Immunocytochemical localization of small-conductance, calcium-dependent potassium channels in astrocytes of the rat supraoptic nucleus

William E. Armstrong
University of Tennessee Health Science Center

Adam Rubrum
University of Tennessee Health Science Center

Ryoichi Teruyama
University of Tennessee Health Science Center

Chris T. Bond
Oregon Health & Science University

John P. Adelman
Oregon Health & Science University

Follow this and additional works at: https://digitalcommons.lsu.edu/biosci_pubs

Recommended Citation

This Article is brought to you for free and open access by the Department of Biological Sciences at LSU Digital Commons. It has been accepted for inclusion in Faculty Publications by an authorized administrator of LSU Digital Commons. For more information, please contact ir@lsu.edu.
Immunocytochemical Localization of Small-Conductance, Calcium-Dependent Potassium Channels in Astrocytes of the Rat Supraoptic Nucleus

WILLIAM E. ARMSTRONG,1* ADAM RUBRUM,1 RYOICHI TERUYAMA,1 CHRIS T. BOND,2 AND JOHN P. ADELMAN2

1Department of Anatomy and Neurobiology, University of Tennessee Medical School, Memphis, Tennessee 38163
2Department of Behavioral Neuroscience, Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239-3098

ABSTRACT

Supraoptic nucleus (SON) neurons possess a prominent afterhyperpolarization (AHP) that contributes to spike patterning. This AHP is probably underlain by a small-conductance, CA2+-dependent, K+ type 3 (SK3) channel. To determine the distribution of SK3 channels within the SON, we used immunocytochemistry in rats and in transgenic mice with a regulatory cassette on the SK3 gene, allowing regulated expression with dietary doxycycline (DOX). In rats and wild-type mice, SK3 immunostaining revealed an intense lacy network surrounding SON neurons, with weak staining in neuronal somata and dendrites. In untreated, conditional SK3 knockout mice, SK3 was overexpressed, but the pericellular pattern in the SON was similar to that of rats. DOX-treated transgenic mice exhibited no SK3 staining in the SON. Double staining for oxytocin or vasopressin neurons revealed weak co-localization with SK3 but strong staining surrounding each neuron type. Electron microscopy showed that SK3-like immunoreactivity was intense between neuronal somata and dendrites, in apparent glial processes, but weak in neurons. This was confirmed by using confocal microscopy and double staining for glial fibrillary acidic protein (GFAP) and SK3: many GFAP-positive processes in the SON, and in the ventral dendritic/glial lamina, were shown to contain SK3-like immunoreactivity. These studies suggest a prominent role of SK3 channels in astrocytes. Given the marked plasticity in glial/neuronal relationships, as well as studies suggesting that astrocytes in the central nervous system can generate prominent CA2+-transients to various stimuli, a CA2+-dependent K+ channel may help SON astrocytes buffer K+ whenever astrocyte intracellular CA2+ is increased. J. Comp. Neurol. 491: 175–185, 2005. © 2005 Wiley-Liss, Inc.

Indexing terms: vasopressin; oxytocin; glial fibrillary acidic protein; SK3; afterhyperpolarization
property of SON neurons controlling spike frequency is an apamin-sensitive, CA²⁺-dependent afterhyperpolarization (AHP; Bourque and Brown, 1987) that is characteristic of both cell types (Armstrong et al., 1994). It is kinetically of medium duration (100–500 ms) relative to the fast AHP that follows single spikes and the slow AHP expressed after long, or high-frequency, spike trains (Greffrath et al., 1998; Ghamardi-Langroudi and Bourque, 2004). Considering its apamin sensitivity as shown by in situ hybridization (Stocker and Pedarzani, 2000; Toccani et al., 2001) and immunohistochemistry (Greffrath et al., 2004) studies, the medium AHP (mAHP) is most likely associated with SK3 channels (Bond et al., 2004; Villalobos et al., 2004).

Our own interest in the mAHP (Armstrong et al., 1994; Teruyama and Armstrong, 2002; Roper et al., 2003) led us to investigate SK3 immunoreactivity within the SON, in terms of both verifying SK3 protein in both cell types and determining somatodendritic distribution. We found to our surprise that SK3 immunoreactivity was more intensely displayed around, rather than within, neurons or their processes. This perineuronal SK3 reactivity is largely associated with astrocytes. Data from this study have previously appeared in abstract form (Armstrong et al., 2003).

