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ABSTRACT 

Metallic fuels are of interest as additives in bio-fuel combustion because of their high 

heating values, and this thesis deals with the experimental investigation of boron nanoparticles 

and their effect on ethanol combustion. Two grades of boron nanoparticles were commercially 

purchased and modified to obtain different physical characteristics, by ball milling and sintering. 

Also, a mixture of rare-earth oxide (CeO2, La2O3, and Gd2O3) nanoparticles was synthesized and 

added to the boron nanoparticles in varying amounts to form composite mixtures. The effects of 

rare-earth oxides on boron combustion were investigated using these composites. 

Particle characterizations were carried out by X-ray diffraction, scanning electron 

microscopy, porosimetry, and thermogravimetric analysis. Nanoparticles were characterized by 

crystallinity, primary particle size, agglomerate size, and the elemental (zero valent) boron 

content, both pre- and post-combustion.  Exhaust gas  chromatographic analysis and temperature 

measurements in the post-flame region of the combustion unit were carried out in order to 

determine the particles’ effects on combustion.   

Commercial boron nanoparticles of different grades differ in agglomerate size, but the 

primary nanoparticle sizes are similar, ~70 nm.  The agglomerate size can be modified by ball 

milling, while the primary nanoparticle size can be increased by high-temperature calcination.  

The combustion data suggest that the addition of boron nanoparticles to an ethanol fuel increases 

both the overall temperature of the system and the production of CO2, and adding rare-earth 

oxides to boron nanoparticles can also enhance these measures of performance. The data also 

suggest that as the boron primary particle size and agglomeration decrease, boron nanoparticles 

have a greater positive impact on ethanol combustion. 
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CHAPTER 1 

 INTRODUCTION AND REVIEW OF LITERATURE 

1.1  Introduction and Project Goals 

The depletion of fossil fuels and concerns over greenhouse gas emissions have been the 

motivation for finding alternative energy sources. Possible candidates for alternative energy 

sources include bio-fuels, wind, solar, geothermal, and hydro(tidal) energies. The renewability of 

these energy sources makes them good candidates. Petroleum based non-renewable fuels provide 

the majority of the world’s energy and are becoming more costly. The amount of energy 

consumed from petroleum based fuels accounts for 40% of the world’s use, while renewable 

sources account for 6% (Demirbas, 2007). Replacing such a large portion of energy usage would 

take a combined effort to develop many different alternative sources, including bio-fuels.  

Bio-fuels are those derived from biomass, and can be solid, liquid, or gaseous (Demirbas, 

2007). Of particular interest are liquid bio-fuels such as ethanol, because they can replace 

petroleum based fuels in internal combustion engines. Current technology allows vehicles to run 

on up to 85% ethanol in E85 flex fuel vehicles. One of the major drawbacks of using ethanol and 

similar bio-fuels is that their energy densities are much lower than typical petroleum based fuels 

such as, 21 kJ/mL for ethanol versus 30-35 kJ/mL for gasoline and diesel.  One way to help 

combat this energy deficiency in bio-fuel systems is to add energetic metal particles as fuel 

additives. Such metal particles are of interest in part because they release large amounts of heat 

upon burning, thereby aiding in ignition. Some drawbacks with metal fuels are that they tend to 

partially oxidize at very mild conditions (in handling, e.g.) and yet can be difficult to completely 

burn due to transport limitations through the oxide layer. An even larger drawback is lack of 

recyclability; there are no ways at present to easily regenerate (reduce back to the zero valent 



 

2 
 

state) the metal particles for reuse.  While this is not a problem in certain specialty combustion 

applications (e.g., Ramjets), it could limit the use of metal particle-aided combustion in larger 

volume power-plant applications.   

Research has shown some promise in overcoming these barriers, and this project deals with 

boron/ethanol combustion. The main goal is to study the effects of boron nanoparticles on 

ethanol combustion.  It is possible that use of nano- rather than micron-sized particles in a 

standard spray/swirl vane combustion apparatus might result in more complete combustion of the 

boron, and therefore have more of an effect on the liquid fuel combustion.  It is also possible 

that, if the particles do not agglomerate during combustion, they may be easier to regenerate.   

Therefore it is desired to determine how boron particle size, composition, and agglomeration 

at the nano-scale affects combustion and heat release using a typical bio-fuel, ethanol. Boron 

nanoparticles and mixtures of elemental boron and rare-earth oxide nanoparticles have been 

studied with the goal of enhancing the combustion of both the ethanol and the boron itself. All 

particles used (pre- and post-combustion) have been characterized for size, agglomeration, 

crystal structure, surface area, and elemental boron content in order to obtain a better 

understanding of the effects of particle morphology and surface chemistry.  

1.2 Energetic Additives - Boron 

The use of metal particles as fuel additives is of interest due to the high heating values of 

such metals. Aluminum, boron, beryllium, tungsten, titanium, etc. are some of the metal powders 

which have been considered. Figure 1.1 shows both gravimetric and volumetric heating values 

for various metals and ethanol. It is seen that the metals have considerably higher heating values 

than ethanol. Boron and beryllium also show considerably higher energies on a volumetric basis, 
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and this makes them of particular interest for volume-limited systems (Kuo et al., 2003). 

Theoretical calculations of heat evolution have shown that additions of boron and aluminum to 

hydrocarbon fuels can increase the overall heat release of hydrocarbon fuels (Goroshin et al., 

2001). One problem associated with using such metal particles is that they often have a native 

oxide layer on the surface after handling in the atmosphere.  This makes combustion more 

difficult, because now either the O2 or the boron must diffuse through the oxide layer, which 

could be a liquid or a non-porous solid. The presence of an oxide layer also causes higher 

ignition temperatures (Yetter et al., 2009). Because of this, it is of interest to synthesize particles 

that either do not have an oxide layer, or whose oxide layer is porous enough to easily transport 

oxygen, or which conducts oxygen in the form of oxide ions easily at high temperature. 

Some work has been done to disperse metal particles in hydrocarbons to protect the pure 

particles from oxide layer formation. In particular, Van Denever et al. (2009) demonstrated that 

the use of oleic acid surfactant protected boron from surface oxidation to a degree undetectable 

by XPS measurements. 

Another problem associated with metal nanoparticles is their agglomeration. In ball-

milling techniques, Van Denever et al. (2009) used a suspending solvent of hexane to prevent 

agglomeration during particle synthesis. Singhal et al. (1999) showed that in a chemical vapor 

condensation synthesis of TiO2 and Al2O3 nanoparticles above 573 K, agglomeration is 

unavoidable and a primary particle size of 15-20 nm resulted in approximately 100 nm 

aggregates. They suggested agglomeration may be controlled by residence time and precursor 

concentrations. No work has shown any differences in agglomeration between micron-sized 

particles and nanoparticles. 
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Figure 1.1: Heating values of various metals and ethanol (Karmakar, 2011). 

Nano-sized particles exhibit significantly different physical properties from their 

chemically similar particles of larger size (Yetter et al., 2009), most notably higher surface area, 

lower melting points, and in some cases enhanced catalytic activity. Dreizin et al. (2009) 

summarized the preparation of Al, Ti, Mg, B, Ni, and Zr nanoparticles by powder mixing, sol-gel 

techniques, self-assembly, deposition methods, and reactive milling. In a micellar template-

assisted self assembly, Mehendale et al. (2006) successfully prepared 80 nm Fe2O3 and Al 

particles. Schoenitz et al. (2005) demonstrated reactive milling as a successful synthesis 

technique for Al-Fe2O3 and Al-MoO3 metal particles in the range of 30-50 microns and proposed 

the synthesis conditions had no effect on particle size, stating that particle size is strictly 

dependent on the size of the unmilled materials. Nanoparticle suspensions (low concentrations), 

higher concentration gels, and solid fuels are some of the ways nanoparticles can be used in 
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systems (Yetter et al., 2009). Solid nanoparticles are produced industrially and so most studies 

have made use of such particles.  

As mentioned previously, boron’s high heating values make it a desirable fuel additive, 

but combustion of boron particles can be slow due to a native oxide layer on the surface. Widely 

varying ignition temperatures for boron combustion have been reported: 800-1100 K for particle 

agglomerates (Shevchuk et al., 1975), 1400-1600 K for 3-12 μm particles suspended in gas 

(Zolotko et al., 1977), and 1850-1950 K for single 35-45 μm particles (Macek et al., 1969). It has 

been shown that ignition temperatures decrease with decreasing particle size (Ashish et al., 

2010). 

Early on, Macek et al. (1969) described boron combustion as a two stage process. The 

first stage is the removal of the surface oxide layer (ignition), and the second stage is the burning 

of pure boron (combustion). The limiting step in combustion is presumably removing the oxide 

layer. The melting point of the oxide (723 K) is much lower than that of boron (>2500 K); 

therefore, at combustion temperatures the solid boron core can be covered by a molten shell of 

B2O3. No work exists to support or refute the claim that the oxide wets the surface, but the 

modeling and experimental studies mentioned in this review assume the oxide completely 

entraps the core.  Two different processes have been proposed for transport through the oxide. 

