1975

Design and Comparison of Controllers Based on Simplified Models of the Process.

Jacob Martin Jr
Louisiana State University and Agricultural & Mechanical College

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses

Recommended Citation
https://digitalcommons.lsu.edu/gradschool_disstheses/2883

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact gradetd@lsu.edu.
INFORMATION TO USERS

This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted.

The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction.

1. The sign or “target” for pages apparently lacking from the document photographed is “Missing Page(s)”. If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity.

2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame.

3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in “sectioning” the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again — beginning below the first row and continuing on until complete.

4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from “photographs” if essential to the understanding of the dissertation. Silver prints of “photographs” may be ordered at additional charge by writing the Order Department, giving the catalog number, title, author and specific pages you wish reproduced.

5. PLEASE NOTE: Some pages may have indistinct print. Filmed as received.

Xerox University Microfilms
300 North Zeeb Road
Ann Arbor, Michigan 48106
MARTIN, Jacob, Jr., 1940-
DESIGN AND COMPARISON OF CONTROLLERS BASED ON
SIMPLIFIED MODELS OF THE PROCESS.

The Louisiana State University and
Agricultural and Mechanical College, Ph.D., 1975
Engineering, chemical

Xerox University Microfilms, Ann Arbor, Michigan 48106
DESIGN AND COMPARISON OF CONTROLLERS BASED ON SIMPLIFIED MODELS OF THE PROCESS

A Dissertation

Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy

in

The Department of Chemical Engineering

by

Jacob Martin, Jr.
B.S., Southeastern Louisiana University, 1963
M.S., Louisiana State University, 1973
December, 1975
ACKNOWLEDGEMENT

The author wishes to express his sincere appreciation to Dr. Armando B. Corripio, Chairman of his Advisory Committee for his consideration, interest, advice and helpful suggestions given during the course of this work. He wishes to thank the other members of his committee, Dr. James B. Cordiner, Dr. Adrain E. Johnson, Dr. John M. Tyler and Dr. Bert Wilkins for their cooperation in serving on the committee. He is also obliged to Dr. Cecil L. Smith for his suggestions and advice. He wishes to thank Miss Hazel LaCoste and the entire faculty and staff of the Chemical Engineering Department for their helpfulness and consideration.

The author owes his gratitude to the support of this work by an Air Force Office of Scientific Research Contract (Contract No. 74-2580). The author also gratefully acknowledges the use of the XDS Sigma 5 and EAI 680 computers provided by this contract and the IBM-360 computer in the Computer Research Center at Louisiana State University.

Thanks are extended to Mrs. Mona Davis and Mrs. Jo Ellen Prather for their assistance with the preparation of the manuscript. He is also indebted to the Dr. Charles E. Coates Memorial Fund, donated by Mr. George H. Coates, for financial assistance in the preparation of this manuscript.

The author wishes to extend a special thanks to his wife, Barbara, his daughter, Lisa, his son, Troy, and his mother and
father, Mr. and Mrs. Jacob Martin, for their unending encouragement, patience, and support.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>ii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>xiv</td>
</tr>
<tr>
<td>CHAPTER</td>
<td></td>
</tr>
<tr>
<td>I INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II DEFINITION OF THE CONTROLLER DESIGN PROBLEM</td>
<td>5</td>
</tr>
<tr>
<td>Introduction</td>
<td>5</td>
</tr>
<tr>
<td>Adapting the Controller to the Process</td>
<td>6</td>
</tr>
<tr>
<td>Process Reaction Curve Models</td>
<td>6</td>
</tr>
<tr>
<td>Controller Synthesis</td>
<td>12</td>
</tr>
<tr>
<td>The Dahlin Controller</td>
<td>13</td>
</tr>
<tr>
<td>PI Controller</td>
<td>15</td>
</tr>
<tr>
<td>PID Controller</td>
<td>16</td>
</tr>
<tr>
<td>Optimal Regulator</td>
<td>18</td>
</tr>
<tr>
<td>Formulation of the Problem</td>
<td>23</td>
</tr>
<tr>
<td>Design of Controllers</td>
<td>26</td>
</tr>
<tr>
<td>Comparison Criteria</td>
<td>34</td>
</tr>
<tr>
<td>Set-point Versus Disturbance Change</td>
<td>35</td>
</tr>
<tr>
<td>Summary</td>
<td>39</td>
</tr>
<tr>
<td>References</td>
<td>40</td>
</tr>
</tbody>
</table>
Reactor Nomenclature

Reactor Nomenclature ... 167

References

References .. 168

VI CONCLUSIONS

VI CONCLUSIONS .. 169

Nomenclature

Nomenclature .. 171

APPENDIX

APPENDIX

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>173</td>
</tr>
<tr>
<td></td>
<td>COMPARISON OF THE CONTROLLER TRANSFER FUNCTION FOR THE CONTROLLER SYNTHESIS TECHNIQUE AND THE DEAD-TIME COMPENSATOR TECHNIQUE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>176</td>
</tr>
<tr>
<td></td>
<td>TRANSFORMATION OF THE TRANSFER FUNCTION EQUATIONS TO THE DIMENSIONLESS FORM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>179</td>
</tr>
<tr>
<td></td>
<td>TRANSFORMATION OF THE PROCESS MODEL AND PERFORMANCE FUNCTION EQUATIONS INTO STATE VARIABLE FORM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>187</td>
</tr>
<tr>
<td></td>
<td>CONTROLLABILITY AND OBSERVABILITY TEST FOR PROCESS MODELS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>190</td>
</tr>
<tr>
<td></td>
<td>DESIGN OF OPTIMAL OUTPUT REGULATOR BASED ON SIMPLIFIED MODELS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>197</td>
</tr>
<tr>
<td></td>
<td>PROCESS PARAMETERS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G</td>
<td>199</td>
</tr>
<tr>
<td></td>
<td>COMPUTER PROGRAM LISTINGS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VITA</td>
<td>239</td>
</tr>
<tr>
<td>Figures</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>2-1</td>
<td>Typical Process Control Loop</td>
<td>7</td>
</tr>
<tr>
<td>2-2</td>
<td>Process Reaction Curve</td>
<td>8</td>
</tr>
<tr>
<td>2-3</td>
<td>Closed-Loop Response of a Second-Order-Lag-Plus-Dead-Time Process as a Function of the Tuning Parameter</td>
<td>19</td>
</tr>
<tr>
<td>2-4</td>
<td>Typical Process Control Loop</td>
<td>20</td>
</tr>
<tr>
<td>2-5</td>
<td>Closed-Loop Response of a Second-Order-Lag-Plus-Dead-Time Process as a Function of the Tuning Parameter</td>
<td>22</td>
</tr>
<tr>
<td>2-6</td>
<td>Responses to a Set-Point Change</td>
<td>36</td>
</tr>
<tr>
<td>2-7</td>
<td>Response to a Disturbance Change</td>
<td>37</td>
</tr>
<tr>
<td>3-1</td>
<td>Closed-Loop Response of a Second-Order-Lag-Plus-Dead-Time Process with a PID Controller as a Function of the Tuning Parameter</td>
<td>43</td>
</tr>
<tr>
<td>3-2</td>
<td>Typical Closed-Loop Response to Step Changes in Set-Point</td>
<td>46</td>
</tr>
<tr>
<td>3-3</td>
<td>Parameters of the First-Order Model Due to a Second-Order-Lag Process</td>
<td>50</td>
</tr>
<tr>
<td>3-4</td>
<td>Ratio of the Second-Order-Lag Time Constants as a Function of the Dimensionless Parameter of the Second-Order System</td>
<td>51</td>
</tr>
<tr>
<td>3-5</td>
<td>Tuning Parameter for a PI Controller as a Function of the First-Order-Lag-Plus-Dead-Time Model Parameters</td>
<td>55</td>
</tr>
<tr>
<td>3-6</td>
<td>Tuning Parameter for a PID Controller as a Function of the Second-Order-Lag-Plus-Dead-Time-Model Parameters for 5% Overshoot Criteria</td>
<td>57</td>
</tr>
<tr>
<td>3-7</td>
<td>Tuning Parameter for a PID Controller as a Function of the Second-Order-Lag-Plus-Dead-Time Model Parameters for 1% Overshoot Criteria</td>
<td>58</td>
</tr>
<tr>
<td>Figures</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>3-8</td>
<td>PI Controller Gain as a Function of the Dimensionless First-Order Model Parameter</td>
<td>66</td>
</tr>
<tr>
<td>3-9</td>
<td>PI Controller Integral Action as a Function of the Dimensionless First-Order Model Parameter</td>
<td>67</td>
</tr>
<tr>
<td>3-10</td>
<td>Typical Closed-Loop Response of a Second-Order Critically Damped Process with Short Dead-Time for a PI Controller</td>
<td>70</td>
</tr>
<tr>
<td>3-11</td>
<td>Typical Closed-Loop Responses of a Second-Order Critically Damped Process with Long Dead-Time for a PI Controller</td>
<td>71</td>
</tr>
<tr>
<td>3-12</td>
<td>Typical Closed-Loop Responses of a Second-Order Overdamped Process with Short Dead-Time for PI Controller</td>
<td>72</td>
</tr>
<tr>
<td>3-13</td>
<td>Typical Closed-Loop Responses of a Second-Order Overdamped Process with Long Dead-Time for a PI Controller</td>
<td>73</td>
</tr>
<tr>
<td>3-14</td>
<td>Integral of the Absolute Value of the Error for a Second-Order-Plus-Dead-Time Process with a PI Controller</td>
<td>76</td>
</tr>
<tr>
<td>3-15</td>
<td>PID Controller Gains As a Function of the Parameters of a Second-Order-Lag-Plus-Dead-Time Process</td>
<td>78</td>
</tr>
<tr>
<td>3-16</td>
<td>PID Reset Time As a Function of the Parameters of a Second-Order-Lag-Plus-Dead-Time Process</td>
<td>80</td>
</tr>
<tr>
<td>3-17</td>
<td>PID Preact Time as a Function of the Parameters of a Second-Order-Lag-Plus-Dead-Time Process</td>
<td>81</td>
</tr>
<tr>
<td>3-18</td>
<td>Dimensionless First-Order Model Time Constant as a Function of the Second-Order Model Damping Parameter</td>
<td>82</td>
</tr>
<tr>
<td>3-19</td>
<td>Typical Closed-Loop Responses of a Second-Order Critically Damped Process With Short Dead-Time for a PID Controller</td>
<td>86</td>
</tr>
<tr>
<td>3-20</td>
<td>Typical Closed-Loop Responses of a Second-Order Critically Damped Process With Long Dead-Time for a PID Controller</td>
<td>87</td>
</tr>
<tr>
<td>3-21</td>
<td>Typical Closed-Loop Responses of a Second-Order Overdamped Process With Short Dead-Time for a PID Controller</td>
<td>88</td>
</tr>
<tr>
<td>Figures</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>3-22</td>
<td>Typical Closed-Loop Responses of a Second-Order Overdamped Process With Long Dead-Time For a PID Controller</td>
<td>89</td>
</tr>
<tr>
<td>3-23</td>
<td>Integral of the Absolute of the Error For a Second-Order-Lag-Plus-Dead-Time Process With a PID Controller</td>
<td>90</td>
</tr>
<tr>
<td>4-1</td>
<td>Output Regulator Block Diagram</td>
<td>95</td>
</tr>
<tr>
<td>4-2</td>
<td>Closed-Loop Responses of a Second-Order-Lag-Plus Dead-Time Process with a PID Controller as a Function of the Penalty Function</td>
<td>98</td>
</tr>
<tr>
<td>4-3</td>
<td>Controller Output as a Function of the Penalty Function</td>
<td>99</td>
</tr>
<tr>
<td>4-4</td>
<td>Correlation of the Tuning Parameter for a PI Controller Resulting in a 5% Overshoot Criteria as a Function of a First-Order-Lag-Plus-Dead-Time Model</td>
<td>102</td>
</tr>
<tr>
<td>4-5</td>
<td>Optimal PI Controller Tuning Parameters for 5% Overshoot Criteria as a Function of the First Order-Lag-Plus-Dead-Time Model</td>
<td>103</td>
</tr>
<tr>
<td>4-6</td>
<td>Correlation of the Tuning Parameter for a PID Controller Resulting in a 5% Overshoot Criteria as a Function of the Parameters of a First-Order-Lag-Plus-Dead-Time Model</td>
<td>105</td>
</tr>
<tr>
<td>4-7</td>
<td>Optimal PID Controller Gain for 5% Overshoot Criteria as a Function of the Parameters of a First-Order-Lag-Plus-Dead-Time Model</td>
<td>107</td>
</tr>
<tr>
<td>4-8</td>
<td>Optimal PID Reset and Preact Times for 5% Overshoot Criteria as a Function of the Parameters of a First-Order-Lag-Plus-Dead-Time Model</td>
<td>108</td>
</tr>
<tr>
<td>4-9</td>
<td>Correlation of the Tuning Parameter for a PID Controller Resulting in a 5% Overshoot Criteria as a Function of the Parameters of a Second-Order-Lag-Plus-Dead-Time Model</td>
<td>109</td>
</tr>
<tr>
<td>4-10</td>
<td>Optimal PID Controller Gain for 5% Overshoot Criteria as a Function of the Parameters of a Second-Order-Lag-Plus-Dead-Time Model</td>
<td>110</td>
</tr>
<tr>
<td>4-11</td>
<td>Optimal PID Reset Time for 5% Overshoot Criteria as a Function of the Parameters of a Second-Order Lag-Plus-Dead-Time Model</td>
<td>111</td>
</tr>
<tr>
<td>Figures</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>4-12</td>
<td>Optimal PID Preact Time for 5% Overshoot Criteria as a Function of the Parameters of Second-Order-Lag-Plus-Dead-Time Model</td>
<td>112</td>
</tr>
<tr>
<td>4-13</td>
<td>Correlation of the Tuning Parameter for a PIDD2 Controller Resulting in a 5% Overshoot Criteria as a Function of the Parameters of a Second-Order Lag-Plus-Dead-Time Model</td>
<td>113</td>
</tr>
<tr>
<td>4-14</td>
<td>Optimal PIDD2 Controller Gain for 5% Overshoot Criteria as a Function of the Parameters of a Second-Order-Lag-Plus-Dead-Time Model</td>
<td>116</td>
</tr>
<tr>
<td>4-15</td>
<td>Optimal PIDD2 Controller Reset Time 5% Overshoot Criteria as a Function of the Parameters of a Second-Order-Lag-Plus-Dead-Time Model</td>
<td>117</td>
</tr>
<tr>
<td>4-16</td>
<td>Optimal PIDD2 Controller Preact Time for 5% Overshoot Criteria as a Function of the Parameters of a Second-Order-Lag-Plus-Dead-Time Model</td>
<td>118</td>
</tr>
<tr>
<td>4-17</td>
<td>Optimal PIDD2 Controller Preact Time-Squared for 5% Overshoot Criteria as a Function of the Parameters of a Second-Order-Lag-Plus-Dead-Time Model</td>
<td>119</td>
</tr>
<tr>
<td>4-18</td>
<td>PI Controller Gains as a Function of the Parameters of a First-Order-Lag-Plus-Dead-Time Model</td>
<td>121</td>
</tr>
<tr>
<td>4-19</td>
<td>PI Controller Reset Time as a Function of the Parameters of a First-Order-Lag-Plus-Dead-Time Model</td>
<td>122</td>
</tr>
<tr>
<td>4-20</td>
<td>Typical Closed-Loop Responses of a Second-Order Critically Damped Process With Short Dead Time for a PI Controller</td>
<td>126</td>
</tr>
<tr>
<td>4-21</td>
<td>Typical Closed-Loop Responses of a Second-Order Critically Damped Process With Long Dead-Time for a PI Controller</td>
<td>127</td>
</tr>
<tr>
<td>4-22</td>
<td>Typical Closed-Loop Responses of a Second-Order-Overdamped Process with Short Dead-Time for a PI Controller</td>
<td>128</td>
</tr>
<tr>
<td>4-23</td>
<td>Typical Closed-Loop Responses of a Second-Order-Overdamped Process with Long Dead-Time for a PI Controller</td>
<td>129</td>
</tr>
<tr>
<td>4-24</td>
<td>Controller Output of a Second-Order Overdamped Process With Long Dead-Time for a PI Controller</td>
<td>130</td>
</tr>
<tr>
<td>Figures</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>4-25</td>
<td>PID Controller Gains as a Function of the Parameters of a Second-Order-Lag-Plus-Dead-Time Model</td>
<td>131</td>
</tr>
<tr>
<td>4-26</td>
<td>PID Controller Reset Time as a Function of the Parameters of a Second-Order-Lag-Plus-Dead-Time Model</td>
<td>132</td>
</tr>
<tr>
<td>4-27</td>
<td>PID Controller Preact Time as a Function of Parameters of a Second-Order-Plus-Dead-Time Model</td>
<td>133</td>
</tr>
<tr>
<td>4-28</td>
<td>Typical Closed-Loop Responses of a Second-Order Critically Damped Process With Short-Time for a PID Controller</td>
<td>136</td>
</tr>
<tr>
<td>4-29</td>
<td>Typical Closed-Loop Responses of a Second-Order Critically Damped Process With Long Dead-Time for a PID Controller</td>
<td>137</td>
</tr>
<tr>
<td>4-30</td>
<td>Typical Closed-Loop Responses of a Second-Order Overdamped Process With Short Dead-Time for a PID Controller</td>
<td>138</td>
</tr>
<tr>
<td>4-31</td>
<td>Typical Closed-Loop Responses of a Second-Order Overdamped Process With Long Dead-Time for a PID Controller</td>
<td>139</td>
</tr>
<tr>
<td>4-32</td>
<td>Controller Output of a Second-Order Overdamped Process With Long Dead-Time for a PID Controller</td>
<td>140</td>
</tr>
<tr>
<td>5-1</td>
<td>Reactor Flow Diagram</td>
<td>146</td>
</tr>
<tr>
<td>5-2</td>
<td>Analog Diagram for Chemical Reactor</td>
<td>149</td>
</tr>
<tr>
<td>5-3</td>
<td>Schematic Diagram of Control System for Chemical Reactor</td>
<td>150</td>
</tr>
<tr>
<td>5-4</td>
<td>Change in Reactor Temperature as a Function of the Change in Cooling Water Rate</td>
<td>152</td>
</tr>
<tr>
<td>5-5</td>
<td>Process Reaction Curve for Chemical Reactor</td>
<td>154</td>
</tr>
<tr>
<td>5-6</td>
<td>Reactor Closed-Loop Response With a PI Controller for Positive Set-Point Change</td>
<td>157</td>
</tr>
<tr>
<td>5-7</td>
<td>Reactor Closed-Loop Response With a PI Controller for Negative Set-Point Change</td>
<td>158</td>
</tr>
<tr>
<td>5-8</td>
<td>Reactor Closed-Loop Response With a Controller for a 20% Load Change</td>
<td>159</td>
</tr>
<tr>
<td>Figures</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>5-9</td>
<td>Reactor Closed-Loop Response With A PID Controller for a Positive Set-Point Change</td>
<td>161</td>
</tr>
<tr>
<td>5-10</td>
<td>Reactor Closed-Loop Response With a PID Controller for a Negative Set-Point Change</td>
<td>162</td>
</tr>
<tr>
<td>5-11</td>
<td>Reactor Closed-Loop Response With a PID Controller for a Load Change</td>
<td>163</td>
</tr>
<tr>
<td>Table</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>3-1</td>
<td>PI Controller Settings</td>
<td>48</td>
</tr>
<tr>
<td>3-2</td>
<td>Controller Synthesis Tuning Equations</td>
<td>54</td>
</tr>
<tr>
<td>3-3</td>
<td>Tuning Relationships</td>
<td>64</td>
</tr>
<tr>
<td>3-4</td>
<td>Process and Model Parameters</td>
<td>68</td>
</tr>
<tr>
<td>3-5</td>
<td>PI Controller Settings</td>
<td>69</td>
</tr>
<tr>
<td>3-6</td>
<td>Fine Tuning Adjustments for Controller Synthesis Technique</td>
<td>75</td>
</tr>
<tr>
<td>3-7</td>
<td>Process and Model Parameters</td>
<td>84</td>
</tr>
<tr>
<td>3-8</td>
<td>PID Controller Settings</td>
<td>85</td>
</tr>
<tr>
<td>4-1</td>
<td>PID Controller Setting Based on a First-Order-Lag-Plus-Dead Time Model</td>
<td>97</td>
</tr>
<tr>
<td>4-2</td>
<td>Process and Model Parameters</td>
<td>124</td>
</tr>
<tr>
<td>4-3</td>
<td>PI Controller Setting</td>
<td>125</td>
</tr>
<tr>
<td>4-4</td>
<td>PID Controller Setting</td>
<td>135</td>
</tr>
<tr>
<td>5-1</td>
<td>Reactor Equations</td>
<td>147</td>
</tr>
<tr>
<td>5-2</td>
<td>Steady State Conditions and Systems Parameters</td>
<td>151</td>
</tr>
<tr>
<td>5-3</td>
<td>PI Controller Tuning Parameters - Backmix Reactor</td>
<td>164</td>
</tr>
<tr>
<td>5-4</td>
<td>PID Control Tuning Parameters - Backmix Reactor</td>
<td>165</td>
</tr>
</tbody>
</table>
ABSTRACT

The primary purpose of this dissertation is to study the controller design problem and to develop controller tuning relationships based on simplified models of the process which provide the control engineer some flexibility in selecting a desired response. The models utilized are restricted to the first-order-lag-plus-dead-time model and the second-order-lag-plus-dead-time model.

Controller tuning relationships based on these simplified process models are developed and presented for the controller synthesis technique and the optimal output regulator technique. Both techniques provide a parameter which can be tuned to obtain a desired closed-loop response. The controller synthesis relationships fix the integral time or integral and derivative times of a PI or PID controller as a function of the model parameters and allow for the adjustment of the controller gain to meet any specified performance criteria. This is not the case for the optimal output regulator, as the controller parameters and the tuning parameters are interrelated.

Correlations for controller tuning parameters that produce a 5% overshoot response are developed and presented as a function of the process model parameters for the controller synthesis and the optimal output regulator techniques. These correlations are then compared to the quarter-decay ratio and the integral of the absolute value of the error tuning correlations and several closed-loop
responses for a second-order-lag-plus-dead-time process are examined. The controller synthesis 5% overshoot criteria is shown to be near optimal in terms of the integral of the absolute value of the error.

The tuning correlations are then applied to a simulation of a non-linear continuous stirred tank reactor in which an exothermic second-order chemical reaction is taking place. The reactor temperature is controlled by manipulating the cooling water rate to the jacket of the reactor. The closed-loop responses for set-point and disturbance changes are presented and compared with the quarter decay ratio and the integral of the absolute value of the error responses. The unmeasured disturbance is a step change in the reactant flow rate.
CHAPTER I

INTRODUCTION

Today, most of the interest and attention in the field of automatic control theory is devoted to modern control techniques such as adaptive control, state space identification, stochastic identification and control, and optimal control of specific processes. While these topics provide the more glamorous and exciting areas of work in the field, the controller design problem, that of specifying the controller modes and tuning the controller parameters, is still a very real and important area of process control.

This is more evident today than ever before. Scarcity and high cost of raw materials, high cost of energy and resources, tighter controls on environmental standards, labor problems, and the required profit statement to stay in business have caused many industrial organizations to look more closely at control schemes, tuning, and digital computer control applications to assist them in overcoming these environmental and economic burdens.

Although much work has been done in the area of controller tuning, industrial acceptance and application has been slow and to a great extent is still done by trial and error. The most widely accepted techniques are those of Ziegler-Nichols (1), Lopez, et al. (2), and Rovira, Murrill, and Smith (3). These techniques
are based on fixed performance criteria and in most industrial applications are only used as starting points for tuning control loops.

Since it has become increasingly important to produce more product within a given specification while minimizing the use of raw materials, energy, resources, and the production of off-spec products, it is desirable to provide the control engineer with the flexibility to specify or select a desired response.

The purpose of this dissertation is to investigate controller tuning techniques which provide this flexibility and to examine their feasibility for industrial applications.

Two techniques are presented in Chapter II which provide the flexibility to obtain a desired response, controller synthesis and optimal linear regulator. A brief discussion of process models and performance criteria is also included in Chapter II.

A performance criteria is established in Chapter III to develop controller tuning relationships for the techniques. The relationships are presented in Chapters III and IV and are compared to Ziegler-Nichols and Rovira’s techniques for controller synthesis and optimal linear regulator, respectively. A brief discussion of a PIDD² (proportional-plus-integral-plus-derivative-plus-derivative-squared) controller is also included in Chapter IV.

The application of these techniques to a simulation of a non-linear continuous stirred tank reactor is presented in Chapter V. Both set-point and load or disturbance changes are considered.
In summary, the purpose of this research is to develop controller tuning techniques which provide the control engineer flexibility to obtain a desired response and examine the feasibility of industrial applications for these techniques.
REFERENCES

CHAPTER II
DEFINITION OF THE CONTROLLER DESIGN PROBLEM

Introduction

The controller design problem consists of selecting the modes and tuning the controller parameters for a given process. Although much work has been done in the area of controller tuning, industrial acceptance and application has been slow and to a great extent is still done by trial and error. Of the current available techniques, the most widely noted and accepted are those of Ziegler-Nichols (1) who in 1942 pioneered the field by developing tuning relationships based on quarter decay ratio criteria, and in 1967, Lopez et al., (2), and in 1969, Rovira, Murrill, and Smith (3) developed tuning relationships based on the minimum integral performance criteria. These techniques are often used as starting points for tuning industrial process control loops.

Current tuning techniques are for the most part based on fixed performance criteria and do not give the control engineer the flexibility to specify percent overshoot, rise time, settling time, or any other performance criterium. This chapter presents two methods which provide the control engineer with this flexibility, controller synthesis and applied optimal regulator theory. Both methods require some prior knowledge of the process dynamics, therefore, a brief discussion of process models is also included.
Adapting the Controller to the Process

A typical process control loop is sketched in Figure 2-1. In this sketch the block labeled "Process" includes, in addition to the process transfer function, the transfer functions of the control valve, the sensor and the transmitter. This is not the oversimplification it appears to be since, in practice, when the process dynamics are experimentally determined on the plant, intermediate variables such as flow through the valve, valve position, etc. are not generally available. Only the controller output signal and transmitter signal can be measured or recorded in the typical case.

The controller design problem consists of selecting the modes and tuning the controller parameters. The simplest way of doing this is by trial and error on the actual plant. At the other extreme, computer simulation of the control loop offers a most sophisticated method for controller design. Somewhere in between, the use of simplified models of the process from an experimentally determined process reaction curve offers a compromise between tuning accuracy and expenditure of time and money. The methods presented here use this latter approach, since it is most practical for industrial use.

Process Reaction Curve Models

The process reaction curve is the time response of the transmitter output signal (controller input) to an arbitrarily applied step change in controller output and is illustrated in Figure 2-2. From this recorded response it is possible to obtain the parameters of a simplified model of the process.
FIGURE 2-1
TYPICAL PROCESS CONTROL LOOP
FIGURE 2-2
PROCESS REACTION CURVE
The most widely used model is that of the first-order-lag-plus-dead-time (transportation lag or time delay) model. The transfer function of this model is of the form

\[G(s) = \frac{-t_0 s}{\tau s + 1} \]

where

\[G(s): \text{ process transfer function} \]
\[K: \text{ steady-state gain} \]
\[\tau: \text{ time constant} \]
\[t_0: \text{ dead-time or transportation lag} \]
\[s: \text{ Laplace transform variable.} \]

Ziegler-Nichols (1), Miller (4), and Smith (5) have proposed techniques for determining the parameters of the first-order-lag-plus-dead-time model. The techniques of Ziegler-Nichols and Miller are based on the graphical construction of a tangent line at the point of steepest slope on the process reaction curve to determine \(\tau \) and \(t_0 \). Although the graphical construction of a tangent line is conceptually simple, it is often difficult to accurately draw in practice. Smith provides an alternate technique to overcome this inaccuracy. His technique uses two points on the process reaction curve and the analytical solution of the first-order-lag-plus-dead-time transfer function for a step change in input. This results in two equations with two unknowns, \(\tau \) and \(t_0 \).

\[t \left|_{0.284 \Delta y} \right. = t_0 + \frac{\tau}{3} \]
\[t \left|_{0.632 \Delta y} \right. = t_0 + \tau \]
These equations can be solved simultaneously for the model parameters.

The process gain, K, is determined as the ratio of the change in output (transmitter output signal) to the change in input (step change in controller output) for the three methods.

It should be noted here, that most controller tuning techniques are based on the first-order-lag-plus-dead-time model of the process. Although this simple model represents many chemical processes well, there are cases in which a more accurate model may be desirable. This leads to the second-order-lag-plus-dead-time model which can be represented by the following transfer function:

$$G(s) = \frac{-t_0 s}{s^2 + bs + c}$$

where $G(s)$: process transfer function

K: steady-state gain

b: damping parameter

c: frequency parameter

t_0: dead-time or transportation lag

s: Laplace transform variable.

It should be noted that

$$\omega_n = \sqrt{\frac{c}{b^2}}$$

and

$$\zeta = \frac{1}{2} \cdot \frac{b}{\sqrt{c}}$$
where \(\omega_n \) is the natural frequency and \(\xi \) is the damping ratio. For most processes, the denominator of equation 2.3 can be factored into two time constants, \(\tau_1 \) and \(\tau_2 \). This form of the second-order-lag-plus-dead-time transfer function is

\[
G(s) = \frac{-t_0 s}{(\tau_1 s + 1)(\tau_2 s + 1)} \tag{2.5}
\]

where \(\tau_1 \) is the larger or dominant time constant and \(\tau_2 \) is the smaller or secondary time constant. Equation 2.5 is related to equation 2.3 by the following:

\[
\tau_1 = \frac{b + \sqrt{b^2 - 4c}}{2c}
\]

and

\[
\tau_2 = \frac{1}{\tau_1 c} \tag{2.6}
\]

In some cases the process is underdamped and it is not possible to factor the denominator of equation 2.3 into two real time constants. The most typical example of an underdamped process is the one that constitutes the secondary or slave loop in a cascade control system. Graphical and numerical methods of computing the second-order-lag-plus-dead-time model parameters have been investigated by Stern (6), Oldenburg and Satorius (7), Smith (8) and Meyer (9). The work of Sten, Oldenburg and Sartorius, and Smith is restricted to overdamped systems in the factored form. Meyer's work is for overdamped and underdamped systems and is in terms of the natural frequency, \(\omega_n \), and the damping ratio, \(\xi \).

