2015

Stress Tolerance Enhancement of Rice by Genetic Manipulation of a bHLH-Myc2 Transcription Factor

Luis Eduardo Sanchez Timm

Louisiana State University and Agricultural and Mechanical College, edu_st@hotmail.com

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations

Recommended Citation
https://digitalcommons.lsu.edu/gradschool_dissertations/2849

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please contact gradetd@lsu.edu.
STRESS TOLERANCE ENHANCEMENT OF RICE BY GENETIC MANIPULATION OF A BHLH-MYC2 TRANSCRIPTION FACTOR

A Dissertation

Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy

in

The Department of Plant Environment Management and Soil Sciences

by

Luis Eduardo Sánchez Timm
B.S. Universidad Superior Politécnica del Litoral, 2010 December 2015
This dissertation is dedicated to my parents Luis Eduardo Sánchez Macias and Grace Mónica Timm Duque, who brought me to this world and gave me the best gift that a parent can give to a son: love, health, values and education. I also dedicate this work to my fiancée, Tatiana Paola Chavez Navarrete, for all her love and support throughout my doctoral education.
ACKNOWLEDGEMENT

I would like to thank my major professor, Dr. Niranjan Baisakh, who has been more a friend to me than a supervisor in the last 4 years. He has spent countless times guiding me through my research work and shared with me his expertise and knowledge in plant molecular biology and biotechnology.

I want to thank the Secretaría de Educación Superior, Ciencia, Tecnología e Innovación (SENESCYT) and the Escuela Superior Politécnica del Litoral (ESPOL) for providing the funding necessary to fulfill my doctoral studies at LSU.

I want to thank Dr. Efren Santos and Dr. Esther Peralta for their guidance and help from the beginning of my career; I was able to go this far is thanks to them. I also would like to thank to all my dear friends in Baton Rouge who received me with comraderies and became my extended family.
TABLE OF CONTENTS

ACKNOWLEDGEMENT .. iii

LIST OF ABBREVIATIONS .. vi

ABSTRACT ... viii

CHAPTER 1: INTRODUCTION ... 1
 1.1 Research Objectives ... 3
 1.2 Origin and importance of rice .. 3
 1.3 Drought stress tolerance .. 4
 1.4 Salt stress tolerance .. 8
 1.5 Biotic stresses and some tolerance approaches .. 10
 1.6 Jasmonic acid interaction with the basic helix-loop-helix (bHLH)-Myc2 transcription factor ... 11
 1.7 References .. 13

CHAPTER 2: MATERIALS AND METHODS .. 19
 2.1 Plant material and growth conditions .. 19
 2.2 MYC2 alignment and phylogeny .. 19
 2.3 Cloning of OsMyc2 and construction of plant transformation vector 19
 2.4 Agrobacterium tumefaciens-mediated transformation ... 21
 2.5 Subcellular localization of OsMyc2 ... 23
 2.6 Stress treatments .. 24
 2.7 RNA isolation, cDNA synthesis and expression of OsMyc2 under drought stress 24
 2.8 Physiological analysis of drought stressed plants .. 25
 2.8.1 Estimation of photosynthetic yield .. 25
 2.8.2 Relative water content (RWC) ... 26
 2.8.3 Membrane stability index (MSI) .. 26
 2.9 Phytohormone treatments .. 26
 2.10 Fall armyworm culture and feeding assays .. 27
 2.11 Agronomic traits .. 27
 2.12 Statistical analyses .. 28
 2.13 References .. 28

CHAPTER 3: RESULTS .. 30
 3.1 Alignment and phylogeny analysis of rice Myc2 transcription factor 30
 3.2 Development of transgenics .. 32
 3.3 Subcellular localization of OsMyc2 ... 32
 3.4 OsMyc2 overexpression enhanced plant abiotic stress tolerance 33
 3.5 Physiological response of drought stressed plants .. 35
 3.6 Gene expression analysis ... 39
 3.7 Phytohormone treatment and gene expression changes .. 42
 3.8 Effect of OsMyc2 overexpression on Spodoptera frugiperda 46
3.9 Growth and yield data analysis...48

CHAPTER 4: DISCUSSION ..52
4.1 OsMyc2: phylogeny, localization and expression....................................52
4.2 OsMyc2 overexpression enhances stress tolerance...............................52
4.3. OsMyc2 is drought stress-induced and modulates the expression of other downstream genes ...55
4.4 Hormonal regulation of the expression of OsMyc2 and related genes56
4.5 Effect of Myc2 overexpression on fall armyworm.................................58
4.6 Myc2 expression and agronomic traits ..58
4.7 References ...59

CHAPTER 5: SUMMARY AND CONCLUSIONS ...63
5.1 Summary and conclusions..63
5.2 Future perspectives ..64

APPENDIX I: OSMYC7E PROTEIN SEQUENCE ...66

APPENDIX II: MYC2 ORTHOLOG SEQUENCES OBTAINED FROM THE PLANT GENOMIC RESOURCE PHYTOZOME 10.3 ..67

APPENDIX III: ALIGNMENT OF PROTEIN SEQUENCES OF MYC2 SHOWED HIGHLY CONSERVED REGIONS AMONG DIFFERENT SPECIES69

APPENDIX IV: ROOT BIOMASS AND LENGTH QUANTIFICATION OF DROUGHT STRESSED PLANTS AFTER RECOVERY ...85

VITA ...86
LIST OF ABBREVIATIONS

µM Micro molar
ABA Abscisic acid
ABRE ABA responsive elements
AQP Aquaporin
bHLH Basic helix hoop helix
BLAST Basic local alignment search tool
bp Base pair
CaMV35S Cauliflower mosaic virus 35S promoter
cm Centimeter
ColI Coronatine insensitive I
DMSO Dimethyl sulfoxide
dNTPs Deoxyribonucleotide triphosphates
DRE Dehydration responsive element
dsDNA Double stranded deoxyribonucleic acid
DW Dry weight
E coli Escherichia coli
ERD Early responsive to dehydration
GA Gibberellic acid
GFP Green fluorescence protein
H Hour/hours
hptII Hygromycin phosphotransferase
HSP Heat shock protein
JA Jasmonic acid
JA-iLe Jasmonyl isoleucine
JAZ Jasmonate zim
Kbp Kilo base pair
KD Knock down
LB Luria-Bertani broth
LF Left border
LOX Lipoxygenase
M Molar
Mbp Mega base pair
meJA Methyl jasmonate
Min Minute
ml Milliliter
mM Millimolar
NaCl Sodium chloride
NCBI National center for biotechnology information
NCED3 9-cis-epoxycarotenoid dioxygenase 3
ng Nanogram
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>OD</td>
<td>Optical density</td>
</tr>
<tr>
<td>OE</td>
<td>Overexpresser</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>PEG</td>
<td>Polyethylene glycol</td>
</tr>
<tr>
<td>PR</td>
<td>Pathogenesis related</td>
</tr>
<tr>
<td>RAP-DB</td>
<td>Rice annotation project database</td>
</tr>
<tr>
<td>RB</td>
<td>Right border</td>
</tr>
<tr>
<td>RE</td>
<td>Restriction endonuclease</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>RNAi</td>
<td>RNA interference</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species</td>
</tr>
<tr>
<td>RPM</td>
<td>Rotation per minute</td>
</tr>
<tr>
<td>RT</td>
<td>Room temperature</td>
</tr>
<tr>
<td>RWC</td>
<td>Relative water content</td>
</tr>
<tr>
<td>SA</td>
<td>Salicylic acid</td>
</tr>
<tr>
<td>Sec</td>
<td>Second/seconds</td>
</tr>
<tr>
<td>Taq</td>
<td>Thermus aquaticus</td>
</tr>
<tr>
<td>TAT</td>
<td>Tyrosine aminotransferase</td>
</tr>
<tr>
<td>TF</td>
<td>Transcription factor</td>
</tr>
<tr>
<td>TW</td>
<td>Turgid weight</td>
</tr>
<tr>
<td>U</td>
<td>Unit</td>
</tr>
<tr>
<td>V</td>
<td>Volt</td>
</tr>
<tr>
<td>VSP</td>
<td>Vegetative storage protein</td>
</tr>
<tr>
<td>WT</td>
<td>Wild type</td>
</tr>
</tbody>
</table>
ABSTRACT

Rice yield is adversely affected by various abiotic and biotic stresses. Jasmonic acid (JA) signaling has been implicated in stress response of plants. The nuclear localized basic helix loop helix (bHLH) Myc2 transcription factor is known to be a master regulator of genes involved in the response of the JA-mediated signaling pathway during stress and plant development. Myc2 is also induced by wounding and mechanical damage, and is associated with resistance against herbivore insects. In order to understand the mode of action of Myc2 in stress response of rice, overexresser (OE) and knock-down (KD) mutants for OsMyc2 were generated in rice. After 7 d of withholding water, OsMyc2 OE plants showed better stress tolerance with respect to their growth and development, and physiological traits such as relative water content, membrane stability, chlorophyll fluorescence, etc. in comparison with the wild type (WT) and KD plants. Similar results were obtained for response to salinity stress (150 mM NaCl in hydroponics) where OE seedlings showed less chlorosis and better shoot and root growth as compared to the WT and KD lines. Furthermore, non-choice feeding assay of the transgenic rice plants with a specialist herbivore Spodoptera frugipera showed that the life cycle of the insect was affected when the larvae were fed with tissues of the OsMyc2 OE lines. Bioassay with blast fungus, Magnaporthe oryzae, did not show obvious difference with the number of lesions, but the size of lesions was smaller in OE lines relative to that in WT and KD lines. OsMyc2, in addition to its overexpression under various stresses, modulated the expression of genes in JA signaling and associated networks. These results suggested that the OsMyc2 transcription factor is involved in multiple stress responses and can be manipulated to enhance stress tolerance in rice.
CHAPTER 1: INTRODUCTION

Rice (*Oryza sativa* L.), one of the most important cereal crops in the world (CGRFA, 2012; FAO, 2013), is very sensitive to abiotic stresses; drought and salt together can cause significant yield losses to the extent of ~40% (IRRI, 2014). The current and future global climate change scenario is likely to worsen the situation with increase in temperature, rise in sea level and dry spells. Furthermore, these environmental conditions will make crop plants more vulnerable to biotic stresses.

Natural genetic variations for abiotic stress tolerance extant in rice gene pool are being exploited in breeding to develop stress-resilient crops. Conventional breeding has been slow due to the complexity of the stress tolerance traits and low selection efficiency of the quantitatively inherited traits. Molecular interventions, such as marker-assisted selection and precision breeding through genetic engineering would complement traditional breeding to hasten the development of drought and salt tolerant rice. Several quantitative trait loci (QTL) and genes have been identified in the recent past using the primary and secondary gene pool of rice.

At the molecular level, plant’s response to stress might involve a cascade of different stress responsive/tolerance genes, and most of them are known to be associated with the phytohormone abscisic acid (ABA; Madhava et al, 2006). Transcription factors (TFs), which constitute about 7% of the plant genome coding sequences, are known to participate in plant’s early responses to biotic and/or abiotic stresses (Lindemose et al., 2013).

MYC (myelocytomatosis) proteins are coded by an important TF family involved in many biological processes, including stress responses and plant development. *Myc2* encodes a basic helix-loop-helix type TF that regulates jasmonic acid (JA) responsive genes from a Coronatine Insensitive 1 gene (COI1)-dependent pathway by the degradation of a Jasmonate
Zim-domain (JAZ), an important Myc2 repressor protein through the ubiquitin proteasome pathway (Lorenzo et al., 2004; Santner and Estelle, 2007). Myc2 is allelic to jasmonate insensitive 1 (JIN1), and contains a basic helix-loop-helix (bHLH) and a leucine zipper motif, which determines its specificity and affinity for specific DNA (Ji et al., 2012). Studies have shown that Myc2 is nuclear localized and may be involved in different biological processes, including pathogen defense, wound response, water deficit tolerance and root growth (Kazam et al., 2008; Woldemariam et al., 2013). Many studies have described Myc2 family genes role in abiotic stress responses and related them to the regulation of ABA responsive genes, signal transduction pathways, and to light regulated promoters (Yadav et al., 2005). Unlike other genes that are constitutively expressed, bHLH-Myc2 has the capability to self-regulate its expression by feedback inhibition through the induction of a JAZ protein that interacts directly with Myc2. Different genes are known to be JA pathway dependent, and manipulation of Myc2 has been shown to alter the expression of different genes, such as vegetative storage protein (VSP2) and tyrosine transaminase (TAT1) involved in wound response, lipoxygenase-3 (LOX3) related to oxidative stress, and pathogenesis related (PR) genes (Lorenzo et al., 2004; Shoji and Hashimoto, 2011; Domenico et al., 2012; Withers et al., 2012).

Jasmonate (Jas) signaling molecules are known to be involved in the activation of stress responsive genes providing the plant with tolerance to insects attack (Dombrecht et al., 2007). Most of these studies have characterized AtMyc2 TF from the dicot model plant Arabidopsis thaliana, which shares low similarity with rice OsMyc2 at both DNA and protein levels. The present study is unique in characterizing the role of OsMyc2 TF from rice, an important food crop of global importance, in the plant’s response to various stresses.
1.1 Research Objectives

With the long term goal of improving stress tolerance in rice, the present study was envisaged with the following objectives:
1) To determine the expression pattern of the bHLH-Myc2 TF (OsMyc2) in different tissues and under drought stress in rice; and
2) To understand the role of OsMyc2 in multiple stress responses of rice overexpresser and knock down mutants.

1.2 Origin and importance of rice

Rice (Oryza spp.), a cereal from the grass (Poaceae) family, has an unknown exact origin, but it is believed to be originated from South and East Asia, due to the abundance of wild species within these areas. Domesticated around the year 5000 B.C., rice has a genome size of ~430 Mbp with 12 chromosomes and six genome groups (A, B, C D, E, and F) in its gene pool. The cultivated rice (Oryza sativa L.) is the main source of food and energy for more than half of the world population, and is the second most produced cereal after wheat and the main staple food after corn (Acquaah, 2007; Gnanamanickam, 2009; Goff et al., 2002).

The International Rice Genebank, located in the International Rice Research Institute (IRRI), has the largest germplasm collection of rice with around 124,000 different accessions that represent the most important resource for genetic diversity and variety development (IRRI, 2015). Rice world production is dominated by China and India (FAO, 2015) in the amount of rice produced. Asia consumes around 90% of the total rice produced in the world. Of the total rice production, the U.S. produces less than 2%, but is one of the major rice exporters providing around 10% of the rice produced worldwide to markets, such as Central America, South America, Caribbean and the Middle East (http://www.ers.usda.gov/topics/crops/rice/trade.aspx).
The U.S. has six major rice producing states – California, Arkansas, Louisiana, Mississippi, Missouri and Texas. In 2014, the U.S. planted around 1,007,667 hectares of rice and had a production of 221,035,000 cwt. Rice is one of the most important commodities of Louisiana, where it was planted on 185,346 hectares with a production of 32,658,000 cwt in 2014 (http://www.usda.gov/nass/PUBS/TODAYRPT/cropan15.pdf).

Like any other crop, rice production is affected by two kinds of stresses: biotic stress caused by living organisms (insect attack, fungal/bacterial/viral infestations, etc.); and abiotic stress, caused by non-living organisms (lack/too much of water, high salt concentrations, extreme temperatures, etc.). These stresses can seriously affect plant growth, development and yield, and result in increased production expenses incurred in controlling a specific type of stress.

1.3 Drought stress tolerance

Drought is one of the major natural disasters in the U.S., overcome only by tropical cyclones. In 2012, drought caused an economical loss of $210.1 billion (Smith and Katz, 2013). Rice uses a significant amount of water (about 45% of the irrigation water for all crops) to complete its life cycle. Water deprivation can severely affect plant growth and yield. The effect is dependent on the severity of the drought and the growth stage of the rice plant; drought during the reproductive stage of rice causes the most reduction in yield. Drought affects seed germination greatly and leads to a poor crop establishment. It also stops plant growth by interfering with cell multiplication, enlargement and differentiation due to the decrease of cell turgor pressure, which is translated into mitosis interruption. Water deficit impairs nutrient uptake, photosynthesis, CO₂ uptake, and respiration (Lichtfouse, 2009).

At the molecular level, complex interactions among different networks are activated under stress, which are controlled by different phytohormones that are key regulators of different
plant metabolic pathways. Under drought stress, the plant activates a cascade of genes, and induces production of a high level of ABA. When exogenous ABA is applied to the plant, several genes related to drought stress are upregulated, which are known as ABA-dependent genes. On the other hand, there are some genes that are known to be activated during stress but are not affected by exogenous presence of ABA. These genes are called ABA-independent or cis-acting dehydration-responsive elements (DRE), and many of these genes are known to be also involved in cold and salt stress tolerance in plants (Shinozaki and Yamaguchi-Shinozaki, 2000).

