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ABSTRACT 

 In this study, a proton pencil beam dose calculation algorithm was developed for a 

parallel, monoenergetic beam incident on a homogeneous water phantom.  Fermi-Eyges theory 

(Eyges 1948) was used to transport pencil beams, and the characteristic width of elastic scatter 

events was modeled using the differential Moliere scattering power (Gottschalk 2010).  The 

incorporation of this scattering power formalism allowed our model to account for multiple 

Coulomb scattering, single scattering, plural scattering, and rigorously accounted for material 

effects on scatter.  Nonelastic nuclear interactions were incorporated into an additional pencil 

beam model.  The attenuation of primary fluence due to nuclear events was accounted for using a 

weighted sum of primary and nuclear pencil beam components (Pedroni et al. 2005, Soukup et 

al. 2005).  Free parameters of the nuclear pencil beam model were determined by a non-linear 

least squares fit to narrow field Monte Carlo data.  Our dose calculation model was 

commissioned using central-axis depth dose data extracted from Monte Carlo simulations.  

Analytical corrections were incorporated to ensure that all input central-axis data satisfied side 

scatter equilibrium. 

 The dose calculation model was evaluated against Monte Carlo simulations of dose in a 

simplified beamline.  Proton beam energies of 50, 100, 150, 200, and 250 MeV and field sizes of 

4x4 cm
2
 and 10x10 cm

2
 were evaluated in three geometries: (1) flat phantom; (2) step phantoms 

(step heights of 1 and 4 cm); and (3) oblique phantom (rotation angle of 45°).  All geometries 

evaluated with Monte Carlo dose calculations yielded 100% of points passing distance-to-

agreement (DTA) ≤ 1 mm or Percent Dose Difference ≤ 3%.  At least 99% of points passed with 

a DTA ≤ 1 mm or Percent Dose Difference ≤ 2%.  The pencil beam dose calculation model 

provided excellent results when compared with Monte Carlo data. 
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CHAPTER 1. INTRODUCTION 

1.1 Background and Significance 

1.1.1 Fundamental Advantages of Proton Therapy 

Current clinical standards for use of external beam radiation in cancer treatment include 

photon and electron therapy.  The success of these methods is due, in part, to reliable technology 

that is easy to operate and useful in treating a wide variety of diseases.  However, the exponential 

attenuation of photon beams results in excess dose delivered to healthy tissue proximal and distal 

to the treatment site (see Figure 1.1).  Electron dose falloff results in minimal dose distal to the 

treatment site, but excessive multiple Coulomb scatter limit the applications of electrons to sites 

within 6 cm of the surface (Hogstrom 2003).  

 Protons offer significant benefits in radiation therapy because they travel in nearly 

straight lines (small amount of multiple Coulomb scatter), they have a narrow Bragg peak that 

Figure 1.1: Central-axis depth dose comparisons of a pristine (grey) and spread-out proton beam 

(solid black curve) to 10 MV x-rays (dashed black curve) (Koehler and Preston 1972).  Note the 

sharp distal dose falloff of the Bragg peak, and the insignificant dose beyond the proton range. 
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can be modulated to create peaks of arbitrary widths, and there is clinically insignificant dose 

beyond treatment sites (Wilson 1946).  These properties have led to the hypothesis that protons 

can provide increased local control of tumors while sparing normal tissue (Koehler and Preston 

1972).  As seen in Figure 1.1, a single field proton beam can achieve high, uniform doses with 

significant proximal (for a spread-out Bragg peak), but no excess distal dose, compared with a 

single field photon beam, which gives a non-uniform distribution over the tumor with both 

significant proximal and distal dose.  

The potential clinical benefits of protons proposed by Wilson (1946) encouraged the first 

clinical evaluations (Tobias et al. 1958).  Several studies produced results that confirmed the 

dose localization and normal tissue sparing advantages offered by protons over photons 

(Terasawa et al. 2009).  However, many of these studies were performed in research institutions 

with limited treatment options and were completed when proton therapy was in its infancy; thus, 

the results from these studies might represent a minimum on the potential advantages of protons 

over photons.  The positive results obtained in these early studies garnered further interest in the 

field of proton therapy and in 1990, one of the earliest hospital-based proton treatment centers 

opened at Loma Linda University Medical Center in California (Slater et al. 1991).  Currently, 

there are 37 proton treatment facilities in operation around the world (PTCOG 2012) with 22 

more planned over the next three years. 

1.1.2 Beam Broadening 

The spread-out Bragg peak shown for the proton beam in Figure 1.1 depicts a clinical, 

modulated proton beam.  The narrow “pristine” peaks that are characteristic of monoenergetic 

proton beams (Figure 1.1) are too narrow to treat most tumors uniformly so they must be spread 

out in depth and width.  There are two techniques for producing adequate clinical beams: passive 

scattering and active scanning. Most proton treatment facilities currently use passive scattering 
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techniques.  The passive scattering method typically uses a double scattering foil system.  The 

first foil in these designs is typically made of a high-Z material that spreads the beam laterally.  

This results in a forward-peaked beam whose lateral distribution is approximately Gaussian in 

shape.  The second foil used in these systems is typically a contoured scatterer made of high-Z 

and low-Z components; the high-Z component is used to scatter the central part of the beam to 

the periphery and the low-Z component is used to modulate the energy of protons while 

minimizing scatter.  The combination of the two scattering foils produces a laterally broad, 

uniform field. 

To spread the beam in depth using the passive scattering technique, a range modulator 

wheel (RMW) is typically used.  The RMW rotates various thicknesses of material into the beam 

as a function of time, producing beams with modified ranges and intensities.  After several such 

modified beams have been directed into the patient, the cumulative result is the spread-out Bragg 

peak (SOBP, see Figure 1.2).  Collimators are used in passive scattering systems to define the 

lateral extents of the treatment field.  Finally, the dose falloff of the proton beam (range) is 

modulated laterally using a range compensator, so as to conform to the distal edge of the 

planning target volume (PTV).  The range compensator is made of tissue-equivalent material 

(usually polymethyl methacrylate (PMMA)), and its thickness controls how much the SOBP 

shifts towards the patient surface.  Figure 1.3(a) shows a typical passive scattering system.  

As an alternative to passive scattering techniques, the active scanning method has been 

used in only a few clinics (Pedroni et al. 1995).  In this form of beam broadening, individual 

small beam spots are controlled under magnetic deflection (along two axes) with the ability to 

modulate the energy and fluence of each spot.  The typical method of active scanning is to first 

deliver dose to the spots at the distal edge of the PTV then proceed with scanning proximal spots 

until the entire volume has been treated by varying intensity and energy for each spot.  A typical 
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active scanning system, illustrated in Figure 1.3(b), does not require a range modulator, dual 

scattering foil system, collimator, or range compensator as does the passive scattering system. 

1.1.3  Basic Proton Interactions 

Protons undergo various physical interactions with atomic electrons and nuclei in a 

calculation medium.  Most of these interactions will be discussed in this section, but those 

interactions that are relevant to clinical dose calculations will be highlighted. 

As protons penetrate through a medium, they lose energy at the expense of excitation and 

ionization of electrons in the target atoms.  At therapeutic energies, radiation loss is negligible, 

so the energy loss per path length (stopping power) is given by 

 � = 
4���������� ��ln � 2������(1 − ��) − �� − !"#�# $		(%�&	��'(), (1)  

Figure 1.2: Multiple narrow Bragg peaks of proton beams of differing fluence and energy can be 

optimally superimposed to form a spread-out Bragg peak (SOBP).  The solution above produced 

a flat SOBP of 10 cm that penetrates (90% depth) approximately 16 cm in water (Khan 2010). 
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where e is the charge of the incident proton, � is the speed of the proton (in units of c – the speed 

of light in vacuum), m is the electron mass, Z is the mean nuclear charge, N is the mean density, I 

is the mean excitation energy of the target atoms, and "# �⁄  is a shell correction that is only 

important at low proton velocities (ICRU 1998).  Stopping power is typically more useful when 

divided by the material density; when in this form, it is referred to as mass stopping power.   

(a) 

 

(b) 

 

Stopping power (and therefore, mass stopping power) exhibits a 1/E dependence (Figure 

1.4), and this energy dependence is the main factor that causes the formation of a Bragg peak.  