Chiu (10) found that of the graphical techniques for the first-order-lag-plus-dead-time model, Miller's (4) technique provided the
better fit. He also found that for the second-order-lag-plus-dead-time model, Stern's (6) and Meyer's (9) techniques were best and gave similar results. Chiu's work was based on a third-order-lag-plus-dead-time process.

Methods to fit models of higher order than second-order-lag-plus-dead-time from the process reaction curve have not been developed because the step-change response does not produce enough information. More sophisticated forcing methods must be used to develop higher order models. Of these, pulse testing (22) is the only one that has proven successful in process identification.

Controller Synthesis

The controller synthesis method consists of calculating the controller transfer function $G_c(s)$ that will produce a desired closed-loop transfer function. The closed-loop transfer function of the block diagram in Figure 2.1 for a set-point input is known, from block diagram algebra, as:

$$\frac{Y(s)}{R(s)} = \frac{G_c(s) G(s)}{1 + G_c(s) G(s)}$$

[2.7]

where

- $Y(s)$: Laplace transform of transmitter signal
- $R(s)$: Laplace transform of set-point signal
- $G_c(s)$: Controller transfer function
- $G(s)$: Process transfer function.

Simple algebraic manipulation of equation 2.7 yields a formula for the direct computation of the controller transfer function:
In this formula $G(s)$ is the process transfer function determined from the process reaction curve or from basic principles, and $Y(s)/R(s)$ is the desired closed-loop transfer function. It is evident from equation 2.8 that the higher the order and complexity of the process transfer function the higher will be the complexity of the controller. In what follows it will be shown that if the process is represented by a first-order-lag transfer function, a proportional-plus-integral (PI) controller will result, while if the process is a second-order-lag a proportional-plus-integral-plus-derivative (PID) controller will result. Should the order of the process be higher than two, lead lag networks would have to be used in series with the controller since controllers for higher complexity than PID are not normally available.

The Dahlin Controller

Dealing mostly with the design of digital computer control algorithms, Dahlin (11) and Higham (12) proposed the following form of the closed-loop transfer function:

$$
\frac{Y(s)}{R(s)} = \frac{-t_0 s}{s + \lambda} \quad [2.9]
$$

where λ is a tuning parameter. The dead-time term, which is equal to the effective process dead-time, is necessary to avoid a predictive term, i.e. negative dead-time, in the computed controller transfer function. Increasing the value of the tuning parameter λ increases the speed of the closed-loop response. The steady-state
gain is unity, assuring the absence of steady-state error or offset.

Substitution of equation 2.9 into equation 2.8 results in the following formula for the controller transfer function:

\[G_c(s) = \frac{1}{G(s)} \cdot \frac{\lambda \cdot e^{-t_0 s}}{s + \lambda \cdot (1 - e^{-t_0 s})} \]

[2.10]

At this point it should be noted that the term \((1 - e^{-t_0 s}) \) of the controller synthesis technique represents dead-time compensation. Equations A-5 and A-6 of Appendix A show this by developing the controller transfer functions for both techniques. Dead-time compensation was first proposed by O. J. M. Smith (13) and is better known as Smith predictor or dead-time compensator. The compensator did not gain wide acceptance because of the difficulties of implementing the model dead-time with an analog circuit. However, since the advent of digital control computers it has grown in acceptance and Bakke (14) and Corripio and Smith (15) have shown significant improvements in controlling processes with dead-time with the dead-time compensator technique for digital systems.

The exponential term in the denominator of equation 2.10 will appear in the controller transfer function. Since exponential dynamic terms cannot be obtained with standard analog components, the term cannot be realized and must be approximated. This can be done by a first-order Taylor series expansion:

\[e^{-t_0 s} \approx 1 - t_0 s \]

[2.11]

Substitution of this equation into equation 2.10 results in
which is used for the design of the controller.

PI Controller

When a first-order-lag-plus-dead-time transfer function is fitted to the process reaction curve, a proportional-plus-integral or PI controller results. This is shown by substitution of equation 2.1 into equation 2.12:

\[
G_c(s) = \frac{1}{G(s)} \cdot \frac{\lambda e^{-t_0 s}}{s(1 + \lambda t_0)}
\] \[2.12\]

Formulas for the controller gain and integral time of a standard PI controller are obtained by comparison with the PI controller transfer function:

\[
G_c(s) = K_c \left(1 + \frac{1}{T_i} \cdot \frac{1}{s}\right) = \frac{K_c (T_i s + 1)}{T_i s}
\] \[2.13\]

where
- \(K_c\): controller gain = 100/P.B.
- \(T_i\): integral or reset time
- P.B.: proportional band

Therefore, from comparison of equations 2.13 and 2.14, the tuning formulas for the PI controller are:

\[
K_c = \frac{\lambda \tau}{K(1 + \lambda t_0)}
\] \[2.15\]

\[
T_i = \tau
\]
PID Controller

The proportional-plus-integral-plus-derivative or PID controller results from the substitution of the second-order-lag-plus-dead-time transfer function given by equation 2.3 into equation 2.12:

\[
G_c(s) = \frac{s^2 + bs + c}{s} \cdot \frac{\lambda}{cK(1 + \lambda t_o)} \quad [2.16]
\]

By comparison with the standard PID controller transfer function:

\[
G_c(s) = K_c (1 + \frac{1}{T_1} \cdot \frac{1}{s} + T_d \cdot s) = \frac{K_c(T_1 T_d s^2 + T_1 s + 1)}{T_1 s} \quad [2.17]
\]

where \(T_d \) is the derivative or preact time. The tuning formulas for the PID controller is:

\[
K_c = \frac{\lambda \cdot b}{cK(1 + \lambda t_o)} \quad [2.18]
\]

\[
T_1 = \frac{b}{c}
\]

\[
T_d = \frac{1}{b}
\]

Had the factored form of the second-order-lag-plus-dead-time transfer function equation 2.5 been used in the controller synthesis, the resulting tuning formulas would be:

\[
K_c = \frac{\lambda (\tau_1 + \tau_2)}{K(1 + \lambda \cdot t_o)} \quad [2.19]
\]

\[
T_1 = \frac{\tau_1 + \tau_2}{\tau_1 \cdot \tau_2}
\]

\[
T_d = \frac{\tau_1 \cdot \tau_2}{\tau_1 + \tau_2}
\]
The transfer function for most off-the-shelf PID controllers is of the form:

\[G_c'(s) = K_c' \left(1 + \frac{1}{T_1'} \right) \frac{1}{s} \left(1 + T_d' s \right) \] \[\text{(2.20)} \]

The value of the actual controller parameters \(K_c, T_1, \) and \(T_d \) can be obtained from the values given by equation 2.18 using the following formulas:

\[K_c' = \frac{K_c}{1 + T_d'/T_1'} \]
\[T_1' = 0.5 \left[T_1 + \sqrt{T_1 \left(T_1 - 4T_d \right)} \right] \] \[\text{(2.21)} \]
\[T_d' = \frac{T_1 T_d}{T_1'} \]

It is interesting to note that equation 2.21 will result in real values only if the process transfer function is overdamped or critically damped. In these cases, the controller parameters can be expressed in terms of the process time constants as follows:

\[T_1' = \tau_1 \]
\[T_d' = \tau_2 \] \[\text{(2.22)} \]
\[K_c' = \frac{K_c}{1 + \frac{\tau_2/\tau_1}{\tau_1}} = \frac{\lambda \tau_1}{K(1 + \lambda \tau_2)} \]

where \(\tau_1 \) is usually considered to be the largest of the two time constants.

The above results illustrate that the major advantage of the Dahlin-Higham controller is that it contains the tuning parameter \(\lambda \) which provides some flexibility to the
user. Note that this parameter has an effect only on the controller gain, K_c, thus reducing the number of tuning parameters to the single parameter λ or equivalent K_c. This means that either parameter, λ or K_c can be adjusted to obtain a desired response. Figure 2.3 illustrates the effect of λ on the closed-loop response of a system consisting of a second-order-lag-plus-dead-time process with a PI controller. The controller was tuned by the parameters of a first-order-lag-plus-dead-time model of the process and for the values of λ indicated on the plot. The responses are for a unit step change in set-point. As the figure shows, small values of λ result in slow responses and large values of λ result in fast responses.

Optimal Regulator

The application of optimal linear regulator theory with quadratic performance criterion is another technique whereby the control engineer can achieve some flexibility in obtaining a desired response. This flexibility is attained by the specification of a parameter in the performance function which penalizes the system for excessive movement of the valve thus obtaining different responses for different values of this parameter. The technique provides a linear feedback control policy which is optimal based on a model of the process.

In optimal control, process control loops are generally illustrated as shown in Figure 2.4. This figure is basically the same as Figure 2.1 except for optimal control, the process is generally expressed in state variable form and each variable in
FIGURE 2-3

CLOSED-LOOP RESPONSE OF A SECOND-ORDER-LAG-PLUS-DEAD-TIME PROCESS AS A FUNCTION OF THE TUNING PARAMETER
FIGURE 2-4

TYPICAL PROCESS CONTROL LOOP
the control loop has been transformed to its final or desired value. Smith (5), Athans and Falb (16), Lapidus and Luus (17), and many others illustrate the transformations necessary to cast the conventional control problem into the optimal regulator problem. If the system is linear, optimal regulator techniques can be applied to design the controller subject to the minimization of the performance function

$$I = \int_{0}^{T} [y^2 + p \dot{z}^2]dt \quad [2.23]$$

where p is the weighting factor or parameter which penalizes the system for excessive valve movement. This parameter must be specified by the designer and Figure 2.5 illustrates the effect of p on the closed-loop response.

Athans and Falb have shown that for time-invariant systems, the upper limit, T, of equation 2.23 approaches infinity in the limit. This was done to guarantee that the output would stay near zero after an initial transient interval and to avoid the arbitrary specification of a large terminal time T.

It should be noted that as p approaches zero ($p \to 0$), the performance function will approach the integral of the error squared (ISE). However, the formulation of the optimal regulator does not allow p to equal zero.

Athans and Falb have chosen to classify optimal linear regulators with quadratic performance functions in two major types, state regulator (i.e., the problem of keeping the states, X, near zero) and the output regulator (i.e., the problem of keeping the output, Y, near zero).
FIGURE 2-5
CLOSED-LOOP RESPONSE OF A SECOND-ORDER-LAG-PLUS-DEAD-TIME PROCESS
AS A FUNCTION OF THE TUNING PARAMETER

\begin{align*}
\frac{y(t)}{r(t)} &= -0.2, -0.8, -1.0 \\
\text{Time (min.)} &= 0, 4, 8, 12, 16, 20 \\
p &= 0.5, 2.0, 4.0, 10.0 \text{ min.}^2
\end{align*}
The work which follows falls into the class of the output regulator which is a special case of the state regulator.

Formulation of the Problem

To apply optimal regulator theory to design the controller, it will be necessary to obtain a model of the process. Lapidus and Luus (17), Miller (18) and others have illustrated the application of optimal regulator theory to extensive math-models of the process. Here the application of optimal regulator theory will be based on simplified models of the process obtained from process reaction curves. Although the use of detailed mathematical models offers more accuracy, the solution of the regulator equations increases in complexity and becomes an expensive undertaking in a major industrial operation, therefore the use of simplified models offers an alternative to the problems of expenditure, accuracy, and versatility.

The formulation of the output regulator for the linear time-invariant system is based on the minimization of the performance or cost function

\[I = \int_{0}^{\infty} \left[Y' \Sigma Y + U' \Xi U \right] \, dv \] \hspace{1cm} [2.24]

subject to the linear process

\[\dot{X} = AX + BU \] \hspace{1cm} [2.25]

\[Y = HX \]

where \(X \) = state vector for the process

\(Y \) = output vector
\[U = \text{vector of manipulated inputs to the process} \]
\[Y' = Y \text{ transpose} \]
\[U' = U \text{ transpose} \]

The optimal control policy exists and is unique provided the following restrictions are met:

- \(U \) is not constrained
- \(R \) is positive definite
- \(Q \) is positive definite

The process is observable and controllable.

Because of the complex mathematical operations which must be performed to determine the controller parameters, the dimensionless form of the first- and second-order-lag-plus-dead-time models will be used to avoid the added complexity of dimensional analysis. The dimensionless form of these models is developed in Appendix B and the results are as follows:

1) First-order-lag-plus-dead-time model

The dimensionless form of this model is given by:

\[G(s) = \frac{Ke^{-\theta s}}{s + 1} \]

where \(\theta = t_o/\tau \).

The \(G(s) \) or process transfer function is in dimensionless Laplace domain.

2) Second-order-lag-plus-dead-time model

The dimensionless form of this model is given by:

\[G(s) = \frac{Ke^{-\theta s}}{s^2 + Bs + 1} \]
where \(\theta = t_o \sqrt{c} \)

\[\theta = b/ \sqrt{c} = 2 \xi \]

Again the transfer function is in terms of the dimensionless Laplace domain.

The first-and second-order-lag-plus-dead-time models of the process have been transformed into state variable form in Appendix C and can be expressed as:

\[
\begin{align*}
\dot{X} &= A X + B U \\
Y &= H X
\end{align*}
\]

[2.26]

Note that \(U \) and \(Y \) are scalar quantities for the single-input-single-output models considered. Appendix C also shows the transformation required to express the performance function as:

\[
I = \int_0^\infty [Y^2 + RU^2]d\sigma
\]

[2.27]

Now equations 2.26 and 2.27 formulate the output regulator provided the restrictions imposed by the output regulator can be met. They are as follows:

a) \(U \) is not constrained

For the single-input-single-output models considered, \(U \) is a scalar quantity and has not been constrained.

b) \(R \) is positive definite

For the models considered, \(R \) is also a scalar quantity. For the first-order-lag-plus-dead-time model, \(R \) equals \(p/\tau^2 K^2 \) and for the second-order-lag-plus-dead-time model, \(R \) equals \(pc/K^2 \). This shows that \(R \) is a function of the tuning
parameter, \(p \), and the parameters of the process models.

Since \(R \) is a scalar and must be positive definite \((R > 0) \), this implies that \(p \) must be positive definite because \(\tau^2, \kappa^2 \), and \(c \) (process model parameters) are positive definite. Therefore, \(p > 0 \) satisfies this restriction.

c) \(Q \) is positive definite

For the single-input-single-output models considered, \(Q \) is a scalar quantity and is equal to 1.0 which is positive definite.

d) The process is observable and controllable

The tests for controllability and observability are illustrated in Appendix D for the models considered. The results show the process to be observable and controllable.

This shows that the process models considered here fulfill all the requirements of the linear time-invariant output regulator problem.

Design of Controllers

The preceding section has shown that for each process model considered the control problem can be cast into the output regulator problem for which the solution is well known, for example see Athens and Falb (16). The solution states that the optimal control policy is proportional to the states and is in linear feedback form. That is

\[
U = -K X
\]

\[[2.28] \]
where \[K = R^{-1} B^T J_e \]

\(R^{-1} \) is \(R \) inverse

\(B' \) is \(B \) transpose

\(J_e \) is the steady-state or equilibrium solution to the Matrix Riccati Equation.

The Matrix Riccati Equation is a first-order nonlinear differential equation and is given by

\[J' + J A + A' J - J B R^{-1} B' J + H' Q H = 0 \] \[\text{[2.29]} \]

and is usually unstable in forward time. Equation 2.29 can be solved in backward time by Euler's method, since only the steady-state solution (\(J = 0 \)) is needed. Only the steady-state solution is required for the time-invariant system since the upper integration limit is infinity. Thus the solution technique is a relaxation method of solving the set of nonlinear algebraic equations to obtain \(J_e \).

The final condition -- which is the initial condition to the backward-time problem -- is in this sense unimportant and becomes the initial guess for the relaxation method. The solution to the output regulator problem is illustrated in block diagram form in Figure 2.6.

Now if an exact model of the process is available and the above can be performed, then the controller designed by this technique will be optimal for that process. In many cases the process models are only a mere approximation of the process or processes involved, therefore the control policy may be something less than optimal.

If the process reaction curve is fitted with a first-order-lag-plus-dead-time model and the dead-time is approximated by the
first-order Taylor series expansion

\[e^{-\theta s} = 1 - \theta s \quad [2.30] \]

the resulting state variable representation of the process model is:

\[
\dot{x} = \begin{pmatrix} -1 & 1 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} -\theta \\ 1 \end{pmatrix} u \quad [2.31]
\]

\[y = [1 \ 0] x \]

where

\[x_1 = y \]

\[x_2 = K_m \]

\[u = K_m \]

The performance function is given by

\[I = \int_0^\infty [y^2 + ru^2] \, dw \quad [2.32] \]

where \(R = p/K_m^2 \tau^2 \)

The detailed derivation leading to equations 2.31 and 2.32 is presented in Appendix C. Using the controller design technique outlined in the previous section results in a controller of the form:

\[G_c(s) = K_c \left[1 + \frac{1}{T_1 s} \cdot \frac{1}{s} \right] \]

or a proportional-plus-integral (PI) controller. The controller parameters are defined by the model parameters and the steady-state solution of the Riccati equation by the following expressions:
The detailed derivations resulting in these equations are presented in Appendix E.

Replacing the dead-time with the first-order Padé approximation

\[e^{-\theta s} = \frac{2 - \theta s}{2 + \theta s} \]

increases the order of the system and the resulting state variable form of the process model is:

\[\dot{X} = \begin{bmatrix} 0 & \frac{1}{\theta} & -1 \\ \frac{2}{\theta} - \frac{\theta+2}{\theta} & \frac{\theta+4}{\theta} & \frac{\theta}{\theta} \\ 0 & 0 & 0 \end{bmatrix} X + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} U \]

\[Y = [1 \ 0 \ 0] X \]

where \(X_1 = Y \)

\(X_2 = \dot{Y} + Km \)

\(X_3 = Km \)

\(U = Km \)

A detailed derivation of this equation is presented in Appendix C.

The performance function is the same as equation 2.32. The controller resulting from this model is of the form:

\[G_c(s) = K_c \left[1 + \frac{1}{T_1} \cdot \frac{1}{s} + T_d \cdot s \right] \]
or a proportional-plus-integral-plus-derivative (PID) controller.

The controller parameters are as follows:

\[K_c = \frac{(\theta + 4) J_{e32} + (\theta + 2) J_{e33}}{(\theta + 4) J_{e32} + (\theta + 2) J_{e33} + 2\tau} \]

\[\tau = \frac{2(J_{e31} + J_{e32} + J_{e33})}{(\theta + 4) J_{e32} + (\theta + 2) J_{e33}} \]

[2.36]

\[T_d = \frac{\theta (J_{e32} + J_{e33})}{(\theta + 4) J_{e32} + (\theta + 2) J_{e33}} \]

Detailed derivations of these equations are presented in Appendix E.

If the process reaction curve is fitted with a second-order-lag-plus-dead-time model and the dead-time is approximated by the first-order Taylor series expansion

\[e^{-\theta s} = 1 - \theta s \]

the resulting state variable representation of the process model is:

\[\dot{X} = \begin{pmatrix} 0 & 1 & -\theta \\ -1 & 0 & 1+\theta \theta \\ 0 & 0 & 0 \end{pmatrix} X + \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} U \]

\[Y = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix} X \]

where

\[X_1 = Y \]
\[X_2 = \dot{Y} + \theta K_m \]
\[X_3 = K_m \]
\[U = K_m \]

The performance function is given by
\[I = \int_{0}^{\infty} [Y^2 + RU^2] \, d\sigma \quad [2.38] \]

where \(R = \frac{pc}{K^2} \)

The detailed derivations leading to these equations are presented in Appendix C. The controller resulting from the use of this process model is of the form:

\[G_c(s) = K_c \left[1 + \frac{1}{T_1 s} + T_d \cdot s \right] \]

or a PID controller. The controller parameters are as follows:

\[\frac{1}{\sqrt{c} T_1} = \frac{J_{e32} + \theta J_{e33}}{(1 + \theta \theta) J_{e32} + \theta J_{e33}} \]

\[\sqrt{c} T_d = \frac{\theta J_{e32} + J_{e33}}{(1 + \theta \theta) J_{e32} + \theta J_{e33}} \quad [2.39] \]

Detailed derivations of these equations are presented in Appendix E.

Replacing the dead-time with the first-order Padé approximation

\[e^{-\theta s} = \frac{2 - \theta s}{2 + \theta s} \]

increases the order of the system and the resulting state variable representation of this process model is
\[
\dot{X} = \begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & -1 \\
-\frac{2}{6} & -\left(\frac{2\theta}{6} + 1\right) & \left(\frac{2}{6} + \theta\right) & \left(\frac{4}{6} + \theta\right) \\
0 & 0 & 0 & 0
\end{pmatrix} X + \begin{pmatrix}
0 \\
0 \\
1
\end{pmatrix} U
\]

\[
Y = [1 \ 0 \ 0 \ 0] X
\]

where
\[X_1 = Y\]
\[X_2 = \dot{Y}\]
\[X_3 = \ddot{Y} + K_m\]
\[X_4 = K_m\]
\[U = K_m\]

A detailed derivation of this equation is presented in Appendix C.

The performance function is the same as equation 2.38. The controller resulting from this process model is of the form:

\[
G_c(s) = K_c [1 + \frac{1}{T_1} \cdot \frac{1}{s} + T_{d1} \cdot s + T_{d2} \cdot s^2]
\]

or a proportional-plus-integral-plus-derivative-plus-derivative squared (PIDD^2) controller. The controller parameters are defined by the following:

\[
KK_c = \frac{Je_{42} + (\theta + \frac{\theta}{2}) Je_{43} + (\theta + \frac{\theta}{2}) Je_{44}}{R + \frac{\theta}{2} Je_{43} + \frac{\theta}{2} Je_{44}}
\]
\[
\frac{1}{\sqrt{c^*T_1}} = \frac{Je_{41} + Je_{43} + Je_{44}}{Je_{42} + (8 + \frac{8}{2}) Je_{43} + (8 + \frac{8}{2}) Je_{44}}
\]

\[
\sqrt{c^*T_{d1}} = \frac{(2 + \frac{8}{2}) Je_{43} + (1 + \frac{8}{2}) Je_{44}}{Je_{42} + (8 + \frac{8}{2}) Je_{43} + (8 + \frac{8}{2}) Je_{44}}
\]

\[
c^*T_{d2} = \frac{\frac{8}{2} Je_{43} + \frac{8}{2} Je_{44}}{Je_{42} + (8 + \frac{8}{2}) Je_{43} + (8 + \frac{8}{2}) Je_{44}}
\]

The detailed derivations of these equations are presented in Appendix E.

At this point, one should recognize that the PI, PID, and PID\(^2\) controller parameters are very complex functions of the process model parameters and the tuning parameter (or penalty parameter) \(p\). It should also be noted that the Matrix Riccati equation must be solved for each value of \(p\) for each case in order to determine the value of the controller tuning parameters.

Although regulator theory offers some flexibility in tuning controllers, its mathematical complexities certainly have been the major factor in its lack of acceptance and application in industry. However, some work has been done (other than the application to extensive mathematical models) in attempting to adapt it for industrial use. Pusch (19) developed tuning relationships for a PID controller based on the first-order-lag-plus-dead-time model of the process with Padé approximation for the dead-time. His relationships were developed for a constant step change in load or disturbance, which was a concept introduced by Johnson (20). O'Connor and Denn (21), compared
the optimal regulator, Ziegler-Nichols, and Cohen-Coon controller
design techniques for the first-order-lag-plus-dead-time model.
The results indicate that for processes which can be represented by
such a linear model, there was extraordinarily good agreement between
the optimal control and the classical settings. However, the work
was limited to one model and for a small range of the penalty
function.

Comparison Criteria

In order to judge the performance of controllers for different
models, it is necessary to establish some basis for comparison.

In the early 1940's, quarter decay ratio was introduced by
Ziegler-Nichols (1) as the criteria for tuning controllers. In the
late 1960's, integral criteria was introduced by Lopez et al. (2)
and Rovira, Murrill, and Smith (3), as the criteria for tuning
controllers. These integral criteria were as follows:

1) Minimum integral of the error squared (ISE)

\[ISE = \int_0^\infty e^2 \, dt \]

2) Minimum integral of the absolute error (IAE)

\[IAE = \int_0^\infty |e| \, dt \]

3) Minimum integral of the time weighted absolute error
 (ITAE)

\[ITAE = \int_0^\infty t \, |e| \, dt \]

In addition to these, regulator theory provides for the
minimization of a quadratic performance function I, given by equation 2.24. Although the size or value of ISE, IAE, $ITAE$, or I may be a measure of the overall system performance, it provides very little information on the system's transient response. Because this response is important, the following will be used in the basis for comparison: rise time, settling or response time, and percent overshoot.

These terms are illustrated in Figure 2.6 and are typically defined as follows:

a) The rise time is the time necessary for the control variable to initially reach its desired value.

b) The settling or response time is the time necessary for the control variable to come within ± 1 or ± 5 percent of its desired value and remain between these limits.

c) The percent overshoot is the percentage by which the control variable exceeds the desired value $\left(\frac{e_2}{e_1} \right) \times 100$.

Generally a reduction in rise time can usually be obtained only at the expense of increased overshoot and settling time and a less stable system.

Set-point versus Disturbance Change

Although the transfer function (system response) for a disturbance is different than the transfer function (system response) for a set-point change, tuning a controller for a unit-step change in set-point considers the worst case for disturbance inputs. That is, the worst case for disturbance input is a step-change in the control variable with no lags or dead-time as illustrated in Figure 2.7.
FIGURE 2-6
RESPONSES TO A SET-POINT CHANGE

desired value

Control Variable

limits

rise time

settling time

Time
FIGURE 2-7

RESPONSE TO A DISTURBANCE CHANGE
From the block diagram in Figure 2.1 the transfer function for disturbance inputs is

\[
\frac{Y(s)}{D(s)} = \frac{G_d(s)}{1 + G_c(s) G(s)} \quad [2.42]
\]

The controller synthesis design equation is determined by solving this equation for \(G_c(s) \).

\[
G_c(s) = \frac{G_d(s) D(s) - Y(s)}{G(s) Y(s)} \quad [2.43]
\]

Now, consider the worst case for disturbance inputs is given by

\[
G_d(s) D(s) = \frac{1}{s}
\]

and the desired response \(Y(s) \) is given by

\[
Y(s) = \frac{1 - e^{-t_o s}}{s} + \frac{e^{-t_o s}}{s + \lambda}
\]

Substituting this into equation 2.43 results in the following controller equation

\[
G_c(s) = \frac{1}{G(s)} \frac{\lambda e^{-t_o s}}{s + \lambda(1 - e^{-t_o s})} \quad [2.44]
\]

Note, this equation is identical to equation 2.10 developed for a step-change in set-point. Therefore, controller synthesis for set-point changes include the worst case for disturbance changes.

In the optimal regulator, this is easier to see since the variables are transformed to their final states, and the responses to set-point changes and to the worst disturbance input would be the same.
Therefore only set-point changes need to be considered in the development of tuning relationships.

Summary

This chapter has presented the development of two controller design techniques which offer the control engineer some flexibility in selecting a desired response. Of the two techniques, controller synthesis seems to be the most promising from an industrial standpoint because it is simpler and reduces the number of tuning parameters to one, the controller gain.

Both techniques are based on simplified process models obtained from a process reaction curve. Therefore a brief discussion of process models and the process reaction curve was included.

Also included was a short discussion on comparison criteria and set-point versus disturbance tuning.

The next two chapters will develop the tuning relationships needed to make the techniques a useful tool for industrial use. They will also contain comparisons to current tuning relationships.
REFERENCES

2.14 Bakke, R. M., "Direct Digital Control with Self-Adjustment for Processes with Variable Dead Time and/or Multiple Delays," 20th Annual ISA Conference and Exhibit, Los Angeles, October 1965.

CHAPTER III

CONTROLLER SYNTHESIS CORRELATIONS AND RESULTS

Introduction

The main advantage of the Dahlin(1)-Higham(2) type controller is the flexibility it provides the control engineer to select a desired response. Along with this flexibility, the most attractive feature from an industrial or application standpoint is that it reduces the number of tuning parameters to one. As shown by equations 2-15 and 2-18 in Chapter II, the tuning parameter \(\lambda \) appears only in the controller gain. Thus \(T_i \) or \(T_d \) and \(T_d \) are determined by the process dynamics and only \(K_c \), the controller gain, need to be adjusted to tune a process control loop containing a PI or PID controller.

The effect of the tuning parameter \(\lambda \) on the closed-loop response of the system is illustrated in Figure 3-1. The system consists of a second-order-lag-plus-dead-time process with a PID controller. The process parameters are as follows:

\[
\begin{align*}
K &\equiv \text{process gain} = 1.0 \\
b &\equiv \text{process parameter} = 4.0 \ [\text{time}^{-1}] \\
c &\equiv \text{process parameter} = 1.0 \ [\text{time}^{-2}] \\
t_o &\equiv \text{process dead-time} = 0.5 \ [\text{time}]
\end{align*}
\]

The values of \(\lambda \) are indicated on the plot and have the units of \(\text{time}^{-1} \). As can be seen from Figure 3-1, the closed-loop response is sluggish for small values of the tuning parameter, \(\lambda \), but as \(\lambda \) is increased, the system responds faster. However, the fast
FIGURE 3-1

CLOSED-LOOP RESPONSE OF A SECOND-ORDER-LAG-PLUS-DEAD-TIME PROCESS WITH A

PID CONTROLLER AS A FUNCTION OF THE TUNING PARAMETER
response obtained by increasing X beyond some value, is at the expense of large overshoot. If the tuning equations are to be of any use, it is apparent that the tuning parameter must be correlated to the parameters of the process model. In order to do this, some performance criteria such as rise time, % overshoot, or minimum integral of an error function must be established. Defining the correct performance criteria is one of the most difficult task in process control, both in theory and in application.

The purpose of this chapter is to present the necessary correlations to make the controller synthesis results useful as a tool for tuning industrial process control loops. It also illustrates the flexibility which it provides the user to develop his own tuning relationships for a specific performance criteria of his own choosing.

