Paleoecology, Stratigraphy, and Taxonomy of the Foraminifera of the Weches Formation of East Texas and the Cane River Formation of Louisiana.

Haeung Choung
Louisiana State University and Agricultural & Mechanical College

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses

Recommended Citation
https://digitalcommons.lsu.edu/gradschool_disstheses/2780

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact gradetd@lsu.edu.
INFORMATION TO USERS

This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted.

The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction.

1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity.

2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame.

3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again — beginning below the first row and continuing on until complete.

4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation. Silver prints of "photographs" may be ordered at additional charge by writing the Order Department, giving the catalog number, title, author and specific pages you wish reproduced.

5. PLEASE NOTE: Some pages may have indistinct print. Filmed as received.

Xerox University Microfilms
300 North Zeab Road
Ann Arbor, Michigan 48106
CHOUNG, Haeung, 1942-
PALEOECOLOGY, STRATIGRAPHY, AND TAXONOMY
OF THE FORAMINIFERA OF THE WECHE FORMATION
OF EAST TEXAS AND THE CANE RIVER FORMATION
OF LOUISIANA.

The Louisiana State University and Agricultural
and Mechanical College, Ph.D., 1975
Geology

Xerox University Microfilms, Ann Arbor, Michigan 48106

THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED.
Paleoecology, Stratigraphy, and Taxonomy of the Foraminifera of the Weches Formation of East Texas and the Cane River Formation of Louisiana

A DISSERTATION

Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy

in

The Department of Geology

by

Haeung Choung

B.S., Seoul National University, 1967
M.S., University of Connecticut, 1970
May, 1975
ACKNOWLEDGMENT

The writer wishes to express his most sincere thanks to the following people for their generous assistance and contributions to the preparation of this study:

To Dr. Harold V. Andersen, Chairman of the Dissertation Committee, who first suggested the research problem and directed the writer patiently in every phase of the research to the completion,

To Dr. Henrik B. Stenzel who personally guided the writer to the numerous Claiborne outcrops in Texas and advised the writer on the stratigraphic concept of the Gulf Coast area,

To Dr. Clarence O. Durham, Dr. George F. Hart, Dr. Bob F. Perkins and Dr. Willem A. van den Bold, members of the Dissertation Committee, for rendering valuable advice and taking patience to review the manuscript.

To the late Dr. Henry V. Howe who friendly advised and encouraged the writer on numerous occasions during the course of writer's graduate study,

To Dr. Pretiss E. Schilling, Department of Experimental Statistics, for formulating and supervising the statistical analysis employed in this study,

To Mr. Leo W. Hough, State Geologist, Louisiana Geological Survey, for making funds and the facilities available
for numerous field trips to obtain core samples both in Louisiana and Texas,

To Mr. Harry L. Roland, Assistant State Geologist, and Mr. Fred K. Kring, Research Assistant, Louisiana Geological Survey, for their strenuous efforts in coring and drilling activities,

To Mr. Alvin M. Phillips, Jr., Museum of Geoscience, for proof reading the portion of Foraminiferal taxonomy,

To Mr. Michael J. Raymond, Graduate Assistant, Department of Geology, and Mr. Russel J. Adams, School of Geoscience, for helping with computer program and operation.

Finally, the writer also wishes to thank his colleagues and staff of the School of Geoscience who have been so helpful in many ways.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>x</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>PART I. PALEOECOLOGY AND STRATIGRAPHY</td>
<td>5</td>
</tr>
<tr>
<td>GEOLOGICAL SETTING OF THE AREA STUDIED</td>
<td>5</td>
</tr>
<tr>
<td>Structural Elements</td>
<td>5</td>
</tr>
<tr>
<td>East Texas Embayment</td>
<td>5</td>
</tr>
<tr>
<td>Sabine Uplift</td>
<td>6</td>
</tr>
<tr>
<td>North Louisiana Syncline</td>
<td>6</td>
</tr>
<tr>
<td>Areal Distribution of the Claiborne Group</td>
<td>7</td>
</tr>
<tr>
<td>Regional Stratigraphy</td>
<td>8</td>
</tr>
<tr>
<td>Carrizo Sand</td>
<td>9</td>
</tr>
<tr>
<td>Reklaw Formation</td>
<td>11</td>
</tr>
<tr>
<td>Queen City Formation</td>
<td>13</td>
</tr>
<tr>
<td>Weches Formation</td>
<td>14</td>
</tr>
<tr>
<td>Cane River Formation</td>
<td>16</td>
</tr>
<tr>
<td>Sparta Formation</td>
<td>17</td>
</tr>
<tr>
<td>Lithology of the Formations Studied</td>
<td>19</td>
</tr>
<tr>
<td>METHOD OF STUDY</td>
<td>25</td>
</tr>
<tr>
<td>Sample Localities</td>
<td>25</td>
</tr>
<tr>
<td>Sampling Method and Laboratory Preparation</td>
<td>25</td>
</tr>
<tr>
<td>Statistical Analysis</td>
<td>27</td>
</tr>
<tr>
<td>Regression Analysis</td>
<td>27</td>
</tr>
<tr>
<td>Cluster Analysis</td>
<td>29</td>
</tr>
<tr>
<td>REPRESENTATIVE FAUNA</td>
<td>32</td>
</tr>
<tr>
<td>Foraminifera</td>
<td>32</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
<table>
<thead>
<tr>
<th>Previous Works</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distribution</td>
<td>32</td>
</tr>
<tr>
<td>Trend of Occurrence</td>
<td>40</td>
</tr>
<tr>
<td>Ostracoda</td>
<td>68</td>
</tr>
<tr>
<td>Mollusca</td>
<td>72</td>
</tr>
<tr>
<td>Bryozoa</td>
<td>74</td>
</tr>
<tr>
<td>Others</td>
<td>75</td>
</tr>
<tr>
<td>FORAMINIFERAL ECOLOGY</td>
<td>77</td>
</tr>
<tr>
<td>Nature of Studies and their Paleoecologic Value</td>
<td>77</td>
</tr>
<tr>
<td>Source of Variation for Ecologic Distribution</td>
<td>78</td>
</tr>
<tr>
<td>Classification of Environments</td>
<td>80</td>
</tr>
<tr>
<td>Some Characteristics of Foraminiferal Ecology</td>
<td>81</td>
</tr>
<tr>
<td>Generic Distribution of Recent Foraminifera in the Generalized Environments of the Gulf of Mexico</td>
<td>88</td>
</tr>
<tr>
<td>PALEOECOLOGY</td>
<td>94</td>
</tr>
<tr>
<td>General</td>
<td>94</td>
</tr>
<tr>
<td>Bathymetry and Environment of Some Important Claiborne Foraminifera compared with Recent Species</td>
<td>95</td>
</tr>
<tr>
<td>Environmental Assemblages</td>
<td>108</td>
</tr>
<tr>
<td>General</td>
<td>108</td>
</tr>
<tr>
<td>Result of Cluster Analysis</td>
<td>110</td>
</tr>
<tr>
<td>Comparison between the Weches and Cane River Environments</td>
<td>118</td>
</tr>
</tbody>
</table>
STRATIGRAPHIC CORRELATION .. 128
Lithostratigraphy ... 128
Biostratigraphy ... 132
CONCLUSIONS .. 136
PART II. TAXONOMY OF FORAMINIFERA 138

SYSTEMATIC DESCRIPTIONS OF CANE RIVER AND WECHES

FORAMINIFERA .. 138
Family Ammodiscidae .. 139
Family Lituolidae ... 139
Family Textulariidae .. 141
Family Trochamminidae .. 143
Family Ataxophragmiidae .. 143
Family Fischerinidae .. 144
Family Nubeculariidae ... 145
Family Miliolidae ... 146
Family Nodosariidae .. 148
Family Polymorphinidae .. 163
Family Glandulinidae .. 166
Family Turrilinidae ... 166
Family Bolivinitidae .. 167
Family Buliminidae ... 169
Family Uvigerinidae ... 171
Family Discorbidae ... 175
Family Siphoninidae ... 177
<table>
<thead>
<tr>
<th>Family</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Family Asterigerinidae</td>
<td>179</td>
</tr>
<tr>
<td>Family Elphidiidae</td>
<td>181</td>
</tr>
<tr>
<td>Family Heterohelicidae</td>
<td>181</td>
</tr>
<tr>
<td>Family Hantkeninidae</td>
<td>182</td>
</tr>
<tr>
<td>Family Globorotaliidae</td>
<td>182</td>
</tr>
<tr>
<td>Family Globigerinidae</td>
<td>185</td>
</tr>
<tr>
<td>Family Eponididae</td>
<td>186</td>
</tr>
<tr>
<td>Family Cibicididae</td>
<td>187</td>
</tr>
<tr>
<td>Family Discocyclinidae</td>
<td>192</td>
</tr>
<tr>
<td>Family Caucasinidae</td>
<td>192</td>
</tr>
<tr>
<td>Family Cassidulinidae</td>
<td>193</td>
</tr>
<tr>
<td>Family Nonionidae</td>
<td>194</td>
</tr>
<tr>
<td>Family Alabaminidae</td>
<td>195</td>
</tr>
<tr>
<td>Family Osangulariidae</td>
<td>196</td>
</tr>
<tr>
<td>Family Anomalinioides</td>
<td>196</td>
</tr>
<tr>
<td>Family Ceratobuliminidae</td>
<td>198</td>
</tr>
<tr>
<td>Family Robertinidae</td>
<td>200</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>201</td>
</tr>
</tbody>
</table>
APPENDIX I. Description of Sampled Sections............ 215

II. Table of Frequency and Depth Range of Foraminiferal Species living in the Gulf of Mexico......................... 230

III. List of Ostracoda Species and their References................................. 238

IV. Regression Equations................................. 242

V. (A) Reference for Sample Identification.. 250
 (B) UPGNC Dendrogram of Foraminiferal Assemblages.................. (In packet)

VI. Frequency and Occurrence of Representative Faunas................ (In packet)
 (A) Foraminifera
 (B) Ostracoda, Mollusca, Bryozoa, and Anthozoa.
ILLUSTRATIONS

PLATE 1. Ammodiscidae, Lituolidae, Textulariidae, Trochamminidae, Ataxophragmiidae, Fischerinidae, Nuberculariidae, and Miliolidae................................. 245

2. Miliolidae and Nodosariidae....................... 256

3. Nodosariidae, Polymorphinidae, Glandulinidae, and Turrilinidae.............................. 258

4. Bolivinitidae, Buliminidae, Uvigerinidae, Discorbidae, Siphoninidae, Asterigerinidae, and Elphidiidae.. 260

5. Heterohelicidae, Hantkeninidae, Globorotaliidae, Globigerinidae, Eponididae, and Cibicididae................... 262

6. Cibicididae, Discocyclinidae, Caucasinidae, Cassidulinidae, Nonionidae, Alabaminidae, Osangulariidae, Anomalinidae, Ceratobuliminidae, and Robertinidae..... 264

7-9. Ostracoda (Genera in Alphabetic Order)...... 266
ABSTRACT

The Cane River and Weches Formations, consisted mainly of clay and glauconite, were deposited during the transgressive period in the Claiborne Stage of Eocene.