King (1974) proposed that the oxide layer melts and O2 dissolves in it to reach the boron core, 

where combustion takes place. In contrast, Li and Williams (1988) and Glassman (1984) 

proposed that boron dissolves and diffuses through the molten layer until it reaches the B2O3/air 

interface where oxidation occurs. In both cases, the process is limited by diffusion through the 

molten B2O3 layer.  
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Yeh et al. (1996) proposed that the heat released from the heterogeneous reaction of B(s) 

and O2(g) supplies the heat needed to vaporize B2O3 and “peel” the oxide layer away. Once this 

layer is vaporized, the combustion stage takes over and pure boron is burnt rapidly. Gany (2006) 

thermodynamically modeled the combustion of 60%B/40%HTPB (hydroxyl-terminated-

polybutadiene) and found that below an equivalence ratio of 0.7, the actual vapor pressure of 

B2O3 is higher than its equilibrium pressure and the shell is completely vaporized. Above the 

equivalence ratio of 0.7, the equilibrium pressure of B2O3 is above its vapor pressure and the 

molten oxide cannot be completely removed. Brown et al. (1991) modeled the gasification of the 

oxide layer using bond energies and transition state arguments to propose that in particles with 

diameters >200μm, the process is diffusion limited, and in particles with diameter 50-200μm, the 

process is kinetically limited and directly proportional to particle size. Their model also showed 

that in the presence of hydrocarbons, surface reactions with OH radicals and H2O significantly 

increased the gasification rate. Driezen et al. (1995) proposed that the simultaneous dissolution 

of boron and oxygen into the molten B2O3 shell react to form BO complexes, and oxygen 

continually dissolves in the molten layer until it becomes saturated, leading to rapid combustion. 

The former case is limited by the surface reactions with the oxide, while the latter is limited by 

the dissolution of O2 in the molten layer. In a combustion experiment of various nitrogen-

oxidizer mixtures and boron particles 75-200 μm, Gurevich et al. (1969) tracked particles with a 

35 mm camera and concluded that the rate of removal of the oxide layer (ignition) decreased 

with increasing particle size and increased with increasing water content. A 50% increase in 

particle size more than doubled the ignition time, while an 11% increase in water content 

reduced the ignition time by ~25%. 
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Theoretical kinetics and thermodynamic models have been postulated to better 

understand the combustion process. Yetter et al. (1991) modeled the B/O/H/C gas-phase system 

at high temperatures using thermodynamic parameters and assuming quasi-equilibrium kinetics 

in the gas phase, with JP4 as the fuel source from 1600-2000 K, and found that above 1600 K in 

oxygen-rich environments the dominant species are HOBO and B2O3. In fuel-rich combustion, 

the dominant species are HBO, BO, and B2O2, with HOBO and B2O3 concentrations three orders 

of magnitude smaller. Brown et al. (1993) proposed similar mechanisms for the surface reactions 

by kinetics analysis using transition state theory in hydrocarbon/boron combustion, but 

concluded that the major product is HOBO. They also proposed that in an oxygen-rich 

environment the major products are HOBO, B2O3, and BO2, while in fuel-rich environments they 

are HBO, B2O2 and BO. Theoretical models based on transition state theory have shown that 

gaseous HOBO reacts to B2O3 during cooling (Slutskii et al., 1997); therefore, the only way to 

detect HOBO as a combustion product is to measure gas phase compositions in-situ, and no 

known work has done so. Therefore the models show that at actual combustion temperatures 

HOBO and similar suboxides are the major products in hydrocarbon combustion environments, 

which reduces the heat release of the boron combustion in the hydrocarbon combustion zone. 

Different experimental studies have tried to confirm or rebut these models. Macek et al. 

(1969) studied the combustion of single boron particles of 30-45 μm at atmospheric conditions 

by time exposure microphotography in a laminar flow burner gas consisting of propane and 

oxygen. They observed two separate regions of burning, which they denoted ignition and 

combustion. They measured ignition temperatures of 1850-2000 K, depending on the gaseous 

atmosphere, with wet atmospheres decreasing the ignition temperature. The burning rates 

increased with increasing amounts of O2. Li et al. (1988) also observed separate regions of 
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ignition and combustion spectroscopically, injecting ~1 μm particles into a flat flame burner with 

methane and oxygen. They distinguished a bright yellow region as ignition and a green region as 

combustion, with the most abundant wavelength (5420 nm) indicative of BO2. The ignition 

process was rate limiting. Ulas et al. (2001) studied methane/boron combustion in various 

mixtures of NF3/N2/O2 oxidizers with a CCD camera and noted similar two-stage combustion, 

with ignition being the limiting step. With fluorine in the oxidizing mixture, they did not see 

two-stage combustion and believed this to be due to the rapid removal of the oxide layer by 

fluorine. 

In a study of combustion of single boron particles ranging from 75-200 μm, Gurevich et 

al. (1969) found that the ignition temperature of amorphous agglomerates was lower than that of 

solid crystalline particles, and they determined that after combustion, it was possible to collect 

burnt products that were a factor of 2-20 times smaller than the feed particles.  This is of 

particular relevance to the regeneration of nano-sized combustion products. Other work has 

confirmed the reports of amorphous boron igniting faster than crystalline particles (Mohan et al., 

1972). Yeh et al. (1996) studied the ignition and combustion of 1-3 μm boron particles in 

methane/oxygen in a flat flame burner, and found ignition times for amorphous particles to be 

0.04 ms shorter than for crystalline particles of the same size. Total burn time decreased by 0.17 

ms for amorphous particles.  

The previous studies showed that ignition times and combustion of micron-sized particles 

are dependent on particle size, crystallinity, and combustion environment, but some recent work 

has been done using nano-sized particles. Young et al. (2009) studied the combustion of 60 nm 

boron nanoparticles in methane/air, and found the ignition times ranged from 1.5 to 6 ms at mole 

fractions of oxygen from 0.1-0.3 and temperatures 1580-1810K. Ignition times here are similar 
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to ignition times reported Yeh et al. (1996) for micron-sized particles which also ranged from 1.5 

to 6 ms. They noted that the ignition times were insensitive to oxygen mole fraction but 

dependent on temperature. They also found that the second stage of combustion was similar to 

that of 1-3 μm particles, and concluded that agglomeration of the nanoparticles (during 

preparation) was the cause of longer burning times. Sullivan et al. (2009) studied 30-90 mol%B 

Al/B composite nanoparticles (~60 nm) in a batch combustion cell by timed pressure change 

with CuO as the oxidizer, and found that the reactivity of the composites increased with 

increasing boron content until about 50 mol%, from which point reactivity decreased rapidly. So 

while not much work has been published on boron nanoparticles as fuel additives, the 

preliminary data suggest that it is definitely an area worthy of further research. Other ways to 

overcome the slow ignition and incomplete combustion of boron might be to alloy or mix it with 

other more combustible metals, or with a non-combustible catalyst for the boron or fuel (or both) 

oxidation. 

1.3 Non-Energetic Oxide Additives 

By this term it is meant that a metal oxide is used as a fuel additive.  Such additives have 

long been of interest for catalytic purposes, or for reducing unwanted emissions such as NOx or 

CO. They could also function to control deposits, eliminate knocking, and lead to more complete 

combustion through catalytic oxidation of CO (Rang et al., 2003).  Many different additives have 

been studied for their abilities to fulfill one of the tasks mentioned above.  The goal here is to 

catalytically enhance combustion, and so this review focuses on additives that could serve this 

purpose. Alkali and alkali earth metal derivatives, organometallic compounds, metal oxides, 

peroxides, and hydroxides have been reviewed as possible fuel additives by Rang et al. (2003). 

Rare-earth metals and their oxides are known to be effective combustion catalysts in a wide array 
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of applications. Cerium oxide, in particular, has been known to function as a combustion catalyst 

due to its ability to cycle between the oxidized (Ce
4+

) and reduced (Ce
3+

) states readily, and to 

store and donate oxygen (Trovalleli et al., 1999; Cordatos et al., 1996; Aneggi et al., 2006). 

These characteristics have led to cerium oxide being effective in exhaust gas conversion 

for cleaner emissions (Aneggi et al., 2006). They have also been proposed as the reasons why 

CeO2 is effective in increasing combustion rates when mixed with certain other oxides or metals. 

In a study of the combustion of different hydrocarbons at atmospheric pressure, Zhao et al. 

(2004) showed that CeO2 catalyzed the oxidation of heavier hydrocarbons. Rates increased 1 and 

3 orders of magnitude for propane and butane, respectively, but CeO2 didn’t affect the 

combustion rates of methane and ethane. Uhm et al. (2004) showed that CeO2 enhanced ethanol 

combustion, increasing volumetric heat release by four times.  However, Shi et al. (2003) found 

increased methane conversion in the presence of Ce, La, and other rare-earth oxides. On a 

zeolite-supported platinum catalyst prepared by impregnation, methane conversion increased the 

most with a CeO2 additive, and the temperature for 100% conversion was reduced by 50 K. CeO2 

was also shown to reduce coke formation and initiate a more complete combustion of methane 

when introduced into a Pt catalyst supported on Al2O3 (Damyanova et al., 2003). VenDevener et 

al. (2006) also successfully reduced the onset temperature of oxidation and increased the 

combustion of JP-10 fuel by 20% in the presence of CeO2 nanoparticles. Complete combustion 

occurred at 1115 K and 1200 K with and without CeO2, respectively. They studied differences 

between CeO2 and Fe2O3 and found that cerium oxide combusted the fuel to mostly CO2 and 

H2O, while the iron oxide had no effect. Mixing different alkali metals such as K, Cs, Na, and Rb 

with CeO2 improved its effectiveness in catalyzing diesel oxidation. In the presence of 10% K, 

the oxidation temperature was lowered by 40 K. The activity of the catalyst was shown to be 
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dependent on the nature of the alkali metal and its loading (Aneggi et al., 2008). Liotta et al. 