Performance Criteria

A discussion of various performance criteria was provided in Chapter II. The control engineer may select one of these criteria which he feels fits his situation or he may develop his own criteria. However, since a performance criteria is necessary to develop some tuning relationships, a criteria will be chosen here based on the following arguments.

As mentioned earlier, it has become increasingly important to manufacture products within very rigid specifications. This concept gives rise to the term settling time, the time required for the control variable to reach and remain within some specified limits of the set-point or desired value, usually a value between $±1$ percent to $±5$ percent of the desired value. Products manufactured
outside these limits are considered as off-spec products and usually
must be blended with higher quality product to make the desired pro-
duct, recycled or reprocessed, sold as an off-spec product usually
at a cheaper price, or sometimes even dumped or burned in a flare.
Because of the high cost of this type of activity, it may be desir­
able to develop tuning relationships for 1 percent and 5 percent
overshoot criteria. This concept is illustrated in Figure 3-2
which shows the closed-loop responses of a system, consisting of
a second-order-lag-plus-dead-time process and a PI controller tuned
by three different techniques. The second-order-lag-plus-dead-
time process parameters are as follows:

\[K = \text{process gain} = 1.0 \]
\[b = \text{process parameter} = 4.0 \text{ min.}^{-1} \]
\[c = \text{process parameter} = 1.0 \text{ min.}^{-2} \]
\[t_0 = \text{process dead-time} = 1.0 \text{ min.} \]

This corresponds to a natural frequency of 1.0 min.\(^{-1}\) and a damping
ratio of 2. The responses are for a unit step change in the set-
point. The curves are labeled A, B, and C and are the responses
obtained by tuning the PI controller by the following criteria:

- **Curve A**: Ziegler-Nichols (3), quarter decay ratio
- **Curve B**: Rovira (4), minimum integral of the absolute
 value of the error (IAE)
- **Curve C**: Synthesis technique, five percent overshoot

It should be noted, that all the above techniques utilize the
parameters of the first-order-lag-plus-dead-time model of the
process to tune the PI controller. The parameters of the process
model are:
FIGURE 3-2
TYPICAL CLOSED-LOOP RESPONSE TO
STEP CHANGES IN SET-POINT

Control Variable

Time
\[K = \text{process gain} = 1.0 \]
\[\tau = \text{first-order time constant} = 3.73 \text{ min.} \]
\[t_0 = \text{model dead-time or transportation lag} = 1.28 \text{ min.} \]

The tuning parameters for the PI controllers are presented in Table 3-1. As shown in Figure 3-2, curve A, quarter-decay ratio, has the fastest rise time, \(t_1 \), but has the largest overshoot (30.7%) and the longest settling time, \(t_6 \). Curve B, minimum IAE, has a rise time of \(t_2 \) and a settling time of \(t_5 \) and has an 11.2% overshoot. Note, curve C, five percent overshoot, has the slowest rise time \(t_3 \), but has the fastest settling time, \(t_4 \), which actually occurs before the rise time. The value of the IAE for the three curves are 2.92, 2.62, and 2.73 respectively. While these numbers represent the integral of the absolute value of the error, it is difficult to transform this in terms of product or cost other than to say that Curve B is the minimum IAE. Curves A and C are respectively, 11.5% and 4.2% larger than the minimum. However, from Figure 3-2 it can be seen that, when product quality is directly related to the controlled variable, quarter-decay ratio would produce virtually all off-spec products until time \(t_6 \). At this point it enters the specification band and remains within these limits. Minimum IAE is similar except it does not take as long to settle into the band. The 5% overshoot criteria begins producing products to specification at time \(t_4 \), which may be significant when considering today's high production rates and the high cost of energy and resources. For this reason, 1% and 5% overshoot were chosen as performance criteria for this work.

Process and Process Models

Now that a performance criteria has been selected, it is necessary to determine a suitable representation for the process.
TABLE 3-1

PI CONTROLLER SETTINGS

<table>
<thead>
<tr>
<th>Curve</th>
<th>Controller Gain K_c</th>
<th>Reset time T_1 (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A quarter decay ratio</td>
<td>2.62</td>
<td>4.27</td>
</tr>
<tr>
<td>B minimum IAE</td>
<td>1.90</td>
<td>4.10</td>
</tr>
<tr>
<td>C 5% overshoot</td>
<td>1.51</td>
<td>3.73</td>
</tr>
</tbody>
</table>
Since a second-order-lag-plus-dead-time transfer function is considered to adequately represent most self-regulating processes, it will be used to represent the process. Only in the case of nonminimal phase systems are additional terms usually required to represent the process. Since these are very special cases and do not occur frequently, they will not be considered in this study.

The process parameters which will be considered will range from the critically damped ($\zeta = 1.0$ or $b/\sqrt{c} = 2.0$) case to the highly overdamped ($\zeta = 6.0$ or $b/\sqrt{c} = 12.0$) case. The dead-time will range from values of $t_0 \cdot \sqrt{c}$ of 0.25 to 2.0. Additional cases may be used to illustrate or examine certain aspects of the techniques and if used, will be noted as a special case.

Process models will be primarily as described in Chapter II. The first-order-lag-plus-dead-time model parameters will be obtained by Smith's (5) two-point technique. Since the process parameters are known, this technique can be applied to the second-order-lag portion of the process transfer function for which the analytical solution is well known and published, Coughanowr and Koppel (6), and others, to obtain τ, the time constant of the first-order-lag and Δ, the effective dead-time due to the second-order-lag process. The model dead-time, t_0, is then calculated as the sum of Δ and the process dead-time. The two-point technique was chosen because it gives reproducible results which are otherwise difficult to obtain from other techniques requiring graphical constructions.

The subroutine FOPDTM, listed in Appendix G, utilizes the Secant Method to determine $t @ y = 0.284 \Delta y$ and $@ y = 0.632 \Delta y$ from the analytical solution at a second-order transfer function.
FIGURE 3-3

PARAMETERS OF THE FIRST-ORDER MODEL DUE TO A SECOND-ORDER-LAG PROCESS
FIGURE 3-4
RATIO OF THE SECOND-ORDER-LAG TIME CONSTANTS AS A FUNCTION OF THE DIMENSIONLESS PARAMETER OF THE SECOND-ORDER SYSTEM
These two values of \(t \) can then be used with the following equations

\[
\begin{align*}
\frac{t}{0.284} \Delta y &= \Delta + \frac{\tau}{3} \\
\frac{t}{0.632} \Delta y &= \Delta + \tau
\end{align*}
\]

[3-1]

to determine \(\tau \) and \(\Delta \). The results are presented as a function of the ratio of the second-order-lag-time constants in Figure 3-3. \(\tau_1 \) is considered to be the larger or dominate time constant. The figure illustrates that the first-order-lag-time constant, \(\tau \), approaches \(\tau_1 \), the larger or dominate time constant and the effective dead-time \(\Delta \), approaches \(\tau_2 \), the smaller of the second-order-lag time constants, as the ratio of the second-order-lag time constants, \(\frac{\tau_2}{\tau_1} \), approach 0.1. The relationship of the ratio of the second-order-lag time constants to the dimensionless parameter, \(\frac{b}{\sqrt{c}} \), is shown in Figure 3-4. Remembering that the damping ratio \(\zeta \) is one-half the dimensionless quantity \(\frac{b}{\sqrt{c}} \), this figure shows that the ratio of the two time constants goes from 1.0 to 0.1 as the damping ratio \(\zeta \) goes from 1.0 (critically damped) to 1.75 or \(\frac{b}{\sqrt{c}} \) goes from 2.0 to 3.5. Therefore, for most over-damped systems (system's whose damping ratio is greater than 1.7) the equivalent dead-time, \(\Delta \), is simply accounting for the smaller time constant, \(\tau_2 \).

The parameters of the second-order-lag-plus-dead-time model will be the parameters of the process, since they are known and assumed to be in the form of a second-order-lag-plus-dead-time transfer function. This however will not be the case in practice, and it will be necessary to determine these parameters by one of the methods suggested in Chapter II or if a computer technique is desirable least squares or some other suitable regression method.

Since a performance criteria has been established and the process
representation has been defined, it is now necessary to determine the appropriate value of \(\lambda \), the tuning parameter, which will produce the desired response.

Results for PI Controller

When the process reaction curve is fitted with a first-order-lag-plus-dead-time model, a proportional-plus-integral (PI) controller will result. This was shown in Chapter II and the resulting tuning equations for the PI controller are summarized in Table 3-2. As indicated in the table, the reset time \(T_i \) should be set equal to \(\tau \), the first-order model time constant, and the controller gain \(K_c \) is a function of the tuning parameter \(\lambda \) and the model parameters \(\tau \), \(t_o \), and \(K \).

The correlation of the tuning parameter to the parameters of the first-order-lag-plus-dead-time model of the process is presented in Figure 3-5. The plot is given in terms of the dimensionless quantities \(\lambda \tau \) and \(\tau / t_o \). The 1 and 5 percent overshoot performance criteria are labeled 1% and 5%, respectively. Each data point represents a trial and error calculation on \(\lambda \) to obtain the desired closed-loop response for a given set of process parameters. This was repeated for different process parameters ranging from critically damped to highly overdamped with the dead-time ranging from short to long. The specific process parameters used are presented in Appendix F. A Runge-Kutta-Simpson integration routine was used to solve the closed-loop equations and is listed in Appendix G.

Although the data are somewhat scattered, a straight line can be drawn through the data points well within the accuracy of determining model parameters from plant data. This straight line implies that \(\lambda \),
TABLE 3-2

CONTROLLER SYNTHESIS TUNING EQUATIONS

<table>
<thead>
<tr>
<th>Controller</th>
<th>Process Model</th>
<th>Controller Parameters</th>
<th>Gain KK_c</th>
<th>Reset Time T_i</th>
<th>Preact Time T_d</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI</td>
<td>$-\frac{t_o s}{\tau s + 1}$</td>
<td>$\frac{\lambda \tau}{(1 + \lambda t_o)}$</td>
<td>τ</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>PID</td>
<td>$-\frac{t_o s}{(\tau_1 s + 1)(\tau_2 s + 1)}$</td>
<td>$\frac{\lambda(\tau_1 + \tau_2)}{(1 + \lambda t_o)}$</td>
<td>$\frac{\tau_1}{\tau_1 + \tau_2}$</td>
<td>$\frac{\tau_1}{\tau_1 + \tau_2}$</td>
<td></td>
</tr>
<tr>
<td>PID</td>
<td>$-\frac{c t_o s}{s^2 + bs + c}$</td>
<td>$\frac{\lambda b}{c(1 + \lambda t_o)}$</td>
<td>$\frac{b}{c}$</td>
<td>$\frac{1}{b}$</td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 3-5

TUNING PARAMETER FOR A PI CONTROLLER AS A FUNCTION
OF THE FIRST-ORDER-LAG-PLUS-DEAD-TIME MODEL PARAMETERS
the tuning parameter, is only a function of the dead-time, t_o. The equations for these lines can be determined from the plot and are as follows:

$$\lambda \cdot t_o = 1.10; \quad \text{for 5\% overshoot criteria}$$

and

$$\lambda \cdot t_o = 0.790; \quad \text{for 1\% overshoot criteria} \quad \text{[3-2]}$$

Substituting these equations into the controller gain relationship results in the following:

$$K_{Kc} = 0.524 \frac{t}{t_o} \quad \text{for 5\% overshoot criteria}$$

and

$$K_{Kc} = 0.441 \frac{t}{t_o} \quad \text{for 1\% overshoot criteria} \quad \text{[3-3]}$$

These expressions give the PI controller tuning relationships as a function of the model parameters only. Therefore, the PI controller gain, K_{Kc}, can be calculated directly from the first-order-lag-plus-dead-time model parameters or by using the equation in Table 3-2 and Figure 3-5.

Results for PID Controller

When the process reaction curve is fitted with a second-order-lag plus-dead-time model, a proportional-plus-integral-plus-derivative (PID) controller will result. This was shown in Chapter II and the resulting tuning equations for the PID controller are also summarized in Table 3-2. The table shows both the factored and polynomial forms of the second-order model transfer function and tuning relationships. Here, the reset time, T_r, and the preact time, T_d, are functions of the time constants or damping ratio and natural frequency, and the controller gain is a function of the tuning parameter, λ, and all the model parameters.
FIGURE 3-6
TUNING PARAMETER FOR A PID CONTROLLER AS A FUNCTION OF
THE SECOND-ORDER-LAG-PLUS-DEAD-TIME-MODEL
PARAMETERS FOR 5% OVERSHOOT CRITERIA
FIGURE 3-7
TUNING PARAMETER FOR A PID CONTROLLER AS A FUNCTION OF
THE SECOND-ORDER-LAG-PLUS-DEAD-TIME MODEL
PARAMETERS FOR 1% OVERSHOOT CRITERIA
The correlations between the tuning parameter and the process model parameters for the 5 and 1 percent overshoot performance criteria are presented in Figures 3-6 and 3-7, respectively. These plots are for PID controller tuning only, and are presented in terms of the following dimensionless parameters.

\[
\begin{align*}
\lambda/\sqrt{c} & \quad \text{dimensionless tuning parameter} \\
\theta = t_o/\sqrt{c} & \quad \text{dimensionless dead-time} \\
\beta = b/\sqrt{c} & \quad \text{damping parameter } (\zeta = 1/2 \ b/\sqrt{c})
\end{align*}
\]

The curves were generated by repetitive trial and error calculations using the secant method on the tuning parameter to obtain the desired response for a given set of process parameters. The process parameters used to obtain the data points are presented in Appendix F.

Figures 3-6 and 3-7 show that as the damping ratio increases, the curve will approach the straight line produced in Figure 3-5 for the tuning of the PI controller based on the first-order-lag-plus-dead-time model. These straight lines are illustrated on Figures 3-6 and 3-7 and are labeled PI line. These figures show that, near the critically damped region, as the dead-time decreases the process gain becomes less dependent on it and becomes a function only of the damping parameter. However, as the damping ratio increases and the process approaches a first-order response, the gain becomes again a function of the dead-time, approaching the first-order (PI) line. This suggests a competition between the effects of the dead-time and the smallest time-constant on the closed-loop response.

The critically damped short dead-time system deviates most from the straight line produced by the first-order model tuning. This is what would be expected since the first-order-lag-plus-dead-time model
does not provide a good fit for the critically damped case. Also at high damping ratios, as the dimensionless dead-time becomes small \((1/\theta > 1.0)\) it requires a larger gain to make the system overshoot. Inspection of the two figures also shows that it is easier to achieve the 1% overshoot than the 5% overshoot for small dead-time.

Now the PID controller gain, \(K_c\), can be calculated by using the equations in Table 3-2 and Figure 3-6 or Figure 3-7 and the parameters of a second-order-lag-plus-dead-time model at the process.

In summary, a PI controller can be tuned by fitting a first-order-lag-plus-dead-time model to the process reaction curve to determine the model parameters. Knowing these parameters, Figure 3-5 can be used to determine \(\lambda\) and then the PI tuning equation in Table 3-2 can be used to calculate the settings. Or omit the need for determining \(\lambda\), by using equation 3-3 to determine the controller gain. A PID controller can be tuned by fitting a second-order-lag-plus-dead-time model to the process reaction curve to determine the model parameters. Knowing these parameters, use Figure 3-6 or 3-7 to determine \(\lambda\) and then the PID tuning equation in Table 3-2 can be used to determine the controller settings.

Discussion

It should be noted from Table 3-2 that the controller gain increases as the tuning parameter increases but the gain asymptotically reaches a limit as the value of the tuning parameter becomes very large. The maximum value of the gain can be found by taking the limit of the gain formulas as the tuning parameter approaches infinity. This is illustrated by the following equations:
PI Controller

\[
\lim_{\lambda \to \infty} KK_c = \lim_{\lambda \to \infty} \frac{\lambda \tau}{1+t_0 \lambda} = \frac{\tau}{t_0}
\] \[3.4\]

PID Controller

\[
\lim_{\lambda \to \infty} KK_c = \lim_{\lambda \to \infty} \frac{\lambda b}{c(1+t_0 \lambda)} = \frac{b}{ct_0}
\] \[3.5\]

or

\[
\lim_{\lambda \to \infty} KK_c = \lim_{\lambda \to \infty} \frac{\lambda(t_1+t_2)}{1+t_0 \lambda} = \frac{t_1 + t_2}{t_0}
\]

These results show that the maximum value of the controller gain is only a function of the parameters of the process model and not a function of the tuning parameter. This does not imply that the controller gain can not be set larger than the value determined from equation 3.4 or 3.5 to achieve a desired response in the field. However, if this is done, it must be understood that tuning beyond the limits of equation 3.4 or 3.5 is not tuning by varying \(\lambda \), the tuning parameter, but changing the value of \(t_0 \), the process model dead-time, or \(K \), the process model gain.

It should also be noted that if the process model is an exact representation of the process, the only term which could cause overshoot is the dead-time approximation. Under these conditions as the dead-time becomes small and approaches zero the closed-loop system no longer overshoots and the controller gain could theoretically be set to infinity to obtain a zero rise time. However, practical considerations such as valve saturation and wear would impose a limit on the value of the gain. Also, under normal conditions, process nonlinearities and model inaccuracies would inhibit perfect compensation of process time lags.
The beauty of the synthesis technique is that it allows the control engineer to back off on the controller gain to prevent valve saturation, etc., without worrying about the other controller parameters.

As stated earlier, the PID controller gain approaches the PI controller gain for highly overdamped processes. This is evident because as the damping ratio increases, the first-order model time constant approaches the dominant second-order model time constant and the smaller second-order model time constant approaches zero. Thus, the PI controller reset time, \(r \), approaches the PID controller reset time, \(r_1 + r_2 \), and the PID controller preact time, \(\frac{r_1 - r_2}{r_1 + r_2} \), approaches zero. This indicates that beyond some value of the damping ratio, it is no longer feasible to utilize a PID controller to control the process. From Figure 3-6, a value of \(b/\sqrt{\zeta} \) equal to 6.0 seems to be a good choice for the 5% overshoot criteria. This corresponds to a ratio of the second-order time constants of 0.025. From Figure 3-7, a value of \(b/\sqrt{\zeta} \) equal to 9.0 seems to be a good choice for the 1% overshoot criteria. This corresponds to a ratio at the second-order time constants of 0.0127. Time constants of this magnitude would be difficult to obtain from a process reaction curve, considering the graphical construction required to obtain the parameters of a second-order model. Therefore, processes of this magnitude of damping ratio should be fitted with a first-order model resulting in a PI controller.
Comparison of Controllers

Comparison of the results of controller synthesis tuning will be made primarily with the results obtained by using Ziegler-Nichols (3) and Rovira (4) tuning formulas. Although these techniques were not developed on the same performance criteria, they are the most widely accepted and utilized in industry and form a good basis for comparison.

As mentioned earlier, Ziegler-Nichols tuning is based on quarter-decay ratio performance and Rovira offers two sets of tuning relationships for set-point changes, one for IAE, integral of the absolute value of the error, and one for ITAE, integral of the time-weighted absolute value of the error. ITAE criteria penalizes the system more for errors which occur late in time and less for errors which occur early in time. IAE criteria is not so critical of small errors which may occur late in time and generally results in less overshoot. Since the controller synthesis tuning relationships developed here are based on % overshoot performance criteria, IAE criteria was chosen for the comparison basis.

Since the three techniques utilize the first-order-lag-plus-dead-time model of the process to tune the parameters of the PI controller, the tuning equations can be compared. These equations are summarized and presented in Table 3-3. From this table it can be shown that the quarter decay ratio gain is 1.75 times that of the 5% overshoot gain and the IAE gain is $1.47 \left(\frac{t_o}{\tau} \right)^{0.14}$ time that of the 5% overshoot gain. The 1% overshoot gain is approximately 80% of the 5% overshoot gain. The reset time, T_1/τ, for both 5% and 1% overshoot is unity, while both quarter-decay ratio and IAE reset times are functions of τ/t_o. The controller gain and integral
TABLE 3-3

TUNING RELATIONSHIPS

<table>
<thead>
<tr>
<th>Controller</th>
<th>Ziegler-Nichols (3) (quarter-decay ratio)</th>
<th>Rovira (4) (minimum IAE)</th>
<th>Synthesis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>5% overshoot</td>
</tr>
<tr>
<td>Proportional</td>
<td>KK<sub>c</sub> = 0.9 (\left[\frac{t_o}{\tau} \right]) (-1.0)</td>
<td>KK<sub>c</sub> = 0.758 (\left[\frac{t_o}{\tau} \right]) (-0.861)</td>
<td>KK<sub>c</sub> = 0.524 (\left[\frac{t_o}{\tau} \right]) (-1.0)</td>
</tr>
<tr>
<td>Reset</td>
<td>(\frac{T_1}{\tau} = 3.33 \frac{t_o}{\tau})</td>
<td>(\frac{T_1}{\tau} = \frac{1}{1.02 - 0.323 \frac{t_o}{\tau}})</td>
<td>(T_1 = 1.0)</td>
</tr>
<tr>
<td>Proportional</td>
<td>KK<sub>c</sub> = 1.2 (\left[\frac{t_o}{\tau} \right]) (-1.0)</td>
<td>KK<sub>c</sub> = 1.086 (\left[\frac{t_o}{\tau} \right]) (-0.869)</td>
<td>KK<sub>c</sub> = (\frac{\lambda b}{c(1 + \lambda t_o)}) = (\frac{\lambda(t_1 + t_2)}{1 + \lambda t_o})</td>
</tr>
<tr>
<td>Reset</td>
<td>(\frac{T_1}{\tau} = 2.0 \left[\frac{t_o}{\tau} \right])</td>
<td>(\frac{T_1}{\tau} = \frac{1}{0.74 - 0.13t_o/\tau})</td>
<td>(T_1 \sqrt{c} = \frac{b}{\sqrt{c}}) or (\frac{T_1}{\tau_{1/2}} = \frac{t_1 + t_2}{\sqrt{t_1 t_2}})</td>
</tr>
<tr>
<td>- plus -</td>
<td>(\frac{T_1}{\tau} = 0.5 \left[\frac{t_c}{\tau} \right])</td>
<td>(\frac{T_1}{\tau} = 0.348 \left[\frac{t_o}{\tau} \right]) (0.914)</td>
<td>(T_d \sqrt{c} = \frac{\sqrt{c}}{b}) or (\frac{T_d}{\tau_{1/2}} = \frac{\sqrt{t_1 t_2}}{t_1 + t_2})</td>
</tr>
</tbody>
</table>

\(\tau \) is the process time constant, \(t_o \) is the output rise time, \(t_c \) is the control rise time, \(t_1 \) and \(t_2 \) are time constants, \(c \) is the controller gain, \(\lambda \) is the lead-lag parameter.
time for the three techniques are presented in graphical form as a function of the dimensionless model parameter, τ/t_0, in Figures 3-8 and 3-9, respectively. These figures show that the IAE tuning is very similar to synthesis tuning for 5% overshoot criteria except in the region of small values of the dimensionless first-order model parameter. The IAE gain, KK_c, ranges from -10% to $+25\%$ of the 5% overshoot gain. The integral action, τ/T_i, asymptotically approaches the value of the synthesis integral action for values of τ/t_0 greater than 3. Quarter-decay ratio tuning, as expected, has a much higher gain which produces a faster rise time but this faster rise time results in a larger overshoot. The quarter-decay ratio integral time, T_i, is only a function of the model dead-time and produces a straight line in Figure 3-9.

Some typical responses which could be expected by using these tuning relationships are presented in the next four figures. For each figure, the process parameters and the first-order model parameters are presented in Table 3-4 and the PI Controller settings for each technique are presented in Table 3-5. The closed-loop responses for the critically damped process with short and long dead-time are presented in Figures 3-10 and 3-11, respectively. The closed-loop responses for the overdamped process with short and long dead-time are presented in Figure 3-12 and 3-13 respectively. The responses for the different techniques are denoted as follows:

- Z-N - Ziegler-Nichols (3) - quarter decay ratio criteria
- ROV - Rovira (4) - minimum IAE criteria
- 5% - Controller Synthesis - 5% overshoot criteria
- 1% - Controller Synthesis - 1% overshoot criteria
FIGURE 3-8
PI CONTROLLER GAIN AS A FUNCTION OF THE
DIMENSIONLESS FIRST-ORDER MODEL PARAMETER
FIGURE 3-9
PI CONTROLLER INTEGRAL ACTION AS A FUNCTION
OF THE DIMENSIONLESS FIRST-ORDER MODEL PARAMETER

\[\frac{\tau}{T_1} \]

\[\frac{\tau}{t_0} \]
Table 3-4

Process and Model Parameters

<table>
<thead>
<tr>
<th>Figure</th>
<th>Process Parameters</th>
<th>First-order Model Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K</td>
<td>b (min$^{-1}$)</td>
</tr>
<tr>
<td>3-10</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>3-11</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>3-12</td>
<td>1.0</td>
<td>4.0</td>
</tr>
<tr>
<td>3-13</td>
<td>1.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Figure</td>
<td>Ziegler-Nichols (3)</td>
<td>Rovira (4)</td>
</tr>
<tr>
<td>--------</td>
<td>--------------------</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td>Quarter-Decay Ratio</td>
<td>Minimum IAE</td>
</tr>
<tr>
<td></td>
<td>K_k^c</td>
<td>T_i (min.)</td>
</tr>
<tr>
<td>3-10</td>
<td>1.945</td>
<td>2.525</td>
</tr>
<tr>
<td>3-11</td>
<td>0.978</td>
<td>5.025</td>
</tr>
<tr>
<td>3-12</td>
<td>6.311</td>
<td>1.770</td>
</tr>
<tr>
<td>3-13</td>
<td>2.617</td>
<td>4.274</td>
</tr>
</tbody>
</table>
FIGURE 3-10

TYPICAL CLOSED-LOOP RESPONSES OF A SECOND-ORDER CRITICALLY DAMPED PROCESS

WITH SHORT DEAD-TIME FOR A PI CONTROLLER

$y(t)$

$r(t)$

$\frac{y(t)}{r(t)}$

$K=1.0$

$\theta=0.25$

$\theta=2.0$

Time (minutes)
FIGURE 3-11

TYPICAL CLOSED-LOOP RESPONSES OF A SECOND-ORDER CRITICALLY DAMPED PROCESS

WITH LONG DEAD-TIME FOR A PI CONTROLLER

\[K=1.0 \]
\[\theta=2.0 \]
\[\Theta=1.0 \]
FIGURE 3-12

TYPICAL CLOSED-LOOP RESPONSES OF A SECOND-ORDER OVERDAMPED PROCESS
WITH SHORT DEAD-TIME FOR A PI CONTROLLER

\[
\frac{y(t)}{r(t)} = K = 1.0, \quad \theta = 0.25
\]

\[
\delta = 4.0
\]

Time (minutes)
FIGURE 3-13

TYPICAL CLOSED-LOOP RESPONSES OF A SECOND-ORDER OVERDAMPED

PROCESS WITH LONG DEAD-TIME FOR A PI CONTROLLER
As mentioned earlier, the straight line approximation for the PI Controller Synthesis settings may not result in the exact overshoot criteria. However, minor adjustment to the controller gain results in the desired response. The controller synthesis gains and overshoots produced by using equation 3.3 for these four figures are presented in Table 3-6. To show the magnitude of the adjustment required to produce the desired overshoot within ±0.01%, the correct gains are given in parenthesis in this table.

These closed-loop responses illustrate that even in the cases of larger overshoots, the system dynamics introduced by the controller synthesis technique is not as severe as that introduced by the other techniques. These figures also show that while slightly faster responses are obtainable by IAE and quarter-decay ratio tuning, it is at the expense of more oscillatory system dynamics which is usually undesirable from an industrial standpoint. From this point of view, the controller syntheses tuning is superior because it produces essentially no oscillatory behavior. These results coupled with the fact that the synthesis technique conceptually provides a parameter which can be tuned and the other techniques do not, makes it very adaptable for industrial use.

As final comparison of the results obtained by the different tuning techniques for a PI Controller, the IAE criteria will be examined. The integral of the absolute value of the error for each of the techniques are presented as a function of the dimensionless process parameters, \(\beta \) and \(\theta \), in Figure 3-14. The controller synthesis results presented here are based on tuning by using equation 3-3. It can be seen from this plot that there is not much
TABLE 3-6

FINE TUNING ADJUSTMENTS
FOR CONTROLLER SYNTHESIS TECHNIQUE

<table>
<thead>
<tr>
<th>Figure</th>
<th>5% overshoot</th>
<th>1% overshoot</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>KK<sub>c</sub></td>
<td>overshoot</td>
</tr>
<tr>
<td>3-10</td>
<td>1.137 (0.996)</td>
<td>8.7% (5.0%)</td>
</tr>
<tr>
<td>3-11</td>
<td>0.571 (0.547)</td>
<td>6.8% (5.0%)</td>
</tr>
<tr>
<td>3-12</td>
<td>3.688 (3.719)</td>
<td>4.8% (5.0%)</td>
</tr>
<tr>
<td>3-13</td>
<td>1.530 (1.511)</td>
<td>5.4% (5.0%)</td>
</tr>
</tbody>
</table>
FIGURE 3-14
INTEGRAL OF THE ABSOLUTE VALUE OF THE ERROR FOR A
SECOND-ORDER-PLUS-DEAD-TIME PROCESS WITH A PI CONTROLLER

IAE

3.5
3.0
2.5
2.0
1.5
1.0
0.5

0 = 1.0

0 = 0.25

\(\theta \)

\(Z-N \)

\(1\% \)

\(5\% \)

\(ROV \)

\(5\% \)

\(1\% \)
The difference between the IAE for IAE tuning and 5% overshoot tuning. The maximum difference is approximately 10%. The IAE of the 1% overshoot tuning varies from 7% to 10% higher than the IAE of the 5% overshoot tuning.

It is more difficult to make a comparison of the PID controllers relationships because the relationships are not based on the same process model. Ziegler-Nichols (3), quarter decay ratio criteria, and Rovira (4), minimum IAE criteria, relationships are based on the first-order-lag-plus-dead-time model of the process and the controller synthesis relationships are based on the second-order-lag-plus-dead-time model of the process. This results in the controller synthesis relationship being a function of the three process model parameters K, τ_1, τ_2 and t_o or $K, b, c,$ and t_o and the other relationships being a function of K, τ and t_o only. It should be noted here that $t_o,$ the first-order-model dead-time, is equal to $t_o,$ the second-order transfer function dead-time, plus $\Delta,$ the effective dead-time introduced by the second-order-lag transfer function. This was discussed earlier and Figures 3-3 and 3-4 can be used to relate these parameters. These figures were used to obtain the PID parameters for Rovira and Zeigler-Nichols techniques.