The study of Foraminifera, partially aided by some statistical analysis, and other microfaunas indicates that there are differences in the environment of deposition and stratigraphic relationship between the Weches and Cane River Formations. Comparison between the ecologic characteristics of living Foraminifera and the fossil fauna suggests that the paleoenvironments of deposition of both the Weches and Cane River Formations range from transitional to outer neritic environments. Inferred environment of the Cane River Formation ranges from middle to outer neritic environment. The Weches has been mostly under inner neritic environment.

Foraminiferal assemblages of transitional environment, represented predominantly by arenaceous species, occur in the chocolate brown clay which indicates the initial stage of transgression and beginning of regression. Normal marine Foraminifera are mostly found in the glauconitic and calcareous sediments which constitute major part of the both formations.

Paleoecologic study has resulted in the following environmental evaluation of some of major Claiborne

x
foraminiferal genera; Ammobaculites, Bolivina and Brizalina, Bulimina, Cibicidina, Haplophragmoides, Lenticulina, Quiqueloculina, Spiroplectamina, Trifarina, and Uvigerina seem to have remained in the similar environment since the Eocene; Lamarckina seems to have adopted shallower environment; Asterigerina, Cibicides, Cyclamina, Discorbis, Gyroidinoides, Melonis, Neoeponides, Siphonina, and Trochammina have adopted deeper environment.

Although the Weches and Cane River Formations show great similarities in the type of sediments, faunal contents and stratigraphic setting, the mode of occurrence and the continuity of some important fauna are interpreted that the Cane River and Weches environments had been separated by time and physical barrier at least in the outcrop area, for which tectonic event which resulted in the deposition of the Queen City Formation in Texas may be partially responsible.

The species of Genus Discorbis and Family Miliolidae, which are extremely abundant and widely distributed in the Weches Formation are absent in the Cane River Formation examined. Stratigraphically significant oyster species, Cubitostra lisbonensis occurs in different horizons of the Weches and Cane River, and C. smithvillensis is absent in the Cane River Formation. Discocyclina advena, conspicuous in the Cane River, is known to occur in the Reklaw Formation; but not present in the Weches Formation.
It is proposed here that the Cane River Formation is lithostratigraphically continuous only with the Reklaw Formation of East Texas. The Weches and the Reklaw Formations are not considered to merge to form a single unit, equivalent to the Cane River Formation, in the vicinity of south of the Sabine Uplift.

As a result of taxonomic reexamination of Foraminifera 144 species of 72 genera are described including 4 new species and one new subspecies. A total of 48 species which were originally described as new species from the Cane River Formation are identified as synonyms of previously described species.
INTRODUCTION

The Claiborne of the Gulf Coast Eocene Epoch has been the subject of numerous paleontological and stratigraphical studies. Its abundant fossils and fortuitous position in the Tertiary sequence made the Claiborne the focal point in regional studies when the geology of the Gulf Coastal Plain was being unraveled. In view of the fact that much of the original work done was of a local nature, it was difficult, at first, to blend the many independent interpretations and conclusions into a comprehensive whole, in the fields of both paleontology and stratigraphy. Stratigraphers had difficulty recognizing each other's lithologic units; paleontologists had not thoroughly resolved the taxonomy of the faunas, and gave no consideration to the fact that many faunas were controlled by facies.

Shaw (1964) pointed out that with the advent of highly sophisticated geological techniques, the application of paleontology as the measure of time and spatial relationship between the sedimentary units has often been replaced by the traceable lithic units, especially in the field of applied geology. Paleontological data are sought in many instances and areas only when the lithic units fail to be evident. In some areas, paleontology has become a field in which complex
nomenclatural studies are conducted without due consideration for what the organisms reveal from an ecological standpoint.

Recently the importance of paleoecology in understanding the history of sedimentary sequence has been emphasized and numerous studies in both the fields of ecology and paleoecology have been published. A few studies of foraminiferal paleoecology, based on some criteria obtained from living organisms, have proven to be useful and reliable in both paleoenvironmental and stratigraphic studies. However, these studies are based on observations in relatively younger sections. The feasibility of applying recent criteria to the older geologic units (generally older than Oligocene) remains to be tested.

It is the goal in the present study to present a technique which will result in some useful method in future research in the use of Foraminifera in paleoecology and applied paleontology. The Weches Formation and the Cane River Formation were chosen for this study because the relationship between the two formations has been rather elusive. Although closely located, with similar lithologic and paleontologic content, their relationship was not clearly understood.

Reports by Wendlandt and Knebel (1928), Ellisor (1929), Plummer (1933), and Stenzel (1938) contributed materially to formulating the stratigraphy of the Weches in the Claiborne Group, the paleontology of which has been the subject of numerous studies especially with Foraminifera. The Cane
River foraminifera, however, has only been reported in two monography. The two formations have been loosely correlated on the basis of their distinctive lithology and a few molluscan species; however, their lateral traceability has never been seriously tested. Because the previous publications on Foraminifera have been completed with no intention of comparing the two formations, the taxonomic differences have not been resolved. Consequently, revision of the taxonomy was bound to be inherited by anyone who attempted to use Foraminifera in comparing the two formations from biostratigraphic and paleoecologic standpoints.

The main objective of this study, therefore, is twofold: 1) to reexamine and redescribe the Cane River and Weches Foraminifera. 2) to analyze paleontologic data for paleoecologic and stratigraphic comparison leading to a new interpretation of the relationship between the two formations.
Fig. 1. Distribution of the Claiborne Group and Related Structural Elements
PART I. PALEOECOLOGY AND STRATIGRAPHY

GEOLOGICAL SETTING OF THE AREA STUDIED

Structural Elements

East Texas Embayment

This negative area has been in existence at least since the Jurassic or Pre-Jurassic and has grown progressively to receive a thick sedimentary sequence (Barrow, 1953; Coon, 1956). The embayment has generally a North-South axis to the West of the Sabine Uplift and bifurcates northeasterly to the North of the Sabine Uplift and northwesterly to the front of the Ouachita fold belts (Longwell et al., 1954). The Northeastern extension of the basin was connected with the North Louisiana syncline north of the Sabine Uplift. The northwestern extension was not a prominent feature at the time of Claiborne deposition (Geologic Map of the U.S., USGS.).

The shape of the basin was modified, as the center of the Sabine Uplift shifted eastward in the Jurassic and early Cretaceous. Later sedimentary sequences were deposited in the basin approximately at the present axis as the easterly shifting of the Uplift was stabilized in the early Tertiary (Murray, 1961). Except in Cretaceous time, when the Southern part of the basin is thought to have been constricted by some positive elements, the embayment was open to the Gulf.
geosyncline proper. The marine environment receded from the area after extensive deposition of the Claiborne Group. Within the basin numerous salt domes controlled the positive and negative elements to a minor scale.

Sabine Uplift

The Sabine Uplift, first recognized by Harris (1910), is a broad platform generally outlined by the Wilcox-Claiborne contact with the oldest sediments exposed being of Midwayan age.

The Uplift is approximately eighty miles long and sixty-five miles wide (Murray, 1961) and has numerous structural features which served as hydrocarbon traps. The center of maximum uplift shifted eastward during late Coahuilan and early Commanchean and has remained in the present area since then. The Sabine Uplift is thought to have been a positive element since as early as late Paleozoic-early Mesozoic time, as evidenced by the absence of salt deposits, and reflects the rejuvenation of the basement or topographic relief. The Uplift might have been the largest offshore landmass in the Gulf of Mexico during the lower Claiborne.

There are a number of hypotheses as to the origin of the Sabine Uplift including igneous intrusion (Moody, 1931), and differential tectonic rejuvenation of the Wichita trend (Murray, 1961). However, the cause of the Uplift is not well understood.

North Louisiana Syncline

The North Louisiana Syncline trend northwest-southeast
in north Louisiana and encircles the Sabine Uplift on the northern side and connects to the northeastern extension of East Texas Embayment (Longwell et al., 1954). Subsurface contours, based on the Lower Cretaceous beds, show a somewhat wedge-shaped embayment between the Sabine Uplift and the Monroe Uplift (Williamson, 1959). Prior to the Lower Cretaceous, the syncline was a broad irregular sedimentary basin with the center of the Sabine Uplift farther to the west. Later the axis of the syncline was modified by the growth of the Sabine and Monroe Uplifts without any structural compression. There are a number of salt related structures indicating the existence of the basin in Jurassic or an earlier time and they form major structural features within the basin (Murray, 1961). The Monroe Uplift remained submerged during most of the early Tertiary and a normal sedimentary sequence of the Eocene is found on its top. It has been mainly a submarine feature to the northeast of the North Louisiana syncline without significant environmental control over the sedimentation of Claiborne time.

Areal Distribution of the Claiborne Group

The total thickness and areal disposition of the Claiborne Group varies from place to place in surface exposure with individual formations ranging from a few feet to several hundred feet in thickness. Some formations of the group occur in a belt of several miles while some are too thin to be mapped even in a relatively large-scale map.
The group extends southwest to northeast from the Mississippi embayment to the northeastern part of Mexico. Outcrops are completely lacking in the Mississippi alluvial belt. Around the Sabine Uplift, its strike conforms to the general outline of the Uplift. North and west of the Sabine Uplift all of the formations have relatively wide areal extent and can be traced into North Louisiana. South of the Sabine Uplift, the surface exposures of the Carrizo, Reklaw, Queen City and Weches formations, however, converge into a very narrow belt. Only the Reklaw and/or Weches are exposed in a band of less than half mile wide near the Sabine River and can not be traced into Louisiana.

These Claiborne formations are well recognized in Texas, but not clearly recognized in Louisiana.

Regional Stratigraphy

Early Tertiary units in the Gulf Coast area are composed entirely of arenaceous sediments which separate carbonates of the Cretaceous and calcareous clay and argillaceous sediments of later periods in the early Tertiary. The Claiborne formations show a transitional nature between those predominantly arenaceous facies and argillaceous facies with a variety of sediments and environments.

The Claiborne group in the area studies consists of interfingering marine and non-marine units of glauconite, sand, silt, clay and marl generally in a cyclic sequence comprising the beds between the Wilcox and the Jackson Group. Stenzel (1941) characterized this sequence as having a cycle
of "Cross-bedded sand (Regressive hiatus)" and "Basal glauconite (Transgressive hiatus)" from their apparent physical break and the slowness of deposition. Generally, the terrigenous source was not active during the marine transgression resulting in relatively thin authigenic sediments. In most cases of non-marine sedimentation, rapid dispersion of deltaic or fluvial sediments constructed rather thick clastic units and often preserved transitional contacts between marine and non-marine units. Therefore, it is suspected that the cyclic deposition was controlled by the rejuvenation of the source area and not by the eustatic change of sea level.

As all units show considerable lateral persistence, each Claiborne unit has sometimes been thought to have been deposited in a single continuous environment. Although major types of sediments and depositional environments remained in similar conditions in each cycle, there are a great variety of environmental and stratigraphic settings within and between lithic units. The following table shows a summarized correlation between the Claiborne units in the area accepted by most Gulf Coastal geologists. The table was freely drawn from various sources. Their histories and validity will not be discussed except for those directly concerned with the present study.