Water stress reduces plant water potential by stomata closing, which affects CO$_2$ intake and malfunctioning of Rubisco and a reduced expression of photosynthesis related genes. Many studies have shown that ABA, together with ion transport elements and some transcription factors, such as 9-cis-epoxycarotenoid dioxygenase 3 (NCED3) responsible for stomatal closure, are highly upregulated during drought stress. ABA is then passively diffused to guard cells in response to pH changes and by specific transporters such as the ABC transporter family members (ABCG25 and ABCG40) and a member of a nitrate transporter family (AIT1/NRT1.2/NPF4.6; Osakabe et al., 2014). Kanno et al. (2012) demonstrated that ABCG25 and AIT1/NRT1.2/NPF4.6 export ABA and are localized in vascular tissue, in contrast to ABCG40, which is localized in the guard cell and is involved in ABA import. The increase of endogenous ABA enhances the production of signaling pathways operational in the assembly of reactive oxygen species (ROS), which stimulate an increase of cytosolic Ca$^{2+}$. This activates two anion channels – slow-activating sustained (S-type) and rapid-transient (R-type). These channels depolarize the plasma membrane and cause a reduction in inward K$^+$ channels (KAT1/KAT2) and H$^+$-ATPase related to stomatal opening and the activation of outward K$^+$ channels, such as
the Guard Cell Outward Rectifying K⁺ Channel (GORK), important in K⁺ efflux, which in the guard cells results in a cell turgor reduction leading to stomatal closure (Osakabe et al., 2014; Negi et al., 2008). Mutation of the LENC1 gene, a positive regulator of NCED3, reduced A. thaliana capability to produce ABA, increasing its sensitivity to osmotic stress due to an increased water loss (Woo et al., 2011). In contrast, the upregulation of NCED3 in both A. thaliana and O. sativa promoted ABA accumulation, which increased drought tolerance by reduced water loss due to stomatal closure, demonstrating the importance of this phytohormone and associated gene networks in plant stress tolerance (Hwang et al., 2010).

Several stress-related genes are highly expressed during water stress in the absence of ABA. Therefore, the existence of an ABA-independent response to stress is also involved in plant stress tolerance. DRE cis-elements have a specific core motif (TACCGACAT), which binds to DRE-binding proteins (RD29A), and ABRE cis elements (ACGTGG/TC), which binds to ABRE-binding proteins (RD22A and RD29B). Deletion and base substitution analyses and gel mobility shift assays demonstrated that these two mechanisms are independent of each other but can act coordinately (Narusaka et al., 2003). Plants with constitutive expression of the transcription factor DREB1A under the CaMV35S promoter have been shown to upregulate the expression of RD29A, RD17, COR6.6, COR15a, ERD10 and KIN1, which are involved in stress tolerance, and the late embryogenesis abundant (LEA) proteins, which are involved in protection mechanisms (Smirnoff and Bryant, 1999).

After the activation of these early inducible stress regulatory proteins, the synthesis of functional proteins is an important step in plant’s defense response to drought. The production of water channel transporters, known as aquaporins (AQPs), helps in plant water relations by increasing membrane permeability to water and other solutes, such as glycerol. In plants, AQPs
have four known subfamilies; plasma membrane intrinsic proteins (PIPs), tonoplast intrinsic proteins (TIPs), NOD26-like intrinsic proteins (NIPs) and small basic intrinsic proteins (SIPs). Knock down of some PIP isoforms has shown a decrease in osmotic water permeability of protoplast, decreased hydraulic conductivity in root cortex cells, and susceptibility to drought and osmotic stress, demonstrating the importance of these proteins in plant stress tolerance (Alexandersson et al., 2005).

During stress, plants produce ROS, which at minimum concentrations are useful to manage stress, but at higher concentrations ROS are toxic to the plant, resulting in oxidative stress, which can ultimately lead to cell death. There are four forms of cellular ROS; singlet oxygen (O_2^*), superoxide radical (O_2^-), hydrogen peroxide (H_2O_2) and the hydroxyl radical (HO$^-$), all of them capable of oxidizing different cellular components like proteins, DNA, and RNA. Plants adapt to oxidative stress through the generation of detoxifying antioxidant enzymes, such as the superoxide dismutase (SOD), catalase (CAT), and the ascorbate peroxidase (APX; Cruz, 2008). Many reports have shown the evidence of the role of these antioxidant enzymes in plant’s adaptation to drought and oxidative stress (Fu and Huang, 2001). An increase in the levels of the antioxidant enzymes through the overexpression of a zinc finger protein (ZFP245) in rice has been reported to enhance plant’s tolerance to cold, drought and oxidative stress (Huang et al., 2009). Chloroplast transformation of rice with a manganese superoxide dismutase (MnSOD) from pea (Pisum sativum), under an oxidative stress-inducible SWPA2 promoter, showed reduced electrolyte leakage compared with wild type leaf discs under polyethylene glycol (PEG) 6000 simulated drought. The results suggest an important role of SOD in ROS scavenging and drought tolerance (Wang et al., 2005).
Drought stress tolerance is a complex trait orchestrated by several metabolic, physiological, biochemical, and molecular responses. Several studies have elucidated many components of this multi-genic trait, thus making possible to understand and exploit the information as tools to develop drought tolerant cultivars.

1.4 Salt stress tolerance

Salinity stress is a major problem in agriculture, affecting 20% of world’s irrigated area, and causing ~$27.3 billion losses per year (Qadir et al., 2014). Rice is very sensitive to salt content in the soil, especially in the seedling stage, and can be severely affected by concentrations as low as 20-50 mM NaCl (Greenway and Munns, 1980; Saichuk et al., 2014). The complexity of salt stress tolerance traits has slowed down the progress of the development of salt tolerant crops. Nevertheless, some advances in the development of salt tolerant crops have been reported using phenotypic information of salt tolerant gene pools in crops like rice, barley and maize, but with little understanding of the tolerance mechanisms (Ashraf, 1994).

Many studies have helped to provide a better understanding of high salinity tolerance in plants. Transcriptome analysis has shown that more than 50% of the overexpressed genes during drought stress are also upregulated during salt stress, and more than 98% of salt inducible genes are also upregulated during drought stress (Shinozaki and Yamaguchi-Shinozaki, 2007). The cross-talk between the two stresses is because of the fact that high salt concentrations in the soil causes a physiological drought stress by limiting water uptake due to a negative osmotic potential between the outside and the inside of the plant root (Lee and Iersel, 2008).

By definition there are two mechanisms of salt stress tolerance: (1) by reducing salt intake by the plants; and (2) by decreasing salt concentrations in the cytoplasm (Munns, 2002). While natural variations for salt tolerance within the primary and secondary gene pool of rice
have been exploited for development of salt tolerant rice (Ashraf, 1994), recent studies have hinted at the exploitation of the halophyte resources for development of salt tolerant crops. Halophytes, such as smooth cordgrass can complete their life cycle in high salt concentrations (~200 mM) where more than 99% of other plants would die (Flowers and Colmer, 2008). Halophytes have been used as important models in the elucidation of salt stress tolerance in both dicots and monocots (Joshi et al., 2015). Using salt stress-responsive genes of smooth cordgrass, transgenic rice lines with enhanced salt tolerance have been developed (Baisakh et al., 2006, 2008, 2012; Joshi et al., 2013, 2015).

High salinity inhibits K\(^{+}\) intake because K\(^{+}\) transporters, such as HKT1 and LCT1 are nonselective cation channels (NSCs), which do not discriminate between K\(^{+}\) and Na\(^{+}\) and import toxic amounts of salt into the cell (Zhu, 2001). Intracellular homeostasis is vital for the proper functioning of the plant during stress. Plasma membrane Na\(^{+}\)/H\(^{+}\) antiporters, such as the Salt Overly Sensitive1 (SOS1), have an important role in Na\(^{+}\) exclusion from the cell cytoplasm by exchange and transport activity of H\(^{+}\)-ATPases and H\(^{+}\) pyrophosphatases that create a proton reactive force to pump Na\(^{+}\) out of the cell (Zhu, 2003). Expression of a S. alterniflora vacuolar ATPase subunit c1 (SaVHAC1) enhanced salt stress tolerance of transgenic rice plants, showing increased K\(^{+}\)/Na\(^{+}\) ratios in leaf and root tissues and stomatal closure in comparison with the wild types (Baisakh et al., 2012).

Osmolytes and osmoprotectants are found in different forms – as sugars (fructose or glucose), sugar alcohols (glycerol, inositol), quaternary amino acid derivatives (betaine, proline) and sulfonium compounds (dimethyl sulfonium propionate; Yokoi et al., 2002; Joshi et al., 2015). These organic compounds are important in salt stress tolerance due to their function to adjust osmotic potential, and preserve enzyme integrity and protein stability in the presence of
salt ions without affecting cell internal pH. Moreover, some of them have shown to have a biochemical function as ROS scavengers with the help of antioxidant enzymes as shown by the accumulation of proline and SOD during salt stress (Serrano et al., 1999; Kartashov et al., 2008). *A. thaliana* plants, constitutively expressing a *Spartina alterniflora* myo-inositol 1-phosphate synthase gene (*SaINO1*), have shown greater tolerance to salt stress with reduced root growth inhibition under salt. Transgenic plants also showed reduced stress symptoms like leaf chlorosis, and proline accumulation, demonstrating that the *SaINO1* gene might be involved in salt stress tolerance due to accumulation of myo-inositol and other related derivative products (Joshi et al., 2013).

1.5 Biotic stresses and some tolerance approaches

Under edapho-climatic conditions favorable for rice production, biotic stresses can be a problem affecting rice production and productivity. In addition to diseases caused by fungi, bacteria, and viruses, insects are harmful to cultivated rice varieties, reducing yield and grain quality. Insects, such as the water weevil (*Lissorhoptrus oryzophilus* Kuschel), stink bug (*Oebalus pugnax*), or stem borers, such as the sugarcane borer (*Diatrea saccharalis*) represent serious problems to rice producers when not controlled properly. Cultural and chemical controls are very important to control infestations of water weevil and stem borers in the absence of resistant varieties due to the polygenic complexity of resistance traits (Stout and Reagan, 2014).

Fall armyworm (*Spodoptera frugiperda*), is an opportunist chewing insect that affects various crops like maize, cotton, rice and other grasses (Meagher and Nagoshi, 2004). Since rice is not the primary host, fall armyworm is considered an occasional (but an important) pest that feeds on the leaves of young plants, causing great damage when present in large numbers (Stout and Reagan, 2014). Fall armyworm management is primarily based on cultural, chemical and
biological controls, which consist of seasonal scouts followed by insecticide applications, weed elimination, and the use of germplasm capable to produce volatile compounds that attract Fall armyworm parasitoids (Yuan et al., 2008; Stout and Reagan, 2014).

Induced resistance studies have demonstrated the importance of phytohormones, such as Salicylic acid (SA) or Jasmonic acid (JA) in plant defense systems. Furthermore, hormonal cross-talk has been reported in plant defense-specific reactions, relating SA in response to sucking insects and JA in response to chewing insects, and both SA and JA work antagonistically to each other (Stam et al., 2013; Stout, 2014).

Transgenic approach has been used to develop rice plants expressing insecticidal crystal proteins (ICP) of *Bacillus thuringiensis* (*Bt*) to confer resistance against stem borers (Ho et al., 2006), but no transgenic rice has been commercially released to date. Many efforts have been dedicated to study induced resistance to understand the complicated phytohormone interaction networks and the development of elicitors that can enhance plant defense mechanisms (Stout and Reagan, 2014). Lack of resistance germplasm against many herbivore insects may change public perception against transgenic rice, and therefore genetic engineering could be a useful tool to develop insect resistant varieties to enhance rice production.

1.6 Jasmonic acid interaction with the basic helix-loop-helix (bHLH)-Myc2 transcription factor

Jasmonic acid [JA; 3-oxo-2-(2’-pentenyl)-cyclopentaneeacetic acid], is derived from linoleic acid by the action of lipoxygenase (octadecanoid pathway), which catalyzes oxygenation of polyunsaturated fatty acids (Vick and Zimmerman, 1983). JA and its derivative methyl jasmonate (MeJA) were first identified as plant growth inhibitors known to stimulate plant senescence (Vick and Zimmerman, 1984; Hodson and Bryant, 2012). JA and MeJA upregulate
the expression of *Jar1* gene, a JA-amino synthetase, which is essential for the production of the bioactive form of JA, jasmonyl isoleucine (JA-Ile; Starwck and Tiryaki, 2004). JA-Ile induces the expression of Coronatine Insensitive1 (COI1), a protein containing a leucine-rich repeat (LRR) and an N-terminal F-box, which interacts with proteins targeting them for degradation through ubiquitination. COI1 interacts with the Jasmonate-Zim-Domain (JAZ), a repressor of the JA signaling, promoting its degradation (Devoto et al., 2002). JAZ family physically interacts with a basic helix-loop-helix (bHLH) *Myc2* TF, a positive regulator of the JA signaling pathway, to repress its activity. JAZ also works as a JA signaling feedback regulator by the production of a COI1 insensitive splice variant after the stimulation of JA-Ile (Chung and Howe, 2009; Narusaka et al., 2003). The nuclear localized *Myc2* TF, referred to as the master regulator of the JA signaling pathway, contains a G-box motif (5′-CACGTG-3′) for DNA binding specificity, and is known to upregulate different genes involved in plant defense and JA biosynthesis, such as *VSP2, PDF1.2, TAT, LOX2* and *PRI* in *Arabidopsis thaliana* (Lorenzo et al., 2004). JA is known to accumulate during insect attack and wound damage. Plants with silenced JA acid signaling pathway by the downregulation of genes, such as Myc2 itself or upstream lipoxygenase, showed increased susceptibility to herbivore insect populations, suggesting that Myc2 is involved in plant defense mechanisms (Kessler et al., 2004; Lorenzo et al., 2004).

Overexpression of the *bHLH-Myc2* TF results in ABA sensitive plants, suggesting that ABA stimulates *Myc2* expression in a cross-talk with JA. Thus *Myc2* is expressed during drought and oxidative stress, and is known to upregulate the ABA responsive gene *RD22* during stress (Abe et al., 2003). *Myc2* is believed to participate in the regulation of the circadian clock, light signaling, and many studies have reported a Myc2 and VSP2 expression reduction under dark (Verhage et al., 2001; Kazan and Manners, 2013). In rice, *Myc2* have been reported to be
involved in spikelet development by the upregulation of genes like the OsMADS1/LHS1, which are involved in floral meristem initiation and specification (Cai et al., 2014). Thus, Myc2 plays an active role in many plant development and stress response mechanisms, which makes it an important target to elucidate its active involvement in multiple stress responses of rice.

1.7 References

Fu J M and B R Huang (2001). "Involvement of antioxidants and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress." Environmental and Experimental Botany 45(2): 105-114.

Goff S A et al. (2002). "A draft sequence of the rice genome (Oryza sativa L. ssp japonica)." Science 296(5565): 92-100.

Huang J et al. (2009). "Increased tolerance of rice to cold, drought and oxidative stresses mediated by the overexpression of a gene that encodes the zinc finger protein ZFP245." Biochemical and Biophysical Research Communications 389(3): 556-561.

CHAPTER 2: MATERIALS AND METHODS

2.1 Plant material and growth conditions

Dehusked seeds of transgenic (described below in 2.4) and wild type (WT) rice cultivar ‘Nipponbare’ were pre-sterilized with 70% ethanol by manual shaking for 1 min. Then the seeds were rinsed twice with autoclaved distilled water (ADW). Surface sterilization was done with 50% Clorox with a drop of tween-20 under constant agitation for 15 min. After that, seeds were rinsed 5-6 times with ADW, excess of water was dried with sterile filter paper and seeds were placed on petri dishes with MS + 2, 4-D (2.0 mg/L) for callus induction or ½ MS basal media (MS0; Murashige and Skoog, 1962), supplemented with Hygromycin B (50 µg/ml) for germination of transgenic seeds. Seeds for callus induction were maintained in a growth chamber at 26±1 °C under continuous dark. Hygromycin-positive 7-day-old seedlings were planted in 1 gallon pots and maintained in the greenhouse at 29/21 °C day/night temperature regime under natural day light condition. WT seeds were germinated on MS basal media without Hygromycin.

2.2 MYC2 alignment and phylogeny

The protein sequence of OsMyc2 TF (LOC_Os10g42430; Appendix I) was retrieved from the Rice Genome Annotation Project (http://rice.plantbiology.msu.edu/). Myc2 orthologs (Appendix II) were obtained from the plant genomic resource Phytozone 10.3 (http://phytozone.jgi.doe.gov/pz/portal.html). All the sequences were aligned for phylogeny studies using the multiple sequence alignment tool ClustalW2 (http://www.ebi.ac.uk/Tools/msa/clustalw2/).

2.3 Cloning of OsMyc2 and construction of plant transformation vector

OsMyc2 (2100 bp), was cloned from the first strand cDNA prepared from Nipponbare RNA, and it was then amplified using the following primers. OsMYC2-F: 5’-
GGCCAGATCTATGAACCTTTGGACGACGACAACG containing the Bgl II restriction site (underlined) and OsMYC2-R: 5’-GAACGCTAGCTTACCGGGCGGCGGTG containing the Nhe I restriction site (underlined). The PCR recipe and conditions were same as described earlier (Baisakh et al., 2012). A master mix formed by approximately 100 ng of template DNA were used, 50 ng of forward and reverse primers, 200 µM dNTPs, 2 mM MgCl$_2$, 1 U Taq DNA polymerase and 1x PCR buffer in a total reaction volume of 25µl. Thermal profile was as follows: Initial denaturation at 95 °C for 5 min followed by 35 cycles of denaturation at 95 °C for 45 sec, annealing at 60 °C for 45 sec and extension at 72 °C for 1 min. A final cycle of primer extension was carried out at 72 °C for 10 min. The PCR product was partially double-digested for 10 min with a mixture of Bgl II and Nhe I at 37 °C. The digested product was run in a 1 % agarose gel and the 2100 bp fragment was excised from the gel, and was eluted using the Qiaquick gel extraction kit (Qiagen Inc, Valencia, CA). The fragment was then ligated to the pCAMBIA1301 vector (CAMBIA, Canberra, Australia) digested with the same restriction enzymes) using T4 DNA ligase kit (Invitrogen, Carlsbad, CA) as per the manufacturer’s instructions. The recombinant plasmid was transformed to *Escherichia coli* using the heat shock method (Sambrook and Russell, 2001). Briefly, the ligation product was mixed with 100 µl chemically competent *E. coli* cells and kept on ice for 30 min, and then the mixture was incubated at 42 °C for 60 sec in a water bath followed by a cold treatment on ice for 2 min. Then 1 ml of Luria-Bertani (LB) liquid medium was added to the mixture and cells were grown at 37 °C for 1 h with constant shaking at 200 RPM in a shaker incubator. The cells were precipitated by centrifuging at 4000 RPM for 5 min and the pellet was re-suspended in 100 µl of LB liquid medium. The putatively transformed bacteria were streaked on plates containing LB solid medium and kanamycin (50 µg/ml) for selection. The plates were kept overnight inside an
incubator maintained at 37 °C. The next day, a few colonies were individually grown in LB liquid medium supplemented with kanamycin (50 µg/ml) at 37 °C overnight in an incubator shaker. The plasmids were extracted using the JenJet plasmid extraction kit (Fermentas, Amherst, NY). Plasmids were subjected to PCR analysis using OsMyc2 cloning primers to identify plasmids containing the 2100 bp OsMyc2 insert. The integrity and orientation of the insert in the recombinant plasmid (pCAMBIA1301/OsMyc2; Figure 2.1) were checked by restriction enzyme digestion and further verified by sequencing at the Gene Lab of LSU School of Veterinary Medicine.

