCJC-0102-01, ANR-2010-BLAN-110-02 and ANR-13-BS01-0001-01.
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2 PRAMOD N. ACHAR AND SIMON RICHE

1.2. Mixed modular perverse sheaves. In the characteristic zero case, state-
ments (1)c and (2)¢ are best understood in the framework of mixed Q,-sheaves.
In [AR3] we defined and studied a replacement for these objects in the modular
context (when ¢ is good for G). More precisely, for E = K, O, or F we defined a
triangulated category D?};’)‘(%’, E), endowed with a “Tate twist” (1) and a “perverse
t-structure” whose heart we denote by PE’E’;(%, E). This category is also endowed
with a t-exact “forgetful” functor D?g’)‘(f%’, E) — D‘()B) (B,E), where the usual
Bruhat-constructible derived category D](DB) (AB,E) is endowed with the usual per-
verse t-structure. The main tool in this construction is the category Parity g, (#,E)
of parity complexes on 4 in the sense of Juteau-Mautner—Williamson [JMW]. The
indecomposable objects in the latter category are naturally parametrized by W x Z;
we denote as usual by &, the object associated with (w,0).

The category P?g’)‘(f@, F) is a graded quasihereditary category, and can be consid-
ered a “graded version” of the category P p)(#,F). The analogue of this category
when F is replaced by K can be identified with the category studied in [BGS, §4.4],
and is known to be Koszul (and even standard Koszul). One might wonder if the
category P(py(#,F) enjoys a similar property, or some weaker analogues. The main
theme of this paper is to relate these properties to properties of the usual perverse
sheaves on Z or the flag variety % of the Langlands dual reductive group. More
precisely, we consider the following four properties:

(1) The category P’(’g’)‘(@,lﬁ‘) is positively graded.

(2) The category P{E}(%,F) is standard @-Koszul.

(3) The category P?}Bi’)‘(%ﬂﬁ‘) is metameric.

(4) The category PE“&’)‘(,%, F) is standard Koszul.
Here, condition (1) is a natural condition defined and studied in §2.2. As explained
above, condition (2)—which is stronger than (1)—was introduced by Parshall-
Scott [PS1]; see §2.5. Condition (3)—which is also stronger than (1) but unrelated
to (2) a priori—is a technical condition defined and studied in §2.3. Condition (4) is
the standard condition studied e.g. in [ADL, Maz]; see also [BGS]. This condition
is stronger than (3) and (2).

Our main result can be stated as follows. (Here, Ew, resp. ICy, is the parity

sheaf, resp. ZC-sheaf on 2 naturally associated with w. This statement combines
parts of Theorems 5.1, 5.2, and 5.5.)

Theorem. Assume that ¢ is good for G.
e following conditions are equivalent:
1) The followi diti wal
(a) The category P?B’)‘(%, F) is positively graded.
(b) For all w € W, the parity sheaf E,(F) on P is perverse.
(2) The following conditions are equivalent:
a e category PMX (A, F) is metameric.
Th PiE) (%, F
(b) The category P?g’)‘(%, F) is standard Q-Koszul.
(¢) Forallw e W, the parity sheaf &, (TF) is perverse, and the Q-perverse
sheaf IC,(Q) on & has torsion-free stalks.
e following conditions are equivalent:
3) The followi diti wal
(a) The category P?‘é’)‘(%’, F) is standard Koszul.
(b) For allw € W we have &,(F) = ZC,(F).

ﬂigﬁbrp&-publication version of this article, which may differ from the final published version. Copyrigiht réétric’tiorils’may apbl)}.



MODULAR PERVERSE SHEAVES ON FLAG VARIETIES III 3

(¢) For all w € W, the O-perverse sheaf ZC,,(Q) on P has torsion-free
stalks and costalks.
Moreover, conditions (3a)—(3c) hold if and only if the analogous statements
for the Langlands dual group hold.

In this theorem, part (1) is an immediate consequence of the results of [AR3].
Part (3) is also not difficult to prove. However, as noted earlier, Williamson [Wi]
(with Kontorovich and McNamara) has exhibited counterexamples to condition (3c)
in which the primes at which there is torsion grow exponentially in terms of the
rank.

Part (2) of the theorem is the most interesting and delicate case, and its proof re-
quires the introduction of new tools. Williamson has informed us that condition (2¢)
holds for G = GL(n) with n < 9 in all characteristics. His counterexamples to (3c)
all involve torsion only in the costalks of the ZC,,(Q), not in their stalks. Thus, as
of this writing!, there are no known counterexamples to the conditions in part (2).

1.3. Weights. To prove part (2) of the theorem above, we introduce a formal-
ism which plays a role similar to Deligne’s theory of weights for mixed Q,-perverse
sheaves. (However, it is much less powerful than Deligne’s theory: in particu-
lar, the existence of a “weight filtration” on mixed modular perverse sheaves is
not automatic.) More precisely, in §3.2 we define what it means for an object of
D?g’)‘(ﬂ, E) to have weights < n or > n, and we prove that the !- and *-pullback and
pushforward functors associated with locally closed inclusions of unions of Bruhat
cells enjoy the same stability properties for this formalism as in the case of mixed
Qy-sheaves (cf. [BBD, Stabilités 5.1.14]).

Next, in §3.3, we define a baric structure on the category D?g’)‘(%’,E), which
serves as a replacement for the weight truncation functors on the derived category
of mixed Q-sheaves as defined by Morel [Mo, §4.1] (see also [AT, §3.3] for de-
tails and references). In §3.4, we use this baric structure to define a new, smaller
abelian category PE’B) (B,E) C D?;’)‘ (#,E). This is not the heart of a t-structure on
D?g’)‘(%, [E); for instance, when E = Q,, it is the category consisting of semisimple
pure perverse sheaves of weight 0. The category PE’B) (A, F) need not be semisim-
ple, but it is always quasihereditary, so one may speak of standard and costandard
objects in PE’B) (#B,F). These objects are parametrized by W, and the standard,
resp. costandard, object associated with w is denoted AS (F), resp. V¢ (F). A care-
ful study of the structure of the A¢ (F), carried out in §4.2, is the glue linking the
various assertions in part (2) of the theorem.

1.4. Interpreting the AS(F). In the course of the proof, we will see that if
P(5)(#,F) is positively graded, then AZ,(F) = F @~ TC™*(0). This property is
analogous to the fact [MV, §8] that in the category of spherical perverse sheaves
on the affine Grassmannian, standard objects are of the form F @ ZC,(0). Of
course, in the setting of [MV], there is a representation-theoretic interpretation for
these objects as well: they correspond to Weyl modules under the geometric Satake
equivalence.

lSince this paper appeared in preprint form, the situation has changed. We learned in March
2016 that Libedinsky and Williamson have found counterexamples to (2¢) in GL(15) (and a few
other cases) in characteristic 2.

ﬂigﬁbrp&-publication version of this article, which may differ from the final published version. Copyrigiht réétric’tiorils’may apbl)}.



4 PRAMOD N. ACHAR AND SIMON RICHE

If one hopes to prove that the conditions in part (2) of the theorem are actually
true, it will likely be useful to find a representation-theoretic interpretation of the
A (F). One candidate is the class of reduced standard modules introduced by Cline—
Parshall-Scott [CPS]. These are certain representations of an algebraic group,
obtained by modular reduction of irreducible quantum group representations. It is
likely that under the equivalence of [AR2, Theorem 2.4], reduced standard modules
correspond to objects of the form F ®@% ZC,,(Q).

With this in mind, condition (2a) should be compared to [CPS, Conjecture 6.5],
which says that standard modules admit a reduced standard filtration. Similarly,
condition (2c) should be compared to [CPS, Conjecture 6.2], which says that over
O, the Ext-groups from a reduced standard module to a costandard module are
torsion-free. (See [PS1, PS2] for other results about standard Q-Koszulity in the
context of representations of algebraic groups.)

There are further parallels between P?p, (#,TF) and the affine Grassmannian that

may lead to future insights. We have already noted that condition (2¢) resembles
the Mirkovi¢—Vilonen conjecture. In fact, a version of the metameric property
(see [BK, Corollary 5.1.13]) plays a role in the proof of that conjecture. Separately,
the conditions in part (2) imply that the &, (F) are precisely the tilting objects in
P‘(”B) (%,TF). This is similar to the main result of [JMW2], which relates spherical
parity sheaves to tilting modules via the geometric Satake equivalence.
1.5. Acknowledgements. We thank Geordie Williamson for stimulating discus-
sions. We are also grateful to the referee for an extremely careful reading of the
paper that has led to numerous improvements, including the addition of an appen-
dix with worked-out examples.

1.6. Contents. Section 2 contains general results on positively graded quasihered-
itary categories, including metameric and standard @-Koszul categories. In Sec-
tions 3 and 4, we work in the general setting of a stratified variety satisfying the
assumptions of [AR3, §§2-3]. These sections develop the theory of weights for
D*(X,F), and contain the definition of P%, (X, F). In Section 5 we concentrate
on the case of flag varieties, and prove our main theorems.

Finally, Appendix A discusses a number of explicit examples of mixed perverse
sheaves, weights, and baric truncation functors. The examples come from the flag
varieties for SLy and SOs.

2. POSITIVITY CONDITIONS FOR GRADED QUASIHEREDITARY CATEGORIES

Throughout this section, k will be a field, and A will be a finite-length k-linear
abelian category.

2.1. Graded quasihereditary categories. We begin by recalling the definition
of graded quasihereditary categories. We refer to [AR3, Appendix A] for reminders
on the main properties of these categories.

Assume A is equipped with an automorphism (1) : A — A. Let Irr(A) be the
set of isomorphism classes of irreducible objects of A, and let . = Irr(.A) /Z, where
n € Z acts on Irr(A) by (n). Assume that .# is equipped with a partial order <, and
that for each s € .7, we have a fixed representative simple object L&". Assume also
we are given, for any s € .%, objects A8 and V&', and morphisms A&" — L& and
L — V&, For J C ., we denote by Az the Serre subcategory of A generated

ﬂigﬁbrpae-publication version of this article, which may differ from the final published version. Copyrigiht réétric’tiorils’may apbl)}.



MODULAR PERVERSE SHEAVES ON FLAG VARIETIES III 5

by the objects L§'(n) for t € .7 and n € Z. We write A<, for Agec <5}, and
similarly for A.

Definition 2.1. The category A (with the data above) is said to be graded quasi-
hereditary if the following conditions hold:

(1) The set . is finite.
(2) For each s € ., we have

Hom(LE', L8 (n) = {k S
0 otherwise.
(3) The kernel of A% — L& and the cokernel of L& — V&' belong to Acs.
(4) For any closed subset . C . (in the order topology), if s € Z is maximal,
then A&" — L&' is a projective cover in Az, and L& — V& is an injective
envelope in Az.
(5) We have Ext?(A#, V& (n)) = 0 for all 5, € . and n € Z.

Recall (see [AR3, Theorem A.3]) that if A is graded quasihereditary then it
has enough projective objects, and that each projective object admits a standard
filtration, i.e. a filtration with subquotients of the form A$'(n) (t € 7, n € Z).
Moreover, if we denote by P&" the projective cover of L&', then a graded form of
the reciprocity formula holds:

(2.1) (PE: AF () = [VE () : LT,

where the left-hand side denotes the multiplicity of A¥ (n) in any standard filtration
of P&, and the right-hand side denotes the usual multiplicity as a composition
factor. Similar claims hold for injective objects.
Below we will also consider some (ungraded) quasihereditary categories: these
are categories satisfying obvious analogues of the conditions in Definition 2.1.
Later we will need the following properties.

Lemma 2.2. Let F C .7 be a closed subset.

(1) The subcategory Ag C A is a graded quasihereditary category, with stan-
dard (resp. costandard) objects A¥" (resp. V§') for t € F. Moreover, the
functor 17 : DP Ay — DPA induced by the inclusion Ay C A is fully
faithful.

(2) The Serre quotient A/ Az is a graded quasihereditary category for the order
on & 7 obtained by restriction from the order on .. The standard
(resp. costandard) objects are the images in the quotient of the objects A8
(resp. V&) fors € /N T.

(3) The natural functor D®(A)/D(Az) — D®(A/Az) (where the left-hand
side is the Verdier quotient) is an equivalence. Moreover, the functors o :
DP(A) — DP(A/Az) and vz admit left and right adjoints, denoted 1%,
HLg, Lg, LLg, which satisfy

(2.2) 5 oll7(AF) =AY, TS olly (VE) = VE

and such that, for any M in DP(A), the adjunction morphisms induce
functorial triangles

L BN 5 M TR M Y mLlaM o M o epdom B

ﬂigﬁbrp&-publication version of this article, which may differ from the final published version. Copyrigiht réétric’tiorils’may apbl)}.



6 PRAMOD N. ACHAR AND SIMON RICHE

Proof. (1) Tt is clear that A4 satisfies the first four conditions in Definition 2.1.
To check that it satisfies the fifth condition, one simply observes that the natural
morphism Ext? | (A8, V¥ (n)) — Ext (A%, V' (n)) is injective for s,t € 7, n €
Z, see e.g. [BGS, Lemma 3.2.3]. Since the second space is trivial by assumption,
the first one is trivial also.

