1977

Diffusion of Arsenic in Degenerate Silicon: a Quasi-Static Approach.

Rituparna Shrivastava
Louisiana State University and Agricultural & Mechanical College

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses

Recommended Citation
https://digitalcommons.lsu.edu/gradschool_disstheses/3168

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact graduetsd@lsu.edu.
INFORMATION TO USERS

This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted.

The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction.

1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity.

2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame.

3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again — beginning below the first row and continuing on until complete.

4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation. Silver prints of "photographs" may be ordered at additional charge by writing the Order Department, giving the catalog number, title, author and specific pages you wish reproduced.

5. PLEASE NOTE: Some pages may have indistinct print. Filmed as received.

University Microfilms International
300 North Zeeb Road
Ann Arbor, Michigan 48106 USA
St. John's Road, Tyler's Green
High Wycombe, Bucks. England HP10 8HR
SHRIVASTAVA, Rituparna, 1951-
DIFFUSION OF ARSENIC IN DEGENERATE SILICON:
A QUASI-STATIC APPROACH,
The Louisiana State University and
Agricultural and Mechanical College, Ph.D., 1977
Engineering, electronics and electrical

University Microfilms International, Ann Arbor, Michigan 48106

© 1978
RITUPARNA SHRIVASTAVA

ALL RIGHTS RESERVED
DIFFUSION OF ARSENIC IN DEGENERATE SILICON:
A QUASI-STATIC APPROACH

A Dissertation
Submitted to the Graduate Faculty of the
Louisiana State University and
Agricultural and Mechanical College
in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy
in
The Department of Electrical Engineering

by
Rituparna Shrivastava
M.E., Indian Institute of Science, 1973
December 1977
ACKNOWLEDGEMENT

The author wishes to express his gratitude to Dr. Alan H. Marshak for his continued guidance, assistance, encouragement and friendship during the author's graduate program. He would also like to thank Messrs. Pike R. Green and Farrokh Shokooh for some useful discussions, and Mrs. Martha Prather for typing the manuscript.

The author would like to acknowledge his good fortune in having Shri Kamala Kant and Smt. Priamvada Shrivastava as his parents.

The research reported herein was supported in part by the National Science Foundation under grant DMR75-18864 and by the Department of Defense under contract No. DAAB07-75-C-1344-2, pursuant to ARPA order No. 2985.
TABLE OF CONTENTS

1	INTRODUCTION	1
2	FIELD-AIDED DIFFUSION	11
	2.1 Transport Equations for Nondegenerate Case	11
	2.2 Previous Work	14
	2.3 Transport Equations for Degenerate Case	21
	2.4 Degenerate Case Under Charge Neutrality	31
	2.5 Discussion	35
3	DIFFUSION VIA VACANCIES	37
	3.1 Previous Work	37
	3.2 The Diffusion Model	41
	3.3 Computation of the Fermi Level	47
	3.4 Summary of the Problem	49
	3.5 Form of Impurity Flux With and Without Vacancies	50
	3.6 Transformation of the Equations	51
	3.7 Discussion	56
4	NUMERICAL ANALYSIS	57
	4.1 Discretization of Independent Variables	57
	4.2 General Quasi-linearization Technique	59
	4.3 Quasi-static Problem	66
	4.4 Boundary Conditions	69
	4.5 Quasi-linearization Technique for a Scalar Equation	78
TABLE OF CONTENTS (cont'd)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.6 Application to the Charge Neutrality approximation</td>
<td>84</td>
</tr>
<tr>
<td>4.7 Application to Vacancy-aided Diffusion</td>
<td>85</td>
</tr>
<tr>
<td>4.8 Computation of the Boundary Condition</td>
<td>87</td>
</tr>
<tr>
<td>4.9 Discussion</td>
<td>88</td>
</tr>
<tr>
<td>5RESULTS</td>
<td>90</td>
</tr>
<tr>
<td>6 CONCLUSIONS</td>
<td>102</td>
</tr>
<tr>
<td>APPENDIX A - Nondegenerate Quasi-static Formulation</td>
<td>107</td>
</tr>
<tr>
<td>APPENDIX B - Computation of the Fermi Integrals</td>
<td>111</td>
</tr>
<tr>
<td>APPENDIX C - Program Information</td>
<td>119</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>164</td>
</tr>
<tr>
<td>VITA</td>
<td>171</td>
</tr>
<tr>
<td>Figures</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>4.1</td>
<td>Flow Diagram of the Numerical Method</td>
</tr>
<tr>
<td>4.2</td>
<td>Flow Diagram of the Iteration Procedure</td>
</tr>
<tr>
<td>5.1</td>
<td>Impurity Profiles of Arsenic in Silicon Using the Quasi-static Model</td>
</tr>
<tr>
<td>5.2</td>
<td>Electric Field for the Constant Source Diffusion</td>
</tr>
<tr>
<td>5.3</td>
<td>Comparison of Results Using Charge Neutrality and Vacancy-aided Models for High Surface Concentration</td>
</tr>
<tr>
<td>5.4</td>
<td>Effect of Statistics and Ionization on Impurity Concentration Using the Vacancy-aided Model</td>
</tr>
<tr>
<td>5.5</td>
<td>Impurity Profiles for Low Surface Concentration Using Charge Neutrality, Vacancy-aided and Zero Field Models</td>
</tr>
<tr>
<td>5.6</td>
<td>Comparison Between Experimental Data and Calculated Profiles Using Vacancy-aided Model</td>
</tr>
</tbody>
</table>
ABSTRACT

Diffusion under controlled conditions is one of the most important processes employed in the manufacture of semiconductor devices. The diffusion of group III and group V impurities in semiconductor material has been a subject of considerable work. It has been known for many years that diffusion in silicon at high concentrations, say 10^{21} cm$^{-3}$, produces impurity profiles that differ significantly from those predicted by a simple theory. This difficulty hinders the work of those engaged in the design of modern semiconductor devices, such as transistors, solar cells and integrated circuits, for which accurate process prediction is desirable.

The object of this research is to develop and study the models describing a constant source diffusion process which will accurately and efficiently predict the results of such a process. The effect of the internal electric field produced during the diffusion is analyzed using a quasi-static approximation for the holes and electrons. The use of both Fermi-Dirac and Maxwell-Boltzmann statistics is discussed. The assumption of charge neutrality is investigated under typical diffusion conditions. At relatively higher surface concentrations, in addition to the internal electric field, several other effects must be considered. In the present work, a model for arsenic diffusion in silicon is proposed which takes into account...
the degeneracy of the carriers, partial ionization of the impurities, single acceptor level vacancies and the internal electric field.

The transport process for holes, electrons and impurities is described by the flux equations, the continuity equations and Gauss' law. Although simplifying assumptions are made, the resulting partial differential equations are highly nonlinear, and a numerical scheme must be used to solve the problem. An efficient computer program based on a quasi-linearization technique is written to obtain the impurity profiles from the processing data. Several other computer programs are used to investigate different models.

It is found that the internal electric field enhances diffusion at high concentrations. The electric field profiles are reminiscent of those obtained in a high-low junction. It is noted that the field varies almost linearly near the surface and then reaches a maximum value. Charge neutrality under typical diffusion conditions is found to be an excellent approximation. The results obtained using Fermi-Dirac statistics show that the use of classical statistics yields an underestimate of the impurity concentration values. At higher concentrations, incorporation of partial ionization, vacancies and degeneracy significantly affects the results obtained. There is a good agreement between the model and experimental
results based on neutron activation analysis. However, the impurity profiles strongly depend on the value of the intrinsic impurity diffusion coefficient.
CHAPTER I
INTRODUCTION

The term "diffusion", when applied to semiconductor device fabrication, is used loosely to describe impurity atom motion in a semiconductor at elevated temperatures. Diffusion under controlled conditions is one of the most important processes employed in the manufacture of semiconductor devices. In order to fabricate a device with a certain set of parameters, it is very important to be able to control the impurity diffusion profiles in the semiconductor wafer. The need for suitable models describing the diffusion phenomenon is evident.

In most practical situations, a constant source diffusion, a drive-in diffusion, or both are used. In the first case, surface concentration is held constant during the diffusion, whereas in the second case, the source is removed and redistribution takes place under the condition that the impurity atoms can neither enter nor leave the semiconductor wafer. In theory, it is possible to synthesize any given arbitrary profile compatible with the two-step process, by generating a proper control function [1]. However, in practice the direct profile resulting from the above two processes may be acceptable. We will mostly concern ourselves with the constant source diffusion process. In this process, the impurity atoms are introduced into a flowing inert gas, which deposits these atoms
on the surface of the semiconductor wafer. A desired surface concentration of the impurity atoms can be maintained. In practice, this value very often is equal to the solid solubility value. As the impurity atoms cross the surface and move into the semiconductor, some or most of them ionize depending on the concentration. If the motion of these ions were essentially the same as the motion of neutral particles, the flux \(f_c \) or the number of ions crossing a unit area in a unit time, will be given by Fick's law. For one-dimensional motion, and assuming parallel plane geometry,

\[
f_c = -D_c \frac{\partial c(x,t)}{\partial x} \tag{1.1}
\]

where \(D_c \) is the diffusion coefficient or diffusivity and \(c \) represents the concentration of ions. The ions also satisfy a continuity equation given by

\[
\frac{\partial f_c}{\partial x} + \frac{\partial c}{\partial t} = G_c \tag{1.2}
\]

where \(G_c \) is the net generation rate for ions. Assuming that all the impurity atoms ionize when they enter the surface, we can equate \(G_c \) to zero. Combining (1.1) and (1.2) then yields:
\[\frac{\partial c}{\partial t} = D_c \frac{\partial^2 c}{\partial x^2} . \]

(1.3)

This is called the simple diffusion equation. The solution to (1.3) for a semi-infinite solid under the constant source boundary conditions

\[c(0,t) = C_0 \]

(1.4a)

\[c(\infty,t) = 0 \]

(1.4b)

\[c(x,0) = 0, \quad x > 0 \]

(1.4c)

is given by the complementary error function

\[c(x,t) = C_0 \text{erfc}[x/(4D_c t)^{1/2}] \]

(1.5)

where \(D_1 \) is the value of \(D_c \) for the above diffusion step.

The boundary conditions for the drive-in diffusion are given by

\[c(x,0) = c_1(x) \]

(1.6a)

\[\frac{\partial c(0,t)}{\partial x} = 0 \]

(1.6b)

\[c(\infty,t) = 0 . \]

(1.6c)
The solution to the diffusion equation in this case is [2]

\[
c(x,t) = \frac{1}{2(\pi D_2 t)^{1/2}} \int_0^\infty c_1(\zeta) \left[e^{-\frac{(x-\zeta)^2}{4D_2 t}} + e^{-\frac{(x+\zeta)^2}{4D_2 t}} \right] d\zeta
\]

(1.7)

where \(D_2 \) is the value of \(D_C \) for the drive-in cycle.

In the two-step diffusion process \(c_1(x) \) is given by (1.5). If the diffusion time for the first step \(t_1 \) is such that \(D_1 t_1 \ll D_2 t \), the delta function approximation for \(c_1(x) \) yields the Gaussian solution [3]

\[
c(x,t) = \frac{2C_0}{\pi} \left(\frac{D_1 t_1}{D_2 t} \right)^{1/2} e^{-\frac{x^2}{4D_2 t}}
\]

(1.8)

for the two-step diffusion profile.

It has been known for many years that the results of simple diffusion theory do not agree with experiment except at low surface concentrations [4]. This departure, to some extent, can be explained by the presence of an internal electric field which arises because of a mismatch in the diffusion coefficients of the impurity ions and the mobile carriers. For example, when arsenic atoms enter the solid, most of them ionize because of the high temperature, resulting in positive ions and electrons. The electrons tend to diffuse away from the ions due to a much higher diffusion coefficient. Since both species carry electrical
charge, an electric field develops which tends to retard the motion of electrons and enhance the motion of ions. The incorporation of this electric field in the model yields impurity density profiles which are closer to experimental results. However, the general differential equations governing field-aided diffusion are quite nonlinear and complex and a need for simple models soon becomes evident. Most of the models found in the literature assume local charge neutrality and are valid for nondegenerate conditions. In Chapter 2, the assumption of local charge neutrality has been examined with reference to a quasi-static approximation for both nondegenerate and degenerate statistics.

The field-aided diffusion theory described above, in itself, is inadequate to explain the experimental observations at relatively higher concentrations. At such high concentrations the effect of defects in the lattice becomes very important. Before considering the defects, it will be instructive to briefly discuss various mechanisms of diffusion in semiconductors [5]. Ring mechanism and direct interchange of neighboring atoms have been considered improbable. A "direct interstitial" mechanism has been suggested in which a lattice atom leaves its regular substitutional site and becomes an interstitial. One of its nearest neighboring substitutional atoms moves into the vacancy left behind by the first atom. Then the first atom, now at the interstitial position, moves into
the vacancy left behind by the second atom thus completing the cycle of indirect exchange. However, it can be argued that even such an interchange would be less likely than a vacancy mechanism. Defect-aided mechanisms are more probable in silicon and germanium. Most important of them are vacancy and interstitialcy (or indirect interstitial) mechanisms. In the vacancy mechanism the host atom is missing from its regular site and this enhances the impurity diffusion. In the interstitialcy mechanism, the interstitial atom chooses to move by pushing one of its nearest neighbors into another interstitial site and it itself takes up the substitutional site. Group III and Group V elements form strong covalent bonds with silicon and germanium atoms. This results in their existence being almost entirely in the substitutional form. A consequence of this is that they diffuse predominantly by either a vacancy or an interstitialcy mechanism. A definite statement about the mechanism, however, can not be made. A number of experimental techniques have demonstrated that vacancies and presumably interstitials may exist in different charge states. The effect of strong doping on self and impurity diffusion is closely tied to the acceptor and donor actions of the vacancies and interstitials.

An excellent review on diffusion mechanisms and point defects in Si and Ge can be found in [6]. It has become
customary to classify impurities as "slow" and "fast" diffusors. Diffusion coefficients of slow diffusors are 10-100 times higher than self diffusion coefficients. Fast diffusors usually diffuse several orders of magnitude faster than slow diffusors. Group III and Group V elements are typical representatives of slow diffusors. It is generally assumed that the diffusion mechanism involved in slow diffusors is a simple vacancy mechanism. A quantitative model for diffusion of these impurities was proposed by Swalin. His model seems to support vacancy mechanism in Ge and donor impurity diffusion via vacancies in Si. It however does not explain acceptor impurity diffusion in Si, for which Seeger and Chik have proposed the interstitialcy mechanism discussed before. An explanation in favor of donor impurity diffusion in Si, via vacancies, is that the Coulomb interaction between positively charged donors and negatively charged vacancies leads to an increased probability of finding a vacancy near a donor impurity, and therefore enhances the impurity diffusion.

A simple way to see how a vacancy may act as an acceptor is as follows [7]. There are four covalent bonds missing at the sight of a vacancy. This gives rise to a strong change in the valence electron distribution in the vicinity of the vacancy and leads to a lattice distortion. From a scattering theory point of view, it means that an atomic scatterer is missing in the lattice. This results
in the introduction of some bound states in the band gap. The vacancy may trap electrons from the valence band in these localized states. When a hole is introduced because of the electron making a transition to one of the localized states from the valence band, the vacancy becomes negatively charged because of the trapped electron and thus acts as an ionized p-type impurity. As discussed by Seeger and Chik, concentration of acceptor type defects is increased by n-type doping and decreased by p-type doping. Thus, diffusion via vacancies should be faster in n-doped material, and slower in p-doped material compared to the intrinsic material.

Evidence indicating that vacancies act as acceptors is found in the data obtained from irradiated Ge by Cleland, Crawford and Holmes [8]. In this study, the effect of γ-radiation on electrical properties of Ge was studied. Results indicate that exposure of n-type Ge to γ-rays decreases the extrinsic electron concentration. Valenta and Ramasastry [9] have explained the effect of heavy doping on self-diffusion of Ge by assuming that vacancies act as acceptors. Agreement for n-type data was fair, whereas p-type data did not agree that well. The discrepancy was not attributed to the above assumption, namely, that vacancies act as acceptors, and it was concluded that Ge self diffusion probably occurs via vacancies. The doping effect on impurity diffusion in Ge
is also in general agreement with vacancy model of diffusion. Because of the low concentration of point defects, it has not yet been possible to detect directly the presence of point defects in Si and Ge in thermal equilibrium at high temperatures.

Two classical models of the energy levels of vacancies and interstitials are that of James and Lark-Horowitz [10], and of Blount [11]. In the first model, interstitials act as donors and vacancies act as acceptors. In Blount's model on the other hand, interstitials and vacancies may act as both acceptors and donors. This is favored for the interstitialcy mechanism proposed by Seeger and Chik to explain the impurity diffusion of Group III and Group V elements in Si, whereas the fact that double negatively charged vacancies can exist is a point in favor of the James and Lark-Horowitz model.

With the above background in mind, the diffusion phenomenon will be discussed in the subsequent chapters. The object of the present research is to develop the models describing the diffusion phenomenon which include the effects of internal electric field, vacancies, partial ionization, and degeneracy of carriers. In Chapter 2, field-aided diffusion is discussed under degenerate and complete impurity ionization conditions. The assumption of local charge neutrality is investigated. In Chapter 3, Hu's theory of impurity diffusion [12] is applied to
arsenic diffusion in silicon under general conditions. Numerical computation of impurity profiles and results are discussed in Chapters 4 and 5, and the conclusions summarized in Chapter 6.
CHAPTER 2
FIELD-AIDED DIFFUSION

In an intrinsic semiconductor, at thermal equilibrium, holes and electrons are produced in equal numbers by thermal processes. When impurity atoms are introduced, they ionize and alter the concentration of majority carriers (e.g. electrons for an n-type impurity). As a result, the majority carrier concentration increases and due to recombination the minority carrier concentration decreases. The product \(pn \) remains constant at thermal equilibrium for a nondegenerate semiconductor. When the semiconductor is out of thermal equilibrium, it is necessary to consider the motions of electrons, holes, and impurity ions simultaneously, because the charge density at any point is a function of the concentrations of these species.

The analysis in the present work is restricted to the case of a constant band gap semiconductor at a constant temperature. It is also assumed that the impurities are singly ionized.

2.1 Transport Equations for Nondegenerate Case

For a semi-infinite solid, a one-dimensional diffusion process for \(x>0, \ t>0 \) is defined by the flux equations, continuity equations, Poisson's equation, and appropriate boundary conditions.
The flux equations for an arbitrary carrier are given by

\[f_\alpha = - D_\alpha \frac{\partial \alpha}{\partial x} + Z_\alpha \mu_\alpha \alpha E \] \hspace{1cm} (2.1)

where \(\alpha \) represents the concentration of an arbitrary carrier (n, p or c for electrons, holes or impurity ions, respectively), \(D_\alpha \) is the diffusion coefficient, \(\mu_\alpha \) is the mobility, \(E \) is the electric field, and \(Z_\alpha \) takes on the value +1 or -1 for a positive or negative carrier charge, respectively.

The continuity equation for the carrier \(\alpha \) is

\[\frac{\partial \alpha}{\partial t} = - \frac{\partial f_\alpha}{\partial x} + G_\alpha \] \hspace{1cm} (2.2)

where \(G_\alpha \) represents the net generation rate of the carrier.

Using the nondegenerate Einstein relation

\[\frac{D_\alpha}{\mu_\alpha} = \frac{kT}{e} \approx V_T \] \hspace{1cm} (2.3)

and assuming 100% impurity ionization, which implies that

\[G_p = G_n = G \], \hspace{1cm} (2.4)

the general equations can be written as
Poisson's equation yields

\[
\frac{\partial p}{\partial t} = \frac{\partial}{\partial x} \left[D_p \frac{\partial p}{\partial x} - \frac{pE}{V_T} \right] + G \tag{2.5a}
\]

\[
\frac{\partial n}{\partial t} = \frac{\partial}{\partial x} \left[D_n \frac{\partial n}{\partial x} + \frac{nE}{V_T} \right] + G \tag{2.5b}
\]

\[
\frac{\partial c}{\partial t} = \frac{\partial}{\partial x} \left[D_c \frac{\partial c}{\partial x} - Z_c \frac{cE}{V_T} \right] \tag{2.5c}
\]

Poisson's equation yields

\[
\frac{\partial E}{\partial x} = \frac{j}{\varepsilon} = \frac{\varepsilon}{\varepsilon} (p-n+Z_c c) \tag{2.6}
\]

where \(p \) represents the charge density. Note that \(Z_c = 1 \) for donors and \(Z_c = -1 \) for acceptors. The permittivity \(\varepsilon \) will be assumed constant.

The net generation rate \(G \) may be represented by the Shockley-Read-Hall model

\[
G = -\frac{p_n n_i^2}{\tau_n (p+n_i) + \tau_p (n+n_i)} \tag{2.7}
\]

where \(n_i \) is the intrinsic concentration of electrons and holes, and \(\tau_p \) and \(\tau_n \) are the lifetimes of holes and electrons, respectively.

The boundary conditions are governed by the kind of diffusion process. In most of the work, for simplicity, a constant source diffusion will be assumed in which case the boundary conditions are given by
\[c(x,0) = 0 \quad x > 0 \] (2.8a)

\[p(x,0) = n(x,0) = n_i \quad x > 0 \] (2.8b)

\[E(\infty,t) = 0 \] (2.8c)

\[c(0,t) = C_0 \] (2.8d)

\[\frac{\partial \alpha_{\text{maj}}(0,t)}{\partial x} = \frac{D_c}{D_{\text{maj}}} \frac{\partial c(0,t)}{\partial x} \] (2.8e)

\[\frac{\partial \alpha_{\text{min}}(0,t)}{\partial x} = 0 \] (2.8f)

where \(\alpha_{\text{maj}} \) and \(\alpha_{\text{min}} \) are majority and minority carrier concentrations, respectively.

2.2 Previous Work

The effect of the electric field on the transport process was first considered by Zaromb [13] and Smits [14]. Their work was based upon two major assumptions.

1. The material is charge-neutral at every point so that

\[\frac{\rho}{\varepsilon} = p-n+Z_c c = 0 . \] (2.9)
2. It is assumed that \(pn = n_i^2 \). Strictly, this relation is only valid in thermal equilibrium for a nondegenerate semiconductor.