The RNAi plasmid, used for the generation of knock down rice mutants, was kindly provided by Dr. Yinong Yang, Pennsylvania State University. KD mutants used in the present study were previously generated in Baisakh lab (Mangu et al., unpublished).

![Figure 2.1. Linear vectors pCAMBIA1301/OsMyc2](image)

2.4 Agrobacterium tumefaciens-mediated transformation

The recombinant plasmid (pCAMBIA1301/OsMyc2) was mobilized into the *Agrobacterium tumefaciens* strain LBA4404 by freeze-thaw method as described earlier (An et al., 1988). Ten µg of plasmid were mixed with 50 µl of competent cells and kept on ice for 30 min. The cells were then frozen in liquid nitrogen and immediately given heat shock at 37 °C for 4 min. Then the cells were cooled down on ice for 1 min, 1 ml of YEP media was added, and the
cells were incubated at 28 °C for 4 h in shaker at 200 rpm. The cells were then centrifuged at 5000 RPM for 5 min and re-suspended in 100 µl of YEP medium. The bacterial cells were plated on YEP-agar plates containing of Rifampicin (20 µg/ml), tetracycline (5 µg/ml) and kanamycin (50 µg/ml). Individual colonies were multiplied on YEP liquid media and storage at -80 °C.

Embryogenic callus produced from mature (dehusked) seeds (described in 2.1) were genetically transformed as described earlier (Rao et al., 2009). LBA4404/pCAMBIA1301/ OsMyc2 was pre-cultured for 48 h at 28 °C in YEP solid media with antibiotics, rifampicin (20 µg/ml), tetracycline (5 µg/ml) and kanamycin (50 µg/ml). The pre-cultured bacteria was sub-cultured in fresh AB liquid media with the same antibiotics and grown for 24 h. Bacteria cells were re-suspended in liquid MS medium containing 2 mg/L 2,4-D and 100 µM acetosyringone (AS) to a final concentration of A600 = 1.0 for transformation.

Three to four-week-old seed-derived rice embryogenic callus were vacuum-infiltrated (0.4–0.6 atm) with the engineered Agrobacterium suspension for 15 min and co-cultivated for 3 days on solid N6 (Chu et al., 1975) co-cultivation media at 25 °C under dark. Following co-cultivation, the calli were washed thrice in sterile distilled water and finally in liquid MS medium containing cefotaxime (250 µg/ml) and carbenicillin (250 µg/ml). The calli were then plated on solid MS medium containing the cefotaxime, carbenicillin and hygromycin (50 µg/ml) as the selection agent. Selection and regeneration of the putative transgenic callus was performed following the method described by Baisakh et al. (2001). The OsMyc2 RNAi transgenic rice lines used in this study were previously generated in Dr. Baisakh’s laboratory. Henceforth, wild type (WT), overexpresser (OE), and knock down (KD) have been referred to as genotypes, and independent events within a genotype have been referred to as lines. All OE and KD lines were subjected to drought stress in T1 generation, and five independent OE lines showing less drought
symptom and three KD lines were advanced in the greenhouse to achieve homozygosity in T2 generation.

2.5 Subcellular localization of OsMyc2

Green fluorescence protein (GFP) was used as the reporter marker to detect the subcellular localization of OsMyc2. OsMyc2 gene without the stop codon was isolated from rice cDNA with OsMYC2-fus-F 5’-GGCCAGATCTATGAACCTTGGACGGAC and OsMYC2-fus-R 5’-CTAGACTAGTCCGGGCGGCGGTGCC primers containing the restriction sites for Bgl II and Spe I, respectively using the Phusion High-Fidelity PCR kit (New England Biolab, UK). The purified OsMyc2 was cloned into pCAMBIA1304 vector digested with same restriction enzymes and before gfp in frame. The resulting pCAMBIA 1304/OsMyc2-gfp (Figure 2.2) and the pCAMBIA 1304 (as control) were bombarded onto onion epidermal cells using a PDS1000He particle gun (Bio-rad, Hercules, CA) as described in Joshi et al (2013). The GFP expression was visualized using a fluorescent microscope.

![Figure 2.2. Linear vectors pCAMBIA1304/OsMyc2-gfp](image-url)
2.6 Stress treatments

Non-transformed wild-type (WT), transgenic OsMyc2 overexpresser (OE) and RNAi (KD) lines of rice cultivar ‘Nipponbare’ were germinated on ½ MS₀ media at 26 °C under 12 h/12 h light/dark regime inside a growth chamber. Ten one-week-old seedlings per genotype were placed on Styrofoam seedling float on Yoshida solution (Yoshida et al., 1976). Four-week-old rice seedlings were subjected to salt stress (150 mM NaCl) under hydroponics following the method described earlier (Baisakh et al., 2012). Floating leaf assay was prepared using leaf pieces (~2cm long), and placing them on Hoagland solution (Hoagland, 1950) with NaCl in concentrations of 0 (control), 100 mM and 150 mM.

One-week-old seedlings of WT and transgenic rice lines (6 plants/genotype) were planted in pots filled with garden soil:potting mix (3:1) inside the greenhouse maintained at 29/21 °C day/night temperature regime under natural day light condition during Spring 2014 and Fall 2014. Drought stress was imposed on 45-day-old plants by withholding water for 14 days following which water was resumed until maturity as described by Joshi et al. (2014).

2.7 RNA isolation, cDNA synthesis and expression of OsMyc2 under drought stress

Leaf tissue was collected from unstressed control and drought-stressed plants at 7 and 14 days after stress treatment. Total RNA was isolated from ~100 mg leaf tissues of control and stressed plants using Trizol reagent (Invitrogen, Carlsbad, CA) according to the manufacturer’s manual. Quality of total RNA was checked in a 1.2% formamide-denaturing agarose gel and quantification was done using a ND-1000 spectrophotometer (Nanodrop Technologies, Wilmington, DE). First strand cDNA synthesis was carried out using iScript™ cDNA synthesis kit (Bio-Rad, Hercules, CA).
Semi-quantitative PCR was performed using cDNA as described by Baisakh et al. (2012) using OsMyc2-RT-F 5’- AAGCTCAACCAGCGTTCTA and OsMyc2-RT-R 5’- CCTTCTTGAGCGACTCCATC specific primers. The rice Actin 1 gene (*OsAct1*) was used as the internal control for template validation. For qRT-PCR same 1st strand cDNA was used. PCR was performed with three biological replications using SYBR green master mix (Bio-Rad, Hercules, CA) in a MyiQ Real-Time PCR detection system (Bio-Rad, Hercules, CA). The rice elongation factor gene (*OsElf1a*) was used as the reference gene for normalization of gene expression difference, and expression values relative to WT under control were calculated as described by Joshi et al. (2013).

2.8 Physiological analysis of drought stressed plants

Physiological parameters such as chlorophyll fluorescence, relative water content (RWC), and membrane stability index (MSI) were taken on greenhouse-grown WT, OsMyc2 OE and KD lines at 0 (control), 3 and 7 days after withholding water. All physiological data were collected from four plants (biological replicates) of WT, and four independent lines of OE and three independent lines of KD.

2.8.1 Estimation of photosynthetic yield

Chlorophyll fluorescence was measured in dark adapted plants with a portable fluorometer (PAM-2100; Walz, Germany). The minimal fluorescence level (Fo) with all photosystem (PS) II reaction centers open was determined by measuring the modulated light, which was sufficiently low. Maximal fluorescence level (Fm) with all PSII reaction centers closed was determined by a 0.8-s saturating pulse in dark-adapted leaves. Chlorophyll fluorescence was measured as Fv/Fm where Fv = Fm - Fo.
2.8.2 Relative water content (RWC)

The RWC of the leaves was determined following the procedure of Slatyer (1967). Middle sections of second-youngest fully expanded leaves were collected and weighed [fresh weight (FW)]. The leaf pieces were immersed in dH$_2$O placed in dark at 4 °C overnight and weighed after brief blot-drying to remove excess water [turgid weight (TW)]. Then, the pieces were dried at 60 °C for 48 h and weighed [dry weight (DW)]. RWC was estimated in percentage of the water content at a given time and tissue as related to the water content at full turgor using the formula:

$$\text{RWC (\%) = } \left(\frac{\text{FW} - \text{DW}}{\text{TW} - \text{DW}} \right) \times 100$$

2.8.3 Membrane stability index (MSI)

Membrane stability index (MSI) was determined as described by Sairam et al. (2002). Leaf samples (~0.1 g) were placed in 10 ml of ddH$_2$O and heated at 40 °C for 30 min in a water bath. Then the electrical conductivity of the solution was recorded (C$_1$) using a hand-held pH/conductivity/TDS tester (Hann Instruments, Woonsocket, RI). Again samples were boiled on a water bath for 10 min, and conductivity of each sample was measured (C$_2$). The membrane stability index (MSI) was calculated as:

$$\text{MSI} = \left[1 - \frac{\text{C}_1}{\text{C}_2} \right] \times 100$$

2.9 Phytohormone treatments

Seeds of five plants (biological replicates) of WT, OE, and KD each were germinated in $\frac{1}{2}$ MS$_0$ media, and five 5-days-old seedlings, were placed in petri dishes containing MS$_0$ media with either jasmonic acid (100 and 50 µM), methyl jasmonate (50 µM), abscisic acid (50 µM), or gibberellic acid (50 µM). After 7 days of treatment with hormones, length of the shoots and roots was measured, and tissue samples were taken for RNA extraction. RT-PCR was conducted using
the OsMyc2 primers as described in section 2.7. An ABA sensitivity assay was performed with seeds where 10 seeds (per plate) of WT, OE and KD lines were placed on ½ MS₀ media with 8 or 10 µM ABA. Germination percentage was taken after 7 days.

2.10 Fall armyworm culture and feeding assays

Fall armyworm culture and feeding assays were conducted according to Stout et al. (2009). The insect that was used in the present experiment came from a colony originated from the larvae collected in Bermuda grass pastures in Baton Rouge in 1997. Leaf pieces (~2 cm) of 10 plants (biological replicates) of each of four independent lines of OE, three independent lines of KD, and WT rice were put inside petri dishes layered with moist cotton. First instar-larvae were placed into the petri dishes with enough leaf (~4 per week) in order to never limit their feed. After 7 days, larvae were taken out of the petri dishes and weighed. Larvae were returned to the plate to complete their life cycle. The time that the larvae took to reach the pupae stage and their weight were taken.

2.11 Agronomic traits

Flowering time was measured as the time taken from seed germination until the first panicle emerged. Above ground plant tissues without panicles were dried at 50 °C for 48 h and weighed for determining shoot dry biomass. Grain yield (gram) was estimated by weighing all the seeds harvested from each plant. Other agronomic traits, such as plant height, number of tillers per plant, and percentage of fertility were taken for all genotypes. For all agronomic traits 10 plants (biological replicates) of each of five independent lines of OE, three independent lines of KD, and WT were used.
2.12 Statistical analyses

All physiological and agronomic data were analyzed by a one way ANOVA using PROC-GLM. Fisher’s least significant difference (LSD) was used for a post-ANOVA analysis on mean observations. The level of significance was tested at 5% using ‘F’ test. All statistical analyses were performed using SAS version 9.4 (Copyright 2002-2012, SAS Institute, Cary, NC).

2.13 References

CHAPTER 3: RESULTS

3.1 Alignment and phylogeny analysis of rice Myc2 transcription factor

The cDNA sequence (2.1 Kb) of rice Myc2 (LOC_Os10g42430) transcription factor was retrieved from the rice genome annotation project database (http://rice.plantbiology.msu.edu). Located on the 10th chromosome, OsMyc2 contains a basic helix loop helix structural motif and a G-box element (5’-CACGTG-3’), which provides DNA binding specificity (Figure 3.1).

![Figure 3.1. Motif and structure analysis of the OsMyc2 protein sequence](image)

The OsMyc2 used in this study is homologous to the Arabidopsis thaliana Myc2 (AT1G32640.1) and to 47 other Myc2 homologs from different species (Appendix II). Multiple alignment of Myc2 protein sequences showed highly conserved regions among different species (Appendix III). Inter-species identity matrix indicated that the OsMyc2 was most similar to the homolog from Sorghum bicolor (81.80%) and was most distant from Eutrema salsugineum (47.84%). It shared 54.5% similarity with Arabidopsis thaliana. The phylogenetic tree constructed with alignment-based similarity matrix showed a cluster representing Myc2 members of the graminae family (Figure 3.2).
Figure 3.2. Phylogenetic tree constructed using the identity matrices of 48 Myc2 homologous sequences from different plants (Details provided in Appendix II)
3.2 Development of transgenics

A total of 40 independent transgenic events were obtained through *Agrobacterium tumefaciens*-mediated transformation. *OsMyc2* gene integration was confirmed by the amplification of a 760 bp fragment of selectable marker gene *hpt* (hygromycin phosphotransferase) in transgenics (Figure 3.3).

![Figure 3.3](image)

Figure 3.3. A representative gel showing the amplification of the 760 bp *hpt* gene fragment demonstrating T-DNA insertion in the genome of transgenic plants, but not in non-transformed wild type (WT). Water (-) was included as the no template control, and the plasmid pCAMBIA1301 was used as the positive (+) control.

3.3 Subcellular localization of OsMyc2

Fluorescence microscopy of onion epidermal cells bombarded with the fusion plasmid pCAMBIA1304/*OsMyc2:gfp* and the non-modified plasmid pCAMBIA1304 (control) showed that *OsMyc2* expression was localized in the nucleus (Figure 3.4a), whereas the GFP protein expressed under CaMV 35S promoter was expressed in the whole cell (Figure 3.4b).
3.4 *OsMyc2* overexpression enhanced plant abiotic stress tolerance

Drought stress was imposed on 45-day-old plants by withholding water for a period of 14 days. *OsMyc2* OE lines showed reduced stress symptoms in comparison with the WT and KD mutants which started to show dehydration symptoms, such as leaf rolling and drying from day 7 onwards (Figure 3.5a). After 14 days of water deprivation, OE lines started showing drought symptoms, but the WT and some KD plants were almost dead. Upon resuming watering, the OE lines showed signs of recovery whereas the WT and KD plants were either dead or were unable to recover (Figure 3.5b). The stressed OE plants had higher biomass (with an increase of 58.6% to 248.3%) and longer roots (with an increase of 26.8% to 43.4%) as compared to the stressed WT. On the other hand, stressed KD55 and KD67 showed 8.6% and 19.0% reduction of biomass, respectively as compared to stressed WT (Appendix IV).

Figure 3.4. Subcellular localization of the rice *bHLH-Myc2* transcription factor using the reporter gene *gfp* and visualized in onion epidermal cells after particle bombardment, a) pCAMBIA1304/*OsMyc2:gfp* fusion vector, and b) pCAMBIA1304 empty vector
To determine if OsMyc2 is involved in salt stress response of plants, a floating cut-leaf assay was performed with leaf pieces of WT, OE and KD plants at different salt (NaCl) concentrations (0 – control, 100 mM and 150 mM). Leaves of WT and KD lines showed higher chlorosis (chlorophyll bleaching) symptoms after 3 days as compared to leaves from OE lines (Figure 3.6). This result suggested a possible involvement of OsMyc2 in salt stress tolerance mechanism, but seedling screening in hydroponic condition under 150 mM NaCl concentration did not show any difference in chlorosis and leaf drying among the genotypes.
Figure 3.6. Salt tolerance screening by floating cut-leaf assay of wild type (WT), overexpresser (OE), and knock down (KD) rice genotypes on Hoagland solution under control (0 mM NaCl) and salt (100 mM and 150 mM NaCl) stress.

3.5 Physiological response of drought stressed plants

The stomatal conductance did not show statistically significant difference (P = 0.82) among the WT, OE and KD lines under non-stressed control condition (Figure 3.7). But on the third day of stress, although drought symptoms were not apparent, stomatal conductance reduction was observed in all the lines and differences were evident between genotypes (P < 0.05). By day 7, WT and KD plants started to show severe stress symptoms as indicated in Figure 3.6a, where one-way ANOVA analysis indicated significant differences (P< 0.001)
among different genotypes. Interestingly, all of the OE and a few plants of KD67 showed a high reduction in stomatal conductance in comparison with WT plants.

Figure 3.7. Stomatal conductance measured from the leaf samples from WT, OE and KD plants at 0 (control), 3 d and 7 d after drought stress was imposed. Values represent means ± SE of four independent replicates. Different letters represent statistical significance at 5% level based on Fisher’s least significant difference (LSD) test across lines.