MATERIALS AND METHODS

Animals

Adult, female virgin Sprague-Dawley rats (random cycling; 150–250 g) were purchased from Charles River (Wilmington, MA). Wild-type (W-T) C57BI/6 mice and C57BI/6 mice with a regulatory cassette in the SK3 gene (SK²⁺) were provided by the Vollum Institute, Oregon Health Sciences University (see Bond et al., 2000, for details). The switch to abolish SK3 gene expression was accomplished with dietary doxycycline (DOX) for at least 5 days. Untreated animals typically show overexpression of SK3. Although specific neurophysins are not available for absorption tests, the OT- and VP-neurophysin antibodies have been well characterized (Ben-Barak et al., 1985). Similarly, the G-A-5 monoclonal antibody is specific for GFAP relative to other intermediate filament proteins expressed in some astrocytes, such as vimentin (Debus et al., 1983; Franke et al., 1991). Reaction product for single staining of SK3 was achieved with goat anti-rabbit biotinylated secondary antibody (1:200) followed by the standard ABC-diaminobenzidine procedure per the protocol provided by Vector (Burlingame, CA). Incubation time for ABC ranged from 4 hours to overnight. Sections were mounted on gelatin-coated slides, dehydrated, and coverslipped with Permount. Light microscopic images were acquired digitally with software from IP Labs (Scanalytics, Fairfax, VA) and a Photometrics (Tucson, AZ) cooled CCD camera (SenSys). Digital images (1,317 × 1,035) were minimally altered in Adobe Photoshop (Adobe Systems, San Jose, CA) with small changes in dynamic range.

For double labeling, SK3 antiserum was combined with monoclonal antibodies for PS36, PS41, or GFAP in cocktails. Dilutions were as follows: anti-SK3, 1:500; anti-GFAP, 1:5,000; PS36, 1:500; PS41, 1:5,000. For detection, goat or horse anti-mouse fluorescent-conjugated secondary antisera (fluorescein isothiocyanate [FITC] or Texas Red fluorophores; from Jackson ImmunoResearch, West Grove, PA, Vector, or Sigma) were used at 1:200, also in cocktails. All antibodies were diluted with PBS containing 0.5% Triton X-100. Incubation times for primary and secondary antibody cocktails were overnight at 4°C. Sections were rinsed in PBS and mounted on glass slides with 50%:50% glycerol/PBS. Coverslips were sealed with nail polish. Tissue sections were examined with a confocal microscope (1024, Bio-Rad, Hercules, CA) equipped with a krypton-argon laser. FITC was examined with a 488-nm excitation filter (emission bandpass 522 nm), and Texas Red fluorophores, from Jackson ImmunoResearch, West Grove, PA, Vector, or Sigma) were used at 1:200, also in cocktails. All antibodies were diluted with PBS containing 0.5% Triton X-100. Incubation times for primary and secondary antibody cocktails were overnight at 4°C. Sections were rinsed in PBS and mounted on glass slides with 50%:50% glycerol/PBS. Coverslips were sealed with nail polish. Tissue sections were examined with a confocal microscope (1024, Bio-Rad, Hercules, CA) equipped with a krypton-argon laser. FITC was examined with a 488-nm excitation filter (emission bandpass 522 nm), and Texas Red was examined with a 568-nm excitation filter (emission bandpass 605 nm). The optical section thickness was 1 μm. These were viewed singly, or in stacks of 5–20 sections by using 40, 60, or 100× oil immersion objectives (n.a. = 1.35, 1.4, and 1.4, respectively). Confocal images (either 512 × 512 or 1,024 × 1,024) were acquired as 24-bit color images and viewed by using ImageJ (NIH) software. Merged images of 1-μm sections were made in ImageJ from raw confocal images. Confocal figures were made in Adobe Photoshop, with minimal alteration in dynamic range.

Electron microscopy

A standard ABC immunoperoxidase localization was used, except that primary antibody solutions did not contain Triton-X. The fixative above contained an additional 0.25% glutaraldehyde, and sections were pretreated with 0.5% H₂O₂, 1% sodium borohydride to reduce background staining. Penetration of antibodies on the Vibratome sections was contrasted with lead citrate and uranyl acetate, and embedded in plastic (Spurr’s resin, EMS, Fort Washington, PA). Ultrathin (75–80 nm) sections were contrasted with lead citrate and uranyl acetate and viewed at 60–100 kV on a JEOL 2000x transmission electron microscope. Images were acquired either on film or with a digital camera. Negatives were scanned at 2,000 dpi and down-sampled to 1,000 dpi with Adobe Photoshop, by which small changes were made in dynamic range.
Digital images (2,240 × 2,944) were also acquired directly with a Hamamatsu ORCA camera and AMT Advantage (Danvers, MA) software. In both cases, figures were made in Adobe Photoshop with small adjustments in dynamic range.

