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APPENDIX  

VIABILITY OF PHAKOPSORA PACHYRHIZI UREDINIOSPORES UNDER 

SIMULATED SOUTHERN LOUISIANA WINTER TEMPERATURE 

CONDITIONS 
 

1. Introduction   

Phakopsora pachyrhizi, the primary causal agent of soybean rust disease, can infect 

soybean plants and cause quick defoliation and severe yield losses (7). This disease was first 

discovered in Japan in 1902 and later spread into China and other Asian countries. In recent 

years, the disease entered Africa and South America and has spread rapidly in these continents. P. 

pachyrhizi was first detected in South America in Paraguay in 2001, from where it was spread by 

wind across the border into Argentina. Between 2001 and 2003, it became established and 

widespread in soybean production regions of Brazil (19, 26). Now, soybean rust is a major 

emerging disease in the continental US since its discovery in late 2004 in Louisiana (20). 

Soybean rust disease was reported in nine, 15 and 19 states from 2005 to 2007, respectively, 

according to the USDA soybean rust information website (http://www.usda.gov/soybeanrust/). 

Based on model predictions, soybean rust disease is expected to become established in the 

United States, but very likely to be restricted to the southern US where the fungus could 

overwinter in frost-free areas or areas with brief below-freezing temperatures during the winter, 

such as Louisiana (9, 14, 17, 18, 25). Yield loss due to soybean rust was predicted as low as 10% 

in most of the United States and up to 50% in the Mississippi Delta and southeastern states in 

early, pre infestation models (25). 

 Temperature is one of the key factors affecting rust spore viability. Keogh (8) reported 

that urediniospores of P. pachyrhizi germinate at temperatures between 8 and 33°C. When 

temperatures were kept at 4-5°C or below, urediniospores lost their viability in 5 days (15). 

When temperature was raised to 9°C or higher, P. pachyrhizi urediniospores could remain viable 
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for up to 27 days (22). Kochman (10) reported significant reduced germination when dry spores 

were exposed to temperatures of 28.5-42.5°C. The optimum temperature for rust disease 

development, however, is slightly different from that for viability. Levy (11) reported that natural 

infection by P. pachyrhizi in Zimbabwe is favored by a maximum temperature of 26 to 29°C and 

a minimum temperature of 15 to 17°C. Under controlled environmental conditions, no infection 

was observed at temperatures 27.5°C or higher (12,13). Rust disease development also was 

greatly inhibited when mean night temperature dropped below 14°C, and was stopped when 

night temperature reached below 9°C (13,23). In addition to temperature, humidity also affects 

soybean rust disease development in the field. Melching et al. (13) indicated that humidity of 

over 80% for 4-6 h was necessary for disease development and urediniospores lost their 

infectivity completely after eight days on dry foliage.  

 However, the main concern for soybean growers in the US is whether P. pachyrhizi 

urediniospores can survive the winter conditions in southern US, such as Louisiana, and cause a 

new cycle of infection in the next growing season. Therefore, the objective of this study was to 

examine the viability and infectivity of soybean rust spores exposed to simulated winter 

conditions (12°C, 14 h day and 1°C, 10 h night with 75% relative humidity) for various durations. 

Additionally, over-wintered kudzu leaves were collected in January 30, 2008 from the field 

where soybean rust had been reported for in the past two years, to determine whether over-

wintered soybean rust spores were still viable.               

A.2. Materials and Methods 

Materials.  

 Soybean rust (Phakopsora pachyrhizi) urediniospores were collected from infected 

soybean leaves in October 2006 at Central Research Station, Louisiana State University, Baton 
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Rouge. Spores were collected from infected soybean leaves (R8 stage) in the field using a hand-

held vacuum in the early afternoon. Spores were stored at -80°C before they were used for 

experiments, and they were termed as frozen spores which mean 0 day or non-winter treatment 

in the present study. Soybean plants (cultivar 93M60, Pioneer) were grown in 20 cm diameter 

plastic pots (four plants per pot) in the greenhouse. The 3
rd

 to 5
th

 trifoliolate leaves at R1 to R2 

stages were used in the detached leaf assays.  

Winter treatment of urediniospores.   