Carizzo Sand

There are some reservations as to the exact position of the Carrizo Sand in the Wilcox-Claiborne stage because of
<table>
<thead>
<tr>
<th></th>
<th>Texas</th>
<th>Louisiana</th>
<th>Mississippi</th>
<th>W. Alabama</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formation</td>
<td>Member</td>
<td>Formation</td>
<td>Formation</td>
<td>Formation</td>
</tr>
<tr>
<td>Jackson</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yegua - Cockfield</td>
<td></td>
<td>Cockfield</td>
<td>Cockfield</td>
<td>Gosport Sand</td>
</tr>
<tr>
<td>Cook Mt.</td>
<td></td>
<td>Cook Mt.</td>
<td>Cook Mt.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sparta</td>
<td>Sparta</td>
<td></td>
</tr>
<tr>
<td>Weches</td>
<td>Therill</td>
<td></td>
<td></td>
<td>Lisbon</td>
</tr>
<tr>
<td></td>
<td>Viesca</td>
<td></td>
<td></td>
<td>Zilpha Clay</td>
</tr>
<tr>
<td></td>
<td>Tyus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Queen City</td>
<td>Mytris</td>
<td></td>
<td></td>
<td>Winnona Sand</td>
</tr>
<tr>
<td></td>
<td>Omen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Arp</td>
<td></td>
<td></td>
<td>Neshoba Sand</td>
</tr>
<tr>
<td>Reklaw</td>
<td>Marquez</td>
<td></td>
<td></td>
<td>Tallahata</td>
</tr>
<tr>
<td></td>
<td>Newby</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tallahata</td>
</tr>
<tr>
<td>Wilcox</td>
<td></td>
<td>? Carrizo</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

its unconformable contact with the lower lignitic Wilcox and the overlying Reklaw. Originally separated from the Wilcox by Owen (1888) to include all sand layers between the lignitic shale below and the glauconitic clay of the overlying Reklaw Formation, it is a product of a variety of transitional environments (Davis and Ethridge, 1971) consisting of a massive layer of stratified, cross-bedded, fine to medium grained clean sand. Locally some light colored clay and volcanic ash are present and in placed sediments are indurated into a hard ferruginous sandstone.

In Louisiana, the Carrizo is restricted to a narrow belt around the outer margin of the Sabine Uplift where it is differentiated from the Upper Wilcox. Generally, the surface exposure is limited, and in most places it is not clearly separated from the Wilcox. However, in many subsurface wells it has been observed that the overlying Cane River maintains transitional contact with the undifferentiated upper Wilcox which is thought to be the Carrizo equivalent. This seems to correspond to the nature of the gradational boundary between the Carrizo Sand and the Reklaw in Texas where contacts between the two formations could be observed in outcrops.

Reklaw Formation

Originally designated as a member of the Mount Selman Formation in Texas (Wendlandt and Knebel, 1929), later raised to formational rank (Plummer, 1933) and subsequently subdivided into two members (Stenzel, 1939), the Reklaw
Formation includes basal glauconitic sand and upper glauconitic and brown clay with streaks of glauconite or sand below the Queen City sand. The Lower Newby member consists of alternating glauconitic sand, glauconitic brownish shale and some brown clayey ironstone.

In east Texas the lower contact is marked by the dark glauconitic bed at the base of the formation separated from the brown to dark blue micaceous sand member of the upper Carrizo by a locally continuous unconformity. The glauconite was initially included in the Reklaw but separated later from it (Stenzel, 1950). In places this bed has been observed to contain larger numbers of *Venericardia planicosta* Lamarck and *Turritella turneri* Plummer. Stenzel (1948) recognized this as a lagoonal facies occurring in the northern part of the Tyler basin (Northern East Texas Embayment). He also recognized a marine facies of the same horizon with rich and varied fauna in the southern end of the basin. One noteworthy observation in the Newby member if the finding of typical Cane River Foraminifer *Discocyclina advena* from the test wells of Simm's Renfro No. 1 in Angelina County and Southern Pine No. 1-A in Trinity County, Texas (Ellisor, 1920). Because of this, Ellisor mistakenly identified those subsurface sections of about fifty feet as the Cane River Formation. The upper member of the Reklaw formation, the Marquez shale, is mainly composed of chocolate brown, locally calcareous, clay grading into the Newby glauconite. The boundary between the
two members is therefore placed on the basis of predominance of the constituent elements. The total thickness of the Reklaw in East Texas varies from 30 to 130 feet. Until now, the Reklaw was thought to be strictly a Texas unit often correlated with the lower part of the Cane River of Louisiana.

Queen City Formation

Named by Kennedy (1892), the Queen City Formation is a complex deltaic system commonly divided into three members in East Texas and North Louisiana; an upper Mytris sand member (Smith, 1958), middle Omen member of Glauconite (Wendlandt and Knebel, 1929), and lower Arp sand member (Moody, 1931). The Queen City Formation contains a series of sediments usually associated with constructive and destructive deltaic sequences ranging from lignitic clay to clean blanket sand. In Texas it has been noted that the Queen City sand in the outcrop belt piches out toward the east and disappears in the east of San Augustine County (Dzilsky, 1953; Ellisor, 1929) where the Weches above and the Reklaw below are thought to merge, forming a single continuous section equivalent to the Cane River of Louisiana. There is a new interpretation on such thinning and disappearing of the Queen City in East Texas, which will be discussed later in the chapter of stratigraphy. North of the Sabine Uplift in Caddo Parish, Louisiana, Smith (1958) recognized all three members of the Queen City which has a total thickness of 118 to 165 feet, and noted that these members were
traceable as far as into the east bank of the Red River in Bossier Parish. However, the relationship of the Queen City Formation with adjacent formations was not clarified. It is interesting to note that within the Queen City there was a brief marine transgression even up to this area contrary to the most common opinion that the Queen City Sand is a product of a single event of deltaic propagation.

Weches Formation

Wendlandt and Knebel (1929) designated the Weches originally as a member of Mount Selmen Formation which, in East Texas, consisted of brown clay, olive green to blueish green glauconite, and glauconitic marl of varying thickness ranging from 50 to 150 feet in Texas. Stenzel (1938), from his observation in Leon County, Texas, subdivided the Weches into three members recognizing gradational contacts between them. This subdivision is in common use by many surface geologists although this three-fold division is not readily apparent in many places. The Therill, the upper member, consists of chocolate brown clay which Stenzel (1952) described as a continuous unit which extends as far as Mississippi where it correlates with the Zilpha Clay. Stenzel further suggested that the Zilpha be suppressed and replaced by Therill.

The middle member, the Viesca, is the most conspicuous unit in the Weches. It consists predominantly of poorly bedded bluish-green glauconite and glauconitic marl with a rich fossil fauna.
In the East Texas area the lithology of the lower Tyus member appears to be different from what has been described in the type section where it is commonly known as light colored "Salt and pepper" textured calcareous marl. In most of the outcrops and cores studied, the lower member shows lithic characteristics similar to the upper Therill. It consists of chocolate brown clay and alternation of glauconite and brown clay. Lime nodules and limestone benches are more abundant in this section. Generally, the total thickness increases slightly toward Nacagdoches and San Augustine County and to the Northeast toward the northwest of the Sabine Uplift. Particularly, in Cass County, the Weches "green-sand" becomes more sandy and is cross-bedded. Iron ore occurs irregularly in the upper section of the Weches in this area. This, compared with other normal sequences of the Weches sediments in the South and Southwest margin of the Sabine Uplift, indicates the closeness of the terrigenous source area and the relatively insignificant role of the Sabine Uplift as a source area although it remained as a positive element throughout the Claiborne.

Boundaries between the Weches and adjacent formations are often problematic. As the Queen City sand is a product of multi-sedimentary facies, the Weches-Queen City boundary is also controlled by laterally shifting environmental conditions. Generally, the lower contact is conformable in the southern part of the Weches basin and disconformable in the northern part of the area where the Queen City becomes
sandier and cleaner. However, in the eastern part of Texas where the Queen City sand thins out, the relationship between the Weches and Reklaw is not well established. The upper contact with the Sparta appears to be transitional in most places as the Sparta sand quickly spread over the receding marine environment of the Weches.

Cane River Formation

Spooner (1926) named the series of chocolate brown clay, glauconite, and glauconitic marl in Natchitoches Parish, Louisiana, as the Cane River Formation at the suggestion of H. V. Howe. The thickness varies, averaging from 75 to 150 feet in the vicinity of the type locality, but generally increases away from the Sabine Uplift toward the east and southeast up to 300 feet in the subsurface. The sediments consist of upper chocolate brown clay and lower glauconite and glauconitic marl. In the Southeastern part of the outcrop area the lower glauconitic section becomes more marly with scattered glauconites commonly logged as "salt and pepper" texture.

To the east of the Sabine Uplift the strike changes from NE-SW to NW-SE and the sediments become sandier toward the north and northeast part of the uplift. In Bossier Parish it was observed that the Cane River consists entirely of sand with little glauconite (Spooner, 1926). However, in Webster Parish to the east the lithology maintains its usual sequence as in the type section, indicating deepening of the
basin or remoteness from the clastic source. There was an attempt to subdivide the Cane River into two members of the upper clay and lower marl (Shearer, 1930) and later the lower part of the Sparta was added as an uppermost third member (Chawner, 1936). However, this kind of subdivision is not reasonably applicable to the entire Cane River Formation.

In the area studied, the formational boundaries appear to be conformable as observed in a few shallow cores where the entire section could be examined. The lower contact with undifferentiated Wilcox is typified by the presence of unfossiliferous brownish quartzose sand with some glauconite which resembles the Reklaw-Carrizo relationship in Texas.

Sparta Sand

The Sparta Sand, first introduced by Vaughan (1876) from North Louisiana and amended by Spooner (1926) now includes loose, massive, well-bedded, buff to yellowish orange sand with transitional light grayish silty clays notably in the zone of stratigraphic contacts with neighboring formations. These transitional clays posed some uncertainty as to the formational boundaries with Cook Mountain Formation above and the Weches and Cane River below.

In East Texas the Sparta contact with the underlying Therill member of the Weches is observed to be disconformable in Leon County and Houston County (Stenzel, 1938) but more transitional toward the east. This transitional nature is more apparent in Sabine and Natchitoches Parishes, Louisiana.
where light gray, reddish mottled, sandy clay grades into chocolate brown clay of the upper Cane River.

The upper boundary described from wells and outcrops shows a more or less similar transitional relationship as the lower contact. If the Sparta sand were to be strictly defined as the sand mass between clays above and below, the total thickness would be reduced considerably. On the other hand, if it should include all non-fossiliferous clays, the thickness would increase and boundaries can only be decided paleontologically. The latter is possible and reasonable because the adjacent formations are supposed to be the product of marine transgression. Therefore, any indication of marine environment by fossil fauna should establish the boundary between marine and non-marine formations where the contact is transitionally conformable. The total thickness ranges from 150 to 500 feet with Louisiana sections being generally thicker.
Lithology of the Formations Studied

The lithology of the Weches and Cane River Formations shows great similarity in both sediment types and sequence in the section. The sediments consist of glauconite, glauconitic marl, clay, sand, and calcareous organic remains. Of these, glauconite and clay are the main constituents. Subordinate elements are iron concretions and nodules derived from siderite and glauconite, abundant in the Weches, rare in the Cane River. The minor clastics in the sediments of both formations consist of medium to very fine, poorly sorted, subangular quartz sand grains.

There is great variation of the glauconite in size, shape, and color of the individual grains. The size ranges from clay to coarse sand size particles; the shapes are irregularly "lumpy" to peletized; and the color varies from dark bluish green to yellow or olive green. The environmental and paleoecological significance of these physical characteristics of glauconite occurring in the sections examined were not evaluated because such a study was not considered to be within the scope of this investigation.