Now it follows from the definitions that the category DPAg is generated (as a
triangulated category) by the objects A¥'(n) for t € 7 and n € Z, as well as by
the objects V§"(n) for t €  and n € Z. Hence, by a standard argument, to prove
that ¢4 is fully faithful, it is enough to prove that for s,t € 7 and k,n € Z the
natural morphism

Extly, (A%, V' (n)) — Exty (A%, Vi (n))
is an isomorphism. However in both categories A and A4 we have

k ifs=t, k=n=0;

0 otherwise,

Ext" (A%, V¥ (n) = {

see e.g. [AR3, Equation (A.1)]. Hence this claim is clear.

(2) It is clear that the quotient A/Ag satisfies conditions (1), (2), and (3) of
Definition 2.1. To check that it satisfies condition (4), we denote by 77 : A — A~
the quotient morphism. Then one can easily check that if s € . \ .7, for any M
in A the morphisms

Hom 4 (A", M) — Hom 4 4, (77 (AS"), 7 (M),
Hom4 (M, VE") — Homy 4, (17 (M), 77 (VE))

induced by 7z are isomorphisms. Using [Ga, Corollaire 3 on p. 369], one easily
deduces that condition (4) holds.

To prove condition (5), we observe that, by [Ga, Corollaire 1 on p. 375], the
subcategory Az is localizing; by [Ga, Corollaire 2 on p. 375] we deduce that A/ A~
has enough injectives, and that every injective object is of the form w4 (I) for some
I injective in A. In particular, since mo (V%) is either 0 or a costandard object
of A/ Az, we deduce that injective objects in A/ Az admit costandard filtrations.
By a standard argument (see e.g. [Rin, Corollary 3]), this implies condition (5).

(3) Observe that the objects {Ag, s € .} form a graded exceptional set in
DP(A) in the sense of [Be2, §2.1.5]. Hence, applying the general theory of these
sequences developed in [Bel, Be2] we find that ¢ and the quotient functor 'l 5 :
DP(A) — DP(A)/DP(Az) admit left and right adjoints, which induce functorial
triangles as in the lemma. If we denote by 'II% (resp. 'IIZ) the left (resp. right)
adjoint to ‘Il &, it is easily checked that we have

(M%) o (7)(AF) = AF and (TIF)o (Il7)(VE) = VE

for any s € ¥ N .7 (see e.g. [Bel, Lemma 4(d)] for a similar claim). Using this
property and an argument similar to the one used to prove that ¢ is fully faithful,
one can deduce that the natural functor DP(A)/DP(A7) — DP(A/Az) is an
equivalence, which finishes the proof. O

2.2. Positively graded quasihereditary categories. In this section we will
mainly consider graded quasihereditary categories which exhibit some positivity
properties. The precise definition is as follows.

ﬂigﬁbrpae-publication version of this article, which may differ from the final published version. Copyrigiht réétric’tiorils’may apbl)}.



MODULAR PERVERSE SHEAVES ON FLAG VARIETIES III 7

Definition 2.3. Let A be a graded quasihereditary category. We say that A is
positively graded if for all s,t € .7, we have [Pg" : L8 (n)] = 0 whenever n > 0.

Remark 2.4. The condition in Definition 2.3 is equivalent to requiring that we have
Hom(P#', P&"(n)) = 0 whenever n < 0. In other words, if we let P& = @, P&,

S S

then A is positively graded if and only if the graded ring

R := @) Hom(P#", P& (n))
nez
is concentrated in nonnegative degrees. Note that R is a finite dimensional k-
algebra, and that the functor M — @, Hom 4(P®", M (n)) induces an equivalence
of categories between A and the category of finite dimensional graded right R-
modules.

Proposition 2.5. Let A be a graded quasihereditary category. The following con-

ditions are equivalent:
(1) A is positively graded.

(2) We have [A%" : L¥ (n)] = (P& : A% (n)) = 0 whenever n > 0.

(3) We have [A% : L¥ (n)] = [V& (n) : L] = 0 whenever n > 0.

(4) We have Ext*(Lg", L8 (n)) = 0 for n > 0.

(5) Ewvery object M € A admits a canonical filtration WeM with the property
that every composition factor of Gr}/VM is of the form L& (i), and every

morphism in A is strictly compatible with this filtration.

Proof. (1) = (2). Since A8" is a quotient of Pg", we clearly have [Ag" : L' (n)] =0
for n > 0. If we had (Pg : A§"(n)) # 0 for some s,¢ and some n > 0, then we
would also have (P8 : L¥"(n)) # 0, contradicting the assumption.

(2) = (1). This is obvious.

The equivalence (2) <= (3) follows from the reciprocity formula (2.1).

(1) = (4). Let K be the kernel of P8 — Lg. Note that if n > 0, then
[K : L¥(n)] = 0, and hence Hom(K, L§'(n)) = 0. We deduce the desired result
from the exact sequence

-+ — Hom(K, L (n)) — Extl(Lfr, L¥(n)) — Extl(PSgr, L¥(n)) — ---

(4) = (5). This follows from the proof of [BBD, Théoreme 5.3.5] (see espe-
cially [BBD, Lemme 5.3.6]).

(5) = (1). Consider the weight filtration W, Pg" of P$". Let n be the largest
integer such that Gr!” P& #£ 0. Then Gr)” P2 is a quotient of P#', and in particular,
P& has a quotient of the form L$'(n). But L& is the unique simple quotient of
P& so we must have n = 0, and the result follows. ([l

Let us note the following consequence of Proposition 2.5, which is immediate
from condition (3) of the proposition.

Corollary 2.6. If A is a positively graded quasihereditary category and if  C .7
is closed, then the graded quasihereditary category A/ Ao is positively graded.

It is easy to see that in a positively graded quasihereditary category, any L&"
admits a projective resolution whose terms are direct sums of various Pf"(n) with
n < 0. As a consequence, for all k¥ > 0 we have

(2.3) Ext"(L&, L8 (n)) =0  forn > 0.

ﬂigﬁbrpae-publication version of this article, which may differ from the final published version. Copyrigiht réétric’tiorils’may apbl)}.



8 PRAMOD N. ACHAR AND SIMON RICHE

Proposition 2.7 (cf. [PS1, Proposition 3.1(a)]). Let A be a positively graded quasi-
hereditary category, and let A° be the Serre subcategory generated by the simple
objects {L&" | s € L} (i.e., without Tate twists). Then A° is a quasihereditary cat-
egory (with weight poset .# ), with standard and costandard objects given respectively
by

AY = GrgVAfr and Vo= GrgVVEr.

Proof. Tt is clear that A° is a finite length category, and that its simple objects
are parametrized by .. It is also clear from the definitions that A? is a quotient
of A&" and that the surjection A& — L& factors through a surjection A — L.
Similarly, V is a subobject of V&', and the injection L& — V& factors through
an injection L& — V2. The ungraded analogues of axioms (1), (2) and (3) of
Definition 2.1 are clear.

We now turn to axiom (4). Since A? is a quotient of Ag', it has a unique simple
quotient, isomorphic to L. Next, let 7 C .% be closed, with s maximal in 7.

For ¢t € 7, consider the exact sequence

-+-— Hom g, (W_1A¥, LF") — Exty (A2, L¥) — Extly_ (A%, LF) — - -

S

The first term vanishes because W_; A" has only composition factors of the form
Lg"(n) with n < 0, and the last term vanishes by axiom (4) for \A. So the middle
term does as well. Tt is clear that Exth%}(A:, L¥) = Extly (A2, L§"), so we have
shown that AJ is a projective cover of L& in A%.

A similar argument shows that V¢ is an injective envelope of L&" in A%, ; we omit
further details.

Finally, we consider the analogue of axiom (5). Consider the exact sequence

= Bxty (Wo1 A%, VE) — Ext% (A2, VE) — Ext (AF,VE) — - -
The first term vanishes by Proposition 2.5(4), and the last by axiom (5) for A, so
the middle term does as well. That term is also the last term in the exact sequence
e Bxtyy (A7, VEWoVE) = ExtZ (AL, V7) = Exti (A3, V) = -

whose first term again vanishes by Proposition 2.5(4). We have now shown that
Ext% (A%, V) = 0. By a standard argument (see e.g. [BGS, Lemma 3.2.3]), the
natural map Ext?. (A%, V?) — Ext%(A°, V?) is injective, so the former vanishes
as well, as desired. ([

Remark 2.8. With the notation of Remark 2.4, if A is a positively graded quasi-
hereditary category, then the category A° identifies with the subcategory of the
category of finite-dimensional graded right R-modules consisting of modules con-
centrated in degree 0; in other words, with the category of finite-dimensional right
modules over the 0-th part R of R.

The determination of Ext% (A%, V?) at the end of the preceding proof can easily
be adapted to higher Ext-groups: by using (2.3) in place of Proposition 2.5(4),
and [AR3, Eq. (A.1)] in place of axiom (5) for A, we find that

(2.4) Extf® (A, V) =0  forall k> 1.
As in Lemma 2.2, this implies the following fact.

Lemma 2.9. Let A be a positively graded quasihereditary category. The natural
functor D* A° — DA is fully faithful.
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2.3. Metameric categories. We have seen above that any positively graded
quasihereditary category contains two classes of objects worthy of being called
“standard”: the usual Af', and the new AY. In this subsection, we study cate-
gories in which these two classes are closely related.

Definition 2.10. Let A be a positively graded quasihereditary category. We
say that A is a metameric category if for all s € . and all i € Z, the object
(Gr}Y A%)(—i) € A° admits a standard filtration, and (Gr}” V&) (—i) € A° admits
a costandard filtration.

This term is borrowed from biology, where metamerism refers to a body plan
containing repeated copies of some smaller structure. The analogy is that in our
setting, each A is made up of copies of the smaller objects AZ.

Theorem 2.11. Let A be a metameric category. For any s € 7, there exists a
unique object AS" € A which satisfies the following properties.
(1) Egr has a unique simple quotient, isomorphic to L.
(2) For all v € .7 and k € Zq, we have Ext™(A8 L&) =0 if r < s.
(3) Forallr €. and k € Zo, we have Ext" (A%, L& (n)) = 0 if n # 0.
(4) There is a surjective map A% — A8 whose kernel admits a filtration whose
subquotients are various AS"(n) with u > s and n < 0.
wally, for any s € .7, there exists a unique object V& € A which satisfies the
Duall S, th st ] bject V&' € A which sati th
following properties.
(1) %gf has a unique simple subobject, isomorphic to Ler.
(2') For allr € . and k € Zso, we have Ext* (L& V&) =0 if r < s.
(3") Forallr € . and k € Z~q, we hangxtk(L?(n}, Vve) =0 if n#0.
(4") There is an injective map V& — V& whose cokernel admits a filtration
whose subquotients are various V& (n) with u > s and n > 0.
Conversely, zf A is a positively graded quasihereditary category which contains ob-
jects Agr and Vgr satisfying the above properties for all s € 7, then A is metameric.

Proof. Suppose that A is metameric. We first remark that, if A%r exists, then it is
the projective cover of L&" in the Serre subcategory of A generated by the objects
L& with r < s and the objects L' (n) for all t € . and n # 0. Hence uniqueness
is clear. It also follows from this remark that the map in (4) is the unique (up to
scalar) nonzero morphism &%r — Ag.

To prove existence, we can assume without loss of generality that % is the
set {1,2,..., N} (with its natural order). We proceed by induction on N. Let
A" := A<n_1, and assume the theorem is known to hold for A’. For each i < N—1,
let. A% be the object in A’ satisfying the properties of Theorem 2.11 for A’.

We begin by constructing the objects ﬁfr. For ¢ = N, we simply set

A% = A%
This object clearly has properties (1)-(4). Now suppose ¢ < N. For n < 0,
let E, := Ext!(A%' A% (n)). Let ¢, be the canonical element of E} @ E, =
Ext! (A% E* ® A% (n)), and let

€:= €n € Ext! Agr/ E! @ A% (n
De D

n<0 n<0
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(Note that only finitely many of the spaces E,, are nonzero, so these direct sums are
finite.) Define A%" to be the middle term of the corresponding short exact sequence:
(2.5) 0= P E; ® A% (n) — AF — A¥ 0.
n<0
Then, for any m < 0, the natural map
(2.6) Hom (@D E;, @ A% (n), A% (m)) — Ext' (A%, A% (m))
n<0

is an isomorphism. For brevity, we henceforth write C := @, _, E;; ® AX(n).
Suppose j < N — 1. Then Ext*(C, L5 (m)) =0 for all k > 0 and m € Z, so
(2.7)  Ext®(A¥,L¥(m)) = Ext*(A¥",L¥(m))  forallk>0,if j <N —1.
In particular, we have
~ 1 ifj=iand m=0
(2.8) dim Hom (A, L& (m)) = { =/ 1 anam="5
7 0 in all other cases with j < N — 1

and, using induction and Lemma 2.2,

j<N-—1and m#0, or

2. Ext? (A% L& =0 fork>1,if
(29) XA L {m)) =0 for ’l{jgz‘andm:o.

Next, let K be the kernel of the map A%, — L%. Note that if m < 0, then
every composition factor of K (m) is isomorphic to some L}'(n) with n < 0 and
j < N —1. Assume m < 0, and consider the following long exact sequences:

Hom(A®"| K (m)) — Hom (A%, A8 (m)) — Hom(A" | L5 (m)) — Ext' (A8, K (m))
! | ! !