Statistical fluctuations due to the discrete energy loss events (energy straggling) cause 

monoenergetic protons to stop at different depths (Bohr 1948).  This effect, called range 

Figure 1.3: Beam broadening systems including (a) a passive scattering system, and (b) an active 

scanning system (Chu et al. 1993). 
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straggling, causes the narrow Bragg peak predicted by stopping theory to have increased width – 

even for initially monoenergetic beams (Gottschalk 2004).  Another effect that protons 

experience as they lose energy in a target material is scattering.  Because of the large mass of 

protons relative to electrons, the deflections that protons experience in electromagnetic 

interactions with electrons are negligible.  As protons interact with atomic nuclei, the Coulombic 

force tends to deflect protons away.  Single deflections with atomic nuclei still tend to be small, 

but as protons proceed through the medium, the cumulative effect of very many of these small 

events becomes significant.  The accumulated deflections are often given a statistical treatment, 

and because there are numerous small deflections, the central limit theorem is invoked; thus, the 

probability density describing these multiple Coulomb scatter (MCS) deflection angles is 

modeled by a Gaussian. 

In order to build an accurate model of MCS, an accurate account of single scatter events 

with the atomic nuclei must first be determined (Gottschalk 2004).  The probability of single 

scatter events is described by the Rutherford formula, which has +'� dependence, where χ refers 

Figure 1.4: Mass stopping power of protons in liquid water (from Berger et al. 2005). 
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to the single scattering angle.  Figure 1.5 shows the comparison between a Gaussian (�',-
) and 

the Rutherford dependence (+'�).  The Rutherford dependence falls off much more slowly than 

a Gaussian does.  However, it is also clear that at large angles the Gaussian predicts that multiple 

scattering is less than single scattering (Gottschalk 2004), which cannot be true and is a 

limitation of the Gaussian approximation of MCS.  Therefore, the true scatter distribution should 

approach +'� at large angles and remain Gaussian for small angles.  Moliere scatter theory (c.f. 

Bethe 1953) includes MCS and single scattering, as well as a correction term to account for an 

intermediate number of scatters (called plural scattering).  Moliere theory is considered to be the 

definitive scatter theory, and it has been shown to agree well with measurements (Gottschalk et 

al. 1993). 

 

Protons undergo nuclear interactions at a rate of about 1.2% g'(cm
2
 (Gottschalk 2004).  

There are three types of nuclear reactions recognized by ICRU report 63 (ICRU 2000): (1) 

elastic, (2) inelastic, and (3) nonelastic.  Elastic interactions with atomic nuclei have already 

been discussed (MCS, single, plural scattering) and inelastic interactions are a special case of 

nonelastic interactions.  Thus, nonelastic nuclear interactions will be the focus in this section.  

Figure 1.5: Comparison of Gaussian (red) and single scatter dependence (black). 
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This type of interaction is nonelastic in the sense that total kinetic energy is not conserved 

because various secondary particles are created that carry energy away from the original nucleus 

(Table 1.1).  The secondary particles created in nonelastic nuclear interactions include short-

range charged secondary particles (which acquire about 60% of the incident proton energy) and 

long-range neutral particles (which acquire about 40% of the incident proton energy) (Gottschalk 

2004).  The portion of incident proton energy carried off by neutral particles is essentially lost 

(i.e., deposited far away from the interaction point) (Gottschalk 2004).  This ‘lost energy’ 

phenomenon caused by the neutral products effectively removes energy from the Bragg peak 

(Gottschalk 2004).  Some of this lost energy gets redistributed in the target and some exits the 

target completely (Gottschalk 2004).  However, these neutral particles (including neutrons and 

photons) do not necessarily have a negligible effect on patient dose; the high relative biological 

effectiveness (RBE) of neutrons and the dose imparted by photons may add a background 

component of dose to the patient.  Figure 1.6 shows the redistribution of the Bragg peak due to 

the neutral particles carrying away some of the incident proton energy.  The short-range particles 

that are created in nonelastic nuclear events carry much lower energies than the incident proton, 

and they scatter out into a faint halo of secondary dose that surrounds the primary proton 

(Pedroni et al. 2005).  For this reason, the secondary dose effect is often called the “nuclear halo” 

(Pedroni et al. 2005, Soukup et al. 2005). 

1.1.4 Dose Calculation Methods 

In order for a linear accelerator to be effectively utilized, an interface between the 

accelerator hardware and the patient data must exist.  In clinics, this interface is referred to as a 

treatment planning system (TPS).  A TPS is a sophisticated computer software package that is 

used to evaluate dose delivered to a planning target volume (PTV) and normal tissues for one or 

more treatment setups.  By comparing the dose delivery for multiple treatment setups, a TPS 
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allows the end user to decide which setup is most appropriate for the patient anatomy and 

disease.  Most TPSs include the ability to import patient data (such as computerized tomography 

(CT) scans), select the beam arrangement around the patient, calculate dose, provide dose 

optimization algorithms to allow intensity modulation, allow one to set prescription dose as well 

as parameters relevant to intensity modulation treatments (e.g., uniformity of dose over tumor, 

dose constraints on healthy tissue and organs at risk), and to view and analyze results.  Figure 1.7 

shows a breakdown of the role of a TPS in implementing a new machine into a treatment clinic. 

Table 1.1: Secondary particles formed in nonelastic nuclear interactions.  The mean fraction of 

energy carried away by each particle is indicated for an incident proton energy of 150 MeV 

(Seltzer 1993).  Presumably, the remaining 16.5% of energy not accounted for is carried away by 

photons (Gottschalk 2004). 

Type 

Fraction of Initial Energy 

Carried by Secondary 

Particle 

Proton 0.57 

Deuteron 0.016 

Triton 0.002 /�0  0.002 

Alpha Particle 0.029 

Nucleus (recoil) 0.016 

Neutron 0.20 

The dose calculation model in a TPS must balance accuracy and computational speed.  

Dose calculation speed is critical for a clinical TPS because patient throughput can often become 

an issue.  However, the dose model must be sufficiently accurate to estimate the dose received by 

patients in radiation treatments.  As the field of radiation therapy advances and new technology 

is introduced, there will be an increasing demand for accuracy and speed in dose calculation 

models. 

Dose calculations involving little or no anatomical heterogeneities (e.g., uveal melanoma) 

have been accurately modeled using broad beam (ray-tracing) methods.  In a broad beam dose 

calculation, pre-calculated (or measured) dose distributions are scaled by the water equivalent 
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depth along the ray; because only heterogeneities encountered by the ray are considered, this 

scaling relationship is one-dimensional.  Broad beam dose calculations also execute in a very 

short amount of time relative to other methods because of this simplistic scaling technique.  

Koch et al. (2008) described a very accurate and very fast broad beam proton dose calculation 

model used to treat uveal melanoma. 

For dose calculations requiring high accuracy for heterogeneous (patient-like) mediums, 

Monte Carlo (MC) simulations are currently accepted to be the gold standard.  MC may have 

achieved this status because they simulate detailed interactions for numerous particle types and 

secondary particles, and the randomness of radiation is explicitly accounted for.  However, 

because MC simulations often involve keeping a detailed history of the physical interactions of 

particles and secondary particles, this method requires long simulation times and expansive 

computer processing capabilities.  The most time consuming MC methods are the original 

detailed history methods.  With detailed history MC simulations, the energy, direction, and 

position of a particle are simulated after each collision (Berger 1963).  Random sampling of 

Figure 1.6: Monte Carlo calculations of the Bragg peak with nuclear reactions turned off 

(dashed) and the actual Bragg peak (solid) (Berger 1993).  The x-axis displays depth normalized 

by the proton range for a 160 MeV beam (12 ≈ 17.7	cm	in	water). 
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single scattering probabilities is used to define subsequent collisions and the collection of the 

saved parameters from all collisions defines the trajectory of the particle (Berger 1963). 