The distribution of clay appears to be environmentally controlled. Chocolate brown clays, generally fossiliferous, ordinarily contain foraminiferal assemblages of the shallower transitional zone. The light gray clays are more silty and non-fossiliferous, usually grading upward into more sandy beds in the lower part of the Sparta Formation considered to be of continental origin.
Miscellaneous elements in the sediments are limestone, which varies from nodules to laterally persistent beds in which the sediment present is cemented into concretionary benches, concentrations of oyster shells forming "oyster banks", and carbonaceous materials which are confined to the upper clay section in both formations.

Trace fossils are abundantly present in the Weches Formation; if present in the Cane River Formation, they were not apparent in the outcrops examined or the cores obtained from the subsurface.
List of Localities

1. Weches, Houston County, Texas (core)

 N 31 29' 50"
 W 95 16' 10"

 2.5 miles southwest from the intersection of Texas 21 and 227 on Texas 21

2. Palestine, Anderson County, Texas

 N 21 41' 30"
 W 95 35' 10"

 4 miles south of Palestine on Highway 287

3. Nacagdoches, Nacogdoches County, Texas

 N 31 43' 30"
 W 94 40' 45"

 2 miles south of the intersection of Texas 204 and 26

4. Bayou Carrizo, Nacogdoches County, Texas

 N 31 34' 30"
 W 94 33' 15"

 0.5 mile east of the bridge over Bayou Carrizo on Texas 21 and Loop 34

5. Chireno II, Nacogdoches County, Texas

 N 31 31' 50"
 W 94 24' 30"

 4.8 miles west of the intersection of Texas 21 and Loop 34
6. Chireno, Nacagdoches County, Texas
 N 21 30' 20"
 W 94 21' 00"
 At the intersection of Texas 21 and 34

7. Bayou Attoyac, San Augustine, Texas
 N 31 30' 15"
 W 94 18' 00"
 0.5 mile east of Bayou Attoyac on Texas 21

8. San Augustine, San Augustine County, Texas
 N 31 29' 50"
 W 94 6' 30"
 2.5 miles south of the intersection of Texas 21
 and San Augustine - Chinquapin county road

9. Bayou Negreet, Sabine Parish, Louisiana
 At the south of mouth of Bayou Negreet.
 Sections are now submerged because of the con-
 struction of Toledo Dam
 SW1/4 of Sec. 23, T5N, R2W, Sabine Parish

10. Provencal, Natchitoches Parish, Louisiana
 1 mile northeast of Provencal on Provencal-
 Hagwood Road

11. Hagewood, Natchitoches Parish, Louisiana
 Exposure on the upstream of Limekiln Bayou
 NE1/4 of Sec. 3, T8N, R8W, Natchitoches Parish
12. Clear Lake II, Natchitoches Parish, Louisiana
 Exposure on the northeast bank of Clear Lake
 SW\(\frac{1}{4}\) of Sec. 28, T11N, R5W, Natchitoches Parish

13. Clear Lake, Natchitoches Parish, Louisiana
 Exposure on the northeast bank of Clear Lake
 SW\(\frac{1}{4}\) of Sec. 28, T11N, R5W, Natchitoches Parish

14. La. Oil and Ref. Co., Tremont No. 2, La Salle Parish, Louisiana
 SW\(\frac{1}{4}\) of Sec. 29, T10N, R2E, La Salle Parish

15. Robeline, Natchitoches Parish, Louisiana
 SE\(\frac{1}{4}\) of NW\(\frac{1}{4}\) of Sec. 34, T8N, R9W, Natchitoches Parish
METHOD OF STUDY

Sample Localities

A total of 15 outcrops and cores were examined in Texas and Louisiana ranging from Anderson County, Texas, to La Salle Parish, Louisiana. The area covered is approximately two hundred miles wide (see Fig. 1). Eleven outcrop sections were measured and sampled and four wells were drilled and cored for the present study. The samples from Bayou Negreet (Location No. 9), now under Toledo Bend Lake, were collected by A. M. Phillips and L. G. Nichols of Louisiana State University in 1966. The prepared samples of Louisiana Oil and Refining Company's Tremont No. 2 cores (Location No. 14) were obtained from the H. V. Howe collection.

Most outcrops were badly weathered because they are composed mainly of unconsolidated sediments. The clay and some glauconite units were usually depleted of fossils because of the leaching effects of ground water on the calcareous shells.

Sampling Method and Laboratory Preparation

In surface sampling, attempts were made to collect samples at regular intervals where the lithology was consistent. This system of sampling was disregarded whenever there was a change in lithology or sedimentary structure. About one to two kilograms of sample was collected from a one-foot channel wherever possible, otherwise a grab sample...
from the available section was collected.

Coring operations were carried out with an ARCO PORTABLE DRILLING UNIT (MODEL AR-550-DD) by the Louisiana Geological Survey. Sample intervals from cores could not be controlled because of the nature of the sediment and the sampling device employed.

In addition to the samples collected by the author, four samples of glauconitic clay from Bayou Negreet, which were previously collected for the Museum of Geoscience of Louisiana State University, were incorporated in the present study. Twenty-two prepared slides of Foraminifera from the core samples from La Salle Parish, Louisiana, were also used for taxonomic reference and stratigraphic evaluation.

The final group of samples used for the paleontologic observations were numerically coded in five digit numbers: the first digit represents the State; the second and third, the sample locality; and the fourth and fifth, the depth at which sample was collected. A "0" was added when the sample locality and sample depth was less than "10". For example: Sample No. 10125 shows that the sample was collected in Texas (1) from locality No. 1 (01) at a depth of 25 feet from the top of the section (25).

About 300 grams of sediment was separated from each sample for paleontologic examination. Samples were treated with varsol or sodium bicarbonate depending on the degree of consolidation. Residues were recovered by removing clay fractions with a standard 250 mesh. An arbitrary amount of
sediment was randomly separated from the dried residue for quantitative determination of the microfauna therein. Approximately 200 to 300 specimens of Foraminifera, counted randomly, were considered to be representative of foraminiferal thanatocoenosis. Ostracods, molluscs, and other faunal groups were removed from the residue and evaluated qualitatively.

Statistical Analysis

The statistical analysis adopted herein is used to detect if there exist any variation in quantitative and qualitative information on foraminiferal taxa with depth and environment. Reliability is largely dependent upon the correct procedure of deriving raw data, minimizing any extraneous error, and the effectiveness of a factor or factors as a source of variation.

Limitations on the death assemblage as the true representative of the biocoenosis and other secondary effect on the experimental data were not taken into consideration. Therefore, the resulting statistics are strictly characteristics of fossil community and may not be a true measure of comparison between death and living assemblages.

Regression Analysis

The purpose of regression analysis is to isolate the taxa which vary significantly with depth. As discussed in the summary of ecologic factors, depth is the only tangible source of variation which can be isolated and sampled in a
controlled study. For the time being, therefore, the depth may be the only factor which can be applied to the paleo-ecologic purpose because it is still the only reliable source of variation in the recent environments which effectively summarizes the ecologic distribution of the organism, especially Foraminifera.

A stepwise maximum R^2 (Coefficient of determination) procedure (Barr and Goodnight, Statistical Analysis System, 1972) was employed to determine the best component (singly, double, triple, quadruple) model for each taxon. The highest order polynomial model, in which each coefficient was significant at the 5% and 10% level, was selected. Equation based on the regression model was graphically presented as a prediction trend of a taxon.

The model adopted for the present study includes the depth factor with linear, quadratic, cubic and biquadratic effects of depth. This would show the type of frequency variation of a taxon in a series of samples (depth) if the frequency of a taxon is controlled by depth. However, this prediction trend is only a best fitting model within a given order for the measured frequency trend of a taxon and may not account for smaller fluctuation of the data. But this is still considered to be sufficient to show major trend with the depth. The general regression equation can be expressed as follows:

$$Y_i = b_0 + b_1 X_i + b_2 X_i^2 + b_3 X_i^3 + b_4 X_i^4 + E_i$$
Where Y_i is the relative frequency of a concerned taxon,

- b_0 is the relative frequency at $X_i = 0$,
- b_1, b_2, b_3, b_4 are the partial regression coefficients for X, X^2, X^3, X^4, respectively,
- X_i is the i^{th} depth within the section,
- X_i^2 is the i^{th} depth squared,
- X_i^3 is the i^{th} depth cubed,
- X_i^4 is the i^{th} depth to the 4th power,
- E_i is the error term which is assumed to be randomly and normally distributed about a mean of zero with a common variance $NID(0, \sigma^2)$.

Cluster Analysis

The objective of cluster analysis is the clustering together of variables which are most highly intercorrelated.

For the present study the Unweighted Pair-Group Method Using Centroid Averaging (UPGMC) was used, which is a type of sequential agglomerative hierarchical cluster analysis. The initial assumption made in such an analysis is that each object constitutes a group (an assemblage or sample for the present study). One begins by having defined for each object pair a set of similarity coefficients based on the predetermined set of observed data. Any two objects may be designated as X_i and X_j and between them a similarity coefficient S_{ij} exists, which reflects the degree of similarity based on the data observed in the object. A series of such a correlation eventually results in a set of $\frac{n(n-1)}{2}$
pairwise similarity coefficients for a number of objects. Together these coefficients can be arranged in the form of a \(n \times n \) matrix in which \(S \) having the property that \(S_{ij} = S_{ji} \). This matrix then forms the basis of arranging the set of \(n \) objects into mutually related group.

Detailed discussion on the theoretical nature and mathematical procedures of the analysis is omitted here. A substantial literature exists on the cluster analysis. Its basic application in geological research is well explained by Sokal and Sneath (1963) and Fenner (1969). Computerized mathematical performance of such an analysis is also readily available from many sources.

Output of the analysis was expressed in the form of a dendrogram based on the distance (similarity coefficient) matrix of above pairwise correlations for 114 samples. This dendrogram has a hierarchial configuration in which each level of hierarchy reflects the degree of similarity in the group. However, the degree of similarity (grouping) is subject to arbitrary concept of a group defined by the user of such analysis based on one's particular need. Therefore, in the long run, it can be said that the clustering in inevitably influenced by the user's interpretation of the value of the observed data which are again selective. This type of test has been often used in the field of taxonomy where some systematic similarities exist between the variables. The analysis in the present study was rather experimental, examining the feasibility of such test in the stratigraphy.
and paleoecology. Up to now such an attempt has not been made in the study of Foraminifera. Therefore, the effectiveness of the clustering method is not comparable to any other similar studies. The results showed, however, that there is a great potential in the use of this analysis for paleoecologic and biostratigraphic studies.

Following taxa were used for the cluster analysis. The reason for choosing such taxa is explained in the discussion on distribution.