(2002) showed an increased production of CO2 in hydrocarbon combustion with varying 

amounts of barium added to a CeO2 catalyst. 

These studies have all shown the ability of rare-earth oxides such as CeO2 to enhance 

overall combustion of different types of fuels. Another positive is that rare-earth oxides can be 

synthesized in different size ranges fairly easily, unlike boron and other metals in their elemental 

states.  These syntheses will be dealt with in the next section. 

1.4 Mixed Metal and Metal/Oxide Syntheses 

Nanoparticle mixtures of boron and metals/oxides like Ti, Al, Fe, or rare-earth oxides 

could enhance boron combustion by either providing heat release at lower combustion 

temperatures, or by conducting oxygen ions to the surface of the boron. In preparing such 

mixtures, the main goals are to obtain a small enough particle size, maintain high surface area, 

and keep the boron and the other metal (if present) from oxidizing prior to combustion. Starting 

with elemental boron in the nanoparticles is critical to attaining high energy density. 

Boron nanoparticles themselves can be synthesized in many ways. The pyrolysis of 

decaborane at temperatures between 700-2000 K has been shown to produce boron 

nanoparticles, but their size distribution is broad and agglomeration is a problem (Casey et al., 

1987; Zi et al., 2003). Bellot et al. (2009) synthesized boron nanoparticles by decaborane 

pyrolysis with a size range of 10-150 nm by passing the gas at 1 atm through a hot zone at 973-

1173 K. The ball milling techniques of Van Devener et al. (2009) produced a narrow size 

distribution of nanoparticles, 40-60 nm.  Xu et al. (2004) showed that boron nanoribbons made 

of micron-sized scroll like structures with 17-20 nm wall thicknesses and 20-100 nm widths 
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could be made by the same decaborane pyrolysis at lower temperatures. The reduction of boron 

tri-halides has also been used to make boron nanoparticles (Pickering et al., 2007).  

Boron nanoparticles are commercially produced and can be purchased in different size 

ranges which presumably correspond to passage through mesh sieves. These boron nanoparticles 

are manufactured by the reduction of B2O3 with magnesium. These nanoparticles are not 

protected from the atmosphere and so acquire an oxide surface layer that can slow combustion 

(Yetter et al., 1991). 

Protecting the boron outer layer from oxidation during synthesis, workup, and transport is 

therefore of interest. Bellot et al. (2009) functionalized the boron surface with halogens by 

solution treatment with halogens dissolved in hexane. They showed that the resulting surface was 

covered by halogen, and no detectable amount of B2O3 was present by XPS. The onset 

temperature of oxidation was determined by DSC experiments. Onset oxidation temperatures 

were shown to be 803 K for boron, 817 K with fluorine, and 879 K with bromine. Pickering et al. 

(2007) put an organic cap or barrier on boron nanoparticles in a number of different ways. Van 

Denever et al. (2009) ball-milled boron nanoparticles in oleic acid and effectively protected the 

bare boron surface from oxidation upon exposure to air. This was determined by XPS, which 

showed a significant decrease in surface oxygen for samples milled in oleic acid versus dry 

milling. Without an oxide layer, the ignition times of boron could be significantly reduced and 

the overall energy release increased. 

Another way to reduce ignition times and to enhance heat release characteristics for 

boron nanoparticles might be to mix boron with other elemental metals that burn at lower 

temperatures. The second metals would release the heat needed to increase the local temperature 
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of the particles and thereby enhance boron combustion. Al, Fe, Ti and others burn at 

temperatures lower than boron, and composites of these have been prepared by different methods 

including mechanical milling and wet chemical reductions, for example using NaBH4 or KBH4. 

Oliker et al. (2008) synthesized Ti-Al-B alloys by ball milling, and found that at longer 

milling times, the number of TiAl and TiB2 composites increased slightly but compositions were 

dominated by various aluminum and titanium oxides. Tests were not run to determine the 

oxidation state of the boron in such composites. The introduction of boron in the milling process 

promoted the formation of a fine crystalline structure, and its homogeneity in the alloy depended 

on the particle sizes and homogeneity of the original mixture. Mota et al. (2004) used powder 

technology, a mixture of compaction, sintering, and milling to prepare mixed Al-B composites 

that were of high boron content. Diffraction patterns suggest that the boron was elemental and 

the oxides consisted mainly of aluminum. Variations in these processes allowed control over the 

native oxide layer formation. They studied the differences in milling versus a molten metal 

compaction technique and found the latter to be more desirable for higher boron content. 

Kirillova et al. (2000) reduced Al2O3 at high temperatures (1200-1400 K) with boron to form 

AlB12 structures. 

Arrested reactive milling is a process proposed to make composites by ball milling boron 

with metals and certain metal-oxides that are reduced in situ. The idea is that exothermic 

oxidation of the metal particles by the metal-oxides can be started mechanically, and then 

continued as driven by exothermic heat release. In many cases, this is done with aluminum as the 

reducing agent because of its ability to generate substantial heat to increase the local 

temperature. The key to producing elemental boron particles is to know when to “arrest” the 

milling and prevent the oxidation reactions of the boron or other second metal (Driezen, 2009). 
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Schoenitz et al. (2005) showed for arrested reactive milling of Al-Fe2O3 and Al-MnO3 

composites that an optimal time could be determined to “arrest” the reaction just before the 

spontaneous reaction of oxidation occurred. They formed metal composites that were stable 

nano-structures at ambient conditions, but ready to react at higher temperature. Mohammad et al. 

(2009) showed that AlB12 composites <100 nm in size could be formed after long milling times 

of Al and B2O3 in a planetary ball mill. By sampling at various time intervals and analyzing the 

samples by XRD, they determined that no B2O3 or Al remained after 30 h, and after 40 h only 

Al2O3 and AlB12 were present. A variation of compaction with a high temperature self 

propagating synthesis was used by Fu et al. (2010) as a way to make Fe2B from Fe2O3, using Al 

as the reducing agent. This is similar to arrested reactive milling, in that once initiated, the heat 

release from Al oxidation is sufficient to keep the reaction going.  

Some wet syntheses involving metal reduction have also been reported as ways to make 

metal-boron composites. FeB was synthesized using anodic templates with KBH4 and FeSO4 by 

Yan et al. (2008), giving ~25% B and 35 nm particles. Reductive processes with KBH4 and 

FeSO4 were also shown by Shen et al. (2004) to produce FeB2 composites. The final particles 

were on the same size scale as the initially precipitated material. Resendre et al. (2007) 

synthesized FeB composites with approximately 13 mol% B by reduction of Fe2O3 with NaBH4 

and HCl. In these cases, the product composites showed little resistance to oxidation in ambient 

air. To remedy this, Huang et al. (1994) reduced FeCl3 with KBH4 in methyl methacrylate 

(MMA), and found the resulting FeB particles to be less oxidized because there was a 6-7nm 

MMA covering. They also showed that reduction with mixtures of KBH4/ethanol produced 

smaller particles and size distributions, 30-120nm for KBH4 and 40-80nm for 10% KBH4. 
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A problem with mixed metal composites is identical to that of pure boron, in that a native 

oxide layer tends to form on the surface. Mixing boron with certain “non-energetic” fuel 

additives that could conduct oxygen is a way around this problem. These oxides could provide 

oxygen directly to the boron-oxide interface and replenish oxygen by adsorption from the gas 

phase. Bonnetot et al. (2008) prepared CeO2 composites with B2O3 by a sol-gel technique, 

obtaining low surface areas but good homogeneity. These same oxides were also prepared by co-

precipitation and showed good homogeneity (Yuzhakova et al., 2007). 

Rare earth composites with a high elemental boron content are of more interest to this 

project. Tobo et al. (2003) prepared energetic mixtures of rare-earths and boron as CexLa1-xB2C2 

composites by an argon arc technique. Rare earth diborides of composition (RE)B2 were 

prepared by hot mixing and pressing techniques by Matovnikov et al. (2009). The boride LaB6 

with a particle diameter of 30 nm was successfully produced by B2O3 reduction with magnesium 

at relatively low temperatures (673 K), and particle size was shown to be dependent on the 

source of boron (Zhang et al., 2008).  The borides (RE)B6 (RE = rare earth metal) were also 

prepared by both high temperature mixing (Takeda et al., 2008) and electrochemical synthesis 

(Bukatova et al., 2007). Through the borothermal reduction of rare earth oxides in a vacuum at 

2173 K, Mori et al. (2001) prepared ReB25 with Gd, Tb, Dy, Ho, and Er. 

Therefore, many techniques are known to produce various composites with rare earth 

metals (or their oxides) and boron.  To generate the metallic rare earths, very expensive 

syntheses at extreme conditions are required. This work is focused on the potential of rare earth 

oxide (shell)/boron (core) composites for combustion enhancement. No known wet chemical 

syntheses have been shown to successfully prepare such composites, but a few coating and 

milling techniques have been studied with varying degrees of success. 
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The preparation of the reverse system - nano-sized CeO2 particles with a BN coating - 

was demonstrated by Masui et al. (2003). They coated the CeO2 nanoparticles with a solution of 

boric acid and diethanolamine, obtaining an outer covering a few nm thick, which consisted of a 

mixture of B, BN, B2O3, and oxynitrides. Van Devener et al. (2009) prepared B-CeO2 particles 

by ball milling and successfully obtained particles in the nano-scale region. They claimed that 

the boron and cerium oxide particles are chemically bonded and at the interface various BxCeyOz 

compounds existed. They also milled B and CeO2 with oleic acid, and found by XPS that the 

boron was elemental. 