The PID controller relationships for the three techniques are summarized in Table 3-3. As the equations can not be readily compared, the next three figures provide a graphical means of comparing the tuning parameters.

The controller gains are presented in Figures 3-15 as a function of the process parameter, $\beta,$ for short dead-time ($\Theta = 0.25$) and long
FIGURE 3-15

PID CONTROLLER GAINS AS A FUNCTION OF THE
PARAMETERS OF A SECOND-ORDER-LAG-PLUS-DEAD-TIME PROCESS
dead-time ($\Theta = 1.0$). The plot indicates that the controller gains are strong functions of both the process dead-time and the process damping parameter. For small values of β, the gain becomes less dependent on the dead-time than at large values of β. However, the plot shows that only the 1% overshoot criteria gain is a moderate function of the dead-time for small β. Quarter-decay ratio has the largest gain for both long and short dead-time and the 1% overshoot criteria gain is smallest for both cases.

The dimensionless reset times are presented in Figure 3-16 as a function of the process parameters. The controller synthesis reset time is independent of the process dead-time. The figure shows that the IAE reset time is only moderately a function of the process dead-time while the quarter-decay ratio reset time is a strong function of the process dead-time. It should be noted that the controller synthesis dimensionless reset time is shown as $T_i \sqrt{c}/\beta$. This was done because the dimensionless time constant $\tau \sqrt{c}$ approaches β as β increases. This is shown in Figure 3-18. Therefore the dimensionless reset time $T_i \sqrt{c}/\beta$ is comparable with $T_i \sqrt{c}/\tau \sqrt{c}$ or T_i/τ. The controller synthesis dimensionless reset time is unity and in general is larger than the quarter-decay ratio dimensionless reset time but smaller than the IAE dimensionless reset time.

The dimensionless rate or preact times are presented in Figure 3-17 as a function of the process parameters. The controller synthesis dimensionless preact time is presented as $T_d \sqrt{c}/\beta$ based on the discussion of Figure 3-18. As can be seen, from Figure 3-17, the quarter-decay ratio and IAE preact times are both strong function of the
FIGURE 3-16

PID RESET TIME IS A FUNCTION OF THE PARAMETERS
OF A SECOND-ORDER-LAG-PLUS-DEAD-TIME PROCESS

<table>
<thead>
<tr>
<th>A</th>
<th>Curve</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_1/τ</td>
<td>Z-N</td>
</tr>
<tr>
<td>T_1/τ</td>
<td>ROV</td>
</tr>
<tr>
<td>$T_1\sqrt{c}/\beta$</td>
<td>Syn</td>
</tr>
</tbody>
</table>

![Diagram showing the relationship between ω, A, and β for Z-N, ROV, and Syn curves.]

$\omega=1.0$
$\omega=0.25$
FIGURE 3-17
PID PREACT TIME AS A FUNCTION OF THE PARAMETERS
OF A SECOND-ORDER-LAG-PLUS-DEAD-TIME PROCESS

<table>
<thead>
<tr>
<th>A</th>
<th>Curve</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_d/τ</td>
<td>Z-N</td>
</tr>
<tr>
<td>T_d/τ</td>
<td>ROV</td>
</tr>
<tr>
<td>$T_d \sqrt{c/\beta}$</td>
<td>SYN</td>
</tr>
</tbody>
</table>
FIGURE 3-18
DIMENSIONLESS FIRST-ORDER MODEL TIME CONSTANT AS A
FUNCTION OF THE SECOND-ORDER MODEL DAMPING PARAMETER
process dead-time. Both techniques specify more derivative action for increasing dead-time. Controller synthesis preact time is not a function of the process dead-time and in general specifies less preact time than the other techniques.

To compare the closed-loop responses of these tuning techniques the next four figures present some typical responses which could be expected by using these tuning relationships. The process parameters and the parameters of the first-order-lag-dead-time model of the process are presented in Table 3-7 for each of the figures. The PID controller settings are presented in Table 3-8 for the respective tuning techniques for each of the figures. The critically damped process with short and long dead-time are presented in Figure 3-19 and 3-20, respectively, and the overdamped process with short and long dead-time are presented in Figures 3-21 and 3-22, respectively. The different techniques will be labeled as before by the symbols used in the PI controller comparison.

As was the case with the PI controllers, it can be seen from these figures that the controller synthesis tuning introduces less oscillatory behavior in the closed-loop response of the system. Again the plots show that while slightly faster responses are obtainable by IAE tuning and quarter-decay ratio tuning, it is usually at the expense of larger overshoots.

As a final comparison of the results obtained by the different tuning techniques, the IAE or integral of the absolute value of the error will be examined. The IAE of the different techniques are presented in Figure 3-23 as a function of the dimensionless process parameters, β and θ. From this plot, it can be seen that the IAE
<table>
<thead>
<tr>
<th>Figure</th>
<th>Process Parameters</th>
<th>First-order Model Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K</td>
<td>b(min.⁻¹)</td>
</tr>
<tr>
<td>3-19</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>3-20</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>3-21</td>
<td>1.0</td>
<td>4.0</td>
</tr>
<tr>
<td>3-22</td>
<td>1.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Figure</td>
<td>Ziegler-Nichols (3)</td>
<td>Rovira (4)</td>
</tr>
<tr>
<td>--------</td>
<td>---------------------</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td>Quarter-decay Ratio</td>
<td>Minimum IAE</td>
</tr>
<tr>
<td></td>
<td>KK<sub>c</sub></td>
<td>T<sub>i</sub> (min.)</td>
</tr>
<tr>
<td>3-19</td>
<td>2.594</td>
<td>1.515</td>
</tr>
<tr>
<td>3-20</td>
<td>1.304</td>
<td>3.012</td>
</tr>
<tr>
<td>3-21</td>
<td>8.415</td>
<td>1.062</td>
</tr>
<tr>
<td>3-22</td>
<td>3.490</td>
<td>2.564</td>
</tr>
</tbody>
</table>

TABLE 3-8

PID CONTROLLER SETTINGS
FIGURE 3-19

TYPICAL CLOSED-LOOP RESPONSES OF A SECOND-ORDER CRITICALLY DAMPED
PROCESS WITH SHORT DEAD TIME FOR A PID CONTROLLER

\[y(t) \]

\[Z-N \]

\[\text{ROV} \]

\[0.6 \]

\[K=1.0 \]

\[\zeta=2.0 \]

\[\gamma=0.25 \]

Time (minutes)

\[\frac{y(t)}{r(t)} \]
FIGURE 3-20

TYPICAL CLOSED-LOOP RESPONSES OF A SECOND-ORDER CRITICALLY DAMPED PROCESS WITH LONG DEAD-TIME FOR A PID CONTROLLER

\[\frac{y(t)}{r(t)} \]

\[k=1.0 \]
\[\theta=2.0 \]
\[\phi=1.0 \]
FIGURE 3-21

TYPICAL CLOSED-LOOP RESPONSES OF A SECOND-ORDER OVERDAMPED PROCESS WITH SHORT DEAD-TIME FOR A PID CONTROLLER

\[y(t) \over r(t) \]

\[K=1.0 \]
\[\theta=4.0 \]
\[\zeta=.25 \]

Time (min.)
FIGURE 3-22

TYPICAL CLOSED-LOOP RESPONSES OF A SECOND-ORDER OVERDAMPED PROCESS WITH LONG DEAD-TIME FOR A PID CONTROLLER

$y(t)$

$y(t)$

$r(t)$

Time (minutes)

K=1.0

$\zeta=4.0$

$\zeta_c=1.0$
FIGURE 3-23

INTEGRAL OF THE ABSOLUTE VALUE OF THE ERROR FOR A SECOND-ORDER-LAG-PLUS-DEAD-TIME PROCESS WITH A PID CONTROLLER
for the 5% overshoot tuning and minimum IAE tuning are similar for short dead-time systems but the difference increases with increasing dead-time. However, the maximum difference produced by the 5% overshoot tuning is approximately 20%. The IAE for the 1% overshoot tuning is largest for most cases considered. It is interesting to note that quarter decay ratio produces values of IAE which are sometimes less than the other techniques. In particular, it is minimum for the case where $\beta = 2.0$ and $\theta = 1.0$, but examination of the response for this case (Figure 3-20) reveals that this type of response is very undesirable.

Summary

In this chapter, controller tuning relationships for the synthesis technique were developed and the results were compared with Ziegler-Nichols (3) quarter-decay ratio tuning and Rovira (4) minimum integral of the absolute value of the error tuning. Both the PI and PID controllers were examined in detail.

As the results show, synthesis tuning for the overshoot criteria results in a response which was slightly less oscillatory than the other techniques. However, it should be noted that the synthesis tuning and the IAE tuning were very similar for some of the cases examined. This was especially true for the PI controller for large values of τ/τ_o. A similarity for the PID controller was that the IAE reset time was a very moderate function of the process dead-time.

It is important to note that the reset time for a PI controller or reset and preact times for a PID controller are only a function of the model time constants for the synthesis technique but a
function of the model time constant and dead-time for the other techniques.

In general, the controller synthesis technique offers the control engineer simplicity and flexibility of tuning for a desired response which has not been available to him in the past.
REFERENCES

CHAPTER IV

RESULTS FOR THE OPTIMAL LINEAR REGULATOR TECHNIQUE

Introduction

The application of optimal linear regulator theory is another technique which offers some flexibility in obtaining a desired response. The linear regulator is based on the minimization of a quadratic performance or cost function subject to a linear state variable representation of the process. This theory results in a linear feedback control policy which is proportional to the states, thus the name linear state regulator. If the system is time-invariant and certain additional restrictions are imposed on the cost function and the process to guarantee the existence of a minimum, the resulting control policy, illustrated in Figure 4-1, is called the output regulator. This figure is for the single-input single-output time invariant system. It was shown in Chapter II that the systems under consideration meet all restrictions specified by the output regulator.

The performance or cost function of the single-input single-output system is

\[I = \int_0^\infty (y^2 + p \hat{u}^2) \, d\sigma \]

and contains the parameter \(p \) which must be specified by the user \((p > 0)\) and penalizes the system for excessive movement of the valve. This parameter can be utilized as a tuning parameter since
FIGURE 4-1

OUTPUT REGULATOR BLOCK DIAGRAM

\[
\begin{align*}
\dot{x} &= Ax + Bu \\
\end{align*}
\]
different values of p result in different closed-loop responses. Large values of p result in a sluggish response and as p is decreased the system will respond faster. This is illustrated in Figure 4-2 which shows the closed-loop responses for several values of p for a system consisting of a second-order-lag-plus-dead-time process and a PID controller. The responses are for a unit step-change in set-point. The process parameters are as follows:

$$
K \equiv \text{process gain} = 1.0 \\
b \equiv \text{damping parameter} = 4.0 \text{ time}^{-1} \\
c \equiv \text{frequency parameter} = 1.0 \text{ time}^{-2} \\
t_o \equiv \text{process dead-time} = 0.5 \text{ time}
$$

The controller settings corresponding to the values of p shown on the plot are given in Table 4-1 and are based on a first-order-lag-plus-dead-time model of the process. From Figure 4-2, it can be seen that the faster response obtained by decreasing p beyond some point is at the expense of large overshoot. The large overshoots are accompanied by excessive valve movement as shown in Figure 4-3 which presents the controller output or manipulated variable as a function of time for the closed-loop responses obtained in Figure 4-2. This indicates that a performance criteria must be selected, then the tuning parameter, p, can be correlated to the parameters of the process. However, since the relationships between the controller parameters and the tuning parameter are not simple, the controller settings resulting from the application of the optimal linear regulator will also be correlated to the parameters of the process models.

The performance criteria will be the five percent overshoot.
TABLE 4-1

PID CONTROLLER SETTING BASED ON A FIRST-ORDER-LAG-PLUS-DEAD-TIME MODEL

<table>
<thead>
<tr>
<th>p (min)2</th>
<th>K_c</th>
<th>T_i (min.)</th>
<th>T_d (min.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>.1</td>
<td>3.975</td>
<td>1.876</td>
<td>0.309</td>
</tr>
<tr>
<td>.5</td>
<td>2.515</td>
<td>2.278</td>
<td>0.324</td>
</tr>
<tr>
<td>2.0</td>
<td>1.612</td>
<td>2.670</td>
<td>0.333</td>
</tr>
<tr>
<td>4.0</td>
<td>1.269</td>
<td>2.871</td>
<td>0.338</td>
</tr>
<tr>
<td>10.0</td>
<td>0.906</td>
<td>3.125</td>
<td>0.341</td>
</tr>
</tbody>
</table>
FIGURE 4-2

CLOSED-LOOP RESPONSES OF A SECOND-ORDER-LAG-PLUS-DEAD-TIME PROCESS WITH A PID CONTROLLER AS A FUNCTION OF THE PENALITY FUNCTION

\[\beta = 2.0 \]

\[p = 0.5, 1.0, 2.0, 10 \text{ min}^2 \]

\[\kappa = 1.0 \]

\[\theta = 0.5 \]

Time (min.)
FIGURE 4-3

CONTROLLER OUTPUT AS A FUNCTION OF THE PENALITY FUNCTION

\[m(t) \]

\[p = 0.5, 2.0, 4.0, 10 \text{ min}^2 \]

Time (min.)
criteria established in Chapter III. And the process will again be considered to be represented by the second-order-lag-plus-dead-time transfer function. The process parameters that will be used to develop the tuning correlations will be the same as those used in Chapter III and Appendix F. Process models will also be as described in Chapter II.

Results For PI Controller

When the process reaction curve is fitted with a first-order-lag-plus-dead-time model and the dead-time is approximated by the first-order Taylor series expansion, a PI controller results. This was shown in Chapter II and Appendix E and the resulting tuning equations for the PI controller is given by:

\[
G_c(s) = K_c \left[1 + \frac{1}{T_1} \cdot \frac{1}{s} \right]
\]

where:

\[
K_K = \frac{-\frac{t_0}{\tau} J_{e12} + Je_{22}}{\frac{r}{T_1} + \frac{t_0}{\tau} - \frac{t_0}{\tau} J_{e12} + Je_{22}}
\]

\[
\frac{r}{T_1} = \frac{\frac{t_0}{\tau} J_{e11} + Je_{21} - \frac{t_0}{\tau} J_{e12} + Je_{22}}{-\frac{t_0}{\tau} J_{e12} + Je_{22}}
\]

\(J_{e_{ij}}\) in the controller parameter relationships are the elements of the steady-state solution matrix to the first-order nonlinear matrix Riccati equation. This was discussed in detail in Chapter II. Although a plot of \(p\) versus the model parameters is of little usefulness, it can serve to establish an order of magnitude of \(p\) which will result in a five percent overshoot performance. The correlation of \(r\) or \(p/r^2K^2\) (dimensionless) to the dimensionless parameter, \(r/t_0\), of the first-order-lag-plus-dead-time model of the process is presented in
Figure 4-4. As can be seen from the figure, \(r \) is a strong function of the process parameters for small value of \(\tau/t_0 \) but levels off as \(\tau/t_0 \) increases.

The PI controller settings resulting from the application of the output regulator are presented in Figure 4-5. The plot is presented in terms of the dimensionless quantities \(K_c \), \(T_i/\tau \), and \(\tau/t_0 \). Therefore, knowing the parameters of the first-order-model, the controller gain, \(K_c \), and reset time, \(T_i \), can be determined. Note that, as \(\tau/t_0 \) increases, the controller gain increases and the dimensionless reset time decreases. This is what would be expected, since the larger the first-order time constant, the more highly overdamped the second-order process which requires a larger gain to make the system overshoot, but less integral action to keep it near its desired value.

Results for PID Controller

When the process reaction curve is fitted with a first-order-lag-plus-dead-time model of the process and the dead-time is approximated by the first-order Padé approximation, which increases the order of the process model from first-order to second-order, a PID controller results. Also, if a second-order-lag-plus-dead-time model is fitted to the process reaction curve and the dead-time is approximated by the first-order Taylor series expansion, a PID controller results. Therefore two PID controllers result from the application of the output regulator to two different process models. This was shown in Chapter II and Appendix E. The resulting tuning equation for the PID controller, using the first-order-lag-plus-dead-time model is given by:

\[
G_c (s) = K_c \left(1 + \frac{1}{T_i} \cdot \frac{1}{s} + T_d \cdot s \right)
\]
FIGURE 4-4

CORRELATION OF THE TUNING PARAMETER FOR A PI CONTROLLER RESULTING IN A 5% OVERSHOOT CRITERIA AS A FUNCTION OF THE PARAMETERS OF A FIRST-ORDER-LAG-PLUS-DEAD-TIME MODEL

\[r = \frac{p}{\tau^2 K^2} \]

\[t/t_o \]
FIGURE 4-5

OPTIMAL PI CONTROLLER TUNING PARAMETERS FOR 5% OVERSHOOT CRITERIA AS A FUNCTION OF THE FIRST-ORDER-LAG-PLUS-DEAD-TIME MODEL PARAMETERS
The resulting tuning equation for the PID controller using the second-order-lag-plus-dead-time model is given by

\[G_c(s) = K_c \left[1 + \frac{1}{T_1} \cdot \frac{1}{s} + T_d \cdot s \right] \]

where

\[K_c = \frac{(\frac{t_o}{\tau} + 4) J_e^{32} + (\frac{t_o}{\tau} + 2) J_e^{33}}{t_o \cdot J_e^{32} + \frac{t_o}{\tau} \cdot J_e^{33} + 2 \cdot r} \]

\[\frac{T}{T_1} = \frac{2(J_e^{31} + J_e^{32} + J_e^{33})}{(\frac{t_o}{\tau} + 4) \cdot J_e^{32} + (\frac{t_o}{\tau} + 2) \cdot J_e^{33}} \]

\[T_d = \frac{\frac{t_o}{\tau} \cdot (J_e^{32} + J_e^{33})}{(\frac{t_o}{\tau} + 4) \cdot J_e^{32} + (\frac{t_o}{\tau} + 2) \cdot J_e^{33}} \]

Since the tuning correlations will be developed as a function of the model parameters, two sets of plots will be required.

The results for the PID controller resulting from the first-order model will be considered first. \(r \) or \(p/\tau^2 K^2 \) (dimensionless) is presented as a function of \(\tau/t_o \), the dimensionless parameter of the first-order-lag-plus-dead-time model in Figure 4-6. This plot is similar to Figure 4-4 with the only difference being \(r \) is slightly
FIGURE 4-6
CORRELATION OF THE TUNING PARAMETER FOR A PID CONTROLLER RESULTING IN A 5% OVERSHTOOT CRITERIA AS A FUNCTION OF THE PARAMETERS OF A FIRST-ORDER-LAG-PLUS-DEAD-TIME MODEL
larger for the PID controller. The resulting controller settings are presented in Figures 4-7 and 4-8. Again the plots are presented in the dimensionless quantities $K K_c$, T_1/τ, and T_d/τ. The controller gain is presented as a function of the dimensionless model parameter τ/τ_0 in Figure 4-7 and the dimensionless reset time and dimensionless preact time are presented as a function of τ/τ_0 in Figure 4-8. Here the results are as expected, as τ/τ_0 increases, the controller gain increases and the dimensionless reset and preact times decrease.

The results for the PID controller resulting from the second-order model are presented in the next four figures. r or $\frac{pc}{K^2}$ (dimensionless) is presented as a function of the dimensionless quantities β and θ of the second-order-lag-plus-dead-time model in Figure 4-9. The quantity β is a damping parameter and is equal to twice the damping ratio, ζ, and θ is the dimensionless dead-time. From this figure it can be seen that for any value of β, as the dead-time increases, ρ increases. Also note that as the damping parameter β, increases, ρ increases. The resulting dimensionless controller gain, $K K_c$, the dimensionless reset time, $T_1\sqrt{c}$, and the dimensionless preact time, $T_d\sqrt{c}$, are presented in Figures 4-10, 4-11, and 4-12 respectively as a function of β and θ. It is important to note that the dimensionless preact time $T_d\sqrt{c}$ is primarily a function of the damping parameter, β, and for all practical purposes is not a function of θ, the dimensionless dead-time. This is not the case for the dimensionless gain (Figure 4-10) and the dimensionless reset time (Figure 4-11), as they are both strong functions of the damping parameter and dead-time.

Using the results presented here, a PID controller can be tuned by knowing the parameters of either a first-order-lag-plus-
FIGURE 4-7

OPTIMAL PID CONTROLLER GAIN FOR 5% OVERSHOOT CRITERIA AS
A FUNCTION OF THE PARAMETERS OF A FIRST-ORDER
LAG-PLUS-DEAD-TIME MODEL
FIGURE 4-8
OPTIMAL PID RESET AND PREACTION TIMES FOR 5% OVERSHOOT
CRITERIA AS A FUNCTION OF THE PARAMETERS OF A
FIRST-ORDER-LAG-PLUS-DEAD-TIME MODEL
FIGURE 4-9
CORRELATION OF THE TUNING PARAMETER FOR A PID CONTROLLER
RESULTING IN A 5% OVERSHOOT CRITERIA AS A FUNCTION OF
THE PARAMETERS OF A SECOND-ORDER-LAG-PLUS-DEAD-TIME MODEL
FIGURE 4-10

OPTIMAL PID CONTROLLER GAIN FOR 5% Overtshoot Criteria

As a function of the parameters of a second-order-lag-plus-dead-time model

\[KK_c \]

\[0 = 0.25 \]

\[0 = 0.5 \]

\[0 = 1.0 \]

\[0 = 2.0 \]

\[2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \]

\[0.4 \ 0.6 \ 0.8 \ 1.0 \ 1.2 \ 1.4 \]
FIGURE 4-11

OPTIMAL PID RESET TIME FOR 5% OVERSHOOT CRITERIA AS A
FUNCTION OF THE PARAMETERS OF A SECOND-ORDER
LAG-PLUS-DEAD-TIME MODEL

\[T_L \sqrt{c} \]

\(\Theta = 2.0 \)
\(\Theta = 1.0 \)
\(\Theta = 0.5 \)
\(\Theta = 0.25 \)
FIGURE 4-12

OPTIMAL PID PREACT TIME FOR 5% OVERSHOOT CRITERIA AS A FUNCTION OF THE PARAMETERS OF A SECOND-ORDER-
LAG-PLUS-DEAD-TIME MODEL.
FIGURE 4-13

CORRELATION OF THE TUNING PARAMETER FOR A PIDD2

CONTROLLER RESULTING IN A 5% OVERSHOOT CRITERIA AS A FUNCTION OF THE PARAMETERS OF A SECOND-ORDER-LAG-PLUS-DEAD-TIME MODEL

\[\frac{PC}{K^2} = r \]

\[\theta = 2.0 \]
\[\theta = 1.0 \]
\[\theta = 0.5 \]
\[\theta = 0.25 \]
dead-time model or second-order-lag-plus-dead-time model of the process.

Results for PIDD2 Controller

When the process reaction curve is fitted with a second-order-lag-plus-dead-time model of the process and the dead-time is approximated with the first-order Pade' approximation, which increases the order of the process model from second-order to third-order, a PIDD2 or proportional-plus-integral-plus-derivative-plus derivative squared controller results. This was shown in Chapter II and Appendix E.

The resulting tuning equations for the PIDD2 controller are given by:

$$G_c(s) = K_c \left(1 + \frac{1}{T_1} \cdot \frac{1}{s} + T_{d1} \cdot s + T_{d2} \cdot s^2\right)$$

where

$$K_K = \frac{J_{e42} + (\beta + \frac{\Theta}{2})(J_{e43} + J_{e44})}{\tau + \frac{\Theta}{2} (J_{e43} + J_{e44})}$$

$$\sqrt{c} T_{d1} = \frac{J_{e41} + J_{e43} + J_{e44}}{J_{e42} + (\beta + \frac{\Theta}{2})(J_{e43} + J_{e44})}$$

$$\sqrt{c} T_{d2} = \frac{(2 + \frac{\Theta R}{2}) J_{e43} + (1 + \frac{\Theta R}{2}) J_{e44}}{J_{e42} + (\beta + \frac{\Theta}{2})(J_{e43} + J_{e44})}$$

$$c T_{d2} = \frac{\Theta}{2} (J_{e43} + J_{e44})}{J_{e42} + (\beta + \frac{\Theta}{2})(J_{e43} + J_{e44})}$$

Although this may be considered a theoretical controller, the contribution of the additional derivative term will be examined in order to determine the effect of this term on the system response.

r or pc/K^2 (dimensionless) is presented as a function of the dimensionless parameters β and Θ in Figure 4-13. This plot is similar to Figure 4-9 for the PID controller resulting from the
second-order model but the values of r are slightly larger for the \(\text{PIDD}^2 \) controller. The resulting controller parameters are presented as follows:

- Figure 4-14: \(K_{KC} = f(\beta, \Theta) \)
- Figure 4-15: \(\sqrt{c} T_1 = f(\beta, \Theta) \)
- Figure 4-16: \(\sqrt{c} T_{d1} = f(\beta, \Theta) \)
- Figure 4-17: \(c T_{d2} = f(\beta, \Theta) \)

Immediately it should be noted that the coefficient of the derivative-squared term is small for the overdamped cases examined. Unlike the second-order model PID controller, all controller parameters for the \(\text{PIDD}^2 \) controller are strong functions of the dimensionless dead-time. Therefore knowing the parameters of a second-order-lag-plus-dead-time model of the process, the parameters of the \(\text{PIDD}^2 \) controller, which will result in a five percent overshoot criteria, can be determined.

All of the preceding plots were obtained by the following procedure:

1) Search over \(p \) to obtain the controller settings which would produce the desired 5\% overshoot for a given set of process parameters. To accomplish this it is necessary to:
 a) Obtain the solution of the matrix-Riccati equation by relaxation technique.
 b) Obtain the solution of the closed-loop system equations by Runge-Kutta routine.
 c) Iterate on percent overshoot by Secant method to obtain the desired response.

2) Repeat 1) for many different sets of process parameters to
FIGURE 4-14

OPTIMAL PIDD2 CONTROLLER GAIN FOR 5\% OVERSHOOT CRITERIA

AS A FUNCTION OF THE PARAMETERS OF A SECOND-ORDER-LAG-PLUS-DEAD-TIME MODEL
FIGURE 4-15

OPTIMAL PIDD2 CONTROLLER RESET TIME FOR 5\% OVERSHEEOT

CRITERIA AS A FUNCTION OF THE PARAMETERS OF A

SECOND-ORDER-LAG-PLUS-DEAD-TIME MODEL

\[T_1 \sqrt{c^2} \]

\(\theta = 2 \)
\(\theta = 1 \)
\(\theta = 0.5 \)
\(\theta = 0.25 \)
FIGURE 4-16
OPTIMAL PIDD\(^2\) CONTROLLER PREACT TIME FOR 5% OVERSHOOT CRITERIA AS A FUNCTION OF THE PARAMETERS OF A SECOND-ORDER-LAG-PLUS-DEAD-TIME MODEL
FIGURE 4-17
OPTIMAL PIDD\(^2\) CONTROLLER PREACT TIME - SQUARED
FOR 5% OVERSHOOT CRITERIA AS A FUNCTION OF THE
PARAMETERS OF A SECOND-ORDER-LAG-PLUS-DEAD-TIME MODEL

\[
T_{d2}^c
\]

\[\theta = 2.0 \]
\[\theta = 1.0 \]
\[\theta = 0.5 \]
\[\theta = 0.25 \]
obtain the necessary data points to establish a correlation.

3) Plot the results versus the parameters of the process model.

As pointed out earlier, the controller settings are determined as a function of the model parameters, the steady state solution of the matrix Riccati equation, and the penalty function.

Now in general, if the parameters of a first-order model are known, a PI controller may be tuned by using Figures 4-5 or a PID controller may be tuned by using Figure 4-7 and 4-8. If the parameters of a second-order model are known a PID controller may be tuned by using Figures 4-10, 4-11 and 4-12.

Comparison With Other Tuning Techniques

Comparison of the results of the output regulator tuning will be with the techniques considered in Chapter III, that of Ziegler-Nichols (1), quarter decay ratio, Rovira (2), minimum IAE, and controller synthesis, 5 percent overshoot criteria. A comparison of the tuning relationships is not feasible because simplified tuning equations were not obtained for the output regulator. However, plots of the tuning parameters as a function of the parameters of the process model can be compared.

The PI controller gains and dimensionless reset times are presented in Figures 4-18 and 4-19, respectively, as a function of the dimensionless first-order model parameter, τ/t_o. These figures show that the output regulator results in the smallest controller gain and a dimensionless integral action which is similar to Rovira's and controller synthesis. Note, the reset time is independent of the model dead-time for a value of τ/t_o greater than 8.0.

Some typical responses which could be expected by using these
FIGURE 4-18

PI CONTROLLER GAINS AS A FUNCTION OF THE PARAMETERS
OF A FIRST-ORDER-LAG-PLUS-DEAD-TIME MODEL

\[KK_c \]

\[\frac{\tau}{\tau_o} \]
FIGURE 4-19

PI CONTROLLER RESET TIME AS A FUNCTION OF THE PARAMETERS

OF A FIRST-ORDER-LAG-PLUS-DEAD-TIME MODEL
PI controller tuning relationships are presented in the next four figures. The process parameters and parameters of the first-order-lag-plus-dead-time model of the process are presented in Table 4-2 for each of the figures. The PI controller settings for the respective tuning technique for each of the figures are presented in Table 4-3. The closed-loop responses for the critically damped process with short and long dead-time are presented in Figures 4-20 and 4-21, respectively. The closed-loop responses for the overdamped process with short and long dead-time are presented in Figures 4-22 and 4-23, respectively. The different techniques will be denoted as follows:

Z-N - Ziegler-Nichols (1) - quarter decay ratio criteria
ROV - Rovira (2) - minimum IAE criteria
SYN - Controller synthesis - 5% overshoot criteria
OPT - Output regulator - 5% overshoot criteria

These figures show that, while the optimal regulator tuning exhibit good dynamic behavior (does not oscillate), the responses are significantly slower for the overdamped processes. The sluggishness is caused by the penalty function for the valve movement. The controller outputs are presented in Figure 4-24 for the responses shown in Figure 4-23. This figure shows that the valve does not move rapidly and does not move far from its steady-state value.