Hom(A#", K (m)) — Hom (A%, A% (m)) — Hom(A¥, L (m)) — Ext' (A%, K (m)).

Since Hom(C, K(m)) = 0, the first vertical map is an isomorphism. By (2.7)
and (2.9), both groups in the last column vanish. It follows from (2.6) that the
second vertical map is an isomorphism. Theﬂgefore, by the five lemma, the third one
is also an isomorphism, and we have Hom(A$", L& (m)) = 0 for m < 0. In fact, we
have
(2.10) Hom(A%, L& (m)) =0  for all m € Z.
For m > 0, this follows from (2.5), since Hom(C, L% (m)) = 0 for m > 0.

Next, for m < 0, consider the exact sequence

-+ — Ext! (A¥, A% (m)) — Ext'(A¥, L (m)) — Ext®(A¥, K (m)) — - .

The isomorphism (2.6) implies that the first term vanishes. On the other hand, the
last term vanishes by (2.9). We conclude that

(2.11) Ext! (A%, L& (m)) =0  for m < 0.

Finally, let M be the cokernel of L%, < V4&,. We will study Ext-groups involving
M ({m) with m < 0. Let M' = W_,,,_1M and M" = M/W_,,_1M. In other words,
M'{m) = W_1(M{m)) and M"(m) = (M(m))/W_1(M(m)). All composition
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factors of M'(m) are of the form L% (n) with n < 0 and j < N — 1, so by (2.9), we
have

(2.12) Ext®(AS, M'(m)) =0  forall k> 1.

We also have a short exact sequence 0 — Gr'V M — M" — M/W_,,M —
0. It follows from (2.3) that Ext®(AS (M/W_,,M)(m)) = 0 for all k > 0, so
Ext® (A, M”(m)) = Ext® (A% G, M(m)). Another invocation of (2.3) shows
that Ext®(AS, G M(m)) = Ext*(Gr{’ A%, G, M(m)). Now, by construc-
tion, Gryy A% = Gr{V A® = A%, On the other hand, since —m > 0, Gr"V' M (m) =
Cr" V& (m). The latter object has a costandard filtration as an object of A°, since
A is metameric by assumption. By (2.4), we have that Ext®(A?,Gr" M (m)) =0

for k > 1. Unwinding the last few sentences, we find that Extk(ﬁfr, M'"(m)) =0
for all £ > 1. Combining this with (2.12) yields

Extk(ﬁfr, M({m)) =0 for all k > 1.

As a consequence, the natural map Ext” (Efr, L5) — Ext” (Efr, V&) is an isomor-
phism for £ > 2. The latter group vanishes because A$" has a standard filtration.
We conclude that

(2.13) Extf (A%, L& (m)) =0  form <0and k> 2.

Both (2.11) and (2.13) were proved above for m < 0. But they both hold for
m > 0 as well: this follows immediately from (2.3) because every composition factor
of A% is, by construction, of the form L& (n) with n < 0.

We have finished the study of ﬁfr. To summarize, property (4) in the theorem
holds by construction, and property (1) holds by (2.8) and (2.10). Property (2) is
covered by (2.9), and property (3) is obtained by combining (2.9), (2.11), and (2.13).

The construction of V& is similar and will be omitted.

We now turn to _the last assertion in the theorem. Assume that A contains a
family of objects {A%", s € ¥} satisfying properties (1)—(4). Let s,t € .7, and let
m < 0. A routine argument with weight filtrations, using (2.3) and property (3)
(similar to the discussion following (2.12)) shows that

Ext! (A, V¥ (m)) = Ext' (Gry’ A, (Gr% V&) (m)).

The left-hand side vanishes because E%r has a standard filtration. On the other
hand, it follows from property (4) that Gry” Agr Gry/ AZ = AS. Therefore,
Ext' (A2, (GrKVmV%T)(m)) = 0. We have computed this Ext’-group in A, but its
vanishing implies that

Extho (A2, (Gt V) (m)) =0  forallse.”

as well. By a standard argument (see e.g. [Do, Proposition A2.2(iii)]), we conclude
that (Gr" V&)(m) has a costandard filtration for all m < 0. A dual argument

—m
shows that each (GrlY A®")(—m) has a standard filtration, so A is metameric. [

Remark 2.12. In a metameric category, the description of projectives from [BGS,
Theorem 3.2.1] or [AR3, Theorem A.3] can be refined somewhat, as follows. Let A
be a metameric category, and let P& and Py be projective covers of L&" in 4 and
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in A°, respectively. Then P$" admits a filtration whose subquotients are various
A$" with t > s. Moreover, we have

(P BE) = (P23 A7),
The proof is a straightforward generalization of that of [BGS, Theorem 3.2.1]. As

this result will not be needed in this paper, we omit the details.

2.4. Koszul and standard Koszul categories. Recall that a graded quasi-
hereditary category is said to be Koszul if it satisfies

(2.14) Ext*(L8, L¥(n)) =0  unless n = —k.

(A Koszul category is automatically positively graded by Proposition 2.5.) It is
said to be standard Koszul if it satisfies

(2.15) Ext®(L8", V¥ (n)) = Ext® (A%, L8 (n)) =0  unless n = —k.

(See [ADL, Maz| for this notion; see also [Ir] for an earlier study of this condition.)
The following well-known result follows from [ADL]. Since the latter paper uses
a vocabulary which is is quite different from ours, we include a proof.

Proposition 2.13. Let A be a graded quasihereditary category. If A is standard
Koszul, then it is Koszul.

Proof. We prove the result by induction on the cardinality of .. The claim is
obvious if .¥ consists of only one element, since in this case A is semisimple.

Now assume that . has at least two elements, and that A is standard Koszul.
Let s € . be minimal, and set A" := Ay, A" := A/ A(gy, ¢ = 1y, [T 1= Ty
By Lemma 2.2, these categories are graded quasihereditary. We claim that A" is
standard Koszul. Indeed for ¢,u € . \ {s} we have

Exctf, (I(LF"), (V) (n)) 2 Extly (L, I 0 II(VE) (n)) 2 Ext}y (LF", V¥ (n))

by (2.2), and the right-hand side vanishes unless n = —k by assumption. Similarly
we have
Exctf (A, TH(LE ) (n)) = Extfy (A, LE (n)),
and again the right-hand side vanishes unless n = —k.
By induction, we deduce that A" is Koszul. Now let ¢t € ., and consider the
distinguished triangle

Lo (LB 5 L8 - IR o ri(Le)

of Lemma 2.2. Applying the functor Hom(L&", —(n)) (for some u € . and n € Z)
we obtain a long exact sequence

= Exctly (P (L), (L) (n) — Extly (LS, LY (n))

— Extly (L), TH(LE") () — -

Since A" is Koszul, the third term vanishes unless n = —k. Hence to conclude it
suffices to prove that the first term also vanishes unless n = —k.

We claim that (L(Lg") is a direct sum of objects of the form L& (m)[—m)] for
some m € Z. Indeed, since A’ is semisimple, this object is a direct sum of objects
of the form L& (a)[b]. But if such an object appears as a direct summand then

Hom o ) (F(LE), LE (@) [b]) = Ext (LY, LE (a) # 0,

ﬂigﬁbrpae-publication version of this article, which may differ from the final published version. Copyrigiht réétric’tiorils’may apbl)}.



MODULAR PERVERSE SHEAVES ON FLAG VARIETIES III 13

which implies that a = —b since L& = V&"; this finishes the proof of the claim.
Similar arguments show that (L") is also a direct sum of objects of the form
L (m')[—m/] for m’ € Z. One deduces that indeed Ext", (.* (L&), (L) (n)) = 0
unless n = —k, which finishes the proof. O

Remark 2.14. The proof shows that the condition that Ext*(Lg", V& (n)) = 0 un-
less k = —n already implies that A is Koszul. Similar arguments using the func-
tors &, II” instead of .f, II show that if A satisfies the dual condition that
Ext®(A2", L8 (n)) = 0 unless k = —n, then A is Koszul.

2.5. ()-Koszul and standard ()-Koszul categories. In this subsection we study
a generalization of the notions considered in §2.4 that has been recently introduced
by Parshall-Scott [PS1, §3].

Definition 2.15. Let A be a positively graded quasihereditary category. It is said
to be Q-Koszul if

Ext® (A2, VE(n)) =0 unless n = —k.
It is said to be standard Q-Koszul if
Ext® (A%, V¥ (n)) = Ext} (A%, VE(n)) =0  unless n = —k.

The following result is an analogue of Proposition 2.13 in this context. The same
result appears in [PS2, Corollary 3.2], but in a somewhat different language, so as
with Proposition 2.13, we include a proof.

Proposition 2.16. Let A be a positively graded quasihereditary category. If A is
standard Q-Koszul, then it is Q-Koszul.

Proof. The proof is very similar to that of Proposition 2.13. We proceed by in-
duction on the cardinality of .#, the base case being obvious. We choose s € .
minimal, and set A" := Ay, A" == A/ A, 1 := 14, 1T := T4, By Corollary 2.6,
the category A" is positively graded. It is also clear that Gr’ (II(A%")) = TI(A?)
and Gry (II(V#)) = TI(V9) for t # s. Then using (2.2) as in the proof of Propo-
sition 2.13, one obtains that A” is standard Q-Koszul; hence by induction it is
Q-Koszul.
Now consider, for t € ., the distinguished triangle

Lo B(VO) 5 ve S IR ori(ve) U

Applying the functor Hom(A2, —(n)) (for some u € . and n € Z) we obtain a
long exact sequence

s = Bxtly (P (AD), (VD) () — Bxty (A7, VE(n))
— Bxtly (II(A7), II(V? ) (n) — -

By induction, the third term vanishes unless n = —k. Now one can easily check
that both +Z(A2) and (f(V?) are direct sums of objects of the form L& (m)[—m)]
for m € Z, and we deduce that the first term also vanishes unless n = —k, which
finishes the proof. O

Remark 2.17. It is natural to ask whether there is a notion of “Koszul duality” for
QQ-Koszul categories.
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Recall that classical Koszul duality is a kind of derived equivalence that sends
simple objects in one category to projective objects in the other. There is a gener-
alization of this notion due to Madsen [Mad]. Suppose A is a finite-length graded
(but not necessarily quasihereditary) category satisfying conditions (4) or (5) of
Proposition 2.5. Then it still makes sense to define a Serre subcategory A° as in
Proposition 2.7. Assume that A° has the structure of a quasihereditary category,
and that for any two tilting objects T, Ty € A°, we have

Ethjél(Tgv T2 (n)) =0 unless n = —k.

Such a category A is said to be T-Koszul. Madsen’s theory leads to a new T-Koszul
abelian category B and a derived equivalence D(A) = DP(B) such that tilting
objects of A° correspond to projective objects in B. If A° happens to be semisimple,
then Madsen’s notion reduces to ordinary Koszul duality.

Clearly, every @Q-Koszul category is T-Koszul. But it is not known whether the
T-Koszul dual of a @Q-Koszul category must be Q-Koszul; see [PS2, Questions 4.2].

3. WEIGHTS

3.1. Setting. In this section (and the next one) we work in the setting of [AR3,
§§2-3]. In particular, we choose a prime number ¢ and a finite extension K of Q.
We denote by O the ring of integers of K and by F the residue field of ©. We use
the letter E to denote any member of (K, O, F).

We fix a complex algebraic variety X endowed with a finite stratification X =
|lsc.o» Xs where each X is isomorphic to an affine space. We denote by DY (X,E)
the derived .#-constructible category of sheaves on X, with coefficients in E. The
cohomological shift in this category will be denoted {1}. We assume that the as-
sumptions (A1) (“existence of enough parity complexes”) and (A2) (“standard
and costandard objects are perverse”) of [AR3] are satsified. Then one can con-
sider the additive category Parity o»(X,E) of parity complexes on X (in the sense
of [IMW]; see [AR3, §2.1] for a reminder of the main properties of this category)
and the “mixed derived category” D' (X,E) := KPParity ,,(X,E). This category
possesses two important autoequivalences: the cohomological shift [1], and the “in-
ternal” shift {1} induced by the shift functor on parity complexes. We also set
(1) :={—1}[1]. f h: Y — X is a locally closed inclusion of a union of strata, then
we have well-defined functors

he, by : DSX(Y,E) — D'EX(X,E), h*,h': DUX(Y,E) - DZ¥(X,E)
which satisfy all the usual properties; see [AR3, §2.5]. (Here and below, we also
denote by . the restriction of the stratification to Y.) We also have “extension of
scalars” functors
K: DZ*(X,0) —» DZ¥(X,K), F:DZ*X,0)— DE*(X,F)
and a “Verdier duality” antiequivalence
D: DZX(X,E) = DZ*(X,E).