The electric field can then be expressed as

\[
E = -ZC V_T \frac{1}{\sqrt{c^2 + 4n_i^2}} \frac{\partial C}{\partial x}. \tag{2.10}
\]

An expression similar to (2.10) was derived by Kurtz and Yee [15] who neglected the effect of the minority current. They pointed out that an effective diffusion constant \(D_{\text{eff}} \) can be defined when (2.10) is used in the flux equation for the impurity atoms (2.1) to give

\[
f_C = -D_{\text{eff}} \frac{\partial C}{\partial x}. \tag{2.11}
\]

where

\[
D_{\text{eff}} = D_C \left(1 + \frac{C}{\sqrt{c^2 + 4n_i^2}} \right). \tag{2.12}
\]

Substitution of (2.11) into the continuity equation yields

\[
\frac{\partial C}{\partial t} = \frac{\partial}{\partial x} \left[D_C \left(1 + \frac{C}{\sqrt{c^2 + 4n_i^2}} \right) \frac{\partial C}{\partial x} \right]. \tag{2.13}
\]
Lehovec and Slobodskoy [16] have obtained an approximate solution to the above equation for a constant source diffusion into an otherwise intrinsic semiconductor. They also provided the "corrections" to the surface concentration by extrapolating from the tail of the impurity distribution using a complementary error function.

Bordina et al. [17] have discussed the influence of the internal electric field by assuming that it may be taken as uniform. They then conclude that an effective doubling of the diffusion coefficient takes place in a region where \(c >> n_i \).

Vas'kin et al. [18] have treated impurity diffusion into a semiconductor uniformly doped with an impurity of the opposite type under the assumption that the local electric field can be represented by an average field defined in terms of a weighting function. Shaw and Wells [19] have analyzed the same problem without making the above assumption and have obtained numerical solutions for the impurity distributions. Klein and Beal [20] have discussed the case of simultaneous diffusion of oppositely charged impurities.

Nuyts and Van Overstraeten [21] have calculated the impurity diffusion profiles in silicon taking into account the diffusion of the base impurities. They have also discussed the use of degenerate statistics and partial impurity ionization although no computations have been
made incorporating these aspects. Hu and Schmidt [22] have also calculated constant source diffusion profiles, and have analyzed the effect of the internal electric field on a sequential diffusion process.

Quasi-static Approach. The general problem of the previous section was investigated by Perritt [23] and later by Widiger [24], without making the two major assumptions discussed earlier in this section. A quasi-static approximation was formulated under the following assumption.

In a semiconductor, even at diffusion temperatures, holes and electrons have a much larger mobility than the impurity ions. Thus the time required for an impurity ion distribution to change to a particular profile is many orders of magnitude larger than that required for the holes and electrons. \(D_p \) and \(D_n \) are approximately \(10^{13} \) times larger than \(D_c \). The electrons and holes therefore re-adjust almost instantaneously, staying in a steady state determined by the impurity ion distribution. In thermodynamics this is referred to as "quasi-static equilibrium." The equations governing diffusion under quasi-static approximation were developed by Widiger who assumed the SRH model. A more general way to derive these equations is given in Appendix A. It is first assumed that

\[
\frac{\partial p}{\partial t} = \frac{\partial n}{\partial t} = 0 .
\] (2.14)
It can then be shown that regardless of the form of G in (2.5a) and (2.5b), and using only these two equations, we obtain

\[n = n_i \exp\left(\frac{\phi}{V_T}\right) \]
\[p = n_i \exp\left(-\frac{\phi}{V_T}\right) \]

which, of course, implies that

\[pn = n_i^2. \]

The general problem under quasi-static approximation thus reduces to

\[\frac{\partial \phi}{\partial t} = \frac{\partial}{\partial x} \left[D_c \frac{\partial \phi}{\partial x} - \frac{Z_c}{V_T} c \right] \]
\[\frac{\partial^2 \phi}{\partial x^2} = \frac{\varepsilon}{\varepsilon} \left[n-p-Z_c c \right] \]

where

\[E = -\frac{\partial \phi}{\partial x}. \]

Note that electrostatic potential ϕ has been assumed to be zero at $x \to \infty$ for convenience, where the material has
been chosen to be intrinsic. It may also be noted that using (2.15) and (2.16), (2.18) can be written as

$$\frac{\partial^2 \phi}{\partial x^2} = \frac{e}{e} \left[2n_i \sinh\left(\frac{\phi}{V_T}\right) - Z_c c \right].$$ \hfill (2.20)

The boundary conditions for the above problem for a constant source diffusion are

\begin{align*}
 c(0, t) &= C_0 \quad (2.21a) \\
 \frac{\partial \phi(0, t)}{\partial x} &= 0 \quad (2.21b) \\
 c(\infty, t) &= 0 \quad (2.21c) \\
 \phi(\infty, t) &= 0 \quad (2.21d) \\
 c(x, 0) &= 0, \quad x > 0 \quad . \quad (2.21e)
\end{align*}

It is seen that as a consequence of the law of mass action $pn = n_i^2$, the generation term G becomes zero if SRH model of (2.7) is assumed. This fact, however, is not required in the above model.

The quasi-static problem has been investigated and impurity profiles calculated using numerical techniques for a constant source diffusion [24], drive-in diffusion [25] and two-step diffusion processes [26].
It is interesting to note that if local charge neutrality is assumed in Poisson's equation, i.e. \(\frac{\partial^2 \phi}{\partial x^2} = 0 \), then

\[
\phi = V_T \sinh^{-1} \left(\frac{cZ_C}{2n_i} \right).
\] (2.22)

Thus,

\[
E = -\frac{\partial \phi}{\partial x} = -\frac{V_T}{\sqrt{c^2 + 4n_i^2}} \frac{Z_C}{c} \frac{\partial c}{\partial x}.
\] (2.23)

Substituting (2.23) into (2.17) yields

\[
\frac{\partial c}{\partial t} = \frac{\partial}{\partial x} \left(D_{\text{eff}} \frac{\partial c}{\partial x} \right)
\] (2.24)

where

\[
D_{\text{eff}} = D_c \left(1 + \frac{c}{\sqrt{c^2 + 4n_i^2}} \right).
\] (2.25)

This result has been obtained previously in (2.11) and (2.12).

Some important points may be noted at this stage. As is evident by (2.15) and (2.16), the law of mass action \(pn = n_i^2 \) still holds during the diffusion, although strictly speaking the system is not in thermal equilibrium. This is a consequence of the assumptions made in quasi-static approximation. In the charge neutrality approximation, the
term $\frac{\partial^2 \phi}{\partial x^2}$ has been neglected only in Poisson's equation. It is easy to see (Section 2.4) that if this term is also neglected in the transport equation, the two equations decouple and the simple diffusion equation is obtained. As pointed out earlier, all the above results are valid only under nondegenerate conditions. Finally it may be noted that (2.24) is in such a form that for a constant source diffusion the variables can be separated, as was shown by Shaw and Wells (Section 4.5). It appears that (2.24) is not separable for drive-in diffusion boundary conditions. An alternative formulation of the charge neutrality approximation of (2.24) in terms of ϕ (instead of c) is discussed in Section 2.4.

2.3 Transport Equations for Degenerate Case

In this section the transport equations for the degenerate case will be discussed. Holes and electrons in this case are described by Fermi-Dirac statistics and instead of the classical Einstein relation, its generalized form must be used. For concreteness, a donor type diffusion will be assumed.

The flux equations are still given by [27]

$$f_p = -D_p \frac{\partial p}{\partial x} + u_p \cdot p \mathbf{E} \quad (2.26a)$$
The continuity equation for impurity ions with 100% ionization is

\[\frac{\partial c}{\partial t} + \frac{\partial f_c}{\partial x} = 0 \quad (2.27) \]

At this stage we make the following two assumptions.

1. The flux for minority carriers (holes) is zero,

\[f_p = 0 \quad (2.28) \]

Note that the continuity equation for holes then implies

\[\frac{\partial p}{\partial t} = G_p \]

Since holes readjust almost instantaneously, this implies \(\frac{\partial p}{\partial t} = G_p = 0 \). This, however, need not be assumed for the derivation that follows.

2. The flux for the impurity ions equals the flux for the majority carriers (electrons),

\[f_c = f_n \quad (2.29) \]
Again, using the continuity equations for impurity ions and electrons, this implies that \(\frac{\partial (n-c)}{\partial t} = G_n \). If quasi-static conditions were assumed it would imply \(\frac{\partial c}{\partial t} = -G_n \).

It will be shown later that the above two assumptions imply that the quasi-Fermi levels for holes and electrons are equal.

The first assumption, using (2.26a), yields

\[
\frac{1}{p} \frac{3p}{\partial x} = \frac{\mu_p}{D_p} E = -\frac{\mu_p}{D_p} \frac{\partial \phi}{\partial x}.
\]

Integrating, we have

\[
\phi(x) = -\int_x^\infty \frac{\partial \phi}{\partial x} \, dx = \int_x^\infty \frac{D_p}{\mu_p} \frac{1}{p} \frac{3p}{\partial x} \, dx
\]

(2.30)

where \(\phi(\infty) = 0 \) has been chosen for convenience. For a parabolic density of states, the generalized Einstein relation gives

\[
\frac{D_p}{\mu_p} = \frac{kT}{e} F_{1/2}(\eta_p)
\]

(2.31)

with

\[
\eta_p(x) \equiv \frac{E_v(x) - E_{fp}(x)}{kT},
\]

where \(E_v(x) \) is the top edge of the valence band and \(E_{fp} \) is the quasi-Fermi level for holes.
Also,

\[p = N_v F_{1/2}(\eta_p) \quad (2.32) \]

Therefore,

\[\frac{dp}{dn_p} = N_v F_{-1/2}(\eta_p) \quad (2.33) \]

Dividing (2.32) by (2.33) and substituting in (2.31) we obtain

\[\frac{D_p}{v_p} = \frac{kT_p}{e} \frac{dn_p}{dp} \]

Using this, (2.30) yields

\[\phi(x) = \int_x^\infty \frac{kT}{e} \frac{dn_p}{dp} \frac{dp}{dx} dx = \frac{kT}{e} [\eta_p(\infty) - \eta_p] \]

where

\[\eta_p(\infty) = \frac{E_v(\infty) - E_f}{kT} = - \frac{E_q}{kT} - \eta_i \]

with

\[\eta_i = \frac{E_f - E_c(\infty)}{kT} \quad (2.34) \]
Note that thermal equilibrium conditions have been assumed at \(x \to \infty \). \(E_g \) and \(E_c(x) \) represent the band gap and the bottom edge of the conduction band, respectively. Thus,

\[
\eta_p = \eta_p(\infty) - \frac{e\phi}{kT} = - \frac{E_g}{kT} - \eta_i - \frac{e\phi}{kT}
\]

(2.35)

which gives

\[
p = N_v F_{1/2} \left(- \frac{e\phi}{kT} - \frac{E_g}{kT} - \eta_i \right).
\]

(2.36)

Turning to the second approximation, we have

\[
-D_c \frac{\partial \phi}{\partial x} + \mu_c cE = -D_n \frac{\partial \eta_n}{\partial x} - \mu_n nE.
\]

(2.37)

Now, at typical diffusion temperatures, \(\mu_n \gg \mu_c \) and \(n \approx c \) so that \(\mu_n nE \gg \mu_c cE \). Also, Poisson's equation gives

\[
c = n - p - \frac{\varepsilon}{e} \frac{\partial^2 \phi}{\partial x^2}.
\]

(2.38)

Thus, (2.37) becomes

\[
-D_c \frac{\partial \eta_n}{\partial x} + D_c \frac{\partial p}{\partial x} + D_c \frac{\varepsilon}{e} \frac{\partial^3 \phi}{\partial x^3} = -D_n \frac{\partial \eta_n}{\partial x} + \mu_n n \frac{\partial \phi}{\partial x}.
\]

(2.39)

The first term in (2.39) drops out because \(D_n \gg D_c \). Using (2.32) and (2.35) we can write
\[\frac{\partial p}{\partial x} = -\frac{e}{kT} P^{-1/2}(\eta_p) \frac{\partial \phi}{\partial x} \]

since \(\eta_p \) is a large negative quantity. Substituting in (2.39) we obtain,

\[-\frac{\partial n}{\partial x} + \frac{\mu_n}{D_n} n \frac{\partial \phi}{\partial x} + \frac{\mu_c}{D_n} p \frac{\partial \phi}{\partial x} = \frac{D_c}{D_n} \frac{e}{e} \frac{\partial^3 \phi}{\partial x^3} \]

where \(\frac{D_c}{\mu_c} = \frac{kT}{e} \) has been used. Observing that \(\mu_n n >> \mu_c p \)
the above equation simplifies to

\[\frac{\mu_n}{D_n} n \frac{\partial \phi}{\partial x} - \frac{\partial n}{\partial x} = \frac{D_c}{D_n} \frac{e}{e} \left(\frac{\partial^3 \phi}{\partial x^3} \right) . \quad (2.40) \]

Now, considering the quantity on the r.h.s., it is noted that \(D_c << D_n \), and if it is assumed that \(\frac{\partial^3 \phi}{\partial x^3} \) is not very large, the r.h.s. can be neglected in comparison to other terms. Physically, this means that the gradient of the charge density should not be extremely large. Thus, we obtain

\[\frac{\partial \phi}{\partial x} = \frac{D_n}{\mu_n} \frac{1}{n} \frac{\partial n}{\partial x} \]

or,

\[\phi(x) = \int_{-\infty}^{x} \frac{D_n}{\mu_n} \frac{1}{n} \frac{\partial n}{\partial x} \, dx . \quad (2.41) \]
Using the generalized Einstein relation

\[
\frac{D_n}{\mu_n} = \frac{kT}{e} \frac{F^{1/2}(\eta)}{F^{-1/2}(\eta)}
\]

where

\[
\eta(x) = \frac{E_{fn}(x) - E_c(x)}{kT} ,
\]

and

\[
n = N_c F^{1/2}(\eta) ,
\]

we can integrate the r.h.s. of (2.41) to obtain

\[
n = \frac{e\phi}{kT} + \eta_1
\]

which gives

\[
n = N_c F^{1/2} \left(\frac{e\phi}{kT} + \eta_1 \right) .
\]

It may be noted that (2.35) and (2.43) imply that

\[
\eta_p = -\eta - \frac{E_g}{kT}
\]

or,
This result is not surprising because (2.41) could have been written directly if the thermal equilibrium conditions were assumed at the outset. Present analysis, however, gives a better insight of the approximations involved.

Substituting (2.36) and (2.44) back into the Poisson's equation (2.38), and combining the flux and the continuity equations we obtain

\[
\frac{\partial c}{\partial t} = \frac{\partial}{\partial x} \left[D_c \frac{\partial c}{\partial x} + \mu_c c \frac{\partial \phi}{\partial x} \right] \tag{2.45}
\]

\[
\frac{2}{\partial x^2} = \frac{e}{\varepsilon} [N_c \frac{F_1}{2} \left(\frac{\phi}{V_T} + \eta_i \right) - N_v \frac{F_1}{2} \left(- \frac{\phi}{V_T} - \frac{E}{kT} - \eta_i \right) - c] . \tag{2.46}
\]

It is noted that under typical diffusion conditions the argument of the second Fermi function in (2.46), which represents the minority carriers, is a large negative quantity and hence the Fermi function can be approximated by an exponential function; thus

\[
N_v \frac{F_1}{2} \left(- \frac{\phi}{V_T} - \frac{E}{kT} - \eta_i \right) = N_v \exp \left(- \frac{E}{kT} - \eta_i \right) \exp \left(- \frac{\phi}{V_T} \right) = n_i \exp \left(- \frac{\phi}{V_T} \right)
\]
where

\[n_i = N_v F_{1/2} \left(-\frac{E_g}{kT} - \eta_i \right) = N_v \exp\left(-\frac{E_g}{kT} - \eta_i \right) \]

(2.47)

has been used. Instead of (2.46), we may then use

\[\frac{\partial^2 \phi}{\partial x^2} = \frac{e}{\varepsilon} \left[N_c F_{1/2} \left(\frac{\phi}{V_T} + \eta_i \right) - n_i \exp\left(-\frac{\phi}{V_T} \right) - c \right]. \]

(2.48)

Note that if the first term is also expressed by Maxwell-Boltzmann statistics (nondegenerate case), we obtain

\[N_c F_{1/2} \left(\frac{\phi}{V_T} + \eta_i \right) = N_c \exp\left(\frac{\phi}{V_T} \right) \exp(\eta_i) \]

\[= n_i \exp\left(\frac{\phi}{V_T} \right) \]

where

\[n_i = N_c F_{1/2} (\eta_i) = N_c \exp(\eta_i) \]

has been used. For nondegenerate conditions, therefore, (2.48) reduces to

\[\frac{\partial^2 \phi}{\partial x^2} = \frac{e}{\varepsilon} \left[2n_i \sinh\left(\frac{\phi}{V_T} \right) - c \right] \]
which is the same as (2.20) of the previous section.

The boundary conditions and numerical solution to (2.45) and (2.48) will be discussed in Chapter 4.

We now consider the problem of finding N_c, N_v and n_i. The effective density of states N_c and N_v are given by

\[
N_c = 2\left(\frac{2\pi kT m^*_n}{\hbar^2}\right)^{3/2} \quad (2.49a)
\]

\[
N_v = 2\left(\frac{2\pi kT m^*_p}{\hbar^2}\right)^{3/2} \quad (2.49b)
\]

where m^*_n and m^*_p are density of states effective masses of electrons and holes, respectively. In general, knowledge of m^*_n and m^*_p at typical diffusion temperatures is poor, although it is possible to extrapolate from the results obtained at lower temperatures [28]. A way to circumvent the problem is to avoid the direct use of m^*_n and m^*_p in (2.49).

For an intrinsic material,

\[
n_i = N_c F_{1/2}(n_i) . \quad (2.50)
\]

Data for the intrinsic carrier concentration $n_i(T)$ is known experimentally [29]. It is easy to show that

\[
E_f = \frac{1}{2} \left[E_C(\infty) + E_V(\infty) \right] + \frac{1}{2} kT \ln \frac{N_v}{N_c} \quad (2.51)
\]
since the material is intrinsic as $x \to \infty$. Using (2.34) and (2.51), the value of n_i in (2.50) may be computed as

$$n_i = -\frac{E_o}{2kT} + \frac{3}{4} \ln \left(\frac{m_p^*}{m_n^*} \right) \quad (2.52)$$

The ratio of effective masses, m_p^*/m_n^*, is a relatively weak function of temperature [30] and therefore N_c computed using (2.50) should give a better value than that using (2.49a). Data for $E_g(T)$ used in (2.52) is also known experimentally [31].

2.4 Degenerate Case Under Charge Neutrality

The degenerate quasi-static formulation for a donor type impurity diffusion yields (2.45) and (2.48), repeated here for convenience.

$$\frac{\partial C}{\partial t} = \frac{\partial}{\partial x} \left[D_C \frac{\partial C}{\partial x} + \mu_C C \frac{\partial \phi}{\partial x} \right] \quad (2.53)$$

$$\frac{\partial^2 \phi}{\partial x^2} = \frac{e}{\epsilon} \left[N_c F_{1/2} \left(\frac{\phi}{V_T} + n_i \right) - n_i \exp\left(-\frac{\phi}{V_T} \right) - C \right] \quad (2.54)$$

If it is assumed that $\frac{\partial^2 \phi}{\partial x^2} = 0$, i.e. $\rho(x) = 0$, everywhere in the semiconductor, then

$$E = -\frac{\partial \phi}{\partial x} = \text{constant}$$
and, because of the boundary conditions

\[E(\infty, t) = 0 \]

\[\phi(\infty, t) = 0 , \]

we obtain

\[E(x, t) = 0 \]

\[\phi(x, t) = 0 . \]

Thus (2.53) and (2.54) decouple and the classical diffusion equation

\[\frac{\partial c}{\partial t} = D_c \frac{\partial^2 c}{\partial x^2} \]

is obtained.

In this section, instead of assuming that \(\frac{\partial^2 \phi}{\partial x^2} = 0 \) in both (2.53) and (2.54), we neglect it only in Poisson's equation, i.e. we assume that \(\frac{\partial^2 \phi}{\partial x^2} \ll n, p \) or \(c \). The equations under charge neutrality thus become

\[\frac{\partial c}{\partial t} = D_c \frac{\partial^2 c}{\partial x^2} + \mu_c c \frac{\partial^2 \phi}{\partial x^2} + \mu_c \frac{\partial c}{\partial x} \frac{\partial \phi}{\partial x} \quad (2.55) \]
\[c = N_c \frac{F_{1/2}}{V_T} (\frac{\phi}{V_T} + \eta_1) - \eta_1 \exp(-\frac{\phi}{V_T}). \quad (2.56) \]

Unlike the nondegenerate case of Section 2.2, \(E \) here cannot be expressed entirely in terms of \(c \). Nevertheless, it is possible to obtain a single equation in \(\phi \). Differentiating \(c \) from (2.56) and substituting in (2.55), we obtain

\[
\frac{\partial \phi}{\partial t} = \frac{D_c}{V_T} f_1(\phi) \left(\frac{\partial \phi}{\partial x} \right)^2 + D_c f_2(\phi) \left(\frac{\partial^2 \phi}{\partial x^2} \right) \tag{2.57}
\]

where

\[
f_1(\phi) = \frac{F_{-3/2}(\frac{\phi}{V_T} + \eta_1) + F_{-1/2}(\frac{\phi}{V_T} + \eta_1)}{F_{-1/2}(\frac{\phi}{V_T} + \eta_1) + F_{1/2}(\eta_1) \exp(-\frac{\phi}{V_T})} \tag{2.58a}
\]

and

\[
f_2(\phi) = \frac{F_{-1/2}(\frac{\phi}{V_T} + \eta_1) + F_{1/2}(\frac{\phi}{V_T} + \eta_1)}{F_{-1/2}(\frac{\phi}{V_T} + \eta_1) + F_{1/2}(\eta_1) \exp(-\frac{\phi}{V_T})}. \tag{2.58b}
\]

Now, if a normalization

\[
\hat{\phi} = \frac{\phi}{V_T} \tag{2.59}
\]

is used, (2.57) becomes
\[
\frac{\partial \phi}{\partial t} = D_c \left[f_1(\phi) \left(\frac{\partial \phi}{\partial x} \right)^2 + f_2(\phi) \left(\frac{\partial^2 \phi}{\partial x^2} \right) \right]
\] (2.60)

where \(f_1(\phi) \) and \(f_2(\phi) \) are the functions defined by (2.58a) and (2.58b) with \(\phi/V_T \) replaced by \(\phi \).