The PID controller gains, dimensionless reset time, and dimensionless preact time are presented in Figures 4-25, 4-26 and 4-27, respectively. The optimal regulator gain, Figure 4-25, is considerably less than the other techniques gains and is almost constant for all values of τ/τ_o. The dimensionless reset time is less than the synthesis
<table>
<thead>
<tr>
<th>Figure</th>
<th>Process Parameters</th>
<th>First-order Model Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K</td>
<td>b(min⁻¹)</td>
</tr>
<tr>
<td>4-20</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>4-21</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>4-22</td>
<td>1.0</td>
<td>4.0</td>
</tr>
<tr>
<td>4-23</td>
<td>1.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Figure</td>
<td>Technique</td>
<td>K_K</td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td>4-20</td>
<td>Z-N</td>
<td>1.945</td>
</tr>
<tr>
<td></td>
<td>ROV</td>
<td>1.472</td>
</tr>
<tr>
<td></td>
<td>SYN (5%)</td>
<td>1.137</td>
</tr>
<tr>
<td></td>
<td>OPTR</td>
<td>.743</td>
</tr>
<tr>
<td>4-21</td>
<td>Z-N</td>
<td>.978</td>
</tr>
<tr>
<td></td>
<td>ROV</td>
<td>.814</td>
</tr>
<tr>
<td></td>
<td>SYN (5%)</td>
<td>.571</td>
</tr>
<tr>
<td></td>
<td>OPTR</td>
<td>.531</td>
</tr>
<tr>
<td>4-22</td>
<td>Z-N</td>
<td>6.311</td>
</tr>
<tr>
<td></td>
<td>ROV</td>
<td>4.055</td>
</tr>
<tr>
<td></td>
<td>SYN (5%)</td>
<td>3.688</td>
</tr>
<tr>
<td></td>
<td>OPTR</td>
<td>1.131</td>
</tr>
<tr>
<td>4-23</td>
<td>Z-N</td>
<td>2.617</td>
</tr>
<tr>
<td></td>
<td>ROV</td>
<td>1.900</td>
</tr>
<tr>
<td></td>
<td>SYN (5%)</td>
<td>1.530</td>
</tr>
<tr>
<td></td>
<td>OPTR</td>
<td>0.891</td>
</tr>
</tbody>
</table>
FIGURE 4-20

TYPICAL CLOSED-LOOP RESPONSES OF A SECOND-ORDER CRITICALLY DAMPED PROCESS WITH SHORT DEAD-TIME FOR A PI CONTROLLER

\[\frac{y(t)}{r(t)} \]

Time (min.)
FIGURE 4-21

TYPICAL CLOSED-LOOP RESPONSES OF A SECOND-ORDER CRITICALLY DAMPED PROCESS

WITH LONG DEAD-TIME FOR A PI CONTROLLER

\[y(t) \]

\[r(t) \]

\[K = 1.0 \]
\[\beta = 2.0 \]
\[\theta = 1.0 \]

Time (min.)
FIGURE 4-22

TYPICAL CLOSED-LOOP RESPONSES OF A SECOND-ORDER OVERDAMPED PROCESS WITH SHORT DEAD-TIME FOR A PI CONTROLLER

$$y(t)$$

- Z-N
- ROV
- SYN

$$r(t)$$

- OPT

$$K=1.0$$
$$S=4.0$$
$$Q=.25$$

Time (min.)

128
FIGURE 4-23

TYPICAL CLOSED-LOOP RESPONSES OF A SECOND-ORDER OVERDAMPED PROCESS WITH LONG DEAD-TIME FOR A PI CONTROLLER

$y(t)$

$\tau(t)$

$K=1.0$

$\theta=4.0$

$\zeta=1.0$

Time (min.)
FIGURE 4-24

CONTROLLER OUTPUT OF A SECOND-ORDER OVERDAMPED PROCESS WITH LONG DEAD-TIME FOR A PI CONTROLLER
FIGURE 4-25

PID CONTROLLER GAINS AS A FUNCTION OF THE PARAMETERS OF A
SECOND-ORDER-LAG-PLUS-DEAD-TIME MODEL
FIGURE 4-26

PID CONTROLLER RESET TIME AS A FUNCTION OF THE PARAMETERS

OF A SECOND-ORDER-LAG-PLUS-DEAD-TIME MODEL
FIGURE 4-27

PID CONTROLLER PRACT TIMES AS A FUNCTION OF THE PARAMETERS
OF A SECOND-ORDER-PLUS-DEAD-TIME MODEL
dimensionless reset time but greater than the quarter decay ratio reset time. The preact time, Figure 4-27, is approximately the same for all three techniques.

Some typical closed-loop responses which could be expected by using these tuning techniques are presented in the next four figures. The process parameters and the parameters of the first-order-lag-plus-dead-time model of the process will be the same as those presented in Table 4-2. The PID controller settings for the respective tuning techniques for each of the figures are presented in Table 4-4. The closed-loop responses for the critically damped process with short and long dead-time are presented in Figures 4-28 and 4-29, respectively. The closed-loop responses for the overdamped process with short and long dead-time are presented in Figures 4-30 and 4-31, respectively. Each response curve is labeled as described earlier with the following exceptions:

- **OPT1** - Output regulator (based on first-order model) - 5% overshoot criteria.
- **OPT2** - Output regulator (based on second-order model) - 5% overshoot criteria.

These figures show that while the optimal regulator tuning again exhibits good dynamic behavior (does not oscillate) the response is significantly slower for the overdamped cases. Again this sluggishness is the result of slow valve movement as shown by Figure 4-32 which presents the controller output for the responses obtained in Figure 4-31.

Discussion

The Pade' approximation is generally considered to be a good
<table>
<thead>
<tr>
<th>Figure</th>
<th>Technique</th>
<th>K_c</th>
<th>T_i (min.)</th>
<th>T_d (min.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-28</td>
<td>Z-N</td>
<td>2.594</td>
<td>1.515</td>
<td>.378</td>
</tr>
<tr>
<td></td>
<td>ROV</td>
<td>2.122</td>
<td>2.410</td>
<td>.282</td>
</tr>
<tr>
<td></td>
<td>SYN (5%)</td>
<td>1.510</td>
<td>2.0</td>
<td>.500</td>
</tr>
<tr>
<td></td>
<td>OPT1</td>
<td>1.001</td>
<td>1.616</td>
<td>.290</td>
</tr>
<tr>
<td></td>
<td>OPT2</td>
<td>1.032</td>
<td>1.675</td>
<td>.452</td>
</tr>
<tr>
<td>4-29</td>
<td>Z-N</td>
<td>1.304</td>
<td>3.012</td>
<td>.753</td>
</tr>
<tr>
<td></td>
<td>ROV</td>
<td>1.167</td>
<td>2.638</td>
<td>.529</td>
</tr>
<tr>
<td></td>
<td>SYN (5%)</td>
<td>.8</td>
<td>2.0</td>
<td>.5</td>
</tr>
<tr>
<td></td>
<td>OPT1</td>
<td>.862</td>
<td>2.110</td>
<td>.484</td>
</tr>
<tr>
<td></td>
<td>OPT2</td>
<td>.732</td>
<td>1.905</td>
<td>.475</td>
</tr>
<tr>
<td>4-30</td>
<td>Z-N</td>
<td>8.415</td>
<td>1.062</td>
<td>0.265</td>
</tr>
<tr>
<td></td>
<td>ROV</td>
<td>5.901</td>
<td>5.155</td>
<td>.220</td>
</tr>
<tr>
<td></td>
<td>SYN (5%)</td>
<td>3.080</td>
<td>4.0</td>
<td>.250</td>
</tr>
<tr>
<td></td>
<td>OPT1</td>
<td>1.231</td>
<td>2.717</td>
<td>.240</td>
</tr>
<tr>
<td></td>
<td>OPT2</td>
<td>1.233</td>
<td>2.717</td>
<td>.242</td>
</tr>
<tr>
<td>4-31</td>
<td>Z-N</td>
<td>3.490</td>
<td>2.564</td>
<td>.641</td>
</tr>
<tr>
<td></td>
<td>ROV</td>
<td>2.746</td>
<td>5.348</td>
<td>.488</td>
</tr>
<tr>
<td></td>
<td>SYN (5%)</td>
<td>1.844</td>
<td>4.0</td>
<td>.25</td>
</tr>
<tr>
<td></td>
<td>OPT1</td>
<td>1.102</td>
<td>3.322</td>
<td>.517</td>
</tr>
<tr>
<td></td>
<td>OPT2</td>
<td>.983</td>
<td>3.067</td>
<td>.244</td>
</tr>
</tbody>
</table>
FIGURE 4-28

TYPICAL CLOSED-LOOP RESPONSES OF A SECOND-ORDER CRITICALLY DAMPED PROCESS WITH SHORT DEAD-TIME FOR A PID CONTROLLER

$y(t)$ vs. $r(t)$

- Z-N
- ROV
- SYN
- OPT1
- OPT2

K = 1.0
$\beta = 2.0$
$\zeta = 0.25$

Time (min.)
FIGURE 4-29

TYPICAL CLOSED-LOOP RESPONSES OF A SECOND-ORDER CRITICALLY DAMPED PROCESS WITH LONG DEAD-TIME FOR A PID CONTROLLER
FIGURE 4-30

TYPICAL CLOSED-LOOP RESPONSES OF A SECOND-ORDER OVERDAMPED

PROCESS WITH SHORT DEAD-TIME FOR A PID CONTROLLER

\[\frac{y(t)}{r(t)} \]

\(K=1.0 \)
\(\tau=4.0 \)
\(\Theta=.25 \)

Time (min.)
FIGURE 4-31

TYPICAL CLOSED-LOOP RESPONSES OF A SECOND-ORDER OVERDAMPED PROCESS

WITH LONG DEAD-TIME FOR A PID CONTROLLER

\[y(t) \]

\[\frac{z-N}{r(t)} \]

\[\text{OPT1} \]

\[\text{OPT2} \]

\[\text{ROV} \]

\[\text{SYN} \]

\[K=1.0 \]

\[\theta=4.0 \]

\[\phi=1.0 \]
CONTROLLER OUTPUT OF A SECOND-ORDER OVERDAMPED PROCESS

WITH LONG DEAD-TIME FOR A PID CONTROLLER

Time (min.)

m(t)

0 4 8 12 16
approximation for the process dead-time, however, the following equations show that the technique attempts to represent the smaller time constant of a second-order system with an artificial time lag. The equation for the transfer function of a second-order-lag-plus-dead-time process model with the first-order Taylor series expansion for the dead-time is

\[G(s) = \frac{K(1 - t_s)}{(\tau_1 s + 1)(\tau_2 s + 1)} \]

[4.1]

The transfer function of a first-order-plus-dead-time process model with the first-order Pade' approximation for the dead-time is

\[G(s) = \frac{\frac{t_o + \Delta}{2}s}{t_o + \Delta} \frac{K(1 - \frac{t_o + \Delta}{2}s)}{(s + 1)(\frac{t_o + \Delta}{2}s + 1)} \]

[4.2]

Refering back to Chapter III and Figure 3-3, \(\tau \) and \(\Delta \) approach \(\tau_1 \) and \(\tau_2 \), respectively, as \(\tau_2/\tau_1 \) approach zero. Therefore, for highly over-damped processes with short dead-time (same order of magnitude as \(\Delta \)), equations 4.1 and 4.2 are very similar. For these cases, the lag term represents the secondary lag in equation 4.1 and the numerator represents the process dead-time (numerator term in equation 4.1). A process which illustrates this is one which has the parameters of Figure 4-30 (see Table 4-2 for process and model parameters). As one would expect, the PID controller settings resulting from the two models are equivalent and result in identical close-loop responses, Figure 4-30. However, if the second-order process dead-time, \(t_o \), is significantly different from \(\Delta \) or if the process is not quite so overdamped, the two transfer functions are quite different and result in different controller settings. Examples of the different closed-
loop responses are shown in Figures 4-28, 4-29 and 4-31, and the process and model parameters are presented in Table 4-2. Note, for the critically damped short dead-time case the responses are slightly different, however, increasing the dead-time makes a significant difference in the two responses. The difference in response is due to changes in the reset and preact times to compensate for the artificial lag which is really process dead-time or transportation lag. Since dead-time contributes only to the phase angle shift and introduces no dynamics to the system, the Pade' approximation should be avoided if possible.

Although no plots have been shown, a detailed study of the PIDD2 controller revealed that the PIDD2 controller offered little advantage over the PID controller and in most cases the closed-loop response was slower than the PID closed-loop response. Dropping the D^2 term of PIDD2 controller was also considered to determine the effect of the additional term. This was found to have negligible effect on the closed-loop response and in the typical case the overshoot remained approximately the same or dropped to a value between 4.7% and 5.0% accompanied by a small change in rise time. As expected, the largest changes were experienced when the process approached the underdamped case.

Conclusion

Although the application of the optimal regulator is attractive from a theoretical standpoint it did not perform too well for highly overdamped processes for the criteria selected. A major disadvantage is that the technique does not provide for field adjustment in industrial application. Also, it requires a significant effort to
determine the values of p which will produce the desired responses for a specific system.

It should be realized that if control valve wear is a high maintenance item to the point that some control sluggishness may be tolerated, the optimal regulator may offer a compromising solution.

The controller tuning techniques discussed in Chapters III and IV will be applied to a simulation of a non-linear continuous stirred tank reactor in the next chapter.
REFERENCES

CHAPTER V
APPLICATION OF TUNING TECHNIQUES TO A
NON-LINEAR BACKMIX REACTOR

Introduction

The purpose of this chapter is to apply the controller synthesis and output regulator tuning relationships developed in Chapters III and IV to a non-linear backmix reactor. These results will be compared with the responses obtained by tuning with the following criteria: Rovira (1), Lopez (2), and Ziegler-Nichols (3). Both the PI and PID controllers will be examined for set-point and load or disturbance changes.

Process Description

The process chosen for this comparison is a water-jacketed backmix reactor in which an exothermic second-order reaction is taking place. A schematic diagram of the process is illustrated in Figure 5-1. The contents of the reactor are assumed to be perfectly mixed and the density and specific heat of the reactant and product streams are considered to be constant. Heat losses to the surroundings are considered negligible and the overall heat transfer coefficient, U, is assumed to be constant.

The equations describing this process are given in Table 5-1. Equation 5.1 is an unsteady-state material balance for component A in the reactor. The term \(k C_A^2 \) is the rate of disappearance of A by chemical reaction. The stoichiometry is given by:
FIGURE 5-1
REACTOR FLOW DIAGRAM

Reaction: $2 \text{A} \rightarrow \text{B}$
TABLE 5-1
REACTOR EQUATIONS

\[
\frac{dC_A}{dt} = \frac{W}{V_p} (C_{Af} - C_A) - k C_A^2
\] \[5.1\]

\[
V_p \ c_p \ \frac{dT}{dt} = W c_p (T_f - T) - U A' (T - T_c) + (\Delta H) V k C_A^2
\] \[5.2\]

\[
M_c \ \frac{dT_c}{dt} = U A' (T - T_c) - W_c (T_c - T_w)
\] \[5.3\]

\[
k = k_o \exp \left(-\frac{a}{T}\right)
\] \[5.4\]
where \(k \) is the reaction rate constant given by the Arrhenius expression, equation 5.4. In this equation \(T \) must be in degrees Rankine (°R), \(a \) is the Arrhenius temperature constant (°R), and \(k_2 \) is the Arrhenius rate constant (ft.³/lb-min). Equation 5.2 is an unsteady-state energy balance on the reacting mixture. The term \((-\Delta H)\) is the heat of reaction and has the units of Btu/lb of A consumed. Equation 5.3 is an unsteady-state energy balance around the jacket.

Corripio and Smith (4) have simulated this process on analog computer and their analog diagram is presented in Figure 5-2. This diagram with a PI or PID controller has been wired on the EAI 680 analog computer in the Chemical Engineering Departments Hybrid Simulation Laboratory to obtain the needed responses.

The temperature of the reacting mixture, \(T \), will be controlled by manipulating the cooling water rate, \(W_c \), as shown in Figure 5-3. The transfer function of the temperature transmitter and the cooling water flow controller are assumed to have negligible effect on the process.

The process parameters and initial steady state conditions for the backmix reactor are presented in Table 5-2.

Process Characteristics

Although some simplifying assumptions were made in obtaining the process equation, the most important non-linearities of the process are included in the simulation. Corripio and Smith (4) showed that the temperature response for +5°F set-point change was different than for -5°F, a result of nonlinearities. This is illustrated in Figure 5-4, which presents \(\Delta T \), the change in tempera-
FIGURE 3-2

ANALOG DIAGRAM FOR CHEMICAL REACTOR
FIGURE 5-3

SCHEMATIC DIAGRAM OF CONTROL SYSTEM FOR CHEMICAL REACTOR
TABLE 5-2

<table>
<thead>
<tr>
<th>Steady State Conditions</th>
<th>Systems Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T = 190^\circ$F</td>
<td>$c_p = 0.90 \text{ Btu/lb}^\circ\text{F}$</td>
</tr>
<tr>
<td>$k = 0.0278 \text{ ft}^3/\text{lb-min}$</td>
<td>$V = 250 \text{ ft}^3$</td>
</tr>
<tr>
<td>$W = 1000 \text{ lb/min}$</td>
<td>$\rho = 60 \text{ lb/ft}^3$</td>
</tr>
<tr>
<td>$T_f = 150^\circ$F</td>
<td>$a = 2560^\circ\text{R}$</td>
</tr>
<tr>
<td>$T_c = 120^\circ$F</td>
<td>$M_c = 4,000 \text{ Btu/}^\circ\text{F}$</td>
</tr>
<tr>
<td>$C_{Af} = 9.0 \text{ lb/ft}^3$</td>
<td>$UA' = 600 \text{ BTU/min}^\circ\text{F}$</td>
</tr>
<tr>
<td>$C_A = 3.6 \text{ lb/ft}^3$</td>
<td>$-\Delta H = 867. \text{ Btu/min}^\circ\text{F}$</td>
</tr>
<tr>
<td>$W_c = 505 \text{ lb/min}$</td>
<td>$k_o = 1.43 \text{ ft}^3/\text{lb-min}$.</td>
</tr>
<tr>
<td>$T_w = 80.0^\circ$F</td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 5-4

CHANGE IN REACTOR TEMPERATURE AS A FUNCTION

OF THE CHANGE IN COOLING WATER RATE

\[\Delta T (\text{°F}) \]
\[\Delta W_c \text{ (lbs/min)} \]
ture, as a function of ΔWc, the change in cooling water rate. Note that the slope of this curve is the process gain and that it varies considerably on each side of the operating point.

Model Parameters

A process reaction curve was obtained by introducing a step change in cooling water rate (manipulated variable or controller output) and recording the response of the control variable (transmitter output or controller input). Although the process is non-linear and different changes in the manipulated variable result in different process reaction curves, only one process reaction curve will be used to determine the model parameters. This would be the typical case in industry, since it is time consuming to obtain a process reaction curve.

The process reaction curve which will be used to determine the model parameters for the backmix reactor is shown in Figure 5-5. The response was obtained for a step change in cooling water rate of -120 lbs/min.

The parameters of the first-order-lag-plus-dead-time model were determined by Miller's (5) technique and are as follows:

- $K = \text{process gain} = -0.0333 \degree F/(\text{lbs/min})$
- $\tau = \text{process time constant} = 13.95 \text{ min}$
- $t_o = \text{process dead-time} = 2.5 \text{ min}$.

The parameters of the second-order-lag-plus-dead-time model were determined by Stern's (6) technique and are as follows:

- $K = \text{process gain} = -0.0333 \degree F/\text{lbs/min}$
- $b = \text{damping parameter} = 0.34 \text{ min}^{-1}$
- $c = \text{frequency parameter} = 0.024 \text{ min}^{-2}$
- $t_o = \text{process dead-time} = 0.8 \text{ min}$.
FIGURE 5-5

PROCESS REACTION CURVE FOR CHEMICAL REACTOR

\[\Delta W_c = -120 \text{ lbs/min.} \]
The time constants for the factored form of the second-order-lag-plus-dead-time model are:

\[\tau_1 = 10.1 \text{ min} \]
\[\tau_2 = 4.1 \text{ min.} \]

Control Scheme

The temperature of the reacting mixture is to be controlled by manipulating the cooling water rate to the jacket. A PI or PID controller has been implemented in the simulation to obtain the closed-loop responses. The above model parameters will be used to determine the PI and PID controller settings for a unit step change in set-point and load (or disturbance) for the following techniques:

1. Ziegler-Nichols (3): quarter decay ratio
2a. Rovira (1): IAE for set point changes
2b. Lopez (2): IAE for load on disturbance changes
3. Synthesis: 5% overshoot criteria (Chapter III)
4. Output Regulator: 5% overshoot criteria (Chapter IV).

The set-point changes will be a step change in the desired value for the temperature of the reacting mixture of +4°F and -4°F. The load or disturbance change will be a step-change in the reactant feed rate of 3.2 ft³/min or a 20% increase in reactant concentration.

Results

In the response plots to follow, the different techniques will be denoted as follows:

Z-N: for Ziegler-Nichols' technique
ROV: for Rovira's technique
LOP: for Lopez's technique
SYN: for controller synthesis 5% overshoot criteria

OPT1: for output regulator 5% overshoot criteria based on the first-order-lag-plus-dead-time model

OPT2: for output regulator 5% overshoot criteria based on the second-order-lag-plus-dead-time model.

The closed-loop responses for the backmix reactor with a PI controller are presented in Figures 5-6 and 5-7 for set-point changes and Figure 5-8 for a load or disturbance change. The effect of process nonlinearities on the closed-loop response is illustrated by the different responses obtained for each technique for positive and negative set-point changes.

The results for set-point changes, Figures 5-6 and 5-7, show that Ziegler-Nichols has the fastest rise time but also the largest overshoot. The closed-loop response is well behaved for a negative set-point change with a 28% overshoot but is oscillatory for a positive set-point change and has a 80% overshoot. The results for Rovira's IAE and controller synthesis 5% overshoot criteria are very similar to each other. The closed-loop responses are slightly oscillatory for a positive set-point change overshooting 34% and 28% respectively and have very good responses for a negative set-point change, overshooting 4% and 2%, respectively. The output regulator responses are somewhat slower but introduces less dynamics into the closed-loop response and overshoots 9% for a positive set-point change and 0% for a negative set-point change.

The closed-loop responses for a load change are presented in Figure 5-8 for the backmix reactor with a PI controller. Since Lopez's relationships were developed for load changes, his
FIGURE 5-6

REACTOR CLOSED-LOOP RESPONSE WITH A PI CONTROLLER FOR POSITIVE SET-POINT CHANGE

[Graph showing reactor temperature over time with Z-N, ROV, SYN, and OPT curves]

Reactor Temperature (°F)

0 10 20 30 40 50 60

Time (minutes)
FIGURE 5-7

REACTOR CLOSED-LOOP RESPONSE WITH A PI CONTROLLER
FOR NEGATIVE SET-POINT CHANGE
FIGURE 5-8

REACTOR CLOSED-LOOP RESPONSE WITH A PI CONTROLLER

FOR A 20% LOAD CHANGE
tuning relationships will be used in place of Rovira's. The responses, shown in Figure 5-8, indicate that Ziegler-Nichols and Lopez's tuning result in an oscillatory system behavior while controller synthesis and the output regulator tuning are well behaved. Although the output regulator tuning is well behaved, dynamically, it is rather slow and also allows the controlled variable (reactor temperature) to stray farthest from its desired value. The values of the tuning parameters for the PI controller for these plots are presented in Table 5-3.

The closed-loop responses for the backmix reactor with a PID controller are presented in Figures 5-9 and 5-10 for set-point changes and Figure 5-11 for load change. The values of the tuning parameters for the PID controller for these plots are presented in Table 5-4. As illustrated by Figures 5-9 and 5-10, Ziegler-Nichols tuning again results in the largest overshoots, 78% and 42% for positive and negative set-point changes respectively.

The responses for IAE tuning of the PID controller are better than the responses for IAE tuning of the PI controller. For a positive set-point change the overshoot is 20% and for a negative set-point change the overshoot is 0%. The responses of the controller-synthesis technique and both first-order and second order output regulators are very similar with the output regulator based on the second order model being the slowest. The overshoot for a positive set-point change for all three methods was 8% and was 0% for a negative set-point change. Roviras' technique offers the best response for these cases.

As shown in Figure 5-11, Ziegler-Nichols results in a very
FIGURE 5-6

REACTOR CLOSED-LOOP RESPONSE WITH A PID CONTROLLER FOR A POSITIVE SET-POINT CHANGE
FIGURE 5-10

REACTOR CLOSED-LOOP RESPONSE WITH A PID CONTROLLER FOR A NEGATIVE SET POINT CHANGE
FIGURE 5-11

REACTOR CLOSED-LOOP RESPONSE WITH A PID CONTROLLER FOR A LOAD CHANGE

![Graph showing reactor temperature response with different controllers.

- LOP
- Z-N
- SYN
- OPT1
- OPT2

Time (minutes)

Reactor Temperature (°F)
<table>
<thead>
<tr>
<th>Techniques</th>
<th>K_c (lbs/min/°F)</th>
<th>T_1 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controller Synthesis (5% overshoot)</td>
<td>-0.584</td>
<td>13.95</td>
</tr>
<tr>
<td>Rovira (Set-Point) (IAE)</td>
<td>-0.666</td>
<td>14.50</td>
</tr>
<tr>
<td>Lopez (Load) (IAE)</td>
<td>-1.072</td>
<td>6.805</td>
</tr>
<tr>
<td>Ziegler-Nichols (quarter decay)</td>
<td>-1.003</td>
<td>8.32</td>
</tr>
<tr>
<td>Output Regulator (5% overshoot)</td>
<td>-0.214</td>
<td>9.66</td>
</tr>
<tr>
<td>Techniques</td>
<td>K_c</td>
<td>T_i</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Controller Synthesis (5% overshoot)</td>
<td>-0.404</td>
<td>14.18</td>
</tr>
<tr>
<td>Rovira (Set-Point) (IAE)</td>
<td>-0.968</td>
<td>19.46</td>
</tr>
<tr>
<td>Lopez (Load) (IAE)</td>
<td>-1.398</td>
<td>4.383</td>
</tr>
<tr>
<td>Ziegler-Nichols (quarter-decay)</td>
<td>-1.116</td>
<td>5.00</td>
</tr>
<tr>
<td>Output Regulator (1) (5% overshoot)</td>
<td>-0.241</td>
<td>10.52</td>
</tr>
<tr>
<td>Output Regulator (2) (5% overshoot)</td>
<td>-0.225</td>
<td>10.96</td>
</tr>
</tbody>
</table>
good response to load change. Lopez's technique is somewhat oscillatory while controller synthesis and the optimal regulators are well behaved but slower to recover. Note, while both optimal regulator responses rather far from the set-point the optimal regulator based on the second-order model recovers fastest.

The ITAE tuning for Lopez and Rovira were also considered but gave similar results to the IAE tuning therefore were not presented in the plots.

Conclusions

The figures just examined serve to illustrate the closed-loop responses obtainable by the tuning relationships considered.

Although controller synthesis did not always result in the best response for the cases considered it illustrated the synthesis tuning is rather stable and showed no tendency to instability in spite of the fact that the process gain varies so much. The synthesis technique can be conceptually tuned in the field by simple adjustment of the gain only and the other techniques are conceptually based on inter-relationships between all tuning parameters. This fact provides an attractive feature for industrial application since tuning controllers are a major task in many industries.
REACTOR NOMENCLATURE

A - Reactants
A' - Heat transfer area
\(a \) - Arrhenius temperature constant
B - Products
\(C_A \) - Concentration of A
\(C_{Af} \) - Concentration of A in the reactor feed
\(c_p \) - Heat capacity of the reacting fluid
\(\Delta H \) - Heat of reaction
\(k \) - reaction rate constant
\(k_o \) - Arrhenius rate constant
\(M_c \) - Total heat capacity of reacting mass
t - Time
T - Temperature of the reacting fluid
\(T_c \) - Temperature of the cooling water leaving the reactor jacket
\(T_f \) - Temperature of the reactor feed
\(T_w \) - Temperature of the cooling water
\(U \) - Heat transfer coefficient
V - Reactor volume
W - Mass rate of feed
\(W_c \) - Mass rate of cooling water
\(\rho \) - Density of reacting fluid
REFERENCES

CHAPTER VI

CONCLUSIONS

The purpose of this dissertation is to investigate controller tuning techniques which provide the control engineer some flexibility in selecting a desired response and to examine its feasibility for industrial applications. In this chapter, the conclusions drawn from the results presented in the previous chapters are summarized.

The controller synthesis results for 5% and 1% overshoot criteria was found to produce a highly stable closed-loop response with little tendency to oscillate. It also resulted in a relatively fast response with short rise time and settling times. Comparison of the controller synthesis parameters for 5% overshoot criteria with those of the minimum integral of the absolute value of the error parameters for set-point changes showed close agreement for most of the range of parameter values studied.

Although this work does not attempt to answer the question of what is the best performance criteria, it is important to note that the 5% overshoot criteria chosen, based on the discussion presented in Chapter III, resulted in closed-loop responses very similar to minimum IAE responses.

The optimal output regulator results showed that the second derivative term of the PIDD2 controller contributed very little to the controller performance. In general, controllers designed by the optimal output regulator technique did not perform as well as those
designed by the synthesis technique. In every case, the rise and settling times were longer than for the corresponding parameters using the controller synthesis technique. This is because the optimal regulator is based on a performance function which contains the error-squared and the system has to be penalized heavily (valve movement) to meet a 5% overshoot criteria.

An important result obtained in the optimal output regulator study is that the Pade' approximation for process dead-time should be avoided if possible. The results show that the approximation is good only if the lag introduced by the dead-time approximation is representative of a lower order time constant in the process which has not been compensated for.

Results have been inconclusive with respect to the question of when to use the first derivative term in the controller. The controller synthesis method seems to indicate that the first derivative term is not required when the damping ratio of the second-order process is greater than about 3. The difficulty then arises with regard to the dead-time term, since this term is not compensated in the synthesis technique.