1.5 Mixed Metal and Metal/Oxide Combustion Studies 

Very few papers have been published on the combustion characteristics of mixed metals 

and/or metal/rare earth oxide composites. Metals such as Al, Fe, and Ti oxidize much easier than 

boron, and mixing these with boron may be able to release heat and increase local temperatures, 

aiding boron combustion (Boichuk et al., 2002). Mg-coated boron particles gave shorter ignition 

times than boron alone, and the Mg coating helped to remove the boron oxide coating, increasing 

the amount of boron combusted (Yeh et al., 2006). Rosenband et al. (1995) showed that a Ti 

coating on boron particles could also reduce ignition times, but this was only true for 

approximately 8wt% Ti; below this amount the particles did not ignite and above it ignition 

times were delayed.  Sullivan et al. (2009) showed that the addition of nanoscale boron to AlCu 

mixtures could enhance the overall heat release, and that the local temperature rise from Al 

combustion significantly enhanced the combustion of boron; they also observed that micron-

sized boron was not as effective. Trunov et al. (2008) showed that in methane combustion the 

addition of Ti to boron powders lowered the conversion temperatures by about 200 K, and they 
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observed rates (measured by pressure change) were higher for Ti/B composites than for Ti, B, or 

Al alone.  

Mixtures of boron and rare earth oxides have not been extensively studied, and there are 

no known studies on the effects of adding rare earth oxides to boron particles in hydrocarbon 

combustion systems.  
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CHAPTER 2 

 EXPERIMENTAL PROCEDURES 

2.1 Particle Preparation 

 The nomenclature for the particles used in this section will be used throughout. Three 

grades of boron nanoparticles made by plasma synthesis with Mg as reducing agent were 

purchased from SB Corporation. According to the vendor, SB99 is 97-99 wt% boron with a 

nominal size of 60-70 nm, SB95 is 95 wt% boron with a nominal size of 600-700 nm (this 

sample was characterized by exhaust gas analysis only), while SB86 is 86 wt% pure boron with a 

particle size of 1-1.2 microns.  Starting with SB86, we prepared a ball milled particle sample 

(“BM”) by milling in a glove box (N2 environment) for 5 h using 440 Nitronic stainless steel 

balls at a ball mass/particle mass ratio of 5. Variations on this method (time, ball mass/particle 

ratio) in trial runs were employed before deciding upon the final procedure.  The goal here was 

to reduce both nanoparticle size and particle agglomeration, while avoiding oxidation of the 

boron. 

Sintered particles (sample name “Sintered”) were made by heating SB86 in a tube 

furnace for 15 h in 250 mL/min N₂ at 1173 K. Here also, test runs were made to determine the 

temperature and time that gave the largest (most sintered) particles in a reasonable time, and 

without excessive boron oxidation.  

Boron/rare earth oxide composites were also prepared by ball milling. The rare earth 

oxide mixture (denoted REOm-41) contained CeO₂, La₂O₃, and Gd₂O₃ with molar ratios Ce/La 

of 3 and Ce/Gd of 80, prepared by a templated sol-gel procedure developed elsewhere (Kalakota, 
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2008). In this procedure,  measured amounts of precursors cerium (IV) ammonium nitrate (Alfa 

Aesar 98+%), lanthanum nitrate hexahydrate (Alfa Aesar 99.9%), and gadolinium (III) chloride 

hexahydrate (Alfa Aesar 99.9%) were dissolved in measured amounts of water and tetra-propyl 

ammonium hydroxide (TPAOH).   The solution pH was brought to 10.4 with aqueous ammonia, 

and then reacted at 343 K for four days, with the pH periodically returned to 10.4 by ammonia 

addition. The precipitates were filtered under vacuum, and then washed with DI water, acetone, 

and DI water. The products were dried at 373 K and calcined in flowing air at 873 K for 5 h.  

Two blends of the rare earth mixed oxide with SB86 were prepared using the same ball milling 

procedure mentioned above. Sample BR41-1 consisted of 95 wt% SB86 and 5 wt% REOm-41, 

and BR41-2 consisted of 80% SB86 and 20% REOm-41. 

2.2 Particle Characterization 

Particle sizes were determined from a combination of X-ray diffraction (XRD), scanning 

electron microscopy (SEM) and porosimetry. XRD was used to determine the crystalline phases 

of boron and boron oxides, while thermo-gravimetric analysis (TGA) in air was used to measure 

“active” (meaning elemental boron) content. Characterization was performed on both feed and 

burnt particles collected from the exhaust plenum of the combustor.  

XRDs were taken at both the College of Engineering’s MCC (Materials Characterization 

Center) and at LSU CAMD (Center for Advanced Microstructures and Devices). At MCC, the 

diffractograms were collected on a Rigaku Mini-Flex diffractometer using Cu K  radiation. All 

samples were analyzed at 2θ values from 5 to 75º, with a step size of 0.02º, and a rate of 1˚/min. 

At CAMD, data was collected on a Huber four-circle diffractometer with a Canberra detector 

capable of radiation in the range of 4-10 keV (Cr Kα-Zn Kα). Radiation close to 8.04 keV (Cu 
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Kα) was obtained by tuning the double crystal monochromator to an approximate value so that 

2θ corrections were not necessary. Samples were analyzed at 2θ values from 5-75˚ with a step 

size of 0.02˚ at 0.1˚/min. In both cases, data analysis was performed using MDI’s Jade software 

with background removal. Particle size estimates were calculated using the Scherrer equation: 

crystal size (nm) =      (2.1) 

where K is the shape factor, assuming the typical value of 0.9, λ is the wavelength of the source, 

at MCC 1.54 nm and CAMD 1.52 nm (wavelength was obtained by refining with a NIST LaB6 

standard), and FWHM is the full width of the peak at half height. Diffractograms were compared 

to those from the International Center for Diffraction Data’s (ICDD) database in order to identify 

the crystalline phases of boron.  

SEM imaging was done on an FEI Corp. Quanta 3D SEM at 5kV and 20,000-80,000 

magnification. To reduce the effects of charging, the particles were coated with gold by 

sputtering.  

Porosimetry was done using a Quantachrome AS-1 porosimeter by N2 adsorption-

desorption.  Surface areas were calculated from the adsorption branch by the BET method, using 

points below P/Psat = 0.3. Pore volume distributions were calculated using the desorption branch 

by the BJH method. Average particle diameters were calculated by the following: 

average particle diameter = (2.2) 
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where ρ is boron density (2350 kg/m
3
) and S.A. the surface area measured in the experiment. 

Particle diameters were calculated assuming perfectly spherical and non-porous solid particles. 

Average pore diameters were calculated using the BJH distribution as follows: 

average pore diameter =                                    (2.3) 

where d(V)/d(D) was computed in machine software by the BJH  method, V is pore volume, and 

D is pore diameter. 

The “active” (meaning elemental boron) particle content was determined by weight 

change using a Perkin-Elmer TGA 7.  The samples were first dried in 50 mL/min He starting at 

323 K, with a 10 K/min ramp to 673 K and a final hold of 20 min. At this point, the gas was 

changed to 50 mL/min of air, and then ramped at 5 K/min to 1073 K, with a 12 h final hold. The 

active boron content was determined from the weight increase upon oxidation. The stochiometry 

for boron oxidation was assumed to be: 

B(s) + 
3
/2 O2 (g)  BO1.5 (s)      (2.4) 

Active boron content is: 

active boron (mol%) = *100           (2.5) 

The challenge was determining the amount of B2O3 in the initial sample. To do so, the following 

mass balance equation was used: 

z = (ω*wtmin) – ((wt%gain/100) * wtinitial * )   (2.6) 
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where z is the dry weight of B2O3, ω is the dry weight fraction of the sum of B and B2O3 

initially,  wtmin is the minimum weight of the sample after the loss of water, wt%gain is the change 

in wt% from wtmin to the maximum weight, and wtinitial is the initial sample weight. The 

calculated “Z” was used to determine the mol% of active boron by the following equation: 

active boron (mol%) =    (2.7) 

2.3 Combustion Setup and Particle Collection 

Combustion experiments were performed with the Acharya group in LSU Mechanical 

Engineering.  The combustion apparatus is shown in Figure 2.1. In all cases an equivalence ratio 

(φ) of 0.69 was used and is defined as the ratio of the actual to stochiometric fuel/air ratios: 

                                                         (2.8) 

 Air was introduced through primary (inner) and secondary (annular) inlets. Ethanol was 

supplied from a pressurized tank and injected through 0.3 mm orifice atomizers. Boron 

nanoparticles were injected into the system using a reverse cyclone system as shown in Figure 

2.2. Flow characteristics of the air, fuel, and nanoparticles were studied to optimize the delivery 

system (Karmakar et al., 2010), but are not within the scope of this thesis. Fitted holes along the 

side of the combustor section in Fig. 2.1 allowed for both burnt particle collection and 

temperature measurement. Temperature was measured by a thermocouple assembly inserted into 

one of these holes; the assembly contained five thermocouples at different radial locations. A 

3/8” line fitted to the hole nearest the exit of the combustor was used to collect burnt particle 
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samples. An in-line filter was inserted above the ball valve (Fig. 2.1), while a vacuum pump was 

used for suction. A typical run lasted 1 min, and one gas sample was collected per run.   