 

Detailed history MC simulations have been largely replaced by condensed history MC 

codes (e.g., Monte Carlo N-Particle eXtended (MCNPX)), which were designed to address the 

significant speed limitation imposed by detailed history MC.  Condensed history MC codes 

sample particle trajectories over a series of step lengths (along the pathlength of the particle); the 

exact selection of the step lengths is determined by scatter theory (Berger 1963) and step lengths 

must be chosen such that a random walk is formed (Berger 1963).  The random walk effectively 

accounts for the collective effects of several collisions; this approximation is the factor that 

allows condensed history MC codes to reduce simulation times relative to detailed history MC 

simulations.  These methods have comparable accuracy to detailed history methods and 

decreased computation time, but they are still considered too slow for clinical dose calculations. 

Clinical 
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(Patient Data)
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Anatomy
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Tools
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Figure 1.7: The role of a treatment planning system (TPS) in a clinic. 
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Track-repeating algorithms are another viable option for MC simulations, and they offer 

further improvement in computational speed.  One such algorithm by Yepes et al. (2008) showed 

that the dose calculation time for their track-repeating algorithm was improved by two orders of 

magnitude over a condensed history MC code.  Track-repeating MC algorithms use proton 

trajectories that are pre-simulated in water (including path length, angles, energy loss, energy 

deposited, and stopping power information for each step) and these trajectories are scaled to 

other materials, typically by a stopping power ratio of the medium of interest to water (Yepes et 

al. 2008).  Because the proton trajectories are pre-simulated, the calculation speed of track-

repeating algorithms is fast; however, a large number of trajectories are needed, and these 

methods are most useful when implemented in a graphical processing unit (GPU) environment 

(Yepes et al. 2010).  GPU simulations require sophisticated programming expertise and 

expansive computer resources.  For these reasons, track-repeating algorithms are currently not 

used in the clinical environment. 

There are presently no MC codes that achieve the simulation speed required for clinical 

dose calculations.  Furthermore, commissioning a beam requires exact and often tedious 

modeling of multiple beamline components which could be time-consuming and difficult.  As 

such, MC simulations are presently considered to be too time-intensive for routine clinical 

treatment planning.  However, MC methods are still used to develop and test analytical dose 

models used for routine patient treatments (Newhauser et al. 2007b, Koch et al. 2005). 

 As an alternative to MC and broad beam techniques, appropriate analytical solutions can 

achieve the necessary balance of accuracy and speed for proton dose calculations (Table 1.2).  

One such solution is referred to as a pencil beam algorithm (PBA).  In a typical PBA, a broad 

beam is divided into a grid of smaller pixels.  Each of these beam segments, called pencil beams, 

are then individually transported through the target material and the resulting dose distributions 
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from each pencil beam are then summed to produce the total dose.  PBAs are discussed in greater 

detail in the Chapter 2. 

Table 1.2: Descriptions of analytical and Monte Carlo methods used for proton dose calculations, 

along with indications of calculation speed and accuracy. 

ANALYTICAL METHODS 

Method Ray-Tracing Pencil Beam 

Description 

Water equivalent depth along 

one dimension is used to 

extract pre-determined dose in 

water. 

Divides broad beam into discrete pixels.  

Dose from each pencil beam is calculated 

and summed to produce the broad beam 

dose. 

Calculation 

Speed 
Very Fast Fast 

Accuracy 
Accurate 

(except for heterogeneities) 
Very Accurate 

MONTE CARLO METHODS 

Method 
Detailed History 

 (Type I) 

Condensed History 

 (Type II) 
Track-Repeating 

Description 

Simulates collisions 

of each particle one-

by-one.  All 

secondary particle 

collisions are 

simulated one-by-

one as well. 

Effect of many small 

collisions condensed into 

a single, large effect 

using a probability 

density derived from 

scatter theory. 

Uses pre-simulated proton 

trajectories in water and 

scales them to other 

materials.  This greatly 

reduces the number of 

collisions that are 

modeled in MC. 

Calculation 

Speed 
Very Slow Slow Fast 

Accuracy Very Accurate Very Accurate Very Accurate 

1.1.5 Application of Pencil Beam Theory to Protons 

 It is generally desirable for a PBA to use some form of measured data and manipulate 

that data according to the physics involved.  A dose calculation model typically increases in 

accuracy in accordance with the amount of physical phenomena modeled in the PBA.  Therefore, 

a PBA for protons would be most useful if a rigorous account of all the basic physical 

interactions discussed in section 1.1.3 were included in the dose calculation model.  In this 
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discussion, several scattering theories will be referenced; more details on these theories can be 

found in Appendix D. 

The earliest dose calculation models for protons implemented one-dimensional broad 

beam (ray-tracing) algorithms (see Table 1.2), which did not account for scatter and modeled 

only energy losses using measured dose data in water.  Experiments performed by Urie et al. 

(1986a) demonstrated that MCS from inhomogeneities reduced the Bragg peak dose 

significantly, compared with ray-tracing calculations, which would shift the unmodified Bragg 

peak measured in water to a different position in depth.  This data indicates that ray-tracing 

techniques are only suitable for simple inhomogeneities.  To accurately account for more 

complex inhomogeneous regions, MCS effects must be included in PBAs (Urie et al.1986a). 

A proton dose calculation paper by Petti (1991) included both a ray-tracing algorithm and 

a differential pencil beam (DPB) model that included MCS effects.  The results from both 

algorithms were compared, using a custom MC dose calculation method as the baseline data, to 

determine the additional accuracy achievable by incorporating MCS effects.  MCS was 

incorporated into the MC dose model, and pencil beams were determined from a MC dose 

distribution in water rather than explicitly using scatter theory to incorporate MCS effects into 

the pencil beams.  Material dependence was accounted for by using the cumulative electron 

density relative to water. 

 By incorporating MCS effects into the DPB model, Petti (1991) showed increased 

accuracy in: the shape of the lateral penumbra, location and magnitude of hot spots, estimates of 

the dose at a given point, and estimates of the uncertainty in the dose at a point due to patient 

motion over ray-tracing techniques.  The hot spots predicted by the DPB model occurred in 

generally the same locations as the MC model with magnitudes 2-3% lower than what was 

predicted by the MC model.  The ray-tracing model did not predict hot spots.  However, the dose 
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predicted by both the DPB and ray-tracing algorithm downstream from the inhomogeneity did 

not change as the inhomogeneity depth was altered, whereas the MC dose values changed by 

40% over the range of depths tested.  The DPB was subject to this limitation because only an 

integrated electron density was used in determining the dose.  Thus, for points proximal and 

distal to the inhomogeneity, the integration gave the same cumulative electron density regardless 

of the depth of the inhomogeneity; thus, hot and cold spots of dose caused by inhomogeneities 

were not appropriately altered with the inhomogeneity depth. 

Studies by Urie et al. (1986b) and Sisterson et al. (1989) showed that in addition to the 

degradation of the Bragg peak due to inhomogeneities, beam-modifying devices upstream of the 

patient can affect the lateral penumbra and the dose falloff beyond the proton range.  Hong et al. 

(1996) developed a PBA to account for these effects using a passive scattering system.  For beam 

elements upstream of the patient, the characteristic scattering angle was calculated using the 

Highland (1975) equation and the lateral projection of this scattering angle was taken as 

increases in source size or the radial spread at the point of interest, depending on the location of 

the beam element relative to the collimator.  The total root mean square (RMS) width (sigma) of 

the pencil beam was then taken to be the sum in quadrature of the source size projected by the 

collimator to the depth of interest, the sigma due to elements downstream of the collimator, and 

the patient sigma.  

The patient sigma was calculated from a lookup table pre-calculated by thick target 

Highland theory at the depth equal to the radiologic path length through the patient.  Radiologic 

path length was determined by an integral over the water equivalent density determined in the 

patient.  Hence, the Hong et al. (1996) PBA neglected the location of an inhomogeneity in 

calculating MCS effects, as did the Petti (1991) DPB model.  However, some improvements 

offered by this model included the use of measured central-axis depth dose profiles, which 
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inherently incorporated range straggling effects, and MCS was explicitly modeled using a 

Gaussian with a sigma given by contributions from the source, beam elements, and the patient.  