Boundary Conditions. Considering a constant source diffusion, the boundary conditions are given by

\[
c(0,t) = C_0 \quad (2.61a)
\]

\[
c(\infty,t) = 0 \quad (2.61b)
\]

\[
c(x,0) = 0, \quad x > 0 \quad (2.61c)
\]

The boundary conditions in terms of \(\phi \) are easily obtained as

\[
\phi(0,t) = \phi_0 \quad (2.62a)
\]

\[
\phi(\infty,t) = 0 \quad (2.62b)
\]

\[
\phi(x,0) = 0, \quad x > 0 \quad (2.62c)
\]

where \(\phi_0 \) is computed by solving the implicit algebraic equation

\[
C_0 = N_c F_{1/2}(\phi_0 + n_i) - n_i \exp(-\phi_0) \quad . \quad (2.63)
\]
Transformation. It will be shown in Section 4.5 that the partial differential equation of the form (2.60) is separable for the constant source boundary conditions given above. Thus, just like the nondegenerate case of Section 2.2, the degenerate case also yields an equation which is separable although the dependent variable now is \(\phi \) instead of \(c \). The electric field here can not be expressed entirely in terms of \(c \) but may be easily computed as

\[
E = - \frac{\partial \phi}{\partial x} .
\]

Reduction of the Equation for Nondegenerate Conditions. For nondegenerate case, all the Fermi functions reduce to exponential functions and (2.57) reduces to

\[
\frac{\partial \phi}{\partial t} = \left[\frac{2}{1 + \exp(-\frac{2\phi}{V_T})} \right] \left[\frac{D_C}{V_T} \left(\frac{\partial \phi}{\partial x} \right)^2 + D_C \frac{\partial^2 \phi}{\partial x^2} \right] .
\]

This equation in terms of \(\phi \) is an alternative to the charge neutrality formulation in terms of \(c \) discussed earlier in Section 2.2.

2.5 Discussion

In this Chapter impurity diffusion into an intrinsic semiconductor was discussed under nondegenerate and degenerate conditions. Formulations resulting from the
assumption of local charge neutrality were presented. In each of the cases the diffusion model is described by either a single or a set of differential equations. The numerical procedures to solve these equations are discussed in Chapter 4. In Chapter 5 numerical results are presented and the formulations compared to each other. It is found that under typical diffusion conditions, local charge neutrality turns out to be a good approximation. This provides the basis for the model to be discussed in the next Chapter which includes the effect of vacancies.
CHAPTER 3
DIFFUSION VIA VACANCIES

The models for field-aided diffusion discussed in Chapter 2, although applicable to both acceptor and donor type impurities, yield results which do not agree with experiment at higher concentrations. When defects such as vacancies and interstitials are considered, it becomes necessary to specify the kind of impurities. In silicon, vacancies are believed to be responsible for donor type impurity diffusion, whereas interstitialcy mechanism is favored for acceptor type impurities [6]. In this Chapter, diffusion of arsenic in silicon is discussed and a vacancy mechanism is assumed.

3.1 Previous Work

Several models for arsenic diffusion in silicon have been proposed. Hu [12] has considered an impurity-vacancy-semiconductor system. The flux equations have been systematically derived from thermodynamical considerations. Local charge neutrality has been assumed in the theory. Analysis without this assumption becomes very complicated, and does not seem to have been tried in the general case. However, based on the discussion from Chapter 2, it may be expected that local charge neutrality should be an excellent assumption even in the present case. Prior to
the publication of the above theory, using some other arguments, Hu and Schmidt [22] had analyzed As diffusion in Si. The equations used there were later justified by Hu. Nevertheless, there was some arbitrariness in the computations of Hu and Schmidt because of a factor β, which was assumed to be 100. As discussed by Nuyts and Van Overstraeten [32], the above value of β is unrealistic. Also, the analysis assumed nondegenerate conditions and complete impurity ionization, although the general theory of impurity diffusion proposed by Hu is not restricted to these conditions. Hu and Schmidt have pointed out that the validity of their model breaks down at high surface concentrations because there is no limit to the enhancement effect due to vacancies. It should be interesting to find out if the same result is obtained when partial ionization is taken into account and Fermi-Dirac statistics are used.

In the model proposed by Chiu and Ghosh [33], two energy levels have been attributed to the vacancies in an attempt to explain the decrease in the diffusion coefficient of As in Si at very high concentrations. They have reported excellent agreement between the theory and experiment except for short diffusion times. In their analysis, however, as many as four constants were matched numerically, having assumed that the impurity diffusion coefficient ratio in extrinsic to nearly intrinsic silicon is given by
\[\frac{D}{D_i} = fgh \]

where \(f, g, \) and \(h \) are contributions due to vacancies, cluster mechanism and internal electric field, respectively. The analysis again assumes nondegenerate conditions and complete impurity ionization. The cluster mechanism mentioned above needs some explanation. In order to explain the retardation of diffusion observed experimentally at higher concentrations, it has been postulated that As atoms start forming clusters as the concentration goes up. Two models have been proposed. The As-complex considered by Fair and Weber [34] consists of two As atoms, whereas in Hu's cluster model [35], it consists of four As atoms. For chemical reasons, only one such complex may dominate in a certain temperature range. However, there is still an uncertainty as to which model actually applies. Hu's model gives a good fit to the experimental vapor pressure data. Fair and Weber have claimed that their model gives better results at shorter diffusion times compared to Chiu and Ghosh who have used Hu's cluster model. It should be pointed out that Fair and Weber have included the influence of partial impurity ionization through an empirical equation. Also, in addition to using nondegenerate equations, they have approximated the electric field by

\[E = \frac{kT}{e} \frac{1}{c} \frac{\partial c}{\partial x}. \]
As can be seen from (2.23), the above equation is valid only for $c \gg 2n_1^*$, and at typical diffusion temperatures, this inequality is easily violated.

Nuyts and Van Overstraeten [32] have applied Hu's diffusion model to the diffusion of phosphorus in silicon. They also restricted their analysis to nondegenerate conditions and assumed complete ionization. Contrary to the comment made earlier in the Chapter that interstitialcy mechanism is favored for acceptor type impurities, they assumed vacancy mechanism to be valid for simultaneous diffusion of boron in silicon.

As the impurity concentration becomes higher and higher, the discrete impurity energy levels separate out and start forming energy bands. This is, of course, a consequence of Pauli's exclusion principle. Under such conditions, strictly speaking, it is not sufficient just to replace Maxwell-Boltzmann statistics by Fermi-Dirac statistics and neglect the impurity band formation. Two of the theories dealing with these impurity bands have been proposed by Kane [36] and Morgan [37]. Jain and Van Overstraeten [38] have used these models and have analyzed the diffusion problem by writing the overall diffusion coefficient as

$$D_{as} = D_{iAs} D_{ef} D_{ev} D_{cf}$$
where the factors on the right hand side correspond to the intrinsic As diffusion coefficient, electric field, vacancies and cluster formation (using Hu's cluster model), respectively. They have claimed a good agreement between the theory and experiment.

Of all the above models, Hu's diffusion model has a very strong point in favor of it, in that it evolves in a very systematic and general way from the fundamentals of thermodynamics. The generality of the results does not seem to have been utilized completely. In this Chapter, As diffusion in Si is analyzed using Hu's theory. The partial ionization of the impurity atoms is taken into account, and Fermi-Dirac statistics are used to describe the carriers.

3.2 The Diffusion Model

The following major assumptions are made at various stages in the development of the model.

1. The temperature during the diffusion is held constant.
2. Vacancies act as single level acceptors.
3. Local charge neutrality is assumed.
4. Vacancies have very little effect on the Fermi level. Conversely, the Fermi level determines the concentration of vacancies.
5. Fermi-Dirac statistics are used to describe the carrier densities. However, the formation of impurity
bands is ignored. Constant band gap and electron affinity are assumed.

6. In order to better understand the influence of carrier degeneracy and partial ionization, cluster formation of As atoms is not considered.

7. Vacancy production due to plastic deformation is neglected.

8. Quasi-thermal equilibrium is assumed so that $E_{f_n} = E_f$ and $E_{f_p} = E_f$.

Under these assumptions, according to Hu's theory [12], we have

$$ D_C = D_C^* \frac{V}{V^*} $$

$$(3.1)$$

$$ D_V = D_V^* $$

$$(3.2)$$

where D_C represents the impurity diffusion coefficient and D_C^* is its value at infinite dilution of impurities with vacancy at its thermal equilibrium concentration. D_V^*, D_V, v and v^* are the corresponding diffusion coefficients and concentrations for vacancies. The flux equations are given by

$$ f_C = -D_C^* \frac{V}{V^*} \left(1 + \frac{\partial}{\partial \ln c} \frac{\ln Y_C}{c} \frac{\partial c}{\partial x} \right) $$

$$(3.3)$$

$$ f_V = -D_V^* \frac{v}{c} \frac{\partial}{\partial \ln c} \frac{\ln Y_v}{c} \frac{\partial c}{\partial x} - D_V \frac{\partial v}{\partial x} $$

$$(3.4)$$
where γ_c and γ_v are the activity coefficients given by

$$\gamma_c = \frac{1 + \xi^*}{1 + \zeta}$$ \hspace{1cm} (3.5)

$$\gamma_v = \frac{1 + \xi^*}{1 + \zeta} ,$$ \hspace{1cm} (3.6)

where ζ, ξ, ξ^* and ξ^* are defined by

$$\zeta = g_c^{-1} \exp\left(\frac{E_D - E_f}{kT}\right)$$ \hspace{1cm} (3.7)

$$\xi = g_v \exp\left(\frac{E_f - E_V}{kT}\right)$$ \hspace{1cm} (3.8)

$$\xi^* = g_c^{-1} \exp\left(\frac{E_D - E_i}{kT}\right)$$ \hspace{1cm} (3.9)

$$\xi^* = g_v \exp\left(-\frac{E_i - E_V}{kT}\right) .$$ \hspace{1cm} (3.10)

In writing (3.1)-(3.4), it has been assumed that the concentration of impurity-vacancy pairs is much smaller than the vacancy concentration. The impurity concentration has also been assumed to be small compared to the concentration of the host lattice atoms. In the above equations, E_f, E_D, and E_V represent the Fermi level, donor energy level, and vacancy energy level, respectively. E_i represents the value of the Fermi level which would yield equal concentrations of holes and electrons. Also, g_c and g_v are degeneracy factors for the donor and vacancy levels. Thus,
Differentiation w.r.t. \(x \) gives

\[
\frac{\partial \ln \gamma_C}{\partial x} = [1 + g_C \exp \left(\frac{E_f - E_D}{kT} \right)]^{-1} \frac{\partial n}{\partial x}
\]

\[\text{(3.12)}\]

where

\[n = \frac{E_f - E_D}{kT} \text{.} \]

\[\text{(3.13)}\]

If

\[g_C \exp \left(\frac{E_f - E_D}{kT} \right) \ll 1 ,
\]

then (3.12) can be approximated by

\[
\frac{\partial \ln \gamma_C}{\partial x} \approx \frac{\partial n}{\partial x} \text{.}
\]

\[\text{(3.14)}\]

It will be shown later that the term \(\frac{\partial n}{\partial x} \) is proportional to the electric field. From (3.12) and (3.3) it is evident that as the Fermi level goes above \(E_D \), the term involving the electric field becomes less significant. At 1200 °C, the above inequality is well satisfied for \(E_D - E_f > 0.38 \text{ eV} \).

For donors \(\xi >> 1 \), and (3.6) can be written as
\[\gamma_v = \frac{1 + g_v \exp(\eta_i + \varepsilon_v)}{g_v \exp(\eta + \varepsilon_v)} \]
(3.15)

where

\[\varepsilon_v = \frac{E_c - E_V}{kT} \]

and

\[\eta_i = \frac{E_f - E_c(\infty)}{kT} . \]

Note that at typical diffusion temperatures \(E_g \) is about 0.8 eV for Si and \(E_V = E_c - 0.4 \) eV. Therefore, nothing can be said about the magnitude of \(\xi^* \).

In computing the flux of total impurities \(f_c \), the theory has taken into account the fact that a certain fraction of donor atoms may remain neutral, some may be charged positively and some of these may form pairs with the charged and neutral vacancies. Within the semiconductor, there is no generation of the total impurities. The continuity equation thus yields

\[\frac{\partial C}{\partial t} + \frac{\partial f_c}{\partial x} = 0 . \]
(3.16)

Substitution of (3.3) in (3.16) gives
\[\frac{\partial c}{\partial t} = \frac{D*}{v} \frac{\partial}{\partial x} \left[v \left(\frac{\partial c}{\partial x} + c \frac{\partial n}{\partial x} \right) \right] \] \quad (3.17)

where (3.14) has been used. Note that \(v^* \) is independent of \(x \).

The continuity equation for vacancies is

\[\frac{\partial v}{\partial t} + \frac{\partial f_v}{\partial x} = G_v(x,t) \] \quad (3.18)

In general, \(G_v \) may not be zero. This term may be caused, for example, by plastic deformation. A mismatch in the size of diffusing impurities and the host lattice atoms is a major cause of dislocations. Substitution of (3.4) into (3.18) yields

\[\frac{\partial v}{\partial t} = G_v(x,t) + \frac{\partial}{\partial x} \left[D^* v \frac{\partial \ln \gamma_v}{\partial x} + D^* \frac{\partial v}{\partial x} \right] . \] \quad (3.19)

As discussed by Hu and also by Nuyts and Van Overstraeten [32], quasi-equilibrium condition for vacancies under typical diffusion conditions is a good approximation.

Thus, assuming \(\frac{\partial v}{\partial t} = 0 \), (3.19) yields

\[\frac{\partial}{\partial x} \left[D^* v \frac{\partial \ln \gamma_v}{\partial x} + D^* \frac{\partial v}{\partial x} \right] = -G_v(x) . \]

Integrating both sides from \(x \) to \(\infty \), and noting that as \(x \to \infty, v \to v^* \) i.e. \(\frac{\partial v}{\partial x} \to 0 \), and \(\gamma_v \to l \), we obtain
Integrating once again,

\[
v = \gamma_v^{-1} \left[v^* - \int_{x}^{\infty} \frac{\gamma_v(x)}{D_v} \, dx \int_{x}^{\infty} G_v(\xi) \, d\xi \right]. \tag{3.20}
\]

Note that \(\gamma_v < 1 \), and \(D_v^* \) is large [32]. The mismatch in the radii of As and Si atoms is very small resulting in a small generation term \(G_v \). Thus, if the integral on the r.h.s. can be neglected, we simply have

\[
v = \frac{v^*}{\gamma_v}. \tag{3.21}
\]

Substitution of (3.21) into (3.17) yields

\[
\frac{\partial c}{\partial t} = D_c \frac{\partial}{\partial x} \left[\gamma_v^{-1} \left(\frac{\partial c}{\partial x} + c \frac{\partial n}{\partial x} \right) \right]. \tag{3.22}
\]

3.3 Computation of the Fermi Level

The unknown \(n \) appearing in (3.22) can be evaluated using the condition of local charge neutrality. Then, (3.22) with suitable boundary conditions describes the transport problem. Local charge neutrality implies

\[
n-p-c^+ + v^- = 0 \tag{3.23}
\]
where \(c^+ \) and \(v^- \) are the ionized donor atom and charged vacancy concentrations, respectively, with \(v^- \) given by [12]

\[
v^- = v \frac{\xi}{1 + \xi}
\]

Since \(\xi >> 1 \), \(v^- \approx v \). However, this concentration itself is so small compared to other terms in (3.23) that it can be safely neglected [12].

The electron and hole concentrations are given by

\[
n = N_c F_{1/2}(\eta)
\]

and

\[
p = N_v F_{1/2}(-\eta-\varepsilon_g)
\]

where \(\varepsilon_g \) is the normalized band gap. For donor diffusion,

\[
(-\eta-\varepsilon_g) << -1
\]

and

\[
p = N_v \exp(-\eta-\varepsilon_g)
\]
For partial ionization, the ionized donor concentration is given by [12]

\[c^+ = \frac{c}{1 + g_c \exp(\eta + \frac{E_d}{kT})} \] \hspace{1cm} (3.28)

where \(E_d = E_c - E_D \) is the ionization energy. Note that for sufficiently negative values of \(\eta \), \(c^+ = c \) and we approach the 100% ionization case.

Substituting (3.25), (3.27) and (3.28) into (3.23) with \(g_c = 2 \) we obtain

\[N_c F_{1/2}(\eta) - N_v \exp(-\eta - \epsilon_g) - \frac{c}{1 + 2\exp(\eta + \epsilon_d)} = 0 \] \hspace{1cm} (3.29)

Thus, (3.29) can be used to evaluate \(\eta \).

3.4 Summary of the Problem

We must solve the partial differential equation (3.22) where \(\eta \) is obtained using (3.29). The values of \(N_c \) and \(N_v \) are found, as in Section 2.3, by using the equations

\[N_c = \frac{n_i}{F_{1/2}(n_i)} \] \hspace{1cm} (3.30)

\[N_v = n_i \exp(n_i + \epsilon_g) \] \hspace{1cm} (3.31)
Also, \(\gamma_v \) and \(\eta \) are given by (3.15) and (3.13).

For a constant source diffusion the boundary conditions are

\[
c(0,t) = C_0
\]

\[
c(\infty, t) = 0
\]

\[
c(x,0) = 0, \quad x > 0 \quad . \tag{3.32}
\]

These will be transformed in terms of suitable variables at a later stage.

3.5 Form of Impurity Flux With and Without Vacancies

Using (3.3) and (3.14), the impurity flux with vacancies can be expressed as

\[
f_c = -D^*_c \frac{V}{v} \left[\frac{\partial C}{\partial x} + c \frac{\partial \eta}{\partial x} \right] \tag{3.33}
\]

When the vacancies are in quasi-equilibrium, using (3.21),

\[
f_c = - \frac{D^*_c}{\gamma_v} \left[\frac{\partial C}{\partial x} + c \frac{\partial \eta}{\partial x} \right] .
\]

Now,
where E is the electric field. Thus, we obtain

$$\frac{\partial n}{\partial x} = \frac{\partial}{\partial x} \left(\frac{E^*}{kT} \right) = - \frac{1}{kT} \frac{\partial E}{\partial x} = - \frac{e}{kT} E$$

Comparing (2.26c) and (3.34) we see that the forms of the flux equation are similar except for the factor $1/\gamma_v$. This can also be viewed as a change in the impurity diffusion coefficient which now becomes $D^* \gamma_v$. In other words, the impurity diffusion coefficient is now proportional to the vacancy concentration v. At low donor concentrations $\gamma_v + 1$, and (3.34) reduces to (2.26c).

3.6 Transformation of the Equations

The equations summarized in Section 3.4 can be transformed into a simpler form. It is possible to substitute for the derivatives of c in (3.22) using (3.29). An equation entirely in terms of the dependent variable η is then obtained. Noting that
\[\xi_0^* = g_v \exp(\eta_1 + e_v) , \]

(3.22) can be written as

\[\frac{\partial c}{\partial t} = \frac{D_c^* \xi_0^*}{1+\xi} \exp(\eta-\eta_1) \left[2 \frac{\partial c}{\partial x} \frac{\partial n}{\partial x} + c \left(\frac{\partial n}{\partial x} \right)^2 \right. \]
\[\left. + \frac{\partial^2 c}{\partial x^2} + c \frac{\partial^2 n}{\partial x^2} \right] \] (3.35)

where (3.15) has been used. Also, (3.29) gives

\[c = [1 + 2 \exp(\eta+\epsilon_d)] \left[N_c F_{1/2}(\eta) - N_v \exp(-\eta-\epsilon_g) \right] . \] (3.36)

Differentiation of (3.36) yields the following expressions:

\[\frac{\partial c}{\partial x} = \frac{\partial n}{\partial x} \phi_1(\eta) \] (3.37)

where

\[\phi_1(\eta) = N_c F_{-1/2}(\eta) + N_v \exp(-\eta-\epsilon_g) + 2 N_c \exp(\eta+\epsilon_d) \]
\[\times \left[F_{1/2}(\eta) + F_{-1/2}(\eta) \right] , \] (3.38)

\[\frac{\partial c}{\partial t} = \frac{\partial n}{\partial t} \phi_1(\eta) \] (3.39)
and

\[\frac{\partial^2 \eta}{\partial x^2} = \frac{\partial^2 \eta}{\partial x^2} \phi_1(\eta) + \left(\frac{\partial \eta}{\partial x} \right)^2 \phi_2(\eta) \] \hspace{1cm} (3.40)

where

\[\phi_2(\eta) \equiv N_c F_{-3/2}(\eta) - N_v \exp(-\eta-\varepsilon_g) + 2N_c \exp(\eta+\varepsilon_d) \]

\[\times \{ F_{1/2}(\eta) + 2F_{-1/2}(\eta) + F_{-3/2}(\eta) \}. \] \hspace{1cm} (3.41)

Now, substituting (3.37), (3.39), and (3.40) in (3.35), after some lengthy manipulation, we obtain

\[\frac{\partial \eta}{\partial t} = D \exp(\eta-n_d) \left[\left(\frac{\partial \eta}{\partial x} \right)^2 \frac{\phi_3(\eta)}{\phi_1(\eta)} + \left(\frac{\partial^2 \eta}{\partial x^2} \right) \frac{\phi_4(\eta)}{\phi_1(\eta)} \right] \] \hspace{1cm} (3.42)

where

\[\phi_3(\eta) \equiv N_c F_{1/2}(\eta) + 2N_c F_{-1/2}(\eta) + N_c F_{-3/2}(\eta) \]

\[+ 2\exp(\eta+\varepsilon_d) \{ 4N_c F_{1/2}(\eta) + 4N_c F_{-1/2}(\eta) \}

\[+ N_c F_{-3/2}(\eta) - N_v \exp(-\eta-\varepsilon_g) \} \] \hspace{1cm} (3.43)
\[\phi_4(\eta) = N_c F_{1/2}(\eta) + N_c F_{-1/2}(\eta) + 2\exp(\eta + \epsilon_d) \]
\[\times \{ 2N_c F_{1/2}(\eta) + N_c F_{-1/2}(\eta) - N_v \exp(-\eta - \epsilon_g) \} \]

(3.44)

and

\[D = \frac{D_c \xi^*}{1 + \xi^*}. \]

(3.45)

At this point, it is convenient to make a transformation of the dependent variable,

\[\eta = \psi + \eta_1, \]

(3.46)

so that the new variable \(\psi \) is defined by

\[\psi \equiv \frac{E_f - E_i}{kT}. \]

(3.47)

With this transformation (3.42) becomes

\[\frac{\partial \psi}{\partial t} = D \left[(\frac{\partial \psi}{\partial x})^2 f_1(\psi) + (\frac{\partial^2 \psi}{\partial x^2}) f_2(\psi) \right] \]

(3.48)

where
Thus, the problem has been reduced to solving (3.48).
The boundary conditions for the constant source diffusion, given in Section 3.4, can be easily written in terms of ψ as

\[\psi(0,t) = \psi_0 \] (3.51a)

\[\psi(\infty, t) = 0 \] (3.51b)

\[\psi(x,0) = 0, \quad x > 0 \] (3.51c)

where ψ_0 is computed by solving the equation

\[C_0 - [1 + 2\exp(\psi_0 + \eta_i + \epsilon_d)] \left[N_c F_{1/2}(\psi_0 + \eta_i) \right. \]

\[\left. - N_v \exp(-\psi_0 - \eta_i - \epsilon_g) \right] = 0, \] (3.52)

which follows directly from (3.36).
3.7 Discussion

It can be noted that the partial differential equation (3.48), and the boundary conditions (3.51), are of the same form as those obtained in Section 2.4 except that instead of the variable $\hat{\phi}$, we now have ψ. Therefore, the numerical solution to (3.48) can be found exactly in the same manner. As shown in Section 4.5, a transformation of the variables can be used to separate the variables. The resulting ordinary differential equation can be solved efficiently by using a numerical technique. The results are discussed in Chapter 5.
CHAPTER 4
NUMERICAL ANALYSIS

The models discussed in the previous chapters result in a set of partial differential equations. These equations are highly nonlinear, and it may be extremely difficult, if not impossible, to find a closed form solution. A numerical solution is the only viable alternative. There exist a number of methods to solve a boundary value problem [39]. In the present case, a quasi-linearization technique is used. The partial differential equations are first transformed into ordinary differential equations by discretizing the time step. The process then consists of reducing the set of ODE to successive approximate sets of linear equations which can be solved more easily using an iteration scheme. A desired accuracy can be reached by repeating the process of linearization.