Of the two controller tuning techniques, only controller synthesis seems to be feasible from an industrial application standpoint. It's simplicity, flexibility in tuning, and ease of use offers the control engineer a technique which provides simple guidelines for specifying and tuning a controller and only requires some knowledge as to the magnitude of the dominant poles.
NOMENCLATURE

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Process matrix</td>
</tr>
<tr>
<td>B</td>
<td>Process matrix</td>
</tr>
<tr>
<td>b</td>
<td>Second-order process damping parameter</td>
</tr>
<tr>
<td>c</td>
<td>Second-order process frequency parameter</td>
</tr>
<tr>
<td>$D(s), d(t)$</td>
<td>Disturbance or load input</td>
</tr>
<tr>
<td>e</td>
<td>Error</td>
</tr>
<tr>
<td>$G(s)$</td>
<td>Process transfer function</td>
</tr>
<tr>
<td>H</td>
<td>Process matrix</td>
</tr>
<tr>
<td>I</td>
<td>Performance function</td>
</tr>
<tr>
<td>IAE</td>
<td>Integral of the absolute value of the error</td>
</tr>
<tr>
<td>ISE</td>
<td>Integral of the square of the error</td>
</tr>
<tr>
<td>$ITAE$</td>
<td>Integral of the time-weighted absolute value of the error</td>
</tr>
<tr>
<td>J</td>
<td>Matrix of Riccate variables</td>
</tr>
<tr>
<td>Je</td>
<td>Steady-state solution matrix of the Riccate equation</td>
</tr>
<tr>
<td>K</td>
<td>Steady-state gain of the process</td>
</tr>
<tr>
<td>K_c</td>
<td>Controller gain</td>
</tr>
<tr>
<td>K_c'</td>
<td>Off-the-shelf controller gain</td>
</tr>
<tr>
<td>k</td>
<td>Gain Matrix</td>
</tr>
<tr>
<td>m</td>
<td>Manipulated variable</td>
</tr>
<tr>
<td>$P.B.$</td>
<td>Proportional band</td>
</tr>
<tr>
<td>p</td>
<td>Optimal regulator penalitity function</td>
</tr>
<tr>
<td>Q</td>
<td>Process matrix</td>
</tr>
<tr>
<td>R, r</td>
<td>Dimensionless penalty function for output regulator</td>
</tr>
</tbody>
</table>
$R(s), r(t)$ - Set-point or desired value of the control variable

s - Laplace transform variable

T_d, T_{d1} - Controller preact or derivative time

T_{d2} - Controller preact or derivative time squared

T_d' - Off-the-shelf controller preact time

T_{i1} - Controller reset or integral time

T_{i1}' - Off-the-shelf controller reset time

t - Time

t_0 - Process dead-time or transportation lag

U, u - Dimensionless manipulated variable

X - Process state vector

Y - Process output vector

$Y(s), y(t)$ - Transmitter signal or control variable

γ - Dimensionless damping parameter

δ - Effective dead-time due to a higher ordered process

λ - Controller synthesis tuning parameter

ω_n - Natural frequency

τ - First-order-lag time constant

τ_{11}, τ_{12} - Second-order-lag time constant

ζ - Dimensionless dead-time

ζ - Damping ratio
APPENDIX A

COMPARISON OF THE CONTROLLER TRANSFER FUNCTION
FOR THE CONTROLLER SYNTHESIS TECHNIQUE AND THE
DEAD-TIME COMPENSATOR TECHNIQUE

a) Controller Synthesis

For controller synthesis, the controller transfer function has been defined as

\[G_c(s) = \frac{M(s)}{E(s)} = \frac{1}{G(s)} \cdot \frac{Y(s)/R(s)}{1 - Y(s)/R(s)} \] \[\text{[A-1]}\]

where \(G(s) \) is the process transfer function and contains dead-time and \(Y(s)/R(s) \) is the closed-loop response and will contain the process dead-time.

Equation A-1 can be written as

\[\frac{M(s)}{E(s)} = \frac{1}{G(s)} \cdot \frac{Y(s)/R(s)}{1 - Y(s)/R(s)} e^{-t_0 s} \] \[\text{[A-2]}\]

where \(G(s) \) and \(Y(s)/R(s) \) does not contain the dead-time element.

From this

\[M(s) [1 - (Y(s)/R(s)) e^{-t_0 s}] = \frac{1}{G(s)} (Y(s)/R(s)) E(s) \]

or

\[M(s) = \frac{Y(s)/R(s)}{G(s)} [E(s) + G(s) \cdot e^{-t_0 s} \cdot M(s)] \] \[\text{[A-3]}\]

Now subtracting \((Y(s)/R(s)) \cdot M(s)\) from both sides of equation A-3
\[M(s) = \frac{Y(s)/R(S)}{G(s)[1 - Y(s)/R(s)]} \cdot [E(s) + G(s) \left(e^{-t_0s} - 1 \right) M(s)] \]

[\text{A-4}]

Let \(G_c'(s) = \frac{1}{G(s)} \cdot \frac{Y(s)/R(s)}{1 - Y(s)/R(s)} \)

be the controller transfer function, which is defined as though the process does not contain dead-time, then equation A-4 becomes:

\[M(s) = G_c'(s) \left[E(s) + G(s) \left(e^{-t_0s} - 1 \right) M(s) \right] \]

[\text{A-5}]

or

\[G_c'(s) = \frac{M(s)}{E(s) + G(s) \left(e^{-t_0s} - 1 \right) M(s)} \]

b) \textbf{Dead-time Compensator}

The block diagram for a dead-time compensator is:

\[\begin{array}{c}
\text{R(s)} \\
\downarrow \\
\text{Controller} \\
\downarrow \\
\text{M(s)} \\
\downarrow \\
\text{Plant or Process} \\
\downarrow \\
\text{Y(s)} \\
\end{array} \]

\[\begin{array}{c}
\downarrow \\
\text{G_c(s)} \\
\downarrow \\
\text{G_m(s)} \\
\downarrow \\
\text{Process Model} \\
\end{array} \]

From this diagram

\[M(s) = G_c(s) \left[E(s) + G_m(s) \left(e^{-t_0s} - 1 \right) M(s) \right] \]

or

\[G_c(s) = \frac{M(s)}{E(s) + G_m(s) \left(e^{-t_0s} - 1 \right) M(s)} \]

[\text{A-6}]

where \(E(s) = R(s) - Y(s) \).
For controller synthesis, the terms $G(s)$ and e^{-t_0s} are defined by a model of the process, therefore are equivalent to $G_m(s)$ and e^{t_0m} in the dead-time compensator. This shows that equations A-5 and A-6 are equivalent for a given process model.
APPENDIX B

TRANSFORMATION OF THE TRANSFER
FUNCTION EQUATIONS TO THE DIMENSIONLESS FORM

a) First-Order-Lag-Plus-Dead-Time Transfer Function

The first-order-lag-plus-dead-time transfer function can be expressed in the Laplace domain as:

\[G(s) = \frac{Y(s)}{M(s)} = \frac{K e^{-\theta s}}{\tau s + 1} \] \[\text{[B-1]} \]

or in the time domain as

\[\tau \frac{dy}{dt} + y = K m(t - \theta). \] \[\text{[B-2]} \]

Let \(\sigma \) be the dimensionless time and \(\theta \) be the dimensionless dead-time and defined by the following expressions:

\[\sigma = \frac{t}{\tau} \] \[\text{[B-3]} \]

\[\theta = \frac{\theta}{\tau} \]

Note, \(\frac{dy}{dt} = \frac{dy}{d\sigma} \cdot \frac{d\sigma}{dt} = \frac{1}{\tau} \frac{dy}{d\sigma} \) \[\text{[B-4]} \]

Substituting equation B-4 into equation B-2 results in the following:

\[\frac{dy}{d\sigma} + y = m(\sigma - \theta) \] \[\text{[B-5]} \]

which becomes

\[G(s) = \frac{y(s)}{M(s)} = \frac{Ke^{-\theta s}}{\sigma + 1} \] \[\text{[B-6]} \]
in terms of the dimensionless Laplace transform variable. Equations B-5 and B-6 are dimensionless forms of the first-order-lag-plus-dead-time transfer function.

b) **Second-Order-Lag-Plus-Dead-Time Transfer Function**

The second-order-lag-plus-dead-time transfer function can be expressed in the Laplace domain as:

\[
G(s) = \frac{Y(s)}{M(s)} = \frac{cKe^{-t_0 s}}{s^2 + bs + c} \quad [B-7]
\]

or in the time domain as:

\[
\frac{d^2y}{dt^2} + b \frac{dy}{dt} + cy = c Km(t - t_0). \quad [B-8]
\]

Again let \(\sigma \) denote dimensionless time and \(\theta \) denote the dimensionless dead-time which are defined by the following expressions:

\[
\sigma = \sqrt{c} t \quad [B-9]
\]

\[
\theta = \sqrt{c} t_0
\]

Here

\[
\frac{dy}{dt} = \frac{dy}{d\sigma} \cdot \frac{d\sigma}{dt} = \sqrt{c} \frac{dy}{d\sigma} \quad [B-10]
\]

and

\[
\frac{d^2y}{dt^2} = \frac{d}{dt} \left(\frac{dy}{dt} \right) = \frac{d}{dt} \left(\sqrt{c} \frac{dy}{d\sigma} \right) = c \frac{d^2y}{d\sigma^2} \quad [B-11]
\]

Substituting equations B-10 and B-11 into equation B-8 results in the following:
\[c \frac{d^2 y}{d\sigma^2} + b \sqrt{c} \frac{dy}{d\sigma} + cy = c \ K_m (\sigma - \theta) \] \[\text{[B-12]} \]

or \[\frac{d^2 y}{d\sigma^2} + \frac{b}{\sqrt{c}} \frac{dy}{d\sigma} + y = K_m (\sigma - \theta). \] \[\text{[B-13]} \]

Letting \(\beta = \frac{b}{\sqrt{c}} \)

where \(\beta \) is the damping parameter (dimensionless), equation B-13 can be written in terms of the dimensionless Laplace transform variable as:

\[G(s) = \frac{Y(s)}{M(s)} = \frac{K e^{-\theta s}}{s^2 + \beta s + 1} \] \[\text{[B-14]} \]

This equation is the dimensionless form of the second-order-lag-plus-dead-time transfer function.
APPENDIX C

TRANSFORMATION OF THE PROCESS MODEL AND PERFORMANCE FUNCTION EQUATIONS INTO STATE VARIABLE FORM

1. **First-order-lag-plus-dead-time model**

 The first-order-lag-plus-dead-time model transfer function is given in the dimensionless form by:
 \[G(s) = \frac{Y(s)}{M(s)} = \frac{K e^{-\sigma s}}{s + 1} \] \[[C-1] \]
 where \(\sigma = \frac{\tau_0}{T} \). This was shown in Appendix B.

 a) **Taylor series approximation for the dead-time**

 If the dead-time is approximated with the first-order Taylor series expansion
 \[e^{-\sigma s} \approx 1 - \sigma s \]
 equation C-1 becomes
 \[G(s) = \frac{Y(s)}{M(s)} = \frac{K(1 - \sigma s)}{s + 1} \] \[[C-2] \]
 Writing this in the dimensionless time domain the following equation results:
 \[\dot{y} + y = Km - K\dot{m} \] \[[C-3] \]
 Where
 \[\dot{y} = \frac{dy}{d\sigma} \]
 and \[\dot{m} = \frac{dm}{d\sigma} \]

 To transform this into state variable representation let:
 \[x_1 = y, x_2 = Km, \text{ and } u = K\dot{m} \] \[[C-4] \]
Then
\[X_1 = \dot{y} = -y + Km - KQm \]
\[= -X_1 + X_2 - 0u \]
\[X_2 = Km = u \]

This can be expressed in matrix form as
\[\dot{X} = \begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix} X + \begin{bmatrix} -0 \\ 1 \end{bmatrix} u \]

or
\[\dot{X} = A X + Bu \] [C-5]

Now since the output \(y \) is defined by the state \(X_1 \), the equation defining the output as a function of the states is:
\[y = [1 \ 0] X \]

or, letting \(H = [1 \ 0] \),
\[y = H X \] [C-6]

Equations C-5 and C-6 are the state variable representation for the first-order-lag-plus-dead-time model of the process with the first-order Taylor series expansion to approximate the dead-time.

b) **Pade' approximation for the dead-time**

If the dead-time is approximated by the first-order Pade' approximation

\[e^{-0s} = \frac{1 - 0s}{1 + 0s} = \frac{2 - 0s}{2 + 0s} \]

equation C-1 becomes

\[C(s) = \frac{Y(s)}{M(s)} = \frac{K(2-0s)}{(s+1)(2+0s)} \] [C-7]

Writing this in the dimensionless time domain results in the
following equation:
\[
\dot{y} + \frac{\Theta+2}{2} \ddot{y} + \frac{2}{\Theta} y = \frac{2}{\Theta} K_m - \dot{K}_m
\]

where
\[
\dot{y} = \frac{dy}{d\sigma}
\]
\[
\ddot{y} = \frac{d^2y}{d\sigma^2}
\]
\[
\dot{m} = \frac{dm}{d\sigma}
\]

To transform this into state variable representation let:
\[
X_1 = y, \quad X_2 = \dot{y} + K_m, \quad X_3 = K_m, \quad \text{and} \quad u = \dot{K}_m
\]

Then
\[
\begin{align*}
\dot{X}_1 &= \dot{y} = X_2 - X_3 \\
\dot{X}_2 &= \ddot{y} + \dot{K}_m = \frac{\Theta+2}{2} X_1 - \frac{\Theta+2}{\Theta} X_2 + \frac{\Theta+4}{\Theta} X_3 \\
\dot{X}_3 &= K_m = u
\end{align*}
\]
or in matrix form
\[
\begin{bmatrix}
\dot{X}_1 \\
\dot{X}_2 \\
\dot{X}_3
\end{bmatrix} =
\begin{bmatrix}
0 & 1 & -1 \\
-\frac{\Theta+2}{2} & \frac{\Theta+2}{\Theta} & \frac{\Theta+4}{\Theta} \\
0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
X_1 \\
X_2 \\
X_3
\end{bmatrix}
+ \begin{bmatrix}
0 \\
u \\
1
\end{bmatrix}
\]
or
\[
\dot{X} = A X + Bu
\]

Again the output \(y \) is defined by the state \(X_1 \), so the output is defined as a function of the states by the following equation:
\[
y = [1 \ 0 \ 0] X
\]
or, letting \(H = [1 \ 0 \ 0] \),

\[
y = H X
\]
Equations C-10 and C-11 are the state variable representation for the first-order-lag-plus-dead-time model of the process with the first-order Padé approximation to approximate the dead-time.

c) Performance function for the first-order-lag-plus-dead-time model.

The quadratic performance function for the time-invariant system is given by:

\[I = \int_0^\infty [y^2 + p \dot{m}^2] \, dt \]

[C-12]

Since the model equations are in dimensionless form, it is necessary to transform the performance function to the dimensionless form.

Now \(\dot{m} = \frac{dm}{dt} = \frac{dm}{d\sigma} \cdot \frac{d\sigma}{dt} = \dot{m} \sigma \frac{d\sigma}{dt} \)

and, since \(\sigma = t/\tau \)

\[\frac{d\sigma}{dt} = \frac{1}{\tau} \]

so \(\dot{m} = \frac{1}{\tau} \dot{m}_\sigma \)

or \(\dot{m}_\sigma^2 = \frac{1}{\tau^2} \dot{m}^2 \)

Equations C-4 and C-9 define \(u \) as \(K \dot{m} \) where \(\dot{m} \) is dimensionless or \(\dot{m}_\sigma \). Substituting this into equation C-12 results in

\[I = \int_0^\infty [y^2 + \frac{p}{2 \tau^2} u^2] \, d\sigma \]

or

\[\int_0^\infty [y' \hat{y} + u' \hat{u}] \, d\sigma \]

[C-13]
So \(y, Q, R,\) and \(u\) are scalar quantities and will be denoted by \(y, q, r,\) and \(u.\) Note \(r\) equals \(\frac{P}{T_Z K_Z}\) for the first-order model. Equation C-13 gives the state variable form of the performance function for the first-order-lag-plus-dead-time model of the process.

2. Second-order-lag-plus-dead-time model

The second-order-lag-plus-dead-time model transfer function is given in the dimensionless form by:

\[
G(s) = \frac{Y(s)}{M(s)} = \frac{Ke^{-\sigma s}}{s^2 + \beta s + 1}
\]

where \(\sigma = \frac{t_o}{c}\) and \(\beta = \frac{b}{c}\)

This was shown in Appendix B.

a) Taylor series approximation for the dead-time

If the dead-time is replaced by the first-order Taylor series expansion

\[e^{-\sigma s} \approx 1 - \sigma s\]

equation C-14 becomes

\[
G(s) = \frac{Y(s)}{M(s)} = \frac{K(1-\sigma s)}{s^2 + \beta + 1}
\]

Writing this in the dimensionless time domain results in the following:

\[y + \beta \dot{y} + y = K_m - \sigma K_m\] \[C-15\]

To transform this into state variable representation let

\[X_1 = y, X_2 = \dot{y} + \sigma K_m, X_3 = K_m,\] and \(u = K_m\) \[C-16\]

Then

\[
X_1 = \dot{y} = X_2 - \sigma X_3
\]

\[
X_2 = \ddot{y} + \sigma K_m = -X_1 - \beta X_2 + (1 + \sigma \beta) X_3
\]

\[
X_3 = K_m = u
\]
or in matrix form

\[\begin{bmatrix} 0 & 1 & -0 \\ -1 & -\beta & (1+\theta) \end{bmatrix} X + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u \quad \text{[C-17]} \]

\[\dot{X} = AX + Bu \]

Again the output \(y \) is defined by the state \(X_1 \), so the output is defined as a function of the states by:

\[y = [1 \ 0 \ 0] X \]

or, letting \(H = [1 \ 0 \ 0] \),

\[y = H X \]

Equations C-17 and C-18 are the state variable representation of the second-order-lag-plus-dead-time model of the process with the first-order Taylor series expansion to approximate the dead-time.

b) Pade' approximation for the dead-time

If the dead-time is approximated by the first order Pade' approximation

\[e^{-\theta s} = \frac{2 - \theta s}{2 + \theta s} \]

equation C-14 becomes

\[G(s) = \frac{y(s)}{M(s)} = \frac{K(2-\theta s)}{(s^2 + \beta s + 1)(2 + \theta s)} \quad \text{[C-19]} \]

or in the dimensionless time domain is

\[\ddot{y} + \frac{\beta}{\theta} \dot{y} + \frac{\beta}{\theta} y + \frac{1}{\theta} \dot{y} + \frac{2}{\theta} y = \frac{2}{\theta} \] Km - Km \quad \text{[C-20]} \]

To transform this into state variable representation let

\[X_1 = v, \ X_2 = \dot{v}, \ X_3 = \ddot{v} + Km, \ X_4 = Km, \ and \ u = Km \quad \text{[C-21]} \]

Then
\[\begin{align*}
\dot{x}_1 &= \dot{y} = x_2 \\
\dot{x}_2 &= \dot{y} = x_3 - x_4 \\
\dot{x}_3 &= y + K\dot{m} = -(\frac{2}{\Theta} + \beta)\dot{y} - (\frac{2}{\Theta} \beta + 1)\ddot{y} - \frac{2}{\Theta} y + \frac{2}{\Theta} K\dot{m} \\
\dot{x}_4 &= K\ddot{m} = u
\end{align*} \]

or in matrix form
\[
\begin{bmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & -1 \\
-\frac{2}{\Theta} & -(\frac{2}{\Theta} \beta + 1) & -(\frac{2}{\Theta} \beta + 1) & \frac{4}{\Theta} \beta \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4
\end{bmatrix}
+
\begin{bmatrix}
0 \\
0 \\
0 \\
1
\end{bmatrix}
u
\]

or
\[
\dot{X} = A X + B u
\]

Again the output \(y \) is defined by the state \(x_1 \), so the output is defined as a function of the states by the following equation:
\[
y = [1 \ 0 \ 0 \ 0] X
\]

or, letting \(H = [1 \ 0 \ 0 \ 0] \),
\[
y = H X
\]

Equations C-22 and C-23 are the state variable representation for the second-order-lag-plus-dead-time model of the process with the first-order Pade' approximation to approximate the dead-time.

c) **Performance function for the second-order-lag-plus-dead-time model**

The quadratic performance function for the time-invariant system was given by equation C-12 or
\[I = \int_0^\infty [y^2 + p \dot{m}^2] \, dt \quad \text{[C-12]} \]

Since the model equations are in dimensionless form, it is necessary to transform the performance function to dimensionless form.

Now \(\dot{m} = \frac{dm}{dt} = \frac{dm}{d\sigma} \cdot \frac{d\sigma}{dt} = \dot{m} \sigma \frac{d\sigma}{dt} \)

and since \(\sigma = \frac{t}{\sqrt{c}} \)

\[\frac{d\sigma}{dt} = \frac{\sqrt{c}}{t} \]

or \(\dot{m}^2 = c \dot{m} \dot{\sigma} \)

Equations C-16 and C-21 define \(u \) as \(K \dot{m} \) where \(\dot{m} \) is dimensionless or \(\dot{m}_0 \).

Substituting this into equation C-12 results in:

\[I = \int_0^\infty [y^2 + \frac{pC}{K^2} u] \, d\sigma \quad \text{[C-24]} \]

or

\[I = \int_0^\infty [y' Q y + R u] \, d\sigma \]

Again \(y, Q, R \) and \(u \) are scalar quantities and will be denoted by \(y, q, r, \) and \(u \). Note, \(r \) equals \(\frac{pC}{K^2} \) for the second-order model. Equation C-24 gives the state variable form of the performance function for the second-order-lag-plus-dead-time model of the process.
APPENDIX D
CONTROLLABILITY AND OBSERVABILITY
TEST FOR PROCESS MODELS

A system is controllable if and only if the matrix
\[
\begin{bmatrix}
B & A & B & A^2 B & \cdots & A^{n-1} B
\end{bmatrix}
\]
is of rank \(n\), where \(n\) is the order of the system. Similarly, a system is observable if and only if the matrix
\[
\begin{bmatrix}
H' & A' H' & A'^2 H' & \cdots & A'^n H'
\end{bmatrix}
\]
is of rank \(n\), where \(n\) is the order of the system. This implies that the above matrices must contain \(n\) linear independent column vectors.

1. First-order-lag-plus-dead-time model
 a) Taylor expansion for dead-time

 \[
 A = \begin{bmatrix}
 -1 & 1 \\
 0 & 0
 \end{bmatrix}; \quad B = \begin{bmatrix}
 0 \\
 1
 \end{bmatrix}; \quad H = \begin{bmatrix}
 1 & 0
 \end{bmatrix}
 \]

 controllable?

 \[
 \begin{bmatrix}
 B & A & B
 \end{bmatrix} = \begin{bmatrix}
 -0 & 0 + 1 \\
 1 & 0
 \end{bmatrix}
 \]

 rank = 2, therefore controllable.

 observable?

 \[
 \begin{bmatrix}
 H' & A' H'
 \end{bmatrix} = \begin{bmatrix}
 1 & -1 \\
 0 & 1
 \end{bmatrix}
 \]

 rank = 2, therefore observable.

 b) Padé approximation for dead-time
A = \begin{bmatrix}
0 & 1 & -1 \\
-\frac{2}{0} & -\frac{0+2}{0} & \frac{0+4}{0} \\
0 & 0 & 0
\end{bmatrix}; \quad B = \begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix}; \quad H = [1 \quad 0 \quad 0]

controllable?

[B \quad A \quad B \quad A^2 \quad B] = \begin{bmatrix}
0 & -1 & \frac{0+4}{0} \\
0 & \frac{0+4}{0} & \frac{(0+2)(0+4)}{0} \\
1 & 0 & 0
\end{bmatrix}

rank = 3, therefore controllable.

observable?

[H' \quad A' \quad H' \quad A'^2 \quad H'] = \begin{bmatrix}
1 & 0 & -\frac{2}{0} \\
0 & 1 & -\frac{0+2}{0} \\
0 & -1 & \frac{0+4}{0}
\end{bmatrix}

rank = 3, therefore observable.

2. Second-order-lag-plus-dead-time model

a) Taylor expansion for dead-time

A = \begin{bmatrix}
0 & 1 & -\beta \\
-1 & -\beta & (1+\beta) \\
0 & 0 & 0
\end{bmatrix}; \quad B = \begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix}; \quad H = [1 \quad 0 \quad 0]

controllable?

[B \quad A \quad B \quad A^2 \quad B] = \begin{bmatrix}
0 & -\beta & 1+\beta \\
0 & 1+\beta & 0-\beta-\beta^2 \\
1 & 0 & 0
\end{bmatrix}

rank = 3, therefore controllable.

observable?

[H' \quad A' \quad H' \quad A'^2 \quad H'] = \begin{bmatrix}
1 & 0 & -1 \\
0 & 1 & -\beta \\
0 & 0 & 1+\beta
\end{bmatrix}

rank = 3, therefore observable.
b) Pade' approximation for dead-time

\[
A = \begin{bmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & -1 \\
a_1 & a_2 & a_3 & a_4 \\
0 & 0 & 0 & 0
\end{bmatrix} ; \quad B = \begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix}
\]

where \(a_1 = -\frac{2}{\Theta} \), \(a_2 = -\left(\frac{2}{\Theta} + 1\right) \)

\[
a_3 = -\left(\frac{2}{\Theta} + b\right), \quad a_4 = \frac{4}{\Theta} + b
\]

\(H = [1 \ 0 \ 0 \ 0] \)

controllable?

\[
[\begin{bmatrix} R & A & B & A^2 & A^3 & B \end{bmatrix} =
\begin{bmatrix}
0 & 0 & -1 & a_4 \\
0 & -1 & a_4 & a_2 + a_3 a_4 \\
0 & a_4 & a_2 + a_3 a_4 & -a_1 + a_2 a_4 + a_3 (a_2 + a_3 a_4) \\
1 & 0 & 0 & 0
\end{bmatrix}
\]

rank = 4, therefore controllable.

observable?

\[
[\begin{bmatrix} H' & A'H' & A'^2'H' & A'^3'H' \end{bmatrix} =
\begin{bmatrix}
1 & 0 & 0 & a_1 \\
0 & 1 & 0 & a_2 \\
0 & 0 & 1 & a_3 \\
0 & 0 & -1 & a_4
\end{bmatrix}
\]

rank = 4, therefore observable.
APPENDIX E

DESIGN OF OPTIMAL OUTPUT REGULATOR
BASED ON SIMPLIFIED MODELS

The solution of the linear output regulator is given by:

\[u = -R^{-1} B' \ J_e \ X = -k \ X = -[k_1 \ldots k_n] \ X \]

where \(R^{-1} \) is the inverse of \(R \),
\(B' \) is the transpose of \(B \),
\(J_e \) is the steady-state or equilibrium solution to the matrix Riccati equation.

All of the above are defined by the process and the performance function except for the parameter \(p \) which must be specified by the designer.

1. First-order-lag-plus-dead-time model

 a) Taylor expansion for dead-time

 Now

 \[-u = [k_1 \ k_2] \ X = k_1 \ x_1 + k_2 \ x_2 \]

 From equation C-4, \(u = K \dot{m}, \ x_1 = y, \ x_2 = \dot{m} \)

 \[-u = -K \dot{m} = k_1 \ x_1 + k_2 \ x_2 \]

 \[-K \dot{m} = k_1 \ y + k_2 \ \dot{m} \] \hspace{1cm} \text{[E-1]}\]

 Solving equation C-3 for \(\dot{m} \), substituting into equation E-1 and collecting terms result in

 \[-(1 + k_2 \ 0)K \dot{m} = (k_1 + k_2) y + k_2 \ \dot{y} \]

 Transforming this into dimensionless Laplace domain and solving for \(M(s) \) gives
\[M(s) = \frac{-k_2}{k(1 + k_2 \theta)} \left[1 + \frac{k_1 + k_2}{k_2} \cdot \frac{1}{s} \right] Y(s) \quad [E-2] \]

Remember this is in the dimensionless Laplace domain.