RESULTS

Light microscopic localization and specificity of SK3 immunoreactivity

At dilutions of 1:500 to 1:2,000, the SK3 antibody gave consistent results in several animals (n = 10), as shown in Figure 1A. Optimal dilutions were 1:500 to 1:1,000. Immunoreactivity appeared densest in the pericellular regions and was extremely dense in the ventral glial/dendritic lamina (VGL or VDL, respectively). Absorption controls indicated a specificity of the staining for the peptide (which represents the N-terminal, intracellular domain of human SK3) used to generate this antibody (Fig. 1B).

The lacy pattern of the reactivity, in which somata were pale relative to surrounding regions, was also evident in wild-type C57BI/6 mice (n = 4) stained with the same antibody (Fig. 2A). In homozygous SK3-targeted mice (T/T; n = 4), SK3 was overexpressed throughout the brain, as previously reported (Bond et al., 2000). Although reaction product was much denser in the T/T mice than in the wild type in the SON, the pericellular pattern of staining was still evident (Fig. 2B). In addition, in the SON and elsewhere, large, unevenly distributed masses of reaction product were evident, and cellular details were often difficult to detect. The specificity of the SK3 antibody for SK3 protein was confirmed by downregulation of the SK3 gene

Fig. 1. Immunochemical localization of SK3-like protein in rat supraoptic nucleus (SON) from 75-μm coronal sections taken on a Vibratome. A: Staining in the SON using the ABC method with an antibody dilution of 1:1,000. Note the lacy appearance of the staining; cells are outlined with dark staining. Staining is very dense in the ventral glia and dendritic lamina (VGL/VDL). B: Absorption control in another section from the same brain using the same antibody dilution. Immunoreactivity was abolished when SK3 peptide was added to the antibody solution at 1 μg/1 μl antibody. OC, optic chiasm. Scale bar = 100 μm in B (applies to A,B).

Fig. 2. Immunochemical localization of SK3 protein in the supraoptic nucleus (SON) of mice from 40-μm coronal frozen sections using the ABC method with an antibody dilution of 1:500. A: Staining in the SON of a C57BI/6 wild-type mouse. Similar to rat, the reactivity is largely pericellular, and staining is denser in the ventral glial and dendritic lamina (VGL/VDL). B: Overexpression of SK3 protein from an untreated transgenic SK3+T mouse. Although much denser than in wild-type mice, staining is still heaviest between neurons and in the VGL. In addition, small patches of intense reactivity (*) are present in the SON and elsewhere in the brain. C: Absence of SK3 immunoreactivity in a DOX-treated SK3+T mouse, confirming the specificity of the antibody for SK3 protein. OC, optic chiasm; BV, blood vessel. Scale bar = 100 μm in B (applies to A–C).
in DOX-treated Tg/T mice (Fig. 2C). In these animals (n = 4), SK3 immunoreactivity was extremely weak or undetectable.

Ultrastructural localization

We used transmission electron microscopy to determine the location of DAB-labeled SK3 immunoreactivity in the SON in rats (n = 5). Under light microscopy, the pattern of staining was similar despite the absence of detergent in the primary antibody solution. Thin sections through the SON confirmed that reaction product was largely adjacent to neurons (Fig. 3A) and to dendrites and axons in the VDL/VCL (Armstrong et al., 1982; Perlmutter et al., 1984). We cannot rule out the possibility that some of this reactivity could be located in the membranes of these neurons and their processes, but the pre-embedding method is not ideal for such precise localization as DAB reaction product can seed beyond its original deposition. Regardless, in most cases reaction product was extensive in the space between neurons and was located in glial-type processes. Such processes are frequently known to interpose among neurons and dendrites in the SON (Hatton, 2004; Theodosis et al., 2004). A small amount of reaction product was found within some magnocellular neurons or neuron-like processes.