In this Chapter, a general method for solving coupled nonlinear ODE is first presented. The treatment closely follows that of Widiger [24]. The procedure is then applied to individual cases discussed in the previous chapters.

4.1 Discretization of Independent variables

To facilitate the numerical techniques, the independent variables have to be discretized, thereby yielding sets of
difference equations. The variables in the present case are t_i and x_j, defined by

$$t_i = (i-1)\Delta t + t_0, \quad i = 1, \ldots, n$$

$$x_j = (j-1)\Delta x, \quad j = 1, \ldots, m$$

where Δt and Δx are chosen to be fixed for simplicity.

The discretization of t transforms the PDE into an ODE at a certain time step. The abruptness of the initial condition at the surface can be dealt with by assuming a non-zero starting time t_0.

The time derivative is approximated by a two-point implicit scheme,

$$\frac{\partial f(t_i)}{\partial t} \approx \frac{f(t_i)-f(t_{i-1})}{\Delta t}.$$

The procedure then is as follows. Once time t is discretized, the PDE is transformed into an ODE at a time t_i. If the solution to the ODE is known at time t_{i-1}, the ODE can be solved to yield the solution at time t_i. Beginning with $i=1$, the above step is performed for each time increment, until the desired final time is reached. The solution of the ODE is discussed in the next Section.
4.2 General Quasi-linearization Technique

The quasi-linearization technique is based on Newton's approximating procedure for finding the roots of an arbitrary function. Given a function $f(x)$, it is desired to find the roots x_r of the equation

$$f(x) = 0 \ . \quad (4.1)$$

An initial guess x^0 to the correct value of the root is made. Thus

$$f(x^0 + \Delta x) = 0 \quad (4.2)$$

where

$$x_r = x^0 + \Delta x \ .$$

Expanding (4.2) by a Taylor series about x^0, we obtain

$$f(x^0) + f'(x^0) \Delta x + \frac{1}{2} f''(x^0) \Delta x^2 + \ldots = 0$$

The above equation is to be solved for Δx to determine the true root. The problem can be simplified by truncating the series after the linear term; then

$$f(x^0) + f'(x^0) \Delta x = f(x^0 + \Delta x) = 0 \ .$$
The approximate solution to Δx, denoted by Δx^1, can then be found by solving

$$f(x^0) + f'(x^0)\Delta x^1 = 0,$$

thus yielding a better approximation to x_\star as

$$x^1 = x^0 + \Delta x^1 = x^0 - \frac{f(x^0)}{f'(x^0)}. \quad (4.3)$$

One can now start with x^0 as the initial guess and find x^1 which is closer to the true root. The process can then be repeated with x^{i+1} substituted in place of x^i in the next iteration until the desired accuracy is achieved. This process, of course, is not guaranteed to work. The function must satisfy certain properties and the initial guess must be sufficiently close to the desired root. However, if the function has only one root and the iteration procedure converges, the true root will be approached.

Consider now the problem

$$f_1(y_1, \ldots, y_n, y'_1, \ldots, y'_n, y''_1, \ldots, y''_n, x) = 0$$

$$\vdots$$

$$f_n(y_1, \ldots, y_n, y'_1, \ldots, y'_n, y''_1, \ldots, y''_n, x) = 0 \quad (4.4)$$

or, expressed in matrix notation,
The primes indicate derivatives with respect to \(x \), and \(f_i \) represents a known, algebraic function of its arguments. Thus (4.4) is, in general, a set of ordinary, coupled, nonlinear differential equations with dependent variables \(y_1, \ldots, y_n \) and independent variable \(x \). The solution for \(y \) is desired. An initial guess, \(y^0 \), is first made. A set of linear equations with a dependent variable \(\Delta y_1 \) can be derived by expanding (4.4) as a power series in terms of the dependent variables and their derivatives about the initial guess \(y^0 \). The resulting equations truncated after the linear term yield for the \(i' \)th equation,

\[
f_i^0 + \sum_{j=1}^{n} \frac{\partial f_i^0}{\partial y_j} \Delta y_j^1 + \sum_{j=1}^{n} \frac{\partial f_i^0}{\partial y_j'} \Delta y_j^1' + \sum_{j=1}^{n} \frac{\partial f_i^0}{\partial y_j''} \Delta y_j^1'' = 0
\]

where \(f_i^0 \) represents the value of \(f_i \) evaluated at the initial guess \(y^0 \). In matrix notation, the equations can be written as

\[
A^0 \Delta y^1'' + B^0 \Delta y^1' + C^0 \Delta y^1 = D^0
\]

where
The set (4.7) is a set of coupled, linear, ordinary differential equations, which when solved, yields Δy^1.

Once Δy^1 is known, the improved initial guess is given by

$$y^1 = y^0 + \Delta y^1 .$$

(4.9)
It has been assumed for the time being that the boundary conditions have been taken care of in a similar fashion. They will be dealt with explicitly later on.

It should be pointed out that \(f \) is a known function, and hence all of its partial derivatives in (4.8) are known. Thus \(A^0, B^0, C^0 \) and \(D^0 \) are all known functions of \(y^0, y^0', \text{ and } y^0'' \). It is therefore simple, in principle, to solve (4.7). Once \(y^1 \) is found as in (4.9), the above procedure can be repeated with all the zero superscripts replaced by one superscripts. The process can be repeated until the desired accuracy is attained.

For \(i \)'th iteration, (4.7) can be written as

\[
A^i \frac{d^2 \Delta y^{i+1}}{dx^2} + B^i \frac{d \Delta y^{i+1}}{dx} + C^i \Delta y^{i+1} = D^i \quad (4.10)
\]

The derivatives involved in \(A^i, B^i, C^i \) and \(D^i \) are evaluated at each point using a five-point polynomial approximation scheme. As mentioned before, the variable \(x \) has been discretized. To find the derivatives of \(\Delta y^{i+1} \), the following three-point approximations are used.

\[
\frac{dq_k}{dx} = \frac{q_{k+1} - q_{k-1}}{2\Delta x} \quad (4.11)
\]

\[
\frac{d^2 q_k}{dx^2} = \frac{q_{k+1} - 2q_k + q_{k-1}}{\Delta x^2} \quad (4.12)
\]
Here, k denotes the discretization index of the x coordinate. Using (4.11), (4.12) in (4.10) we obtain

$$
\Delta y_{i+1}^k - 2\Delta y_i^{k+1} + \Delta y_i^{k-1}
\frac{\Delta y_{i+1}^{k+1} - \Delta y_{i+1}^{k-1}}{2\Delta x}
\gamma_i \Delta y_{i+1}^{k+1} - \gamma_i \Delta y_{i+1}^{k-1}
\Delta x^2
$$

Simplification of the above equation yields

$$
\alpha_i \Delta y_{i+1}^{k+1} + \beta_i \Delta y_i^{k-1} + \gamma_i \Delta y_i^{k+1} = D_i
$$

where

$$
\alpha_i = \frac{1}{\Delta x^2} A_i + \frac{1}{2\Delta x} B_i
$$

$$
\beta_i = -\frac{2}{\Delta x^2} A_i + C_i
$$

$$
\gamma_i = \frac{1}{\Delta x^2} A_i - \frac{1}{2\Delta x} B_i
$$

If the solution to (4.14) is assumed to have a form

$$
\Delta y_{i+1}^k = g_i^k - h_i^k \Delta y_{i+1}^{k+1}
$$

then the substitution for Δy_{k-1}^{i+1} in (4.14) gives
Repeated substitution yields

\[a_k^i \Delta y_{k+1}^i + (\beta_k^i - \gamma_k^i h_{k-1}^i) \Delta y_{k+1}^i + \gamma_k^i g_{k-1}^i = D_k^i \]

Since \(\Delta y_{k+1}^i \) is finite, this equation is easily satisfied by letting each term in the brackets to be zero. Then,

\[h_k^i = (\beta_k^i - \gamma_k^i h_{k-1}^i)^{-1} a_k^i \] \hspace{1cm} (4.17)

\[g_k^i = (\beta_k^i - \gamma_k^i h_{k-1}^i)^{-1} (D_k^i - \gamma_k^i g_{k-1}^i) \] \hspace{1cm} (4.18)

Thus, if \(h_k^i \) and \(g_k^i \) are known for a particular \(x_k \), they can be found for the next \(x_{k+1} \) by using (4.17) and (4.18).

Note that \(k \) is the position index whereas \(i \) is the iteration index. For a particular time step, and for a given \(i \), computations are done for all \(k \). The iteration index \(i \) is then changed till a desired convergence is reached. The time index is next changed and the entire process repeated until the final time is reached.
4.3 Quasi-static Problem

The problem stated in Section 2.3 can be simplified by normalization of the variables. Let \(\hat{x}, \hat{t}, \hat{c} \) and \(\hat{\phi} \) represent the normalized variables. Then a normalization scheme is as follows.

\[
c = n_i \hat{c}
\]

\[
\phi = V_T \hat{\phi}
\]

\[
x = \sqrt{\frac{\varepsilon}{\varepsilon V_T}} \hat{x}
\]

\[
t = \frac{\varepsilon V_T}{eD_c n_i} \hat{t}
\] \hspace{1cm} (4.19)

With these substitutions, and defining

\[
\beta = \frac{C_0}{n_i}, \hspace{1cm} (4.20)
\]

the quasi-static equations for the degenerate case become

\[
\frac{\partial \hat{c}}{\partial \hat{t}} = \frac{\partial}{\partial \hat{x}} \left(\frac{\partial \hat{c}}{\partial \hat{x}} + \hat{c} \frac{\partial \hat{\phi}}{\partial \hat{x}} \right) \hspace{1cm} (4.21a)
\]

\[
\frac{\partial^2 \hat{\phi}}{\partial \hat{x}^2} = \frac{F_{1/2}(\hat{\phi} + n_i)}{F_{1/2}(n_i)} - \exp(-\hat{\phi}) - \hat{c}. \hspace{1cm} (4.21b)
\]

For notational simplicity the normalized variables will be denoted by \(c, \phi, x \) and \(t \) in Sections 4.3 and 4.4.
With the discretization of the time coordinate (4.21) becomes

\[
\frac{d^2 \phi}{dx^2} - \frac{F_{1/2}(\phi + \eta_i)}{F_{1/2}(\eta_i)} + \exp(-\phi) + c = 0 \quad (4.22a)
\]

\[
\frac{d}{dx} \left(\frac{d}{dx} + c \frac{d\phi}{dx} \right) - \frac{c-N}{\Delta t} = 0 \quad (4.22b)
\]

where the notation

\[c = c(x, t_i)\]

\[\phi = \phi(x, t_i)\]

\[N = c(x, t_{i-1})\]

has been used.

Now the function \(f\) can be written as

\[
f = \begin{bmatrix} f_1 \\ f_2 \end{bmatrix} = \begin{bmatrix} \frac{d^2 \phi}{dx^2} - \frac{F_{1/2}(\phi + \eta_i)}{F_{1/2}(\eta_i)} + \exp(-\phi) + c \\ \frac{d^2 c}{dx^2} + c \frac{d^2 \phi}{dx^2} + \frac{dc}{dx} \frac{d\phi}{dx} - \frac{c}{\Delta t} + \frac{N}{\Delta t} \end{bmatrix}
\]

(4.23)
\[
y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} \phi \\ c \end{bmatrix}.
(4.24)
\]

For the nondegenerate case [24], the second term in the expression for \(f \) becomes \(\exp(\phi) \) instead of \(\Phi_{1/2}(\phi + \eta_1)/\Phi_{1/2}(\eta_1) \). Corresponding changes for this case can be easily made in the expressions below. For the vector \(f \) above, the matrices \(A^i, B^i, C^i \) and \(D^i \) are given by

\[
A^i = \begin{bmatrix}
\frac{\partial f_1}{\partial \phi} & \frac{\partial f_1}{\partial c} \\
\frac{\partial f_2}{\partial \phi} & \frac{\partial f_2}{\partial c}
\end{bmatrix} = \begin{bmatrix} 1 & 0 \\
c & 1
\end{bmatrix}
(4.25a)
\]

\[
B^i = \begin{bmatrix}
\frac{\partial f_1}{\partial \phi^T} & \frac{\partial f_1}{\partial c^T} \\
\frac{\partial f_2}{\partial \phi^T} & \frac{\partial f_2}{\partial c^T}
\end{bmatrix} = \begin{bmatrix} dc & d\phi \\
dx & dx
\end{bmatrix}
(4.25b)
\]

\[
C^i = \begin{bmatrix}
\frac{\partial f_1}{\partial \phi} & \frac{\partial f_1}{\partial c} \\
\frac{\partial f_2}{\partial \phi} & \frac{\partial f_2}{\partial c}
\end{bmatrix} = \begin{bmatrix} -\frac{\Phi_{-1/2}(\phi + \eta_1)}{\Phi_{1/2}(\eta_1)} - \exp(-\phi) & 1 \\
0 & \frac{d^2\phi}{dx^2} - \frac{1}{\Delta t}
\end{bmatrix}
(4.25c)
\]
\[D^i = \begin{bmatrix} -f_1 \\ -f_2 \end{bmatrix} = \begin{bmatrix} -\frac{d^2 \phi}{dx^2} + \frac{F_{1/2}(\phi + \eta_i)}{F_{1/2}(\eta_i)} - \exp(-\phi) - c \\ -\frac{d^2 c}{dx^2} - c \frac{d^2 \phi}{dx^2} - \frac{dc}{dx} \frac{d\phi}{dx} + \frac{c}{\Delta t} - \frac{N}{\Delta t} \end{bmatrix} \]

(4.25d)

where for simplicity, superscripts \(i \) have been suppressed in \(\phi \) and \(c \).

The flow diagram of the numerical method is shown in Fig. 4.1.

4.4 Boundary Conditions

Normalized boundary conditions for the constant source diffusion are

\[c(0, t) = \beta \]

\[\frac{\partial \phi(0, t)}{\partial x} = 0 \]

\[c(\infty, t) = 0 \]

\[\phi(\infty, t) = 0 \]

\[c(x, 0) = 0, \quad x > 0 \quad (4.26) \]
Select the starting distribution, \(c(x, t_0) \).

\[i = 0 \]

\[i = i + 1 \]

\[t = t_i = i \Delta t + t_0 \]

\[N(x) = c(x) \]

Solve (4.22) for new \(c(x) \) and \(\phi(x) \).

(see Fig. 4.2)

Has the final time been reached?

No

Yes

Stop

FIGURE 4.1. Flow Diagram of the Numerical Method
Notice that the only parameter in the above conditions, other than the dependent and the independent variables, is the normalized surface concentration β. A series of solutions over a range of β will, therefore, give a general solution to the quasi-static problem.

After the time is discretized, the boundary conditions for the ordinary differential equations become

\[c(0) = \beta \]

\[\frac{d\phi(0)}{dx} = 0 \]

\[c(\infty) = 0 \]

\[\phi(\infty) = 0 \] \hspace{1cm} (4.27)

These boundary conditions can be satisfied in the i'th iteration by requiring that

\[\Delta c^{i+1}(0) = \beta - c^i(0) \]

\[\frac{d\Delta \phi^{i+1}(0)}{dx} = - \frac{d\phi^i(0)}{dx} \]

\[\Delta c^{i+1}(\infty) = - c^i(\infty) \]

\[\Delta \phi^{i+1}(\infty) = -\phi^i(\infty) \] \hspace{1cm} (4.28)
If the initial guess is picked such that

\[c^0(0) = \beta \]
\[c^0(\infty) = 0 \]
\[\phi^0(\infty) = 0 \]

then the desired boundary conditions can be met by merely requiring that

\[\Delta c^{i+1}(0) = 0 \]
\[\frac{d\Delta \phi^{i+1}(0)}{dx} = -\frac{d\phi^i(0)}{dx} \]
\[\Delta c^{i+1}(\infty) = 0 \]
\[\Delta \phi^{i+1}(\infty) = 0 . \] \hspace{1cm} (4.29)

Numerically, it is impractical to extend the x-coordinate to infinity. Therefore, a distance L is chosen which is large enough to approximate infinity and the boundary conditions are applied at x=L. If the distance L corresponds to the m'th point, the boundary conditions become
\[\Delta c_{i+1} = 0 \]

\[\Delta \phi_2^{i+1} - \Delta \phi_1^{i+1} \frac{d\phi_1^i}{dx} = - \frac{d\phi_1^i}{dx} \]

\[\Delta c_m^{i+1} = 0 \]

\[\Delta \phi_m^{i+1} = 0 . \] \hspace{1cm} (4.30)

Note that the quantity \(\frac{d\phi_1^i}{dx} \) has already been determined while finding the matrices \(A, B, C \) and \(D \).

The procedure for solving (4.10) is as follows. If it is selected that

\[h_1^i = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} \] \hspace{1cm} (4.31a)

and

\[g_1^i = \begin{bmatrix} \Delta x & \frac{d\phi_1^i}{dx} \\ 0 & 0 \end{bmatrix} \] \hspace{1cm} (4.31b)

then \(\Delta y_1^{i+1} \) given by (4.16) will satisfy the surface boundary conditions of (4.30). Using (4.17) and (4.18) \(h_k^i \) and \(g_k^i \) can then be generated for \(k = 2, \ldots, m \). Choosing

\[\Delta y_m^{i+1} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \] \hspace{1cm} (4.32)
will satisfy the boundary conditions at \(x=L \), given by (4.30), and (4.16) will generate \(\Delta y_{k}^{i+1} \) for \(k = m-1, \ldots, 1 \).

The technique for numerically solving the problem described here is summarized in the block diagram given in Fig. 4.2. In the actual program many of the functions represented in the block diagram have been combined for better computational efficiency.

The normalized boundary conditions for drive-in diffusion are given by

\[
\begin{align*}
\frac{\partial c(0,t)}{\partial x} & = 0 \\
\frac{\partial \phi(0,t)}{\partial x} & = 0 \\
c(\infty,t) & = 0 \\
\phi(\infty,t) & = 0 \\
c(x,0) & = N_{0}(x), \quad x > 0
\end{align*}
\]

where \(N_{0}(x) \) is the normalized starting distribution for the drive-in diffusion. Note that the first boundary condition is obtained because the flux of the impurity atoms at \(x=0 \) is zero. Thus,
Enter

Make an initial guess
\[y_k^0, \quad k=1, \ldots, m. \]

\[i=0 \]

Find \(\frac{dy_k}{dx} \) and \(\frac{d^2y_k}{dx^2} \) for all \(k \) using 5-point method.

\[i=i+1 \]

\[\text{Solve the linear difference Eqs. (4.13)} \]

Find \(A_k^i, B_k^i, C_k^i, \) and \(D_k^i \) for all \(k \).

Find \(\alpha_k^i, \beta_k^i, \) and \(\gamma_k^i \) for all \(k \) using (4.15).

Determine \(g_1^i \) and \(h_1^i \) using (4.31) or (4.39).

Determine \(g_k^i \) and \(h_k^i \), \(k=2, \ldots, m \) using (4.17) and (4.18).

Set \(\Delta y_k^{i+1} = 0 \) as in (4.32).

Determine \(\Delta y_k^{i+1}, \quad k=m-1, \ldots, 1 \) using (4.16).

\[y_k^{i+1} = y_k^i + \Delta y_k^{i+1} \] for all \(k \).

Has sufficient accuracy been reached?

No

Yes

Exit

FIGURE 4.2. Flow Diagram of the Iteration Procedure
The semiconductor material as a whole may be assumed to be charge neutral. The total charge Q per unit area is given by

$$Q = \int_{0}^{\infty} \rho \, dx$$

$$= \varepsilon \int_{0}^{\infty} \frac{\partial E}{\partial x} \, dx$$

$$= \varepsilon [E(\infty, t) - E(0, t)] .$$

Equating Q to zero and noting that $E(\infty, t) = 0$, we have

$$E(0, t) = 0 . \quad (4.35)$$

Thus (4.34) yields the first boundary condition.

