Identification of a Chlamydomonas reinhardtii chloroplast gene with significant homology to bacterial genes involved in cytochrome c biosynthesis

Zhi Yuan Chen
Louisiana State University

James V. Moroney
Louisiana State University

Follow this and additional works at: https://digitalcommons.lsu.edu/biosci_pubs

Recommended Citation

This Article is brought to you for free and open access by the Department of Biological Sciences at LSU Digital Commons. It has been accepted for inclusion in Faculty Publications by an authorized administrator of LSU Digital Commons. For more information, please contact ir@lsu.edu.
Identification of a *Chlamydomonas reinhardtii* Chloroplast Gene with Significant Homology to Bacterial Genes Involved in Cytochrome c Biosynthesis

Zhi-Yuan Chen and James V. Moroney*

Department of Plant Biology, Louisiana State University, Baton Rouge, Louisiana 70803

As entire chloroplast genomes are sequenced, the structure of chloroplast genes, open reading frames, and spacer regions can be compared. Shimada and Sugiura (1991) identified 11 open reading frames that were conserved in the rice, *Marchantia*, and tobacco chloroplast genomes. These genes have been designated *ycf* genes (Hallick, 1989). There are also 11 additional conserved genes that are thought to encode subunits of a putative chloroplast NADPH dehydrogenase. *Chlamydomonas reinhardtii* offers a suitable experimental system to test the physiological function of these genes because chloroplast genes can be disrupted by insertional mutagenesis. We have located the *ycf5* gene on the C. *reinhardtii* chloroplast genome and report the sequence of this gene and the flanking DNA in this communication (Table I).

* C. reinhardtii chloroplast DNA was obtained from strain CC-400, a cell-wall-deficient strain carrying the cw-15 mutation. Chloroplast DNA was obtained by density gradient centrifugation and probed with tobacco DNA probes carrying the *ndhD* gene or the *ycf5* gene. These genes lie adjacent to each other on the tobacco, rice, and *Marchantia* genomes. Although no significant hybridization was observed using the *ndhD*-specific probe, a probe carrying the *ycf5* gene hybridized with both isolated C. *reinhardtii* chloroplast DNA and the cloned BamHI 13 fragment obtained from the *Chlamydomonas reinhardtii* Genetics Center. Sequencing of the BamHI 13 fragment indicated that, although the 5' end of the gene was on the BamHI 13 fragment, part of the gene must be on the adjacent BamHI 13 fragment. The 3' end of the gene was obtained by polymerase chain amplification of the BamHI 17 fragment using primers from the flanking BamHI 4 and BamHI 13 fragments. The open reading frame that spanned these two BamHI fragments was 1062 bp and would encode a protein of 353 amino acids.

A comparison of the deduced amino acid sequence with other known sequences revealed that the *Chlamydomonas* gene is very homologous to *ycf5* genes found in higher plants. It has 74.5% identity with the *Marchantia* *ycf5* gene (Ohyama et al., 1986) and 66% identity with the tobacco *ycf5* gene (Shinozaki et al., 1986). In addition, like other *ycf5*

<table>
<thead>
<tr>
<th>Table I. Characteristics of the ycf5 gene of C. reinhardtii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organism:</td>
</tr>
<tr>
<td>Strain:</td>
</tr>
<tr>
<td>Location:</td>
</tr>
<tr>
<td>Function:</td>
</tr>
<tr>
<td>Techniques of Sequencing:</td>
</tr>
<tr>
<td>Method of Identification:</td>
</tr>
<tr>
<td>Features of the DNA Sequence:</td>
</tr>
<tr>
<td>Expression Profile:</td>
</tr>
</tbody>
</table>

...
membrane with the heme attached (Thony-Meyer, 1994). If that is the case, a protein analogous to the Ccl1 gene product must be present in mitochondria and chloroplasts. Although this function has not been physiologically demonstrated in C. reinhardtii or other plants, we have detected a 3.3-kb transcript using a ycf5-specific probe, implying that this is a functional chloroplast gene. In the C. reinhardtii chloroplast, both Cyt f and Cyt c-552 (Merchant and Bogorad, 1987) are c-type cytochromes and would require the proteins necessary to covalently bind the heme to the apoprotein.

Received November 4, 1994; accepted December 20, 1994.
Copyright Clearance Center: 0032-0889/95/108/0843/02.
The GenBank accession number for the sequence reported in this article is U15556.

LITERATURE CITED

II. Update to the nomenclature of genes for thylakoid membrane polypeptides. Plant Mol Biol Rep 7: 266–275
Merchant S, Bogorad L (1987) Metal ion regulated gene expression: use of a plastocyanin-less mutant of Chlamydomonas reinhardtii to study the Cu(I)-dependent expression of cytochrome c-552. EMBO J 6: 2531–2535