SK3 localization in substantia nigra

The substantia nigra, pars compacta (SNC) is another region known to contain SK3 mRNA (Köhler et al., 1996; Stocker and Pedarzani, 2000; Tacconi et al., 2001) and an apamin-blockable mAHPP (e.g., Seutin et al., 1993; Ping and Shepard, 1996; Wolfart et al., 2001). SK3 expression is also prominent in the SNC, as judged by studies employing the same antibody as that used here (Tacconi et al., 2001; Fujita et al., 2003). We thus examined the SNC in order to compare the pattern of SK3 expression with that in the SON. As shown in Figure 4A and B, instead of the lacy pattern exhibited in the SON, SNC somata and dendrites were sharply labeled with SK3 immunoreactivity. Examination with the electron microscope confirmed that most of the reaction product was localized to SNC somata or dendrites (Fig. 4C,D), although some apparently glial processes were labeled as well.

Co-localization of SK3 immunoreactivity with glial or neuronal antigens: confocal microscopy

Sections of rat hypothalamus were reacted with SK3 antibody and mouse antibodies raised against VP- or OT-neurophysin or GFAP (n = 7). Examples of double staining with the neuronal peptide antibodies are shown in Figures 5 and 6. As with the DAB staining described above, extensive pericellular SK3 immunofluorescence was the dominant pattern, and this was true of either VP (Fig. 5) or OT (Fig. 6) neurons. Some somata were lightly stained with SK3 antibody. This weak somatic staining likewise showed as just a few spots of co-localization in merged files. However, some intense areas of co-localization were found at the perimeter of some neurons and in some thick processes (probable dendrites).

A more striking and consistent pattern of co-localization was present after reaction with SK3 and GFAP antibodies (Fig. 7). As reported previously (Salm et al., 1985; Bonfanti et al., 1993), GFAP-positive processes were found extensively among neuronal somata and dendrites in the SON and were intimately associated with blood vessels. These processes were either long and narrow or in other cases appeared as vellate expansions. As shown in Figure 7, the ventral region of the SON was so densely stained with GFAP that individual elements, processes, or somata were difficult to discern. This region also contains many VP and OT dendrites, especially just dorsal to the densest glial labeling (Figs. 5, 6). The degree of co-localization was more apparent with increased magnification (Fig. 7D–I). This is largely due to the difficulty in adjusting the dynamic range of lower power micrographs to bring up faint processes, because the ventral lamina was so intensely stained. With a 100× objective, a great majority of both fine and densely labeled GFAP-positive processes were double-labeled with the SK3 antibody (Fig. 6G–I).

DISCUSSION

Apamin-sensitive AHPs are clearly important for SON neuronal function (Bourque and Brown, 1987; Armstrong et al., 1994; Kirkpatrick and Bourque, 1996; Greffrath et al., 2004), and the present study confirms work suggesting these are underlain by SK3 channels as determined by in situ hybridization (Stocker and Pedarzani, 2000; Tacconi et al., 2001) and immunohistochemistry (Greffrath et al., 2004). Our new finding is that within the SON, SK3 immunoreactivity is much more strongly associated with GFAP-positive astrocytes than it is with neurons. This difference may relate to the typically low input resistance of astrocytes (especially when electrically coupled); a high density of CA2+-dependent K+ channels may be needed in order to effectively hyperpolarize the membrane effectively. On the other hand, the high input resistance of SON neurons, ~1 GΩ in whole cell recordings (Stern et al., 1999), suggests that relatively few SK3 channels could produce very effective AHPs. Furthermore, we often observed co-localization of SK3 in the dendrites of SON neurons, suggesting that these channels could be differentially distributed in dendrites vs. soma in these neurons. However, CA2+-dependent K+ AHPs also are found in dissociated SON neurons (Oliet and Bourque, 1992); therefore at least some of the channels are on the soma or on proximal dendritic membrane.

For comparison, we also examined the SNC and found that in agreement with previous studies using the same antibody, SK3 reactivity is strongly localized to the SNC (Tacconi et al., 2001; Fujita et al., 2003). Like the SON, these observations correlate with mRNA distribution (Köhler et al., 1996; Stocker and Pedarzani, 2000; Tacconi et al., 2001) and the apamin-sensitivity of an mAHP (Seutin et al., 1993; Wolfart et al., 2003). In the SNC, SK3 reactivity is much stronger in neurons than the weak reactivity we found in the SON neurons, at the same concentration of antibody. It should be noted that SON neurons typically require spike trains to evoke an apamin-blockable mAHPP (Kirkpatrick and Bourque, 1996), whereas SNC neurons exhibit these mAHPs after individual spikes, even after subthreshold oscillations. Although some aspect of this difference could be related to differences in CA2+ channel density, the immunohistochemical data also suggest that SNC neurons express SK3 protein more strongly than do SON neurons.