Relative water content (RWC) was >80% in all genotypes until the third day of stress. Leaf rolling and drying with a significant (P< 0.001) reduction in RWC was observed at day 7 in WT (<20%) and KD (<40%) plants in comparison with all OE lines, which maintained a higher percentage of RWC (>80%; Figure 3.8a).

Membrane stability index (MSI) didn’t show significant differences among genotypes at control (day 0) and at day 3 of withholding water, where the plants maintained >80% MSI (Figure 3.8b). However, at the seventh day, when stress symptoms were visible, a significant statistical difference (P< 0.001) was found among genotypes. OE lines maintained higher membrane stability and cellular integrity in contrast to the WT and KD plants.
Photosynthetic efficiency of the PSII was determined by calculating the quantum yield of dark-adapted leaf tissues (Fv:Fm). Minimal differences were found among genotypes under non-stressed conditions, and at day 3 under stress, all genotypes recorded an Fv:Fm ratio between 0.6 – 0.7. However, clear differences were seen at day 7, where OE lines showed higher Fv:Fm ratio in comparison with the WT and majority of the KD lines (Figure 3.9a). Soil moisture content of the pots at 0 d, 3 d and 7 d after stress imposition did not show significant differences among different genotypes (Figure 3.9b).

The organic compound 3, 3’-Diaminobenzidine (DAB), forms a brown precipitate after oxidation in the presence of H2O2. DAB assay with the leaves of WT, OE and KD lines collected from control (day 0) and stressed (day 7) plants showed dark brown coloration in WT and KD plants, indicating increased H2O2 accumulation under stress (day 7) in comparison with the OE plants (Figure 3.10).
Figure 3.9. a) Photosynthesis efficiency of the PSII represented by the ratio Fv:Fm, measured from the dark adapted leaves of wild type (WT), overexpresser (OE), and knock down (KD) plants at 0 d, 3 d, and 7 d after drought stress imposition. Values represent means ± SE of four independent replicates. Different letters represent statistical significance at 5% level based on Fisher’s least significant difference (LSD) test. b) Soil moisture content measured in each pot throughout the drought experiment.
3.6 Gene expression analysis

The *OsMyc2* gene showed tissue-dependent variation in its expression pattern (Figure 3.11). Higher expression of the *OsMyc2* was observed in stem, immature panicle, lemma-palea and ovary. Its expression was relatively low in pollen, seed and stigma, while it was moderate in root and leaf tissues. Except for leaf, the expression seemed to be more in green tissues.
To demonstrate the involvement of OsMyc2 in stress tolerance, its expression was monitored in OE and KD plants with respect to WT. The results showed that OE maintained a higher basal expression of OsMyc2 compared to WT and KD lines under control condition (Figure 3.12a). There was an increase in its transcript accumulation in all genotypes under drought stress (Figure 3.12 b).

Figure 3.12. RT-PCR of the OsMyc2 transcription factor under non-stressed control condition (a) and drought stress (b) in wild type (WT), overexpresser (OE), and knock down (KD) lines. Error bars represent standard error calculated using three independent biological replicates
Figure 3.13. qRT-PCR different Myc2 and stress responsive Myc2-related genes in wild type (WT), overexpresser (OE), and knock down (KD) lines. Error bars represent standard error calculated using three independent biological replicates.
Expression of 10 different genes that have previously been suggested to be modulated by Myc2 was analyzed in WT, OE and KD plants under stress. Under non-stressed control, most of the genes had very little endogenous expression in OE and KD lines as compared with the WT. Pathogenesis related protein 1 (OsPR1, Os01g28500) showed high basal expression in OE lines. But, at day 3 of stress, up-regulation of gibberellin responsive modulator (OsRGA, Os01g45860), lipoxygenase 4 (OsLOX4, Os03g08220), lipoxygenase 7 (OsLOX7, Os08g39840), a DREB subfamily gene with an AP2 domain from Arabidopsis thaliana (AT2G35700, Os02g43970) and OsMADS1 (Os03g0215400) was observed in OE lines when compared with WT. At day 7, most of the stress-related genes were upregulated in all lines including the WT plants (Figure 3.13).

3.7 Phytohormone treatment and gene expression changes

In order to analyze the response of the OsMyc2 transcription factor with different phytohormones and identify possible hormone cross-talk, 5 day old WT, OE and KD seedlings were germinated and treated with JA, MeJA, ABA and GA (Figure 3.14). Seedlings placed on ½ MS media containing JA (100 µM) suffered shoot length reduction. WT and OE lines showed a shoot length reduction of 67.2% and 71.0%, respectively, whereas KD seedlings had a lower shoot length reduction (43.0%) demonstrating lower sensitivity in response to JA as a result of the downregulation of the OsMyc2. Similar results (but with higher sensitivity in OE lines) were observed for root growth. OE lines showed an increased sensitivity (49.0% reduction in length) in comparison with WT (26.2% reduction) and KD (27.5%) plants. Similar trend was observed in their response to MeJA (50 µM; Figure 3.15b), where a reduction of 60.6% and 62.0% of shoot growth was observed in WT and OE seedlings, respectively, and KD seedlings had a reduction of 41.3%. WT, OE, and KD plants resulted in
root length reduction of 16.4 %, 53.1% and 5.0%, respectively. For both hormones, OE lines showed an enhanced sensitivity in comparison with WT and KD lines, especially in root growth. In contrast, KD lines with downregulation of the OsMyc2 showed reduced sensitivity to JA.

![Figure 3.14](image)

Figure 3.14. Wild type (WT), overexpresser (OE), and knock down (KD) seedlings treated with:
1 = Control, 2 = 100 μM JA, 3 = 50 μM JA, 4 = 50 μM MeJA, 5 = 50 μM ABA, 6 = 50 μM GA

Myc2 was shown to be induced by ABA. Higher growth reduction was observed in WT (69.9%, 16.0%) and KD (72.3%, 42.8%) as compared to OE (55.6%, 0.7%) for both shoot and root, respectively (Figure 3.16a). Growth enhancement was observed in all the genotypes when treated with 50 μM GA (Figure 3.17b). WT, OE and KD recorded a growth increase of 131.6%, 208.1%, and 184.5% for shoots, and 136.5%, 146.9%, and 130.6% for the roots. GA treatment exerted more influence on the shoot growth compared to the root growth, but all lines showed better growth of shoot under GA.
Figure 3.15. Percentage shoot/root growth reduction of wild type (WT), overexpresser (OE), and knock down (KD) seedlings placed on ½ MS media containing a) jasmonic acid (100 µM) and b) methyl jasmonate (100 µM)
Figure 3.16. Percentage of shoot and root growth reduction of wild type (WT), overexpreseer (OE), knock down (KD) seedlings placed on ½ MS media containing a) abscisic acid (50 µM) and b) gibberelic acid (50 µM)
Expression analysis showed that genes, such as OsVSP2, OsLOX7, OsMADS1, and OsJAZ1 were upregulated in OE lines in comparison with WT and KD lines under control conditions (Figure 3.17). OsMyc2 transcript accumulation was reduced in WT plants when treated with 50 µM GA. OsJAZ1 was upregulated in OE plants under control and MeJA treatment, but was almost undetectable in WT and KD plants. On the other hand, it was upregulated by the application of GA in both WT and KD lines.

![Figure 3.17. Semi-quantitative RT-PCR of six genes, OsVSP2, OsMyc2, OsLOX7, OsMADS1, and OsJAZ1 in wild type (WT), overexpresser (OE) and knock down (KD) plants under 1) control conditions; 2) 100 µM JA; 3) 50 µM MeJA; 4) 50 µM ABA; 5) 50 µM GA; OsEF1α was used as an internal control](image)

3.8 Effect of OsMyc2 overexpression on Spodoptera frugiperda

Fall armyworm (Spodoptera frugiperda), is an opportunist herbivore that attacks rice and other crops. To establish if the genetic manipulation of the Myc2 transcription factor can confer resistance against fall armyworm, a feeding assay was conducted by placing newly hatched
neonates on cut rice leaves (~2cm). After 7 days of feeding, no statistical differences were found for larvae weight among the genotypes. Larvae were then placed back into the petri dishes containing leaves of each respective genotype. The time each larva needed to reach the pupal stage and the pupae weight showed some significant differences ($P < 0.05$). Larvae fed with the OE36 line showed an increase in the time (>33 days) needed for pupae establishment (Figure 3.18a). Similarly, pupae from the same line (OE36) showed a reduction in weight (118.3 mg) as compared to the WT (153.4 mg) (Figure 3.18b).

![Days to pupa formation](image1)

![Pupa weight](image2)

Figure 3.18. Average time needed for larvae fed from wild type (WT), overexpresser (OE), and knock down (KD) plants to reach the pupae stage (a) and pupae weights from each genotype (b). Error bars represent standard errors; different letters represent statistically different groups after LSD analysis ($P \leq 0.05$) across lines.

47
3.9 Growth and yield data analysis

A small but statistically significant (P ≤ 0.05) difference was recorded in plant height, with a reduction observed in all OE lines and one KD line when compared to WT (Figure 3.19a). Percentage biomass was also reduced in OE35 and KD55 when compared to WT (Figure 3.19b).

All the genotypes had an average of ~4 tillers per plant, with the exception of OE35, which had an average of 3 tillers per plant (Figure 3.20a). Similar results were observed for spikelet fertility (P = 0.01). OE lines had a small reduction in the percentage of spikelet fertility, but all of the genotypes presented a fertility range from 82% to 95% (Figure 3.20b).

Apparently, OsMyc2 manipulation resulted in flowering time alteration. All OE and KD lines had delayed flowering by an average of 7 days and 2-3 days, respectively, in comparison with the WT (Figure 3.21a). Under non-stressed conditions, OE35, OE36, and KD55 lines showed a reduction in yield in comparison with the WT genotype (Figure 3.21b). However, upon recovery following drought, stressed OE22 plants had higher average yield when compared to KD, whereas the WT plants were not able to recover after stress.
Figure 3.19. Plant heights measured from 10 plants each of wild type (WT), five overexpresser (OE), and three knock down (KD) lines (a) and biomass measured from 4 plants each of WT, five OE and three KD lines under non-stressed conditions (b). Values represent means ± SE of four independent replicates. Different letters represent statistical significance at 5% level based on Fisher’s least significant difference (LSD) test across lines.
Figure 3.20. a) Number of tillers per plant; and b) percentage of fertility of wild type (WT), overexposer (OE), and knock down (KD) lines under non-stressed conditions. Values represent means ± SE of four independent replicates. Different letter represent statistical significance at 5% level based on Fisher’s least significant difference (LSD) test across lines.
Figure 3.21. a) Flowering time; and b) Yield measured in grams per plant of non-stressed versus drought stressed plants of wild type (WT), overexpresser (OE), and knock down (KD) lines. Values represent means ± SE of four independent replicates. Different letters represent statistical significance at 5% level based on Fisher’s least significant difference (LSD) test across lines.
CHAPTER 4: DISCUSSION

4.1 OsMyc2: phylogeny, localization and expression

Studies in Arabidopsis thaliana have shown that about 5% of the plant genome codes for TFs, which are involved in gene regulation (Riechmann and Ratcliffe, 2000). Myc2 is a TF that contains a G-box motif and a basic helix-loop-helix (bHLH) DNA binding domain involved in homo- and heterodimerization (Pattanaik et al., 2008). As expected, OsMyc2 shared high similarity with other poaceae family members, and highest identity was observed with Sorghum bicolor, which is an important drought tolerant crop (Paterson et al., 2009). On the other hand, the dicot model Arabidopsis thaliana Myc2 (AtMyc2) shared only 54.5% of identity with OsMyc2. Consistent with the role of a regulatory protein, OsMyc2 was found to be nuclear localized. Nuclear localization of Myc2 was also reported in tobacco (Lorenzo et al., 2004) and Arabidopsis (Chini et al., 2009).

OsMyc2 showed constitutive but differential expression in various tissues. Higher transcript accumulation was observed in stem, immature panicle, lemma-palea and in the ovary compared to leaf, root, pollen, seed and stigma. Myc2 was expressed in all tissues of Arabidopsis plants, but, unlike rice, with higher expression in root tissue (Fernandez et al., 2011).

4.2 OsMyc2 overexpression enhances stress tolerance

Although Myc2 is known to be involved in plant defense, many reports have shown its implications in abiotic stresses. ABA is directly linked to plant abiotic stress (drought, salt and cold) tolerance, and Myc2 has been reported to be positively regulated by ABA accumulation during drought stress (Osakabe et al., 2014). Rice plants overexpressing OsMyc2 had a better shoot tissue tolerance, recovery and root development in comparison with WT and KD lines, which showed severe stress symptoms and mortality after 2 weeks of water deficit.
Lower stomatal conductance was observed in OE and some KD lines when compared with WT plants, which suggests that \textit{Myc2} manipulation may have promoted stomatal closure during stress. Stomatal conductance was reduced under water deficit to prevent water loss (Miyashita et al., 2005). Mutation of a zinc finger protein, DTS (drought and salt tolerance), promoted stomatal closure by the modulation of genes involved in \textit{H}_2\textit{O}_2\textit{ homeostasis}, enhancing drought tolerance and relative water content (RWC) in the plant (Huang et al., 2009). Furthermore, OE lines were capable to maintain an elevated percentage of relative water content. Drought-induced ABA accumulation is also known to trigger stomatal closure in order to prevent water loss by evapotranspiration, resulting in an increased percentage of relative water content in the OE plants to cope with stress. Increased RWC in OE led to increased membrane stability index and photosynthesis efficiency as compared to WT and KD plants. \textit{H}_2\textit{O}_2, as a secondary messenger, accumulates in the leaf tissue under stress. Enhanced reactive oxygen species (ROS) production under drought leads to increased ROS accumulation, which triggers plant stress response by manipulating the ABA-dependent signaling pathway and \textit{Ca}^+ flux. High ROS accumulation, as observed by the dark brown coloration following \textit{H}_2\textit{O}_2\textit{ mediated oxidation of DAB} (Thordal-Christensen et al., 1997), was observed in the leaves of WT and KD plants under drought stress, suggesting increased stress symptoms in comparison with the OE lines. Equal soil moisture content of the pots during the period of drought stress suggested that OE lines, indeed, performed better over WT and KD lines under similar moisture (dry) regime. Thus, the present results suggested that \textit{Myc2} overexpression led to the protection of the photosynthesis machinery, and an increased cellular integrity and plasticity due to high RWC and ROS protection during stress.
Myc2, reported to be upregulated in response to water deficit, regulates the expression of different stress responsive genes, such as responsive to desiccation 22 (RD22), alcohol dehydrogenase I (ADHI) and many other genes involved in plant defense, and stress tolerance and adaptation (Abe et al., 2003; Shinozaki et al., 2007). Exogenous application of JA in A. thaliana has been shown to enhance the production of antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT) and guaiacol peroxidase (GPX; Yastreb et al., 2015). On the other hand, JA biosynthesis pathway silencing reduced the production of APX (Hazman et al., 2015). In rice, Myc2 has been shown to have binding sites in genes related to the ascorbic acid (AsA) and tocochromanol biosynthesis pathways that are known to play an important role in the production of plant antioxidants (Jo and Hyun, 2011). The involvement of Myc2 in ROS production is related to its role in lipid peroxidation (Elhiti and Stasolla, 2014). In Arabidopsis, Myc2 is associated with the metabolic pathway of NADPH oxidases (ATrbohD and ATrbhF), associated with the production of ROS in the guard and mesophyll cells required for stomatal closure. Similar results were observed with exogenous applications of MeJa, which enhanced H$_2$O$_2$ production in the guard cells, triggering stomatal closure (Miller et al., 2010; Maruta et al., 2011).

Floating cut-leaf assay showed higher salt (NaCl) sensitivity of KD and WT plants in terms of chlorophyll bleaching in comparison to OE lines. In A. thaliana, JA induction was shown to provide plants with moderate salt tolerance, and Myc2 mutants resulted in decreased antioxidant enzymes (SOD, CAT, and GPX) activity (Yastreb et al., 2015). However, at the seedling stage, no difference was found among the genotypes. Further investigations are needed in rice to elucidate the involvement of Myc2 in salt stress response.
4.3. *OsMyc2* is drought stress-induced and modulates the expression of other downstream genes

Myc2, a key JA regulator, works in a *COII*-dependent manner, and is upregulated after the degradation of the JAZ repressor by the 26S proteasome pathway as a target of the E3 ligase (Nakata et al., 2013). Shinozaki and Yamaguchi (2000) reported the induction of Myc2 expression under ABA stimuli by late drought response. In the present study, qRT-PCR data showed that *OsMyc2* is, in fact, positively induced by drought stress, with increased transcript accumulation under stress.

The expression of *OsCOII*, which is upstream of *OsMyc2*, was not affected in the genotypes under control conditions, but under water deficit condition, its expression was upregulated in WT and OE plants, and remained unchanged in KD lines. Constitutive expression of *Myc2* enhanced the production of the *OsLOX7*, an ortholog of the *AtLOX2*. Transcript accumulation was also observed in WT and KD plants, but at lower levels. Thus, downregulation of *OsMyc2* might affect the production of compounds involved in JA generation, such as lipoxygenase, affecting the whole cycle as reported by Paschold et al. (2008). Biosynthesis of JA requires chloroplastidic linolenic acid synthesized by lipoxygenases in the allene oxide synthase branch (Porta and Rocha, 2002). Lipoxygenase accumulation in *A. thaliana* in response to desiccation stress was reported by Matos et al. (2008). Studies have shown that lipoxygenase is involved in the degradation of monogalactosyldiacylglycerol (MGDG), a highly desiccation-sensitive polar lipid in the cell membrane. MGDG forms cylindrical inverted hexagonal structure in water-lipid mixtures, instead of bilayers as digalactosyldiacylglycerols (DGDG). Reduction of MGDG increases the DGDG:MGDG ratio, which enhances membrane stability under water deficit, keeping enough fluidity to maintain biological processes (Gigon et al., 2004).
Furthermore lipoxygenase silencing has shown increased sensitivity to drought stress in rice cultivars (Liu et al., 2008).