Now
\[k = R^{-1} \beta^* J_e = \frac{1}{r} \beta^* J_e \]
\[= \frac{1}{r} \begin{bmatrix} -\theta & 1 \end{bmatrix} \begin{bmatrix} J_{e11} & J_{e12} \\ J_{e21} & J_{e22} \end{bmatrix} \]
\[= \frac{1}{r} \begin{bmatrix} -\theta J_{e11} + J_{e21} & -\theta J_{e12} + J_{e22} \end{bmatrix} \]

So
\[k_1 = \frac{1}{r} (-\theta J_{e11} + J_{e21}) \]
\[k_2 = \frac{1}{r} (-\theta J_{e12} + J_{e22}) \]

Then
\[KKc = \frac{(-\theta J_{e12} + J_{e22})}{r + \theta(-\theta J_{e12} + J_{e22})} \quad [E-3] \]
\[Ti = \frac{-\theta J_{e11} + J_{e21} - \theta J_{e12} + J_{e22}}{-\theta J_{e12} + J_{e22}} \]

b) Pade' approximation for the dead-time

Now
\[-u = \begin{bmatrix} k_1 & k_2 & k_3 \end{bmatrix} \begin{bmatrix} X_1 X_2 X_3 \end{bmatrix} \]

From equation C-9 in Appendix C
\[X_1 = y; \quad X_2 = \dot{y} + Km; \quad X_3 = Km; \quad \text{and} \quad u = Km \]

so
\[-u = -Km = k_1 X_1 + k_2 X_2 + k_3 X_3 \]
\[= k_1 y + k_2 (\dot{y} + Km) + k_3 Km \]
\[= k_1 y + k_2 \dot{y} + (k_2 - k_3) Km \]

Solving equation C-8 for Km, substituting in the above equation
and collecting terms, result in

\[-[1 + \frac{0}{2}(k_2+k_3)]Km = k_1 y + k_2 \ddot{y} + (k_2+k_3) \left[\frac{0}{2} \dddot{y} + \frac{0+2}{2} \dot{y} + y \right] \]

Transforming this equation to the dimensionless Laplace domain and solving for \(M(s)\) results in the following:

\[
M(s) = -\frac{(0+4) k_2 + (0+2)k_2}{K(0k_2 + 0k_3 + 2)} \left[1 + \frac{(0+4)k_2 + (0+2)k_3}{0k_2 + 0k_3 + 2} \cdot \frac{1}{s} + \frac{0(k_2 + k_3)}{(0+4)k_2 + (0+2)k_3} \cdot s \right] Y(s) \quad [E-4]
\]

Now

\[
k = R^{-1} B' Je
\]

\[
= \frac{1}{r} \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} Je_{11} & Je_{12} & Je_{13} \\ Je_{21} & Je_{22} & Je_{23} \\ Je_{31} & Je_{32} & Je_{33} \end{bmatrix}
\]

\[
= \frac{1}{r} \begin{bmatrix} Je_{31} & Je_{32} & Je_{33} \end{bmatrix}
\]

So

\[
k_1 = \frac{1}{r} Je_{31}
\]

\[
k_2 = \frac{1}{r} Je_{32}
\]

\[
k_3 = \frac{1}{r} Je_{33}
\]

Then

\[
KKc = \frac{(0+4) Je_{32} + (0+2) Je_{33}}{0 Je_{32} + 0 Je_{33} + 2 \cdot r}
\]
\[
\frac{\tau}{T_i} = \frac{2 (J_{e31} + J_{e32} + J_{e33})}{(0+4) J_{e32} + (0+2) J_{e33}}
\]

\[
\frac{T_d}{\tau} = \frac{\theta (J_{e32} + J_{e33})}{(0+4) J_{e32} + (0+2) J_{e33}}
\]

2. **Second-order-lag-plus-dead-time model**

a) **Taylor expansion for dead-time**

Now

\[-u = [k_1 \quad k_2 \quad k_3] \quad X = k_1 x_1 + k_2 x_2 + k_3 x_3 \]

From equation C-16 of Appendix C

\[x_1 = y, \quad x_2 = \dot{y} + \theta K_m, \quad x_3 = K_m \quad \text{and} \quad u = K \dot{m} \]

So

\[-u = -K \dot{m} = k_1 x_1 + k_2 x_2 + k_3 x_3 \]

\[= k_1 y + k_2 (\dot{y} + \theta K_m) + k_3 K_m \]

Solving equation C-15 for \(K_m\), substituting into equation E-7 and collecting terms result in

\[-(1 + \theta (0 k_2 + k_3) K \dot{m} = [k_2 + \theta (0 k_2 + k_3)] \dot{y} +
\]

\[(k_1 + \theta k_2 + k_3) y + (0 k_2 + k_3) \dot{y} \]

Transforming this into the Laplace domain and solving for \(M(s)\) results in the following:

\[
M(s) = -\frac{k_2 + \theta (0 k_2 + k_3)}{K[1 + \theta (0 k_2 + k_3)]} \left[1 + \frac{k_1 + \theta k_2 + k_3}{k_2 + \theta (0 k_2 + k_3)} \cdot \frac{1}{s} + \frac{0 k_2 + k_3}{k_2 + \theta (0 k_2 + k_3)} \cdot s \right] Y(s)
\]

Now
\[k = R^{-1} B'E \]

\[= \frac{1}{r} \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} J_{e11} & J_{e12} & J_{e13} \\ J_{e21} & J_{e22} & J_{e23} \\ J_{e31} & J_{e32} & J_{e33} \end{bmatrix} \]

\[= \frac{1}{r} \begin{bmatrix} J_{e31} & J_{e32} & J_{e33} \end{bmatrix} \]

So

\[k_1 = \frac{1}{r} J_{e31} \]
\[k_2 = \frac{1}{r} J_{e32} \]
\[k_3 = \frac{1}{r} J_{e33} \]

Then

\[KKc = \frac{(1 + \beta \theta) J_{e32} + \beta J_{e33}}{r + \theta^2 J_{e32} + \theta J_{e33}} \]

\[\frac{1}{\sqrt{c' T_1}} = \frac{J_{e31} + \theta J_{e32} + J_{e33}}{(1 + \theta \theta) J_{e32} + \beta J_{e33}} \]

\[\sqrt{c' T_d} = \frac{\theta J_{e32} + J_{e33}}{(1 + \theta \theta) J_{e32} + \beta J_{e33}} \]

b) **Pade' approximation for the dead-time**

Now

\[-u = [k_1 \ k_2 \ k_3 \ k_4] \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = k_1 x_1 + k_2 x_2 + k_3 x_3 + k_4 x_4 \]

From equation C-21 in Appendix C

\[x_1 = y; \ x_2 = \dot{y}; \ x_3 = \ddot{y} + \kappa_m; \ x_4 = \kappa_m; \text{ and } u = \kappa_m \]

So

\[-u = -\kappa_m = k_1 x_1 + k_2 x_2 + k_3 x_3 + k_4 x_4 \]

\[= k_1 y + k_2 \dot{y} + k_3 (\ddot{y} + \kappa_m) + k_4 \kappa_m \]
Solving equation C-20 for \(\text{Km} \), substituting into the above equation, and letting

\[
\begin{align*}
 f_1 &= k_3 + k_4 \\
 f_2 &= k_2 + f_1(\beta + \frac{\theta}{2}) \\
 f_3 &= k_3 + f_1(1 + \frac{\theta}{2}\beta) \\
 f_4 &= 1 + \frac{\theta}{2}f_1
\end{align*}
\]

and

\[
 f_4 = 1 + \frac{\theta}{2} f_1
\]

results in

\[
 -f_4 \text{Km} = f_2 y + (k_1 + f_1)y + f_3 y + \frac{\theta}{2} f_1 y
\]

Transforming this into Laplace domain and solving for \(M(s) \)

\[
 M(s) = \frac{-f_2}{Kf_4} \left[1 + \frac{k_1 + f_1}{f_2} \right] \cdot \frac{1}{s + \frac{f_3}{f_2}} s + \frac{\theta}{2} \frac{f_1}{f_2} s^2 \right] y(s)
\]

Now

\[
 k = R^{-1} R' Je
\]

\[
 = \frac{1}{r} [0 \ 0 \ 0 \ 1] \cdot \begin{bmatrix}
 Je_{11} & Je_{12} & Je_{13} & Je_{14} \\
 Je_{21} & Je_{22} & Je_{23} & Je_{24} \\
 Je_{31} & Je_{32} & Je_{33} & Je_{34} \\
 Je_{41} & Je_{42} & Je_{43} & Je_{44}
 \end{bmatrix}
\]

\[
 = \frac{1}{r} [Je_{41} \ Je_{42} \ Je_{43} \ Je_{44}]
\]

So

\[
 k_1 = \frac{1}{r} Je_{41}
\]

\[
 k_2 = \frac{1}{r} Je_{42}
\]

\[
 k_3 = \frac{1}{r} Je_{43}
\]

\[
 k_4 = \frac{1}{r} Je_{44}
\]
Then

\[KKc = \frac{J_{e_4} + (B + \frac{c}{2}) J_{e_4} + (B + \frac{c}{2}) J_{e_4}}{r + \frac{c}{2} J_{e_4} + \frac{c}{2} J_{e_4}} \]

\[\frac{1}{\sqrt{c} T_1} = \frac{J_{e_1} + J_{e_3} + J_{e_4}}{J_{e_2} + (B + \frac{c}{2}) J_{e_3} + (B + \frac{c}{2}) J_{e_4}} \]

\[\sqrt{c} T_{d1} = \frac{(2 + \frac{c}{2}) J_{e_3} + (1 + \frac{c}{2}) J_{e_4}}{J_{e_2} + (B + \frac{c}{2}) J_{e_3} + (B + \frac{c}{2}) J_{e_4}} \]

\[c T_{d2} = \frac{\frac{c}{2} J_{e_3} + \frac{c}{2} J_{e_4}}{J_{e_2} + (B + \frac{c}{2}) J_{e_3} + (B + \frac{c}{2}) J_{e_4}} \]
APPENDIX F

Process parameters used to generate data for PI tuning relationships are as follows:

<table>
<thead>
<tr>
<th>(\beta)</th>
<th>0.2</th>
<th>0.5</th>
<th>0.75</th>
<th>1.0</th>
<th>2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>2.2</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>2.4</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>2.6</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>2.8</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>3.0</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>3.2</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>3.5</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>4.0</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>5.0</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>6.0</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>7.0</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>8.0</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>9.0</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

where: \(\theta = t_0 \sqrt{c} \)

\(\beta = b/\sqrt{c} \)
The process parameters used to generate data for PID tuning relationships are as follows:

<table>
<thead>
<tr>
<th>θ</th>
<th>0.25</th>
<th>0.333</th>
<th>0.5</th>
<th>0.75</th>
<th>1.0</th>
<th>2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>2.2</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>2.4</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>2.6</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>2.8</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>3.0</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>3.2</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>3.5</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>4.0</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>5.0</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>6.0</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>7.0</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>8.0</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>9.0</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>12.0</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

where: $e = t_o \sqrt{c}$

$\beta = b \sqrt{c}$
APPENDIX C

COMPUTER

PROGRAM LISTINGS
Controller Synthesis Program Listing

```c
DIMENSION X(10), X(10), DX(10), RK1(10), RK2(10), RK3(10), RK4(10)

102 FORMAT(I2)
104 FORMAT(1X,'TO = ',F10.3,/,1X, 6('X0(, I2,')= ',E10.4))
105 FORMAT(1X,'RISE TIME = ',F6.3,3X,'SETTLING TIME = ',F6.3,3X,'OVERS
1HOOT = ',F6.4,3X,'IAE = ',F8.4)
100 READ(5,102) NP
   IF(NP .EQ. 0) STOP

   J=0
   IOS = 0
   CALL ODE (N,H,T0,X0,M,IP,X,DX,NP,OSHOOT,PCENT)
   IF (NP .EQ. 0) GO TO 100
   NP1=N+1
   RTIME = 0.0
   STIME = 0.0
   ESTIME = 0.0
   OSHOOT = 0.0
   DO 13 K=1,M
      T=T0
   DO 5 I=1,N
      5 X(I)=X0(I)
   IK=1
   CALL DERIV(T,X,DX,IK)

C CHECK FOR RISE TIME, SETTLING TIME AND OVERSHOOT
   IF(IOS .GT. 0) GO TO 29
   IF(X(1)-1.0*PCENT)48,28,28
      ESTIME = T
   IOS = 1
28 GO TO (30,32,38,38), IOS
30 IF ( DX(3) ) 31,31,48
```

Note: The above code snippet is a simplified representation of a section from a controller synthesis program listing. It includes variable declarations, data input, and conditional statements.
31 RTIME = T
IOS = 2
DX3OLD = DX(3)
GO TO 48
32 IF (-X(2))36,36,34
34 QSHOOT = -DX3OLD
IF(NP,LT,99)GO TO 1
IOS = 3
36 DX3OLD = DX(3)
GO TO 48
38 Z = ABS(X(1)-1.0)
IF(Z,GT,PCTEN)GO TO 40
IF(IOS,EQ,4)GO TO 48
STIME = T
IOS = 4
GO TO 48
40 IF(IOS,EQ,3)GO TO 48
STIME = T
IOS = 3
48 CONTINUE
T =T+*(4/2.)
DO 7 I=1,N
IK1(I)=DX(I)*H
7 X(I)=X0(I)+(RK1(I)/2.)
IK=2
CALL DERIV(T,X,DX,IK)
DO 9 I=1,N
IK2(I)=DX(I)*H
9 X(I)=X0(I)+(RK2(I)/2.)
IK=3
CALL DERIV(T,Y,DX,IK)
DO 11 I=1,N
IK3(I)=DX(I)*H
11 CONTINUE
...
11 \begin{align*}
X(I) &= X(I) + RK3(I) \\
T &= T + H \\
I &= 4 \\
\text{CALL DERIV}(T, X, UX, IK) \\
J &= J - 1 \\
\text{IF}(J, \text{GT}, 0) \text{GO TO 16} \\
J &= IP
\end{align*}

WRITE CARD SHOULD BE REPLACED HERE WITHOUT C IN COL 1 FOR OUTPUT

\begin{align*}
\text{WRITE}(6,104) & \text{T0,(I,X0(I),I=1,N),NP1,X(NP1)} \\
16 & \text{T0=T0+H} \\
\text{DO 13 I=1,N} \\
RK4(I) &= DX(I) * H \\
13 & \text{X0(I)=X0(I)+(RK1(I)+2*RK2(I)+2*RK3(I)+RK4(I))/6,} \\
\text{IF}(OSHOOT, \text{EQ}, 0, 0) & \text{OSHOOT =-DX(3)} \\
\text{IF}(NP, \text{LT}, 99) & \text{GO TO 1} \\
\text{IF}(NP, \text{EQ}, 100) & \text{NP=8} \\
\text{IF}(OSHOOT, \text{LE}, \text{PCTN}) & \text{TIME=ESTIME} \\
\text{WRITE}(6,105) & \text{RTIME,STIME,OSHoot,X(4)} \\
\text{GO TO 1} \\
\text{END}
\end{align*}
C----- READ INPUT AND CALCULATE DERIVATIVES

SUBROUTINE ODE(NH,TO,X0,M,IP,X,DX,NP,ORST,PERCENT)

DIMENSION X(10),DX(10),X0(10),X0I(10)
REAL LAMBDA

501 FORMAT(BF10.0)
502 FORMAT(512)
800 FORMAT(/,1X,'THE SECOND ORDER PLUS DEAD-TIME PROCE
1SS PARAMETERS ARE',/1X,'KP = ',F8.3,5X,'BETA = ',F8.3,5X,'THETA = ',
2F8.3,/1X,'THE RESULTS ARE FOR A UNIT CHANGE IN SET POINT',/1X,30
3(FILE))
802 FORMAT(1X,'THE CONTROLLER SETTINGS ARE',/1X,'KC = ',E11.4,4X,
1'TI = ',E11.4,4X,'TD1 = ',E11.4,4X,'TD2 = ',E11.4)
803 FORMAT(/,1X,'THE SECOND ORDER MODEL PARAMETERS ARE THOSE OF THE
1PROCESS',/1X,'LAMBDA = ',E11.4)
804 FORMAT(/,1X,'THE FIRST ORDER MODEL PARAMETERS ARE ---- TAU = ',
1F7.3,3X,' TO = ',F6.3,3X,' DEL = ',F5.3)
806 FORMAT(1X,'LAMBDA = ',E11.4,4X,'TAU*LAMBDA = ',E11.4,4X,'TAU/TO
1=' ,E11.4)
IF (NP,GT, 9) GO TO 85
READ(5,502)KASE
IF(KASE .GT, 0)GO TO 85
N=0
RETURN
85 GO TO (101,102,103,101,102,160,105),KASE

C----- INPUT DATA----- RUNGE-KUTTA

101 READ(5,502)N1
 READ(5,501)TOI,TMAX,H,PRT
 READ(5,501)(X0I(I),I=1,N1)

C----- INPUT DATA----- SYSTEM OR PLANT
 READ(5,501)PK,BETA,THETA
 R = 1.0
 WRITE(6,800)PK,BETA,THETA
READ(5,501)PCENT
READ(5,502)IMODEL
IF(KASE .EQ. 4)GO TO 150
GO TO 103
102 READ(5,501)PK,BETA,THEA
WRITE(6,800)PK,BETA,THEA
IF(KASE .EQ. 5)GO TO 105
103 CALL CSZT(BETA,THEA,CK,T1,TD1,KASE,PCENT)
TD2 = 0.0
WRITE(6,802)CK,T1,TD1,TD2
NP = 99
GO TO 194
105 READ(5,502)IMODEL
150 NP = 10
KASE = 6
J = 1
IF (IMODEL . EQ. 2) GO TO 175
DY = 1.0
TY = 1.0
CALL FOPDTM(TY,DY,BETA,THETAM,BETAM)
DEL = THETAM
THETAM = THETAM * THETAM
TAUQTO = BETAM/THETAM
WRITE(6,804)BETAM,THETAM,DEL
LAMBDAN = 1.0/THETAM
IF(PCENT .EQ. 0.05)LAMBDAN = 1.1/THETAM
IF(PCENT .EQ. 0.01)LAMBDAN = 0.79/THETAM
F1 = LAMBDAN
GO TO 170
160 IF(J.GT.1)GO TO 165
J = 2
FACTOR = ABS(ORST-PCENT)
IF(ORST.GT.PCENT)GO TO 161
LAMBDAN = (1.0+2.0*FACTOR)*LAMBDAN
GO TO 162
161 LAMBDA = (1.0-2.0*FACTOR)*LAMBDA
162 F2 = LAMBDA
 F4 = ORST
 GO TO 170
165 F3 = F4
 F4 = ORST
 IF (ORST .GT. (PCENT*1.01)) GO TO 168
 IF (ORST .LT. (PCENT*0.99)) GO TO 168
 NP = 100
 IF (IMODEL .EQ. 2) GO TO 166
 Taulam = Betam*LAMBDA
 WRITE(6,806)LAMBDA,Taulam,tauoto
 GO TO 167
166 WRITE(6,803)LAMBDA
167 WRITE(6,802)CK,TI,TD1,TD2
 GO TO 194
168 LAMBDA = F2-((F2-F1)/(F4-F3))*F4-PCENT
 IF (LAMBDA .LT. 0.0) LAMBDA = 0.1
 F1 = F2
 F2 = LAMBDA
170 IF (IMODEL .EQ. 2) GO TO 180
 CK = (LAMBDA*Betam)/(PK*(1.0*LAMBDA*THETAM))
 TI = BETAM
 TD1 = 0.0
 TD2 = 0.0
 GO TO 194
175 LAMBDA = 1.0/THETA
 F1 = LAMBDA
180 CK = (LAMBDA*Beta)/(PK*(1.0*LAMBDA*THETA))
 TI = BETAM
 TD1 = 1.0/BETA
 TD2 = 0.0
194 NDT = THETA/H + 0.49999
IP=PRF/H + 0.4999
N=NI
TO=T01
DO 190 I=1,N
190 XO(I)=X0(I)
M=(TMAX-T0)/H +0.4999
NP1=N+1
CALL LAG (NDT,INDX)
200 U = CK*(R-X0(I))
X(NP1)= U
UNP1=0.0
RETURN

ENTRY DERIV(T,X,DX,IK)
C---

GO TO (1,2,2,4),IK
1 U = CK*(R-X(1))*(X(3)/TI)-TD1*X(2)-T02*(UNP1*PK-BETA*X(2)-X(1))
CALL DEDTIM(U,NDT,INDX,UN,UNP1)
UNK =UN
X(NP1)= U
GO TO 5
2 UNK = (UN+UNP1)/2.
GO TO 5
4 UNK = UNP1
5 YDDOT = PK*(UNK)-BETA*X(2)-X(1)
DX(1) = X(2)
DX(2) = YDDOT
DX(3) = H - X(1)
DX(4) = ABS(DX(3))
RETURN
END
SUBROUTINE LAG(N,K)
DIMENSION A(2000)
DO 5 I=1,N
 5 A(I)=0.0
I=I+1
K=K+1
RETURN

ENTRY DEDTIM(X,N,K,XN,XNP1)
XN=A(I)
IP1=I+1
IF(I.EQ.N)IP1=1
XNP1=A(IP1)
A(I)=X
I=I+1
IF(I.GT.N)I=1
K=K+1
RETURN
END
C***
C-- GET THE CONTROLLER SETTINGS
C***

SUBROUTINE CSET(THETA, DTP, CK, TI, TD, KASE, PCENT)
DIMENSION Y(15)
IF(KASE .EQ. 3) GO TO 5
J=1
KASE = 3
CALL SET(THETA, DTP, TAU, DT, Y)
TOD = TAU/DT
WRITE(6, 501) TOD
501 FORMAT(1X, 'TAU/(THETA+DEL) = ', F6.3)
J = J*1
PCENT = 0.05
RETURN
5 GO TO (10, 15, 20, 25, 30, 35), J
10 TLAM = -0.15 + 1.155*TOD
CK = TLAM/(1.0 + TLAM/TOD)
TI = TAU
TD = 0.0
J = J+1
PCENT = 0.05
RETURN
15 TLAM = -0.20 + 0.8*TOD
CK = TLAM/(1.0 + TLAM/TOD)
TI = TAU
TD = 0.0
J = J+1
PCENT = 0.01
RETURN
20 CK = Y(6)
TI = Y(7)
TD = 0.0
J = J+1
PCENT = 0.05
RETURN
END
RETURN
CASE = 2
TD = y(15)
TI = y(14)
35 CK = y(13)
RETURN
J = J+1
TD = y(10)
TI = y(9)
25 CK = y(8)
C**
C--------------CALCULATE THE CONTROLLER SETTINGS
C**

SUBROUTINE SET(BETA, DTP, TAU, DT, Y)
DIMENSION A(15), R(15), Y(15)

DATA A/0.984,0.608,1.435,0.870,0.482,0.9,3.3,1.2,2.0,0.5,0.758,
11,02,1.086,0.740,0.348/

DATA B/-0.986,-0.707,-0.921,-0.749,1.137,-1.0,1.0,-1.0,1.0,1.0,
1-0.861,-0.323,-0.869,-0.130,0.914/

T=1,
DY=1.

CALL FOPDTM(T, DY, BETA, DTM, TAU)

TAU1=(BETA-SORT(BETA*BETA-4.0))/2.0

TAU2 = 1.0/TAU1

WRITE(6,101)BETA, TAU1, TAU2, TAU, DTM

101 FORMAT(///,1X,’B’,F4.1,F5.2,’TAU1=’,F7.4,’TAU2=’,F7.4,’TAU=’,F7.4,’DEL=’,F6.4,/)

DT=DTM+DTP

DDT=DT/TAU

DO 5 I=1,15

5 Y(I) = A(I)*(DOT*B(I))
Y(2) = Y(2)/TAU
Y(2) = 1.0/Y(2)
Y(4) = Y(4)/TAU
Y(4) = 1.0/Y(4)
Y(5) = Y(5)*TAU
Y(7) = Y(7)*TAU
Y(9) = Y(9)*TAU
Y(10) = Y(10)*TAU
Y(12) = A(12)+R(12)*DOT
Y(12) = Y(12) / TAU
Y(12) = 1.0 / Y(12)
Y(14) = A(14) * B(14) * DOT
Y(14) = Y(14) / TAU
Y(14) = 1.0 / Y(14)
Y(15) = Y(15) * TAU

10 WRITE(6,102) FTP,(Y(I),I=6,15)
102 FORMAT(/,6X,'THETA =',F6.4,/,9X,'ZIEGLER NK',5F10.4,/,9X,'ROVIRA IAE',5F10.4)
RETURN
END
---DETERMINE THE PARAMETERS OF THE FIRST ORDER MODEL---

SUBROUTINE FORDTM(Y, DY, BETA, THETAM, TAU)
ZETA = BETA/2.0
DEL = 0.284*DY
IF (BETA = 2.0) 1,3,5
1 C = SQRT(1.0-ZETA*ZETA)
 ANG = ATAN2(C,ZETA)
 I = 1
 GO TO 7
3 I = 2
 GO TO 7
5 C = SQRT(ZETA*ZETA-1.0)
 C4 = ZETA/C
 I = 3
7 NP = 0
8 NP = NP+1
10 K = 0
15 K = K+1
 GO TO (15,20,25), I
15 E = 1.0/(EXP(ZETA*T))
 Y = 1.0-(E/C)*SIN(C*T*ANG)
 GO TO 40
20 E = 1.0/(EXP(T))
 Y = 1.0-(1.0*T)*E
 GO TO 40
25 E = 1.0/(EXP((ZETA-C)*T))
 E1 = (C+ZETA)*T
 IF (E1, GT, 150.) GO TO 26
 E1 = 1.0/(EXP(E1))
 Y = 1.0-0.5*E*(1.0*C4)-0.0*E1*(1.0-C4)
 GO TO 40
26 \(Y = 1.0 - 0.5 \times 10^{-1} \times 1.0 \times C4 \)

40 IF \(K > 1 \) GO TO 50

\[
Y2 = Y
\]

\[
T2 = T
\]

\[
T = 2.0 \times T
\]

GO TO 10

50 \(YDIFF = \text{ABS}(Y - \text{DELY}) \)

IF \(YDIFF \leq 0.0002 \) GO TO 60

\[
Y1 = Y2
\]

\[
T1 = T2
\]

\[
Y2 = Y
\]

\[
T2 = T
\]

\[
T = T2 - \left(\frac{(T2 - T1) \times (Y2 - Y1)}{Y2 - \text{DELY}} \right)
\]

GO TO 10

60 IF \(NP > 1 \) GO TO 70

\[
TPT03 = T
\]

\[
\text{DELY} = 0.632 \times \text{DY}
\]

GO TO 8

70 \(TPT = T \)

\[
\text{THETAM} = 1.5 \times TPT03 - 0.5 \times TPT
\]

\[
\text{TAU} = 1.5 \times (TPT - TPT03)
\]

RETURN

END
Input Cards for Synthesis Program

<table>
<thead>
<tr>
<th>Card No.</th>
<th>Variable</th>
<th>Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VP</td>
<td>12</td>
<td>Indicator: Must be less than 10; = 0 stop</td>
</tr>
<tr>
<td>2</td>
<td>KASE</td>
<td>12</td>
<td>Type of case to be run:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>=1: Results for Z-N, ROVIRA, SYNTHESIS (1st on EQ)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Cards A, B, C, D, E, F required)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>=2: Run the previous case over but change the process parameters</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Card D required)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>=3: Used by program internally</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>=4: Controller settings determined by the synthesis technique but search on Lambda for overshoot criteria</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Cards A, B, C, D, E, F are required)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>=5: Run the previous case over but change the process parameters and the process model</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Cards D, F are required)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>=6: Used by program internally</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>=7: Run the previous case over but change the process model</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Card F required)</td>
</tr>
<tr>
<td>CARD N.O.</td>
<td>VARIABLE</td>
<td>FORMAT</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>A</td>
<td>N1</td>
<td>I2</td>
<td>NUMBER OF STATE VARIABLES</td>
</tr>
<tr>
<td>B</td>
<td>TOI</td>
<td>F10.0</td>
<td>INITIAL TIME</td>
</tr>
<tr>
<td></td>
<td>Tmax</td>
<td>F10.0</td>
<td>FINAL TIME</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>F10.0</td>
<td>STEP SIZE</td>
</tr>
<tr>
<td></td>
<td>PRT</td>
<td>F10.0</td>
<td>INTEGRATION PRINT INTERVAL</td>
</tr>
<tr>
<td>C</td>
<td>XU(I)</td>
<td>9F10.0</td>
<td>INITIAL VALUE OF THE STATES</td>
</tr>
<tr>
<td>D</td>
<td>PK</td>
<td>F10.0</td>
<td>PROCESS GAIN</td>
</tr>
<tr>
<td></td>
<td>beta</td>
<td>F10.0</td>
<td>PROCESS DAMPING PARAMETER</td>
</tr>
<tr>
<td></td>
<td>theta</td>
<td>F10.0</td>
<td>PROCESS DIMENSIONLESS DEAD-TIME</td>
</tr>
<tr>
<td>E</td>
<td>PCENT</td>
<td>F10.0</td>
<td>OVERSHOOT CRITERIA</td>
</tr>
<tr>
<td>F</td>
<td>IMODEL</td>
<td>I2</td>
<td>PROCESS MODEL</td>
</tr>
</tbody>
</table>
C**
C**
C- -
C- -
C- -
C- -
C- -
C- -
C- -
C- -
DIMENSION X(10),XO(10),DX(10),RK1(10),RK2(10),RK3(10),RK4(10)
DIMENSION Y(500),NTITLE(15),YM(500)
DIMENSION RTIME(5),OSHOOT(5),STIME(5)
101 FORMAT(15A4)
102 FORMAT(512)
104 FORMAT(1X,'T0=',F10.3,/,1X,6('X0(',I2,')='E10.4))
105 FORMAT(1X,'RISE TIME=',F6.3,3X,'SETTLING TIME=',F6.3,3X,'OVER
 1SHOT=',F6.4,3X,'IAE=',F8.4,3X,'I=',F8.3)
100 READ(5,102)NP,NOPLOT
 IF(NP,EQ,0)STOP
 READ(5,101)NTITLE
19 DO 20 I=1,500
 YM(I)=0.0
20 Y(1)=0.0
 IPILOT=0
 J=0
 IOS=0
 JP=0
 CALL ODE(N,H,T0,XO,M,IP,X,DX,NP,ORST,PCENT)
 IF(N,Gt,0)GO TO 3
 IF(NOPLOT,EQ,0)GO TO 100
 GO TO 18
3 NPIV=M/IP+1
 NP1=N+1
 IPILOT=IPILOT+1
 RTIME(IPILOT)=J.0
 OSHOOT(IPILOT)=0.0
 STIME(IPILOT)=0.0
 ESTIME=0.0
OSOTME = 0.0
DO 13 K=1,M
 T = T0
 DO 5 I=1,N
 X(I) = X0(I)
 5 IK=1
 CALL DERIV(T,X,DX,IK)
C CHECK FOR RISE TIME, SETTLING TIME AND OVERSHOOT
 IF(IOS .GT. 0) GO TO 29
 IF(X(I(1)-1.)*PCE < T)49,28,28
28 ESTIME = T
 IOS = 1
29 GO TO (30,32,38,38).IOS
30 IF (DX(3)) 31,31,48
31 RTIME(IPLLOT) = T
 IOS = 2
 DX30LD = DX(3)
 GO TO 48
32 IF (-X(2))36,36,34
34 OSHOOT(IPLLOT) = -DX30LD
 OSOTME = T
 IF (NP .LT. 100) GO TO 35
 ORST = OSHOOT(IPLLOT)
 IPLLOT = IPLLOT - 1
 GO TO 1
35 IOS = 3
36 DX30LD = DX(3)
 GO TO 48
38 Z = ABS(X(I(1)-1.))
 IF (Z.GT.PCENT) GO TO 40
 IF (IOS.EQ.4) GO TO 48
 STIME(IPLLOT) = T
 IOS = 4
 GO TO 48
40 IF(105, 4, 3) GO TO 4A
ST1ME(IPL0T) = T
105 = 3
4B CONTINUE
T = T0 + (H/2.)
DO 7 I = 1, N
RK1(I) = DX(I)*H
7 X(I) = X0(I) + (RK1(I)/2.)
IK = 2
CALL DERIV(T, X, DX, IK)
DO 9 I = 1, N
RK2(I) = DX(I)*H
9 X(I) = X0(I) + (RK2(I)/2.)
IK = 3
CALL DERIV(T, X, DX, IK)
DO 11 I = 1, N
RK3(I) = DX(I)*H
11 X(I) = X0(I) + RK3(I)
T = T0 + H
IK = 4
CALL DERIV(T, X, DX, IK)
IF(NOPLOT .EQ. 0) GO TO 16
J = J - 1
IF(J .GT. 0) GO TO 16
J = IP
JP = JP + 1
Y(IP) = T0
YM(IP) = T0
JP1 = IPLOT*NPIV + JP
Y(JP1) = X0(I)
YM(JP1) = X(NP1)
C WRITE CARD SHOULD BE REPLACED HERE WITHOUT C IN COL 1 FOR OUTPUT
C WRITE(6,104)T0,(1,X0(I),I=1,N),NP1,X(NP1)
16 \quad T_0 = T_0 + H

\textbf{DO}\ 13\ I = 1, N

\textbf{RK4}(I) = \textbf{DX}(I) \times H

13 \quad \textbf{X0}(I) = \textbf{X0}(I) + (\textbf{RK1}(I) + 2 \times \textbf{RK2}(I) + 2 \times \textbf{RK3}(I) + \textbf{RK4}(I)) / 6.