The triangulated category D?;ix(X ,E) can be endowed with a “perverse t-struc-
ture”; see [AR3, Definition 3.3]. We denote by PZ™*(X,E) the heart of this t-
structure. Objects of PEX(X,E) will be called “mixed perverse sheaves.” If
E = F or K, this category is a graded quasihereditary category, with shift func-
tor (1), simple objects ZC™ := i, Ex,, standard objects A™* := i Ex,, and
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costandard objects V* := i Ex . (Here, iy : X, — X is the inclusion, and
Ex, = Ex {dim(X,)}, where EXS is the constant sheaf on X, an object of
Parity ., (X, E).) We denote by P™X the projective cover of ZC™, and by Tx
the indecomposable tilting object associated with s. When necessary, we add a
mention of the coefficients “IE” we consider. Note in particular that we have

K(ZC™(0)) = IC™(K),  F(PP™(0)) = P (F),  F(T™(0)) = T, (F).
(For all of this, see [AR3, §§3.2-3.3].)

As in [AR3], we denote by &, the unique indecomposable parity complex which
is supported on X, and whose restriction to X, is Ex.. We denote this same object
by EM when it is regarded as an object of D'Z¥(X,E).

We do not know whether P5*(X,F) is positively graded under these assump-
tions. The main result of this section, Proposition 3.15, gives a number of conditions
that are equivalent to PZ*(X,F) being positively graded. Along the way to that
result, we construct a candidate abelian category P%, (X,IF) that “should” be the
category A° of Proposition 2.7 in this case. However, P%, (X, F) is defined even
when PZ*(X,F) is not positively graded.

3.2. Weights. We begin by introducing a notion that will “morally” play the same
role in D'P*(X,E) that is played by Deligne’s theory of weights (see [BBD, §5]) in
the realm of /-adic étale sheaves.

Definition 3.1. An object M € DZ*(X,E) is said to have weights < n (resp. > n)
if it is isomorphic to a complex --- — M~' — M°® — M' — ... of objects in
Parity (X, E) in which M? = 0 for all i < —n (resp. i > —n). It is said to be pure
of weight n if has weights < n and > n.

The full subcategory of DW*(X,E) consisting of objects with weights < n
(resp. > n) is denoted D'E*(X,E)<,, (resp. D'Z*(X,E)>,). The definition above
can be rephrased as follows: if we let C*Z"Parity o, (X, E) denote the category of
chain complexes concentrated in degrees > n, then D2 (X, E)<,, is the essential im-
age in KPParity (X, E) of C*=""Parity ,,(X, E), and similarly for D'Z*(X,E)>,,.

Using standard arguments in triangulated categories one can check that these
categories admit the following alternative characterizations:

DX, E)<, = {M | Hom(M,E™™*{m}[k]) = 0 for all m € Z and all k& > n},
DX (X,E)sp = {M | Hom(E™*{m}[k], M) = 0 for all m € Z and all k < n},

and moreover that an object in DW*(X,E) is pure of weight n if and only if it is a
direct sum of objects of the form E™*{m}[n].

Note that weights are stable under extensions. That is, if the first and third
terms of a distinguished triangle have weights < n (resp. > n), then the same
holds for the middle term.

Ezample 3.2. Consider a single stratum X;. For a finitely-generated E-module N,
let N denote the corresponding constant sheaf on X, and let N = N{dim X,}.
(Here we use the same convention as in the proof of [AR3, Lemma 3.18] in case
E = O and N is not free.) Every object M € D'2*(X,, E) is isomorphic (canonically
if E =T or K, and noncanonically if E = Q) to a finite direct sum

(3.1) M= B Mi{j}[i]

i,JEL
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where the M ; are various finitely generated E-modules. With this in mind:

(1) If E =T or K, then M has weights < 0 if and only if M} = 0 for all ¢ < 0.
(2) If E = O, then M has weights < 0 if and only if M]Z =0 for all i < 0, and
all MJQ are torsion-free.

Lemma 3.3. For any s € ., A™X has weights < 0, and V™ has weights > 0.

Proof. Tt is clear by adjunction (and using [AR3, Remark 2.7]) that we have
Hom (AR gmixfim}[k]) = 0 if k # 0, and similarly for VX, O

Lemma 3.4. Let j: U — X be the inclusion of an open union of strata, and let
i:Z — X be the complementary closed inclusion.

(1) j* and i, preserve weights.
2) i sends DX(U,E)<,, to DUX(X,E)<,, and j. sends DUX(U,E)>, to
2 < 5 < 72 >

D;‘X(X,E)Zn. . _

(3) i* sends DUX(X,E)<,, to DUX(Z,E)<p, and i* sends DB*(X,E)>, to
DY (Z,E)>n.

(4) If Z consists of a single stratum, then i* and i' preserve weights.

(5) D exchanges D'Z*(X,E)<,, and D'Z*(X,E)>_,.

Proof. Parts (1), (4), and (5) are clear, because in those cases, the functors take
parity complexes to parity complexes. Parts (2) and (3) then follow from part (1)
by adjunction. ([

Lemma 3.5. Let F € D'UX(X,E). We have:

(1) F has weights < n if and only if i*F has weights < n for all s € .7.
(2) F has weights > n if and only if i\F has weights > n for all s € .7.

Proof. We will only treat the first assertion. The “only if” direction is part of
Lemma 3.4, so we need only prove the “if” direction. In that case, we proceed by
induction on the number of strata in X. If X consists of a single stratum, there
is nothing to prove. Otherwise, suppose i;F has weights < n for all s. Choose a
closed stratum Xy C X. Let U = X \ X;, and let j : U < X be the inclusion
map. Then j*F has weights < n by induction. The first and last terms of the
distinguished triangle jij*F — F — 15475 F — have weights < n by Lemma 3.4, so
the middle term does as well. O

3.3. Baric truncation functors. For an object F € D(‘;i"(X7 E), there is in
general no functorial way to pick out, say, the “part of F with weights > 0,” but
in some circumstances, the notion of a baric structure [AT] and its accompanying
baric truncation functors can serve as a substitute. We begin by defining for each

n € Z two full triangulated subcategories of D'S*(X,E) as follows:
(3.2) DZ*(X,E)qy, := the subcategory generated by the A™™*(m) for m < n
. DZ*(X,E)s, := the subcategory generated by the V™ (m) for m > n

We also put
D;IX(X, E)O = DLHS}}X(X, E)SIO n D;IX(X, E)Eo.

Ezample 3.6. With the notation of Example 3.2, the object M in (3.1) lies in
D> (X,,E)<p if and only if M]Z =0 for all j <0.
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Lemma 3.7. (1) For any A € DZX(X,E)a, and B € DE*(X,E)pyt1, we
have Hom(A, B) = 0.

(2) The inclusion DB*(X,E)a, — DB*(X,E) admits a right adjoint B<, :
DZ*(X,E) — DB*(X,E)q,, which is a triangulated functor. Similarly,
the inclusion D'B*(X,E)p, — DUX(X,E) admits a left adjoint B, :
DPX(X,E) = DBX(X,E)pp, which is a triangulated functor.

(3) For every object M € D'B*(X,E) and every n € Z, there is a functorial
distinguished triangle

BanM — M = fen M s

Moreover, if M' € D'SX(X,E)«,, and M" € DZ*(X,E)spy1, for any dis-

1
tinguished triangle M' — M — M" Wy there exist canonical isomorphisms

o M = BapM and o : M =5 Bepi1 M such that (p,idp, ) is an
isomorphism of distinguished triangles.
(4) All the B« and Bspm commute with one another.

Proof. Part (1) is immediate from the definitions and [AR3, Lemma 3.2]. Next, we
prove a weak version of part (3). It is clear that the collection of objects

C = {AM™(m) | m < 0} U{V™(m) | m > 1}
generates Dgl)x(X ,E) as a triangulated category. Let us express this another way,

using the “#” notation of [BBD, §1.3.9]: for any object M € D'Z*(X,E), there are
objects C4,...,C, € C and integers k1, ..., k, such that

(3.3) M € Cylky] % - % Cyp k).

Now, observe that if a < 0 and b > 1, then V™ (b)[p] * A*(a)[g] contains only
the object V*(b)[p] & A"*(a)[q], because Hom(AM*(a)[q], V*(b)[p + 1]) = 0.
Thus,
VD) ]+ AP (a)g] © AP (a)[q] * VI(b)[p]-

Using this fact, we can rearrange the expression (3.3) so that the following holds:
there is some n’ < n such that Cy, ..., C, are all of the form A™X(m) with m < 0,
while Cpr41,...,Cy are of the form V™*(m) with m > 1. Then (3.3) says that
there is a distinguished triangle

A—- M — B —

where A € Cyx---xCyy C DBX(X,E)p, and B € Cprq1 %+ -xC,, C DBX(X,E)py.
We have not yet proved that this triangle is functorial. However, we have shown
that the collection of categories ({ DB (X, E)ap}, {DB*(X,E)sn })nez satisfies the
axioms of a so-called baric structure [AT, Definition 2.1]. The remaining statements

in the lemma are general properties of baric structures from [AT, Propositions 2.2
& 2.3]. O

Remark 3.8. If M is an object of D'Z*(X,E), then M is in DB*(X,E)«o iff
Hom (M, V2™*(m)[k]) = 0 for all s € ., k € Z and m € Z~(. Indeed, the “only
if” part follows from Lemma 3.7(1). To prove the “if” part, consider the baric

truncation triangle fqoM — M — B1 M ﬂ> of Lemma 3.7(3). Our assumption
implies that the second arrow in this triangle is trivial, hence we deduce an iso-
morphism BqoM = M & 1M [—1]. If S=1M were non zero, then the projection
B<oM — Br1M[—1] would be non zero, contradicting Lemma, 3.7(1).
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Lemma 3.9. Let j: U — X be the inclusion of an open union of strata, and let
i:Z — X be the complementary closed inclusion.

(1) j7* and i, commute with all B<,, and Bsp.

(2) ji sends DPX(U,E)<y, to DUX(X,E)an, and j. sends D'S*(U,E)s, to
DY¥(X,E)o. | |

(3) * sends DBX(X,E)q, to DUX(Z,E)a,, and i' sends DSX(X,E)p, to
DY(Z,E)pn. .

(4) D exchanges DB (X, E)<y, and DY*(X,E)>_p,.

Proof. For the first three parts, it suffices to observe that j*, i,, ji, and ¢* send
standard objects to standard objects (or to zero), while j*, 4., j., and ' send
costandard objects to costandard objects (or to zero). Similarly, the last part
follows from the fact that D exchanges standard and costandard objects. O

Lemma 3.10. The functors fapn and By commute with K(—) and F(—).

Proof. Since extension of scalars sends standard objects to standard objects and
costandard objects to costandard objects, it is clear that F(—) sends D'2*(X, Q) 4,
to DX(X,F) <, and D'B*(X, 0)s, to DBX(X, F)sp, and similarly for K(—). Then
the result follows from Lemma 3.7(3). O

Lemma 3.11. Suppose X = X, consists of a single stratum. Then the functors
Ban and Py are t-exact for the perverse t-structure on D' (X, E). In fact, for
M € DUX(X,,E), there exists a canonical isomorphism M = B4, M & Bspi1M.

Proof. Given M € D'B*(X,,E), write a decomposition as in (3.1), and form the
distinguished triangle

i . ' . (1]
D - M= D M-
i€Z =
jz—n j<—n—1
Referring to Example 3.6, we see that the first term belongs to Dg“)x(XS,E)ﬂn,
and the third one to D'Z*(X;,E)spt1. By Lemma 3.7(3), this triangle must be

canonically isomorphic to g, M — M — Bopi1M ﬂ> This triangle is clearly
split. Since Hom(Bsn+1M, <, M) vanishes, the splitting is canonical. Finally,
since any direct summand of a mixed perverse sheaf is a mixed perverse sheaf, the
functors <, and B>, are t-exact. O

3.4. A t-structure on Dﬁix(X, E)°. In the following statement we use the notion
of recollement from [BBD, §1.4].

Proposition 3.12. Let j : U — X be the inclusion of an open union of strata,
and let 1 : Z — X be the complementary closed inclusion. We have a recollement

diagram
Brot” BroJ:
— —
DYX(Z,E)° —i.— D*(X,E)° —j*— DZ*(U,E)°.
~ @ ~—
ﬁﬂoi! Bﬂ(}]*
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Proof. The required adjunction properties for these functors, and the fact that
7%, = 0, follow from the corresponding result for the mixed derived category;
see [AR3, Proposition 2.3]. Next, for M € D'3>*(Z,E)°, consider the natural maps
"M — (Boo0t™)i M — M.
It is easily checked that the composition is the morphism induced by adjunction,
and so is an isomorphism. In particular, i*i, M lies in D'3*(Z,E)>, so the map
i*i,M — Proi*i,M is an isomorphism. We conclude that the adjunction map
(B>0t*)isM — M is an isomorphism as well. Similar arguments show that the
adjunction morphisms id — j*(Bs0j1), id — (B<oi')ix, and j*(Bgojx) — id are

isomorphisms.