OsMADS1 is an E-class gene involved in the determination of floral meristem initiation and specification. It contains five G-box motifs (G1, G2, G3, G4, and G5), G2 being a direct target of *OsMyc2* (Cai et al., 2014). *OsMADS1* is believed to control the differentiation of specific cell types in lemma and palea (Prasad et al., 2005). Furthermore, *OsMADS1* targets an auxin-responsive *OsMGH3*, involved in pollen viability (Yadav et al., 2011). *OsMADS1* was upregulated in OE lines, confirming its downstream localization in the *OsMyc2* pathway.

Under non-stressed control conditions, increased expression of the *OsJAZ* repressor was observed in OE plants, but not in WT or KD plants, which suggested a self-feedback regulation of *Myc2*. In *A. thaliana*, *Myc2* is known to directly trigger *JAZ* expression. Generation of stable *JAZ* proteins through alternative splicing to reduce JA sensitivity in cells with a high JA-Ile concentration has also been reported (Chung et al., 2009).

4.4 Hormonal regulation of the expression of *OsMyc2* and related genes

Myc2 is known to be responsive to ABA, JA and MeJA (Yadav et al., 2005). JA, first isolated as a growth inhibitor, triggers the expression of *Myc2* transcription factor (Lorenzo et al., 2004). JA insensitivity in *Myc2*-mutant plants further demonstrated the importance of *Myc2* as a downstream key regulator in the plant JA cascade response. The involvement of the OsMyc2 in the JA pathway was evident in the present study, where exogenous application of JA and MeJA had greater impact on root growth reduction in *Myc2* OE lines. On the other hand, KD lines exhibited reduced hormone sensitivity with lower percentage of root and shoot growth reduction in comparison with OE and WT plants. JA/MeJA treatments reduced the expression of the *OsJAZ1* repressor. This could be due to an increased interaction with the *OsCOI1*, which
enhances the expression of OsMyc2 (Chini et al., 2007). The Myc2 downstream target gene OsVSP2 was overexpressed in WT plants by application of MeJA, but lower transcript accumulation was observed by JA treatment. Similar expression patterns were observed for OsLOX7 and OsMADS1 in WT plants. But, all these genes were upregulated in OsMyc2 OE plants and downregulated in the KD plants. These results corroborate the previous report that Myc2 plays a key role as a master regulator in the JA metabolic pathway (Nakata et al., 2013).

Exogenous ABA application reduced the shoot growth of WT and KD plants more than the OE lines. Similar results were observed at root level, where some OE lines didn’t show any reduction at all. WT plants also showed an increased expression of OsMyc2 under ABA stimulus, which suggests a positive cross-talk between ABA and JA (Abe et al., 2003; Shinozaki and Yamaguchi-Shinozaki, 2007). Interestingly, OsLOX7 and OsMADS1 were downregulated by exogenous ABA application, indicating a negative regulation of ABA on the downstream target genes of Myc2. Negative regulation of ABA inducible genes by DWA-associated proteins was reported in the Myc2 pathway, but yeast 2H studies showed that no direct interaction existed between DWA and Myc2 (Lee et al., 2010).

OsMyc2 OE plants showed slower growth in comparison with WT genotypes. Exogenous application of GA induced shoot elongation in all the genotypes, but the phenotype was more prominent in the OE and KD lines. However, the increase in root growth was similar in all genotypes. The cross-talk between GA and JA is not conclusive due to the evidence showing both positive and negative interaction between the two hormones (Kazan and Manners, 2013). In the present study, a negative regulation of the OsMyc2 was observed by GA application, which was in agreement with the model presented in A. thaliana (Wild et al., 2012) where DELLA RGA-LIKE3 proteins negative regulate JAZ sequester enhancing Myc2
expression. Nevertheless, RGA proteins are degraded by GA, so JAZ repressor can freely bind to Myc2 restricting its activity. Similar to this finding, a slight upregulation of the OsJAZ1 was observed by GA application in WT plants in the present study.

4.5 Effect of Myc2 overexpression on fall armyworm

Studies on the molecular mechanisms underlying plant’s response to insect attack have shown that JA regulates plant’s defense reaction against the attack of chewing insects, necrotrophic pathogens, and cell content feeders like spider mites or thrips (Stam et al., 2014). Overexpression or downregulation of OsMyc2 did not have significant effect on the growth of 7-day-old fall armyworm (Spodoptera frugiperda). However, an increase of the time needed for the larvae to reach the pupa state and reduced pupae weight was observed in one of the OE lines. Such antibiosis effects might be due to the upregulation of Myc2 target genes, such as VSP or LOX, and the production of associated secondary metabolites, alkaloids, terpenoids, phenylpropanoids, anti-nutritional proteins, etc. (Schweizer et al., 2013; Campos et al., 2014). Antixenosis has an important role in JA-triggered defense. In A. thaliana, it was shown that Myc2- branch of the JA pathway regulates the defense responses in plant that in turn affect the feeding preference of the insects (Verhage et al., 2011). Additional experiments with multiple choice feeding essays are needed to establish the role of OsMyc2 TF in herbivore defense.

4.6 Myc2 expression and agronomic traits

No significant differences were found among the genotypes with respect to the number of tillers per plant or percentage spikelet fertility, but a reduction was observed in plant height, biomass and yield. Such characteristics have been observed in plants constitutively expressing transcription factors (Kasuga et al., 1999). Thus, utilization of stress-inducible promoters has been proposed to circumvent this problem (Smirnoff and Bryant, 1999). A significantly more
delay in days to flowering was observed in all OsMyc2 OE lines than in the KD lines in comparison to WT, which implies that alteration in Myc2 expression directly affected flowering. As has been discussed earlier, Myc2 directly interacts with MADS box genes, which are involved in flowering and lemma-palea cell differentiation (Prasad et al., 2005). An interaction of Myc2 and SPA1 genes was observed in A. thaliana, where Myc2-mutants showed late flowering under long day conditions (Gangappa and Chattopadhyay, 2010).

4.7 References

Abe H et al. (2003). "Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling." Plant Cell 15(1): 63-78.

Prasad K et al. (2005). "OsMADS1, a rice MADS-box factor, controls differentiation of specific cell types in the lemma and palea and is an early-acting regulator of inner floral organs." Plant Journal 43(6): 915-928.

CHAPTER 5: SUMMARY AND CONCLUSIONS

5.1 Summary and conclusions

The role of a rice bHLH-Myc2 transcription factor (OsMyc2) in (a)biotic stress response of rice was analyzed through the development of rice lines over/underexpressing Myc2. OsMYC2, a regulatory protein, was found to be nuclear localized. It was demonstrated that OsMyc2 overexpression enhanced drought stress tolerance, providing OE plants with an enhanced capacity to maintain cell fluidity and plasticity, and stability to perform vital biological processes to survive under drought stress. A reduction of reactive oxygen species in the leaf tissue of OE lines under stress was also confirmed, which suggested a more efficient production of antioxidants under stress. Lipoxygenase, a protein involved in drought response and JA production was found to be upregulated under drought stress by the overexpression of OsMyc2.

Hormones are known to regulate plant responses to different stresses and development. Myc2 is referred as a master regulator in the pathway of the JA biosynthesis. The upregulation of the Myc2 repressor JAZ1, demonstrated a feedback regulation when Myc2 is overexpressed. KD plants with reduced Myc2 expression showed reduced sensitivity in the presence of JA or its derivate MeJA. In contrast, OE plants with ~6-fold more expression than WT, exhibited extreme sensitivity, demonstrating the participation of OsMyc2 in JA stimuli. OE and KD plants had a slower seedling growth than the WT. However, GA treatment increased the growth in all genotypes, but OE lines showed higher growth, which may suggest a positive cross-talk between JA and GA in plant growth. Results with ABA treatment was inconclusive where all genotypes were sensitive, especially KD lines exhibited higher sensitivity. Downregulation of Myc2-related genes under ABA treatment suggested a negative regulation of genes located downstream of Myc2 by ABA.
The observation that OsMyc2 directly induced the expression of MADS1, a gene involved in spikelet development and flowering, corroborates to the finding that the OE lines exhibited delayed flowering as compared to the WT and KD. Constitutive expression of OsMyc2 in the JA pathway might have a phenotypic cost associated with it. This was evident from the short height, and low grain and biomass yield of OE lines compared to WT and KD lines.

Although OE lines showed enhanced salt tolerance with less chlorophyll bleaching than WT and KD lines in floating cut-leaf assay in salt solution, the role of OsMyc2 in salt stress tolerance could not be established as there was no difference among the genotypes with respect to the salt sensitivity/tolerance at the seedling stage under hydroponics conditions.

Although JA is directly linked with plant’s response to chewing herbivore and wound, no significant difference in the weight of fall army worm first instars was observed when fed with leaf tissues from all the genotypes. However, an antibiosis effect as revealed by the reduction of pupae weight and an increase of the time needed to complete its life cycle was apparent in one of the OE lines.

5.2 Future perspectives

1) Detailed gene expression involving all the downstream interacting partners of Myc2 will increase our understanding of its central role in stress response network of rice. After validating feedback regulation by JAZI, further analysis is needed to comprehend the mechanism of Myc2 self-regulation.

2) Quantification of the antioxidative enzymes will provide an answer to the question about the involvement of Myc2 in the oxidative stress management and ROS production in rice.

3) Comparative lipidomics studies between OE and WT lines will establish the mechanism of Myc2 in maintaining high membrane stability in OE plants under drought stress.
This information could be used as a tool in conventional breeding for assessment of drought tolerance/sensitivity of varieties.

5) Development of transgenic rice plants expressing OsMyc2 under the control of a stress-inducible promoter will circumvent the problem of phenotypic/energy cost associated with its constitutive expression and achieve plants with normal agronomical traits.

6) Further experiments such as multiple-choice feeding assays are needed to find if plants overexpressing Myc2 exhibit any antixenosis effect by modifying insect feeding preferences. Further, gene expression analysis under insect attack could help to understand the mechanisms of action of Myc2 in plant’s response to chewing insects.

7) An extensive screening of a large number of independent transgenic events is needed to determine the role of Myc2 in salt stress tolerance response of OE lines.

8) This dissertation opens up an opportunity for international collaboration between LSU and the Biotechnology Research Center of Ecuador (CIBE) towards scientific research, projects, and human resources development.
APPENDIX I: OSMYC7E PROTEIN SEQUENCE

MWVLLSPLLTTKNPFHPIPIPTFPLLFLSSSLVGVLFQIKSNLEEIEIKSMNLTWTDDNAS MMEAIFMASADLPAPFWGAASTPPPPPPPHHHHQQQQLPPLPPAAAAPAAAAMNFQDTL QQRLQSIIEGSRETWTYAIIFWQSSIDVSTGASLLGWDGDGYKGCDDDKRKQRSSTPAAA AEQEHRKRVLRELNSLIAGAGAAPDEAVEEETDTEWFFLVSMTQSFPNGLGLPGQALFF AAQPTWIAATGLSSAPCDRARQAYTFLRTMVCLPLATGVLELGSTDVIFQTGDSIPRIRA LFNLSSAASSWPPHPDASADPSVLWLDAPPMDMKSISAAADISVSKPPPPPHQIQHF FENGSTSTLTPSPSVHAPTSPQAAAPPQRQQQQQSSQAQQGFPFRRLNFSDFASNGG AAAPPPFKPETGEILNFNDSSSGRNRNPSPAPPAATASLTAPGSLFSQHTPTLTAAANDAA KSNNQKRSMEATSRSATNTNNHFAATANEGLMSFSAPTTRPSTGTGAPKESDHDLESASVREETESSRVVAPPEAEKRPKRKRKPANGREEPLNHVEAERQREKLNQRFYALRA VVPNVSKMDKASLLGDAISYINELRGKLTAEETDKETLQSMESLKKERDARPPAPPSGG GGDGGARCHAVEIEAKILGLEAMIRVQCHKRNHPAARLMTALRELDDLVDYHASVSVVK DLMIQQVAVKMASRYSQDQMLNAALYTRIAEPGTAAR*
APPENDIX II: MYC2 ORTHOLOG SEQUENCES OBTAINED FROM THE PLANT GENOMIC RESOURCE PHYTOZOME 10.3

<table>
<thead>
<tr>
<th>Phytozome Gene accession</th>
<th>Plant Species</th>
<th>Code (as in Figure 3.2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>evm.TU.supercontig_71.72</td>
<td>Carica papaya</td>
<td>Cp</td>
</tr>
<tr>
<td>29827.t000001</td>
<td>Ricinus communis</td>
<td>Rc</td>
</tr>
<tr>
<td>ppa002404m.g</td>
<td>Prunus persica</td>
<td>Pp</td>
</tr>
<tr>
<td>GSV1VG01013156001</td>
<td>Vitis vinifera</td>
<td>Vv</td>
</tr>
<tr>
<td>AT1G32640</td>
<td>Arabidopsis thaliana</td>
<td>At</td>
</tr>
<tr>
<td>AT4G17880</td>
<td>Arabidopsis thaliana</td>
<td>At</td>
</tr>
<tr>
<td>Thhalv10007075m.g</td>
<td>Eutrema salsugineum</td>
<td>Es</td>
</tr>
<tr>
<td>Thhalv10024688m.g</td>
<td>Eutrema salsugineum</td>
<td>Es</td>
</tr>
<tr>
<td>Thhalv10000808m.g</td>
<td>Eutrema salsugineum</td>
<td>Es</td>
</tr>
<tr>
<td>Ciclev10011214m.g</td>
<td>Citrus clementina</td>
<td>Cc</td>
</tr>
<tr>
<td>Carubv10008586m.g</td>
<td>Capsella rubeella</td>
<td>Cr</td>
</tr>
<tr>
<td>Carubv10004392m.g</td>
<td>Capsella rubeella</td>
<td>Cr</td>
</tr>
<tr>
<td>Aquca_026_00421</td>
<td>Aquilegia coerulea</td>
<td>Ac</td>
</tr>
<tr>
<td>Lus10004574.g</td>
<td>Linum usitatissimum</td>
<td>Lu</td>
</tr>
<tr>
<td>Lus10000484.g</td>
<td>Linum usitatissimum</td>
<td>Lu</td>
</tr>
<tr>
<td>Lus10004575.g</td>
<td>Linum usitatissimum</td>
<td>Lu</td>
</tr>
<tr>
<td>Lus10030970.g</td>
<td>Linum usitatissimum</td>
<td>Lu</td>
</tr>
<tr>
<td>Eucgr.E00277</td>
<td>Eucalyptus grandis</td>
<td>Eg</td>
</tr>
<tr>
<td>Si039973m.g</td>
<td>Seteria italica</td>
<td>Si</td>
</tr>
<tr>
<td>GRMZM2G001930</td>
<td>Zea maize</td>
<td>Zm</td>
</tr>
<tr>
<td>GRMZM2G049229</td>
<td>Zea maize</td>
<td>Zm</td>
</tr>
<tr>
<td>PGSC0003DMG400017535</td>
<td>Solanum tuberosum</td>
<td>St</td>
</tr>
<tr>
<td>PGSC0003DMG400001161</td>
<td>Solanum tuberosum</td>
<td>St</td>
</tr>
<tr>
<td>Potri.003G092200</td>
<td>Populus trichocarpa</td>
<td>Pt</td>
</tr>
<tr>
<td>Potri.001G142200</td>
<td>Populus trichocarpa</td>
<td>Pt</td>
</tr>
<tr>
<td>Phvul.002G141500</td>
<td>Phaseolus vulgaris</td>
<td>Pv</td>
</tr>
<tr>
<td>Phvul.003G285700</td>
<td>Phaseolus vulgaris</td>
<td>Pv</td>
</tr>
<tr>
<td>Gorai.004G184800</td>
<td>Gossypium raimondii</td>
<td>Gr</td>
</tr>
<tr>
<td>Gorai.006G216700</td>
<td>Gossypium raimondii</td>
<td>Gr</td>
</tr>
<tr>
<td>Gorai.008G226300</td>
<td>Gossypium raimondii</td>
<td>Gr</td>
</tr>
<tr>
<td>Gorai.003G182100</td>
<td>Gossypium raimondii</td>
<td>Gr</td>
</tr>
<tr>
<td>Solyc08g076930.1</td>
<td>Solanum lycopersicum</td>
<td>Sl</td>
</tr>
<tr>
<td>gene10501-v1.0-hybrid</td>
<td>Fragaria vesca</td>
<td>Fv</td>
</tr>
<tr>
<td>Phytozome Gene accession</td>
<td>Plant Species</td>
<td>Code (as in Figure 3.2)</td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Sobic.001G287600</td>
<td>Sorghum bicolor</td>
<td>Sb</td>
</tr>
<tr>
<td>Thecc1EG015714</td>
<td>Theobroma cacao</td>
<td>Tc</td>
</tr>
<tr>
<td>Migut.E00934</td>
<td>Mimulus guttatus</td>
<td>Mg</td>
</tr>
<tr>
<td>Glyma.09G204500</td>
<td>Glycine max</td>
<td>Gm</td>
</tr>
<tr>
<td>Glyma.01G018400</td>
<td>Glycine max</td>
<td>Gm</td>
</tr>
<tr>
<td>Glyma.01G096600</td>
<td>Glycine max</td>
<td>Gm</td>
</tr>
<tr>
<td>Glyma.08G271900</td>
<td>Glycine max</td>
<td>Gm</td>
</tr>
<tr>
<td>Brara.E01770</td>
<td>Brassica rapa</td>
<td>Br</td>
</tr>
<tr>
<td>Brara.F03601</td>
<td>Brassica rapa</td>
<td>Br</td>
</tr>
<tr>
<td>Brara.A00912</td>
<td>Brassica rapa</td>
<td>Br</td>
</tr>
<tr>
<td>Bostr.3359s0090</td>
<td>Boechera stricta</td>
<td>Bs</td>
</tr>
<tr>
<td>Bradi3g34200</td>
<td>Brachypodium distachyon</td>
<td>Bd</td>
</tr>
<tr>
<td>Medtr5g030430</td>
<td>Medicago truncatula</td>
<td>Mt</td>
</tr>
<tr>
<td>Medtr8g067280</td>
<td>Medicago truncatula</td>
<td>Mt</td>
</tr>
<tr>
<td>SapurV1A.0151s0080</td>
<td>Salix purpurea</td>
<td>Sp</td>
</tr>
<tr>
<td>SapurV1A.0741s0050</td>
<td>Salix purpurea</td>
<td>Sp</td>
</tr>
</tbody>
</table>
APPENDIX III: ALIGNMENT OF PROTEIN SEQUENCES OF MYC2 SHOWED HIGHLY CONSERVED REGIONS AMONG DIFFERENT SPECIES