The Hong et al. (1996) PBA was shown to predict 20%-80% penumbra widths within 1 

mm of measurements for air gaps over the range of 5 cm to 20 cm.  Inhomogeneities were tested 

by using a water phantom with half of the beam covered by a Lucite block 5 cm thick and a 5.3 

cm gap between the Lucite block and the water tank.  MCS effects due to the Lucite block were 

appropriately modeled, as the hot and cold spots determined by the PBA had the same general 

shape; however, the magnitude of the hot spot on the unblocked side were underestimated by the 

PBA; Hong et al. (1996) attributed this to neglecting nonelastic nuclear interactions created in 

the Lucite block, which causes secondary protons to scatter out into the unblocked side of the 

water tank.  This effect was lowered with increasing depths due to the short ranges of secondary 

protons.  

In a paper by Russell et al. (1995), a method was described which incorporated both 

MCS and large-angle single scattering effects.  MCS effects were accounted for using Fermi-

Eyges theory (Eyges 1948) with scattering powers related to the Hanson et al. (1951) 

approximation of Moliere theory (c.f. Bethe 1953).  To include large-angle scattering effects, the 

water equivalent surface energy required to give the same shape of the Moliere distribution in 

water was found.  The water equivalent surface energy was used to interpolate previously stored 

Moliere distributions and the 1/e width of this distribution was rescaled to the RMS value found 

using Fermi-Eyges theory.  All results showed excellent agreement between experiment and 

calculation of radial spreads in water.  Because Fermi-Eyges theory was used and because the 

energy scaling technique relied on a depth-dependent calculation, the Russell et al. (1995) 

algorithm accounted for the scattering effects due to the location on an inhomogeneity.  

However, results were not shown for inhomogeneous phantoms. 
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 Another interesting topic introduced in the Russell et al. (1995) paper was range 

straggling correction.  While this inclusion of this correction reproduced the experimentally 

determined depth dose falloff near the proton range in water, its derivation was based on lateral 

scattering effects.  It has since been demonstrated that this approach is invalid and that range 

straggling is instead due to energy straggling (Berger 1993, c.f. Deasy 1998).  Hence, the best 

approach for including range straggling in a PBA is by incorporating measured central-axis data 

which already account for this effect (Deasy 1998).  In a later publication, Russell et al. (2000) 

developed a PBA that used measured central-axis data to account for range straggling caused by 

energy straggling.  However, the range straggling correction in Russell et al. (1995) was 

included in this publication as well.  In addition, the Russell et al. (2000) model did not include 

the single scattering correction provided in Russell et al. (1995).  In the same manner as Hong et 

al. (1996), the Russell et al. (2000) model accounted for the initial beam phase space.  The 20%-

80% penumbra width predicted by the Russell et al. (2000) PBA at 10 cm depth, over a range of 

air gaps from 0 to 16 cm were within 1 mm of measured data.  The prediction of hot and cold 

spots due to inhomogeneites and lateral dose falloff results were comparable with other PBAs 

previously mentioned. 

 Deasy (1998) introduced a PBA based on Hanson’s approximation of Moliere theory to 

include large-angle single scattering effects.  This formalism was implemented by forcing all the 

material dependent parameters in Moliere theory (e.g., atomic number, atomic mass, material 

density, fraction by weight of elements) to be functions of depth, which Deasy (1998) stated was 

valid since Moliere made no assumptions about the composition of the dose calculation medium.  

With these depth-dependent material parameters included, this model rigorously accounted for 

material dependence; this feature was novel because it represented a significant improvement 

over prior algorithms using convolution methods (Petti 1991, Russell 1995, 2000), which simply 
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scaled pre-calculated doses in water to the material of interest.  Thus, the explicit depth 

dependence of the material parameters allowed this PBA to account for the scattering effects due 

to the location of an inhomogeneity.  To account for range straggling effects and the attenuation 

of the primary proton fluence by nuclear interactions, Deasy (1998) multiplied the fluence 

distribution given in Hanson’s approximation by a MC central-axis depth dose curve measured 

in water.  The MC data was determined in water and scaled to the correct depth using cumulative 

electron density.  Full width at half maximum (FWHM) values near the end of the range 

predicted by the PBA were shown to be within 1% of predicted theoretical values for incident 

energies of 160 MeV and within 3% at 250 MeV (Deasy 1998).  However, the results were only 

demonstrated in a homogeneous water phantom. 

 Ciangaru et al. (2005) extended Deasy’s (1998) model for dose calculations in 

heterogeneous phantoms.  Several mixed material phantoms were tested using this PBA, 

including an air-bone interface in water, bone parallelepiped in water, bone slab in water, 

homogeneous bone phantom, and a homogeneous water phantom.  One feature highlighted in the 

Ciangaru et al. (2005) PBA was energy-dependent calculations of stopping power ratios
1
.  

Typically, PBAs will use energy-independent stopping power ratios to calculate the effective 

depth in a target material; however, Ciangaru et al. (2005) showed that this approximation was 

not valid for protons in high density materials (such as bone) at energies below 20 MeV. 

Therefore, assuming energy-independent stopping power ratios could affect the calculation of the 

clinically important Bragg peak region for phantoms containing high density heterogeneities.  

The Ciangaru et al. (2005) model was compared to several MC dose calculations, and the 

agreement in general was very good for inhomogeneities located in the first half of the proton 

                                                           
1
 Energy-dependent stopping power ratios were first investigated by Newhauser (2001) and later 

described in Newhauser et al. (2007a), as well as Zhang and Newhauser (2009). 
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range, but the agreement between PBA and MC results diminished for inhomogeneities located 

in the latter half of the proton range.  For most comparisons, the 20%-80% penumbras predicted 

by the PBA and MC were within 1 mm with the PBA predicting the smaller value, but for some 

comparisons, this discrepancy rose to as high as 2.5 mm.  The worst results were seen for lateral 

profiles taken through the center of a bone slab placed at the Bragg peak.  As in most PBAs, the 

distant lateral dose falloff tails for the PBA were smaller compared with the MC results; 

Ciangaru et al. (2005) attributed this effect to the Gaussian approximation introduced by using 

Hanson’s approximation of Moliere theory.  However, Moliere theory was included into the 

Deasy (1998) and Ciangaru et al. (2005) models to account for these large-angle tails.  Thus, it is 

not clear that this model is appropriate for inhomogeneous phantoms. 

 Two different analytical algorithms were introduced by Schaffner et al. (1999) for active 

scanning proton dose calculations.  One of these algorithms, a ray-casting model, included a 

formalism for modeling range straggling, which was empirically characterized by fits to 

probability distributions modeled using scatter theory over a span of depths and incident energies 

(Schaffner et al. 1999).  The ray-casting model inherently accounted for proton energy loss since 

it was based on pre-measured spot beam data in water, and the modeling of the degradation of 

the Bragg peak was also improved because of the inclusion of a range straggling model.  

However, this model was very limited as it did not account for MCS. 

 Another algorithm proposed by Schaffner et al. (1999) was a pencil beam model that was 

designed as a dose kernel convolution.  In this model, dose and fluence calculations were 

performed separately; hence, the name of this method was the fluence-dose calculation.  The 

beam fluence inherently modeled the spread of the beam due to phase space and air gap 

contributions, and the spread of the beam due to scatter in the patient was estimated using a dose 

kernel.  The dose kernel itself was determined using analytical functions that were fitted to MC 



20 
 

calculated depth dose curves (Schaffner 2007).  Because depth dose curves were obtained for 

both primary and secondary protons, the transverse kernel distribution was determined by a two-

Gaussian fit to the primary proton MCS and large-angle scatter events (one Gaussian for each).  

Once the dose kernel was modeled analytically, it was scaled to the water equivalent range 

(WER) to account for material effects; however, because the WER is an integral quantity, this 

model was not capable of accounting for scatter effects due to inhomogeneity location, as in the 

Petti (1991) model.  An optimization method was also used in this model to produce SOBP 

doses. 

 Most proton PBAs prior to 2005 incorporated the attenuation of primary protons due to 

nuclear interactions by using measured MC central-axis depth dose data.  According to Pedroni 

et al. (2005), neglecting the effects of nonelastic nuclear interactions on the pencil beam width 

could lead to predicted dose uncertainties of up to 10%, depending on the size of the target 

volume; therefore, nonelastic nuclear interactions have a non-negligible effect on the proton dose 

distribution (Pedroni et al. 2005, Soukup et al. 2005).  These factors were the motivation for 

incorporating a “nuclear halo” pencil beam into the Pedroni et al. (2005) dose calculation model.  