\textbf{IF} (\textbf{OSHoot}(\textbf{IPlot}) \cdot \textbf{EQ.} 0.0) \textbf{OSHoot}(\textbf{IPlot}) = -\textbf{DX}(3)

\textbf{CRST} = \textbf{OSHoot}(\textbf{IPlot})

\textbf{IF} (\textbf{NP}, \textbf{EQ.}, 100) \textbf{GO TO} 1

\textbf{IF} (\textbf{STIME}(\textbf{IPlot}) \cdot \textbf{EQ.}, 0.0) \textbf{ESTIME} = 0.0

\textbf{IF} (\textbf{STime}(\textbf{IPlot}), \textbf{LT.}, (1.1 \times \textbf{OSoTIME})) \textbf{STime}(\textbf{IPlot}) = \textbf{ESTime}

\textbf{WRITE}(6, 105) \textbf{RTIME}(\textbf{IPlot}), \textbf{STIME}(\textbf{IPlot}), \textbf{OSHoOT}(\textbf{IPlot}), \textbf{X}(4), \textbf{X}(5)

\textbf{IF} (\textbf{IPlot} \cdot \textbf{LT.}, 5) \textbf{GO TO} 1

\textbf{IF} (\textbf{NgPlot} \cdot \textbf{GT.}, 0) \textbf{GO TO} 18

\textbf{IPlot} = 0

\textbf{GO TO} 1

18 \quad \textbf{NDAIV} = \textbf{IPlot} + 1

\textbf{NLP} = 100

\textbf{IF} (\textbf{IPlot} \cdot \textbf{EQ.}, 0) \textbf{GO TO} 19

\textbf{CALL} \textbf{JGPlot}(Y, \textbf{NPiv}, \textbf{NDAIV}, \textbf{NLP}, \textbf{NTITLE})

\textbf{CALL} \textbf{JGPlot}(YM, \textbf{NPiv}, \textbf{NDAIV}, \textbf{NLP}, \textbf{NTITLE})

\textbf{GO TO} 100

\textbf{END}
C-------------------READ INPUT AND CALCULATE DERIVATIVES
C

SUBROUTINE ODE(N,H,T0,XO,M,IP,X,DX,NP,ORST,PCENT)
 DIMENSION X(10),DX(10),X0(10),X01(10)

501 FORMAT (8F10,0)
502 FORMAT (512)
300 FORMAT(//,IX ,30<• * * ') ,/,1X, * THE SECOND ORDER PLUS DEAD-TIME PRQCE
1SS PARAMETERS ARE' ,/,1X,'KP =',F8,3,5X,**BETA =',F8,3,5X,**THETA =',
2F8,3,/,1X,'THE RESULTS ARE FOR A UNIT CHANGE IN SET POINT',/,1X,30
3(' * * ')
602 FORMAT (/,1X,'THE CONTROLLER SETTINGS ARE', /,1X,'KC =',E12.4,5X,
1'TI =',E12.4,5X,**TD1 =',E12.4,5X,**TD2 =',E12.4)
803 FORMAT (1H1,14X,' 1 = INPUT--R-K,PLANT,REGULATOR',/,1X,'CASE = ',I2
1,15X,' 2 = INPUT--R-K,PLANT,CONTROLLER SETTINGS',/,15X,' 3 = CHANGE
2 VALUE OF P FOR THE CASE JUST RAN',/,15X,' 4 = SET TD2 EQUAL ZERO
3FOR SOPDT CASE JUST RAN',/,15X,' 5 = CHG MODEL FOR CASE JUST RAN',
4/,15X,' 6 = SET TD1 EQUAL ZERO FOR SOPDT CASE JUST RAN')
810 FORMAT (/,1X,'PARAMETERS FOR THE **',13,2X,** ORDER MODEL ARE',/,11X,'KP =',F8.3,5X,**BETA =',F8,3,5X,**THETA =',F8.3)

C----------INPUT DATA-----TYPE OF CASE TO BE RUN

IF(NP .GT. 10)GO TO 160
IF(NP .LT. 10)GO TO 80
IF(KASE .LT.9)GO TO 85
KASE = 9
IF((IMODEL+IPOX) .EQ. 4) GO TO 113
IF(IPOX .EQ. 2) GO TO 121
GO TO 85
80 READ(5,502)KASE
IF(KASE .EQ. 0) GO TO 90
WRITE(6,803)KASE
85 GO TO (101,101,107,113,108,121,101,140),KASE
90 N=0
RETURN
C----------INPUT DATA-----RUNGE-KUTTA
101 READ(5,502)
READ(5,501)TCI,TMAX,H,PRT
READ(5,501)(X01(I),I=1,N1)
C--------INPUT DATA-----SYSTEM OR PLANT
READ(5,501)PK,B,THETA
R = 1.0
WRITE(6,800)PK,B,THETA
READ(5,501)PCENT
IF (KASE .EQ. 2) GO TO 103
C--------INPUT DATA-----LINEAR REGULATOR
107 READ(5,501)P
IF (KASE .EQ. 3) GO TO 102
READ(5,501)STEP,TOL
108 READ(5,502)IMODEL,IPX
IF (KASE .LT. 7) GO TO 102
GO TO 150
140 READ(5,501)PK,B,THETA
IF (PK ,EQ. 0.0) GO TO 90
WRITE(6,800)PK,B,THETA
150 NP = 100
KASE = 9
J = 1
P = B*THETA
F1 = P
GO TO 102
160 IF (J .GT. 1) GO TO 165
WRITE(6,514)P,ORST
J = 2
P = (1.0+10.0*(ORST-PCENT))*P
F2 = P
F4 = ORST
GO TO 102
165 F3 = F4
WRITE(6,514)P,ORST
514 FORMAT(1X,'P= ',F10.3,5X,'OVERSHOOT = ',F10.4)
F4 = ORST
IF (ORST .GT. (PCENT*1.01)) GO TO 168
IF (WST .LT. (PCENT*0.99)) GO TO 168
NP = 10
GO TO 102

168 P = F2-((F2-F1)/(F4-F3))*(F4-PCENT)
IF (P ,LT , .2)P=0.2
IF (P ,GT , 100.0)P=100.0
F1 = F2
F2 = P

102 CALL VALUE(KASE,PK,3,THETA,P,IMODEL,STEP,TOL,CK,TK,TI,TD1,TD2,BETAM,
1THETAM,IP0X,VP,J)
GO TO 104

C--------INPUT DATA--------CONTROL SETTINGS IF NOT CALCULATED
103 READ(5,501)CK,TK,TD1,TD2
IMODEL=0
BETAM=0.0
THETAM=0.0
GO TO 104

113 TD2=0.0
GO TO 104
121 TD1 = 0.0
104 NDT = THETA/NT+0.49999
IP=PHT/H+0.49999
N=NI
TU=T01
DO 190 I=1,N
190 X0(I)=X01(I)
M=(TMAX-T0)/H+0.49999
NP1=N+1
CALL LAG (NDT,INDX)
200 U = CK*(R-X0(1))
UNP1=0.0
UDOT = 0.0
FFUUDOT = 0.1
IF (NP ,GT , 10) RETURN
WRITE(6,810) IMODEL,PK,BETAM,THETAM,THETAM,THETAM
TIOTAU=TI/BETAM

222
TD10TAU=TD1/BETAM
TD20TAU=TD2/BETAM
IF (IMODEL .GT. 1) GO TO 300
TAUOTO=BETAM/THETAM
PEN = P/(BETAM*BETAM)
WRITE (6, 511) TAUOTO, TIOTAU, TD1OTAU, PEN
511 FORMAT (1X, 'TAU/TO = ', F7.4, 3X, 'TI/TAU = ', F7.4, 3X, 'TD/TAU = ', F7.4, 1/1, 1X, 'PENALITY = ', F7.4)
GO TO 300
300 WRITE (6, 512) BETAM, TIOTAU, TD1OTAU, TD2OTAU
512 FORMAT (1X, 'BETAM = ', F7.4, 3X, 'TI/BETAM = ', F7.4, 3X, 'TD1/BETAM = ', F7.4, 14, 3X, 'TD2/BETAM = ', F7.4)
302 WRITE (6, 802) CK, TI, TD1, TD2
RETURN
C--
ENTRY DERIV(T, X, DX, IK)
C--
GO TO (1, 2, 2, 4), IK
1 UPRV = U
 U = CK*(R*X(1)+(X(3)/TI)-TD1*X(2)-TD2*(UNP1*PK-B*X(2)-X(1)))
 X(NP1)=U
 CALL DEQDIM(U, NDT, INDX, UN, UNP1)
 UNK = UN
 UD = (UDOT*FFUDOT)*((1.0-FFUDOT)*(U-UPRV)/H)
 GO TO 5
2 UNK = (UN+UNP1)/2.
 GO TO 5
4 UNK = UNP1
5 YDDOT = PK*(UNK)-B*X(2)-X(1)
 DX(1) = X(2)
 DX(2) = YDDOT
 DX(3) = R - X(1)
 DX(4) = ABS(DX(3))
 DX(5) = UX(3)*DX(3) + P*UDOT*UDOT
RETURN
END
C---
C--GET THE CONTROLLER SETTINGS
C---

SUBROUTINE VALUE(K,PK,BETA,THETA,R,MODEL,STEP,TOL,CK,T1,T2,T3,
1BETAM,THETAM,IPOX,NP,J)

DIMENSION A(10,10),B(10,10),Q(10,10),S(10,10),T(10,10),G(10,10),R(10,10)

300 FORMAT(/,1X,'** K GAIN MATRIX IS **')
801 FORMAT(/,1X,'** J MATRIX IS **')
802 FORMAT(/,1X,'** STEP = ',E12.4,5X,'** TOL = ',E12.4)
803 FORMAT(/,1X,'** A MATRIX IS **')
804 FORMAT(/,1X,'** B MATRIX IS **')
805 FORMAT(/,1X,'** Q MATRIX IS **')
806 FORMAT(/,1X,'** S MATRIX IS **')
807 FORMAT(/,1X,'** R = ',E12.4)
808 FORMAT(/,1X,'THE INPUTS TO THE LINEAR REGULATOR ARE')
809 FORMAT(/,1X,'THE OUTPUTS TO THE LINEAR REGULATOR ARE')
811 FORMAT(/,1X,'** NO. OF ITERATIONS = ',I5)

NDM=10
IF(K,EQ,3)GO TO 5
IF(K,LT,8)GO TO 2
IF(J,GT,1)GO TO 5

2 CALL MODEL(THETA,BETA,MODEL,IPOX,THETAM,BETAM,A,B,Q,S,NR,NCR,NDM)
5 IF(NP,GT,10)GO TO 6
WRITE(6,808)
WRITE(6,803)
CALL WHAT(A,NR,NR,NDM)
WRITE(6,804)
CALL WHAT(B,NR,NCR,NDM)
WRITE(6,805)
CALL WHAT(Q,NR,NR,NDM)
WRITE(6,806)
CALL WHAT(S,NR,NR,NDM)
WRITE(6,807)R
WRITE(6,802)STEP,TOL
6 CALL RICCAT(NR,NCB,A,B,Q,S,R,STEP,TOE,RJ,GNITER,NDM)
IF(NP,GT,10) GO TO 7
WRITE(6,809)
WRITE(6,801)
CALL WMAT(RJ,NR,SR,NDM)
WRITE(6,800)
CALL WMAT(G,NCM,R,NDM)
WRITE(6,811)NITER
7 IF(IMODEL,GT,1) GO TO 40
C IPOX IS THE DEAD-TIME APPROXIMATION
C IPOX = 1, FIRST ORDER TAYLOR SERIES EXPANSION
C IPOX = 2, PADE APPROXIMATION
IF(IPOX,GT,1) GO TO 10
C CONTROLLER SETTINGS FOR FOPDTM WITH TAYLOR APPROX
CK = (BETAM*G(1,2))/(PK*(1.0+G(1,2)*THETAM))
TI = (G(1,2)*BETAM)/(G(1,1)+G(1,2))
TD1 = 0.0
TD2 = 0.0
RETURN
C CONTROLLER SETTINGS FOR FOPDTM WITH PADE APPROX
10 F1 = (1.0/BETAM)*G(1,2) + G(1,3)
F2 = G(1,2)*(THETAM+2.0*THETAM)/2.0*F1
F3 = 1.0 + (THETAM*F1)/2.0
F4 = F1 + G(1,1)
CK = F2/(PK*F3)
TI = F2/F4
TD1 = (THETAM*THETAM*F1)/(2.0*F2)
TD2 = 0.0
RETURN
C CONTROLLER SETTINGS FOR SOPDTM WITH TAYLOR APPROX
40 IF(IPOX,GT,1) GO TO 50
F1 = THETAM*G(1,2) + G(1,3)
F2 = 1.0 + THETAM*F1
F3 = G(1,2) + BETAM*F1
F4 = G(1,1) + F1
CK = F3/(PK*F2)
TI = F3/F4
TD1 = F1/F3
TD2 = 0.0
RETURN

C CONTROLLER SETTINGS FOR SOPDTM WITH PAJE APPROX

F1 = G(1,3) + G(1,4)
F2 = G(1,2) + (BETAM + (THETAM/2.0))*F1
F3 = G(1,3) + (1.0 + (BETAM*THETAM)/2.0)*F1
F4 = 1.0 + (THETAM/2.0)*F1
CK = F2/(PK*F4)
TI = F2/(G(1,1) + F1)
TD1 = F3/F2
TD2 = (THETAM/2.0)*(F1/F2)
RETURN
END
C---TRANSPORTATION LAG OR DEAD TIME SIMULATION

SUBROUTINE LAG(N,K)
DIMENSION A(2000)
DO 5 I=1,N
5 A(I)=0.0
I=N
K=1
RETURN

ENTRY EDETTIM(X,V,K,XN,XNP1)

XN=A(I)
IP1=I+1
IF(I.EQ.N)IP1=1
X=IP1=A(IP1)
A(I)=X
I=I+1
IF(I.GT.N)I=1
K=K+1
RETURN
END
C---TRANSFORM THE SYSTEM EQUATIONS
C---

SUBROUTINE MODEL(THETA,BETA,IMODEL,IPOX,DTM,TAU,A,B,Q,P,R,NCB,NDM,1)

DIMENSION A(NDM,1),R(NDM,1),S(NDM,1),Q(NDM,1)
NCB = 1
NR = IMODEL+IPOX

DO 5 I =1,NR
 DO 5 J =1,NR
 A(I,J) = 0.0
 Q(I,J) = 0.0

5 S(I,J) = 0.0
 DO 10 I = i,NR
 DO 10 J = 1,NCB

10 B(I,J) = 0.0
 IF (IMODEL .LT. 2) GO TO 20
 QTM = THETA
 TAU = BETA

C IPOX IS THE DEAD-TIME APPROXIMATION
C IPOX = 1, FIRST ORDER TAYLOR SERIES EXPANSION
C IPOX = 2, PADE APPROXIMATION

IF (IPOX ,EQ, 1) GO TO 15
 A(1,2) = 1.0
 A(2,3) = 1.0
 A(2,4) = -1.0
 A(3,1) = -2.0/DTM
 A(3,2) = -((2.0/DTM)*1.0)
 A(3,3) = -((2.0/DTM)+TAU)
 A(3,4) = ((4.0/DTM)*TAU)
 B(4,1) = 1.0
 Q(1,1) = 1.0
RETURN
15 A(1, 2) = 1.0
 A(1, 3) = -DTM
 A(2, 1) = -1.0
 A(2, 2) = -TAU
 A(2, 3) = 1.0*DTM*TAU
 B(3, 1) = 1.0
 Q(1, 1) = 1.0
 RETURN
20 DY = 1.0
 T = 1.0
 CALL FOPDM(T , Dy, BETA , DTM, TAU)
 DTM = THETA*DTM
 IF (POX ,Eq. 1) GO TO 25
 A(1, 2) = 1.0
 A(1, 3) = -1.0/TAU
 A(2, 1) = -2.0/(DTM*TAU)
 A(2, 2) = -(DTM*2.0*TAU)/(DTM*TAU)
 A(2, 3) = (DTM*4.0*TAU)/(DTM*TAU*TAU)
 B(3, 1) = 1.0
 Q(1, 1) = 1.0
 RETURN
25 A(1, 1) = -1.0/TAU
 A(1, 2) = 1.0/TAU
 B(1, 1) = -DTM/TAU
 B(2, 1) = 1.0
 Q(1, 1) = 1.0
 RETURN
END
C**
C---------Determine the Parameters of the First Order Model
C**

SUBROUTINE FOPDT1(T,Y,BETA,THETAM,TAU)

ZETA = BETA/2.0
DEL = 0.284*DY

IF(BETA < 2.0) 1,3,5
1 C = SQRT(1.0-ZETA*ZETA)
 ANG = ATAN2(C,ZETA)
 I = 1
 GO TO 7
3 I = 2
 GO TO 7
5 C = SQRT(ZETA*ZETA-1.0)
 C4 = ZETA/C
 I = 3
7 NP = 0
8 NP = NP+1
 K = 0
10 K = K+1
 GO TO (15,20,25), I
15 E = 1.0/(EXP(ZETA*T))
 Y = 1.0-(E/C)*SIN(C*T+ANG)
 GO TO 40
20 E = 1.0/(EXP(T))
 Y = 1.0-(1.0*T)*F
 GO TO 40
25 E=1.0/(EXP((ZETA-C)*T))
 E1=(C+ZETA)*T
 IF(E1 .GT. 150.)GO TO 26
 E1 = 1.0/(EXP(E1))
 Y = 1.0-0.5*E*(1.0+C4)-0.5*E1*(1.0-C4)
 GO TO 40

C**
Y = 1.0 - 0.5*E*(1.0*C4)
40 IF(K, GT, 1) GO TO 50
 Y2 = Y
 T2 = T
 T = 2.0*T
 GO TO 10
50 YDIFF = ABS(Y-DELY)
 IF(YDIFF .LE. 0.0002) GO TO 60
 Y1 = Y2
 T1 = T2
 Y2 = Y
 T2 = T
 T = T2-(((T2-T1)/(Y2-DELY))*(Y2-DELY))
 GO TO 10
60 IF(NP, GT, 1) GO TO 70
 TPT03 = T
 DELY = 0.632*DY
 GO TO 8
70 TPT = T
 THE TAM = 1.5*TPT03+0.5*TPT
 TAU = 1.5*(TPT-TPT03)
 RETURN
END

* SOLUTION TO THE RICCATI EQUATION *

SUBROUTINE RICCAT(NR,NCB,A,B,Q,S,R,STEP,TOL,RJ,DUMMY,NITER,NDM)
DIMENSION A(NDM,1),B(NDM,1),Q(NDM,1),S(NDM,1),RJ(NDM,1)
DIMENSION DUMMY(NDM,1)
DIMENSION P(10,10),RJO(10,10),W(10,10),AT(10,10),BT(10,10)

CALL TRANS(A,TRANSPOSE), B(TRANSPOSE), R(INVERSE)

CALL TRANS(A,NR,NCB,BT,NDM)

-----SINCE R IS A SCALAR, R(INVERSE)=1.0/R

R=1.0/R

-----INITIAL VALUE OF J IS S

NITER=0

DO 100 I=1,NR
 DO 100 J=1,NR
 100 RJO(I,J)=S(I,J)

-----CALCULATE P=B*R(INVERSE)*B(TRANSPOSE)

CALL ADDMAT(0,A,RI,BT,NCB,SR,W,NDM)
CALL MULMAT(R,W,RI,NCB,BT,P,NDM)

-----CALCULATE W=J*(A-P*J)+A(TRANSPOSE)*J

10 CALL MULMAT(P,RJO,NR,NR,NR,DUMMY,NDM)

-----KEEP TRACK OF THE NO. OF ITERATIONS

NITER=NITER + 1

C=1.0

CALL ADDMAT(1,A,C,DUMMY,NR,NR,W,NDM)
CALL MULMAT(RJO,W,NR,NR,NR,DUMMY,NDM)

C=1.0

CALL ADDMAT(1,Q,C,DUMMY,NR,NR,W,NDM)
CALL MULMAT(AT,RJO,NR,NR,NR,DUMMY,NDM)

CALL ADDMAT(1,0,C,DUMMY,NR,NR,W,NDM)

C------CALCULATE A NEW J BASED ON ULD J J(J+1)=J(J)+HOW
C=STEP
CALL ADDMAT(I,RJO,C,W,NR,NR,RJ,NDM)
CALL SYMMAT(RJ,NR,NR,NDM)
C----------TOLERANCE CHECK
DO 20 I=1,NR
DO 20 J=1,NR
CHECK=ABS(RJ(I,J)-RJO(I,J))
ALLOW=ABS(RJ(I,J)*TOL)
IF(CHECK .GT. ALLOW) GO TO 29
20 CONTINUE
GO TO 50
29 IF(NITER .GE. 500)GO TO 45
30 DO 40 I=1,NR
DO 40 J=1,NR
40 RJO(I,J)=RJ(I,J)
GO TO 10
45 WRITE(6,110)
110 FORMAT(/,1X,'@@FAILED TO CONVERGE @ RICCATI@@')
WRITE(6,111)
111 FORMAT(/,1X,'@@OLD J MATRIX WAS@@')
CALL WHAT(RJO,NR,NR,NDM)
C----------CALCULATE GAIN MATRIX
50 CALL MULMAT(HI,RJ,NCB,NR,NR,DUMMY,NDM)
CALL ADDMAT(0,A,RJ,DUMMY,NCB,NR,DUMMY,N,DIM)
RETURN
END
C-------------------------------READ AND WRITE A MATRIX
C
SUBROUTINE RAWMAT(X, NR, NC, NDM)
DIMENSION X(NDM,1)
501 FORMAT(2I2)
502 FORMAT(8F10.4)
503 FORMAT(1X, I3, ' ROWS ', I3, ' COLUMNS ')
551 FORMAT(1X, 10E12.4)
READ(5,501)NR,NC
DO 4 I=1,NR
4 READ(5,502)(X(I,J),J=1,NC)
ENTRY WMAT(X,NR,NC,NDM)
WRITE(6,503)NR,NC
DO 8 I =1,NR
8 WRITE(6,551)(X(I,J),J=1,NC)
RETURN
END

C---------------------------------MATRIX MULTIPLICATION
C
SUBROUTINE MULMAT(A,B,NRA,NC3,NCB,R,NDM)
DIMENSION A(NDM,1),R(NDM,1),R(NDM,1)
C----------------------------------MULTIPLY MATRIX A (TIMES) MATRIX B
DO 10 L=1,NRA
DO 10 K=1,NCB
SUM = 0.0
DO 9 I=1,NC3
9 SUM =SUM + A(L,I)*B(I,K)
10 R(L,K) =SUM
RETURN
END
C***MATRIX ADDITION WITH SCALAR MULTIPLICATION***

SUBROUTINE ADDMAT(M,A,C,B,NR,NC,R,NDM)
DIMENSION A(NDM,1),B(NDM,1),R(NDM,1)
IF (M.LT.1) GO TO 11
C--------ADDITION WITH SCALAR MULTIPLICATION
DO 10 I=1,NR
DO 10 J=1,NC
 10 R(I,J)=A(I,J) + C*B(I,J)
RETURN
C--------SCALAR MULTIPLICATION ONLY
11 DO 20 I=1,NR
 DO 20 J=1,NC
 20 R(I,J) = C*B(I,J)
RETURN
END

C***A TRANSPOSE IS AT***

C***A TRANSPOSE IS AT***

SUBROUTINE TRANS(A,NRA,NCA,AT,NDM)
DIMENSION A(NDM,1),AT(NDM,1)
C--------TRANSPOSE THE MATRIX A
DO 10 I=1,NRA
DO 10 J=1,NCA
 10 AT(J,I)=A(I,J)
RETURN
END
C--
C-- MAKE THE MATRIX SYMMETRIC
C--

SUBROUTINE SYMMAT(A, NR, NC, NDM)
DIMENSION A(NDM, 1)
NR1= NR-1
DO 5 I=1, NR1
 M= I+1
 DO 5 J=M, NC
 A(I,J) = (A(I,J)+A(J,I))/2,
 5 A(J,I) = A(I,J)
RETURN
END
Input Cards for Output Regulator Program

<table>
<thead>
<tr>
<th>Card No</th>
<th>Variable</th>
<th>Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NP</td>
<td>I2</td>
<td>Card 1: Indicator: Must be less than 10; =0 Stop</td>
</tr>
<tr>
<td></td>
<td>NPLT</td>
<td>I2</td>
<td>Card 2: Number of curves per plot: max. of 5</td>
</tr>
<tr>
<td>2</td>
<td>TITLE</td>
<td>15A4</td>
<td>Card 3: Title of plot</td>
</tr>
<tr>
<td>3</td>
<td>KASE</td>
<td>I2</td>
<td>Card 4: Type of case to be run</td>
</tr>
</tbody>
</table>

- **Card 1: Controller settings determined by output regulator for specified input**
 - (Cards A, B, C, D, E, F, G, H are required)
- **Card 2: Controller settings specified**
 - (Cards A, B, C, D, I are required)
- **Card 3: Run the previous case over with a new value for P**
 - (Card F required)
- **Card 4: Run the previous case over but set T02=0.0**
 - (No additional cards required)
- **Card 5: Run the previous case over but change the process model**
 - (Card H required)
- **Card 6: Run the previous case over but set TD1=0.0**
 - (No additional cards required)
- **Card 7: Controller settings determined by the output regulator but search on P for overshoot criteria**
 - (Cards A, B, C, D, E, F, G, H are required)
- **Card 8: Run the previous case over but change the process parameters**
 - (Card D required)
<table>
<thead>
<tr>
<th>CARD NO.</th>
<th>VARIABLE</th>
<th>FORMAT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>N1</td>
<td>I2</td>
<td>NUMBER OF STATE VARIABLES</td>
</tr>
<tr>
<td>B</td>
<td>T01</td>
<td>F10.0</td>
<td>INITIAL TIME</td>
</tr>
<tr>
<td></td>
<td>TMAX</td>
<td>F10.0</td>
<td>FINAL TIME</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>F10.0</td>
<td>STEP SIZE</td>
</tr>
<tr>
<td></td>
<td>PRT</td>
<td>F10.0</td>
<td>INTEGRATION PRINT INTERVAL</td>
</tr>
<tr>
<td>C</td>
<td>XO(I)</td>
<td>B/10.0</td>
<td>INITIAL VALUE OF THE STATES</td>
</tr>
<tr>
<td>D</td>
<td>PK</td>
<td>F10.0</td>
<td>PROCESS GAIN</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>F10.0</td>
<td>PROCESS DAMPING PARAMETER</td>
</tr>
<tr>
<td></td>
<td>Theta</td>
<td>F10.0</td>
<td>PROCESS DIMENSIONLESS DEAD-TIME</td>
</tr>
<tr>
<td>E</td>
<td>PCENT</td>
<td>F10.0</td>
<td>OVERSHOOT CRITERIA</td>
</tr>
<tr>
<td>F</td>
<td>P</td>
<td>F10.0</td>
<td>PENALITY PARAMETER</td>
</tr>
<tr>
<td>G</td>
<td>STEP</td>
<td>F10.0</td>
<td>REGULATOR STEP SIZE</td>
</tr>
<tr>
<td></td>
<td>TOL</td>
<td>F10.0</td>
<td>TOLERANCE FOR THE SOLN TO THE RACCITI EQ.</td>
</tr>
<tr>
<td>H</td>
<td>MODEL</td>
<td>I2</td>
<td>PROCESS MODEL</td>
</tr>
<tr>
<td></td>
<td>IPOX L</td>
<td>I2</td>
<td>DEAD-TIME APPROXIMATION</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>=1:TAYLOR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>=2:PADE</td>
</tr>
<tr>
<td>I</td>
<td>CK</td>
<td>F10.0</td>
<td>CONTROLLER GAIN</td>
</tr>
<tr>
<td></td>
<td>TI</td>
<td>F10.0</td>
<td>CONTROLLER RESET TIME</td>
</tr>
<tr>
<td></td>
<td>T01</td>
<td>F10.0</td>
<td>CONTROLLER PREACT TIME</td>
</tr>
<tr>
<td></td>
<td>TD2</td>
<td>F10.0</td>
<td>CONTROLLER PREACT TIME-SQUARED</td>
</tr>
</tbody>
</table>
VITA

The author was born in New Orleans, Louisiana on September 24, 1940. He received his elementary education at St. Joseph's School in Paulina, Louisiana and his high school education at Lutcher High School in Lutcher, Louisiana, graduating in May, 1958.

His undergraduate work was at Louisiana State University and Southeastern Louisiana University, graduating with a Bachelor of Science degree in Mathematics in May, 1963. He held several positions during the six years of employment with Chrysler Corporation Space Division which followed. He returned to Louisiana State University in 1969 where he received a Master of Science degree in Chemical Engineering in 1973.

The author is married to the former Miss Barbara Hudson of Baton Rouge, Louisiana. He is the proud father of an 8 year old daughter, Lisa, and a one year old son, Stephen Troy.

He is at the present time, a candidate for the degree of Doctor of Philosophy in Chemical Engineering and is an employee of EXXON Chemical, USA.
Candidate: Jacob Martin, Jr.

Major Field: Chemical Engineering

Title of Thesis: Design and Comparison of Controllers Based on Simplified Models of the Process

Approved:

[Signatures]

Major Professor and Chairman

Dean of the Graduate School

EXAMINING COMMITTEE:

[Signatures]

Date of Examination:

November 21, 1975