 One mg subsamples of urediniospores from -80°C were stored in 1.5-ml microcentrifuge 

tubes (with lid open). The tubes were maintained either at room temperature (25°C) inside a 

sealed box with a relative humidity maintained at 75% using a saturated NaCl solution or under a 

simulated southern LA winter conditions (12 ± 1°C, 14 h day with a light intensity of 50 µE S
-

1
m

-2
 and 1 ± 1°C, 10 h night with 75% relative humidity) for up to 60 days in a diurnal incubator. 

Winter-treated spore samples were removed daily during the first 7 days to examine the effect of 

short term winter treatment on spore viability. For the long term effect of winter treatment on 

spore viability, germ tube development, and infectivity, winter-treated spore samples were 

removed at 0, 4, 14, 30, 44 and 60 days from the experimental conditions and examined. The 

simulated southern LA winter conditions were based on the high and low average winter 

temperatures recorded from southern Louisiana (Cameron, Vermilion, St. Mary, and Lafourche 

Parishes) to central Louisiana (Vernon, Rapides, and Avoyelles Parishes) in the past 30 years 

during December and January (http://www.weather.com) (Table 1). The studies were conducted 

three times, with three replicates for each time points. Means were separated by least significant 

difference (LSD) test at P = 0.05 using the Statistical Analysis System (SAS Institute, Cary, NC; 

version 9.1).    
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Table A.1. Average high and low temperatures during December and January in southern and 

northern Louisiana in the past 30 years (data were compiled from http://www.weather.com). 

                         

y 
Mean high and low temperature (°C) of 19 parishes in southern Louisiana between  December 

and January: Vernon, Rapides, Avoyelles, Beauregard, Allen, Evangeline, St. Landry, Pointe, 

Coupee, East Baton Rouge, Tangipahoa, Washington, Calcasieu, Acadia, Iberville, Cameron, 

Vermilion, Iberia, and St. Charles. SD = standard deviation. 
z 
Mean high and low temperature (°C) of 10 parishes in northern Louisiana between December 

and January: Union, Morehouse, East Carroll, Bienville, Jackson, Madison, Nachitoches, Winn, 

Tensas, and Grant. SD = standard deviation. 

 

Viability of urediniospores and germ tube growth.   

 Soybean rust urediniospores in microcentrifuge tubes (1 mg/tube) were removed from 

simulated winter temperature conditions after 0, 4, 14, 30, 44 and 60 days. Spores were 

resuspended in 1 ml of deionized water containing 0.01% Tween 20 and allowed to germinate at 

room temperature for 12 h (3) along with control spores that had been kept at room temperature 

for the same period of time. Spore viability under different conditions was assessed using spore 

germination rate, which was defined as the percentage of spores germinated. At the end of 

incubation, the spore suspension was mixed and three 20-µl subsamples were removed from the 

microcentrifuge tube and examined with a microscope. The percentage of spores germinated was 

determined based on the total number of germinated spores versus total number of spores 

counted from at least 25 different fields of view (at ×200magnification) for each sample. The 

highest number of spores seen in a field was 44 and the lowest number was 15, with an average 

of 26.8 ± 6.1 spores per field. The germination percentage for each time point was the mean from 

 Southern Louisiana  Northern Louisiana  

Av. T high  Av. T low Av. T high  Av. Tlow 

(mean ± SD)
 y

 (mean ± SD)
 z
 

Dec. 17.1 ± 0.7 5.5 ± 1.1 14.5 ± 0.8 3.0 ± 0.8 

Jan. 16.6 ± 2.6 4.4 ± 1 13.0 ± 0.9 1.8 ± 0.9 

 

http://www.weather.com/
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three replicated samples.  

 For determining germ tube growth, three 20 µl subsamples of winter-treated and frozen 

spore suspensions were removed from the water suspension in microcentrifuge tubes at various 

times ranging from 0 to 10 h and examined microscopically. Images of germinated spores from 

at least 25 different fields of view for each sample were captured by a Spot RT camera 

(Diagnostic Inc., Sterling Heights, MI) attached to the microscope. The germ tube length of each 

germinated spore was measured using the Spot Advance software (Diagnostic Inc.). The mean 

germ tube length for each of time points was determined from two repeated experiments, each 

with three replicated samples. Means were separated by the LSD test at P = 0.05.            