Proceeding as we did earlier in the Section, instead of (4.28), we now obtain

$$\frac{d\Delta c^{i+1}(0)}{dx} = - \frac{dc^{i}(0)}{dx}$$

$$\frac{d\Delta \phi^{i+1}(0)}{dx} = - \frac{d\phi^{i}(0)}{dx}$$
\[
\Delta c^{i+1}(\infty) = -c^i(\infty)
\]

\[
\Delta \phi^{i+1}(\infty) = -\phi^i(\infty) .
\] (4.36)

If the initial guess is picked such that

\[
c^0(\infty) = 0
\]

\[
\phi^0(\infty) = 0 ,
\]

then the desired boundary conditions will be met by merely requiring that

\[
\frac{d\Delta c^{i+1}(0)}{dx} = -\frac{dc^i(0)}{dx}
\]

\[
\frac{d\Delta \phi^{i+1}(0)}{dx} = -\frac{d\phi^i(0)}{dx}
\]

\[
\Delta c^{i+1}(\infty) = 0
\]

\[
\Delta \phi^{i+1}(\infty) = 0 .
\] (4.37)

Instead of (4.30), in this case, we now have

\[
\frac{\Delta c^{i+1}_2 - \Delta c^{i+1}_1}{\Delta x} = -\frac{dc^i_1}{dx}
\]
\[
\frac{\Delta \phi_{i+1} - \Delta \phi_{i+1}}{\Delta x} = -\frac{d\phi_{i+1}}{dx}
\]

\[
\Delta c_{i+1} = 0
\]

\[
\Delta \phi_{i+1} = 0 . \hspace{1cm} (4.38)
\]

Therefore, (4.31) become

\[
h_i^i = \begin{bmatrix}
-1 & 0 \\
0 & -1
\end{bmatrix}
\] \hspace{1cm} (4.39a)

\[
g_i^i = \begin{bmatrix}
\Delta x \frac{d\phi_{i+1}}{dx} \\
\Delta x \frac{dc_{i+1}}{dx}
\end{bmatrix}
\] \hspace{1cm} (4.39b)

Note that (4.32) remains the same.

4.5 Quasi-linearization Technique for a Scalar Equation

As discussed in Sections 2.4 and 3.6, the partial differential equations describing the diffusion process can be written in a general form

\[
\frac{\partial \phi}{\partial t} = D\left[f_1(\phi) \left(\frac{\partial \phi}{\partial x} \right)^2 + f_2(\phi) \frac{\partial^2 \phi}{\partial x^2} \right] \hspace{1cm} (4.40)
\]

where \(f_1(\phi) \) and \(f_2(\phi) \) take different forms. The boundary conditions are of the form
\[\phi(0,t) = \phi_0 \]

\[\phi(\infty,t) = 0 \]

\[\phi(x,0) = 0, \quad x > 0. \quad (4.41) \]

A transformation of independent variables \((x,t) \rightarrow (y,\tau)\), similar to the one suggested by Shaw and Wells [19], is chosen so that

\[y = \frac{x}{\sqrt{4Dt}} \]

\[\tau = t. \quad (4.42) \]

The dependent variable in terms of these new independent variables then becomes

\[\phi(x,t) = v[y(x,t), \tau(x,t)]. \quad (4.43) \]

Note that the variable \(v\) used here is not to be confused with vacancy concentration, a notation used in Chapter 3.

Now,

\[\frac{\partial \phi}{\partial x} = \frac{\partial v}{\partial y} \frac{\partial y}{\partial x} + \frac{\partial v}{\partial \tau} \frac{\partial \tau}{\partial x} \]

\[= \frac{1}{\sqrt{4Dt}} \frac{\partial v}{\partial y} \quad (4.44) \]
Similarly,

\[\frac{\partial^2 \phi}{\partial x^2} = \frac{\partial}{\partial y} \left[\frac{1}{\sqrt{4D\tau}} \frac{\partial V}{\partial y} \right] \frac{\partial V}{\partial x} \]

\[= \frac{1}{4D\tau} \frac{\partial^2 V}{\partial y^2} \quad (4.45) \]

and

\[\frac{\partial \phi}{\partial t} = \frac{\partial V}{\partial y} \frac{\partial V}{\partial t} + \frac{\partial V}{\partial \tau} \frac{\partial V}{\partial \tau} \]

\[= \frac{V}{2\tau} \frac{\partial V}{\partial y} + \frac{\partial V}{\partial \tau} \quad (4.46) \]

Substituting these in (4.40) we obtain

\[4\tau \frac{\partial V}{\partial \tau} = 2y \frac{\partial V}{\partial y} + f_1(V) \left(\frac{\partial V}{\partial y} \right)^2 + f_2(V) \frac{\partial^2 V}{\partial y^2} \quad (4.47) \]

and the boundary conditions become

\[v(0, \tau) = \phi_0 \]

\[v(\infty, \tau) = 0. \quad (4.48) \]

Notice that the last two conditions in (4.41) reduce to a single condition in (4.48).
Because of the form of the equation and the boundary conditions, it is easy to show that \(v \) is independent of \(t \), in which case (4.47) reduces to

\[
2y \frac{dv}{dy} + f_1(v) \left(\frac{dv}{dy} \right)^2 + f_2(v) \frac{d^2v}{dy^2} = 0 ,
\]

(4.49)

with

\[
v(0) = \phi_0
\]

\[
v(\infty) = 0 .
\]

(4.50)

Notice that the only parameter in the above problem is \(\phi_0 \). Thus, solutions \(v(y) \) known for all possible values of \(\phi_0 \) constitute a general solution to the problem. Once \(v(y) \) has been computed using a numerical procedure, \(\phi(x,t) \) can be obtained for a given \(x \) and \(t \) by using

\[
\phi(x,t) = v \left(\frac{x}{\sqrt{4Dt}} \right) .
\]

(4.51)

A simple way to find \(\phi(x,t) \) from \(v(y) \) is to interpolate \(\phi(x,t) \) according to the equation \(x = \sqrt{4Dt} y \).

The quasi-linearization technique discussed in Section 4.2 can be used directly to solve (4.49). Since only one equation is involved, the matrices and vectors reduce to scalars. The \(y \) coordinate is uniformly
discretized and the final point \(m \), corresponding to a distance \(L \) sufficiently large to adequately represent infinity, is chosen.

Let \(i \) denote the iteration number and \(k \) the point in the \(y \) direction. Applying the definitions of Section 4.2, we have

\[
f(v'', v', v, y) = 2y \frac{dv}{dy} + f_1(v) \left(\frac{dv}{dy} \right)^2 + f_2(v) \frac{d^2v}{dy^2}
\]

(4.52)

and

\[
A = \frac{\partial f}{\partial v''} = f_2(v) \tag{4.53a}
\]

\[
B = \frac{\partial f}{\partial v'} = 2y + 2f_1(v) \tag{4.53b}
\]

\[
C = \frac{\partial f}{\partial v} = \left(\frac{d^2v}{dy^2} \right) \left(\frac{df_2}{dv} \right) + \left(\frac{dv}{dy} \right)^2 \left(\frac{df_1}{dv} \right) \tag{4.53c}
\]

\[
D = -f = -2y \frac{dv}{dy} - f_1(v) \left(\frac{dv}{dy} \right)^2 - f_2(v) \frac{d^2v}{dy^2} \tag{4.53d}
\]

For simplicity, superscripts and subscripts have been omitted in the above expressions; e.g. \(A \) actually is \(A_k^i \), \(v \) actually is \(v_k^i \), etc. Also, \(\frac{\partial f_1}{\partial v} \) and \(\frac{\partial f_2}{\partial v} \), which occur in the expression for \(C \), are found by analytic differentiation.
Note that for different problems only the quantities A, B, C and D need be changed. The rest of the procedure described here remains unaltered. This, of course, assumes that the problem and the boundary conditions are in the given form. Applying the results of Section 4.3,

\[
\Delta v_{k+1}^i = \frac{g}{h} - h_k \Delta v_{k+1}^i \quad (4.54)
\]

where

\[
g_k^i = \frac{D_k^i - \gamma_k^i g_{k-1}^i}{\beta_k^i - \gamma_k^i h_{k-1}^i} \quad (4.55a)
\]

and

\[
h_k^i = \frac{\alpha_k^i}{\beta_k^i - \gamma_k^i h_{k-1}^i} \quad (4.55b)
\]

where

\[
\alpha_k^i = \frac{A_k^i}{(\Delta y)^2} + \frac{B_k^i}{2\Delta y} \quad (4.56a)
\]

\[
\beta_k^i = -\frac{2A_k^i}{(\Delta y)^2} + c_k^i \quad (4.56b)
\]

\[
\gamma_k^i = \frac{A_k^i}{(\Delta y)^2} - \frac{B_k^i}{2\Delta y} . \quad (4.56c)
\]

The boundary conditions chosen for difference variables are
\[h^i_1 = g^i_1 = 0 \quad (4.57a) \]

and

\[\Delta v^i_{m+1} = 0. \quad (4.57b) \]

This assumes that the initial guess is constrained to satisfy the boundary conditions.

The computation procedure is the same as that shown in Fig. 4.2 except that various expressions are replaced by the ones above. An initial guess \(v^0_k \) for all \(k \) is made, the correction \(\Delta v^i_{m+1} \) is found, and the new initial guess

\[v^1_k = v^0_k + \Delta v^1_k, \quad (4.58) \]

is used to restart the procedure which is repeated until sufficient accuracy is obtained.

4.6 Application to the Charge Neutrality Approximation

The method discussed in the last section can now be applied to solve the equations of Section 2.4. We have

\[
f_1(v) = \frac{F_{-3/2}(v+n_1) + F_{-1/2}(v+n_1)}{F_{-1/2}(v+n_1) + F_{1/2}(n_1)\exp(-v)} \equiv \frac{\lambda_1(v)}{\lambda_2(v)} \quad (4.59)
\]

and
\[f_2(v) = \frac{F_{-1/2}(v+n_i) + F_{1/2}(v+n_i)}{F_{-1/2}(v+n_i) + F_{1/2}(n_i)\exp(-v)} \equiv \frac{\lambda_3(v)}{\lambda_2(v)} \quad (4.60) \]

where \(\lambda_1, \lambda_3 \) and \(\lambda_2 \) represent the numerators and denominators of \(f_1(v) \) and \(f_2(v) \), respectively. Thus,

\[\frac{df_1}{dv} = [\lambda_2(v) \frac{d\lambda_1}{dv} - \lambda_1(v) \frac{d\lambda_2}{dv}] [\lambda_2(v)]^{-2} \quad (4.61) \]

\[\frac{df_2}{dv} = [\lambda_2(v) \frac{d\lambda_3}{dv} - \lambda_3(v) \frac{d\lambda_2}{dv}] [\lambda_2(v)]^{-2} \quad (4.62) \]

where

\[\frac{d\lambda_1}{dv} = F_{-5/2}(v+n_i) + F_{-3/2}(v+n_i) \quad (4.63a) \]

\[\frac{d\lambda_2}{dv} = F_{-3/2}(v+n_i) - F_{1/2}(n_i)\exp(-v) \quad (4.63b) \]

\[\frac{d\lambda_3}{dv} = F_{-3/2}(v+n_i) + F_{-1/2}(v+n_i) \quad (4.63c) \]

The quantities A, B, C and D are now known and the procedure of the previous section can be applied.

4.7 Application to Vacancy-aided Diffusion

The diffusion process in this case is defined by the equation
\[
\frac{\partial \psi}{\partial t} = D \left[\frac{\partial^2 \psi}{\partial x^2} f_1(\psi) + \frac{\partial^2 \psi}{\partial x^2} f_2(\psi) \right]
\] (4.64)

where \(D\), \(f_1\) and \(f_2\) are given in Section 3.6.

The lengthy form of \(f_1\) and \(f_2\) makes the expressions for \(A\), \(B\), \(C\) and \(D\) rather cumbersome, although, in principle, it is simple to find them. In order to evaluate these quantities, we need to evaluate \(\frac{\partial f_1}{\partial \psi}\) and \(\frac{\partial f_2}{\partial \psi}\). After some manipulation, these are given by

\[
\frac{\partial f_1}{\partial \psi} = f_1(\psi) + \exp(\psi) \frac{\phi_5(\psi+n_i)}{\phi_1(\psi+n_i)} - \exp(\psi) \frac{\phi_3(\psi+n_i) \phi_6(\psi+n_i)}{[\phi_1(\psi+n_i)]^2}
\] (4.65)

\[
\frac{\partial f_2}{\partial \psi} = f_2(\psi) + \exp(\psi) \frac{\phi_7(\psi+n_i)}{\phi_1(\psi+n_i)} - \exp(\psi) \frac{\phi_4(\psi+n_i) \phi_8(\psi+n_i)}{\phi_1(\psi+n_i)}
\] (4.66)

where

\[
\phi_5(\lambda) \equiv N_c \{ F_{-1/2}(\lambda) + 2F_{-3/2}(\lambda) + F_{-5/2}(\lambda)
\]

\[
+ 2 \exp(\lambda+\epsilon_d) \{ 4F_{1/2}(\lambda) + 8F_{-1/2}(\lambda)
\]

\[
+ 5F_{-3/2}(\lambda) + F_{-5/2}(\lambda) \} \}
\] (4.67a)
\[\phi_6(\lambda) \equiv N_c \, F_{-3/2}(\lambda) - N_v \, \exp(-\lambda - \varepsilon_g) + 2N_c \, \exp(\lambda + \varepsilon_d) \]
\[\times \left\{ F_{1/2}(\lambda) + 2F_{-1/2}(\lambda) + F_{-3/2}(\lambda) \right\} \quad (4.67b) \]

\[\phi_7(\lambda) \equiv N_c \left[F_{-1/2}(\lambda) + F_{-3/2}(\lambda) + 2\exp(\lambda + \varepsilon_d) \right] \]
\[\times \left\{ 2F_{1/2}(\lambda) + 3F_{-1/2}(\lambda) + F_{-3/2}(\lambda) \right\} \quad (4.67c) \]

\[\phi_8(\lambda) \equiv N_c \, F_{-3/2}(\lambda) - N_v \, \exp(-\lambda - \varepsilon_g) + 2N_c \, \exp(\lambda + \varepsilon_d) \]
\[\times \left\{ F_{1/2}(\lambda) + 2F_{-1/2}(\lambda) + F_{-3/2}(\lambda) \right\} . \quad (4.67d) \]

Thus A, B, C and D are known, and the numerical procedure of Section 4.5 can be used.

4.8 Computation of the Boundary Condition

We now consider the computation of \(\psi_0 \) for a given \(C_0 \) by using (3.52). The Newton-Raphson method for finding the roots of a nonlinear algebraic equation can be used. However, we need a starting guess for \(\psi_0 \) which is sufficiently close to the true root. One way to find this starting guess is to consider the equation for the non-degenerate case and complete ionization, in which case (3.52) reduces to

\[C_0 - (N_c \, \exp(\psi_0 + \eta_i) - N_v \, \exp(-\psi_0 - \eta_i - \varepsilon_g)) = 0 \]
or,

\[\psi_0 = \sinh^{-1} \left(\frac{C_0}{2n_1^2} \right) = \sinh^{-1} \left(\beta/2 \right) \]

(4.68)

where the superscript on \(\psi_0 \) denotes the initial guess.

The true root can now be obtained by following the iteration procedure

\[\psi_{i+1} = \psi_i - \frac{F(\psi_i)}{F'(\psi_i)} \]

(4.69)

where

\[F(\psi_0) = [1 + 2\exp(\psi_0 + \eta_i + \epsilon_d)] \left[\frac{F_{1/2}(\psi_0 + \eta_i)}{F_{1/2}(\eta_i)} - \exp(-\psi_0) \right] \]

(4.70)

and

\[F'(\psi_0) = \exp(-\psi_0) + \frac{F_{-1/2}(\psi_0 + \eta_i)}{F_{1/2}(\eta_i)} + \frac{2\exp(\psi_0 + \eta_i + \epsilon_d)}{F_{1/2}(\eta_i)} \]

\[\times [F_{1/2}(\psi_0 + \eta_i) + F_{-1/2}(\psi_0 + \eta_i)] \]

(4.71)

4.9 Discussion

The results obtained using the numerical techniques presented in this Chapter are discussed in Chapter 5. To compare the results of vacancy-aided diffusion using Fermi-Dirac statistics to those obtained using Maxwell-
Boltzmann statistics, the simplest approach is to replace the Fermi integral subroutine by one where an exponential function is used in place of the Fermi functions. For computations with complete ionization, ε_d may be replaced by a negative quantity of large magnitude, effectively negating the effect of the partial ionization term.
CHAPTER 5
RESULTS

The formulations described in the previous chapters, for convenience, are abbreviated here as follows: quasi-static (Section 2.3) as QS, charge neutrality (Section 2.4) as CN, and vacancy-aided (Section 3.2) as VA. In this Chapter, numerical results using the techniques discussed earlier are presented for the case of a constant source diffusion of As in Si.

As indicated earlier, \(n_i \) is calculated from the data in [29] using

\[
 n_i = 7.766 \times 10^{15} \exp(5.528269 \times 10^{-3} T) \tag{5.1}
\]

where the units are \(\text{cm}^{-3} \) and \(T \) is in \(^{\circ}\text{K} \). The above expression is valid in the temperature range of 900-1200 \(^{\circ}\text{C} \). For the intrinsic diffusion coefficient of As in Si several empirical expressions have been suggested [40, 33, 41]. Masters and Fairfield have suggested the expression

\[
 D_c^* = 60 \exp(-4.2/kT) \tag{5.2}
\]

Chiu and Ghosh have proposed

\[
 D_c^* = 24 \exp(-4.0833/kT) \tag{5.3}
\]
whereas Kennedy and Murley have given

\[D_c^* = 2870 \exp(-4.5725/kT) \] \hspace{1cm} (5.4)

The units of \(D_c^* \) and \(kT \) in the above expressions are \(\text{cm}^2/\text{sec} \) and \(\text{eV} \), respectively. The band gap for Si in eV is given by [31]

\[E_g = 1.205 - 2.8 \times 10^{-4} T \] \hspace{1cm} (5.5)

The ratio of effective masses is assumed to be temperature independent [30],

\[\frac{m_p^*}{m_n} = \left(\frac{0.67818}{1.19250} \right)^{2/3} \] \hspace{1cm} (5.6)

Using (2.52) then yields

\[\eta_i = -6.98956 \times 10^3 T^{-1} + 1.34193 \] \hspace{1cm} (5.7)

Other physical constants used are:

\[T = 1050 \, ^\circ\text{C} \]
\[k = 8.62 \times 10^{-5} \, \text{eV/}^\circ\text{K} \]
\[e = 1.602 \times 10^{-19} \, \text{coulomb} \]
\[\varepsilon = 11.7 \, \varepsilon_0 = 1.0359 \times 10^{-12} \, \text{farad/cm} \].
The maximum value of the surface concentration used is $C_0 = 1.6 \times 10^{21} \text{ cm}^{-3}$, which represents the solid solubility value at the diffusion temperature. The values of E_d and $(E_c - E_V)$ are nominally assumed to be 0.05 and 0.4 eV, respectively.

The profiles resulting from the QS approximation using FD and MB statistics are shown in Fig. 5.1 for various diffusion times. An average value from (5.2) and (5.3) of $D_c^* = 6.44 \times 10^{-15} \text{ cm}^2/\text{sec}$ has been used. The complementary error function profiles, which represent the correct solution for $E=0$, are also shown. It is observed that the internal electric field enhances diffusion at high concentrations. It is also seen that the use of MB statistics, instead of FD statistics, gives an underestimate of the impurity density values, typical error being about 4% near the surface and 50% deep in the material. It was found that at low concentrations, use of either statistics yields the same result, which is not unexpected, since all the Fermi functions reduce to exponential functions. The electric field plots for the QS approximation with MB statistics are shown in Fig. 5.2. These profiles are reminiscent of those obtained in a high-low junction. It may be noted that the field varies almost linearly near the surface and then reaches a maximum value. This maximum value decreases as the diffusion time increases. Similar profiles are obtained
FIGURE 5.1. Impurity Profiles of Arsenic in Silicon Using the Quasi-static Model
when FD statistics are used. The solution of the CN approximation was compared to the QS approximation. When the impurity density profiles were plotted on the log scale of Fig. 5.1, no significant difference was observed between QS and CN results. The electric field obtained from the CN model with MB statistics was also found to be insignificantly different from that shown in Fig. 5.2. It is concluded from the above analysis that charge neutrality is an excellent approximation for describing a typical diffusion process. The CN model is simpler and computationally very efficient compared to the QS model. It can, therefore, be used conveniently to find the effect of the internal electric field.

The effect of vacancies can be analyzed by comparing the results of VA model to those of the CN model as shown in Fig. 5.3. It is evident that at high concentrations vacancies substantially enhance impurity diffusion. The profiles show a region of relatively slowly varying density followed by a region where it drops suddenly. The intrinsic diffusion coefficient used has been obtained using (5.2) for both models for a consistent comparison. Note that the VA model includes the effect of partial ionization in addition to the use of FD statistics.

As indicated in Chapter 3, Hu and Schmidt [22] have computed the results of As diffusion in Si. They have
FIGURE 5.2. Electric Field for the Constant Source Diffusion

\[C_0 = 1.6 \times 10^{21} \text{ cm}^{-3} \]
FIGURE 5.3. Comparison of Results Using Charge Neutrality and Vacancy-aided Models for High Surface Concentration
used MB statistics and have assumed complete ionization. Also, a factor β was assumed to be 100 which is only a rough approximation [32]. In Fig. 5.4, profiles obtained using the VA model are shown for the following cases: FD statistics with partial ionization, MB statistics with partial ionization, FD statistics with complete ionization and MB statistics with complete ionization. The last case is similar to that considered by Hu and Schmidt. It is evident that at high concentrations the assumption of complete ionization introduces very large errors. Hu and Schmidt have indicated that the validity of their physical model breaks down at high concentrations because there is no limit to the enhancement effect due to vacancies. It is seen here that with the incorporation of partial ionization, the VA model continues to remain valid. Note that as in the case of the QS model, use of MB statistics yields an underestimate of the impurity density. At relatively low surface concentrations, e.g., $C_0 = 10^{19} \text{ cm}^{-3}$, the use of either statistics and ionization conditions does not make any significant difference.

At low concentrations, the effect of the electric field becomes less significant and the CN model yields results which are very close to the complementary error function profiles as shown in Fig. 5.5. As pointed out in Section 3.5, the form of the impurity flux with vacancies reduces to that of the QS case at near intrinsic conditions.
FIGURE 5.4. Effect of Statistics and Ionization on Impurity Concentration Using the Vacancy-aided Model

1. FD with 100% ionization
2. MB with 100% ionization
3. FD with partial ionization
4. MB with partial ionization
Value of D_C^* from:

(1) Masters & Fairfield
(2) Kennedy & Murley

FIGURE 5.5. Impurity Profiles for Low Surface Concentration Using Charge Neutrality, Vacancy-aided and Zero Field Models
However, in the VA model, it was assumed that $\xi >> 1$, and therefore, strictly speaking, the model is not valid at low concentrations. The range of validity of the model cannot be determined at present because, as is evident from Fig. 5.5, the impurity profiles strongly depend on the value of the intrinsic diffusion coefficient used.