The Pedroni et al. (2005) model was the first PBA to incorporate the effects of beam attenuation 

and the nuclear halo caused by nonelastic nuclear interactions.  The model used two Gaussians to 

determine the fluence: one Gaussian was used to account for primary scatter (a modified version 

of the Highland equation was used) and the second Gaussian represented the nuclear halo.  The 

nuclear halo parameters were experimentally determined by scanning pencil beams in concentric 

square frames at varying distances from a small ion chamber.  The overall dose equation was 

taken as a weighted sum of these two Gaussians, multiplied by the measured integral dose to 

convert the fluence to dose.  The model was highly empirical, and many values were 

parameterized on the basis of the treatment machine at Paul Scherrer Institute (PSI, Switzerland); 
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however, excellent results with measurements made on their treatment machinery were observed.  

SOBP depth dose curves were predicted within 1% of measurements.  Comparison of dose 

calculations with a charge-coupled device (CCD) used to measure dose from an intensity 

modulated proton therapy (IMPT) treatment showed excellent agreement.  Accuracy of the 

model was with 1% to 2% (standard deviation) of ionization chamber measurements. 

The Pedroni et al. (2005) PBA accounted for MCS effects by using a modified version of 

Highland theory and transport was accomplished using Fermi-Eyges theory.  However, the 

Highland formula was only evaluated at the surface, and a scaling relation (Overas 1960) was 

used to find the scattering power at deeper depths.  This scaling relation depended on depth in 

the phantom, the proton range, and an empirically determined exponent which scaled the 

scattering power to the material at depth z.  It is not clear that this scaling method is entirely 

appropriate for an inhomogeneous phantom. 

Soukup et al. (2005) developed a PBA which was very similar in form to the Pedroni et 

al. (2005) algorithm.  This PBA accounted for the nuclear halo and the beam attenuation of 

primary protons.  Stopping power ratios for materials encountered in the phantom were 

performed as energy-dependent calculations.  The Soukup et al. (2005) algorithm incorporated 

adaptive division of pencil beams to more accurately model heterogeneities.  Scattering effects 

were calculated using a user-selected scattering power given by the Rossi formula (Rossi and 

Griesen 1941), corrected Rossi, or Highland / Lynch formula (c.f. Gottschalk et al. 1993).  Beam 

transport was accomplished using Fermi-Eyges theory.  For homogeneous and slab phantoms in 

water, the agreement between the PBA and MC was 3% and 1 mm.  However for water 

phantoms with a bone-air interface occurring in the longitudinal center of the phantom, 49 

subspots of the pencil beam were necessary to produce adequate results (i.e., pencil beams in the 

area of the interface were each divided in 49 sub-pencil-beams).  More clinically relevant 
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inhomogeneous phantoms, including a head and neck and prostate IMPT, did not reach the 

accuracy of the MC simulations.  Soukup et al. (2005) has deferred the treatment of these 

inaccuracies for future publication. 

1.2 Motivation for Research 

From section 1.1.5, the most important effects to include in a PBA include MCS as 

calculated by scatter theory, the effects of nonelastic nuclear interactions on primary beam 

attenuation and the nuclear halo, experimentally determined central-axis depth dose data to 

account for energy loss and range straggling, and material- and energy- dependent calculations of 

energy loss.  Additionally, the dose calculation model should be able to account for the location 

of an inhomogeneity and provide a rigorous account on the influence of materials on scatter 

events.  Ideally, the dosimetric effects of large-angle single scattering and plural scattering 

should be included as well.  

Using a two pencil beam model, as in Pedroni et al. (2005) and Soukup et al. (2005), 

Fermi-Eyges theory is well suited to account for all of these effects since both pencil beams are 

modeled as Gaussians.  The inherent structure of Fermi-Eyges theory accounts for scatter effects 

due to the location of inhomogeneities.  However, an accurate scattering power is needed to 

account for MCS, large-angle single scattering, plural scattering, and an explicit account of 

material properties on scatter events.  

Gottschalk (2010) provided a comprehensive review of all available scattering power 

formulas for protons, and he introduced a new formula: the differential Moliere scattering power.  

By comparing all scattering power data, Gottschalk (2010) showed that the differential Moliere 

formula was the only method capable of producing results within 2% of measurements over a 

wide range of materials (including beryllium, aluminum, copper, and lead) at clinically relevant 

proton energies.  The differential Moliere method was derived directly from a bilinear fit to 
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Hanson’s approximation of Moliere theory in four materials and therefore includes MCS, single 

scattering, and plural scattering.  The material-dependence in the differential Moliere method is 

encapsulated in a ‘scattering length’ term, which rigorously accounts for material parameters.  

The purpose of the present work is to incorporate all of these effects into a PBA sufficient 

for clinical dose calculation.  Fermi-Eyges theory is chosen for this purpose because it retains a 

high degree of flexibility in transport calculations.  The differential Moliere scattering power is 

also implemented because it accounts for high-order scatter events and incorporates material 

dependence into these calculations.  A two pencil beam model is designed; one pencil beam is 

assigned to primary events and another is used for nonelastic nuclear events.  The undetermined 

parameters in the nonelastic nuclear model are parameterized on the basis of MC dose 

calculations.  Finally, central-axis depth-dose data from MC simulations is incorporated to 

determine energy loss and range straggling effects and stopping power ratios are evaluated as 

material- and energy- dependent calculations. 

1.3 Hypothesis and Specific Aims 

The hypothesis of this work was that a pencil beam dose calculation will predict the dose 

imparted to a homogeneous phantom by a parallel, monoenergetic proton beam with a uniform 

beam fluence under a variety of conditions* within 2% dose difference or 1 mm distance-to-

agreement (using a 1% dose threshold) compared with a Monte Carlo dose model subject to the 

same conditions. 

* The hypothesis is proposed for the following conditions: 

• Incident energies: 50, 100, 150, 200, 250 MeV; 

• Field sizes: 4x4 cm
2
, 10x10 cm

2
; 

• Beam angles: 0°, 45°; 
• Step discontinuity heights along surface: 0, 1, 4 cm (0°	only). 
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1.3.1 Specific Aim 1: Develop Dose Calculation Algorithm  

Develop a monoenergetic, parallel beam dose calculation algorithm to calculate dose in a 

homogeneous phantom.  The dose model will (1) consist of two pencil beams to account for 

primary and nonelastic nuclear events, (2) use Fermi-Eyges theory to transport pencil beams, (3) 

calculate scattering power using the differential Moliere formula, which includes material effects 

on scatter events, as well as MCS, single scatter, and plural scatter. 

1.3.2 Specific Aim 2: Configure and Commission Algorithm Using Monte Carlo 

Simulations   

Develop a Monte Carlo dose model in MCNPX to generate dose distributions that will 

serve as a source of commissioning data for the PBA.  These simulations will be used as an 

analog for physical measurements.  Analytical corrections to narrow field MC data will be 

applied to convert the data to infinitely broad beams. 

1.3.3 Specific Aim 3: Evaluate Dose Calculation Accuracy of Algorithm in Homogeneous 

Media  

Three distinct simulations (including flat phantoms, phantoms with a step discontinuity 

along the surface, and oblique beams) will be tested to evaluate the accuracy of the PBA dose 

predictions relative to the predictions of MC simulations.  All geometries will be evaluated by 

the distance-to-agreement and percent dose difference between the MC and PBA datasets.  These 

measures will be subsequently compared to the criteria proposed in the hypothesis (≤ 1 mm 

distance-to-agreement or ≤ 2% dose difference, using a 1% dose threshold).  The percentage of 

points passing these criteria will be used to indicate the agreement between MC and PBA results. 
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CHAPTER 2. METHODS 

2.1 Aim 1: Develop Dose Calculation Algorithm 

A pencil beam algorithm (PBA) was developed for calculating dose from a parallel, 

monoenergetic proton beam in a homogeneous water phantom.  The algorithm was designed to 

account for user-defined beam angles and step irregularities on the target surface.  Fermi-Eyges 

theory (Eyges 1948) was used to transport the proton beam, represented by two Gaussians.  