                 

                                 Figure 2.1: Combustion apparatus (Karmakar, 2011) 

 

                              

   Figure 2.2: Particle injection system (Karmakar, 2011) 
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2.4 Exhaust Gas Analysis 

 Exhaust gas samples were collected in the same way as the burnt particles, except a 316 

stainless steel sample cylinder was placed in line with the vacuum pump. Samples were obtained 

and analyzed during the course of several changes to the combustion unit; these changes are 

documented here and as discussed in Chapter 3 they probably changed the unit’s performance. 

Case 1 denotes the original setup where the tubing connecting the exhaust plenum and the 

vacuum pump contained various unnecessary fittings. In Case 2 (shown in Fig. 2.1), this setup 

was replaced by a single line. In Case 3, the particle injection method was switched from 

injection of particles with the primary air flow to the particles being injected independently at the 

centerline. These samples were analyzed on a Varian CP-3800 gas chromatograph fitted with a 

thermal conductivity detector (TCD). An Alltech CTR 1 dual packed column with a 1/4" outer 

column packed with activated molecular sieve and a 1/8” inner column packed with a porous 

polymer mixture was used for separation. Helium was the carrier gas and all compositions were 

calculated on a dry basis. Retention times were determined by injected known standards into the 

column and measuring their elution times. The split ratio between columns was determined by 

injecting various air/CO2 standards and taking the area ratio of air(inner) to the sum of air 

(inner), O2(outer), and N2(outer). The split ratio was consistently calculated at 0.39. Raw areas 

were converted to mol% by first calculating a modified area that accounts for the total area from 

each species by using the split ratio. For CO2, using the raw area of the inner column: 

modified area = raw area/0.39              (2.9) 

For O2 and N2 using the raw area of the outer column: 
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modified area = raw area/(1-0.39)         (2.10) 

The modified areas account for the total amount of species in both columns, and were converted 

to raw mol% by: 

raw mol% = modified area/total modified area   (2.11) 

Raw mol% for each species was then corrected by T.C. response factors given by Dietz (1967) 

and listed in Table 2.1. T.C. response factors are calibration factors that account for the intensity 

differences on the signal output of thermal conductivity detectors by different species. Raw mole 

fractions were corrected by:  

 corrected mol% = raw mol%/T.C. factor              (2.12) 

Calculated mole fractions were then determined by dividing the corrected mol% by the total 

corrected mol%, and is what is reported in Chapter 3. Further details on the chromatography are 

given in Appendix 1. 

Table 2.1: T.C. Response Factors (Dietz 1967). 

T.C. Response Compound 

1.2 CO2 

1 O2 

1.05 N2 
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CHAPTER 3 

 RESULTS AND DISCUSSION 

3.1 Initial Particle Size, Structure and Composition 

All XRD diffractograms are given in Appendix B. The data corresponding to SB99 and 

SB86 are given in Figure 3.1, and show major peaks at 2θ = 36.8˚ and 43.0˚. Both peaks are 

characteristic of α-rhombohedral boron (JCPDS PDF# 12-0377). The broad peak widths suggest 

that the crystalline phase is composed of nanoparticles.  

 

Figure 3.1: X-Ray diffractograms of SB99 and SB86. 

The “Sintered” sample’s diffractogram (Fig. 3.2) shows a distinct peak at 2θ = 27˚, 

confirming the presence of crystalline B2O3 (JCPDS PDF# 06-0297). In the sintering process, the 

oxide layer crystallized under high temperature (1173 K), resulting in a detectable amount of 

crystalline oxide. No detectable amounts of crystalline boron were present in the sintered sample. 

The BM, BR41-1, and BR41-2 samples (Fig 3.2) show no significant peaks in the region 
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scanned, and so appear to be composed of amorphous or very small particles. In each case, a 

small peak at 2θ = 36.8˚ confirms the presence of some crystalline boron, but the intensity is 

weak. The mechanical milling process used in the preparation of these samples may have broken 

down the larger crystallites present in the starting materials. In the case of BR41-2, there was 

also a small peak at 2θ = 29˚, indicative of CeO2 (JCPDS PDF# 34-0394). The milling process 

with rare-earth oxides may have oxidized some of the boron, while reducing some CeO2, partly 

accounting for the weakness of this peak. 

  Figure 3.2: X-Ray Diffractograms of Sintered, BM, BR41-1, and BR41-2. 

The diffractograms collected at CAMD confirmed the other XRD results for SB99 and 

SB86; however, BR41-1 (Fig.3.3) showed many peaks indicative of rhombohedral boron, 

(JCPDS PDF# 11-0618 and 12-0377) and a strong peak for crystalline B2O3 (2θ = 27.6˚, JCPDS 

PDF# 30-0019). The absence of any peaks representative of the rare-earth oxides confirms that 

they are present as nanoparticles, or dissolved in the boron phase. 
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Figure 3.3: X-Ray Diffractogram of BR41-1 collected at CAMD. 

Particle sizes were calculated by the Scherrer equation for SB99 and SB86 only, because 

only for these two samples were the peak intensities large enough. Table 3.1 gives the calculated 

particle sizes calculated from the diffractograms shown in Fig. 3.1; these sizes represent the 

larger crystallites only, not amorphous particles or very small crystallites. The calculated 

crystallite sizes are slightly larger for SB86 than SB99. The data show that SB99 and SB86 

contain some crystalline boron, both with similar crystal sizes, while BM, “Sintered”, BR41-1, 

and BR41-2 are mostly amorphous boron.  

Table 3.1: Scherrer calculations for SB99 and SB86. 

Sample Peak (2θ) Size (nm) Peak (2θ) Size (nm) 

SB99
 

36.9
 

240 43.0
 

270 

SB86
 

36.8
 

280 43.0
 

340 

 SEM images were used to study the agglomeration and physical homogeneity of the 

samples; these images are shown in Figures 3.4-3.6. In the images of SB99 and SB86 (Fig. 3.4), 
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the primary particle sizes in each appear similar (20-100 nm), although a few particles are larger. 

Some of the larger particles look to be partly sintered aggregates of more primary (<100 nm) 

particles, but these images do not give sufficient detail to see any differences between the two.  

Note that the larger, more rounded or smoother particles are probably more crystalline, and 

according to Table 3.1 the crystalline particles of SB86 are actually slightly larger than those of 

SB99.  However, both the SEM and XRD data suggest only minor morphological differences 

between the two samples. 

The SEMs of BM, BR41-1, and BR41-2 (Figs. 3.5 and 3.6) also show numerous 

aggregates of the more primary particles. Some of these aggregates appear larger in these 

samples than in either SB99 or SB86; this could be due to caking and further agglomeration in 

the ball mill.  These three samples appear similar because they were prepared in the same fashion 

with the same starting boron material. In the case of the two mixtures containing the mixed rare-

earth oxide REOm-41, the SEMs cannot differentiate between boron and REOm-41. The SEM 

images show no distinct differences between SB99, SB86, BM, BR41-1, and BR41-2. 

 
(a)                                                                       (b) 

  Figure 3.4: SEM images of SB99(a) and SB86(b). 80,000X magnification, 500nm scale 

(Karmakar, 2011).       
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(a)                                                                      (b)                 

 Figure 3.5: SEM images of BM(a) and “Sintered”(b). 80,000X magnification, 500nm scale 

(Karmakar, 2011) 
 

 
(a)                                                                    (b) 

 Figure 3.6: SEM images of BR41-1(a) and BR41-2(b). 80,000X magnification, 500nm scale 

(Karmakar, 2011). 

 

The SEM of the “Sintered” sample shows distinct differences from the others. The 

sintering process contracted the more porous structure of the aggregates, gave the particles more 

rounded features, and the particles appear to be solid particles in the range of 100-300 nm.  

 Surface area, pore volume, and pore diameter measurements for the samples are given in 

Table 3.2. “Primary” particles refer to the smaller particles that make up the larger agglomerates; 

the surface area gives an estimate of the size of the primary particles, because it is evident from 

both the SEMs and the pore size distributions that there are some pores or spaces between 
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primary particles. Assuming that within agglomerates the sintered contact area between particles 

is negligible, the surface area is essentially a measure of the total areas of the individual primary 

particles. The assumption of no partial sintering overestimates the size of the primary particles, 

because there is no surface area for N2 adsorption in areas where two particles exactly touch. 

Particle diameters were calculated using Equation 2.2 assuming the individual primary 

particles are perfectly spherical, non-porous solid particles; these calculated diameters for SB99, 

SB86, and BM were the same, ~70 nm.  This suggests that ball milling does not affect primary 

particle size.  The decreased surface area in the “Sintered” sample results in larger calculated 

primary particles (~100 nm), consistent with what was seen in the SEM images. Samples BR41-

1 and BR41-2 have higher surface areas due to the presence of the REOm-41, which by itself has 

a surface area of approximately 120 m
2
/g. Because of this strong influence of the rare-earth oxide 

on the composite’s surface area, no calculations of boron particle diameters could be made for 

BR41-1 and BR41-2, but we expect them to be similar to BM because they were prepared in a 

similar manner. 

Table 3.2: Particle characteristics determined from N2 adsorption-desorption 

measurements. 