Inoculation of detached soybean leaves with P. pachyrhizi.   

 The infectivity of rust spores which had been stored under simulated LA winter 

conditions for various durations (0, 4, 14, 30, 44 and 60 days)  was assessed using an in vitro 

detached leaf assay. Winter-treated and frozen spores were resuspended in deionized water 

containing 0.01% Tween 20. Spore concentration was determined using a hemocytometer and 

adjusted to 2500 spores/ml. Two hundred microliters of inoculum containing 500 spores were 

applied evenly to the adaxial surfaces of detached soybean leaves that had been washed three 

times with deionized water and air-dried. Inoculated leaves were placed adaxial surface up on 

filter paper soaked with sterile water in Petri dishes. The inoculated leaves were incubated under 

the following conditions: 26 ± 0.5°C, 16 h day (about 50 µE S
-1

m
-2

) and 20 ± 0.5°C, 8 h night. 

Pustule formation was determined by visual inspection daily. High moisture inside Petri dishes 

was maintained by adding 3 ml of deionized water every 4 days. Infection rate was determined 

by the percentage of leaves with visible pustules versus total number of inoculated leaves. 

Pustule density was defined as the average number of pustules per leaf 15 days after inoculation. 

This experiment was conducted twice with two replicates. Each replicate consisted of 24 
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detached soybean leaves: half of them inoculated with rust urediniospores and the other half with 

water containing 0.01% Tween 20. The data from two repeated experiments were combined to 

calculate the mean pustule densities, and the means were separated by LSD at P = 0.05.  

Viability of soybean rust spores recovered from over-wintered kudzu leaves.  

 Over wintered dry kudzu leaves were collected in Jan. 30, 2008 from the two locations in 

southern Louisiana (New Iberia, LA) where soybean rust on kudzu had been reported in the past 

two consecutive years. These earlier infected kudzu leaves had  senescenced at the end of 

growing season and fallen off vines during the winter. The collected leaves were first examined 

with a dissecting microscope (Leica MZ16) to confirm pustule lesions at ×200 Leaves with 

lesions were then sliced into 3-by-5 mm sections and transferred to a 15-ml centrifuge tube with 

deionized water containing 0.01% Tween 20 enough to submerge all leaf sections.  After 12 h 

incubation at room temperature, the spore suspension was examined with a microscope for 

viability.    

3. Results     
 

Effect of simulated southern Louisiana winter temperature conditions on P. pachyrhizi 

urediniospore viability.  
 

 The average germination rate of urediniospores freshly harvested from the field varied 

greatly from 93% to 15% depending on the time of harvest and the micro-environment which the 

spores were exposed to before harvest (Park and Chen, unpublished data). Spores can be stored 

at -80°C for up to one year without showing a further decline in germination rate (5,21). The 

spores used for this study had an average germination rate of 72% to 80%. Frozen soybean rust 

urediniospores stored at room temperature (25°C) lost their viability gradually from 72% to 32% 

in 7 days, whereas the viability of spores stored under simulated winter conditions decreased 

from 72% to 40% in the first 24 h, followed by a steady decrease to about 17% at the end of 7 
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days (Fig. A.1). Spores kept at room temperature had a significantly higher viability than that of 

winter treated spores after 2 days of storage (Fig. A.1). However, the difference in viability 

between spores kept at room temperature and under winter conditions diminished as the time 

increased and became insignificant at day 7 (Fig. A.1). 

 In an effort to determine how long soybean rust spores remain viable under simulated 

southern Louisiana winter temperature conditions, the germination rate of spores was examined 

bi-weekly up to 60 days in a separate experiment. It was found that spore germination rate 

decreased rapidly from 72% to about 22% in 14 days, and then more slowly to 11% at 60 days 

when stored under simulated winter temperature conditions (Fig. A.2). However, the germination 

rate of control spores kept at room temperature decreased from 76% to 32% in the first two 

weeks (Fig. 2), and then decreased steadily to 20% and 8% at 30 days and 44 days, respectively. 

Spore germination rate reached 0% at the end of this 60-day study (Fig. A.2).  
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Figure A.1. The effect of short-term winter temperature treatment on the germination rate of 

Phakopsora pachyrhizi urediniospores. Germination rate of winter-treated spores (up to 7 days) 

was compared daily to control spores kept at room temperature for the same duration. 