An examination of Figure 7B of Stocker and Pedarzani (2000) reveals that a high density of SK3 mRNA is also located ventral to the SON, near the pial surface, in addition to product in the SON proper. The observed reaction would be consistent with our observation of SK3 in
Fig. 3. Ultrastructural localization of SK3 immunoreactivity in rat SON using the pre-embedding, ABC method. A: Reaction product between two somata (arrows). B: Reaction product in the ventral dendritic/glial lamina of the SON. The product appears densest in small processes between dendrites or axons (arrows). Occasionally larger profiles contain product (*), but these are not similar in morphology to the many axons and dendrites and are probably glia. C: Higher magnification of neuropil in the SON showing reaction product in a glial process (arrow) surrounding a dendrite that contains dense-core granules typical of the magnocellular neurons. This dendrite receives a synapse (arrowhead). D: Glial cell process labeled near a capillary (Cap) in the SON and also adjacent to a magnocellular neuron soma (MCN). Scale bars = 1 μm in A (applies to A,B); 500 nm in C,D.
astrocytes in the VDL/VGL, but it could also relate to dendritic mRNA, because this region is dense with dendrites from SON neurons (Armstrong et al., 1982). Although reports of electrophysiological studies in vitro have noted the presence of \(\text{CA}_{2+} \)-dependent \(\text{K}^{+} \) currents in neuroglia (Barres et al., 1990), including apamin-blockable currents (Burnard et al., 1990; Jalonen et al., 1997; Bychkov et al., 2001), and although specific apamin binding sites on astrocyte membranes have been found (Seagar et al., 1987), there has been little investigation of the presence of SK-type channels in astrocytes in situ. A notable exception is a recent report demonstrating SK3-like immunoreactivity in the glia investing olfactory nerve fascicles in the olfactory bulb (Fujita et al., 2003).

The presence of \(\text{CA}_{2+} \)-dependent \(\text{K}^{+} \) and other \(\text{K}^{+} \) channels (like inward rectifiers) in astrocytes is consid-

Fig. 4. Light and electron microscopic localization of SK3 reaction product in the substantia nigra, pars compacta (SNC) of rat. A: Several reactive SNC neurons (examples are indicated with arrows) lateral to the medial lemniscus (ML) in a coronal section through the midbrain. In contrast to the lacy appearance of SK3 reactivity in the SON, SNC neurons are clearly labeled. B: Higher magnification of SNC shown in A, with the same three indicated neurons (arrows) for reference. C: Electron micrograph of labeled SNC proximal dendrite receiving two synapses (arrowheads). D,E: The synapses indicated in C are shown at higher magnification (arrowheads). Scale bars = 100 \(\mu \text{m} \) in A; 50 \(\mu \text{m} \) in B; 1 \(\mu \text{m} \) in C; 500 nm in D (applies to D,E).
...eral important to their potent ionic buffering activity during periods of high neuronal activity (Sontheimer, 1994). Although not studied in the SON, another variety of CA2⁺-dependent K⁺ channel, rSlo, has been localized to astrocyte endfeet along blood vessels and the pia limitans in the rat brain (Price et al., 2002), where it could dump K⁺ from neuronal areas in response to increases in [CA2⁺]. In the present study, SK3 staining in SON astrocytes did not appear to be strongly polarized in the same manner as rSlo appears to be in the hippocampus, for...
example, where staining appears to be limited to the end-feet (Price et al., 2002). SK3 channels could nevertheless participate in altering local blood flow by redistributing K^{+} during periods of increased neuronal activity, or in direct response to neurotransmitters that elevate $[Ca^{2+}]_{i}$.

In the SON, buffering of extracellular K^{+} is highly effective during intense neuronal activity (Coles and Poulain, 1991). Elevation of extracellular $[K^{+}]_{e}$ near blood vessels can also act as one of many signaling factors leading to vasodilation and concomitant increases in local cerebral
blood flow during increased neuronal activity (Nelson and Quayle, 1995).