Sample SB99 SB86 BM Sintered BR41-1 BR41-2 

REOm-

41 

Surface area (m
2
/g) 35 36 38 26 40 53 120 

Pore volume (cc/g) 0.16 0.20 0.19 0.15 0.18 0.16 0.15 

Avg. pore diameter (nm) 6.1 9.5 37 39 34 27 9.8 
Calculated particle 

diam. from surface area 

(nm) 72 71 68 100     

 

 

Figures 3.7 and 3.8 show cumulative and normalized pore size distributions, respectively. 

Because less than 10% of the total pore volume is contained in pore diameters less than 5 nm 

(Fig. 3.7), the total pore volumes (values given in Table 3.2) represent primarily crevices 

between agglomerates and larger pores within agglomerates. There appear to be few pores inside 
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primary particles.  A larger total pore volume indicates less efficient packing; in the case of 

SB86 and BM compared to SB99, it indicates larger or more irregularly-shaped agglomerates. A 

larger pore volume and average pore diameter for SB86 compared to SB99, coupled with the fact 

that they consist of the same size primary particles, suggests that SB86 is made up of larger 

agglomerates than SB99. This is also consistent with the vendor’s specifications for particle size 

based on Fisher sub-sieve measurements; these were 1 micron maximum for SB86 and 62 nm for 

SB99 (SB Boron Corp.). With the primary particles being the same size, the vendor’s sieve 

measurements were based on the size of agglomerates. 

The differences between BM and the REOm-41 mixtures arise from the rare-earth oxides 

which contain meso- and micropores. The pore volume of “Sintered” is slightly less than the 

other samples, and its average pore diameter larger, because the sintering process contracted the 

pore space within the agglomerates, as was seen in the SEM images. Fig 3.8 shows that SB99 

and SB86 contain some small pores <10 nm, indicative of small pores within the agglomerates or 

possibly even the primary particles; these pores were eliminated by either ball milling or 

sintering (see Fig. 3.8). This is seen in the measured average diameters (calculated from 

Equation 2.3) also; the average diameters are much smaller for SB99 and SB86 than for BM or 

“Sintered”. Both BR41-1 and BR41-2 contain larger numbers of pores <5 nm because of the 

porous microstructure of the rare-earth oxides. In summary, the data show that SB99, SB86, and 

BM contain similar-sized primary particles (~70 nm assuming perfect spheres) that make up 

aggregates of increasing size or more irregular shape from SB99 to BM  to SB86, and the data 

confirm that the “Sintered” particles are indeed larger (~100 nm assuming perfect spheres) with 

few intraparticle pores. 
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Figure 3.7: Cumulative pore volume distribution as computed by the BJH desorption 

method. 

 

 
Figure 3.8: Normalized pore size distribution as a function of pore diameter. 
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 The calculated measures of “active” particle content are given in Table 3.3. Active 

content means the fraction of the original boron particles that is composed of elemental boron 

and is therefore active for oxidation. 

Table 3.3: Active particle contents and maximum oxidation temperatures from TGA 

measurements in air. 

Sample SB99 SB86 BM Sintered BR41-1 BR41-2 

Active content 

(mol%) 85.1 88.1 75.7 92.1 78.6 79.3 

Average oxidation T 

(K) 1043 1066 1008 1066 1066 1066 

          

The “Sintered” sample has the highest active particle content, due to the high temperature 

reduction that was used in its preparation. The SB86 and SB99 samples have relatively high 

active boron contents, only a bit lower than the vendor specifications. This represents some 

oxidation in shipping and handling. The low percentage active contents for the BM and rare-

earth composite samples result from the ball milling method used in their preparation. Ball 

milling causes agglomerates to break apart, uncovering some bare boron which can be oxidized 

upon contact with air. Despite the reduction of elementary boron in the ball milled samples, most 

of the boron content is still elemental boron. 

These TGA results are plotted against time in Figs. 3.9 and 3.10. For all data, the 

temperature – time history is the same; a time of 75 min corresponds to 765 K, 100 min to 887 

K, 125 min to 1016 K and 135 min to 1066 K, which was the final hold temperature. The 

average oxidation temperature of each sample can be an indicator of its ignition temperature in 

combustion environments. The average oxidation temperature in Table 3.3 was taken as the 

maximum of the derivative curve in Fig. 3.10. The data (Table 3.3) show that SB99 and 

(especially) BM are oxidized at lower temperatures than the other samples. The agglomerate size 
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difference between SB99 and SB86 suggested by the porosimetry data and the vendor’s 

specifications could have an effect on combustion, because in the TGA SB99 oxidizes at lower 

temperature than SB86. These results also suggest that the BM sample could burn rapidly in a 

combustor. Notice that in the case of the larger “Sintered” particles, oxidation occurs at a much 

slower rate and at higher temperatures. The higher oxidation temperatures (compared to SB99) 

of the mixed rare-earth oxide samples suggest that the presence of these oxides could have a 

negative effect on boron combustion, contradicting the idea that the rare-earth additives can 

rapidly conduct oxygen to the boron surface. 

 

Figure 3.9: TGA analysis in air for boron and boron/REO nanoparticles. 

 

Therefore the TGA data show that the average boron oxidation temperature increased 

with increasing primary particle size, and could also be dependent on agglomerate size. In Figure 
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3.10, the magnitude and location of the derivative peaks hint at the rates of combustion and the 

ability to supply oxygen to the bare boron surfaces.  However, it should be recalled that TGA 

experiments differ greatly from conditions in an actual combustor.  In a TGA, there is a small 

bed of particles rather than fluidized particles, so O2 transport may be slower in the TGA.  There 

may also be no way to remove a molten B2O3 layer in the TGA, since the particles are packed 

tightly together.  In TGA, the temperatures are lower than those in the combustor; the maximum 

temperature in the TGA is restricted to 1270 K. Finally, the gas environment of the combustor 

differs in several respects from the pure air environment of the TGA.  Therefore one should be 

careful about extrapolating these trends for all types of particles.  The main purpose of the TGA 

experiments was to determine the actual “active” boron content, not to discover the exact ways in 

which the particles would burn in a commercial combustor.  

 

 
Figure 3.10: Derivative TGA for boron and boron/REO nanoparticles. 
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 ICP-AES (inductively coupled plasma atomic emission spectroscopy) was carried out on 

SB99 and SB86 to determine the amount of magnesium remaining in the samples; some 

magnesium is inevitable from the magnesium reduction process used in manufacturing. Both 

samples show small amounts of magnesium (Table 3.4), about 3 wt%; SB99 contains slightly 

more Mg than SB86. Any elemental magnesium present would add to the overall heat release of 

the particles, while magnesium oxide would detract from the heat release. 

Table 3.4: ICP results for magnesium content. 

 SB99 SB86 

Wt% of  Mg  3.4 3.0 
 

3.2 Boron Nanoparticles - Performance in Combustor 

 Temperature data from the combustor are given in Figures 3.11-3.13. Particle 

temperatures were measured at different locations above the dump plane, which is the location 

where air, fuel, and particles are injected into the system (see Fig. 2.1). The exit of the combustor 

is 20 in above the dump plane, and this is where the temperatures of all samples were measured 

in Figures 3.11-3.12.  In Figure 3.13, temperatures for SB99 and SB86 were also measured 15 in. 

above the dump plane.  The temperatures are plotted against radial distance from the centerline 

of the combustor. The data show an increase in temperature, at any given radial distance, when 

boron nanoparticles are used, except in the case of the “Sintered” particles. This proves that the 

presence of boron particles can increase the overall heat release in ethanol combustion, but the 

mechanism is complex enough that it is particle (size, morphology)-dependent.  

 Temperatures measured at the exit show that SB86 had a greater overall effect on 

temperature than either SB99 or BM, but a closer look at the data collected below the exit shows 

that SB99 caused more heat release at elevations nearer the dump plane, indicative of faster 

ignition and burning times for SB99. This shows that the increasing agglomerate size from SB99 
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to SB86, suggested by the porosimetry data and the vendor’s specifications, decreases ignition 

and burning rates. Below the exit, the temperatures without particles were very similar to those 

for SB86, again suggesting that the combustion of boron in the more agglomerated SB86 was 

more delayed. In their work with boron nanoparticles ~60 nm, Young et al. (2009) concluded 

that ignition and burning rates were strongly dependent on agglomeration of the primary 

particles, and our results confirm this conclusion, as the more agglomerated particles apparently 

had a delayed heat release. This can be because in more agglomerated particles there is greater 

resistance to oxygen diffusion. From the TGA data, we expect BM to act in a similar manner to 

SB99, burning faster and releasing nearer to the dump plane. 

 

 
 Figure 3.11: Temperature data for SB99, SB86, and BM at exit (20in. above dump plane) 

(Karmakar, 2011). 
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Figure 3.12: Temperature data for Sintered, BR41-1, and BR41-2 at exit (20in. above dump 

plane) (Karmakar, 2011). 
 

 

 
Figure 3.13: Temperature data for SB99 and SB86, 15in. above the dump plane 

(Karmakar, 2011). 
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From the TGA results, we might also expect the composite nanoparticles BR41-1 and 

BR41-2 to burn at similar rates to SB86, and we see by comparing Figs. 3.11 and 3.12 that this is 

true; in fact, at some radial locations the oxide/boron mixtures look slightly better. With the 

composite REOm-41 mixtures, the increased heat effects can be a result of increased 

hydrocarbon combustion. The increased temperatures can also stem from increased boron 

combustion due to the ability of the rare earth oxides to conduct oxygen to the surface of the 

boron faster than pure boron oxide. The data show that the presence of the rare-earth composites 

positively affected the heat release, but it is unclear whether the increase was from enhanced 

ethanol combustion, enhanced boron combustion, or a combination of both.   