Elastic scatter events (including multiple Coulomb scattering (MCS), plural, and single 

scattering) were accounted for by using an analytical scattering power formula (Gottschalk 2010) 

to determine the characteristic width of the first Gaussian.  The second Gaussian was included to 

characterize nonelastic nuclear events, and the sigma of the distribution was parameterized using 

a non-linear least squares fit to narrow field Monte Carlo (MC) dose data.  The development of 

this algorithm is discussed in the sections that follow. 

To facilitate the discussion of the desired model, some basic elements of pencil beam 

theory are presented in section 2.1.1.  Since our model used pencil beam theory, all the equations 

in this section were inherently included in our work.  However, the defining features of our 

model are not presented until section 2.1.2.  The dose calculation model in section 2.1.2 

elucidates the two-Gaussian model used for proton beam transport, along with the methods used 

to determine the parameters in both Gaussians. 

Data required by the dose calculation model, excluding commissioning data, is specified 

in section 2.1.3.  The implementation of the model into a computer-readable format and the 

incorporation of input data into the model are discussed in section 2.1.4.  

2.1.1 Pencil Beam Theory 

The theory described in this section gives a brief overview of basic pencil beam theory in 

the context of proton dose calculations for the geometry used in the present model (as shown in 
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Figure 2.1(b)).  Dose calculations in the phantom are the focus of this section since our model 

did not account for any beam elements upstream of the phantom.  For a full discussion on pencil 

beam theory, the reader is encouraged to consult other sources (Hogstrom et al. 1981, Petti 1991, 

Hong et al. 1996, Deasy 1998, Schaffner et al. 1999, Schaffner 2008, Russell et al. 2000, 

Syzmanowski et al. 2002, Ciangaru et al. 2005, Pedroni et al. 2005). 

(a) 

 

(b) 

 
Figure 2.1: The modeling of (a) a broad beam by strip pencil beams is illustrated, along with (b) 

the three-dimensional geometric assumptions of our dose calculation phantom as illustrated for a 

step phantom (with a variable step height, /?@AB); all areas shaded in blue are water and those 

areas in dark grey are vacuum.  In (a), a pencil beam strip of width ∆C is shown centered at CD 
and it extends in the E direction from EFDG to EFHI.  The same pencil beam strip is shown in (b) 

(shaded in yellow), and it extends through the phantom with an arbitrary calculation point in the CJ plane denoted by an asterisk (*). 

The pencil beam method can be used to represent an incident broad beam as a collection 

of infinitesimally narrow pencil beams; hence, the total dose to an arbitrary point K(C, E, J) from 

a broad beam is equivalent to integration over pencil beam dose contributions to K(C, E, J).  

Following the algorithm outlined in Hogstrom et al. (1981), the total dose to K(C, E, J) is given 

by the following formula: 
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 L(C, E, J) = M �(CN, EN)	O(C − CN, E − EN, J)	OCN	OE′Q2RR(S) , (2)  

where �(CN, EN) is a weighting factor for the pencil beam located at (CN, EN), O(C − CN, E − EN, J) 

is the dose delivered to K(C, E, J) from the pencil beam located at (CN, EN), and �TUU(J) is used to 

indicate that the integration is performed over the collimator limits projected to depth J.  The 

pencil beam dose can be further separated into central-axis and off-axis terms: 

 O(C, E, J) = LAIB@V (0,0, J)W(C, E, J), (3)  

where C = E = 0 is the central-axis of the beam and LAIB@V (0,0, J) is the central-axis through 

experimentally determined dose, corrected to an infinitely broad field (such that side scatter 

equilibrium is satisfied).  The off-axis term can be assumed to be related to the probability 

density of a point beam as given by Fermi-Eyges theory (Eyges 1948) (see Appendix D): 

 W(C, E, J) = 12�	XY(J)Z� exp ]−	 C� + E�2XY(J)Z�	_, (4)  

where Y(J) is the root mean square (RMS) width of W(C, E, J).  Because Fermi-Eyges theory is 

used to derive W(C, E, J), the small-angle approximation is valid, which allows W(C, E, J) to be 

separable in both C and E: 

 W(C, E, J) = WI(C, J)	Ẁ (E, J) (5a)  

 WI(C, J) = 1√2�	Y(J) exp �−	 C�2XY(J)Z�  (5b)  

 Ẁ (E, J) = 1√2�	Y(J) exp �−	 E�2XY(J)Z� . (5c)  

The central-axis term only depends on the J-coordinate, so the separation of variables in 

equations (5a-c) allows a separation of variables for the pencil beam dose equation, given by 

 O(C, E, J) = OI(C, J)	O`(E, J). (6)  
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 In our model, dose is calculated only in the CJ plane; however, our model is derived from 

the standard dose equations detailed above.  Because the central-axis term in equation (3) is 

corrected to an infinitely broad field, side scatter equilibrium is assured.  Under conditions of 

side scatter equilibrium, the reciprocity relationship (ICRU 1984) can be invoked to relate the 

dose calculated on the CJ plane from a broad beam to the dose from a pencil beam, integrated 

over −∞ to ∞ along the E-axis.  Therefore, our model effectively assumes that our calculation 

phantom is a right cylinder, infinite in the J-direction with a planar cross section CJ (shown as a 

step phantom in Figure 2.1(b)).  An illustration of all the degrees of freedom included in our dose 

calculation model is provided in Figure 2.2.  By the reciprocity relationship, pencil beams must 

also extend infinitely in the E-direction (Figure 2.1(a), with EFDG and EFHI approaching infinity) 

and in this context they are more appropriately called strip beams. 

Rewriting equation (2) using strip beams that are ∆C wide, the dose to K(C, E, J) is given 

by the following relation: 

 L(C, E, J) = !c c �(CD, E)	O(C − CN, E − EN, J)	OCNOE′`def
`dgh

Igi∆I/�
Ig'∆I/�D , (7)  

where k is used to iterate over pencil beam strips.  Using the separability relation shown in 

equation (6) for the pencil beam dose and setting �(CD, E) = 1 for all pencil beams (since our 

model only accounts for beams with uniform incident fluence) gives the following relation: 

 

L(C, E, J) = �!c OI(C − CN, J)	OCNIgi∆I�
Ig'∆I�D $ 

	x		 ]c O`(E − EN, J)	OEN`def
`dgh _. 

(8)  
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(a) (b) 

  
Figure 2.2: (a) The geometry of our dose calculation model.  The incident beam is shown in grey 

shading at an oblique angle.  The terms l, /?@AB, and FS refer to the beam rotation angle, height 

of the step irregularity, and field size (all of which can be varied by the user), respectively.  The 

dose is to be computed at the point P(x,z).  (b) The incident beam is segmented into one-

dimensional pencil beams (strips), shown as black arrows in the grey shaded area.  The central-

axis of a pencil beam located at x’ is shown extending through the phantom by a red dotted line, 

which is x-x’ away from P(x,z) at depth z. 

Substituting equation (3) for the pencil beam doses in equation (8) reduces the dose delivered to 

K(C, E, J) to the following form: 

 

L(C, E, J) = LAIB@V (0,0, J) �!c 	WI(C − CN, J)OCNIgi∆I�
Ig'∆I�D $ 

																																					x	 ]c Ẁ (E − EN, J)	OE′`def
`dgh _. 