1. Alabamina
2. Anomalinoides
3. Asterigerina, Asterigerinata
4. Bolivina, Brizalina
5. Bulimina
6. Ceratobulimina
7. Cibicidina
8. Cibicides
9. Discorbis
10. Globocassidulina
11. Globulina
12. Gutulina
13. Gyroidinoides
14. Lamarckina
15. Lenticulina
16. Neoeponides
17. Siphonina
18. Spiroplectamina
19. Trifarina
20. Uvigerina
21. Lituolidae
22. Miliolidae
23. Planktonic/Total Population Ratio

The same taxa were also used for the regression analysis.
REPRESENTATIVE FAUNA

Foraminifera

Previous Works

Previous works in foraminifers from the Weches Formation are mostly taxonomic monographs by Cushman and Thomas (1929, 1930), Cushman and Ellisor (1933), Cushman and Ozawa (1930), Feray (1941, 1948), and Garrett (1942). Feray described the entire Weches Foraminifera for the first time in his unpublished dissertation, and Curtis (1955) attempted a paleoecological interpretation of some foraminiferal species from a single section of the Viesca member of the Weches Formation based on the then available ecologic information related to Foraminifera. As a result of above publications, a total of 91 species have been reported from the Weches Formation.

The Cane River Foraminifera were studied only by Hussey (1943, 1949) in which 90 new species and one new subspecies were described from the 133 species he reported from the Cane River Formation.

Distribution

In this study, a quantitative observation of species was made of 114 samples from 13 different localities with 200 to 300 individuals counted from each sample. An additional 22 samples from the H. V. Howe's collection were used for qualitative examination only.
Statistically, a species which constitutes at least 1% of the total population has a 95% probability of being observed in any given sample assemblage consisting of at least 299 individuals. If a species has 2% frequency in the population, only 149 individuals are needed to include the species in the sample assemblage with the same probability. Therefore, it was concluded that a sample of 200 to 300 individuals would reasonably reflect the characteristics of the faunal content of the sample.

In this study, the term sample and assemblage were used synonymously because a faunal assemblage represents the paleontologic property of a sample. In the present study there are 114 quantitative samples representing the same number of foraminiferal assemblages.

The number of individuals observed from each sample varies. This irregularity in sample size affects the diversity of fauna (number of species) proportionally. The general diversity of faunal assemblage increases with increased number of individuals observed. This explains the discrepancy between the diversities of fauna observed in the assemblage prepared for the purpose of quantitative study (less) and qualitative assemblage collected for the purpose taxonomic study and other specific reasons (more) in which usually much more individuals are examined.

Murray (1973, p. 9, fig. 4) attempted to adjust diversity-number of individual relationship among heterogeneous sample sizes by using predicted diversity index.
However, in the Weches and Cane River samples the differences were found to be minor; therefore, readjustment of diversity for the purpose of comparison between the two formations was not made.

When only those "common" species are selected, the total number of species decreases substantially and this in effect represents the true faunal characteristics of a sample assemblage unless there is an unique faunal property in the population marked by a rare but conspicuous taxon or particular combination of taxa.

In the present study of Foraminifera, planktonic species were treated separately because they had no bearing upon the benthic environment except where the variation of their frequency ratio in the total population indirectly suggesting a bathymetric difference. After the ratio of planktonic/total population was calculated in the sample, individual planktonic species, based on occurrence, were recorded.

Following is the list of Foraminifera species and their occurrence in the Weches and Cane River formations.

List of Species and Their Occurrence

<table>
<thead>
<tr>
<th>Species</th>
<th>Weches</th>
<th>Cane River</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabamina wilcoxensis</td>
<td>*p</td>
<td>p</td>
</tr>
<tr>
<td>Ammobaculites mauricensis</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Ammobaculoides new sp.</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Ammodiscus incertus</td>
<td></td>
<td>p</td>
</tr>
<tr>
<td>Anomalinoides ammonoides</td>
<td></td>
<td>p</td>
</tr>
<tr>
<td>A. costianus</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>A. umbonatus</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Asterigerina texana</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Asterigerinata new sp.</td>
<td>p</td>
<td>p</td>
</tr>
</tbody>
</table>

*p = present
<table>
<thead>
<tr>
<th>Species</th>
<th>Presence</th>
<th>Abundance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bolivina gracilis</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>B. louisiana</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>B. cf. plicatella merrra</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Brizalina taylori</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Bulimina byramensis</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>B. simplex</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>B. truncana aksuatica</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Ceratobulimina eximia</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Cibicides delicatus</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>C. jeffersonensis</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>C. lawi</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>C. lucidus</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>C. mamiformis</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>C. cf. mimulus</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>C. cf. pseudowuellerstorfi</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>C. new sp.</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Cibicidina mauricensis</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>C. mississippiensis</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>C. hypococonoides</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Cribrostomoides complanata</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Cyclamina cancellata obesa</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Cyclogyra lisbonensis</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Dentalina communis</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>D. cf. consobrina</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>D. vertebralis albatrossi</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Dentalinoideos? resupinata</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Discocyclina advena</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Discorbis stenzeli</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>D. tallahattensis</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>D. yeguaensis</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Elphidium new sp.</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Epistominella huneri</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Fissulina obvia</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>F. cf. orbignyana</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Fursenkoina zetina</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>F. mcguirti</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Globobulimina winniana</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Globocassidulina globosa</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>G. lomitensis mexicana</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Globulina gibba</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>G. inaequalis</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Globulina minuta</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Guttulina irregularis</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>G. problema</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Gyroidinoideos octocameratus</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Haplophragmoides canariensis</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Hoeglundina eocenica</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Karreriella mauricensis</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Lagena hispida</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>L. cf. laevis stavensis</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Weches Cane River</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. ouchitaensis alabamensis</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>L. striata strumosa</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>L. sp. A</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>Lamarckina claibornensis</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>Lenticulina abuillotensis</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>L. alatolimbata</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>L. inhabilis</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>L. kimituensis</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>L. laticostata</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>L. mayi</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>L. midwayensis</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>L. pseudocultrata</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>L. pseudoligostegius</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>L. cf. pseudosecan new subsp.</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>L. stephensonii</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>L. velascoensis</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>Loxostomoides nuttalli</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>Marginulina subbullata</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>M. sp.</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>Melonis planatus</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>M. cf. umblicatula pacifica</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>Neoeponides mexicanus</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>Nodosaria latejugata</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>Nonionella cf. jacksonensis spiralis</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>Nonionellina winniana</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>Orthomorphina antillea</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>O. camerani</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>O. delicata</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>Pseudonodosaria conica</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>P. elliptica</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>P. cf. ovula</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>P. pleniluna</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>Quinqueloculina sp.</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>Q. claiborniana</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>Q. danvillensis</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>Q. cf. Q. lamarckiana</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>Q. cf. Leonensis</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>Q. yeguaensis</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>Ramulina kittlii</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>R. mariae</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>Robertina plummerae</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>Sagina ellisi</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>Saracenaria limbata</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>Sigmomorphina jacksonensis</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>Siphonides biserialis</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>Siphonina claibornensis</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>S. danvillensis</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>Siphoninella chambersi</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>S. parva</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>Siphouvigerina elongata</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>Species</td>
<td>Weches</td>
<td>Cane River</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>Spiroloculina lamposa</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Spiroplectamina plummerae</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>S. zapotensis</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Stainforthia ecenica</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Textularia claibornensis</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Trifarina vicksburgensis</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>T. wilcoxensis</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>T. new sp.</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Trilogulina paulocostata</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>T. rotunda</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>T. trigcrula</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Tritaxis columbiana</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Trochammina? sp.</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Turillina robertsi</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Uvigerina blancacostata</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>U. gardnerae</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>U. cf. garzaensis</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Vaginulina lineara</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Vaginulinopsis hybrida</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>V. mexicanus</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Globigerina (Subbotina) boweri</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>G. gravelli</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>G. officialis</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>G. cf. officialis</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Globorotalia aqua</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>G. (Turborotalia) bullbrooki</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>G. (Turborotalia) centalis</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>G. compressa</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>G. (Turborotalia) mckannai</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>G. (Turborotalia) tribulosa</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Chiloguembelina crinita</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Guembelitria columbiana</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Pseudohastigerina micra</td>
<td>p</td>
<td>p</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Summary of Occurrence</th>
<th>Weches</th>
<th>Cane River</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Genera</td>
<td>47</td>
<td>68 (72)*</td>
</tr>
<tr>
<td>No. of Species</td>
<td>96</td>
<td>121 (135)</td>
</tr>
<tr>
<td>No. of Benthonic Genera</td>
<td>40</td>
<td>61 (65)</td>
</tr>
<tr>
<td>No. of Benthonic Species</td>
<td>84</td>
<td>109 (122)</td>
</tr>
<tr>
<td>No. of Planktonic Genera</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>No. of Planktonic Species</td>
<td>12</td>
<td>13</td>
</tr>
</tbody>
</table>

* (*) including non-statistical samples (Tremont Cores)
Commonly occurring species are generally considered to be those species which occur at least by 5% in any sample population. If a species constitutes at least 5% of the total population, it requires only 59 observations (specimens) for the species to be recognized in the sample with 95% probability (Shaw, 1965, p. 109, Table 18-1).

Following are common species thus defined from each formation.

Weches

Alabamina wilcoxensis
Ammobaculites mauricensis
Anomalinoidea costianus
Asterigerina texana
Asterigerinata new sp.
Ceratobulimina eximia
Cibicides lawi
C. mamiformis
C. cf. pseudowellerstorfi
Cibicidina mauricensis
Cribrostomoides complanata
Cyclammina cancellata obesa
Discorbis stenzeli
*D. tallahatensis
*D. yeguaensis
Globulina gibba
Guttulina irregularis
Gyroidinoides octocameratus
Lamarckina claibornensis
Melonis planatus
Neoeponides mexicanus
Quiqueloculina claiborniana
*Q. yeguaensis
Siphonina claibornensis
Spiroplectamina zapotensis
Triloculina paulocostata
Trochammina? sp.

Total 22 Genera 27 Species

Cane River

Alabamina wilcoxensis
Ammobaculites mauricensis
Anomalinoides costianus
Asterigerina texana
*Bolivina gracilis
*Brizalina taylori
*Bulimina truncana aksuatika
Ceratobulimina eximia
Cibicides lawi
C. mamiformis
*C. mimulus
C. cf. pseudowuellerstorfi
Cibicidina mauricensis
*C. hypoconoides
Cyclammina cancellata obesa
*Globocassidulina globosa
Gyroidinoides octocameratus
*Haplophragmoides canariensis
Lamarckina claibornensis
*Lenticulina alatolimbata
*L. midwayensis
Melonis planatus
Neoeponides mexicanus
Siphonina claibornensis
*S. danvillensis
Spiroplectamina zapotensis
*Trifarina new sp.
Trochamina? sp.
Turillina robertsi
*Uvigerina cf. garzaensis

Total 24 Genera 30 Species

* Asterics are the species which occur commonly (=5%) only in that Formation.

From these lists it is apparent that each formation is characterized by a group of restricted species which constitute almost half of the commonly occurring species. The meaning of such a distribution is discussed in the chapter on Paleoecology (Page 94).

After examining the foraminiferal species, it was concluded that the faunal distribution and assemblage would be best represented in terms of the genera, or in some instances, characteristic family level. The most common
occurring genera, in both formations, are represented by a single species. If the genus has more than one species, these species always occur in close association. Also, some genera can be grouped into a single Family. By using such categorized taxa the following figures (Figures 3-12) of distribution were constructed for each sample section.

Trend of Occurrence

Most of the major taxa, which were subjected to the Regression Analysis of their variability with respect to depth, showed a significant variation in the tested sections although such variability is not present in all localities. Inconsistence in the variability may be due to lack of uniformity in the thickness of the examined outcrops, and cores, and to possibility in the faunal provincialism.