Comparison between the experimental results [33] and the calculated profiles using the vacancy-aided model for various values of D^*_C and the vacancy levels is shown in Fig. 5.6. Note that good agreement exists for the case 3. It was found that the results were relatively insensitive to the variations in donor ionization level.
FIGURE 5.6. Comparison Between Experimental Data and Calculated Profiles Using Vacancy-aided Model
CHAPTER 6
CONCLUSIONS

The object of this study has been to develop and analyze various models describing the diffusion phenomenon. The effects of internal electric field, degeneracy of carriers, partial ionization and vacancies have been considered. Because of the complexity of the models involved, numerical techniques had to be used to obtain the solutions of the differential equations describing the transport process.

Previous analysis [24] has shown that the assumption of quasi-static equilibrium for holes and electrons in describing a diffusion process is valid. In the present research, formulations considering quasi-static equilibrium and charge neutrality have been examined for degenerate conditions. A vacancy-aided model has been proposed for arsenic diffusion in silicon. A constant source diffusion has been assumed.

The major contributions of this research may be summarized as follows.

1. The quasi-static model used to analyze the effect of internal electric field was extended to degenerate conditions by using the Fermi-Dirac statistics. It was concluded that the use of classical statistics yields an underestimate of the impurity density values. While this
error is significant at high surface concentrations, at low concentrations the use of classical statistics was considered to be a good approximation. The impurity density profiles were computed by numerically solving the partial differential equations governing diffusion. Due to enormous computation times, a need for simpler models was felt.

2. The assumption of local charge neutrality was examined for the degenerate case. It was concluded that charge neutrality is an excellent assumption to describe impurity diffusion under typical conditions. It was found that due to considerable simplication of the problem for a constant source diffusion, the resulting equations can be solved very efficiently on a digital computer. Whereas it takes hours of CPU time for the quasi-static model, it only takes a few minutes for the charge neutrality model.

3. The results from Hu's diffusion theory [12] were applied to arsenic diffusion in silicon under general conditions. The effects of vacancies, electric field and partial ionization of impurities were included and Fermi-Dirac statistics were used to describe the carriers. Quasi-equilibrium for vacancies and local charge neutrality were assumed. It was shown that using a transformation of variables, the problem can be simplified considerably for a constant source diffusion. The numerical solution can thus be obtained very efficiently. The results show very
significant enhancement of diffusion at high surface concentrations when compared to those obtained using the charge neutrality model. At such concentrations, the partial ionization was found to have a very large effect on the density values. The use of classical statistics was found to yield an underestimate of the impurity density values as in the case of quasi-static model.

It was noted that the impurity flux equation in the vacancy-aided model has the same form as that in the quasi-static model provided that \(D_C \gamma_v \) is used in place of \(D_C^* \). For low concentrations, \(\gamma_v \rightarrow 1 \). However, the equation numerically solved in the model, strictly speaking, is not valid at low concentrations due to an assumption made to simplify the problem at high concentrations. The charge neutrality model, nevertheless, is valid and can be used in such a case.

4. The results obtained using the vacancy-aided model were compared to the experimental data. It was found that using certain suggested values of the intrinsic diffusion coefficient and the energy levels, gives good agreement between the model and experiment. However, the results obtained strongly depend on these values.

Recommendations for further research are as follows.

1. It was pointed out that the vacancy-aided model suggested here may be in error at low concentrations because it was assumed that \(\xi \gg 1 \). This assumption was
made to simplify the model, and to avoid unnecessary computations at higher concentrations. The derivations can be modified by relaxing the above assumption so that the vacancy-aided model approaches the charge neutrality model at low concentrations.

2. Further research is needed to determine the correct values of the vacancy and donor levels, and the intrinsic diffusion coefficient of arsenic in silicon.

3. The vacancy-aided model should be re-examined in view of the cluster formation of As-atoms at high concentrations.

4. The model in the present work was applied to the case of a constant source diffusion. It should also be analyzed for a drive-in diffusion.

5. The model should be re-examined for application to diffusion of phosphorus and boron in silicon [42-46].

6. The problem of diffusion into a doped semiconductor should be considered.

7. Due to gas-solid interaction at the surface, further examination may show the surface boundary condition to be dependent on the flux and concentration. In such a case, the assumption of a constant surface boundary condition is no longer valid and the problem must be solved in a different way.

In the research presented here an attempt has been made to enhance the basic understanding of the diffusion
process. Such basic research may lead to improvement in device performance through optimization of device parameters.
APPENDIX A

NONDEGENERATE QUASI-STATIC FORMULATION

Under nondegenerate conditions and assuming 100% ionization, the equations governing the holes and electrons are given by

\[
\frac{\partial p}{\partial t} = \frac{1}{\partial x} \left(D_n \frac{\partial p}{\partial x} \right) + \frac{p}{V_T} \frac{\partial \phi}{\partial x} + G \tag{A.1}
\]

\[
\frac{\partial n}{\partial t} = \frac{1}{\partial x} \left(D_n \frac{\partial n}{\partial x} \right) - \frac{n}{V_T} \frac{\partial \phi}{\partial x} + G . \tag{A.2}
\]

No assumptions are made regarding the form of the generation term \(G \). According to the quasi-static approximation, we set \(\dot{p} = \dot{n} = 0 \) in the above equations. Eliminating \(G \) then yields

\[
\frac{1}{\partial x} \left(D_n \frac{\partial p}{\partial x} + \frac{p}{V_T} \frac{\partial \phi}{\partial x} \right) = \frac{1}{\partial x} \left(D_n \frac{\partial n}{\partial x} - \frac{n}{V_T} \frac{\partial \phi}{\partial x} \right) . \tag{A.3}
\]

Integrating both sides from \(x \) to \(\infty \) and noting that \(\frac{1}{\partial x} \), \(\frac{\partial n}{\partial x} \), and \(\frac{\partial \phi}{\partial x} \) approach zero as \(x \to \infty \), we obtain

\[
\frac{\partial \phi}{\partial x} = V_T \left[\frac{D_n \frac{\partial n}{\partial x} - D_n \frac{\partial p}{\partial x}}{D_n n + D_p p} \right] . \tag{A.4}
\]

We note that
\[
\frac{\partial (pn)}{\partial x} = p \frac{\partial n}{\partial x} + n \frac{\partial p}{\partial x},
\]

(A.5)

so that

\[
\frac{\partial n}{\partial x} = \frac{1}{p} \frac{\partial (pn)}{\partial x} - \frac{n}{p} \frac{\partial p}{\partial x},
\]

(A.6)

or,

\[
\frac{\partial p}{\partial x} = \frac{1}{n} \frac{\partial (pn)}{\partial x} - \frac{p}{n} \frac{\partial n}{\partial x}.
\]

(A.7)

Using (A.6) and (A.7), we can write (A.4) in two equivalent forms:

\[
\frac{\partial \phi}{\partial x} = V_T \left[\frac{D_n}{p(D_n + D_p)} \frac{\partial (pn)}{\partial x} - \frac{1}{p} \frac{\partial p}{\partial x} \right] \quad (A.8)
\]

\[
= V_T \left[\frac{1}{n} \frac{\partial n}{\partial x} - \frac{D_p}{n(D_n + D_p)} \frac{\partial (pn)}{\partial x} \right]. \quad (A.9)
\]

Consider the form (A.9). If it is assumed that pn is a slowly varying function of x so that

\[
| \frac{\partial n}{\partial x} | \gg \left| \frac{D_p}{D_n + D_p} \frac{\partial (pn)}{\partial x} \right|,
\]

(A.10)

we may directly integrate the resulting equation to obtain
\[n = n_i \exp\left(\frac{\phi}{V_T}\right), \] \hspace{1cm} (A.11)

where it has been assumed that as \(x \to \infty \), \(\phi \to 0 \), and \(n \to n_i \).

Similarly, it can be seen from (A.8) that if

\[\left| \frac{dp}{dx} \right| \gg \left| \frac{D_p}{D_n n + D_p p} \frac{\partial (pn)}{\partial x} \right|, \] \hspace{1cm} (A.12)

we can integrate the equation to obtain

\[p = n_i \exp\left(-\frac{\phi}{V_T}\right). \] \hspace{1cm} (A.13)

From (A.11) and (A.13), it follows that

\[pn = n_i^2. \] \hspace{1cm} (A.15)

Substituting (A.11) and (A.13) into Poisson's equation we obtain

\[\frac{\partial^2 \phi}{\partial x^2} = \frac{e}{\varepsilon} \left[2n_i \sinh\left(\frac{\phi}{V_T}\right) - c \right]. \] \hspace{1cm} (A.16)

Looking back at the inequalities (A.10) and (A.12), we note that at typical diffusion temperatures,

\[\frac{D_p}{D_n n + D_p p} \approx \frac{1}{n+p} \approx 10^{-19}, \]
and the inequalities are justified if p_n is a slowly varying function of x. It is not necessary to assume that p_n is a constant although it is evident from (A.8) and (A.9) that it forms a self-consistent solution.

It may also be noted that if instead of the inequalities, we assume $n \gg p$, so that $D_n n \gg D_p p$, we still obtain (A.11) and (A.13). However, at typical diffusion temperatures the inequality $n \gg p$ is violated over some range of x and this constitutes a higher level of approximation than is really needed.
APPENDIX B

COMPUTATION OF THE FERMI INTEGRALS

The Fermi integrals or Fermi functions arise in the carrier density expressions when a parabolic density of states is assumed. The Fermi integral of order \(j \) is defined as

\[
F_j(\eta) = \frac{1}{\Gamma(j+1)} \int_0^\infty \frac{x^j \, dx}{\exp(x-\eta)+1}.
\]

where \(\Gamma(n) \) is the Gamma function with the properties

\[
\Gamma(n) = (n-1)\Gamma(n-1), \quad n > 1
\]
\[
\Gamma(1) = 1
\]
\[
\Gamma(1/2) = \sqrt{\pi}
\]

Gamma function with negative arguments can be avoided by using [47]

\[
\Gamma(z) = \frac{\pi}{\sin(\pi z)} \frac{1}{\Gamma(1-z)}.
\]

In the present work, the functions \(F_{1/2}(\eta), F_{-1/2}(\eta), F_{-3/2}(\eta) \) and \(F_{-5/2}(\eta) \) are required. Some of these are tabulated [48-50]. An excellent discussion on approximations of the Fermi functions can be found in [47]. However, these approximations, though useful in analytical work, are not accurate enough for the present work over
the entire range of the argument. Brient and Wilson [51] have made accurate computations of these functions by directly integrating the expressions numerically. For the functions $F_j(\eta)$, $j = 1/2$ and $-1/2$, the integrals are obtained in sections using Simpson's rule with 32 points per segment with the lower limit equal to $\varepsilon = d$, where d is chosen so that

$$\int_0^d \frac{x^j \, dx}{\exp(j-\eta)+1} \approx \frac{1}{1+\exp(-\eta)} \frac{d^{j+1}}{(j+1)} \leq 10^{-5}. \quad (B.4)$$

Each succeeding section is taken as a region equal in length to all previous regions combined, i.e., d to $2d$, $2d$ to $4d$ etc., until the upper limit of 2^nd for n regions is reached such that $2^nd > \eta + 70$ for $j = 1/2$, and $2^nd > \eta + 50$ for $j = -1/2$. The resultant sum of sectional integrations is then accurate to five parts in 10^7.

The derivatives of Fermi integrals are given by

$$\frac{dF_j(\eta)}{d\eta} = F_{j-1}(\eta) \quad (B.5)$$

Writing the integrals explicitly,

$$F_{1/2}(\eta) = \frac{2}{\sqrt{\pi}} \int_0^\infty \frac{\sqrt{x} \, dx}{\exp(x-\eta)+1} \quad (B.6a)$$

$$F_{-1/2}(\eta) = \frac{1}{\sqrt{\pi}} \int_0^\infty \frac{x^{-1/2} \, dx}{\exp(x-\eta)+1} \quad (B.6b)$$
\[F_{-3/2}(\eta) = \frac{-1}{2\sqrt{\pi}} \int_{0}^{\infty} \frac{x^{-3/2}}{\exp(x-\eta)+1} \, dx \] \hspace{1cm} (B.6c)

and

\[F_{-5/2}(\eta) = \frac{3}{4\sqrt{\pi}} \int_{0}^{\infty} \frac{x^{-5/2}}{\exp(x-\eta)+1} \, dx \] \hspace{1cm} (B.6d)

Although the algorithm given by Brient and Wilson is very accurate, it is computationally very expensive to use in an iteration procedure.

Battocletti [52] has proposed a series of polynomial approximations for the Fermi integrals of order 1/2. For arguments less than zero and for large positive arguments analytic expressions can be used [47, 48]. In the range of arguments from -1 to 12, Battocletti's proposed approximations yield an rms relative error of less than 1 in 10^6 for the function $F_{1/2}(x)$. The polynomials are easily differentiated. Battocletti's algorithm is as follows.

1. For $x < -12.5$:

\[F_{1/2}(x) = \exp(x) \]
\[F_{-1/2}(x) = \exp(x) \]
\[F_{-3/2}(x) = \exp(x) \]
\[F_{-5/2}(x) = \exp(x) \].
2. For $-12.5 \leq x \leq -2.0$:

\[
F_{1/2}(x) = \sum_{r=1}^{\infty} \frac{(-1)^{r+1} \exp(rx)}{r^{3/2}} \quad \text{(use six terms)}
\]

\[
F_{-1/2}(x) = \sum_{r=1}^{\infty} \frac{(-1)^{r+1} \exp(rx)}{\sqrt{r}} \quad \text{(use six terms)}
\]

\[
F_{-3/2}(x) = \sum_{r=1}^{\infty} (-1)^{r+1} \sqrt{r} \exp(rx) \quad \text{(use eight terms)}
\]

\[
F_{-5/2}(x) = \sum_{r=1}^{\infty} (-1)^{r+1} r\sqrt{r} \exp(rx) \quad \text{(use eight terms)}.
\]

3. For $-2.0 < x \leq 0.0$:

\[
F_{1/2}(x) = \exp(x) + \sum_{n=0}^{6} a_n \exp[(n+2)x]
\]

\[
F_{-1/2}(x) = \exp(x) + \sum_{n=0}^{6} a_n(n+2) \exp[(n+2)x]
\]

\[
F_{-3/2}(x) = \exp(x) + \sum_{n=0}^{6} a_n(n+2)^2 \exp[(n+2)x]
\]

\[
F_{-5/2}(x) = \exp(x) + \sum_{n=0}^{6} a_n(n+2)^3 \exp[(n+2)x]
\]

where

\[
a_0 = -0.35353667
\]

\[
a_1 = 0.19210895
\]

\[
a_2 = -0.12236525
\]
4. For \(0.0 < x \leq 3.0 \):

\[
F_{1/2}(x) = \sum_{n=0}^{7} b_n x^n
\]

\[
F_{-1/2}(x) = \sum_{n=1}^{7} b_n n x^{(n-1)}
\]

\[
F_{-3/2}(x) = \sum_{n=2}^{7} b_n n(n-1)x^{(n-2)}
\]

\[
F_{-5/2}(x) = \sum_{n=3}^{7} b_n n(n-1)(n-2)x^{(n-3)}
\]

where

\[
b_0 = 0.76514805
\]

\[
b_1 = 0.60491025
\]

\[
b_2 = 0.18990505
\]

\[
b_3 = 0.20131714 \times 10^{-1}
\]

\[
b_4 = -0.39688853 \times 10^{-2}
\]

\[
b_5 = -0.76558999 \times 10^{-3}
\]

\[
b_6 = 0.30807837 \times 10^{-3}
\]

\[
b_7 = -0.28395599 \times 10^{-4}
\]
5. For 3.0 < x ≤ 6.0:

\[F_{1/2}(x) = 0.75225278 \ x^{3/2} \sum_{n=0}^{5} \frac{c_n}{x^{2n}} \]

\[F_{-1/2}(x) = 0.75225278 \ x^{1/2} \sum_{n=0}^{5} \frac{(3/2 - 2n)}{x^{2n}} \frac{c_n}{x^{2n}} \]

\[F_{-3/2}(x) = 0.75225278 \ x^{-1/2} \sum_{n=0}^{5} \frac{(3/2 - 2n)}{x^{2n}} \frac{c_n}{x^{2n}} \]

\[F_{-5/2}(x) = 0.75225278 \ x^{-3/2} \sum_{n=0}^{5} \frac{(3/2 - 2n)}{x^{2n}} \frac{c_n}{x^{2n}} \]

\[\times (2n + \frac{1}{2})c_n \frac{1}{x^{2n}} \]

where

\[c_0 = 1.0002404 \]
\[c_1 = 1.1981922 \]
\[c_2 = 2.9838285 \]
\[c_3 = -24.984495 \]
\[c_4 = 96.877279 \]
\[c_5 = -156.23522 \.

6. For 6.0 < x ≤ 12:

The equations are the same as in 5 above except that
the summation is 0 through 4 i.e. $\sum_{n=0}^{4}$, and

\[c_0 = 1.0000313 \]
\[c_1 = 1.2248008 \]
\[c_2 = 1.8177898 \]
\[c_3 = -5.0849956 \]
\[c_4 = -3.2409718 \].

7. For $x > 12.0$:

The equations are the same as in 5 above with

\[c_0 = 1.0 \]
\[c_1 = 1.2337005 \]
\[c_2 = 1.0654119 \]
\[c_3 = 9.7015185 \]
\[c_4 = 242.71502 \]
\[c_5 = 11865.691 \].

In the actual program, the computations have been done more efficiently, e.g.,

\[
f(x) = e^x + a_0 e^{2x} + a_1 e^{3x} + a_2 e^{4x} + a_3 e^{5x} + a_4 e^{6x} + a_5 e^{7x} + a_6 e^{8x} \\
= e^x (1 + e^x (a_0 + e^x (a_1 + e^x (a_2 + e^x (a_3 + e^x (a_4 + e^x (a_5 + a_6 e^x))))))))
\]
The second form above is more efficient than the first one, since at the expense of one more multiplication, seven less computations for raising e to a power are made. This subroutine is called millions of times and even a small saving here will reflect in the overall computation time.

Computed values using Battocletti's algorithm were compared with Brient and Wilson's scheme and excellent agreement was found.
APPENDIX C
PROGRAM INFORMATION

The computer programs used to obtain the results reported in Chapter 5 are written in FORTRAN-IV and were run on an IBM OS/360 computer system. Typical CPU time required to run the quasi-static program with diffusion time of 30 minutes and starting condition at 2 minutes is about 2 hours. This, of course, depends on the values of \(\Delta x \) and \(\Delta t \) used in the computation. Typical values are \(\Delta x = 0.001 \mu \text{m} \) and \(\Delta t = 0.5 \text{s} \). The CPU times required for the charge neutrality and the vacancy-aided models are of the order of few minutes.

A brief description of the "input data" is given below. Wherever necessary, comments have been added in the program to make them self-explanatory. The source deck listing of the various programs follows the input data given below.

Quasi-static Program

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPUST</td>
<td>CPU segmentation time, in minutes</td>
<td></td>
</tr>
<tr>
<td>CXEO</td>
<td>Surface concentration, in cm(^{-3})</td>
<td></td>
</tr>
<tr>
<td>TEMP</td>
<td>Temperature, in °C</td>
<td></td>
</tr>
<tr>
<td>DSUBC</td>
<td>Diffusion constant, in cm(^2) sec(^{-1})</td>
<td></td>
</tr>
<tr>
<td>TO</td>
<td>Starting time, in sec</td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td></td>
<td>(= 1) for donors (= -1) for acceptors</td>
</tr>
</tbody>
</table>
TSTOP Diffusion time, in sec
CKC Convergence factor (accuracy check)
DXl Distance increment, in micron
DTl Time increment, in sec
CSTOP Value of concentration below which all the
 values are equated to zero, in cm$^{-3}$
CCHK Value of concentration below which the
 accuracy check is not applied, in cm$^{-3}$

Charge Neutrality Program

CXEO Surface concentration, in cm$^{-3}$
TEMP Temperature, in °C
DSUBC Diffusion constant, in cm2 sec$^{-1}$
TO Diffusion time, in sec
DXl Distance increment at which the solution is
 desired, in micron
CKC Convergence factor
Z = 1 for donors
 = -1 for acceptors
ALPHA Information to be printed out on the output

Vacancy-aided Program

CXEO Surface concentration, in cm$^{-3}$
TEMP Temperature, in °C
TO Diffusion time, in sec
DXl Distance increment at which the solution is
desired, in micron

CKC Convergence factor

ALPHA Information to be printed out on the output
JELAG WILL NOT BE SET FOR ABS(BETAC) + .11, DCH
IS AN INTEGRAL MULTIPLE OF 6, ELLIPS.'S CONCS.
0' NO AND C) 10 TRICHOMES THE TRANSFORMATION RUN WHEN TIME
DISTORTIONS ARE RECORDED FOR P, N AND C (AND POSSIBLY
OF' OPEN, SCCONS
DISTORTIONS ARE PRINTED OUT WHEN TIME IS AN INTEGRAL MULTIPLE
OF' INITIAL RUN
INITRUN=0 - INITIAL RUN

CALL SETTINGS (RESPI)

PROGRAM CONTROL

DATA INPUT

DIMENSION X(1000) DC(1000) DC(1000) DC(1000) DC(1000)
DIMENSION A(1000) DC(1000) DC(1000) DC(1000) DC(1000)
DIMENSION MSEA(26)
REAL A(1000) MSEA(26)
REAL + IN'MSEA

Program C41 version 3.