Finally, given M € DZ*(X,E)°, form the triangle jij*M — M — ii*M ﬂ>,

and then apply fo. Using Lemma 3.9, we obtain a distinguished triangle

(Beod)i* M = M = iy (Beoi*)M 2

Similar reasoning leads to the triangle i.(B3<oi' )M — M — (B<oj.)j* M W g

Proposition 3.13. The following two full subcategories of D'2*(X,E)° constitute
a t-structure:
DPX(X,E)>= = {M | Booii M € PD'U™(X,,E)=° for all s € 7},
DUX(X,E)*20 = {M | it M € PDEX(X,,E)Z° for all s € 7}.
Moreover, if E =K or F, this t-structure is preserved by D.
Proof. Let us first treat the special case where X consists of a single stratum X,. In
this case, the definition reduces to DB (X, E)*=<0 = DUX(X,E)°NPDE* (X, E)<0
and DZX(X,E)*=0 = DZX(X,E)° N*D'E*(X,,E)=°. Because <o and B¢ are
t-exact here (see Lemma 3.11), these categories do indeed constitute a t-structure
on DUX(X,E)°.
The proposition now follows by induction on the number of strata in X using
general properties of recollement; see [BBD, Théoréme 1.4.10]. (]

We denote the heart of this t-structure by
P%(X,E) := DZ*(X,E)>< N DE*(X,E)>=°.
We saw in the course of the proof that on a single stratum, we have P, (X, E) =
P> (X, E) N D'2*(X,,E)°, but this does not necessarily hold for larger varieties.
For another description of this t-structure, we introduce the objects
Ag = 6120.7'!ng and Vz = ﬁgoj*gan
By adjunction, we have
DZX(X,E)>=" = {M | for all s € . and k < 0, Hom(M, V2[k]) = 0},
DZX(X,E)>=2% = {M | for all s € .# and k > 0, Hom(AS[k], M) = 0}.
Note that by definition we have A2 € DEX(X,E)>=0 and V2 € DZX(X,E)*=°,
but it is not clear in general whether A§ and V§ belong to P%, (X, E).

Let °H' : DZX(X,E)° — P%(X,E) denote the i-th cohomology functor with
respect to this t-structure. For s € ., we put

ICS = 1im(°H°(A2) — °H(VY)),

(3.4)
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where the map is induced by the natural map AM* — V2 If [ is a field, then
P, (X, E) is a finite-length category, and its simple objects are precisely the objects
ZC:. Moreover, in this case, these objects are preserved by D.

3.5. Quasihereditary structure. The description in (3.4) matches the frame-
work of [Be2, Proposition 2(c)]. That statement (see also [Be2, Remark 1]) tells
us that when E is a field, P%, (X, E) always satisfies ungraded analogues of axioms
(1)—(3) of Definition 2.1 (with respect to the objects A2 and V). Under additional
assumptions, we can obtain finer information about this category.

Lemma 3.14. Assume that E =T or K, and that for all s € .7, AT and V7§ lie in
PLX(X,E).
(1) The category P, (X,E) is quasihereditary, the A and the V{ being, respec-
tively, the standard and costandard objects. Moreover, if TS, (X, E) denotes
the category of tilting objects in P, (X,E), the natural functors

K"T%(X,E) — D"P%(X,E) — DZ*(X,E)°
are equivalences of categories.
(2) We have P%(X,E) C PZX(X,E), and the inclusion functor D'S*(X,E)° —
DY*(X,E) is t-ezact.
(3) If the objects E™* are perverse, then they lie in P%,(X,E), and they are
precisely the indecomposable tilting objects therein.

Proof. If all the objects A% and V¢ lie in PZ*(X, E), then there are no nonvanishing
negative-degree Ext-groups among them, so we see from (3.4) that these objects lie
in P, (X,E). Next, the proof of [AR3, Lemma 3.2] is easily adapted to show that
for any s,t € ., we have

HOmDrz;ix(X,E)o (AZ, V? [l]) = 0 lf l % 0

With these observations in hand, the rest of the proof of part (1) is essentially
identical to that of [AR3, Proposition 3.11 and Lemma 3.15].

We prove part (2) by induction on the number of strata in X. If X consists of
a single stratum, the statement holds trivially.

Otherwise, choose an open stratum X, C X. It suffices to prove that every simple
object of P%, (X, E) lies in PZ*(X,E). For ¢ # s, the object ZCy is supported on
the smaller variety X \ Xj, so we know by induction that it lies in PZ*(X,E). It
remains to consider ZC;. Let K be the kernel of the natural map A — ZC;. Since
K is also supported on X \ X;, we know that K € P“}i"(X7 E). By assumption,

A% € PUX(X,E), so by considering the distinguished triangle K — AS — ZC2 ﬂ),
we see that ZCS € PDSX(X,E)=C. Since D(ZCJ) = ZC2, this object also lies in
PP (X, E)=%, and hence in PL*(X,E), as desired.

Finally, we consider part (3). We claim that Hom(E™¥ Vir*{n}[k]) = 0 for all
n < 0. When k = 0, this follows from the assumption that ™ is perverse, and
when k& # 0, it follows from the same arguments as for Lemma 3.3. Thus, £mix
lies in D'BX(X,E)<o. Since D(EMX) = £MiX this object also lies in DLX(X, E)so,
hence in D'Z*(X,E)°. Similar arguments show that

Hom(EM*, VX [k]) 22 Hom(E™*, Vo [k])

vanishes for k£ > 0. That condition and its dual together imply that £™* belongs to
P% (X,E) and is a tilting object therein, by, say, the criterion in [Be2, Lemma 4].
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The £™X are indecomposable and parametrized by .7, so they must coincide with
the indecomposable tilting objects of P%, (X, E). O

3.6. A first positivity criterion. We conclude this section with a result col-
lecting a number of conditions equivalent to PZ*(X,E) being positively graded.
The proof makes use of Verdier duality, but no other tools coming from geometry.
Indeed, if A is any graded quasihereditary category equipped with an antiautoe-
quivalence satisfying similar formal properties to D, one can formulate an analogue
of the following proposition for D®(A). The argument below will go through essen-
tially verbatim.

Proposition 3.15. Assume that E =T or K. The following are equivalent:
(1) The category P (X,E) is positively graded.
(2) We have [A™X : IC™™(n)] = 0 if n > 0.
(3) We have (P™X : AX(n)) =0 if n > 0.
(4) We have IC™™ € DY (X,E)° for all s € 7.
(5) For all n € Z, the functors B« and Bs, are t-exact for the perverse t-
structure on DB (X, E).
(6) We have ICS = IC™™ for all s € ..

Moreover, if these conditions hold, then P, (X,E) can be identified with the Serre
subcategory of P2*(X,E) generated by all the IC3™ (without Tate twists).

Remark 3.16. The last assertion says that when the above conditions hold, we
are in the setting of Proposition 2.7; in this case the two definitions of A and of
V¢ coincide. Moreover, under this assumption all the objects AS and V{ lie in
PZX(X,E), so the conclusions of Lemma 3.14 hold as well.

Proof. (1) <= (2) <= (3). We saw in Proposition 2.5 that (1) holds if and
only if both (2) and (3) hold. But by Verdier duality, (2) holds if and only if
[V2ix(p) . ZC™X] = 0 for all n > 0. By the reciprocity formula, the latter is
equivalent to (3).

(1) = (4). As observed in the proof of (2.3), ZC™> admits a finite resolution
-+ — P71 — PY such that every term P! is a direct sum of objects of the form
Prix(n) with n < 0. Using (3), we see that every term of this projective resolution
lies in D2 (X, E) o, so ZC™™ € DEX(X,E)qp as well. Since ZC™™ is stable under
Verdier duality D, we also have ZC™™ € D'U*(X,E)so.

(4) = (5). The assumption implies that
IC™(m) if m <n,

0 if m > n,

(3.5) Ban(ZCT™(m)) = {

along with a similar formula for 8>,. Since <, and B>, send every simple object
of PZX(X,E) to an object of PZ*(X,E), they are both t-exact.

(5) = (6). First we note that, if (5) holds, then the assumptions of Lemma 3.14
are satisfied. Consider the distinguished triangle

ﬁg_lz gnix — L ;nix — ﬁEOIC;niX ﬂ) .

Since 8q_1 and B0 are exact, this is actually a short exact sequence in P (X, E).
The middle term is simple, so either the first or last term must vanish. The nonzero
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morphism ZC™¥* — Vi shows that BsoZi g“i" # 0. Thus, we have q_1Z ;nix =0,

and ZC7™ =2 B0ZC™. A dual argument shows that we actually have

IC™™ 22 B0 B0 IC™™.

Moreover, applying the exact functor S<ofz0 to the canonical morphism AT —
VX tells us that ZC™™ is the image (in P2*(X,E)) of the map A% — V2. On the
other hand, Lemma 3.14 tells us that this map is also a morphism in P%, (X,E),
where its image is ZC3. Since the inclusion functor P%, (X, E) — PZ¥(X,E) is exact
(again by Lemma 3.14), the image of AS — V¢ is the same in both categories.

(6) = (1). The assumption implies that ZC™* € DW*(X,E)«o, and that if
n > 0, then ZC™™(n)[1] € D'U*(X,E)p;. Therefore,

Ext! (ZCT™, ZC{"™(n)) = Hom pusx x 5)(ZC5™, IC7™ (n)[1]) = 0

by Lemma 3.7(1). By Proposition 2.5, it follows that PZ*(X,E) is positively
graded.
The last assertion in the proposition is immediate from part (6). d

3.7. Koszulity. For later use, we conclude this section with a description of the
most favorable situation. (See [RSW, Proposition 5.7.2] and [We, Theorem 5.3] for
related results.)

Corollary 3.17. Assume that E = K or F, and that for all s € & we have
IC™ = &M, Then the category P9*(X,E) is Koszul (and hence in particular
positively graded).

Proof. Under our assumptions we have
Ext];‘,;;x(xm (IC;“iX,IC?ux(m) = HomD;;x(X,E) (Emix gmixf_p[k +n)),
which clearly vanishes unless k +n = 0. [l

Remark 3.18. One can easily show that, under these assumptions, P?X(X, E) is
even standard Koszul.

4. FURTHER STUDY OF MIXED PERVERSE O-SHEAVES

We continue in the setting of Section 3, with the goal of furthering our under-
standing of positivity. The arguments in the previous section were mostly based on
general principles of homological algebra, and in some cases were restricted to field
coeflicients. To make further progress, we need to bring in concrete geometric facts
about our variety. In this section, we will focus on (O-sheaves as an intermediary
between F- and K-sheaves, and the main results will involve the assumption that
TC™X(K) 2 £™*(K). This holds, of course, on flag varieties, by [KL].

4.1. Describing extensions from an open set. We begin with a brief review of
a convenient language for describing objects in Dg}ix(X ,E) with a specified restric-
tion to some open subset of X (see e.g. [JMW, Lemma 2.18] for a similar statement
in the classical setting). The descriptions below are valid for arbitrary coefficients,
although they will be used in this paper mainly in the case where E = Q.

Let X; C X be a closed stratum, let 7 := s, and let j : U — X be the inclusion
of the complementary open subset. Let My € D2 (U, E). Then there is a bijection
between the set of isomorphism classes of pairs (M, «) where M € D'Z*(X,E) and
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a : j*M = My is an isomorphism in D'Z*(U,E), and the set of isomorphism
classes of distinguished triangles

(4.1) A iy — B Y

in Dg}ix(Xt,E). Specifically, given such a triangle, one can recover M as the cone
of the composite morphism i, A — i,i'ji My — jiMy. On the other hand, to M we
associate the natural triangle with

A=i"M[-1] and B=i'M.

Here are some specific examples:

4.1.1. If My is perverse, the extension M = jj, My corresponds to
A=710ijiMy, B =121i'jiMy
(see [BBD, Proposition 1.4.23)).

4.1.2. The extension M = 5, My corresponds to A = 0, B = i'j; M. The extension
M = j.My corresponds to A = i'jMy, B = 0.

4.1.3. If My € D'2*(U,E)°, then fzojiMy corresponds to

A = Ba_1i'jiMy, B = Beoi i My.
(Indeed we have A = i*BxqjiMy[—1], hence S04 = (Bx0i")(Bo0i1) My[—1] = 0,
which implies that A is in D;ﬁX(Xt,E)ﬂ_l. On the other hand, B = i!ﬁlzoj!MU is

in D2*(X;,E)s0 by Lemma 3.9. Hence the triangle (4.1) must be the truncation
triangle for the baric structure.)

4.1.4. If My € Parity (U, E), then i'jiMy € D%*(X¢,E) has weights in the inter-
val [~1,0]. In other words, it can be written as a complex F** in KParity o, (X¢, E)
in which the only nonzero terms are F° and F!. If E = K or F, then the “parity
extension” of My constructed in [JMW, Lemma 2.27] (considered as an object in
D%¥(X,E)) corresponds to

A= F'-1], B=F"

4.2. Stalks of the A2(0). If M is in D'Z¥(X,E), we will say that M is stalkwise
pure of weight 0 if for all s € .7, the object itM € D'Z*(X,,E) is pure of weight
0, i.e. a direct sum of objects of the form Ex_{i} for ¢ € Z. Typical objects that
satisfy this condition are the parity sheaves EM*. Note that if M is in D'Z*(X,0),
then M is stalkwise pure of weight 0 iff F(M) is so.