Germination rate was measured as the percentage of spores germinated at room temperature after 

being suspended in deionized water containing 0.01% Tween 20 for 12 h. RT, room temperature 

(25-26°C); LA winter, simulated southern Louisiana winter conditions (12°C, 14 h day and 1°C, 

10 h night with 75% relative humidity). Vertical bars represent standard deviation. 
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Figure A.2. The effect of long-term winter temperature treatment on the germination of 

Phakopsora pachyrhizi urediniospores. Germination rate of winter-treated spores (up to 60 days) 

was compared to control spores kept at room temperature for the same duration. Germination 

rate was measured as the percentage of spores germinated at room temperature after being 

suspended in deionized water containing 0.01% Tween 20 for 12 hr. RT, room temperature (25-

26°C); LA winter, simulated southern Louisiana winter conditions (12°C, 14 h day and 1°C, 10 h 

night with 75% relative humidity). Vertical bars represent standard deviation. 

 

Effect of simulated winter temperature treatment on spore germ tube growth.  

 Simulated-winter temperature treatment not only reduced spore viability, but also slowed 

spore germ tube growth (Fig. A.3). Germ tube development for frozen spores was clearly visible 

after 2 h of germination and elongated rapidly between 4 to 8 h. Germ tube length reached an 

average of 90 µm after 4 h and an average of 250 µm at the end of 10 h of incubation (Fig. A.4). 

Germ tube length of winter-treated spores was significantly shorter than frozen spores after 2 h 

of germination except for the spores that were winter-treated for only 4 days (Fig. A.4) The 

average germ tube length was 30 µm at the end of 10 h germination for the spores that had been 

treated for 14 days or longer, which was about 8 times shorter than those of frozen spores (Fig. 

A.4). The average germ tube growth rate for frozen spores and spores under winter conditions 

for 4 days was about 25 µm/h compared to that of 3 µm/h for the spores that had been under 

winter temperature conditions for 14 to 60 days.  
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Figure A.3. The effect of simulated winter temperature treatment on Phakopsora pachyrhizi 

urediniospore germ tube development. Germ tube growth was examined after incubating frozen 

spores and over-wintered rust spores in deionized water containing 0.01% Tween 20 at room 

temperature for 10 h. (A) frozen spores; (B) to (F), spores that had been under simulated winter 

conditions for 4, 14, 30, 44 and 60 days, respectively. 
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Figure A.4. The effect of winter treatment on germ tube growth rate of Phakopsora pachyrhizi 

urediniospores. Germ tube length was measured witha light microscope hourly after suspending 

the frozen and winter-treated spores in deionized water containing 0.01% Tween 20 at room 

temperature. The data presented here were means from two repeated experiments, each with 

three replicates. Vertical bars represent standard deviation. 

 

Effect of winter-treatment on spore infectivity using a detached leaf assay.   

 Detached soybean leaves started producing roots about 7 days after incubation under the 

detached leaf assay conditions, enabling leaves to remain green up to 30 days after inoculation 

(Fig. A.5). Spores that had been treated under simulated winter temperature conditions for as 

long as 60 days retained their infectivity and were able to produce new pustules when inoculated 

onto detached soybean leaves (Fig. A.6) although the number was significantly less compared to 

that produced by frozen spores (Table A.2). Pustules were observed 9 days after inoculation on 

all soybean leaves inoculated with frozen or 4-day-old over-wintered spores (Table A.2). For 

leaves inoculated with 14 or 30-day-old over-wintered spores, the initial pustules were observed 

9 days after inoculation, but only in 85 or 25% of the inoculated leaves, respectively. Infectivity 

decreased as the duration of winter-treatment increased. Leaves inoculated with spores that had 
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over-wintered for 44 and 60 days did not develop pustules until 12 days after inoculation, and 

pustules were observed in only 40% and 10% of the inoculated leaves, respectively (Table A.2). 

 In addition, pustule density in inoculated leaves decreased as the duration of winter-

treatment increased. Fourteen days after inoculation, leaves inoculated with frozen or 4-day-old 

over-wintered spores had an average of 42.3 or 49.2 pustules per leaf, respectively (Table A.2). 