Program for the study of field-added dispersion
C

***NORMALIZATION CONSTANTS FOR SILICON ***

C

\[
\begin{align*}
BK &= 1.381D+23 \\
EFCHRG &= 1.602D+19 \\
EPSLN &= 1.0359D-12 \\
NSUBI &= 7.76615*DEXP (5.528269D-3*(\text{TEMP}+273.15D0)) \\
ETAI &= 6.96959165D3/(\text{TEMP}+273.15D0)+1.341932688 \\
\text{CALL FERMI}(\text{ETAI}, \text{ETAI}, 1) \\
\text{CNCFM} &= \text{NSUEI} \\
\text{DNORM} &= \text{DSUBC} \\
\text{VSUBI} &= \text{BK*}(\text{TEMP}+273.15D0)/\text{EFCHRG} \\
\text{XNORM} &= \text{XNORM} \times \text{CNCFM}/(\text{EFCHRG*CNCFM}) \\
\text{ENCRI} &= \text{VSUBI}/\text{XNORM} \\
\text{VNCRI} &= \text{VSUBI} \\
\text{QNORM} &= \text{EFCHRG*CNCFM} \\
\text{XNORM} &= \text{XNORM*1.0D4} \\
\end{align*}
\]

C

***OTHER CONSTANTS USED IN CALCULATIONS ***

C

\[
\begin{align*}
\text{CCHK} &= \text{CCHK}/\text{CNORM} \\
\text{VCHKN} &= \text{CCHK} \times 0.5D0 \\
\text{DX} &= 2.0D0*\text{DX1} \\
\text{BETA} &= \text{CXEO}/\text{NSUBI} \\
\text{CSTOF} &= \text{CSTOF}/\text{CNCFM} \\
\text{DLPST} &= \text{CSTCFN} \\
\text{DX} &= \text{DX}/\text{XNCRM} \\
\text{DX} &= \text{DX}/(2.0D0*\text{DSGRT}(\text{TC}/\text{TNORM})) \\
\text{IDTPN} &= \text{DTPN}\times10000.00+0.1D0 \\
\text{IDTPN} &= \text{DTPN}\times10000.00+0.1D0 \\
\text{IDTAP} &= \text{DTAP}\times10000.00+0.1D0 \\
\end{align*}
\]

C

***CALC. OF X(I), NO. STEPS AND EXACT LENGTH ***

C

\[
\begin{align*}
X(1) &= 0.0D0 \\
D0 & 10 I = 2,1000 \\
J &= I - 1 \\
X(I) & = X(J) + \text{DX1} \\
\text{IF}(X(I) \gt \text{AFRCXI}) \text{ GC TO 11} \\
\text{CONTINUE} \\
10 & \text{CONTINUE} \\
11 X(I) &= X(J+1) \\
\text{NS} &= J \\
\text{NP} &= \text{NS}+1 \\
\end{align*}
\]
QUASI-STATIC ANALYSIS PROGRAM FOR FIELD-AIDED DIFFUSION

1. **PHYSICAL CONDITIONS**
 - TEMP = 'F13.1,' DEG C'
 - NSUBI = ',1PE13.9,' PER CM'
 - DSUBC = ',1PD13.4,' CM'
 - BETA = ',1PE13.2,' 10X'
 - LENGTH = ',F13.5,' MICRONS'
 - XL = ',F13.5,' MICRONS'
 - DX = ',F13.5,' MICRONS'
 - DT = ',F13.3,' SEC'

2. **DECK QS1 VERSION 3**
 - NO. OF POINTS USED IN LOOKAHEAD = ',14,' 1 UNTIL K.GT.',16)

3. **CONTROL CONSTANTS**
 - CKC = ',1PD13.4,' 10X'
 - CSTCP = ',1PD13.4,' 10X'
 - CCHK = ',1PD13.4,' 10X'
 - TSTART = ',F13.3,' 10X'
 - TSTOP = ',F13.3,' 10X'
 - DTPRNT = ',F13.3,' 10X'
 - DTPUN = ',F13.3,' 10X'
 - DTTAP = ',F13.3,' 10X'

```c
NPM1=NF-1
NPM2=NF-2
N101=(NE+1)/2
N101=N100+1

*************** PRINTOUT OF TITLE PAGE ***************

PRINT 600
IF(Z.EQ.1,E0) PRINT 630
IF(Z.EQ.-1,E) PRINT 631
PRINT 602,CXEC
PRINT 614,IFRES1,IFRES2
IF(ITRUNC.EQ.1) PRINT 618
IF(ITRUNC.EQ.0) PRINT 619
PRINT 603,NE
PRINT 613
PRINT 601,TEMP,NSUBI,DSUBC,BETA,XL,DX1,DT1
PRINT 620,EB,ECHARGE,EPSLON
PRINT 621,CKC,CSSTOP,CCHK,TO,TSTOP,DTPRNT,DTPUN,DTTAP
READ (5,622) ALEHA
PRINT 626,ALPHA
PRINT 213
```

Physical Conditions

- Temperature: F13.1°C
- Number of Substrate Ions: 1PE13.9 per cm
- Substrate Concentration: 1PD13.4 cm
- Bêta: F13.2 x 10X
- Length: F13.5 microns
- X: F13.5 microns
- Delta X: F13.5 microns
- Delta T: F13.3 seconds

Deck QS1 Version 3

- Number of Points Used in LookAhead: 14

Control Constants

- Control Concentration: 1PD13.4
- Control Substrate Concentration: 1PD13.4
- Check Concentration: 1PD13.4
- Start Time: F13.3 x 10X
- Stop Time: F13.3 x 10X
- Print Time: F13.3 seconds
- Unique Time: F13.3 seconds
CORR=DPAS(DETLAC(I))(1)

CX=1=1,LIST1

***** FORM NEW C(X) AND Y(X) AND CHECK CONVERGENCE *****

CALL DPAS(A,Y,DC,DA,EC,DA,EC,DELTAY,DELTAY,DX,DL,TASTE)

***** CALC. OP IMPROVEMENTS *****

CALL DPAS(A,Y,DC,DA,EC,DA,EC,DELTAY,DELTAY,DX,DL,TASTE)

JULAG=0
ITER=ITER+1
26 J=0+1
IND=0
TAUS=TAUS+1/7/1000.
DT=DELTAY/1000.
1000.1*1000.*0.100
1000.*1000.4999
T=1+DELTAY
27 R=K+4

****** ESTIMATED DISTRIBUTIONS AT END OF FIRST TIME STEP *****

{12 C(I)=C(I)
A(I)=A(I)
{12 I=1,ND

{I64 FORMAT(6X,'COMBINATION ERROR FUNCTION USED FOR STARTING DISTRIBUTIONS')
{165 FORMAT(6X,'NUMBER OF ITERATIONS TYPICALLY = 16')
{162 FORMAT(6X,'NUMBER OF TIME STEPS TYPICALLY = 1.7')
{161 FORMAT(6X,'X(Y),C(Y),X(A),C(A),MIN,MAX,MICRONS')
{160 FORMAT(6X,'STARTING DISTRIBUTIONS')
{159 FORMAT(8X,'TIME = p9.2", SEC, OR'
{155 FORMAT(6X,'STOPPED')

21 PRINT J,3*3.1\(X(I),A(I),A2=2*Y(0.1)*VORM
SUBROUTINE RESET(Y, YC, NE)
IMPLICIT REAL*8 (A-H, O-Z)
DIMENSION Y(1), YC(1)
IF (ICH .NE. 2) GOTO 10
DO 100 I = 1, NE
 YNEW = Y(I) + Y(1) - YC(I)
 YO(I) = Y(1)
100 Y(I) = YNEW
RETURN
10 CONTINUE
DO 200 I = 1, NE
 YO(I) = Y(I)
RETURN
ENTRY SETRES(IRESET)
ICH = IRESET
RETURN
END
C DISCRIMINATED MATRICES
D(I) = DDC(I) + DC(I) + C(I) - DDV(I) - DDAV(I) + C(I) - C(I) - C(I) - C(I) - C(I)
D(2) = DDC(2) + DC(2) + C(2) - DDV(2) - DDAV(2) + C(2) - C(I) - C(I) - C(I) - C(I) - C(I)

C LINEAR MATRICES
CALL FEMM(F(E),FMINUS(2))
CALL FEMM(F(E),FMAX(1))

C INITIAL VALUES
IF(I.EQ.0) THEN
 GOTO 9
 DO 10 I = 1, N

 C LOCATE TO DETERMINE G AND H
 H(I) = 0.0
 H(I) = 0.0
 H(I) = 0.0
 H(I) = 0.0
 C ZERO B, C
 C DDTL = DDI(0,0)
 DDTL = DDI(0,0)
 DDTL = DDI(0,0)
 DIMENSION A(A), B(B), C(2), D(2), E(2), F(F), G(G), H(H), I(I), J(J), K(K), L(L), M(M), N(N), O(O), P(P), Q(Q), R(R), S(S), T(T), U(U), V(V), W(W), X(X), Y(Y), Z(Z)
 DIMENSION C(I), C(I)
SUBROUTINE MA(A, B, C, N, NS)
REAL*8 A, B, C
DIMENSION A(1), B(1), C(1)
IF (NS) 10, 20, 30
10 CONTINUE
DO 15 I = 1, N
15 C(I) = A(I) - B(I)
RETURN
20 CONTINUE
DO 25 I = 1, N
25 C(I) = A(I)
RETURN
30 CONTINUE
DO 35 I = 1, N
35 C(I) = A(I) + B(I)
RETURN
END
SUBROUTINE MINV2(A)
REAL*8 A,B,C,D
DIMENSION A(1),B(4)
B(1)=A(4)
B(2)=-A(2)
B(3)=-A(3)
B(4)=A(1)
C=A(1)*A(4)-A(2)*A(3)
DI=1.0/C
DO 20 J=1,4
A(J)=B(J)*DI
20 RETURN
END
SUBROUTINE MM2(A, B, C, N)

REAL*8 A, B, C
DIMENSION A(1), E(1), C(1)
C(1) = A(1) * B(1) + A(3) * E(2)
C(2) = A(2) * B(1) + A(4) * E(2)
IF (N.EQ.1) GOTO 1
C(3) = A(1) * B(3) + A(3) * E(4)
C(4) = A(2) * B(3) + A(4) * E(4)
1 RETURN
END
SUBROUTINE DFSDER (Y, CY, CDY, DX, NP)
IMPLICIT REAL*8 (A-H, O-Z)
DIMENSION Y(1), CY(1), DDY(1)
NP1=NP-1
NP2=NP-2
NP3=NP-3
NP4=NP-4
C1=1.0/(12.0*DX)
C2=1.0/(12.0*DX*DX)
DO 300 I=1,NP4
DDY(1)=C1*Y(I-1)-8.0*C0*(Y(I-1)-Y(I+1))-Y(I+2))
DDY(1)=C1*Y(I-1)+16.0*C0*(Y(I-1)+Y(I+1))-30.0*C0*Y(I)-Y(I+2))
DDY(1)=16.0*C0*Y(1)+114.0*C0*Y(4)-56.0*C0*Y(4)

300 RETURN
END
THIS PROGRAM COMPUTES THE RESULT OF THE TRANSPORT PROBLEM UNDER LOCAL CHARGE NEUTRALITY CONDITIONS USING QUASI-LINEARIZATION.

DEGENERATE CASE

IMPLICIT REAL*8 (A-H, O-Z)
REAL*8 N, NSUBI
REAL*4 ALPHA
NMAX = 2000

READ INPUT DATA

REAL (5,952) CXEC, TEMF, DSUEC, TO
REAL (2,952) EXC, CKC, CSTCP, Z
REAL (5,625) ALPHA

COMPUTE VARIOUS QUANTITIES.

BK = 1.381D-23
ECRGE = 1.602D-19
VNCEM = 3K*(TEMP+273.15D0)/ECRGE
NSUBI = 7.766E15*DEXP (5.528269D-3*TEMP + 273.15D0))
ETAI = -6.989559165D3/(TEMP*273.15D0)+1.341932688D0
CALL EEBM1 (ETAI, FETAI, 1)
BETA = CXEC/NSUBI

WRITE OUT THE VARIOUS QUANTITIES.

WRITE (6, 1) TEMF, CXEC, DSUEC
1 FORMAT (1X, 'TEMF=', F13.2, 1/1X, 'SURFACE CONC.=', 1PD13.4/
1 IX, 'DSUEC=', 1PD13.4)
WRITE (6, 10) IX, DX1
10 FORMAT (1X, 'DX1=', F13.3/1X, 'DX1=', F13.5)
WRITE (6, 12) FETAI, NSUEI
12 FORMAT (1X, 'FETAI=', F13.5/1X, 'NSUEI=', 1PD13.4)

THE PARAMETER DY1 CORRESPONDS TO NORMALIZED DX1.

LY1 = EX1*(2.D0*DSUEC*(DSUEC*TO)*1.D-4
DY = 2.21D0
C3TPCN = C3TPC/NSUEI
VSTOP = 1.0251
VSTCPN = VSTCP/VNCEM
CCHR = VSTCPN*1.55
Y(1) = 0.0

THE INITIAL GUESS AND Y ARP DETERMINED

DO 12 I = 1, NMAX
 Y(I) = Y(I-1) + EY
 DC 1 I = 2, NMAX
 IF (CXEO.EQ.1.0.E2) CE2 = 0.5E0*BETA*DERFC(0.767D0*Y(I))
 IF (CXEO.GT.1.0.E2) CE2 = 0.5E0*BETA*DERFC(0.509D0*Y(I))
 C(I) = CE2 + E*I0(CE2**2+1.DO) + DEXF(-CE2)
 IF (C(I) .LT. VSTOPEN) GC TO 2
 1 CONTINUE

C(I) HAS ALSO BEEN USED TO REPRESENT THE POTENTIAL.

ISTCP = ISTCP - 10
WRITE(6,995) ISTCP
LAST = ISTCP + 10
IF (LAST .GT. NMAX) LAST = NMAX
LS1IH1 = LAST - 1
DC 9 I = ISTCP, NMAX
9 C(I) = C.DO

COMPUTE VETA AT THE SURFACE ASSUMING NON-DEC. CCNDITION.

VBEIA = BETA*0.5E0
VBEIA = VBEIA + DLOG((VEETA + DSQRT(VEETA**2+1.DO)) + DEXP(-VEETA))

COMPUTE THE TRUE BCNDARY CONDITION FOR DLG. CONDITIONS.

300 CONTINUE
 F1 = VETA + VETA + EFAI
 CALL FERM(F1, F2, 1)
 CALL FERM(F1, F3, 2)
 F4 = F2/FETA - DEXP(-VEETA) - BETA
 F5 = F3/FETA + DEXP(-VEETA)
 VBEIA = VBEIA + F4/FE
 IF (DABS((VEETA - VBEIA)/VBEIA) .LT. 1.0E-3) GO TO 301
 GO TO 300
3:1 C(I) = VEETA
 VETE1 = VBEIA + VNOF
 WRITE(6,310) VETE1
310 FORMAT(1X, F12.7)

C
 K = C
BEGINNING OF ITERATION ICCE

5 K=K+1

COMPUTE DERIVATIVES AND DELTA C

CALL LSDE5(C,EC,DCC,dy,LASTI)
CALL DELTA(C,EC,DCC,ELTAC,Y,dy,LASTI,FETA,FETA)

CHECK CONVERGENCE.

JF = 0
DO 4 I=2,LSTIM1
C(I) = C(I) + ELTAC(I)
CABS = DABS(C(I))
ERROR = DABS(ELTAC(I)/C(I))
IF(C(I).LT.V3TGPN) GC TC 7
IF (ERROR.GT.CKC.AND.CAES.GT.CCHK) JF=1
4 CONTINUE

ISTOP = I
LASTI = LASTI + 10
IF (LASTI.GT.NMAX) LASTI = NMAX
LSTIM1 = LASTI - 1
DO 14 I=ISTCE,NMAX
C(I) = 0.

IF (JF.EQ.1) GOTO 5

END OF THE ITERATION ICCE.

WRITE(6,222)

222 FORMAT('CUT OF THE MAIN LOOP')

FOLLOWING ICCE MAKES A MESH WITH SEPARATION DY1.

DO 20 I=1,NMAX
Y1(I) = DY1*(I-1)

INTERPOLATE THE CCBE5ENDING VALUES.

NDIM = 8
DO 21 I=1,NMAX
CALL DATSG(Y1(I),Y,C,WCRK,1000,1,ARG,VAL,NDIM)
CALL DACPI(Y1(I),ARG,VAL,C1(I),NDIM,CKC,IEB)
IF(C1(I).LT.VSTCEN) GC TO 35
21 CONTINUE
LASTI = ISICE
IF (LASTI .GT. NMAX) LASTI = NMAX
DO 31 I = ISICE, LASTI
31 C(I) = 0.0
DO 22 I = 1, LASTI
22 WRITE (6, 954) (I, C(I), Y(I), C(I))
954 FORMAT (1X, F9.5, 2X, E15.6, 2X, F9.5, 2X, D15.6)

DO 11 I = 1, LASTI
11 CONTINUE
KST = C
CNORM = NSUEI
VNORM = EK*(TEMP + 273.15DC)/ECHRGE
WRITE (6, 970)
970 FORMAT (5X, 'I, X, A0 (1H*/5X, 'X(I)', 12X, 'C(X)', 12X, 'V(X)', /
1 1X, 80 ('1H*/')
DO 200 I = 1, LASTI
200 CONTINUE
WRITE (6, 960) (X(I), DDC(I), A2)
960 FORMAT (1X, F9.5, F12D15.6)
CONTINUE
WRITE (6, 961)
961 FORMAT (1I)
WRITE RESULTS ON FILE 8
OUTPUT FORMAT IS SUITABLE FOR TRUNCATION STEP IN QS1.
WRITE (6, 951) KST, TO, KST, ISTCP, LASTI
WRITE (8, 951) KST, TO, KST, ISTCP, LASTI
WRITE (6, 950) (DC(I), C(I), I = 1, LASTI)
WRITE (6, 950) (DC(I), C(I), I = 1, LASTI)
WRITE (6, 960) (X(I), DDC(I), A2)
WRITE (6, 961)
WRITE (7, 950) LASTI, TMIN, DX1
950 FORMAT (1I, F9.5, 2X, D15.6)
WRITE (7, 951) (DC(I), I = 1, LASTI)
WRITE(7,33) (DC(I),I=1,LASTI)
WRITE(6,34) (DC(I),I=1,LastI)
FORMAT(1PE11.3)

C

FORMAT(1X,'NUMBER OF POINTS= ',I5)
FORMAT(1X,E25.18)
FORMAT(1X,I11,1X,I12,1X,I7)
FORMAT(4I15)
FORMAT(18A4/18A4)
END
SUBROUTINE DELIA(C,EC,EDC,DLTAC,Y,DY,NP,ETAI,FETAI)

THIS SUBROUTINE FORMS THE DELIAC'S USING THE QUASI-
LINEARIZATION METHOD.

IMPLICIT REAL*8 (A-H,O-Z)
REAL*8 INV
DIMENSION C(1),DC(1),EDC(1),DLTAC(1),Y(1)
DYDI=.5DC/DY
DYSI=1,DC/(DY*DY)
DC(1)=2.0
EDC(I)=.DC

DETERMINE INITIAL QUANTITIES

DC 1: I=2,NP
V1=C(I)+ETAI
CALL FERMI(V1,F1,1)
CALL FERMI(V1,F2,2)
CALL FERMI(V1,F3,3)
CALL FERMI(V1,F4,4)
EE=EXP(-C(I))
F5=F2+FETAI*EE
F6=1.0/(F5+F5)
F7=F3-FETAI*F5

COMPUTE A, B, C, AND D

A=(F2+F1)/F5
B=2.0DC*Y(I)+2.0DC*DC(I)*(F3+F2)/F5
C=DC(I)*F6*(F5*(F3+F2)-(F2+F1)*F7)+DC(I)*DC(I)*F6*(F5*(F4+F3)-1(F3+F2)*F7)
D=-2.0DC*Y(I)*DC(I)-A*EDC(I)-(F3+F2)*DC(I)*DC(I)/F5
AM=A*DYSI
BM=B*DYSI

COMPUTE AL, EE, AND GA

AL=AM+BM
EE=-AM-AM+CC
GA=AM-BM

COMPUTE G AND H

S=1.0/(BE-GA*DDC(I-1))
DDC(I)=AL*S
IC(I)=(E-GA*IC(I-1))*S

C
10 CONTINUE
C

COMPUTE DELTAC

DLTAC(NF) = 0.0

DO 2 J = 1, NF

II = NF - I + 1

DLTAC(II) = DC(II) - DEC(II) * DLTAC(II + 1)

2 CONTINUE
C

RETURN
C

END
SUBROUTINE DFSDER (Y, DY, DYY, DX, NP)

* THIS SUBROUTINE NUMERICALLY COMPUTES THE FIRST AND
 SECOND DERIVATIVES BY FITTING A POLYNOMIAL

IMPLICIT REAL*8 (A-F,C-Z)
DIMENSION Y(1), DY(1), DYY(1)

NPM1=NP-1
NP2=NP-2
NP3=NP-3
NP4=NP-4

C1=1./((12.*DX)
C2=1./((12.*DX*DX)

DO 30 I=3, NP2
 DY(I)=C1*(Y(I-2)-8.*DY(I-1)-Y(I+1)+Y(I+2))
30 DO 306
 DYY(I)=C2*(-Y(I-2)+16.*DY(I-1)+Y(I+1))-36.*DY(I)

DYY(1)=35.*DYY(1)-104.*DY(2)+114.*DY(3)-56.*DY(4)
DYY(2)=11.*DY(1)-20.*DY(2)+6.*DY(3)+4.*DY(4)-Y(5))
DYY(NP1)=(-Y(NPM4)+4.*DY(NPM3)+6.*DY(NPM2)-20.*DY(NPM1)

DYY(NP)=(-25.*DY(1)-48.*DY(2)+16.*DY(3)-16.*DY(4)
DYY(NP)=3.*DY(NP1)*C2

RETURN
END
SUBROUTINE FERMI(X,FHALFX,IXX)
C THIS SUBROUTINE IS BASED ON BATTIOTTI'S ALGORITHM.
DIMENSION C(1)
REAL*8 (A-H,O-Z)
IF (X.GT.-12.5D0.AND. X.LT.-2.0D0) GO TO 10
IF (IXX.EQ.2) GO TO 20
IF (IXX.EQ.3) GO TO 18
IF (IXX.EQ.4) GO TO 19
SUM=0.0D0
A=1.0D0
DO 6 I=1,6
B=I*1.0D0
CC=A*DEXP(B*X)/(1+BSQRT(B))
SUM=SUM+CC
IF (DABS(CC).LT.1.D-3D0) GO TO 60
A=A*(-1.0D0)
CONTINUE
60 FHALFX=SUM
RETURN
20 SUM=0.0D0
A=1.0D0
DO 6 I=1,8
B=I*1.0D0
CC=A*DEXP(B*X)/DSQRT(B)
SUM=SUM+CC
IF (DABS(CC).LT.1.D-3D0) GO TO 60
A=A*(-1.0D0)
CONTINUE
60 FHALFX=SUM
RETURN
18 SUM=0.0D0
A=1.0D0
DO 6 I=1,10
B=I*1.0D0
CC=A*DEXP(B*X)*BSQRT(B)
SUM=SUM+CC
IF (DABS(CC).LT.1.D-3D0) GO TO 210
A=A*(-1.0D0)
CONTINUE
210 FHALFX=SUM
RETURN
195 SUM=0.0D0
A=1.0D0
DO 6 I=1,12
B=I*1.0D0
CC=A*DEXP(B*X)*B*BSQRT(B)
SUM=SUM+CC
11. IF (X.GT.6. DC) GO TO 120
C 1 = 1.20 42 8 DC
C 2 = 1.18 19 2 DC
C 3 = 1.9 83 8 25 DC
C 4 = 2.4 84 9 95 DC
C 5 = 26. 77 77 9 DC
C 6 = -15. 23 22 DC
GO TO 130
12. IF (X.GT.12. DC) GO TO 140
C 1 = 1.30 03 13 DC
C 2 = 1.87 78 8 DC
C 3 = 2.5 84 9 95 DC
C 4 = 3.24 25 71 8 DC
GO TO 130
13. IF (X.EQ.2. DC) GC TC 150
IF (X.EQ.3. DC) GC TC 250
IF (X.EQ.4. DC) GC TC 350
TEMP = 7.5225 27 DC * DSQRT (X)
SUM = C . DC
BYXZ = 1. DC / (X * X)
DC 16 0 I = 1. N
10. SUM = SUM + BYX2 * (SUM + C (N-I+2))
HALF = TEMP * (C (1) + SUM)
RETURN
15. TEMP = 7.5225 27 DC * DSQRT (X)
SUM = C . DC
BYXZ = 1. DC / (X * X)
DC 17 0 I = 1. N
17. SUM = SUM + BYX2 * (SUM + C (N-I+2) * (1.5 DC - 2. DC * (N-I+1))
HALF = TEMP * (1.5 DC * C (1) + SUM)
RETURN
28. TEMP = 7.5225 27 DC / DSQRT (X)
SUM = C . DC
BYXZ = 1. DC / (X * X)
DC 30 0 I = 1. N
30. SUM = SUM + BYX2 * (SUM + C (N-I+2) * (1.5 DC - 2. DC * (N-I+1)) * (C. DC
 1 - 2. DC * (N-I+1)))
FHALFX = TEMP * (0.75D0 * C(1) + SUM)
RETURN
29C TEMF = 0.75225278D0 / (X * DSQRX(X))
SUM = 0. D0
BYX2 = 1. D0 / (X * X)
DC 31C I = 1, N
310 SUM = BYX2 * (SUM + C(N-I+2) * (1.5D0 - 2. D0 * (N-I+1)) * (2. D0 *
1 (N-I+1) - C.5D0) * (2. D0 * (N-I+1) + C.5D0))
FHALFX = TEMF * (-C.375D0 * C(1) + SUM)
RETURN
END
THIS IS A PROGRAM TO SOLVE THE PRE-DEP PROBLEM OF DIFFUSION IN A SEMICONDUCTOR -IMPURITY-VACANCY SYSTEM USING A QUASI-LINEARIZATION METHOD.