CpMyc2
CcMyc2
GrMyc2
TcbHLH
GrMyc2b
GrMyc2c
GrMyc2d
EgMyc2
PtMyc2
SpMyc2
SpMyc2b
RcMyc2
FvMyc
PpMyc2
LuMyc2
LuMyc2c
LuMyc2b
LuMyc2d
StMyc2
SlMyc
StMyc
MgMyc2
GmMyc2
GmMyc2b
FvMyc2
MtMyc2
GmMyc2c
GmMyc2d
FvMyc2b
MtMyc2b
AtMyc2
BsMyc2
CrMyc2
EsMyc2
BrMyc2
AtMyc4
CrMyc2b
EsMyc2b
BrMyc2c
EsMyc2c
BrMyc2b
BrMyc2
AcMyc2
ZmMyc7e
SbHLH
SlMyc2
ZmHLH91
OsMyc2
BdHLH91

MVRIRTPCLRKSQRFAEGSHSLVLSSLKLFKLNAQLQPKNLQKLYLLLPLN
MVTPGRVLTNPSWIKRRLKARTCSLALRVYPLSFFPSVLPSPKNQFPFPK
MAVGGDFQIAPRTPLSPIATFTSILQHVTSLSLQTGKVNFHRKYS
M0VLLLSPLLTTKPNFHIPITFTFPLLFSSSLVG

CpMyc2

-----PPQSSASTSTTPAPDAAK----------------------SSLSQTVFSLQVQNYQD 58

CcMyc2

-----PSQSSASTSTTPMKTHIS----------------------SSSQQQQQQOQFVQD 67

GrMyc2

-----PPQSSASTSTTVVIIAPPPPP-----PPAGDLPSKSFPL--HSSQPSVSFLNQ 80

TcbHLH

-----PPQSSGSSTAPAAAAAGF----------------------DSKSSLQ---QPSQPSVSNQ 71

GrMyc2b

-----PPQSSASTSTPAAGAGGGG---------------------GPDSLSFIA---QPSQPSVSNQ 77

GrMyc2c

-----PPQSSASTSTPAPQSSAAA-------------------AGAPDLKLSSVSAPQPSVSFLNQ 82

GrMyc2d

-----PPPPPQ------------------------QPQPSVPLNQD 45

EgMyc2

-----PPPPGTSTTPPLPHHQQPPQPPPSSSATSSAAFAAFAFQ 89

PtMyc2

-----PPPTGASTSPAAA------------------------AAPGQDLTMLNQD 64

SpMyc2

-----PPQSSASTSTTPAAAV-----------------------AQPSQDKLMNQD 66

SpMyc2b

-----PPQSSGASTTPAAAV-----------------------AESQETMQLNQD 64

RcMyc2

-----QPSQSSASTSTPPLPNSTDPR-----------------AAIINQOPLNQD 71

FvMyc

AAHPQFQPPQSSASTSTPPDPIPA-----------------AQAPAPVSAPFQND 76

PpMyc2

PAPAQQPQPPQSSASTSTPPDKPA------------------AVAPSQSPITPQND 80

LuMyc2

HHQPSSSSAVSTTSTPPDPPIPA--------------------SSAPAGVAAQSQSLNQD 74

LuMyc2c

-----HHQPSQSSASTSTPPDPPIPA--------------------SSAPAGVAAQSQSLNQD 73

LuMyc2b

HHQPSQSSASTSTPPDPPIPA--------------------SSAPAGVAAQSQSLNQD 73

StMyc2

NSASAAVGVNSLHHTNNNNNNNSSVSFLSSSTSVS---AAAADVAKSMPFQND 92

SlMyc

NSTSSAVGVNSLHHAASN------TSPSVFAPSSSTSAATVSASKSPFQND 92

StMyc

--------------------------QPSVPLNQD 7

MgMyc2

TTMMDAFASSAALISFPAAPSGLQHQTFTLPFSP------PPPPAAAAAASSQFQND 75

GmMyc2

--------------------------APPQFQSTQAVFQND 115

GbMyc2b

--------------------------APPQFQSTQAVFQND 115

FvMyc2

--------------------------APPQFQSTQAVFQND 116

MtMyc2

--------------------------APPQFQSTQAVFQND 43

GnMyc2c

--------------------------APPQFQSTQAVFQND 116

GmMyc2d

-----TSTTTPGTAPPPPPPPPPP-------------------AQPSQSLNQD 69

FvMyc2b

-----TSTTTPGTARALPPP-----------------------SSQSLFNQD 70

MtMyc2b

-----TSTT--------------------------AQPSQSLNQD 52

AtMyc2

----------TTTTTATTTTTTPAMΕ------------------IPAGAFQND 66

BsMyc2

----------TTTTTATTTTTTPAMΕ------------------IPAGAFQND 66

CrMyc2

----------TTTTTATTTTTTPAMΕ------------------IPAGAFQND 66

EsMyc2

----------AT---------------------ATASTAPATEME------------------IPAGAFQND 62

BrMyc2c

----------AT---------------------ATASTAPATEME------------------IPAGAFQND 62

AtMyc4

----------AT---------------------ATASTAPATEME------------------IPAGAFQND 62

CrMyc2b

----------PP---------------------LPQAPQS------------------QFQND 64

EsMyc2b

----------PT---------------------LPPPPPSQ------------------QAGED 63

BrMyc2c

----------PL---------------------TPPPP----------------------HVED 60

EsMyc2c

----------PS---------------------LPPPPPLS------------------QFQND 108

BrMyc2b

----------PP---------------------VP-TPLS----------------------QFQND 29

VvMyc2

--------------------------LPPPLP----------------------QVQND 61

AcMyc2

----------SSASTTITERERERE---------------------SSSSQTLNQPFQND 69

ZmMyc7e

----------AGGGNSSSAAPPPP---------------------QMP-ATAAPG--FQND 58

SbHLH

----------AGGGNSSSAAPPPP---------------------QMPAAANAPG--FQND 60

SlMyc2

----------AGGG-ASSAATTPPP---------------------QMP-ATAAPG--FQND 58

ZmHLH91

----------AGGG-ASSAATTPPP---------------------QMPAAANAPG--FQND 58

OsMyc2

----------STFPP---------------------PPPPPQHHHQQQQ-------------------QQVLPAPAFAAFQND 118

BdbHLH91

----------AATP---------------------PPP------------------------AAVMPQQPAFQND 50

CpMyc2 TLQQRLQALIEGA-RESWTYAIWFQSSYD-YSGAS-----------------VLGWGDGYKG 102
CcMyc2 TLQQRLQALIEGS-REGWTYAIWFQSSCD-YSGSS-----------------MLGWGDGYKG 111
GrMyc2 SLQQRLQALIEGA-RETWTYAIWFQSSYD-CSATT-----------------VLGWGDGYKG 124
TcbHLH TLQQRLQALIEGA-REPWTYAIWFQSSYD-YSGTA-----------------VLGWGDGYKG 115
GrMyc2b TLQQRLQALIEGA-RCWWTYAIWFQSSYD-YSGAT-----------------VLGWGDGYKG 121
GrMyc2c TLQQRLQALIEGA-HECWTYAIWFQSSYD-YSGA-----------------VLGWGDGYKG 126
GrMyc2d SLQQRLQALIEGA-RENWTYAIWFQSSYD-YAGAA-----------------VLGWGDGYKG 89
EgMyc2 TLQRHLQITLIDSTRPWTYAIWFQSSDFGPAPAAPAAASSASPFPVVLGWGDGYKG 149
PtMyc2 TLQQRLQALIEGA-REWTYAIWFQSSYD-CSSAG-----------------VLGWGDGYIG 108
SpMyc2 TLQQRLQALIEGA-REWTYAIWFQSSYD-YSGAS-----------------VLGWGDGYKG 110
SpMyc2b TLQQRLQALIEGA-REWTYAIWFQSSYD-YSGAS-----------------VLGWGDGYKG 108
ReMyc2 TLQQRLQALIEGA-REWTYAIWFQSSYD-YSGAS-----------------VLGWGDGYKG 115
FvMyc TLQRMLQALIEGA-REWTYAIWFQSSSYD-MSGAS-----------------VLGWGEGYKD 120
PmMyc2 TLQRMLQALIEGA-REWTYAIWFQSSYD-YSGST-----------------VLGW---------- 118
LuMyc2 TLQQRLQALIDGA-RENWTYAIWFQSSYD-FSAGA-----------------VLGWGDGYKG 118
LuMyc2b TLQQRLQALIDGA-RENWTYAIWFQSSYD-FSAGA-----------------VLGWGDGYKG 117
LuMyc2d SLQQRLQALIDGA-RENWTYAIWFQSSYD-FSGASSSSSST---------VLAWGDDYKG 117
StMyc2 TLQQRLQALIDGA-REWTYAIWFQSS-VVDFSSPS-----------------VLGWGDGYKG 137
SmMyc TLQQRLQALIDGA-REWTYAIWFQSS-VVDFSSPS-----------------VLGWGDGYKG 137
StMyc SLQQRLQALIDGA-RESWAYAIWFQSSSTDFATPS-----------------VLGWGDGYKG 53
MgMyc2 TLQRLLQALIEGA-REWTYAIWFQSS-AAEYGAPA-----------------ALTGWGDGYKG 120
GmMyc2 TLQRHLQALIEGA-REWTYAIWFQSSYDYS-GST-----------------VLGWGDGYKG 159
GmMyc2b TLQRHLQALIEGA-REWTYAIWFQSSYDYS-GST-----------------VLGWGDGYKG 84
FvMyc2 TLQRHLQALIEGA-REWTYAIWFQSSYDYS-GSA-----------------VLGWGDGYKG 160
MgMyc2 TLQRHLQALIEGA-KEITWYAIWFQSSYDYS-GS-----------------VLGWGDGYKG 87
GmMyc2c TLQRHLQALIEGA-RESWYAIWFQSSSYDSSGTS-----------------VLGWGDGYKG 107
GmMyc2d TLQRHLQALIEGA-CESTWYAIWFQSSYDSSGTS-----------------VLGWGDGYKG 114
FvMyc2b TLQQRLQTLIEGA-ESWTYAIWFQSYDSSSTS-----------------VLGWGDGYKG 115
MtgMyc2b TLQRHLQALIEGA-REWTYAIWFQSSYDYSMTATP-------------ALGWGDGYKG 97
AtMyc2 TLQRQLQALIEGT-HEGWTYAIWFQPSDFSG-------------------ASVLGWGDGYKG 110
BsMyc2 SLQRQLQALIEGT-HEGWTYAIWFQPSDFSG-------------------ASVLGWGDGYKG 110
CrMyc2 TLQRQLQALIEGT-HEGKTWYAIWFQPSDFSG-------------------ASVLGWGDGYKG 110
EsMyc2 TLQRQLQALIEGT-HEGKTWYAIWFQPSDFSG-------------------ASVLGWGDGYKG 106
BrMyc2 TLQRQLQALIEGT-HEGKTWYAIWFQSYDPSG-------------------ASVLGWGDGYKG 98
AtMyc4 NLQRQLQALIEGA-RENWTYAVFWQSISHGFAGEDN----------NNNNTVVLGWGDGYKG 112
CrMyc2b TLQRQLQALIEGA-RESWTYAVFWQSYDFAGEDDGGG------ERSNTAVVLGWGDGYKG 118
EsMyc2b TLQRQLQALIEGA-RESWTYAVFWQSYDFAGEDDGGGG-----GSINTPLGWGDSGYKG 119
BrMyc2c TLQRQLQALIEGA-RESWTYAVFWQSLHSDFAGEDISN-------TAALLSWGDGYKG 110
EsMyc2c TLQRQLQALIEGA-RESWTYAVFWQSLHDVFAGEDISN-------DNTLIILGWGDGYKG 157
BrMyc2b TLQRQLQALIEGA-GEKWTYAIWFQISHDFPSAG----------DNAVLGWGDGYKG 78
VvMyc2 -------PSSAASTWTYAIWFQPSYVDSGAS---------------ILGWGDGYKG 69
AcMyc2 SLQRQLQAIIEGT-REWTYAIWFQISYVDSGAS---------------ILGWGDGYKG 113
ZmMyc7e TLQRQLQAMIEGS-REWTYAIWFQSSLSTAGS---------------ILGWGDGYKG 103
SbHLH TLQRQLQAMIEGS-SETWTYAIWFQSLDAATAGS---------------ILGWGDGYKG 105
SlMyc2 TLQRQLQAMIEGS-REWTYAIWFQSSVDAATAGS---------------ILGWGDGYKG 105
ZmHLH91 TLQRQLQAMIEGS-REWTYAIWFQSSLDAATAGS---------------ILGWGDGYKG 102
OsMyc2 TLQRQLQSIIEGS-REWTYAIWFQSSIVDTAGS---------------ILGWGDGYKG 163
BdBHLH91 TLQRQLQAIIEGS-REWTYAIWFQSSSTDAGAGAS---------------ILGWGDGYKG 95