As a result of the Regression Analysis, some of the taxa which show a considerable depth dependence were presented with predicted trend in the following figures (Figures 13-22). This would enable one to predict distributional trend in the interval of a section where the actual samples are lacking or beyond the limit of the given lithic unit available for observation and help evaluate the interrelation between the taxa in view of their relative frequencies.

The regression figures are presented by the sample locality. Outcrops which yielded less than three paleontologic samples were omitted because of the irrelevance of the statistical treatment on such sections.
Fig. 3. Distribution of Selected Foraminiferal Taxa (1) Weches

AGGL = Agglutinated
ASTE = Asterigerina
CERA = Ceratobulimina
CIBC = Cibicides
DISC = Discorbis
LAMK = Lamarckina
MILL = Miliolidae
NEOP = Neoeponides
SIPH = Siphonina
Fig. 4. Distribution of Selected Foraminiferal Taxa (2) Palestine
AGGL = Agglutinated
DISC = Discorbis
GYRO = Gyroidinoides
LAMK = Lamarckina
SIPH = Siphonina

Fig. 5. Distribution of Selected Foraminiferal Taxa (3) Nacogdoches
Fig. 6. Distribution of Selected Foraminiferal Taxa (5) Chireno II
Fig. 7. Distribution of Selected Foraminiferal Taxa
ASTE = Asterigerina
CICA = Cibicidina
SIPH = Siphonina
CERA = Ceratobulimina
LAMK = Lamarckina
CIBC = Cibicides
MILL = Miliolidae

Fig. 8. Distribution of Selected Foraminiferal Taxa
Fig. 9. Distribution of Selected Foraminiferal Taxa (9) Bayou Negreet
AGGL = Agglutinated CERA = Ceratobulimina NEOP = Neoeponides
ALAB = Alabamina CIBC = Cibicides SIPH = Siphonina
ANOM = Anomalinoide GYRO = Gyroideoside LENT = Lenticulina
BOLI = Bolivina
Fig. 11. Distribution of Selected Foraminiferal Taxa
Fig. 12. Distribution of Selected Foraminiferal Taxa (13) Clear Lake
Fig. 13. Predicted Trend of Occurrence (1) Weches
Fig. 14. Predicted Trend of Occurrence (2) Palestine
Fig. 15. Predicted Trend of Occurrence (3) Nacogdoches
Fig. 16. Predicted Trend of Occurrence (5) Chireno II
Fig. 17. Predicted Trend of Occurrence (6) Chireno
Fig. 18. Predicted Trend of Occurrence (9) Bayou Negreet
Fig. 19. Predicted Trend of Occurrence (10) Provencal
Fig. 20. Predicted Trend of Occurrence (11) Hagewood

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Fig. 21. Predicted Trend of Occurrence (12) Clear Lake II

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Fig. 22. Predicted Trend of Occurrence (13) Clear Lake
On the basis of actually observed data and predicted trends of Regression Analysis, the following trend of major foraminiferal taxa were recognized.

Agglutinated fauna

Agglutinated specimen consisted mainly of species from the families Lituolidae, Textulariidae, Trochamminidae, Ammodiscidae and Ataxophragmiidae. Almost all of the agglutinated species belong to the Lituolidae and Trochamminidae. Species of Family Ataxophragmiidae and Ammodiscidae are rare.

The above agglutinated fauna occurs mostly in the brown clay of transitional sections in both formations. In an early transgressive section they are quickly replaced by the normal assemblages. At the end of the marine transgressive environment a reversion of assemblages occur. The Family Texturaliidae, on the other hand, has no definite trend within the two formations. It occurs sporadically throughout the localities but never attains a dominant position.

Calcareous fauna

Miliolidae:

In the Weches Formation, the miliolid population consists of a few species of *Quinqueloculina* which occur very abundant in most samples, and which appear to have wide lateral distribution at the depth range of the Weches environment. Species of *Triloculina* are almost exclusively Weches; however, they are never as abundant as the species
of *Quinqueloculina*.

In the Cane River Formation, the miliolids are insignificant to totally absent species of *Quinqueloculina* were recovered from the cores in central Louisiana; however, there was a complete absence of miliolids in western Louisiana. The frequency of occurrence was so low in central Louisiana that no significant trend could be established for the distribution of the species in the family.

Family Anomalinidae:

Species belonging to the anomalinoides are fairly abundant in the Cane River Formation associated with *"Cibicides"* and *Siphonina*. They gradually increase in number in the glauconitic section in which they parallel the increased concentration of planktonic species. The remaining genus, *Melonis*, occurs frequently in all localities regardless of locality and formation. Its frequency trend is most closely related to that of the anomalinoides species; however, *Melonis* alone does not show any significant variation.

Asterigerina and **Lamarckina:**

These two genera are very abundant in the lower unit of the Weches Formation. Their frequencies gradually decrease toward the upper part of the section where they are replaced by other taxa which dominate the assemblages. In the Cane River Formation, however, they occur as common species in a few isolated sections, more or less concentrated in the upper part of the section, although they never reach the degree of frequency attained in the Weches Formation.
Alabamina:

In either formation, Alabamina never occurs as a major species. It is commonly distributed throughout both formations, thus intimating that Alabamina has no stratigraphic significance.

Bolivina, Brizalina, Bulimina, Siphouvgigerina, Trifarina, Uvigerina:

These are characteristic Cane River genera. Even in the Cane River sections, however, their frequencies are not persistent enough to show any major trend. Their combined number indicates that they are generally more abundant in that part of the formation which has a high ratio of planktonic species and high occurrence of Anomalinoidea and "Cibicides".

Ceratobulimina and Neoponides:

These genera occur rather consistently in all Weches sections but less frequently in the Cane River. There seems to be no depth dependent variation in this group. Both genera occur abundantly; however, they never dominate either the Weches or Cane River assemblages.

"Cibicides" and Cbicidina:

"Cibicides" and Cbicidina occur more or less "hand-in-hand" in all assemblages, with Cbicidina being the minor accessory. "Cibicides" is the major species in all the Cane River assemblages studied; however, it also occurs abundantly in the Weches Formation with less frequency. The general trend of the two genera parallels that of Siphonina,
Anomalinoidea, and planktonic species in that they increase toward the middle of both the Cane River and Weches sections, and decrease toward the upper portion of these sections.

In the Weches sections, however, wherever there is a high percentage of Asterigerina, Lamarckiana, and miliolids in the assemblage, "Cibicides" is conspicuously reduced. Cibicidina, a minor genus in all assemblages, seems to occur as an accessory in an assemblage where "Cibicides" is an important taxon.

"Discorbis":
This genus is one of the most distinctive taxa in separating the Weches Formation from the Cane River Formation. There are no "Discorbis" species reported from the Cane River Formation. In the Weches sequence, however, species of "Discorbis" occurs very abundantly throughout the sections; however, it does not seem to vary very much with depth, at least in the environment of the Weches sediments.

Lenticulina:
There is more diversity and greater frequency of this genus in the Cane River assemblages than any other genus; however, its relative frequency in the faunal assemblage is rather low compared with other major taxa. There is no particular trend for this genus. Lenticulina remains as a minor genus in the Weches formation with less diversity and frequency.

Siphonina:
Siphonina is the most abundant genus in both formations.
It occurs very persistently, as a major genus in the Cane River Formation, with *Anomalinoides* and "Cibicides". In the Weches Formation, however, its frequency is often overshadowed by the presence of species of other genera which predominate the assemblage. For example, whenever there is a high frequency of *Lamarckina*, *Asterigerina*, or *Miliolidae*, the frequency of *Siphonina* is substantially decreased.

In the Weches section, *Siphonina* and "Cibicides" show a somewhat similar trend.

Family Nodosariidae:

Except for the genus *Lenticulina*, all species of the Nodosariidae are rare in both formations. Species of *Dentalina*, *Dentalinoides*, *Lagena*, *Marginulina*, *Nodosaria*, *Orthomorphina*, *Pseudonodosaria*, *Saracenaria*, *Vaginulina* and *Vaginulinopsis* occur more frequently in the Cane River Formation.

Family Polymorphinidae:

Species of the genus *Globulina*, *Guttulina* and *Sigmomorphina* occur rather abundantly, often over 5%, throughout the Weches Formation; however, all are extremely rare in the Cane River Formation.

Family Discocyclinidae:

Discocyclina advena is the unique species of all Foraminiferas in the two formations. It occurs only in the upper Cane River sections, usually associated with *Cubitostrea lisbonensis*. Its relative frequency can not be measured in a regular quantitative sample because of the extraordinary size of the test. However, they are so
concentrated in a relatively narrow zone that it serves as an unmistakable marker fossil of the Upper Cane River.

Family Cassidulinidae:

In a few isolated samples of the Cane River Formation the genus *Globocassidulina* occurs very abundantly (up to 13%). However, it was observed only twice in the Weches Formation (Weches and Attoyac localities). There is no significant trend of occurrence in relation to other foraminiferal taxa in the assemblage.

Miscellaneous families:

All other species of various families are so rare in their occurrence that their trend of distribution can not be assessed properly.

Stenzel (verbal communication, 1974) suggested that the genus *Ferayina* may be an important index fossil for the Weches Formation. A single species of this genus (*Chamanina* of Feray, 1948; *Ferayina* of Frizzell, 1949), was reported to occur only in two closely located areas in Bastrop County, Texas, which are southwest of the area covered in the present study. It seems to be locally confined in the Viesca member of the Weches Formation and can not be considered as a significant species in this study either biostratigraphically or paleoecologically.

Distributional Trend by Different Wall Structures:

It is apparent that within the samples studied, the bathymetry of test material and wall structure are rather inconclusive except for the agglutinated test. The majority
of the agglutinated species are concentrated in the transi­
tional environment, as previously noted. Their frequency
decreases quickly as the water depth increases.

Species with a porcelaneous wall also have a greater
concentration in sediment considered to have been deposited
in a very shallow open marine environment. Although genera
with porcelaneous tests appear to prefer shallow water
both in Holocene and Eocene time, it can not be determined
for certain that the trend of the miliolid gener represents
the environmental preference of the porcelaneous genera as
a whole.

In the Claiborne samples, the main trend of the perforate
calcareous faunas with granular and radial microstructure
depends upon the frequency of a dominant species of a
particular wall structure in the assemblage rather than on
a taxonomic basis. Neither does the diversity of species
show any generalization. This may be due to the fact that
the depth variation in the studied environment was not
great enough for the Foraminiferal microstructures to show
any depth trend or that there is no organic relationship
between the depth of environment and the above two types
of wall structure. Further studies on samples of greater
depth variation may result in more satisfactory conclusion;
however, within the depth range of Claiborne samples
examined, there is no definite frequency trend for either
the faunas of granular microstructure or radial microstructure.
There are a number of studies on the Eocene Ostracoda (Alexander, 1934; Blake, 1950; Gooch, 1939; Howe and Chambers, 1935; Howe and Garrett, 1934; Martin, 1939; Murray, 1938; Stadnichenko, 1937; Stephenson, 1942, 1947; Sutton and Williams, 1939) of which those of Stephenson (1946) and Sutton and Williams (1939) were exclusively the taxonomic description of Ostracoda fauna from the locality at Smithville, Texas. In Louisiana, Howe and Chambers (1935) and Howe and Garrett (1934) described Jackson and Sabine Ostracoda respectively, but the Claiborne fauna has never been published. A few isolated monographs have been published in which several species of Cook Mountain and Cane River formations were illustrated (Gooch, 1939; Martin, 1939; Murray, 1938). Most of these works were taxonomic monographs with some biostratigraphic aspects of the species reported.