In the proofs below we will use the following notation. Recall from Lemma 3.11
that on a single stratum X, the functors S, and B, are t-exact. For objects in
DZ>(X,,E), we set

PHE = PHF o B, 0 By 2 Bay 0 By o PHE.
The following result relates “stalkwise purity” to a “torsion-free” condition.
Lemma 4.1. For each s € .7, the following conditions are equivalent:
(1) A(TF) is stalkwise pure of weight 0.
(2) A2(Q) is stalkwise pure of weight 0.

Moreover, if IC™*(K) = £EM*(K), then these statements are also equivalent to the
following one:
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(3) We have A°(Q) =2 IC™*(0), and the stalks of IC™*(Q) are free.

Proof. Conditions (1) and (2) are equivalent because F(A2(Q)) = A2(F) (see
Lemma 3.10).

Assume now that ZC™™*(K) = £ (K). If condition (3) holds, then ZC™*(0) is
stalkwise pure of weight 0, since K(ZC™™(Q)) 2 ZC™*(K) is, implying (2).

Conversely, suppose that condition (2) holds. We will prove condition (3) by
induction on the number of strata in X. If X consists of a single stratum, the
statement is trivial. Otherwise, let X; C X be a closed stratum, and let j : U — X
be the inclusion of the complementary open subset. Let X, be a stratum in U. Let
My = Ay (0) =T gﬁ‘(@), and let L = i}jMy. The strategy of the argument is
to compare the distinguished triangles in §4.1.1 and in §4.1.3.

We begin by showing that PHJ(L) is a torsion O-module. Observe that K(L) =
iy 51 (K(Z r{}f;‘(@))) >~ 45T rUﬂ,i:(K). According to §4.1.1, we have 7<o(K(L)) =
PFICM(K)[—1] 22 i E™(K)[—1]. Tt follows that, when k < 0, PH¥(K(L)) vanishes
unless 7 = k — 1. In particular, PHJ(K(L)) = K(PH$(L)) = 0. This implies that
PHY(L) is torsion.

Next, we carry out a similar line of reasoning using the fact that S<_1L
it A% (0)[=1] (see §4.1.3). The latter is pure of weight —1 by assumption so, if
r < —1, PHF(L) vanishes unless k = r + 1. In particular, 74¥(L) vanishes for all
k >0 when r < —1. In other words, 8<_1L € PD'E*(X,;,0)=0.

Finally, assumption (2) implies that Af; ((O) has weights < 0 (see Lemma 3.5),
and so L has weights < 0 as well (see Lemma 3.4). That is, PH¥(L) = 0 for k < 7,
and it must be free when k = 7. But we previously saw that PH3(L) is torsion, so in
fact, it must vanish. For 7 > 1, we have that PHF(L) = 0 for all k¥ < 0. Combining
these, we find that BxoL € pD§ix(Xt, 0)=!. This fact, together with the previous
paragraph, tells us that the two distinguished triangles

(a3

ﬁﬂ_lL%L—)ﬁEQL% and TS()L—)L—>T21L—>

coincide. From §4.1.1 and §4.1.3, we conclude that A% ((0) = ICR%(0). The stalks
of T %”;(@) are torsion-free because those of A% ((O) are by assumption. O

4.3. Another positivity criterion. The main result of this section is the follow-
ing.
Theorem 4.2. Assume that ZC™™(K) = £2%(K) for all s € .. Then the following
are equivalent:
(1) PZX(X,F) is positively graded.
(2) For all 5,t € .7, we have [F(ZCT™(Q)) : IC™(F)(n)] = 0 unless n = 0.
(3) For all s € &, K(P™*(Q)) is a direct sum of objects of the form P/*(K)
(i.e., without Tate twists).
(4) For all s € ., we have A°(0) = IC™™(0).

Proof of the equivalence of parts (1)—(3). We begin by proving the equivalence of
parts (2) and (3). By the same arguments as in the proof of [AR2, Lemma 5.2] (see
also [AR3, Lemma 2.10]), the @-module Hom(P™*(Q), ZC™*(0)(n)) is free, and
we have natural isomorphisms

F ®o Hom(P{"™(0), Z€;™(0)(n)) = Hom(P{™(F), F(ZC™(0)){n)),
K ®o Hom(P{*™(0), ZC™(0)(n)) = Hom(K(Py"™(0)), ZC;"™ (K)(n)).
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Condition (2) expresses the property that the first vector space can be nonzero only
if n = 0, and condition (3) expresses the property that the second vector space can
be nonzero only if n = 0. Hence these conditions are indeed equivalent.

To prove the other equivalences we need to introduce Grothendieck groups. For
E =K, O or F, consider the Grothendieck group K2 (X, E) of the abelian category
PZX(X,E). This abelian group naturally has the structure of a Z[v,v ]
where v acts via the shift (1). The classes of the objects ZC™*(E) form a basis
of this Z[v,v~!]-module, and similarly for the objects A™X(E). (When E = O,
this assertion relies on the fact that E has finite global dimension.) Moreover, the
functors K(—) and F(—) induce morphisms of Z[v, v~!]-modules

x  K9%(X,0) - K2%(X,K), r: K25(X,0) - K%%(X,F).

-module,

For any s € ., write

Amlx Z dst lex ]
tes

where d;; € Z[v,v1].

Now we can prove that (2) implies (1). First, it follows from our assumption
that P2 (X, K) is positively graded (see Corollary 3.17). Therefore, applying ek,
we see that we must have ds; € Z[v™!] for any s,t. Now assumption (2) ensures
that

re(ZC7™(0)) € > Z- [IC™(F)].
ues
It follows that [ATX(F)] = rp([ARX(0)]) is a Z[v~!]-linear combination of the
[ZC2™(F)]. In other words, statement (2) in Proposition 3.15 holds, so PZ* (X, F)
is positively graded.
For the converse, suppose that (1) holds. Write

szlx Z s, t Amlx
tes

where p; ¢ € Z[v,v™!]. Applying rr, we obtain that p,; € Z[v™']. Since PL*(X,K)
is also positively graded, we deduce that the indecomposable direct summands of
K(P™x(Q)) are of the form PP*(K)(n) with n < 0. Assume that P/*(K)(n) ap-
pears for some n < 0. By the remarks in the equivalence of (2) and (3), this implies
that ZC™*(—n) is a composition factor of the mixed perverse sheaf F(ZC™(Q)).
Then ZC™™*(—n) is also a composition factor of F(AMX(Q)) = AMX(F), which
contradicts Proposition 3.15(2). O

Remark 4.3. Since ZC™*(Q) and D(ZC™>(Q)) differ only by torsion, the mixed
perverse sheaves F(ZC2™(0)) and D(F(ZC2™(0)) have the same composition fac-
tors. Hence condition (2) is equivalent to the property that all composition factors
of all F(ZC™*(Q)) are of the form ZC™*(F)(n) with n < 0, or all of the form
TC™(F)(n) with n > 0. A similar remark applies to (3).

Lemma 4.4. Assume that IC™(K) = EM%(K) for all s € .. In addition, assume
that conditions (1)—(4) of Theorem 4.2 hold for every locally closed union of strata
Y C X. Then, for all s € .7, the objects BpoICT(F), <oZC™(F), AS(F), and
Ve(F) are all perverse.
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Proof. If X is not an open stratum, then the objects in question are all supported
on a proper closed subvariety of X, and so are perverse by assumption and Proposi-
tion 3.15. Assume henceforth that X, is an open stratum, and let Y = X \ X;. We
will treat BsoZC™(FF) and A°(F); the statement follows for the other two objects
by Verdier duality.

Let Q denote the cokernel of the map ZC™™*(F) — V(). Since Q is supported
on Y, Proposition 3.15(5) tells us that the triangle

Ba1Q = Q5 oo

is actually a short exact sequence in P'Z*(X,F). In particular, the map h is sur-
jective. Now consider the commutative diagram

IC™(F) Q

| ;

Br0ZCI™ (F) ——= B Vi (F) —; BroQ

VR (F)

Since h and p are both surjective maps in P“;X(X, F), q is as well. It follows that
the cocone of g (i.e. BpoZCI™(F)) lies in PLX(X, ).

Next, let K denote the kernel of the map A™X(F) — ZC™*(F), and form the
distinguished triangle

BroK — BroAT™(F) — BeoZCT™(F) 4,

Since K is supported on Y, Proposition 3.15(5) again tells us that the first term lies
in PZ(X,F). We have just seen above that the last term also lies in PZX(X, F),
so the middle term (which is AS(F) by definition) does as well. O

End of the proof of Theorem 4.2. We will show that condition (4) is equivalent to
condition (6) of Proposition 3.15, by induction on the number of strata in X. If X
consists of a single stratum, it is clear that both statements are true.

Otherwise, let X, C X be an open stratum, and let X; C X be a closed stratum.
Let U = X ~ X; and Y = X \ X;. Note that if either (4) or condition (6) of
Proposition 3.15 holds on X, the same statement holds on both U and Y, and hence,
by induction, all parts of Theorem 4.2 hold on both U and Y. For the remainder of
the proof, we assume that this is the case. We must show that A°(Q) = ZC™*(0)
if and only if ZC2(F) = ZC™*(F). By Lemma 4.4, BpoZC™(F) and AS(F) are
perverse.

For E =K, O or F, let My (E) := A (E). Note that F(My(0)) = My(F) and
K(My(0)) &2 My (K) (see Lemma 3.10), and that My (E) Cg‘j;‘(E) ifE=K
or 0. Let j : U < X be the inclusion map, and let L(E) = 4,5 My (E). Since
F(L(Q)) = L(F), there is a natural short exact sequence of F-vector spaces

(4.2) 0 = F @0 PHF(L(0Q)) — PH*(L(F)) — Tor? (F,PH*+(L(0))) — 0.

On the other hand, we have My (K) = Z ’[TJ“:(K) = &(K). By assumption,
J1e My (K) coincides with the parity extension £2*(K) of My (K). Comparing the
constructions in §4.1.1 and §4.1.4, we see that 7<oL(K)[1] and 751 L(K) are parity
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sheaves. In other words,

k<Oandr=%k—1,or

k —
(4.3) PH(L(K)) =0 unless {k >1landr =k

We now proceed in several steps.
Step 1. If k > 1, then PH*(Bq_1L(0)) = 0. If k < 1, then PH*(B5oL(0)) = 0.
Recall that A2(0) = BsojiMy. From §4.1.3, we have

Ba1L(0) =i A°(0)[-1] and  BpoL(0) = i,A%(0).

Since A2(F) = F(A2(0)) is perverse, we have by [AR3, Lemma 3.5] that A2(Q)
lies in PZ¥(X,0). This implies that i; A2(Q)[—1] € PD'E*(X;,0)=!, or in other
words, PHF(B<_1L(0)) = 0 for k > 1.

We likewise have i{AS(0) € PDUX(X,,0)2°% We claim, furthermore, that
PHO(it A°(Q)) is torsion-free: otherwise, F(i,A2(0)) = it A°(F) would fail to lie
in PDUX(X;,F)=0, contradicting the fact that A2(F) is perverse. To reiterate,
PH*(BsoL(0)) vanishes for k& < 0 and is torsion-free when k = 0. But it fol-
lows from (4.3) that PH?(Bp0L(K)) = K ®¢ PH"(Bs0L(Q)) vanishes. Therefore,
PHO(Bs0L(0)) = 0 as well, finishing the proof of Step 1.

Step 2. We have PH(B4_1i; AS(F)) = F ®¢ PH'(B<-1L(0)). From Step 1,
we know that PH2(B4_1L(Q)) = 0, so (4.2) tells us that PH!(34_1L(F)) = F ®o
PH(B4-1L(0)). On the other hand, as in Step 1, B<_1L(F) = i*A2(F)[—1], and
the result follows.

Step 3. We have A2(Q) = IC™*(0) if and only if "H'(<_1L(Q)) = 0. From
the descriptions in §4.1.1 and §4.1.3, we see that A%(Q) = ZC™*(0) if and only if

TS()L(@) = ﬂﬂ_lL((@) and TZlL(@) = 6[2011(@)

According to Step 1, we always have Sq_1 L(0) € PD'B*(X,,0)=! and BpoL(0) €
PDB(X,;,0)=!. Thus, the conditions above hold if and only if PH! (34_1 L(Q)) = 0.

Step 4. We have ICS(F) = IC™(F) if and only if PH*(Ba_1i;IC2(F)) = 0 for
all k > 0. We already know that the restrictions of ZC2(F) and ZC™*(F) to U
agree. Recall that ZC™>(F) is characterized (among all objects whose restriction
to U is T r[}“j‘(IF)) by the following two properties:

(4.4)  Q;IC™X(F) € PDBX(X,,F)S™Y and i, ZC™™(F) € PDEX(X;, F)=1.

Since ZC;(F) is self-Verdier-dual, if it satisfies one of these properties then it must
satisfy both. Thus, ZC{(F) = ZC3"™(F) if and only if

PHR(FTCO(F) =0  for k> 0.