However, the pustule density was significantly lower in leaves inoculated with spores over-

wintered for 14 days or longer compared to leaves inoculated with frozen spores. On the average, 

only 16 and 3 pustules per inoculated leaf were observed in leaves inoculated with spores that 

over-wintered for 14 and 30 days, respectively. Leaves inoculated with spores over-wintered for 

44 or 60 days had an average of less than one pustule per inoculated leaf (Table A.2). 

 

Figure A.5. Evaluation of Phakopsora pachyrhizi urediniospore infectivity using a detached leaf 

assay. Soybean leaves (3
rd

 to 5
th

 trifoliate) at R1 to R2 stage were harvested from greenhouse-

grown 93M60 soybean plants, inoculated with soybean rust spores, placed on filter paper soaked 

with deionized water, and incubated for 14 days under the condition of 26°C, 16 h day and 20°C, 

8 h night before being evaluated for disease severity or pustule density. (A), leaf before 

inoculation; (B) leaf 14 days after inoculation. Root formation was evident in the detached leaves 

after one week of incubation. 
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Figure A.6. The effect of winter temperature treatment on infectivity of soybean rust 

urediniospores.  Detached soybean leaves were inoculated with rust spores that had been treated 

under simulated southern Louisiana winter condition for different durations. Soybean leaves 

were inoculated with spores over-wintered for 0 day (frozen spores, A), 4 days (B), 14 days (C), 

30 days (D), 44 days (E) and 60 days (F), respectively. Photos were taken 14 days after 

inoculation. Arrows indicate pustules. 
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Table A.2. Effect of simulated winter temperature treatment on Phakopsora pachyrhizi 

urediniospore infectivity. 

Duration at winter 

conditions 

Infection rate (%)
y
 Pustule density 

z
  

(mean±SD) 9 DAI 12 DAI 14 DAI 

0 day  100 100 100 42.3 ± 28.7 a 

4 days 100 100 100 49.2 ± 31.8 a 

14 days 85 100 100 16.4 ± 9.3 bc  

30 days 25 70 85   3.3 ± 4.6 c 

44 days 0 40 50   1.5 ± 2.4 c 

60 days 0 10 30   0.4 ±0.8 c 

 
y
  Infection rate was the average percentage of inoculated leaves developing visible pustules at 

the specified time intervals. DAI, days after inoculation.  

 
z
  Pustule density was the mean number of pustules per leaf observed 15 days after inoculation 

from two combined experiments. Means in the same column followed by a common letter were 

not significantly different by LSD test at P = 0.05; SD = standard deviation. 

 

Viability of soybean rust spores on over-wintered kudzu leaves.   

 No viable soybean rust spores were recovered from kudzu leaves collected from one 

location. However, sixty-seven out of about 500 spores recovered from an over-wintered dry 

kudzu leaf at the other location were found to germinate after 12 h of incubation in water 

containing 0.01% Tween 20 (Fig. A.7). In addition, germ tube growth of these viable spores 

reached an average of 25 ± 4.7 after 10 h of germination, which was about same as those of 

spores that had been treated under simulated winter for 60 days.    
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Figure A.7. Germination of Phakopsora pachyrhizi spores recovered from over-wintered dry 

kudzu leaves collected from southern Louisiana. Spore germination was examined a light 

microscope. A, spores before incubation; B-D, spores after 12 h incubation.     

 

4. Discussion 

Soybean rust urediniospore survivability under winter conditions, especially in the south, is a 

major concern for the US soybean growers. Previous studies determined the maximum and 

minimum temperature and moisture conditions for spore germination and infection (10,12,13).  It 

was also reported that when temperatures were kept at 4 to 5°C lower,urediniospores lost their 

viability in 5 days (15). However, it has not been investigated how well soybean rust spores 

over-winter in the southern United States where winter night temperature is usually above 0°C. 

As a first step, a simulated winter condition based on average day and night temperatures from 

central to southern Louisiana during the past 30 years was used to treat frozen spores for various 

durations before examining their viability and infectivity.  