The paleoecology of the Ostracoda is still in its infancy and no reliable information is available at the moment to draw any independent conclusions on paleoecological implication of species distribution.

A list of these species and their source reference are given in the Appendix VI (B). No descriptions of the species are included.

In the present study 32 species from the Weches Formation and 29 species of Cane River Formation are
reported. This is the result of qualitative examination of Ostracoda fauna from the samples primarily prepared for the foraminiferal studies and no further efforts were made to quantify the information on the Ostracoda except frequency of occurrence in the samples.

Except for a few species, the majority of the Ostracods are present in both formations. Following is the list of Ostracoda from the two formations:

<table>
<thead>
<tr>
<th>Species</th>
<th>Weches</th>
<th>Cane River</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acanthocythereis cf. washburni</td>
<td>*p</td>
<td>p</td>
</tr>
<tr>
<td>A. sp. A</td>
<td></td>
<td>p</td>
</tr>
<tr>
<td>A. sp. B</td>
<td></td>
<td>p</td>
</tr>
<tr>
<td>Actinocythereis davidwhitei</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>A. (?) elmana</td>
<td></td>
<td>p</td>
</tr>
<tr>
<td>A. cf. hilgardi</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>A. sp.</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Bairdia spp.</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Brachycythere sp.</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Buntonia howei</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>B. alabamensis</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>"Bythocypris" gibsonensis</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Clithrocytheridea wechesensis</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>C. sp.</td>
<td></td>
<td>p</td>
</tr>
<tr>
<td>Cocoaia smithvillensis</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>"Cythereis" evergreenica</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>"C." russelli</td>
<td></td>
<td>p</td>
</tr>
<tr>
<td>C. suttoni</td>
<td></td>
<td>p</td>
</tr>
<tr>
<td>Cythrella sp.</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Cythereelloidea smithvillensis</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Cytherura (?) sp.</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Digmocythere russelli</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Haplocytheridea bastropensis</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>H. lisbonensis</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>H. ellisi</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>H. habropapillosa</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>H. moodyi</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>H. stuckeyi</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Hemicytheridea (?) sp.</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Hermanites (?) claibornensis</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Loxoconcha chamfera</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>L. claibornensis</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Ouachitaia gosportensis</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>O. semireticulata</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Opimocythere martini</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Paracypris franquesi</td>
<td>p</td>
<td>p</td>
</tr>
</tbody>
</table>

*p = present
Weches River

<table>
<thead>
<tr>
<th>Pterygocythere bernardi</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. murrayi</td>
<td>p</td>
</tr>
<tr>
<td>Quadracythere winniana</td>
<td>p</td>
</tr>
<tr>
<td>Trachylebereis (?) linospinosa</td>
<td>p</td>
</tr>
<tr>
<td>T. orelliana</td>
<td>p</td>
</tr>
<tr>
<td>Xestoleberis durmblei</td>
<td>p</td>
</tr>
</tbody>
</table>

There are 19 species which occur in both formations.

While the two formations possess almost an equal number of species, some are restricted to one or the other formation.

Following species are common to both formations.

- Actinocythereis davidwhitei
- A. (?) sp.
- A. cf. hilgardi
- Cytherella sp.
- Digmocythere russelli
- Haplocytheridea stuckeyi
- Hermanites (?) claibornensis
- Trachyleberis orelliana

All these species are confined to a "normal" marine environment, and all are rather randomly distributed throughout the samples studied. Actinocythereis (?) sp. shows a somewhat locally concentrated distribution in the vicinity of Chireno, Texas, and Provencal, Louisiana. Cytherella sp. seems to occur more frequently associated with a rich mollusk fauna or in a zone very close to a heavy concentration of mollusks.

The following species are present only in the Weches Formation or occur very rarely also in the Cane River Formation:

- Cocoaia smithvillensis
- "Cytheries" evergreenica
- Cytherelloidea smithvillensis
- Haplocytheridea bastropensis
H. ellisi
H. habropapillosa
H. lisbonensis
H. moodyi
Hemicytheridea
Loxoconcha claibornensis

Haplocytheridea habropapillosa seems to possess a wider range of environmental tolerance. It commonly occurs in the marginal marine environment where the foraminiferal assemblages are dominated by agglutinated species, particularly species of Family Lituolidae. It also frequently occurs throughout a section which may range down to middle neritic depth. Other species are more or less limited to the glauconitic units representing deposition in open marine environment.

The following species occur only in the Cane River Formation or may occur also in the Weches samples with extremely rare frequencies. They do not show any particular pattern of distribution and occur randomly in glauconite rich sections throughout the localities sampled.

Acanthocythereis cf. washburni
Brachychythere sp.
Cythereis russelli
Loxoconcha chamfera
Quadracythere winniana
Mollusca

The molluscan species examined were restricted to those of very small size which could be observed along with other microfossils present in a limited amount of sediment such as would be obtained from core samples.

In the recent studies of small molluscan fauna, their stratigraphic and environmental value has been recognized. The molluscan species of microscopic size were designated as "micromollusca" by some authors limiting the size of such a group to less than 6 mm in maximum diameter (Corgan, 1967). In the present study, however, size limitation was not imposed upon the mollusks. Correct or not, all the small specimens retained upon the 250 mesh screen were called micromollusks. The majority of the specimens studies, however, were actually less than 6 mm in maximum diameter.

There is a strong possibility that some of the Claiborne species of mollusca may have been regarded as juveniles of a larger species rather than the adult of a smaller species. Identification of the molluscan fauna, which follows, is tentative. It will serve as a guide to affinities apparent if any further examination of this group is attempted.

A list of "micromollusca" which occur in the Weches and the Cane River follows:
BIVALVIA

<table>
<thead>
<tr>
<th>Species</th>
<th>Weches</th>
<th>Cane River</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alveinus minutus Conrad</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Caestocorbula murchisoni (Lea)</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Cuna parva (Lea)</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>"Lucina" primoidea Aldrich</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Limopsis radiata Meyer</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>Modiolus (?) sp.</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Notocorbula texana (Gabb)</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Nucula (Nucula) magnifica Conrad</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Venericardia cf. tortidens Harris</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Vokesula smithvillensis smithvillensis (Harris)</td>
<td>p</td>
<td>p</td>
</tr>
</tbody>
</table>

GASTROPODA

<table>
<thead>
<tr>
<th>Species</th>
<th>Weches</th>
<th>Cane River</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actaeonema sulcatum (Lea)</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Athleta cf. lisbornensis (Aldrich)</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Mitrella (?) sp.</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Neverita cf. limula (Conrad)</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Pyramidella cf. meyeri (Cossmann)</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Reticulida cf. biventrica (Lea)</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Terebra cf. jacksonensis Cooke</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Terebra (?) sp.</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Tuba sp.</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>Turritella arenicola danvillensis Stenzel and Turner</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Turritella rivurbana Cooke</td>
<td>p</td>
<td>p</td>
</tr>
</tbody>
</table>

Most of species are randomly distributed throughout the localities studied. The most abundant species are *Alveinus minutus*, *Venericardia* cf. *V. tortidens*, and *Pyramidella* cf. *P. meyeri*. These species are so ubiquitous that if their correct stratigraphic range could be determined they would serve as valuable index fossils whenever other microfauna is lacking. Except for those species mentioned above, micromollusca in general occur without any distinctive relationship to either lithology or stratigraphy.

When the overall content of molluscan fauna is examined, it seems that the Weches Formation contains more abundant fauna than the Cane River; however, this has not been
Important species of Mollusca, other than micromollusca in a preceding list are *Cubitostrea lisbonensis* and *Cubitostrea smithvillensis* which have special stratigraphic value.

Bryozoa

A total of 11 species of Bryozoa were observed from the two formations in the area studied. As in the case of Molluscal species, bryozoas show no distinctive characteristics in their distribution. All of bryozoan species are associated with faunal assemblages of the open marine environment and within the range of the Weches and Cane River environments, depth of water appears to have little affect on their distribution. Following are the species of Bryozoa from the two formations:

<table>
<thead>
<tr>
<th>Species</th>
<th>Weches</th>
<th>Cane River</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adeonellopsis cyclops</td>
<td>*p</td>
<td>p</td>
</tr>
<tr>
<td>Conescharellina sp.</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Conopeum lamellosum</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Ellisina claibornensis</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Holoporella granulosa</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Nellia oculata Busk</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>Otionella perforata</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Schizorthosecos interstitia</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Schizorthosecos radiatum</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Trochopora hanoi</td>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>Trochopora trunata De gregorio</td>
<td>p</td>
<td>p</td>
</tr>
</tbody>
</table>

p = present
Other Invertebrates

Anthozoa and Echinodermata occur in much less diversity and frequency than the other faunas. The Anthozoa species are represented by 3 species of corals. Only the fragments of Echinoderms were recovered from several samples of the Weches localities.

Three species of Corals are:

- *Turbinolia pharetra* Lea
- *Discotrochus* sp.
- *Platytrochus stokesi* (Lea)

Turbinolia pharetra Lea is the most abundant species of the three occurring in almost all of the sections of the marine sequence of the Weches Formation examined. In the Cane River Formation, *Turbinolia* occurs only in a narrow zone of glauconite confined to two localities near the vicinity of Provencal. It was also noted that the zone of *Turbinolia*, in the Cane River, occurs immediately below the marginal marine environment of predominantly arenaceous foraminiferal assemblage.

Discotrochus sp. was observed only from one Weches locality at Nacogdoches, Texas. Throughout the entire length of the section it occurs securely attached to small gastropod shells.

Platytrochus sp. occurred only once in the Weches sample. It is not a common member of either formation. (The living species of this genus is known to be restricted in the depth range of 27° - 130 m).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Echinoderm species occur sporadically in several samples, but their fragmental remains defy identification. Fragments of echinoderms, however, are more common in the Weches samples.
FORAMINIFERAL ECOLOGY

Nature of Studies and Their Paleoecologic Value

Most studies on the ecology of foraminifera are confined to relatively small areas, and are concerned with a specific environment. The results of these studies generally show that the pattern of faunal distribution is consistent within similar environments even though, geographically, the localities are widely separated. The usefulness of these ecological data to paleoecological interpretation depends on the persistence of recent faunal characteristics through time. This is generally recognized, at least in a broad sense. In paleoecological study it is assumed that the bathymetry and geographic distribution (relative position in the marine environment) of the genera of a living fauna occupied the same ecologic niche in the past, although there are some anomalous instances contradicting such assumptions.

Very few species of Paleogene age persist into the Holocene; therefore, criteria based on species are either not usable or at best unreliable due to the restricted geologic ranges of species. It is reasoned that the extrapolation of ecologic criteria to the fossil community would be more reliable if it is confined to the generic level and in similar geographic regions. Also, in order for the ecologic data to be used as a guide to paleoecologic studies, it is necessary that the ecologic data be synthesized and averaged.
By doing so, some local anomalies of ecologic data are suppressed and which minimizes the probability of error in extrapolating ecologic criteria to ancient environments.