72
<table>
<thead>
<tr>
<th>Protein</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>CpMyc2</td>
<td>EEDKAKSKSKSSTP-SSLAEQHRRVKVLRENSLIG--PAATSDAVDE 150</td>
</tr>
<tr>
<td>CcMyc2</td>
<td>EGEKGS---SIKKT-SSAAEQRHKVLRENSLIGS--TSSPTDADVE 157</td>
</tr>
<tr>
<td>GrMyc2</td>
<td>EEDGKA--KLKSS-SSAAEQRHKVLRENSLIG--SAAFPTDADVE 150</td>
</tr>
<tr>
<td>TcbHLH</td>
<td>EEDGKG--KLVASS-SSAAEQRHKVLRENSLIG--TSAPFTDADVE 161</td>
</tr>
<tr>
<td>GrMyc2b</td>
<td>EEDGKG--ESKACS-SSAAEQRHKVLRENSLIG--STATADDADVE 167</td>
</tr>
<tr>
<td>GrMyc2c</td>
<td>EEDGKR--KLKTS-SSAAEQRHKVLRENSLIG--STATPDADVE 171</td>
</tr>
<tr>
<td>GrMyc2d</td>
<td>EDEKEA--KKSLI-StIAEQQHRRVKVLRENSLIG--STATTDADVE 135</td>
</tr>
<tr>
<td>EgMyc2</td>
<td>EDESKG--KAKISA-SSAAEQRHKVLRENSLIGPS-SA--AAAAPDVDE 199</td>
</tr>
<tr>
<td>PtMyc2</td>
<td>EDEKKG--RMKNSA-SSAAEQRHKVLRENSLIGA--SSVTDDADVE 154</td>
</tr>
<tr>
<td>SpMyc2</td>
<td>EDEKKG--RKSNSA-SSAAEQRHKVLRENSLIGA--NSVTDDADVE 156</td>
</tr>
<tr>
<td>SpMyc2b</td>
<td>EDEKKGK--IMKNSA-SSAAEQRHKTLRKLRENSLIGA--NSVTDDIADE 154</td>
</tr>
<tr>
<td>RcMyc2</td>
<td>EDEKKGK--KSSKTS-SSIAEQRHKVLRENSLIGA--TAITDDAVDE 161</td>
</tr>
<tr>
<td>FvMyc</td>
<td>EREDKVYT--KPKTTTS--LVEQERYKVLRLDNLISGAD--TSAADDAVQD 166</td>
</tr>
<tr>
<td>PpMyc2</td>
<td>--------KAKTTTS--AADQERYKVLRENSLIGA--TSAADDAVQD 159</td>
</tr>
<tr>
<td>LuMyc2</td>
<td>EDEK-----VKS1KRN-FSQAECRH RRVKVLRENSLIGP--NSASDDVDE 161</td>
</tr>
<tr>
<td>LuMyc2c</td>
<td>--</td>
</tr>
<tr>
<td>LuMyc2b</td>
<td>EDEK-----VKS1KRN-FSQAECRH RRVKVLRENSLIGP--NSASDDVDE 160</td>
</tr>
<tr>
<td>LuMyc2d</td>
<td>EDEK-----VKS1KRN-FSQAECRH RRVKVLRENSLIGP--NSASDDVDE 159</td>
</tr>
<tr>
<td>StMyc2</td>
<td>DEQKNRTTTSSTRN--YTPAEQQHRRVKVLRENSLIG--NSASDDVDE 165</td>
</tr>
<tr>
<td>SlMyc2</td>
<td>EDEKAK--KLAVSS-AYIAEQRHKVLRENSLIG--G-------APAGTDADVE 184</td>
</tr>
<tr>
<td>StMyc2</td>
<td>EDEKAK--KLSSVSS--AYIAEQRHKVLRENSLIG--G-------APPTGDADVE 184</td>
</tr>
<tr>
<td>MgMyc2</td>
<td>EEDKGKR--KSSASSA-NFVAEQRHKVLRENSLIGVQAAG--AGGSGGDADVE 105</td>
</tr>
<tr>
<td>GmMyc2</td>
<td>DDD--AKAKAKSA--TSSAAEQRHKVLRENSLIGSS--ASASDADVE 206</td>
</tr>
<tr>
<td>GmbMyc2b</td>
<td>DDDDKAkaKAKKVRK--TSAAEQRHKVLRENSLIGSS--SSSASDADVE 134</td>
</tr>
<tr>
<td>FvMyc2</td>
<td>DDD--AKAKAKA--TSAAEQRHKVLRENSLIGSSA--ASSSDADVE 206</td>
</tr>
<tr>
<td>MtMyc2</td>
<td>EDEYKIIK--KSVV--TSPAECRHRRVKVLRENSLIGNPPV--TDEPFDADVE 132</td>
</tr>
<tr>
<td>GmMyc2c</td>
<td>EDEKVKAGKTPKTS--S-SSAEQRHKVLRENSLIGPS--ASVDADVE 153</td>
</tr>
<tr>
<td>GmMyc2d</td>
<td>EDEKVKTPKTPKTR--SAEQRHKVLRENSLIGPS--ASADDIDVE 160</td>
</tr>
<tr>
<td>FvMyc2b</td>
<td>EDEK-----VKS1KRN-FSQAECRH RRVKVLRENSLIGP--NSASDDVDE 159</td>
</tr>
<tr>
<td>MtMyc2b</td>
<td>EDEKVKLKVTVPPE--EQAHRRKLRENLTLISGSS--VSDDAVDE 140</td>
</tr>
<tr>
<td>AtMyc2</td>
<td>EDEKANFRRESSPFSTPADQERYKVLRENSLIGG--VAPSDADVE 159</td>
</tr>
<tr>
<td>MsMyc2</td>
<td>EDEKANFRRESSPFSTPADQERYKVLRENSLIG--VAPSDADVE 159</td>
</tr>
<tr>
<td>CrMyc2</td>
<td>EDEKAKPRQRSPPPSTPADQERYKVLRENSLIGG--VAPSDADVE 159</td>
</tr>
<tr>
<td>EsMyc2</td>
<td>EDEKAKPRQRSPPPSTPADQERYKVLRENSLIG--VAPSDADVE 159</td>
</tr>
<tr>
<td>BrMyc2</td>
<td>EDEKAKPRQSPPSFTPADQERYKVLRENSLIGG--AGPADADVE 155</td>
</tr>
<tr>
<td>AtMyc4</td>
<td>EEE--KSRRKKSNP--ASAAEQRHKVIRENSLIG--VGGGDADVE 157</td>
</tr>
<tr>
<td>CrMyc2b</td>
<td>EEE--NSKKKSNP--ASAAEQRHKVIRENLISGSSG--VNCGSDDADVE 169</td>
</tr>
<tr>
<td>EsMyc2b</td>
<td>EEEK--KSRRKKPNP--ASAAEQRHKVIRENLISGSSG--TVNGGDNADVE 173</td>
</tr>
<tr>
<td>BrMyc2c</td>
<td>EEER--KSRRKKPNP--VSSAAEQRHKVIRENLISGSSGGGTVSSSGGGSSEDVE 167</td>
</tr>
<tr>
<td>EsMyc2c</td>
<td>EEER--KSRRKKPNP--VSSAAEQRHKVIRENLISGSSGGG--TVNGGDNADVE 173</td>
</tr>
<tr>
<td>BrMyc2b</td>
<td>EED--KKKKKSSN--SNSAEQRHKVIRENLISGGS--IGVSEADVE 202</td>
</tr>
<tr>
<td>VvMyc2</td>
<td>EDEKRRMPIPSVSV--EQHRRKVLRENSLIGT--ASSSDADVE 113</td>
</tr>
<tr>
<td>AcMyc2</td>
<td>GEEEDKLRNRTPTPTS--VQAEHRRKVLRENSLIGG--VSSTDADVE 159</td>
</tr>
<tr>
<td>ZmMyc7e</td>
<td>CDE--DKRQKQP--LTPAQAECRHRRVKVLRENSLIG--AAPADEAVEE 149</td>
</tr>
<tr>
<td>SbbHLH</td>
<td>CDD--DKRQKQP--LTPAQAECRHRRVKVLRENSLIG--AAPADEAVEE 150</td>
</tr>
<tr>
<td>SlMyc2</td>
<td>CDD--DKRQKQP--LTPAQAECRHRRVKVLRENSLIG--AAPADEAVEE 148</td>
</tr>
<tr>
<td>ZmHLH91</td>
<td>CDD--DKRHRPLPTPAQAECRHRRVKVLRENSLIGGAA--PAPADEAVEE 150</td>
</tr>
<tr>
<td>OsMyc2</td>
<td>CDD--DKRQRS--STPAAAAECRHRRVKVLRENSLIG--AGAAPDEAVEE 209</td>
</tr>
<tr>
<td>BdHLH91</td>
<td>CDD--ADKRAQQPYPAPAECRHRRVKVLRENSLIGG--GAAPADEAVEE 143</td>
</tr>
</tbody>
</table>
CpMyc2 FGLQTMCIPSAN-GVVELGSTELIIIQSDLMKVRVLFNFSG-VDAGP---------WSMS 256
CcMyc2 FGLQTLCIPSAN-GVVELGSTELIIIQSDLMKVRFLNFNGSMSIGT--------WPSA 269
GrMyc2 FGLQTLCIPSAN-GVVELGSTELIIIQSDLMKVRFLNFNGSMIEAG--------WCMS 277
TcbHLH FGLQTMCIPSAN-GVVELGSTELIIIQSDLMKVRFLNFNGSMIEAG--------WSMS 268
GrMyc2b FGLTIVCIPSVN-GVVELGSTELIIIQSDLMKVRFLNFNGSMIEAG--------WSVS 274
GrMyc2c FGLQTMCIPSAN-GVVELGSTELIIIQSDLMKVRFLNFNGSMIEAG--------WSVS 278
GrMyc2d FGLQTIVCIPAN-GVVELGSEFPIIIQSDLVKVRFLN---GIEAT------WSMS 239
EgMyc2 FGLNTMCVTPIGV-GVVELGSTPIIIQSDPLNKRVLNFNTGGMEG--------FG 303
PtMyc2 FGLQTLCIPSAN-GVVELGSTELIIIQSDLMKVRFLNF-SLEV--------WPIG 260
SpMyc2 FGLQTLCIPSAN-GVVELGSTELIIIQSDLMKVRFLNF-SLEV--------WPIG 260
SpMyc2b FGLQTLCIPASAN-GVVELGSTELIIIQSDLMKVRFLDFDFMN-SEV--------WPGV 262
RcMyc2 FGLQTLCIPSAN-GVVELGSTELIIIQSDLMKVRFLNF-SLEV--------WPGM 267
FvMyc FGLQTMCVPTAN-GVVELGSTELIIIQSDLMKVRFLDFDFMN-SEV--------WPGM 267
PpMyc2 FGLQTMCVPTAN-GVVELGSTELIIIQSDLMKVRFLDFDFMN-SEV--------WPGM 264
LuMyc2 FGLQTLCIPSAN-GVVELGSTELSDIFSDLMKVRILNFNSLGSGGAGSSWPPL 275
LuMyc2c FGLQTLCIPSAN-GVVELGSTELSDIFSDLMKVRILNFNSLGSGGAGSSWPPL 102
LuMyc2b FGLQTLCIPSAN-GVVELGSTELSDIFSDLMKVRILNFNSLGSGGAGSSWPPL 260
LuMyc2d FGLQTLCIPSAN-GVVELGSTELSDIFSDLMKVRILNFNSLGSGGAGSSWPPL 255
StMyc2 FGLQTLCIPSAN-GVVELGSTELIIIQSDLMKVRFLNFSDNF--------S 285
SlMyc FGLQTLCIPSAN-GVVELGSTELIIIQSDLMKVRFLNFSDNF--------S 285
StMyc FGLQTLCIPSAN-GVVELGSTELIIIQSDLMKVRFLNFSDNF--------S 285
MgMyc2 FGLQTLCIPSSN-GVVELGSTELIIIQSDLMKVRFLNFNAEAGTS--------GSGS 272
GmMyc2 FGLQTLCIPSAN-GVVELGSTELIIIQSDLMKVRFLNFSDNF--------S 285
GmMyc2b FGLQTLCIPSAN-GVVELGSTELIIIQSDLMKVRFLNFSDNF--------S 285
PvMyc2 FGLQTLCIPSAN-GVVELGSTELIIIQSDLMKVRFLNFSDNF--------S 285
MtMyc2 HGQTIAARSD-GVVELGSTELIIIQSDLMKVRIFNPNNN------F--DGSSWPG 240
GmMyc2c FGLQTLCIPSAN-GVVELGSTEVIFQNPDMNLKVRDLPNNNNNN-------PETGSWALN 260
GmMyc2d FGLQTLCIPSAN-GVVELGSLAVIFQNPDMNLKVRDLPNNNNNN-------PETGSWALN 272
FrMyc2b FGLQTLCIPSAN-GVVELGSTEVIFQNPDMNLKVRDLPNNNNNN-------PETGSWALN 260
MtMyc2b HGPQTLVCFPISSGVLVEGSTELSIYQQSDLMKVRFLNFND-------ETGSWPLN 247
AtMyc2 FGMHTIACIPSN-GVVELGSTELIIIQSDLMKVRIFNPNNN------F--DGSSWPG 240
BsMyc2 FGMQTACIPSAN-GVVELGSTELIIIQSDLMKVRIFNPNNN------F--DGSSWPG 240
CrMyc2 FGMQTACIPSAN-GVVELGSTELIIIQSDLMKVRIFNPNNN------F--DGSSWPG 240
EsMyc2 FGMQTACIPSAN-GVVELGSTELIIIQSDLMKVRIFNPNNN------F--DGSSWPG 240
BrMyc2 FGMQTACIPSAN-GVVELGSTELIIIQSDLMKVRIFNPNNN------F--DGSSWPG 240
AtMyc4 YGLQTMVCATEN-GVVELGSTELIIIQSDLMKVRFLNFSDNF--------ETGSWPLN 247
CrMyc2b YGLQTMVCPCEN-GVVELGSTELIIIQSDLMKVRFLNFSDNF--------ETGSWPLN 247
EsMyc2 YGLTEMVCAPAEN-GVVELGSTELIIIQSDLMKVRFLNFSDNF--------ETGSWPLN 247
BrMyc2c YGLEMTMCIPTN-GVVELGSTELIIIQSDLMKVRFLNFSDNF--------ETGSWPLN 247
EsMyc2c YGLEMTMCIPAN-GVVELGSTELIIIQSDLMKVRFLNFSDNF--------ETGSWPLN 247
BrMyc2b YGLEMTMCIPAN-GVVELGSTELIIIQSDLMKVRFLNFSDNF--------ETGSWPLN 247
VvMyc2 CISTITLKLDVNY--ATATAGSNPQINQ--NSKSIQE----------178
AcMyc2 LGQTIVCIPAN-GVVELGSTELIIIQSDLMKVRFLNFSDNF--------ETGSWPLN 247
ZmMyc7e FGLRTMVCIPVG-GVVELGSTELIIIQSDLMKVRFLNFSDNF--------ETGSWPLN 247
SbHLH FGLRTMVCIPVG-GVVELGSTELIIIQSDLMKVRFLNFSDNF--------ETGSWPLN 247
SlMyc2 FGLRTMVCIPVG-GVVELGSTELIIIQSDLMKVRFLNFSDNF--------ETGSWPLN 247
ZmHLH91 FGLRTMVCIPVG-GVVELGSTELIIIQSDLMKVRFLNFSDNF--------ETGSWPLN 247
OsMyc2 FGLRTMVCIPVG-GVVELGSTELIIIQSDLMKVRFLNFSDNF--------ETGSWPLN 247
DbHLH91 FGLRTMVCIPVG-GVVELGSTELIIIQSDLMKVRFLNFSDNF--------ETGSWPLN 247