 In agreement with earlier studies (12,15), soybean rust spore viability was found to be 

detrimentally affected by low temperature treatment. The effect of simulated winter temperature 
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conditions on spore viability was observed within the first 24 h and viability was significantly 

decreased after 2 days compared spores kept under room-temperature conditions. This sudden 

initial decline in spore viability might be related to age variations among the collected spores 

since it had been previously reported that viability of spores from inactive pustules was 

significantly lower than that of spores from active pustules when exposed to freezing 

temperatures (16).  It also appeared that spores kept under simulated winter conditions remained 

viable longer than spores stored at room temperature. It has been reported that cellular 

metabolism is reduced at sub-optimal temperatures (6). This may explain why spores with 

limited nutrient and energy reserves survived longer under simulated winter conditions than 

under room temperature.  

 Our study also found that simulated winter treatment slowed germ tube growth. The 

average germ tube growth for spores that had been under winter conditions for 14-60 days was 

about 8-fold slower than that of frozen spores. This may be why those spores were less effective 

than frozen spores in producing pustules when inoculated onto detached soybean leaves. The 

time of initial symptom appearance, infection rate, and pustule density were delayed or reduced 

in  leaves inoculated with spores that had been treated under simulated winter conditions for 44 

days or longer. However, it was demonstrated that even spores overwintered for 60 days were 

able to infect soybean leaves and produce pustules. It indicated that P. pachyrhizi urediniospores 

could over-winter in southern Louisiana and initiate a new cycle of infection in the next growing 

season, although the initial infection cycle may take longer than 14 days. 

   The spores over-wintered for 4 days had a similar germ tube growth rate as, but a 

significantly lower germination percentage (35%) than, frozen spores (72%). In the detached leaf 

assay, both kinds of spores showed the same infectivity. This suggests that germ tube growth rate 

is a more important factor than spore viability in determining whether a successful infection can 
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occur. This may be due to the fact that P. pachyrhizi spores have only 6-8 h to germinate, 

elongate a germ tube and penetrate the host cell wall (13) before spores exhaust their limited 

nutrients and energy reserves (4). A study by Adendorff and Rijkenberg (1) reported that germ 

tubes of direct penetrating fungi, like soybean rust, prefer the junction area between two leaf 

epidermal cells and penetration usually occurs 6 h after inoculation. Therefore, it is likely that 

spores with fast elongating germ tubes will have a better chance in finding an appropriate surface 

area for penetration than spores with slow growing germ tubes before the window of opportunity 

elapses. 

 A new detached leaf assay was used in the present study to examine changes in spore 

infectivity after the winter treatment.  The earlier detached leaf assay developed by Burdon and 

Marshall (2) and modified by Twizeyimana et al. (24) uses 1% agar plates supplemented with 10 

mg/l kinetin to delay leaf senescence. Also, the earlier assay uses only a small section of a leaf 

per Petri dish. Our method, first reported by Chen et al. (3), uses whole leaves, placed on sterile 

filter papers pre-soaked with 4 ml of sterile water per 100 mm Petri dish without agar medium or 

kinetin. Another difference is that the detached leaves in this new assay were incubated under 

light and temperature settings of 14 h day (at 26°C) and 10 h night (at 20°C). Detached leaves 

remained green for over a month. In addition, detached leaves in this new assay often develop 

roots during the first 10 days of incubation, which further delays leaf senescence. This assay 

proved very useful not only in determining spore infectivity in a short time, but also in 

maintaining live soybean rust cultures under laboratory conditions.  This assay could also be 

used to evaluate host resistance levels of different soybean varieties under laboratory conditions.  

 In summary, soybean rust spores that had been stored under simulated LA winter 

temperature conditions for as long as 60 days germinated, infected detached soybean leaves and 

produced pustules though at a lower rate and density compared to frozen spores. This study 
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suggests that P. pachyrhizi could survive winter temperatures in southern Louisiana and other 

southern states, and serve as a source of inoculum for the coming season in North America. This 

conclusion is supported by the observation of viable soybean rust spores recovered from over-

wintered dry kudzu leaves collected in January 30, 2008 from southern Louisiana, where night 

temperatures dipped four times below-freezing (-1ºC) in January alone. It is also supported by 

the fact that the first two 2007 soybean rust infections in Louisiana were reported on newly 

grown kudzu leaves at the two locations where soybean rust was reported in 2006 even though 

all of the earlier infected kudzu leaves and vines had died back during the 2005-2006 winter 

(www.sbrusa.net). 
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