But ZC;(F) is itself characterized by similar properties to those in (4.4), com-
ing from the recollement structure in Proposition 3.12. In particular, we have
PH*(Beoi;ICL(F)) = 0 for k > 0. By Lemma 3.11, we deduce that for & > 0 we
have PHF (i ZCS(F)) = PH*(B4_1ifZC2(F)), which finishes the proof of Step 4.
Step 5. We have PH*(Bq_1if AS(F)) = PH*(B4_1i;ICS(F)) for k > 0. Let K be
the kernel of the map AJ(F) — ZC,(F). This kernel is to be taken in P, (X,F):
we do not know at the moment whether ZCS(F) lies in P%* (X, F). However, we do
know that K lies in P@ix(X ,IF), because K is supported on Y, where the conclusions
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of Lemma 3.14 hold. In fact, for each composition factor ZC2(F) = ZC™*(F) of K,
we have

PHY(Ba_1ifIC(F) =0 for k> 0.

(If u # t, this holds because i;ZC;, (F) € PD'S*(X,;, F)<~1; if u = t, we clearly have
Ba-1i;IC;(F) = 0.) Therefore, PH*(Bq-1K) = 0 for k > 0. The result follows
from the long exact sequence in perverse cohomology associated with

* %k * %k o * % o 1
Ba 1K — Ba_1itA°(F) — Ba_1i:TC2(F) s |

Conclusion of the proof. Since A2(F) is perverse, we know that PH* (if A°(F)) = 0
for k > 0, and so PH*(Bq_1i; AS(F)) = 0 for k > 0 as well. Then, Step 5 implies that
PH¥(B4a—1i;ZC2(F)) = 0 for k > 0, so we can rephrase Step 4 as follows: ZC3(F) =
ZC™X(F) if and only if PH°(B<_1ifZC2(F)) = 0. Using Step 5 again together with
Step 2, we have that ZC2(F) = ZC™™(F) if and only if FRoPH' (Ba—_1L(0)) = 0. The
latter holds if and only if PH'(8<_1L(Q)) = 0, and then Step 3 lets us conclude. O

Corollary 4.5. Assume that ZC™™(K) = £™%(K) for all s € .. Then the follow-
ing conditions are equivalent:

(1) The category PS*(X,F) is standard Q-Koszul.
(2) For all s € ., we have A2(Q) =2 ICT™(0), and ZCT™(0) has torsion-free
stalks.

Proof. Each of these conditions independently implies that all parts of Theorem 4.2
and of Proposition 3.15 hold for X. In particular, both conditions imply at least that
Pf’;}x(X ,IF) is positively graded, and that the perverse-sheaf meaning of the notation
A¢ is compatible with its usage in Definition 2.15. By Verdier duality, standard Q-
Koszulity can be checked by a one-sided condition: PZ* (X, F) is standard Q-Koszul
if and only if Ext"(AS(F), VI (F)(n)) = 0 whenever n # —k. By adjunction, the
latter holds if and only if AZ(F) is stalkwise pure of weight 0 for all s. That
condition is equivalent to (2) by Lemma 4.1, as desired. O

5. POSITIVITY AND Q-KOSZULITY FOR FLAG VARIETIES

5.1. Definitions and notation. In this section we choose a connected reductive
algebraic group G, a Borel subgroup B C G and a maximal torus 7' C B, and
focus on the case where X = % := G/B is the flag variety of G, endowed with
the stratification by Bruhat cells (i.e. by orbits of B). We use the symbol “(B)”
to denote this stratification. The strata are parametrized by the Weyl group W :=
Ng(T)/T of G; the dimension of %, is the length ¢(w) of w (for the natural
Coxeter group structure on W determined by our choice of B). By [AR3, §4], the
assumptions at the beginning of Section 3 are satisfied in this setting. As in [AR3]
we will assume that £ is good for G. Note also that the assumption of Lemma 4.1,
Theorem 4.2, and Corollary 4.5 is satisfied in this case, by [KL].

We will also consider a connected reductive group G, a Borel subgroup B C G,
and a maximal torus 7' C G, such that the based root datum of G determined by
T and B is dual to the based root datum of G determined by T and B. As above
we have a flag variety £ := G‘/B, endowed with the Bruhat stratification. The
strata are also parametrized by W (since the Weyl groups of (G, T) and (G,T) can
be canonically identified). We will use hécek accents to denote objects attached to
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G rather than to G. For instance, A, (E) is a standard object in P(B)(@, E), and
TMiX() is a tilting object in P?E’;(@,E).

Recall that by [AR3, Theorem 5.4] there exists an equivalence of triangulated
categories

k= DI (%, E) = D5(%,E)
which satisfies in particular « o (n) & (—n)[n] o k and

R(VI™) & VI, R(TE) 2 8, w(ER) = T

w1
Below we will also use the Radon transform
Rmix . mlx(@ E) mlx(@ E)
This equivalence of triangulated categories satisfies

ROV (n)) 2 A (), RX(T2 () 2 P (1),

wwo wwo

(See [AR3, Proposition 4.11].) We also set

o= ko (RMX)"1: ?g’)‘(%,E) = D?;’)‘(ﬂ E).

This functor has the property that
o(AR(n) = Vi i (—n)[n]  and  o(Py™(n)) = En i (—n)[n].

wow 1 wow 1

In [AR3, Proposition 5.5] we have also constructed a t-exact “forgetful” functor
M D?}%’)‘(%’ E) — (B)(% E)

(where the right-hand side is endowed with the usual perverse t-structure) and an
isomorphism g o (1) such that for all F,G € Dm"‘(%’ E) the morphism

(5.1) P Hom(F,G(n)) — Hom(uF, uG)

neZ

induced by p is an isomorphism, and such that
PADX) = A, (VI =Y, u(ZeR) = 10,
p(Tom™) 2 Ty, p(ER™) 2 &,

(Here Aw, Vi, ICy, T, are the obvious “non-mixed” analogues of AMix Ymix
ICm‘X Tmix which are objects of the usual category P (B)(#,E) of Bruhat-constru-

w

ctible perverse sheaves on #.) There is also a functor i : Dg’)‘(%’ E) — DE)B) (%4,E)

with similar properties.

5.2. Main results. The next two theorems are the main results of the paper.

Theorem 5.1 (Positivity). The following are equivalent:

(1) The category PE“;;(@,F) is positively graded.

(2) For allw € W, we have AS(Q) = IC™™(0).
(3) For all w € W, the object £,(0) € Db (%’ Q) is perverse.
(4)

4) For all w € W, the object £, (F) € Db (%’ F) is perverse.
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Proof. The equivalence of the first two statements follows from Theorem 4.2. The
equivalence of the last two statements follows from the fact that the objects &, ()
have free stalks and costalks by definition.

By [AR3, Corollary 5.6], the last statement is equivalent to the condition that
(Tmix . ymix(p)) = 0 for all n > 0 and all u,v € W. Using the equivalence R™*
the latter is equivalent to requiring that (P™¥ : AMX(p)) = 0 for all n > 0 and all
u,v € W. By Proposition 3.15, we conclude that the first and third statements are
equivalent. ([

Theorem 5.2 (Q-Koszulity). The following are equivalent:
(1) The category Pg’)‘(%,lﬁ‘) is metameric.
(2) The category P’(’g’)‘(@,lﬁ‘) is standard Q-Koszul.

(3) For allw € W, we have AS,(Q) = IVCZiX(@), and IVCfX(@) has torsion-free
stalks. 3 . 5

(4) For all w € W, we have AS(Q) = ZC,," (Q), and IC,(Q) has torsion-free
stalks.

Proof. The equivalence (2) <= (3) follows from Corollary 4.5. The equivalence
(3) <= (4) follows from (5.1) (or rather its analogue for %), using the fact that
A(ZC(0)) 22 7€, (0) and (V2*(Q)) 2 V,(0), and the observation that an ob-
ject M of the derived category of finitely generated @-modules has free cohomology
objects iff Hom" (M, Q) is a free @-module for all k € Z.

(1) = (3). Assuming that P‘(Tg’)‘(%,lﬁ‘) is metameric, Theorem 2.11 gives us a

class of objects {A™*}, cy in Pi5)(#,F). Form the short exact sequence K <

Amix _, Amix(F) Recall that K, has a filtration by various A™*(n) with n < 0.
Therefore, o(K,,) is an iterated extension of various V™ (—n)[n] with n < 0. In

particular, o(K,) € D?g’)‘(,@, F)e1.

On the other hand, the A™* have the property that Ext®(Amix Amix(p)) =
for all £k and all n < 0. Applying o, we obtain that

Ext® (o (A™X), VX (—n)[n]) =0 for all k and all n < 0.

wou

This implies that o(A™*) € Dzr]g’)((%?, F)«o (see Remark 3.8). Thus, the following
two distinguished triangles must be isomorphic:

S(AM) S o (AM) S o (K, (1)) 2o, VS, 0 o VI gy i

wow

(see Lemma 3.7(3)); in particular we obtain an isomorphism

o(Am) = V5, ,

Now, A is an iterated extension of various AJ™(n), so Vo . is an iterated

of the costalks of the V™*{n}. The latter are pure of weight 0, so the same holds
for v;ow_l. By Verdier duality, we deduce that the objects A;Ow_l are stalkwise
pure of weight 0. By Lemma 4.1, we find that condition (3) holds.

extension of various V"™ {n}. In particular, the costalks of V7 . are extensions
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(3) = (1). When (3) holds, by Theorem 5.1 the category PE};’;(@,F) is
positively graded. First, let us prove that the category P‘(*}Bi’)‘(z%’,F) also is posi-
(B)
mark 3.16). We claivm that the indecovmposable tilting objects in this category are
the parity sheaves £M*. Indeed, let 7.0 be the unique indecomposable tilting ob-

ject of P?B)(‘@’ F) whose support is %,,. Then 7.2 has a filtration by various A2,
which are stalkwise pure of weight 0 by Lemma 4.1. Therefore, 7.° is also stalkwise
pure of weight 0. By Lemma 3.5, it follows that 7.2 has weights < 0. Since 7.2 is
Verdier-self-dual, it also has weights > 0, so it must be pure of weight 0, and hence
a direct sum of various £*{m} by the remarks in §3.2. By indecomposability
and support considerations, we even obtain that 7,2 = £™*{m} for some m € Z.
Considering the restriction to %,,, we obtain that m = 0, i.e. that ’7:3 = 5{5‘1", as
claimed. Now the objects AZ are perverse sheaves (see Remark 3.16), so the objects
’7:3 are also perverse; we deduce that c‘ff}}ix is a perverse sheaf for any w € W. Using
Theorem 5.1 again, this finishes the proof of the fact that P?g’)‘(f@, IF) is positively
graded.

To conclude, we will essentially reverse the argument used in the proof of the
implication (1) = (3). Let us define Am* ¢ D{5y(%,F) to be o (VS 1)
Since (3) holds, using Lemma 4.1 and Verdier duality, we know that the costalks of
?3} are pure of weight 0 for all w € W. In other words, for any u € W, the object
Tuxiy, VS, is a direct sum of various VI*{n} with n € Z. In fact, since V2, is perverse
(see Remark 3.16) we must have n < 0. We even have n < 0 unless u = w, and
in that case, we have V™ = 4,,.i' V° . (The first claim follows from the following
computation for u < w: Hom(F,i, V) = Hom(A®* V) = Hom(A°, V) = 0,
where the second isomorphism follows from (2.3). The second claim is obvious from
the construction of V, in Proposition 2.7.) A routine recollement argument shows
that V°, is an iterated extension of the various 7,.7, V2, and hence of V¥ together
with various V2*{n} with n < 0 and u < w. Applying o~! to this description,
we find that A™* is an iterated extension of AM* and various A™*(n) with n < 0
and u < w. In particular, Zgix is a perverse sheaf with a standard filtration.

Next, we claim that Extk(lgix,lcg‘ix(n)) =0forall k > 1ifn#0, or else if
n =0 and v <w. For n > 0 this follows from (2.3), and one can easily check using
induction on v that the conditions for n < 0 are equivalent to

tively graded. By Lemma 3.14, P°. (%,F) is a quasihereditary category (see Re-

Ext? (AR APX(p)) =0 forall k>1ifn <0, orelse if n =0 and v < w.

Applying o, this is equivalent to a similar vanishing claim about

Hom(V;

wow 1

Vi (—n)[k + n]).

If n < 0, this claim follows from (2.3). If n = 0, it holds for reasons of support.
Referring to Theorem 2.11, we see that we have already shown that the objects
ﬁﬁ}ix enjoy properties (2), (3), and (4). We will now show that they satisfy prop-
erty (1) as well. The Ext'-case of the vanishing proved above shows that A{f}ix
is projective as an object of the Serre subcategory of P‘(%i’)‘(%,lﬁ') generated by all
IC™>(n) with n < 0, together with the ZC™* with v < w. It is indecomposable
because Vfu is, so it is the projective cover of some simple object. Its unique simple
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ag

/\
=~ DiX(#,F) ——> DIX(B,F)

D5 (%, F)

Rmix (B) K
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? < ggxixgm > 7 mix
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Amix 17 Ve

wwo

FIGURE 1. Behavior of various objects under the equivalence o.

quotient must be the head of one of the standard objects in its standard filtration.

By weight filtration considerations, that unique simple quotient must be Z. Eix.
We have shown that the objects Egﬁx satisfy the properties listed in Theo-

rem 2.11. It is clear that the objects %gﬂx = D(ﬁgix) will satisfy the dual condi-

tions, so that Theorem 2.11 implies that PE“Bi’)‘(z%’, F) is metameric. O

Remark 5.3. When the conditions of Theorem 5.2 are satisfied, one can complete
the description [AR3, Figure 1] of the behavior of the various special objects under
the equivalence k, as shown in Figure 1. (Here the isomorphism on the third line
follows from Lemma 3.14, and question marks indicate objects for which we don’t
have an explicit description.)