175
CpMyc2	---Q-IQTQNYISRELNFSGGQY---VNGDSTMNLRESEILNFGESKSRS---SSAN	381
CcMyc2	---I-PQQTQSFTRLENSFSEAYDHS---VKNQSSRLFKPESEIGLENFAEKRSTCTGN	407
GrMyc2	---Q-SHQQ-QGSLCNFLSDFYGFDESSSVVRNQSSSSHLLKPESEILNFGERE---RS	405
TcMyc2	---Q-NHHQ-GHSFCNLFSDYGFDSSSVVRNQSSSSHLLKPESEILNFGERE---RS	392
GrMyc2b	---Q-PQ-QGSSRFNLSDFYGFDSKSVKVFSAHLLKPESEILNFGERE---KS	382
GrMyc2c	---Q-SQPNGLSNSDFYDG---SVMQ---SSHLKPESEILNFGERE---SS	385
GrMyc2d	---Q-SQPNGLSNSDFYDG---SVMQ---SSHLKPESEILNFGERE---SS	385
EgmMyc2c	---Q-MGQGSPFTRLENSFSGFEGDSS---ARGNNSHMPKPESEILNFGESKR---VCNN	438
PtMyc2b	---QIHQTQSLRTLENSFEGEHSTYDGSTVRNQNS---HLMKPESEILNFGESKRS---PSSA	384
SpMyc2a	MATTQSLRTLENSFEGEHSTYDESTVRNQNS---HLMKPESEILNFGESKRS---ASSA	383
SpMyc2b	---IHTQSIFLENSFEGHSTYDGSTVRNQNS---HLKPESEILNFGESKR---ASSA	380
RcMyc2	---Q-SFTLENSFEGYNGFD---RNGMT---NLKPESEILNFGESKR---SYSA	387
FvMyc	---V-TQQTQSFTRLENSDGNYDGSSVKNQNSHSMKPESEILNFGESKR---SYSA	411
PpMyc2c	---Q-TQQTQSFTRLENSDYGDSGKSNQNSANSHSLKPESEILNFGESKR---SYSA	399
LuMyc2b	---QSDQNSFTRLENSGNSL---KPEAGIELSFAEKS---SSS	369
LuMyc2c	---QSDQNSFTRLENSGNSL---KPEAGIELSFAEKS---SSS	369
LuMyc2d	---QSDQNSFTRLENSGNSL---KPEAGIELSFAEKS---SSS	352
StMyc2	---QPQTQGFLENSFEGFDSGNS---NKNENASLSCPELELFNGSST---KASS	412
SlMyc	---QPQTQGFLENSFEGFDSGNS---NKNENASLSCPELELFNGSST---KASS	411
StMyc2	---QPQTQGFLENSFEGFDSGNS---NKNENASLSCPELELFNGSST---KASS	322
GmMyc2	---NPGYNLENFSEYHAGNS---NVRNAGLCRKEILNFGESKR---SFPG	395
GmMyc2b	---IPQVNQVSRELNSFEGFDSGNS---GNNQNHSLKPESEILNFGESRFTSYGV	438
GmMyc2c	---LVFTQNSVSRLENSFEGFDSGNS---GNNQNHSLKPESEILNFGESRFTSYGV	435
FvMyc	---VQVTQSFTRLENSFEGFDSGNS---GNNQNHSLKPESEILNFGESRFTSYGV	440
MtMyc2	---QNKQSFSSFMNSLSYD---SSNQQLRLKPESEILNFGSST---SSVYAN	378
GmMyc2b	---KNGQGFPSRENSNSL---LKESESLFLGSEKSSSKSY---SS	356
GmMyc	---NPSQGGFPSRLENSNSL---LKESESLFLGSEKSSSKSY---SS	369
GmMyc2d	---NPSQGGFPSRLENSNSL---LKESESLFLGSEKSSSKSY---SS	369
GmMyc2b	---NPSQGGFPSRLENSNSL---LKESESLFLGSEKSSSKSY---SS	363
MtMyc2	---NNQNSHFSLFKLENSNSL---MKPESEILNFGSST---SSYITG	363
AtMyc2	---QNKPFKNMTSRELNSFSTSSS---TLVPRGSEIENFDEGRSSGNN	380
BsMyc2	---QNKPFKNMTSRELNSFSTSSS---TLVPRGSEIENFDEGRSSGNN	380
CrMyc2	---QNKPFKNMTSRELNSFSTSSS---TLVPRGSEIENFDEGRSSGNN	380
EsMyc2	---QNKPFKNMTSRELNSFSTSSS---TLVPRGSEIENFDEGRSSGNN	380
BrMyc2	---QNKPFKNMTSRELNSFSTSSS---TLVPRGSEIENFDEGRSSGNN	380
AtMyc4	---KVLSadVFSMNSL---NQGE---E	346
CrMyc2b	---QVTRKSMQWFMNQGND---NGFQSPQSFME	366
EsMyc2b	---NNPKSSEIVSFKNKNGIE---NGFQSPQSFVE	375
BrMyc2c	---QNPQIS---NGFQSPQSFV	343
EsMyc2c	---NPQNPQSLVEQDNLSQGSL---NGFQSPQSFV	346
BrMyc2b	---NPQNPQSLVEQDNLSQGSL---NGFQSPQSFV	346
VvMyc2	---NPQNPQSLVEQDNLSQGSL---NGFQSPQSFV	346
AcMyc2	---Q-IQTQNYISRELNFSGGQY---VNGDSTMNLRESEILNFGESKSRS---SSAN	381
ZmMyc2e	---Q-IQTQNYISRELNFSGGQY---VNGDSTMNLRESEILNFGESKSRS---SSAN	381
SbMyc2	---Q-IQTQNYISRELNFSGGQY---VNGDSTMNLRESEILNFGESKSRS---SSAN	381
SlMyc2	---Q-IQTQNYISRELNFSGGQY---VNGDSTMNLRESEILNFGESKSRS---SSAN	381
ZmMyc2f	---Q-IQTQNYISRELNFSGGQY---VNGDSTMNLRESEILNFGESKSRS---SSAN	381
OsMyc2	---Q-IQTQNYISRELNFSGGQY---VNGDSTMNLRESEILNFGESKSRS---SSAN	381
BdMyc2	---Q-IQTQNYISRELNFSGGQY---VNGDSTMNLRESEILNFGESKSRS---SSAN	381
CpMyc2 VEPEKRPRKRGRKPANGREEPLNHEAERQRREKLNQRFYALRAVVPNVSMDKASLLGD 513
CcMyc2 VEPEKRPRKRGRKPANGREEPLNHEAERQRREKLNQRFYALRAVVPNVSMDKASLLGD 542
GrMyc2 VEPEKRPRKRGRKPANGREEPLNHEAERQRREKLNQRFYALRAVVPNVSMDKASLLGD 538
TcbHLH VEPEKRPRKRGRKPANGREEPLNHEAERQRREKLNQRFYALRAVVPNVSMDKASLLGD 527
GrMyc2b VEPEKRPRKRGRKPANGREEPLNHEAERQRREKLNQRFYALRAVVPNVSMDKASLLGD 517
GrMyc2c VEPEKRPRKRGRKPANGREEPLNHEAERQRREKLNQRFYALRAVVPNVSMDKASLLGD 510
GrMyc2d AEPEKRPRKRGRKPANGREEPLNHEAERQRREKLNQRFYALRAVVPNVSMDKASLLGD 422
EgMyc2 VEPEKRPRKRGRKPANGREEPLNHEAERQRREKLNQRFYALRAVVPNVSMDKASLLGD 574
PtMyc2 VEPEKRPRKRGRKPANGREEPLNHEAERQRREKLNQRFYALRAVVPNVSMDKASLLGD 517
SpMyc2 VEPEKRPRKRGRKPANGREEPLNHEAERQRREKLNQRFYALRAVVPNVSMDKASLLGD 516
SpMyc2b VEPEKRPRKRGRKPANGREEPLNHEAERQRREKLNQRFYALRAVVPNVSMDKASLLGD 509
RcMyc2 VEPEKRPRKRGRKPANGREEPLNHEAERQRREKLNQRFYALRAVVPNVSMDKASLLGD 522
FvMyc VEPEKRPRKRGRKPANGREEPLNHEAERQRREKLNQRFYALRAVVPNVSMDKASLLGD 547
PpMyc2 VEPEKRPRKRGRKPANGREEPLNHEAERQRREKLNQRFYALRAVVPNVSMDKASLLGD 537
LuMyc2 --PEKRPKKRGRKPANGREEPLNHEAERQRREKLNQRFYALRAVVPNVSMDKASLLGD 509
LuMyc2c --PEKRPKKRGRKPANGREEPLNHEAERQRREKLNQRFYALRAVVPNVSMDKASLLGD 338
LuMyc2b --PEKRPKKRGRKPANGREEPLNHEAERQRREKLNQRFYALRAVVPNVSMDKASLLGD 494
StMyc2 VEPEKRPRKRGRKPANGREEPLNHEAERQRREKLNQRFYALRAVVPNVSMDKASLLGD 552
SlMyc VEPEKRPRKRGRKPANGREEPLNHEAERQRREKLNQRFYALRAVVPNVSMDKASLLGD 500
StMyc VEPEKRPRKRGRKPANGREEPLNHEAERQRREKLNQRFYALRAVVPNVSMDKASLLGD 462
GmMyc2 VEPEKRPRKRGRKPANGREEPLNHEAERQRREKLNQRFYALRAVVPNVSMDKASLLGD 586
GmMyc2b VEPEKRPRKRGRKPANGREEPLNHEAERQRREKLNQRFYALRAVVPNVSMDKASLLGD 496
FvMyc2 VEPEKRPRKRGRKPANGREEPLNHEAERQRREKLNQRFYALRAVVPNVSMDKASLLGD 585
MtMyc2 VEPEKRPRKRGRKPANGREEPLNHEAERQRREKLNQRFYALRAVVPNVSMDKASLLGD 530
GmMyc2c MEPEKRPRKRGRKPANGREEPLNHEAERQRREKLNQRFYALRAVVPNVSMDKASLLGD 488
GmMyc2d VEPEKRPRKRGRKPANGREEPLNHEAERQRREKLNQRFYALRAVVPNVSMDKASLLGD 503
FrMyc2b VEPEKRPRKRGRKPANGREEPLNHEAERQRREKLNQRFYALRAVVPNVSMDKASLLGD 499
MtMyc2b VEPEKRPRKRGRKPANGREEPLNHEAERQRREKLNQRFYALRAVVPNVSMDKASLLGD 499
AtMyc2 ---EKRPPKRGRKPANGREEPLNHEAERQRREKLNQRFYALRAVVPNVSMDKASLLGD 489
BsMyc2 ---EKRPPKRGRKPANGREEPLNHEAERQRREKLNQRFYALRAVVPNVSMDKASLLGD 492
CrMyc2 ---EKRPPKRGRKPANGREEPLNHEAERQRREKLNQRFYALRAVVPNVSMDKASLLGD 489
EsMyc2 ---EKRPPKRGRKPANGREEPLNHEAERQRREKLNQRFYALRAVVPNVSMDKASLLGD 488
BrMyc2 ---EKRPPKRGRKPANGREEPLNHEAERQRREKLNQRFYALRAVVPNVSMDKASLLGD 489
AtMyc4 VEPEKRPRKRGRKPANGREEPLNHEAERQRREKLNQRFYSLRAVVPNVSMDKASLLGD 453
CrMyc2b VEPEKRPRKRGRKPANGREEPLNHEAERQRREKLNQRFYSLRAVVPNVSMDKASLLGD 470
EsMyc2b VEPEKRPRKRGRKPANGREEPLNHEAERQRREKLNQRFYSLRAVVPNVSMDKASLLGD 478
BrMyc2c AEPEKRPRKRGRKPANGREEPLNHEAERQRREKLNQRFYSLRAVVPNVSMDKASLLGD 456
EsMyc2c VEPEKRPRKRGRKPANGREEPLNHEAERQRREKLNQRFYSLRAVVPNVSMDKASLLGD 527
BrMyc2b VEPEKRPRKRGRKPANGREEPLNHEAERQRREKLNQRFYSLRAVVPNVSMDKASLLGD 420
VvMyc2 ---GRSLTRGFPS-----EC6GQSQYKVNKLMSN------------------ 249
AcMyc2 VEPEKRPRKRGRKPANGREEPLNHEAERQRREKLNQRFYSLRAVVPNVSMDKASLLGD 504
ZmMyc7e PEAEEKPRKRGRKPANGREEPLNHEAERQRREKLNQRFYALRAVVPNVSMDKASLLGD 564
SbHLH PEAEEKPRKRGRKPANGREEPLNHEAERQRREKLNQRFYALRAVVPNVSMDKASLLGD 568
SlMyc2 PEAEEKPRKRGRKPANGREEPLNHEAERQRREKLNQRFYALRAVVPNVSMDKASLLGD 555
ZmHLH91 PEAEEKPRKRGRKPANGREEPLNHEAERQRREKLNQRFYALRAVVPNVSMDKASLLGD 560
OsMyc2 PEAEEKPRKRGRKPANGREEPLNHEAERQRREKLNQRFYALRAVVPNVSMDKASLLGD 613
BdbHLH91 --EERPRKRGRKPANGREEPLNHEAERQRREKLNQRFYALRAVVPNVSMDKASLLGD 566

81
<table>
<thead>
<tr>
<th>Species</th>
<th>Gene</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>CpMyc2</td>
<td>MIQQATVKMGSRFYTQDQLRALSFLSKIG-DEL---</td>
<td>654</td>
</tr>
<tr>
<td>CcMyc2</td>
<td>MIQQATVKMGSRFYTQDQLRALSFLSKIG-DEL---</td>
<td>654</td>
</tr>
<tr>
<td>GrMyc2</td>
<td>MIQQAVKMGKRNQFFTQDQLKALSFLSKIG-DEL---</td>
<td>654</td>
</tr>
<tr>
<td>GrMyc2b</td>
<td>MIQQATVKMGSRFYTQDQLRALSFLSKIG-DEL---</td>
<td>654</td>
</tr>
<tr>
<td>GrMyc2c</td>
<td>MIQQATVKMGSRFYTQDQLRALSFLSKIG-DEL---</td>
<td>654</td>
</tr>
<tr>
<td>GzMyc2d</td>
<td>MIQQAVKMGKRNQFFTQDQLKALSFLSKIG-DEL---</td>
<td>654</td>
</tr>
<tr>
<td>EgMyc2</td>
<td>MIQQATVKMGSRFYTQDQLRALSFLSKIG-DEL---</td>
<td>654</td>
</tr>
<tr>
<td>PtMyc2</td>
<td>MIQQATVKMGSRFYTQDQLRALSFLSKIG-DEL---</td>
<td>654</td>
</tr>
<tr>
<td>SpMyc2</td>
<td>MIQQATVKMGSRFYTQDQLRALSFLSKIG-DEL---</td>
<td>654</td>
</tr>
<tr>
<td>SpMyc2b</td>
<td>MIQQATVKMGSRFYTQDQLRALSFLSKIG-DEL---</td>
<td>654</td>
</tr>
<tr>
<td>RcMyc2</td>
<td>MIQQATVKMGSRFYTQDQLRALSFLSKIG-DEL---</td>
<td>654</td>
</tr>
<tr>
<td>FvMyc</td>
<td>MIQQATVKMGSRFYTQDQLRALSFLSKIG-DEL---</td>
<td>654</td>
</tr>
<tr>
<td>PpMyc2</td>
<td>MIQQATVKMGSRFYTQDQLRALSFLSKIG-DEL---</td>
<td>654</td>
</tr>
<tr>
<td>LuMyc2</td>
<td>MIQQATVKMGSRFYTQDQLRALSFLSKIG-DEL---</td>
<td>654</td>
</tr>
<tr>
<td>LuMyc2c</td>
<td>MIQQATVKMGSRFYTQDQLRALSFLSKIG-DEL---</td>
<td>654</td>
</tr>
<tr>
<td>LuMyc2b</td>
<td>MIQQATVKMGSRFYTQDQLRALSFLSKIG-DEL---</td>
<td>654</td>
</tr>
<tr>
<td>LuMyc2d</td>
<td>MIQQATVKMGSRFYTQDQLRALSFLSKIG-DEL---</td>
<td>654</td>
</tr>
<tr>
<td>StMyc2</td>
<td>MIQQATVKMGSRFYTQDQLRALSFLSKIG-DEL---</td>
<td>654</td>
</tr>
<tr>
<td>SlMyc</td>
<td>MIQQATVKMGSRFYTQDQLRALSFLSKIG-DEL---</td>
<td>654</td>
</tr>
<tr>
<td>MtMyc2</td>
<td>MIQQATVKMGSRFYTQDQLRALSFLSKIG-DEL---</td>
<td>654</td>
</tr>
<tr>
<td>GmMyc2</td>
<td>MIQQATVKMGSRFYTQDQLRALSFLSKIG-DEL---</td>
<td>654</td>
</tr>
<tr>
<td>GmMyc2b</td>
<td>MIQQATVKMGSRFYTQDQLRALSFLSKIG-DEL---</td>
<td>654</td>
</tr>
<tr>
<td>GmMyc2c</td>
<td>MIQQATVKMGSRFYTQDQLRALSFLSKIG-DEL---</td>
<td>654</td>
</tr>
<tr>
<td>GmMyc2d</td>
<td>MIQQATVKMGSRFYTQDQLRALSFLSKIG-DEL---</td>
<td>654</td>
</tr>
<tr>
<td>FvMyc2</td>
<td>MIQQATVKMGSRFYTQDQLRALSFLSKIG-DEL---</td>
<td>654</td>
</tr>
<tr>
<td>MtMyc2</td>
<td>MIQQATVKMGSRFYTQDQLRALSFLSKIG-DEL---</td>
<td>654</td>
</tr>
<tr>
<td>AtMyc2</td>
<td>MIQQATVKMGSRFYTQDQLRALSFLSKIG-DEL---</td>
<td>654</td>
</tr>
<tr>
<td>BsMyc2</td>
<td>MIQQATVKMGSRFYTQDQLRALSFLSKIG-DEL---</td>
<td>654</td>
</tr>
<tr>
<td>CrMyc2</td>
<td>MIQQATVKMGSRFYTQDQLRALSFLSKIG-DEL---</td>
<td>654</td>
</tr>
<tr>
<td>CmMyc2</td>
<td>MIQQATVKMGSRFYTQDQLRALSFLSKIG-DEL---</td>
<td>654</td>
</tr>
<tr>
<td>CrMyc2b</td>
<td>MIQQATVKMGSRFYTQDQLRALSFLSKIG-DEL---</td>
<td>654</td>
</tr>
<tr>
<td>CsMyc2</td>
<td>MIQQATVKMGSRFYTQDQLRALSFLSKIG-DEL---</td>
<td>654</td>
</tr>
<tr>
<td>BrMyc2</td>
<td>MIQQATVKMGSRFYTQDQLRALSFLSKIG-DEL---</td>
<td>654</td>
</tr>
<tr>
<td>AtMyc4</td>
<td>MIQQATVKMGSRFYTQDQLRALSFLSKIG-DEL---</td>
<td>654</td>
</tr>
<tr>
<td>CrMyc2b</td>
<td>MIQQATVKMGSRFYTQDQLRALSFLSKIG-DEL---</td>
<td>654</td>
</tr>
<tr>
<td>EsMyc2</td>
<td>MIQQATVKMGSRFYTQDQLRALSFLSKIG-DEL---</td>
<td>654</td>
</tr>
<tr>
<td>BrMyc2c</td>
<td>MIQQATVKMGSRFYTQDQLRALSFLSKIG-DEL---</td>
<td>654</td>
</tr>
<tr>
<td>BrMyc2b</td>
<td>MIQQATVKMGSRFYTQDQLRALSFLSKIG-DEL---</td>
<td>654</td>
</tr>
<tr>
<td>VvMyc2</td>
<td>MIQQATVKMGSRFYTQDQLRALSFLSKIG-DEL---</td>
<td>654</td>
</tr>
<tr>
<td>AcMyc2</td>
<td>MIQQATVKMGSRFYTQDQLRALSFLSKIG-DEL---</td>
<td>654</td>
</tr>
<tr>
<td>ZmMyc7e</td>
<td>MIQQAVKMGKRNQFFTQDQLKALSFLSKIG-DEL---</td>
<td>654</td>
</tr>
<tr>
<td>SbMyc4</td>
<td>MIQQATVKMGSRFYTQDQLRALSFLSKIG-DEL---</td>
<td>654</td>
</tr>
<tr>
<td>SlMyc2</td>
<td>MIQQATVKMGSRFYTQDQLRALSFLSKIG-DEL---</td>
<td>654</td>
</tr>
<tr>
<td>ZmMyc7b91</td>
<td>MIQQATVKMGSRFYTQDQLRALSFLSKIG-DEL---</td>
<td>654</td>
</tr>
<tr>
<td>OsMyc2</td>
<td>MIQQAVKMGKRNQFFTQDQLKALSFLSKIG-DEL---</td>
<td>654</td>
</tr>
<tr>
<td>BdbHLH91</td>
<td>MIQQATVKMGSRFYTQDQLRALSFLSKIG-DEL---</td>
<td>654</td>
</tr>
</tbody>
</table>
APPENDIX IV: ROOT BIOMASS AND LENGTH QUANTIFICATION OF DROUGHT STRESSED PLANTS AFTER RECOVERY

Percentage of root biomass increment/reduction

Percentage root biomass increment/reduction of wild type (WT), overexpresser (OE), and knock down (KD) lines

Percentage of root length increment

Percentage root length increment/reduction of wild type (WT), overexpresser (OE), and knock down (KD) lines
VITA

Luis Eduardo Sánchez Timm was born to Luis Eduardo Sánchez Macías and Grace Mónica Timm Duque in 1985 in Guayaquil, Ecuador’s biggest city and located on the banks of the river Guayas. He has three brothers, Rafael, Guillermo and José Sánchez Timm. He finished his elementary school in “Escuela Espíritu Santo” followed by high school in the “Unidad Educativa Mariscal Sucre (UEMS)”. In 2010, he obtained his degree as an Agronomist and Biologist Engineer from “Escuela Superior Politécnica del Litoral (ESPOL)”, where he started to develop an interest in plant biotechnology. Then he worked in the “Centro de Investigaciones Biotecnológicas del Ecuador (CIBE)” under the mentorship of Dr. Efren Santos, who gave him the opportunity to participate in a project for the development of genetically engineered banana, and identification of putative resistance genes of banana variety “Calcutta IV” in response to the infection of *Mycosphaerella fijiensis*. In 2011, he was awarded the USDA-Borlaug scholarship for a scientific exchange program at LSU, where he worked with Dr. Niranjan Baisakh to identify and characterize stress-responsive genes using suppression subtractive hybridization (SSH) and other molecular tools. In 2012 he was granted an Ecuadorian government scholarship from SENESCYT to join laboratory for a Ph.D program under the supervision of Dr. Baisakh. He worked in a project to characterize the role of *Myc2* transcription factor in drought stress response of rice using contemporary molecular biology and biotechnology approaches. Upon completion of his program at LSU, he will go back to Ecuador to join CIBE and participate in the development and implementation of new scientific projects.