(9)  
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        (a) 

 

        (b) 

 
        (c) 

 

        (d) 

 
        (e) 

 

        (f) 

 
Figure C.5: Lateral profiles through 250 MeV Monte Carlo data (solid) and Levenberg-

Marquardt fit data (dashed) at depths of (a) 0 cm, (b) 10 cm, (c) 20 cm, (d) 30 cm, (e) 36 cm, (f) 

37 cm.
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C.3 Central-Axis Data 

       (a) 

 

        (b) 

 

       (c) 

 

        (d) 

 
Figure C.6: Central-axis data for a 50 MeV beam with: (a) 4x4 cm

2
 field size incident on a flat phantom; (b) 10x10 cm

2
 field size incident 

on a flat phantom; (c) 4x4 cm
2
 field size incident on a 45 degree oblique phantom; (d) 10x10 cm

2
 field size incident on a 45 degree oblique 

phantom.  PBA (solid) and MC (dashed) data are shown.  
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       (a) 

 

            (b) 

 
      (c) 

 

           (d) 

 
Figure C.7: Central-axis data for a 150 MeV beam with: (a) 4x4 cm

2
 field size incident on a flat phantom; (b) 10x10 cm

2
 field size incident 

on a flat phantom; (c) 4x4 cm
2
 field size incident on a 45 degree oblique phantom; (d) 10x10 cm

2
 field size incident on a 45 degree oblique 

phantom.  PBA (solid) and MC (dashed) data are shown. 
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       (a) 

 

         (b) 

 
      (c) 

 

         (d) 

 
Figure C.8: Central-axis data for a 250 MeV beam with: (a) 4x4 cm

2
 field size incident on a flat phantom; (b) 10x10 cm

2
 field size incident 

on a flat phantom; (c) 4x4 cm
2
 field size incident on a 45 degree oblique phantom; (d) 10x10 cm

2
 field size incident on a 45 degree oblique 

phantom.  PBA (solid) and MC (dashed) data are shown. 
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C.4 Lateral Profile Data 

          (a) 

 

          (b) 

 
Figure C.9: Lateral profiles through flat phantom simulations from the pencil beam algorithm 

(solid) and Monte Carlo data (dashed) at 50 MeV.  All profiles were symmetric about the 

central-axis; the thin vertical line in (a) and (b) indicates that the profiles shown on the left half 

of the line are taken through 4x4 cm
2
 simulations and the profiles on the right half of the line are 

taken through 10x10 cm
2
 simulations.  Profiles are shown at depths of: (a) 80% of the maximum 

dose, and (b) maximum dose.  

 

 

         (a) 

 

          (b) 

 
Figure C.10: Lateral profiles through flat phantom simulations from the pencil beam algorithm 

(solid) and Monte Carlo data (dashed) at 150 MeV.  All profiles were symmetric about the 

central-axis; the thin vertical line in (a) and (b) indicates that the profiles shown on the left half 

of the line are taken through 4x4 cm
2
 simulations and the profiles on the right half of the line are 

taken through 10x10 cm
2
 simulations.  Profiles are shown at depths of: (a) 80% of the maximum 

dose, and (b) maximum dose.
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        (a) 

 

        (b) 

 
Figure C.11: Lateral profiles through flat phantom simulations from the pencil beam algorithm (solid) and Monte Carlo data (dashed) at 

250 MeV.  All profiles were symmetric about the central-axis; the thin vertical line in (a) and (b) indicates that the profiles shown on the 

left half of the line are taken through 4x4 cm
2
 simulations and the profiles on the right half of the line are taken through 10x10 cm

2
 

simulations.  Profiles are shown at depths of: (a) 80% of the maximum dose, and (b) maximum dose. 

 

    (a)       (b)    (c)  (d) 

    
Figure C.12: Lateral profiles through the Bragg peak of a 50 MeV beam in a 45 degree oblique phantom with a field size of: (b) 4x4 cm

2
, 

and (d) 10x10 cm
2
.  The dose distributions used to extract the lateral profiles are shown in (a,c). 

 

R
el
a
ti
v
e 
D
o
se
 (
%
) 



120 
 

 (a)    (b)   (c)    (d) 

    
Figure C.13: Lateral profiles through the Bragg peak of a 150 MeV beam in a 45 degree oblique phantom with a field size of: (b) 4x4 cm

2
, 

and (d) 10x10 cm
2
.  The dose distributions used to extract the lateral profiles are shown in (a,c). 

 

 

  (a)    (b)   (c)     (d) 

    
Figure C.14: Lateral profiles through the Bragg peak of a 250 MeV beam in a 45 degree oblique phantom with a field size of: (b) 4x4 cm

2
, 

and (d) 10x10 cm
2
.  The dose distributions used to extract the lateral profiles are shown in (a,c). 
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APPENDIX D. SCATTER THEORY 

The discussion on scatter theory that follows is limited in scope to Fermi-Eyges transport 

theory (Eyges 1948), Moliere/Hanson scatter theory (c.f. Bethe 1953, Hanson et al. 1951), and 

the Highland equation (Highland 1975).  The reader is referred to these original publications for 

further details on these theories.  Further, this section will highlight the equations that are 

important for this study while qualitatively presenting their significance.  In the following 

discussion, χ is used to notate angles occurring from single scattering events and θ is used to 

notate angles due to multiple scatter events. 

D.1 Fermi-Eyges Transport Theory 

This theory was derived for multiple Coulomb scattering and therefore uses a single 

Gaussian for beam transport.  However, the incorporation of a ‘scattering power’ term allows 

this theory to account for higher order scatter events; that is, the complexity of the scatter events 

are dictated by the scattering power and the Fermi-Eyges theory is used to transport these 

parameters.  Fermi-Eyges theory is characterized by the determination of three scattering 

moments, which are related to the root mean square (RMS) angle of an angular distribution, a 

covariance term, and the RMS lateral spread of an angular distribution.  All three of these 

moments can be calculated using equation (14) for j = 1,2,3.  In these equations, the differential 

increase in RMS angle over an infinitesimally small depth, T(E(z)), is the scattering power of a 

given material and z indicates the depth at which the scatter is to be quantified.  In general, the 

scattering power is a term that depends on both the beam energy at a given depth and the 

material in which the scattering occurs.  Gottschalk (2010) has provided a comprehensive review 

of analytical scattering power formulas, some of which incorporate a single scattering correction 

factor for use with the formalism present in Fermi-Eyges theory.  In this sense, these authors 

have derived parameters that account for both the central small-angle Gaussian distribution and 
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the slowly decaying single scattering tails to be adopted into the single Gaussian formulation of 

Fermi-Eyges theory. 

Physically, t2 is the square of the RMS of the Gaussian angular distribution of protons, 

t( is a position-angle correlation term, and t� is the square of the RMS of the Gaussian spatial 

distribution.  From these three moments the virtual source-to-surface distance (SSD) (i.e., the 

point along the beam axis where all beam rays project back to) can be derived for a diverging 

beam as the quotient of the second moment to the first moment (equation (50)).  The mean angle 

of a pencil beam can be determined from the Fermi-Eyges moments and the off-axis position X 

by equation (51).  The spread about the mean angle can also be calculated from the Fermi-Eyges 

moments by equation (52).  Further, Fermi-Eyges theory inherently accounts for the effect of 

every inhomogeneity and the specific location of each inhomogeneity because the integration in 

equation (14) sums the scatter effects for all integration steps z’ and characterizes the effect that 

has on depth z; that is, the inclusion of the (z-z’) term in an integral over dz’ inherently includes 

these effects.  

 ��LÙD¹ = t�t( (50)  

 lIÀÀÀ = �t(t��� 
(51)  

 YÚÛ� = t2 − t(�t� 
(52)  

Fermi-Eyges theory was derived for stacked semi-infinite slab geometry (as shown in Figure 

2.3(b)).  In this respect, Fermi-Eyges theory does not provide a result directly useful for patient 

inhomogeneities.  However, if the incident beam is divided into a grid of smaller pencil beams, 

then the semi-infinite slab approximation more reliably models the surrounding material.  Thus, 

Fermi-Eyges theory has become popular for PBAs. 
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D.2 Moliere / Hanson Scatter Theory 

Moliere (c.f. Bethe 1953) proposed a scatter theory that has been shown to agree with 

measured data (Gottschalk et al. 1993).  In Moliere theory, three terms are used to describe the 

scattered distribution of a beam of particles: (1) a small-angle multiple Coulomb scattering 

(MCS) Gaussian term, (2) a large-angle single scattering term, and (3) a correction term to 

account for an intermediate number of scatters (called plural scattering).  The derivation of the 

Moliere theory of angular deflections (c.f. Bethe 1953) begins at the same starting point as the 

derivation of the Fermi-Eyges transport theory: the transport diffusion equation.  However, rather 

than using the central-limit theorem to produce a Gaussian distribution as in Fermi-Eyges theory, 

the Moliere theory instead explicitly gives a method to calculate the limits beyond MCS events.  