Remgrk 5.4. Suppose that the conditions in Theorem 5.2 hold. By Lemma 3.14,
the £E2X(F) are precisely the indecomposable tilting objects in PE’B)(%’, F). Since
the equivalence o1 : DZ‘;’)‘(@, F) — D{p5i(#,F) takes these to projective objects
in P?}Bi,’)‘(%, IF), the category PE“];’)‘(%, F) is the “T-Koszul dual” to P™*(%,F) in the

(B)
sense of Madsen [Mad]. (See Remark 2.17.)

5.3. Koszulity. We conclude this paper with a proof of the converse to Corol-
lary 3.17, in the case of flag varieties.

Theorem 5.5. The following are equivalent:

(1) For allw € W we have &, (F) = ZIC,, (F).
(2) The category P’(’g’)‘(,@,lﬁ‘) is Koszul.
(3) The category P?g’)‘(%’, IF) is positively graded, and P?};’)‘(%’,F)O is a semisim-
ple category.
Moreover, these statements hold if and only if their analogues for 2 hold.
Proof. In this proof, we will write (1) to refer to the analogue of statement (1) for
%, and likewise for the other assertions in the theorem.

The implications (1) = (2) and (1)¥ = (2)" follow from Corollary 3.17.
The implications (2) = (3) and (2)¥ = (3)" are obvious.

ﬂigﬁbrpae-publication version of this article, which may differ from the final published version. Copyrigiht réétric’tiorils’may apbl)}.



MODULAR PERVERSE SHEAVES ON FLAG VARIETIES III 33

(3) = (1)¥. Since P?};’)‘(%,F) is positively graded, by Theorem 5.1, &, (F) is
perverse. Now, the fact that P?};’)‘(%’, [F)° is semisimple implies that the ring

HOme(nBi:)c(@’F) (@ qu;nix(F)7 @ P?lx(F))

veW veW

is isomorphic to @, k (where 1 in the copy of k parametrized by v corresponds to
the identity morphism of P™*(F)). Using equivalence o, we deduce a similar claim
for the objects EMX(F), v € W. It follows that

(5.2) HomDFB)(‘@’F) (E,(F),Eu(F)) =0 unless v = w.

Now assume that there exists w € W such that the perverse sheaf &,(F) is not
simple, and choose w € W minimal (for the Bruhat order) with this property. Since
Eu (F) is supported on the closure of B, and since its restriction to 4, is F, either
the top or the socle of &, () contains a simple object ZC,(F) with v < w. Then
there exists either a non zero morphism &, (F) — ZC,(F), or a nonzero morphism
IC,(F) — &, (F). Since IC,(F) = &,(F) by minimality, this contradicts (5.2) and
finishes the proof of the implication.

By symmetry we also obtain the implication (3)¥ = (1), which finishes the
proof. ([l

APPENDIX A. EXAMPLES OF MIXED PERVERSE SHEAVES

In this appendix, we discuss a number of examples of mixed perverse sheaves,
weights, and baric truncation functors.

A.1. The flag variety for SLs. In this subsection, let G = SLs. Its Weyl group
consists of just the identity element e and a simple reflection s. The Schubert
varieties %, (a point) and %, = P! are both smooth, and the computations in this
section turn out to be independent of the coefficients. (In particular, the objects
obey the usual Kazhdan—Lusztig combinatorics.) We have

Ee

1%
i}

2. =Fg Es ggﬁzlﬁs{l}'

In Parity ) (%, F), we have the following Hom-groups:

F ifn=0,

0 otherwise

F ifn=0,2,

0 otherwise

Hom(&,, Ec{n}) = { Hom(&s, E5{n}) = {

F ifn=1,

0 otherwise.

Hom(&,, Es{n}) = Hom(&, E{n}) = {

It is well known that up to isomorphism, there are five indecomposable per-
verse sheaves in P(py (%4, F). There are likewise five indecomposable mized perverse
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sheaves, up to Tate twist and isomorphism. They are given by the following com-
plexes in D?g’)‘(%,lﬁ‘) = KbParity(B)(%, F):

mix __ -1 0 1 mix __ -1 0 1
IC; T > 0—=& >0 Icy T > 0—=& >0 > -
. -1 0 1 . -1 0 1
Arqnlx: Vrsz:
£ %0%554)55{1}9 ‘ ...956{_1}4)58909...
—1 0 1

T = i E 1) = & = Ef1} > -

From these chain complexes, we see that both ZC’s are pure of weight 0. The object
A hag weights in {—1,0}, while V™ has weights in {0,1}.
Recall that the Tate twist (1) is defined to be {—1}[1]. For example, we have

-1 0 1

ICi™ (1) = =1} >0 >0

In this example, P@’;(%’,F) is positively graded (see Proposition 3.15), and
indeed Koszul (see Corollary 3.17). One can see from the above complexes that
there are maps of mixed perverse sheaves

0 ICI™(—1) — AP — T,

mix

B (%,TF), because the cone of
each of these maps is again perverse. Indeed, this sequence is none other than the
weight filtration of 7%, The subquotients are

ICM (1), TCMX, TCX(1),

Each of these maps is an injective morphism in P

which are pure of weights —1, 0, and 1, respectively.

A.2. A singular Schubert variety for SOj5. Now let G = SO5. In its Weyl
group, let s be the simple reflection corresponding to the short simple root, and let
t be the simple reflection belonging to the long simple root. We will focus on the
Schubert variety %q:s, which is known to be singular. (The other Schubert varieties
in its closure—%y;, Byis, Bs, By, and B.—are all smooth.)

According to [WB, 85.3], if the characteristic of I is not 2, then &y = Fz—.

Mixed perverse sheavej on ABsis in characteristic other than 2 obey the same “com-
binatorics” as mixed Q,-sheaves.

From now on, we assume that F has characteristic 2. Then [WB, §5.3] tells us
that

. Fp ifi=-1,-3
HE(E. ) LB ) ’
( éts“’?s) {0 otherwise.
It is easy to compute Hom-groups among all the &,,. The most interesting piece of
the computation says that
Hom (&5, Es) = Hom(Ey, Ests) = F.

Of course, the composition of two nonzero maps £ — Egs — £ must vanish;
otherwise, & would be a direct summand of the indecomposable parity complex
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Ests, which is absurd. We have

mix -1 0 1
ey = Y S for w € {e, s, t, st,ts},
. -1 0 1
Icmlx —

sts .-95‘595“59559--.

To verify that the last complex (which we will denote "ZC™ for now) is indeed

ICS;LX, we must check that its stalks and costalks live in the appropriate cohomo-
logical degrees. This complex is clearly self-Verdier dual, so it is enough to check

its stalks. We have
'ICY |5, 2 Fp, {3 — dim B} = Fp, (dim £, — 3)[3 — dim Z,,]

sts
if w e {t, st, ts}, and

-1 0 1

/Icmix|%w ~ 0 #0
o> Fy {1} —2=F, {1}0F, {3} —>Fyu {1} — -

sts

if w € {e, s}. The latter complex is homotopic to

-1 0 1
> Fy, {1} = Fy, {3} =0~

=2Fgp, {1 —-dim%B,}[1] ©Fz, {3 —dimZ,}
=Fg, (dim B, — 1)[2 — dim B,,] ® Fg, (dim B, — 3)[3 — dim Z,]

These calculations show that for all w # sts, we have

'ICHY | 3., € PDIEY (B, F)<C.

sts

This property characterizes intersection cohomology complexes, so that we indeed
have 'ZC3 = ICHY.

sts sts
There are several new phenomena in this example that did not occur in the SL,

example, and that do not occur in characteristic 0:

e The stalks of IC’SI;;X do not obey parity-vanishing. Specifically, for w €
{e, s}, we see that PH (ZC2|,,) # 0 for i = dim %, —2 and i = dim B, —
3.

e The stalks of ZC™* are not pure: for w € {e,s}, ZC"¥|sp, has weights in
{-1,0}.

e The object ZC™X itself is not pure; it has weights in {—1,0, 1}.
Nevertheless, we claim that P?g’)‘( <ts, ) is positively graded. To see this, we

begin by checking that
ICy™ € D (Bas, F)ao  for all w.

It is easy to see that it is enough to check this on stalks. The computations above
show that this holds for ZC4,.*. It is much easier for the other ZC;,™, which all have

sts

pure stalks. By Verdier duality, we actually have
ICy™ € DY (Bars, F) a0 N D (Bets, F)so
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for all w. It follows that

BanZC2>(m) =

IC™(m) if n > m,
0 otherwise,

IC™X(m) if n < m,
0 otherwise.

BenZCiy™(m) = {

By Proposition 3.15(5), P?E})((j, F) is positively graded.

By Proposition 2.5, this means that every object in P?g’)‘ (Bsis, F) admits a func-
torial filtration. It is tempting to call it the “weight filtration,” but in fact, it does
not come from the notion of weights in the derived category. Instead, let us call it
the “baric filtration,” as it does come from the baric truncation functors. We can
already see this distinction for IC?;LX: its baric filtration has a single nontrivial step
(obviously, since it is simple), but it is not pure.

From the chain complex for ZC™X, one can see that there is a nonzero map
ICM> — TC™*[1], i.e., a nonzero element of Ext!(ZC%X, ZC™>). The middle term
of the resulting short exact sequence is actually A2,,:

mix o mix
0—=ICy™ — A%, = IC — 0.

We will see why later on. For now, note that the middle term of this short exact
sequence is given by the complex

-1 0 1

0=

(A1)

stségsé"'

The baric filtration of this object is concentrated in degree 0, but it has weights in

{~1,0}.

Here are the standard perverse sheaves on PBys:

mix -1 0 1
A = > 0—>E& >0
Amix -1 0 1
s ---—>O—>ES»SG{1}»-~-
Amix -1 O 1
t ...%0%&956{1}9....
Amix -1 0 1 2
st T ,_4)04>gst958{1}@&{1}956{2}9...
Amix -1 0 1 2
ts > 0—=&s > EJ1} B E{1} = E {2} = -
Amix _ 0 1 2 3
S5 > Egys = Eq{1} B {1 B E = E{2) B E{2) = E{3} = -

For all but the last, it is easy to read off the baric filtration and the compo-
sition factors from these complexes. Both AMX* and AIX contain ZCI™(—1)
as a subobject. Let F be the cone (i.e., cokernel) of the diagonal embedding
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d: IC™™(—1) — A™X @ A Then F looks like
~1 0 1
F = :
> 0—=E&0 & =EAfl} =

The baric filtration of AT is given by the sequence of maps

0 = ICH™(=2) — F(—1) — AR

st

the subquotients are ZCM™(—2), ZC™*(—1) ®ZC™*(—1), and ZC™. The structure
of AX is very similar.

Finally, let G be the cone of the diagonal embedding F(—1) — AmX g Allix,
The baric filtration of ATX is given by

sts

0 ICM¥(—3) e F(—2) < G(—1) — ALX

sts
with subquotients ZC™*(—3), ZC™*(-2) @ IC™*(—2), IC™™*(—1) @ ZC™(-1),
and Ag,,.
This baric filtration computation shows that (A.1) does indeed deserve the name
A2,,. On the other hand, for all w < sts, we have AS, = T,

A stalk computation similar to that for ZC%>|z, shows that

AYsl 2, = Fag, (dim B, — 3)[3 — dim £,] for w € {e, s}.

All other stalk computations for the AY, are easy; one finds that they are always
pure of weight 0. By Lemma 4.1 and Corollary 4.5, we obtain the following result.

Proposition A.1. IfF is a field of characteristic 2, then PE‘E’)‘(%StS,F) is a stan-
dard Q-Koszul (but not Koszul) category.

Remark A.2. (1) In characteristics other than 2, P?‘é’)‘( <ts, ) is Koszul.

(2) The remaining Schubert varieties—%;s: and A itself—are both smooth,
so with very little extra work, one can upgrade Proposition A.1 to the
statement that P’E“é’)‘(%,lﬁ‘) is standard Q-Koszul.

Finally, let us compare ICT;S‘ with the ordinary (not mixed) perverse sheaf ZC ;5.
Using [BP, Theorem 2.6], one can show that the singularity of %, along % is
a Kleinian singularity of type A;. The intersection cohomology complex at an A
singularity has been computed in [JMW3, §2.4] (see also [J, Chap. 8]). It follows
from loc. cit. that for w € {e, s}, H (ZCsts|, ) has dimension 1 if i € {—2, -3},

and it vanishes otherwise. In other words,

ICyis| 2, = F[2] ® F[3] = F[2 — dim #,)] ® F[3 — dim £, ].

This closely resembles our earlier computation of ZC™X|4. . This resemblance,
which fits in with [AR2, Remark 2.3(3)], may be regarded as evidence that the
category P?g’)‘(t@sts, [F) is a graded version of P p)(%sts, F). (Recall that 2 is a bad

prime for SOs, so [AR3, Proposition 5.5] is not available in this example.)
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