The temperature data suggest that for the “Sintered” particles the boron combustion rates 

are slow.  This further suggests trouble conducting oxygen to the boron surface because of the 

more compacted structure that was seen in the SEM and porosimetry data. This result shows that 

the ignition and burning rates are also dependent on primary particle sizes within the nano-range, 

because the smaller primary particles of all the other samples had a positive impact on the 

temperatures. Many other studies have confirmed the dependence of ignition and combustion 

rates on particle size with micron-sized particles (Yeh et al., 1996; Macek et al., 169), but Young 

et al. (2009) proposed that for nanoparticles these rates were insensitive to primary particle size. 

Our results suggest the trend for micron-sized particles also exists for nanoparticles, in that larger 

primary particles have slower burning rates. 

 A summary of the chromatographic results for the sample bombs collected from the 

combustor exhaust is shown in Tables 3.5-3.7. The analysis is on a dry basis.  The species shown 

here (along with the balance of N2) were the only ones detectable by the thermal conductivity 

detector of the chromatograph. In all samples, the equivalence ratio (see Eq. 2.8) was 0.69, and 
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the particle loading was 0.03, which is the particle/fuel ratio on a weight basis. The three cases 

represent groups of experiments run under different mechanical conditions for the combustor, 

and because of this fact no comparisons will be made across the cases. In case 1, the original 

combustion setup was used where the sample collection tube consisted of many unnecessary 

fittings. In case 2, the collection tube was changed to a single tube with no fittings (Fig 2.1). In 

case 3, the injection location of the particles was changed from that of the inner air flow to a 

separate injection location at the centerline of the combustor. Case 3 is the only set of samples 

that were run at the same conditions as the temperature measurements shown previously, and 

because of this fact only case 3 data will be compared to the temperature data. The values shown 

in Tables 3.5-3.7 are given as the average composition ± the standard deviation. In all runs, three 

samples were averaged unless otherwise noted by a subscript.  

Table 3.5: Exhaust Gas Compositions, Case 1.* 

Case 1   
Without 

Particles SB99 SB95 SB86 

run 1 CO2 23.9 ± 0.3% 5.6 ± 0.6% 4.2 ± 1.3% 25.3 ± 0.4% 

  O2 15.7 ± 0.5% 13.5 ± 0.9% 15.3 ± 1.9% 13.9 ± 0.6% 

            

run 2 CO2 24.3 ± 0.1% 4.7 ± 1.3% 6.5 ± 0.4% 

   O2 15.3 ± 0.2% 14.5 ± 2.1% 12.3 ± 0.4% 

 *subscripts refer to the number of injections averaged per run, no subscript means 3 injections. 

 

Table 3.6: Exhaust Gas Compositions, Case 2.* 

Case 2   
Without 

Particles SB99 SB95 SB86 

run 1 CO2 4.6 ± 0.6% 7.3 ± 0.4% 6.7 ± 0.5% 7.5 ± 0.2% 

  O2 14.0 ± 1.0% 11.1 ± 0.6% 11.9 ± 0.6% 11.0 ± 1.0% 

            

run 2 CO2 5.3 ± 0.3% 7.1 ± 0.4% 26.9 ± 0.2% 7.4 ± 0.4% 

  O2 13.8 ± 0.5% 11.0  ± 0.8% 11.9 ± 0.3% 10.5 ± 0.7% 

*subscripts refer to the number of injections averaged per run, no subscript means 3 injections. 
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Table 3.7: Exhaust gas compositions, Case 3.* 

Case 

3   
Without 

Particles SB99 SB86 BM Sintered BR41-1 BR41-2 

run 1 CO2 4.1 ± 0.1% 46.4±0.9% 7.2±0.7% 6.7 ± 0.7% 5.9± 0.7% 6.0 ± 0.9% 6.1±0.6% 

  O2 14.9 ±0.6% 11.6 ±1.4% 10.3±1.0% 11.2±1.0% 12.5±1.0% 11.2±2.7% 12.5±1.0% 

                  

run 2 CO2 4.7 ± 1.3% 27.3±0.2% 7.0 ± 0.6% 5.1 ± 1.4% 3.8 ± 1.2% 6.0 ± 0.1% 27.2±0.2% 

  O2 13.9±1.9% 10.0±0.3% 10.4±0.8% 13.6±2.0% 15.4±1.9% 12.5±0.1% 10.0±0.2% 

                  

run 3 CO2 4.2 ±1.3% 47.4±0.4%           

  O2 15.5 ±2.0% 9.9 ± 0.4%           

*subscripts refer to the number of injections averaged per run, no subscript means 3 injections. 

 

The theoretical product composition of complete ethanol combustion at an equivalence 

ratio of 0.69 is 10.15% CO₂ and 6.85% O₂. The measured amounts of CO2 presented above are 

lower than these values, suggesting that ethanol was not completely combusted in the 

combustion unit or the collected samples were subjected to air dilution before the analysis 

occurred. Ethanol was tested for and not detected in the collected exhaust samples by GC 

analysis, implying that if air dilution did not alter the samples, then either all the ethanol was 

oxidized in the system, or whatever ethanol remained condensed in the collection tube.   

As seen in the tables, the amount of measured CO2 in each sample in case 1 is 

considerably lower than the other two cases. This difference arises from the mechanical setup, 

where the unnecessary fittings in the collection tube leaked, allowing outside air to be mixed 

with the exhaust gas. The differences in cases 2 and 3 could result from the different ways the 

particles were introduced into the combustor, but the data show little difference anyway, 

suggesting that the way the particles were introduced had little to no effect on the combustion 

process. 

There was an increase in the CO2 concentration and a decrease in O2 for all cases where 

boron nanoparticles were present. This shows enhanced overall ethanol combustion in the 
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presence of boron. Cases 1 and 2 show an ~2-3% increase in CO2 production in the presence of 

either SB86 or SB99. Therefore it seems that the agglomerate (not the primary particle) size had 

but little effect on the overall combustion process.  Note that their calculated primary particle 

sizes are almost the same (Table 3.2), while SB86 has a greater pore volume. 

In case 3 all the samples are compared, and again it was observed that in the presence of 

boron nanoparticles, the CO2 concentration increases. Samples SB99, SB86, and the composite 

nanoparticle BR41-2 showed the greatest increase in CO2. In the case of SB99 and SB86, the 

more complete combustion of ethanol probably comes from the enhanced heat release upon 

boron combustion. It is unclear whether SB99 or SB86 had the greater impact on ethanol 

combustion in this system, but when also taking into account the temperature data (Figures 3.11-

3.13), it seems that SB99 produces the same amounts of CO2 at lower elevations (shorter 

residence times) than SB86. 

In the case of the boron/REOm-41 mixtures, the increased CO2 can also stem from the 

rare-earth oxides; Van Devener et al. (2006) showed that CeO2 can increase CO2 production in 

hydrocarbon combustion. The composite nanopartcle with less rare earth oxides, BR41-1, 

actually gave slightly less CO2 upon ethanol combustion. Looking at the temperature 

measurements (Figures 3.11-3.13), both REOm-41/boron mixtures increased the temperatures 

about the same, but less CO2 production for BR41-1 implies that some of the combustion 

enhancement was due to the rare-earth oxide particles improving the conduction of oxygen to the 

boron surface. The decreased CO2 production for BR41-1 could be related to less rare-earth 

oxide or to the further agglomeration (compared to SB99) that was noticed in the SEM images. 

However, the BR41-2 and BM results did not follow a clear pattern when the runs were repeated, 

and these were also more agglomerated samples than SB99. Additional runs may be needed to 
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make a clear determination of the effects of the rare-earth oxides; at this time all that can be said 

is that the exhaust composition data suggest that BR41-2 and BM were similar in overall 

combustion behavior to SB99 and SB86, and either synthesis modification can enhance the 

overall combustion of ethanol to CO2. It may therefore be advantageous to substitute some REO 

for boron, although it is not yet clear what would be the optimal amount.  The deviations for 

BR41-2 between runs 1 and 2 (case 3, Table 3.6) make it difficult to clarify the picture. 

There is a clear effect of primary nanoparticle size, in that the “Sintered” particles 

definitely gave less CO2. This confirms the results of the temperature data (Fig. 3.12). This again 

contradicts the claim by Young et al. (2009), who said that burning rates were independent of 

particle sizes for nanoparticles. Clearly, the smaller boron primary particles combusted faster and 

more completely resulting in a greater heat release which enhanced CO2 production. No previous 

studies exist that directly show the effects of boron on CO2 production in hydrocarbon 

combustion systems. 

3.3 Final Particle Size, Structure, and Composition 

 Diffractograms of the final collected (burnt) particles are given in Appendix B. The 

diffractograms for all samples are similar, and because of this only the data for SB99 and 

“Sintered” are shown in Figure 3.14. There are major peaks at 2θ = 28˚ and smaller peaks at 2θ = 

15˚ and 40˚ in all cases, and these patterns are consistent with hydrated B2O3 or boric acid 

(H3BO3), JCPDS PDF# 30-0019. There were no peaks indicative of elemental B or HOBO, 

showing that the boron nanoparticles were completely oxidized. It has been proposed that HOBO 

is the major product of combustion and that it further reacts upon cooling to B2O3 (Slutskii et al., 

1997). Spectroscopic methods employed to measure in-situ compositions of combustion 

intermediates did not detect HOBO as a major product (Karmakar, 2011). 
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In “wet” atmospheres near room temperature, boron oxide will absorb water from the 

combustion gases to form the hydrated H3BO3. Therefore B2O3 was the final combustion product.   