INTEGER REAL*8 (A-H, O-Z)
REAL*4 NSUB
REAL*4 ALEHA
DIMENSION V(200), EV(200), DDV(200), Y(200)
DIMENSION DLTA, ALEHA(36), X(200)
DIMENSION Y1(200), WORK(200), ARG(10), VAL(10), C(200)

NMAX = 200

READ IN THE DIFFUSION PARAMETERS.

READ (5, 90) CXC, TEM, TC
90 FORMAT (4D12.0)
READ (5, 90) DX, AEROX, CKC
READ (5, 90) ALEHA
901 FORMAT (18A4/18A4)

COMPUTE VARIOUS QUANTITIES FOR ARSENIC DIFFUSION IN SILICON.

EA = 0.95D0
ESUB = 5.4D0
BK = 0.62D-5
EBT = BK* (TEMP + 273.15D0)
DSUB = 6.96*DEXE (-4.2D0/EBT)
NSUB = 7.766*DEXE (5.28269D-3*(TEMP + 273.15D0))
ESUB = 1.25D0*2.4D-4*(TEMP + 273.15D0)
ETAI = -6.9855916D3*(TEMP + 273.15D0) + 1.341932688D0
V SUBC = ETAI
CALL FERMI (ETAI, ETAI, 1)
XNC = NSUBF/ETAI
XNV = NSUBD*DEXE (ETAI + ESUB/EBT)
GV = 2.0D0
EAEAR = EA/EBT
XISTAR = GV*DEXE (V SUBC + ESUB/EVT)
EuSUB = DSTAR * XISTAR / (1.03 + XISTAR)
BETA = CXC/NSUB
FCCM = ESUB/EVT
TMIN = TC/6.0D0
EXCM = DX1*1.0D-4

WRITE CUI THE VARIOUS QUANTITIES.
WRITE(6,600) CFMMAT (13,1)
WRITE(6,600) NSUM, XNC, XNV, ESSUEC
WRITE(6,600) ESUEC, VSSUEC, XISTAE

COMPUTING

WRITE (6,600) 'SURFACE CCNC. (/CC.) =', 1PD13.4/IX, 'TIME (DEC C) =', 11PD13.4/IX, 'DIFF. TIME (SEC.) =', '1PD13.4)
WRITE (6,600) NCSC, 4/1X, 'TIME (SEC.) =', 1PD13.4/IX, 'NC (CC.) =', 1PD13.4/IX, 'DSUEC (CM**2/SEC) =', 1PD13.4/IX
WRITE (6,600) 'TEMP (DEG C) =', 1PD13.4/IX, 'NSIE (CC) =', 1PD13.4/IX, 'NC (CC) =', 1PD13.4/IX, 'DSUEC (CM**2/SEC) =', 1PD13.4/IX
WRITE (6,600) 'BAND GAF (EV) =', 1PD13.4/IX, 'VSSUBO =', 1PD13.4/IX, 'XISTAE =', '1PD13.4)

COMPUTE D1CC5CCFCNTNG TC THE REQUIRED DIFFUSION TIME.

DY1 = DX1/(2.D3*DSCF(T (DSUEC*TO)*1.D-4
DY = 0.D6
IF(EA.LT.-1.CO . ANE.CXEO.GT.1 . D20) DY = 0.5D0
VSTCFN = 1.D-15
VCHK = VSICEN*1.DC5

COMPUTE THE STARTING GUESS FOR V(I). ASSUME ERFCC STARTING CONDITION
FOR THE IMPURITY DENSITY AND THEN FIND V(I) ASSUMING NON-DEGENERATE
CONDITION AND COMPLETE IGNITIZATION.

M = NMAX
IF (EA.LE.-1.D0 . ANE.CXEO.GT.1.D20) M = 150
Y(1) = C.D5
DO 10 I = 2, NMAX
10 Y(I) = Y(I-1) + BY
DC = 11 I = 2, M
IF (CXEO.EQ.1.D20) CD2 = 0.5DC*BETA*DERFC(0.5DO*Y(I))
IF (CXEO.GT.1.D20) CD2 = 0.5DO*BETA*DERFC(0.1PD0*Y(I))
IF (EA.LT.-1.D0 . ANE.CXEO.GT.1.D20) CD2 = 0.5DO*BETA
V(I) = CD2 + ELOG((CD2 + ESG(T(CD2*CD2+1.D0))*DEXP(-CD2))
IF(V(I) . LT. VSTCFN) GC TO 12
11 CONTINUE
12 ISTCP = I
FIRST = ISTCP - 10
WRITE(6,844) ISTICE
844 CFMMAT (1X, 'NC. OF FCINTS =', I5)
LAST = ISTOE + 10
IF (LAST.GT.NMAX) LAST = NMAX
LASTM = LAST - 1
DO 13 I = ISTOE, NMAX
13 V(I) = C.DC

COMPUTE VELOTA AT THE SURFACE ASSUMING NON-DEG. CONDITION AND COMPLETE
C IONIZATION.
C
VBETA = .50*VBETA
VBETA = VBETA + DLG((VEETA + SQRT(VBETA*VBETA + 1.0D)))*DEXP(-VBETA)
C
CCOMPUTE TRUE VALUE OF THE BOUNDARY CONDITION VBETA AT THE SURFACE
C BY ITERATION FOR DEGENERATE CONDITIONS AND INCOMPLETE IONIZATION.
C
14 CONTINUE
C1 = VEETA + VSUB0
C2 = VEETA + VSUB0 + EABAR
CALL FERMI(C1, F1, 1)
CALL FERMI(C1, F2, 2)
F3 = 2.0D0*DEXP(C2)
F4 = DEXP(-VBETA)
F5 = (1.0 + F3)*(F1/FETAI - F4) - BETA
F6 = F2/PPTAI + F4*F3*(F1 + F2)/FETAI
VBETA1 = VBETA
VBETA = VBETA - F5/F6
IF (DABS((VBETA1 - VBETA)/VBETA).LT.1.D-3) GO TO 15
GO TO 14
15 V(I) = VBETA
WRITE (6, '3F5.5') VBETA
3 FMT = (1X, 'VBETA=', 1PD15.5)
C
K = 1
C BEGIN ITERATION LOOP.
C 2: K = K + 1
C
CCOMPUTE DERIVATIVES OF V AND THE CORRECTIONS DLTAV.
C
CALL DFSDER(V, DV, DDV, DY, IASTI)
CALL DELTA(V, DV, DDV, DLTAV, Y, DY, LASTI, VSUB0, XNC, XNV,
1EABAR, 3GM)
C
C CHECK CONVERGENCE.
C
J = 1
DO 21 I = 2, ISTM1
V(I) = V(I) + DLTAV(I)
ABDL = DABS(V(I))
PEROF = DABS(DLTAV(I)/V(I))
IF (PEROF.LT.VSTOFN) GO TO 22
IF (PEROF.GT.ST.CKC.AND. ABDL.GT.ST.VCHK) IF = 1
21 CONTINUE
CONTINUE
LASTI=ISTOP+1
IF (LASTI.GT.NMAX) LASTI=NMAX
LSTTM1=LASTI-1
DO 23 I=ISTOP,NMAX
V(I)=.DO
IF (IF .EQ. 1) GO TO 2
2 CONTINUE
23 CONTINUE
LASTI=LSTTM1+1
IF (LASTI.GT.NMAX) LASTI=NMAX

END OF THE ITERATION LOOP.

DO 26 T=1,NMAX
26 V1(I)=DY1*(I-1)

INTERPOLATE THE CORRESPONDING V(I) VALUES.

DO 27 I=1,NMAX
CALL DATSG(Y1(I),Y,V,WORK,NMAX,1,ARG,VAL,NDIM)
CALL DACEP(Y1(I),ARG,VAL,C(I),NDIM,CK,C,IER)
IF (C(I).LT.VSTOPN) GO TO 28
27 CONTINUE

CONTINUE
ISTOP=I
IF (LASTI.LT.NMAX) LASTI=NMAX
DO 29 I=ISTOP,LASTT
29 CONTINUE

INTERPOLATE THE CORRESPONDING V(I) VALUES.

DO 31 I=1,LASTI
31 CONTINUE

COMPUTE THE ELECTRIC FIELD.

DO 32 I=1,LASTT
32 CONTINUE

COMPUTE C(I) VALUES CORRESPONDING TO V(I). PRINT AND PUNCH IN A

DO 31 I=1,LASTI
SUBROUTINE DELTA(C, ECR, DDC, DLTAC, Y, DY, NP, ETAI, XNC, XNV, T, FARAB, FGMN)
IMPLICIT REAL*8 (A-H, O-Z)
REAL*8 ETAI, INV
DIMENSION C(1), DC(1), DDC(1), DLTAC(1), Y(1)
DYDI = 1.0/ (DY*NY)
DC(1) = D
DDC(1) = D.

C COMPUTE VARIOUS QUANTITIES TO BE USED LATER.
 DO 1 I=2, NP
 V1=C(I)+ETAI
 V2=C(I)+ETAI+FARAB
 V3=C(I)-ETAI-FGMN
 CALL EPMMI(V1, F1, 1)
 CALL EPMMI(V1, F2, 2)
 CALL EPMMI(V1, F3, 3)
 CALL EPMMI(V1, F4, 4)
 F4=DEXP(C(I))
 F6=DEXP(V2)
 F7=DEXP(V3)
 R=XNV/XNC

C COMPUTE THE FUNCTIONS F1(ETA) AND F2(ETA), AND THEIR DERIVATIVES
 APPEARING IN THE NUMERICAL PROCEDURE.
 \(XN1 = \frac{F2 + F1^2 + F3}{2} \)
 \(XD1 = \frac{F2 + F1^2 - F3}{2} \)
 \(XD2 = \frac{F2 + F1^2 + F3}{2} \)
 \(F1 = \frac{F1^2}{XN1*XD1} \)
 \(F2 = \frac{F1^2}{XN2*XD2} \)
 \(DF1V = F1^2*(F4/XD1)*(F2 + F1^2)*F3 - 2.0*D*F1^2 - F1^2*(F4/XD1)*(F2 + F1^2)*F3 \)
 \(DF2V = F1^2*(F4/XD2)*(F2 + F1^2)*F3 - 2.0*D*F1^2 - F1^2*(F4/XD2)*(F2 + F1^2)*F3 \)

C COMPUTE THE QUANTITIES A, B, C AND D.
 A=F2V
 B=2.0*D*Y(I)+F1V+DC(I)
 C=-F1V*DC(I)+DF2V*DDC(I)
 D=-F1V*DC(I)+FD2V*DDC(I)-2.0*D*Y(I)*DC(I)
AM=A*DSI
BM=B*DSI

COMPUTE ALPHA, BETA AND GAMMA.

AL=AM*BM
BF=-AM-AM*CC
GA=AM-BM

COMPUTE G AND H.

S=1.D^/(BF-GA*DC(I-1))
DC(I)=AL*S
DC(I)=(P-GA*DC(I-1))*S

CONTINUE

COMPUTE THE CORRECTION TERMS.

DLTAC(NF)=c.D^c
DO 2 I=2,NP
II=NP-I+1
DLTAC(I)=DC(I)-DC(I)*DLTAC(I+1)
CONTINUE
RETURN
END
SUBROUTINE DFSDER (Y, DY, DSY, DX, NP)
C THIS SUBROUTINE NUMERICALLY COMPUTES THE FIRST AND
C SECOND DERIVATIVES BY FITTING A POLYNOMIAL
C OVER N POINTS
IMPLICIT REAL*8 (A-H, O-Z)
DIMENSION Y (1), DY (1), DSY (1)
NPM1 = NP - 1
NPM2 = NP - 2
NPM3 = NP - 3
NPM4 = NP - 4
C1 = 1. D'/(12. D* D* DX)
C2 = 1. D'/(12. D* D* DX* DX)
C
C DETERMINING FOR POINTS 3 TO N-2
C
DO 30 T = 3, NPM2
 DY (T) = C1 * (Y (1 - 2) - 8. D* D* (Y (T - 1) - Y (T + 1)) - Y (T + 2))
 DSY (T) = C2 * (-Y (1 - 2) + 16. D* D* (Y (1 - 1) + Y (1 + 1)) - 30. D* Y (T) - Y (T + 2))
C
C DETERMINING FOR THE POINTS 1, 2, N-1, AND N
 DSY (1) = (35. D* D* Y (1) + 4. D* D* Y (2) + 1. D* Y (3) + 56. D* D* Y (4) - 6. D* Y (5)) * C2
 DSY (2) = (11. D* D* Y (1) - 2. D* D* Y (2) + 6. D* Y (3) + 4. D* D* Y (4) - Y (5)) * C2
 DSY (NP - 1) = (-Y (NP - 2) - 1. D* D* Y (NP - 3) - 56. D* D* Y (NP - 4) + 4. D* Y (NP) + 11. D* D* Y (NP) * C2
 DY (1) = (-25. D* D* Y (1) + 4. D* D* Y (2) - 36. D* D* Y (3) - 16. D* D* Y (4) - 3. D* D* Y (5)) * C2
 DY (2) = (-3. D* D* Y (1) - 2. D* D* Y (2) + 18. D* D* Y (3) - 6. D* D* Y (4) + Y (5)) * C1
 DY (NP - 1) = (-Y (NP - 2) - 1. D* D* Y (NP - 3) - 56. D* D* Y (NP - 4) + 4. D* Y (NP - 5) + 13. D* D* Y (NP - 6)) * C1
 DY (NP) = (3. D* D* Y (NP - 1) - 16. D* D* Y (NP - 2) + 36. D* D* Y (NP - 3) - 25. D* D* Y (NP - 4) + 25. D* D* Y (NP - 5)) * C1
C
RETURN
END
SUBROUTINE FERMIT(X, EHALFX, IXX)
IMPLICIT REAL*8(A-H, I-Z)
C THIS SUBROUTINE IS BASED ON BATTOCLETI'S ALGORITHM.
DIMENSION C(10)
IF (X.LT. 125D-4 .OR. X.GT. 2.5D) GO TO 1
IF (IXX.EQ.2) GO TO 2
IF (IXX.EQ.3) GO TO 18
IF (IXX.EQ.4) GO TO 19
SUM = D
A = 1.D
DO 3 I = 1, 6
B = *1.D
CC = A*DEXP (B*X) / (B*DSORT (B))
SUM = SUM + CC
IF (DABS (CC).LT. 1.D-3) GO TO 4
A = A*(-1.D)
3 CONTINUE
4 FHALFX = SUM
RETURN
2 SUM = D
A = 1.D
DO 3 I = 1, 8
B = *1.D
CC = A*DEXP (B*X) / DSORT (B)
SUM = SUM + CC
IF (DABS (CC).LT. 1.D-3) GO TO 5
A = A*(-1.D)
3 CONTINUE
5 FHALFX = SUM
RETURN
18 SUM = D
A = 1.D
DO 3 I = 1, 12
B = *1.D
CC = A*DEXP (B*X)*DSORT (B)
SUM = SUM + CC
IF (DABS (CC).LT. 1.D-3) GO TO 2
A = A*(-1.D)
3 CONTINUE
21 FHALFX = SUM
RETURN
19 SUM = D
A = 1.D
DO 3 I = 1, 12
B = *1.D
CC = A*DEXP (B*X)*B*DSORT (B)
SUM = SUM + CC
3 CONTINUE
11. IF (X.GT.5.D) GO TO 12
 N = 5
 C (1) = 1, 69, 2474 D
 C (2) = 1, 391922 D
 C (3) = 2, 938285 D
 C (4) = -2, 938499 D
 C (5) = 96, 937279 D
 C (6) = -16, 23522 D
 GO TO 13.
12. IF (X.GT.12.D) GO TO 14
 N = 6
 C (1) = 1, 69, 313 D
 C (2) = 1, 2192 D
 C (3) = 1, 8177898 D
 C (4) = -3, 840556 D
 C (5) = 3, 247218 D
 GO TO 15.
14. N = 5
 C (1) = 1, 50 D
 C (2) = 1, 2337625 D
 C (3) = 1, 654119 D
 C (4) = 8, 71519 D
 C (5) = 24, 71519 D
 C (6) = 11, 6165, 691 D
13. IF (IXX.EQ.2) GO TO 15
 IF (IXX.EQ.3) GO TO 28
 IF (IXX.EQ.4) GO TO 29
 TEMP = 75225278 D*X*DSQRT(X)
 SUM = D
 RX2 = 1, 0/ (X*X)
 DO 16 I = 1,N
 SUM = RX2*(SUM + C (N-T + 2))
 FHALFX = TEMP* (C (1) + SUM)
 RETURN
15. TEMP = 75225278 D*DSQRT(X)
 SUM = J.D
 RX2 = 1, 0/ (X*X)
 DO 17 I = 1,N
 SUM = RX2*(SUM + C (N-T + 2) * (1, 5D - 2, D*(N-I+1)))
 FHALFX = TEMP* (1, 5D*C (1) + SUM)
 RETURN
16. RX2 = 1, 0/ (X*X)
 DO 17 I = 1,N
 SUM = RX2*(SUM + C (N-I+2) * (1, 5D - 2, D*(N-I+1)) *(1 - 2, D*(N-I+1)))
 RETURN
HALFX = TEMP * (.75D^C(1) + SUM)
RETURN
29 TEMP = (.75226278D^C (X))
SUM = 3.1
BYX2 = 1.3^X(X)*X)
DO 31 I = 1, N
31 SUM = BYX2 * (SUM + C (N-I+2) * (1.5D-2.5D* (N-I+1)) + (2.D^*
1(N-I+1) - .5D^1) * (2.D^* (N-I+1) + .5D^*))
HALFX = TEMP * (.75D^C(1) + SUM)
RETURN
END
REFERENCES

49. R. B. dingle, "The Fermi-Dirac Integrals \(F_p(\eta) = (p!)^{-1} \int_0^\infty \frac{e^\epsilon (e^\epsilon - \eta + 1)^{-1}}{\epsilon} d\epsilon \)," J. Appl. Res., vol. B6, pp. 225-239, 1957.

VITA

Rituparna Shrivastava was born in Rajnandgaon, India on January 2, 1951. He received his Bachelor of Science degree from Jabalpur University in 1968, and Bachelor's and Master's degrees in Electrical Communication Engineering from Indian Institute of Science, Bangalore, in 1971 and 1973, respectively. Since September 1973, he has been pursuing further graduate studies at Louisiana State University, Baton Rouge, where he has worked as a graduate assistant and as an instructor in the Electrical Engineering Department. He has been a recipient of the Government of India National Scholarship (1965-68), Tata Trust Scholarship (1968-71) and Indian Institute of Science Scholarship (1971-73). He is a member of Eta Kappa Nu and Sigma Pi Sigma honor societies and is a student member of Institute of Electrical and Electronics Engineers.

He is presently a candidate for the degree of Doctor of Philosophy in Electrical Engineering.
EXAMINATION AND THESIS REPORT

Candidate: Rituparna Shrivastava

Major Field: Electrical Engineering

Title of Thesis: Diffusion of Arsenic in Degenerate Silicon: A Quasi-static Approach

Approved:

[Signatures]

Major Professor and Chairman

James E. Fraeynham
Dean of the Graduate School

EXAMINING COMMITTEE:

[Signatures]

Date of Examination:

December 1, 1977