One term, called the characteristic single scattering angle +Q (equation (53)), accounts for 

collisions that occur very close to the nucleus (which causes a large scattering angle) because the 

nucleus is a distributed charge (not a point charge as in the Rutherford derivation).  Another term 

in the Moliere theory, called the screening angle +H (equation (54)), accounts for collisions that 

occur far away from the nucleus (with a small scattering angle) because the nucleus is screened 

by electrons.  Using the Fermi-Thomas model of the atom (related to equation 55) and the Fano 

(1954) correction for scattering from atomic electrons (equation (65)), the Moliere equations for 

a thin target (i.e., little or no energy loss occurs in the target) are presented below. 

 +Q,ÜÝDG� = 4���(�ħ�)� ��� �	J(~�)� (53)  

 +H,ÜÝDG� = 4���(�ħ�)�ß (54)  

 ß = 
�	�A��0.8853�� �1.13 + 3.76	 ��	�� �� ��/0
(~�)�  

(55)  
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In the above equations, z is the calculation depth, ��	stands for Avogadro’s number, � is the fine 

structure constant (1/137), Z is the atomic number and A is the atomic mass of the target 

material, � is the density of the material,	�A�� is the electron rest mass, ħ is Planck’s constant 

divided by 2π, c is the speed of light in vacuum, and pv, pc, and β are kinematic factors related to 

the energy of the beam (equations (56)-(58)).  The kinematic factors are related to the beam 

energy by 

 ~� = v� − (�B��)�v  (56)  

 �� = v� − (�B��)�v�  (57)  

 (~�)� = v� − (�B��)� (58)  

where E stands for the total energy (kinetic plus rest mass) and �B��	is the proton rest mass.  

The physical interpretation of +Q is that on average a particle will undergo only one 

scatter event that is greater than the angle +Q throughout the entire target (Gottschalk et al. 1993).  

The physical interpretation of +H is that it is a cutoff angle for distant collisions (from the 

nucleus) for which there is a departure from the Rutherford law (which falls off as +'�) 

(Gottschalk et al. 1993).  Equation (55) is an approximation introduced by Moliere for the 

electronic screening based on the Fermi-Thomas model of the atom. 

 Equations (53)-(58) give a library of functions to determine the final +Q,ÜÝDG�  and +H,ÜÝDG� .  

From there, Moliere proposed a term that is the natural logarithm of the effective number of 

collisions in the target (equation (59)) (Gottschalk et al. 1993).  This number can then be used to 

find the reduced target thickness, B (equation (60)) (Gottschalk et al. 1993).  The characteristic 

multiple scattering angle l}, can then be found by equation (61).  The iterative numerical 



125 
 

solution of B (equation (60)) can be avoided for clinical energies (3-300 MeV) by applying 

Scott’s (1963) (equation (62)). 

 à = ln 
 +Q�1.167	+H�� (59)  

 ¡ − ln¡ = à (60)  

 l} = +Q√¡ (61)  

 ¡ = 1.153 + 2.583	 log(p 
+Q�+H�� (62)  

In equations (59)-(62), we have represented +Q and +H without the thin to illustrate that these 

equations apply for any characteristic angle and any screening angle. 

To adapt equations (53)-(55) to a thick target calculation (i.e., in a semi-infinite slab 

geometry), energy loss and material dependency must be taken into account.  These factors are 

presented in the original Moliere theory (c.f. Bethe 1953).  Thus, the thick target characteristic 

single scattering angle is given by equation (63) and the thick target electronic screening angle is 

given by equation (64).  In the calculation of the thick target electronic screening angle (equation 

(64)), the Moliere theory must be corrected for scattering from atomic electrons using Fano’s 

(1954) correction factor (equation (65)).  While Fano’s original correction was only valid for a 

thin target, Scott (1963) extended Fano’s correction factor for thick targets (equation (65)). 

 +Q,ÜÝDQ�� = 4���(�ħ�)� c �(JN)	!�#(JN) �#�(JN)�#(JN) � 1~�(JN)�� OJ′#
S

p  (63)  

 

ln�+H,ÜÝDQ�� � = 4���(�ħ�)�+Q,ÜÝDQ�� 	c �(JN)	!�#(JN) �#�(JN)�#(JN)	#
S

p  

							C	 � 1~�(JN)�� �ln ß#(JN) − �#(JN)�#(JN) 	OJ′ 
(64)  
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 �#(JN) = ln Ë1130	�#'
�0(JN) 
 �(JN)1 − ��(JN)�

�Ì − á# − 12��(JN) (65)  

In equations (63)-(65), explicit depth dependence is included in several terms and a summation 

over elements of a given compound or mixture is also included (note that, for instance, �# refers 

to the atomic mass of the jth element in the target compound).  ß#(JN) is computed according to 

equation (55) by substituting Z with �#(JN)	and replacing pc with ~�(JN)	and β with �(JN).  The 

fluence for the Moliere distribution is then given by 

 W(â)	Oâ = â	Oâ �W(p)(â) + W(()(â)¡ + W(�)(â)¡�   (66)  

where  

 W(G)(â) = 1 !c äp(âE)	E	exp	
−E�4 �
E�4 	ln E�4 �G OEV
p  (67)  

and 

 â = ll} . (68)  

The function äp	in equation (67) denotes a Bessel function.  The first term in equation (66) is a 

standard Gaussian and the remaining two terms are corrections to account for large-angle 

scattering and plural scattering. 

To find l} 	for the thick angle equations, we would again apply equations (59)-(61) using 

the thick target single-scattering angles in equations (63) and (64).  However, this characteristic 

scattering angle must be used in the three-term fluence equation (equation (67)) presented by 

Moliere (c.f. Bethe 1953) and cannot be used in a Gaussian (because it was not derived to fit the 

form of a Gaussian).  In order to take advantage of the Moliere calculation for single Gaussian 

transport, the Hanson et al. (1951) approximation is applied.  The RMS width of the Hanson 

distribution is taken to be the width at which the total Moliere fluence falls to 1/� (here, e refers 
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to the natural number 2.7182…) of its maximum value; hence, the Hanson approximation 

provides a fitted Gaussian to the Moliere fluence distribution with a RMS width that is 

equivalent to the 1/�	width of the Moliere distribution.  Hanson’s approximation, for the 

purposes of clinical dose calculation, sufficiently accounts for all three of the scatter terms 

included in the Moliere theory.  Thus, the Hanson distribution will give an excellent description 

for the primary fluence of a pencil beam.  Hanson’s approximation is said to be within 2% of 

measurements (whereas Moliere theory is definitive) (Gottschalk et al. 1993).   

The width of the Hanson angular distribution lå is related to the Moliere characteristic 

multiple scattering angle	l} by  

 lå = l}s1 − 1.2/¡ (69)  

where the square root term is a factor to convert the width of the Moliere angular distribution to 

1/�	of its maximum value.  The fluence for the Hanson distribution is given by 

 W(l)	Ol = 12�	lå �C~ �−l�2	lå . (70)  

D.3 Highland Equation 

Some have regarded the task of performing a full Moliere calculation to be too 

complicated for practical implementation.  To address this issue, Highland (1975) provided a 

simple parameterization of Hanson’s approximation of Moliere theory which depends solely on 

radiation length in materials, which are contained in standard lookup tables for several materials.  

The thin target Highland equation is given by 

 låæ,ÜÝDG = 14.1~� È�J�2 ­1 + 19 log(p ��J�2�®, (71)  

where �2 is the radiation length of the target.  Gottschalk et al. (1993) extended this formula to 

thick targets by allowing z to become infinitesimally small and added contributions from låæ,ÜÝDG 
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in quadrature, allowing the pv in the denominator to vary with depth.  Thus, the Highland thick 

target formula is 

 låæ,ÜÝDQ� = 14.1 �1 + 19 log(p �J@2@�2 �Èc � 1~�(JN)�� �(JN)�T(JN) OJ′S
p  (72)  

where the bracketed term in equation (71) has been taken out of the integral to serve as a 

correction on the entire target thickness (Gottschalk et al.1993).  Highland theory is said to be 

within 5% of measurements (Highland (1975)). 
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