  
Figure 3.14: X-Ray diffractogram of burnt SB99 and “Sintered”. 

 

Particle size estimates on the burnt products were calculated and are presented in Table 

3.8. The calculated values are again based on the XRD-visible phase using the Scherrer equation. 

Table 3.8: Burnt particle size estimates from XRD data. 

Sample SB99 SB86 BM Sintered BR41-1 BR41-2 

Particle Size 

(nm) 410 510 220 270 330 240 

 

The crystal sizes are larger for the burnt products than for either the original SB99 or 

SB86, and this indicates some sintering of the primary crystalline particles upon combustion. 

The other four cases actually gave smaller crystalline particle sizes than SB99 or SB86, which 

suggests that their original, in some cases more highly amorphous structures, tended to retard 

sintering during combustion. Maintaining a smaller particle size upon combustion is important 



 

46 
 

for the regeneration of the metal fuel additives, because less energy would be needed to break 

down the used particles back to the nanosize range.  

 The SEM images of the collected SB99 and SB86 particles are given in Figures 3.15 and 

3.16. Both SB99 and SB86 appear to have larger primary particle sizes, consistent with the size 

estimates in Table 3.8. The particles also appear to form into agglomerates of larger size (~0.5-2 

μm) than the feed particles, and their nanostructure appears drastically modified – more regular 

particle shapes.  

 
(a)                                                                        (b) 

Figure 3.15: SEM images of collected burnt SB99. Scale is 2 μm (a) and 500 nm (b) 

(Karmakar, 2011). 

 

 
(a)                                                                      (b) 

Figure 3.16: SEM images of collected burnt SB86. Scale is 2 μm (a) and 500 nm (b) 

(Karmakar, 2011). 



 

47 
 

 

TGA results for the collected particles are presented in Figures 3.17 and 3.18. All data 

show that the primary reaction between 373 and 473 K is the dehydration of boric acid to boron 

oxide. Two stages (peaks in the derivative spectrum in Fig. 3.18) of dehydration were detected 

for all samples, the first centered at approximately 393 K and the second at approximately 448 K. 

The dehydration reaction weight loss was calculated to be between 38 and 44 wt% for each 

sample, where the theoretical weight loss for 100% water absorption is 43.6 wt%; therefore, the 

samples were conclusively shown to be essentially all boric acid, indicating the maximum 

absorption of water by B2O3 upon cooling.  

 

 
Figure 3.17: TGA results in air, collected burnt particles. 

 

It is important to note that no increase in weight occurred throughout these TGA runs, 

which indicates that no residual elemental boron was present in any of the collected burnt 

particles; all of the boron present in each sample was fully oxidized. 
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Figure 3.18: Derivative TGA for collected burnt particles. 
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CHAPTER 4 

CONCLUSIONS 

 The results show that boron can have a positive impact on ethanol combustion, but its 

contribution is dependent on both the primary particle and the agglomerate size. The 

characterization data show two main distinctions between the samples; the first being the 

primary particle size difference between “Sintered” and all the other samples, and the other being 

the difference in agglomerate size between SB99 and SB86.  

Comparing SB99 (~70 nm) to “Sintered” (~100 nm), the measured temperatures in 

ethanol combustion were approximately 40 K higher and CO2 production was 2-3% higher for 

the smaller particles. Compared to when no particles were present, the smaller SB99 particles 

showed a 10-15 K increase in temperature and ~3% CO2 increase, while the larger “Sintered” 

particles actually decreased the measured temperature near the dump plane of the combustor, 

while only slightly increasing CO2 production. The data confirm that within the nano-scale, 

boron’s effects on ethanol combustion still depend on the primary particle size. The enhancement 

of ethanol combustion increases as the boron primary particle size decreases. 

For commercial boron nanoparticles, the vendor’s particle specifications and the 

porosimetry data show there is a difference in agglomerate size between SB99 and SB86. 

Although the exhaust gas analysis shows no difference in overall CO2 production, the 

temperature measurements show a delayed heat release in the case of SB86 (larger agglomerates) 

when compared to SB99. These results show that as agglomeration increases, ignition and 

combustion times also increase. 
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The data presented for the rare-earth/boron composites (BR41-1 and BR41-2) show that 

the addition of rare-earth oxides can also enhance the overall heat release during combustion. 

Although the data are unclear concerning the optimal composition of such composites, the 

increased temperatures near the dump plane suggest that even small amounts of rare-earth oxides 

mixed with boron can positively impact ethanol combustion.  

Post-combustion data show that all of the boron particles, independent of their initial 

morphology, were completely oxidized to hydrated B2O3, and they consisted of a higher fraction 

of crystals and larger crystallites than the feed particles. Although the modified structure may 

pose problems in particle regeneration, the work shows that the use of boron nanoparticles and 

boron/rare earth oxide nanoparticles as combustion additives can increase the actual energy 

density of bio-fuels. 
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APPENDIX A 

GAS CHROMOTOGRAPHY (GC) DETAILS 

Table A.1: GC Settings: Alltech CTR1 column, 1/8” inner column packed with a porous 

polymer mixture, and 1/4” outer column packed with activated molecular sieve.  

Parameter Setting 

Carrier Gas He 

Column Pressure 26.5 psi 

Column Flow Rate 62 mL/min 

Reference Flow Rate 62 mL/min 

Initial Oven Temperature 27˚C 

Initial Hold Time 4 min 

Ramp Rate 20˚C/min 

Final Temperature 130˚C 

Final Hold Time 4 min 

Total Run Time 21.15 min 

Detector Temperature 150˚C 

Detector Filament Temperature 250˚C 

Column Split Ratio: Inner/Outer 0.39 

 

Table A.2: Retention Times: The following were determined by injecting standards into the 

column and measuring elution times. 

Species, Column Retention Time (min) 

Air/CO, inner 0.7-0.8 

CH4, inner 0.8-0.9 

CO2, inner 1.6-2.0 

C2's (ethane and ethylene), inner 2 

O2, outer 2.6-2.7 

N2, outer 3.9 

CH4, outer 5.7-5.8 

CO, outer 7.3-7.7 

CO2, outer 9.3 

H2O,  inner > 11 

*Inner and Outer refer to the inner and outer columns. 
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APPENDIX B  

XRD DIFFRACTOGRAMS 

Feed particles: The following XRDs were collected using the Rigaku Mini-Flex diffractometer 

at the LSU Materials Characterization Center, using the standard bulk sample mount.  The scan 

was from 2θ = 5 to 75˚ at a scan rate of 1˚/min and a 0.02˚ step size. NIST standard -alumina 

was also run and compared to its known diffraction pattern (JCPDS # 10-0173) in order to 

correct the 2  values. From this comparison an equation to correct the 2θ values of the unknowns 

was regressed, giving the following: 

2θ shift = - 3*10
-7

*x
3 

+ 0.0002*x
2 

+ 0.0099*x – 2.2008 

where x is the original 2θ value given by the Rigaku software.  Only corrected diffractograms are 

shown below and in the thesis. 

 

Figure A.1: X-Ray Diffractogram of SB99  
 

Figure A.2: X-Ray Diffractogram of SB86  
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Figure A.3: X-Ray Diffractogram of BM (ball milled)  

 

 
Figure A.4: X-Ray Diffractogram of “Sintered”  
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Figure A.5: X-Ray Diffractogram of BR41-2 (95/5 mix) 

 
 

 
Figure A.6: X-Ray Diffractogram of BR41-2 (80/20 mix) 
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The following diffractograms were collected using the Powder Diffraction Beamline at CAMD 

(LSU Center for Advanced Microstructures and Devices), using the standard bulk sample holder, 

at a scan rate of 0.1˚/min and a scan rate of 0.02˚. Samples were scanned at various 2θ ranges 

from 5-75˚. 

 

 
Figure A.7: X-Ray Diffractogram of SB99 (CAMD) 

 

 

Figure A.8: X-Ray Diffractogram of SB86 (CAMD) 
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Figure A.9: X-Ray Diffractogram of BR41-1 (95-5 Mix) (CAMD) 
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Burnt Particles: The following diffractograms were collected using the Rigaku Mini-Flex 

diffractometer, at the LSU Materials Characterization Center. The samples were mounted on 

double sided tape.  No correction was necessary based on an -alumina standard compared to its 

known diffractogram (JCPDS # 10-0173). Samples were scanned from 2θ = 5-75˚ at a scan rate 

of 1˚/min and a step size of 0.02˚. 

 

 

Figure A.10: X-Ray Diffractogram of SB99 Burnt  
 

 

Figure A.11: X-Ray Diffractogram of SB86 Burnt  
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Figure A.12: X-Ray Diffractogram of BM Burnt  

 

 

 
Figure A.13: X-Ray Diffractogram of Sintered Burnt  
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Figure A.14: X-Ray Diffractogram of BR41-1 Burnt (95-5 mix) 

 
 

 

Figure A.15: X-Ray Diffractogram of BR41-2 Burnt (80-20 mix) 
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