As elsewhere, SON astrocytes can modify extracellular transmitter levels by virtue of membrane transporters, such as those for glutamate, and the extent of their process distribution in the SON correlates with their ability to control presynaptic activity (Oliet et al., 2001). However, SON astrocytes are heterogeneous both morpholog-
ically (Bonfanti et al., 1993; Israel et al., 2003) and physiologically (Israel et al., 2003). Radial glial cells contain both GFAP and vimentin (Bonfanti et al., 1993) and possess γ-aminobutyric acid (GABA) ₁-type receptors but do not respond to glutamate or appear to have the glutamate transporter (Israel et al., 2003). In contrast, smaller, stellate astrocytes show little GFAP reactivity but possess glutamate receptors and glutamate transporters (Israel et al., 2003). The significant amount of pericellular SK3 staining we observed that was not associated with VP- or OT-neurophysin or GFAP-positive processes may represent staining on this class of astrocyte. Alternatively, there is a heterogeneous distribution of GFAP within any particular astrocyte, and immunoreactivity is influenced by the relative presence of dissociated vs. bundled intermediate filaments (Eng et al., 1989). An apparent mismatch of GFAP immunoreactivity at the light microscopic level and glial cell process distribution ultrastructurally has been noted in the SON previously (see Hawrylak et al., 1998, for discussion).

Astrocytes in the SON have an intimate and functionally dynamic association with neurons (Salm et al., 1998; Hatton, 2004; Theodosis et al., 2004). They respond morphologically to stimuli activating hormone release with processes withdrawal that is correlated with increasing neuronal apposition and synaptogenesis. This dramatic change may be the primary cause of the reductions in tortuosity and extracellular volume seen during lactation in the SON (Piet et al., 2004). In addition, astrocytes actively suppress SON neuronal activity by secreting the inhibitory transmitter taurine during hypotonicity, and they release this inhibition by secreting less taurine during hypertonicity, a stimulus known to depolarize and activate SON neurons (Hussy et al., 2000). This osmosensitivity may be related to the high density of aquaporin-4 water channels found on SON astrocytes (Nielsen et al., 1997). Water flux to and from astrocytes would be an important homeostatic mechanism to counterbalance K⁺ flux after periods of high neuronal activity (Niermann et al., 2001).

Given the relative absence of spiking and dearth of high-voltage Ca²⁺ channels in astrocytes, changes in intracellular [Ca²⁺]ᵢ from Ca²⁺ stores are a likely factor in the control Ca²⁺-dependent K⁺ channels. Astrocytes respond to a variety of neurotransmitters receptors with changes in [Ca²⁺]ᵢ (Fellin and Carmignotto, 2004). Although not yet observed specifically in SON astrocytes, receptors for VP appear in cortical (Yamazaki et al., 1997) and spinal cord (Hosli et al., 1991; Hosli and Hosli, 1992) astrocytes in culture, and OT receptors are also present in cortical and hypothalamic astrocytes (Di Scala-Guenot and Strosser, 1992). As in SON neurons (e.g., Lambert et al., 1994), VP or OT receptor activation results in increases in astrocytes [Ca²⁺]ᵢ (Di Scala-Guenot et al., 1994; Zhao and Brinton, 2002), and VP activation has further been shown to alter water flux in the brain (Niermann et al., 2001; Simard and Nedergaard, 2004). Likewise, the specialized astrocyte of the neurohypophysis, the pituicyte, has functional VP receptors linked to [Ca²⁺]ᵢ (Hatton et al., 1992) and cell morphology (Rosso et al., 2004). It is noteworthy that restricting Ca²⁺ influx through Ca²⁺-permeable AMPA receptors on Bergmann glia in the cerebellum dramatically alters the morphological relationship of these astrocytes with Purkinje cell dendrites (Iino et al., 2001). Because OT and VP are clearly released from dendrites within the SON (Ludwig, 1998), we may speculate that these peptides as well as other transmitters could modulate K⁺ buffering and water flux, as well as astrocyte morphology, via actions on astrocytes that are mediated through changes in [Ca²⁺]ᵢ.

ACKNOWLEDGEMENTS

Monoclonal antibodies to oxytocin (PS 36) and vasopressin-neurophysin (PS 41) were provided by Dr. Hal Gainer (National Institutes of Health, Bethesda, MA).

LITERATURE CITED