Sources of Variation for Ecologic Distribution

The most important ecologic factors are salinity, depth of water, circulation of water mass, nutrients, water chemistry, turbidity, solar energy, and organic communities. Most probably, the combination of those interrelated factors play an important role in ecologic settings while one or more combinations of a few factors may be more effective in some areas.

At the present, only empirical findings are available for the relationships between faunal distribution and ecologic factors. Studies on the genetic nature of the organism in relation to environmental conditions are few and realized to be difficult at the present state of biologic knowledge on the subject. The tolerance range of survival and reproduction of Foraminifera is known to be relatively wide and only fundamental assumptions can be made. In the near-shore environment, especially in the transitional area where seasonal change of fresh water discharge has the greatest influence, salinity seems to be the governing factor on the kinds and distribution of foraminifers. Also, this zone lies within the higher energy environment where interactions between ecologic factors are most active. Salinity, however, shows the most variation which follows closely with anomalous
faunal distribution in an area. Temperature and depth are proportionally related. Among many ecologic workers, depth is often preferred to temperature because of the seasonal instability of temperature in the shallower environments of near-shore marine and the relatively insignificant variability of temperature beyond a certain depth. Temperature seems to be a controlling factor on the distribution of some planktonic species (Bandy, 1960a, 1960c; Beard, 1969; Berggren, 1968; Emiliani, 1954; Frerichs, 1971; Kane, 1953, 1956; Lowenstam and Epstein, 1954; Parker, 1960) but the pattern of distribution of benthonic faunas is more readily responsive to the depth of water because most benthonic faunas are known to have a rather wide range of temperature tolerance for survival and reproduction.

Other factors that vary with depth, which directly or indirectly influence faunal distribution, may also be summarized into a depth variable. Such factors as food availability, pH, substrate condition, Eh., and solar energy have not been studied sufficiently enough to make any general assumptions. A few isolated studies in these relations on some shallow water foraminifers have not resulted in definitive conclusions (Bradshaw, 1957, 1961; Loep, 1956; Murray, 1963; Myers, 1935a, 1935b, 1936; Phleger and Soutar, 1973). Therefore, for this paleoecologic evaluation of the Foraminifera in the Cane River and Weches Formation samples, bathymetry and salinity seem to be the only common denominator among the Foraminifera at the moment.
Classification of Environments

Following is a most commonly accepted classification of environments in which distinctive living foraminiferal communities are found:

I. Transitional Environment

This environment is subject to seasonal change and most of the time is under lower salinity. Delta, sound, bay, estuary, marsh, brackish lake and coastal lagoons are included in this zone. Although each subenvironment can be defined by its own faunal assemblages, mixing of fauna is not uncommon due to the contamination from adjacent areas. Boundaries within transitional environments are also gradational and subtle differences among those environments are almost impossible to detect by fossil assemblages alone in a sedimentary sequence. This zone can be divided into two broader environments.

1. Brackish Environments - delta, inner part of bay, marsh, estuary, brackish lake.

2. Protected Marine - sound, outer bay area, coastal lagoon.

II. Open Marine Environment

The following ranges seem to display the most marked differences in faunal assemblage when the results of several studies are combined although many authors studied different areas and depths and suggested different depth zonation by biofacies.
High-Energy Zone:

- Intertidal environment (to 20 m+)
- Inner neritic (to 20 m+)
- Middle Neritic (20m+ - 100m+)

Lower-Energy Zone:

- Outer neritic (100m+ - 200m+)
- Upper bathyal (200m+ - 500m+)
- Lower bathyal (500m+ - 2000m+)
- Abyssal (>2000m+)

Some Characteristics of Foraminiferal Ecology

Faunal Distribution: Although similar environments of different localities contain similar faunal assemblages and species frequencies, the distribution of Foraminifera depends on the availability and frequency of species in an environment which is characterized by the geography, other organic assemblages, and undetermined local ecologic factors. There are very few species which are universal in distribution and the role of genetic processes are different in time and locality. However, patterning the distribution in the higher level of taxonomic rank is possible and predictable with reasonable probability within a relatively broader area, if the occurrence and frequency of fauna are expressed in broader terms. As previously discussed, depth and salinity are the dominating factors for such distributions.

Faunal Variability: It is reported from the studies of recent Foraminifera (Walton, 1964; Gibson and Buzas, 1973) that the number of benthonic species is inversely proportional to the variability of the environment. The
environment with many variable conditions, as in marginal marine or near shore areas, supports lesser numbers on benthonic Foraminifera than the relatively deep stable environments. The diversity is usually determined on the basis of the number of species of a counted or estimated foraminiferal population whose accumulative percentage constitutes 95% of the total population. This is practiced to eliminate the rare species or species of spotty occurrence. Validity of such a method should be tested by further study because the equitability of the species is also dependent on the depth. Therefore, it needs to be distinguished whether species diversity misrepresents the faunal trend to attain equal distribution among species assemblages in which the basic diversity remains unchanged. In general, the larger the sample studied the more species are encountered. However, if the species diversity is compared on a uniform basis some generalization can be made on the faunal diversity-environment relationship.

Faunal Dominance and Frequency: Faunal dominance is determined by the percentage of occurrence of the most dominant species in a sample population. This is known to be proportionally decreasing with depth and inversely proportional to the faunal variability; the percentage of the most dominant species in a sample of less faunal variety is greater than that of the most dominant species in a sample of greater faunal variability (Walton, 1964). Some higher frequency of a dominant species in the samples of greater
species diversity was attributed to the concentration by reworking. This can be detected in recent environments, provided the dynamics of such concentration is understood. However, this anomalous concentration would never be accurately accounted for in fossil assemblages in which the possibility of partial elimination of certain species with weaker wall structure by solution or selective biogenic destruction is possible. There have been no known studies yet to explain the nature of relative species frequency. Each species has its own optimum range of survival and reproduction. Productivity as expressed in frequency in the fauna varies widely.

Population Density: Because there are many factors that may influence the final concentration of the faunal assemblage, it is difficult to make any inference of environment on the basis of faunal density. Such factors as the rate of sedimentation, productivity of organisms, and destruction of tests by other organic or inorganic agents would decide the initial density and later diagenetic alternation and selective solution of the test would set the final size of fossil population. As long as the sample represents the original population with reasonable probability, the population density could be used to estimate the rate of sedimentation which may indirectly indicate the environment of deposition.

Shell Characteristics: It is commonly observed that there is a relationship between the environments and
characteristics of foraminiferal tests. Most of the investigations on shallow water Foraminifera concluded that arenaceous forms are always dominant in marginal marine environments where chemical elements are frequently diluted.

Walton (1964), from his observation on Gulf Coast foraminifers, indicated that the size and stoutness of calcareous tests also decrease toward the shallower marginal area and attributed this phenomena to the scarcity of necessary material for the test, noting usual larger and heavier tests in carbonate environments. This may not be correct because there are also deep water agglutinated species in significant number and heavier, larger tests are rather ubiquitous. In other groups of organisms, it seems to be a general trend of ecologic adaptation that heavier, stronger shells are needed in an environment of higher energy and greater ecologic variations. Therefore, it is difficult to generalize the test-environment relationship with chemical conditions alone. In order to see the overall distributional pattern of foraminiferal test types, the following table was generated from available data on Gulf Coast Foraminifera (Fig. 23). Tabulation was based on four major wall types represented by the genera. The number of genera in each environment is somewhat exaggerated by including all possible genera that are known to occur in the concerned environment and do not represent the average number of genera in the environments.
Fig. 23. Distribution of Recent Foraminiferal Genera by Wall Structure
While it is premature to make any conclusive statement from such a distribution, it is interesting to note that the dominance of agglutinated forms in marginal marina and that of porcelaneous forms in shallow marine are in accordance with previous findings. Also the number of genera with granular microstructure seems to increase toward deeper environments while that of radial microstructure follows closely the overall distribution of genera as it is the most dominant wall type. Such an approach may prove to be a useful criterium for the ecologic and environmental studies if systematically pursued further.

However, the quantitative character of such a distribution could not be evaluated because of the absence of such data in most ecologic studies from which the figures were drawn.

Planktonic Population: The relative frequency of planktonic Foraminifera, with respect to the benthonic fauna, is largely controlled by the density of benthonic Foraminifera within the population. The productivity of planktonic Foraminifera remains the same throughout most of the open marine conditions; however, dilution by other benthonic foraminifera determines the planktonic-benthonic ratio. It is generally true that the ratio between planktonic and benthonic foraminifera increases with the distance from the shoreline and increasing depth. However, there are great variations among samples of similar depths causing an unreliable prediction of depth by the planktonic-
benthonic ratio only. It is even more difficult in an ancient environment in which the rate of reproduction of planktonic foraminifera might have been different from that of the Holocene.

Assuming, therefore, that the conditions of paleodepositional environments corresponds approximately to the Holocene, the ratio variation could be used to infer relative change of depth of the environment or distance of shore line from the basin. From bottom samples of the Gulf Coast Area, depth-ratio relationship were established by Grimsdale and Van Morkhoven (1955), to show variations of the planktonic population with depth as follows:

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Ratio Range</th>
<th>Enviromental Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td><5%</td>
<td>Inner neritic</td>
</tr>
<tr>
<td>50</td>
<td><10%</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>10< R<20%</td>
<td>Middle neritic</td>
</tr>
<tr>
<td>70</td>
<td>20< R<30%</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>30< R<40%</td>
<td>Outer neritic</td>
</tr>
<tr>
<td>200</td>
<td>40< R<50%</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>40< R<50%</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>30< R<40%</td>
<td>Upper Bathyal</td>
</tr>
<tr>
<td>500</td>
<td>40< R<50%</td>
<td></td>
</tr>
<tr>
<td>600</td>
<td>50< R<60%</td>
<td></td>
</tr>
<tr>
<td>700</td>
<td>60< R<80%</td>
<td>Lower Bathyal</td>
</tr>
<tr>
<td>1300</td>
<td>>90%</td>
<td></td>
</tr>
</tbody>
</table>

\[
\text{Ratio} = \frac{\text{planktonic population}}{\text{total population}} \times 100
\]
Generic Distribution of Recent Foraminifera in Generalized Environments of the Gulf of Mexico

Following is the distribution of foraminiferal genera in the Gulf of Mexico compiled from various sources based on the bathymetry and physiography of the environments. Only those écologie data from the Gulf of Mexico studied by Bandy, 1954, 1956; Benda and Puri, 1962; Kane, 1962, Kornfeld, 1931; Lankford, 1959; Lehman, 1957; Loep, 1965; Lynts, 1962; Phleger, 1951a, 1951b, 1954, 1955, 1956, 1960; Post, 1951, Shifflett, 1961; Walton, 1960 and Warren, 1956, were used.

The frequency and depth distribution of individual species are summarized in the Appendix II. Whenever there is no direct measurement on the depth range of individual species available, direct reading of bathymetry was taken for the species from the range charts presented by authors mentioned above.

I. Transitional Environments

A. Brackish environment (inland marsh, estuary, brackish lake, inner bay area)

Ammoastuta
Ammobaculites
Ammonia
Ammoscalaria
Ammotium
Arenoparella
Cribroelphidium
Elphidium
Eponides
Haplaphragmoides
Milliammina
Miliolinella
Palmerinella
Recurvoides
Reophax
Textularia
Triloculina
Trochammina

b. Protected marginal marine environment (sound, lagoon, outer bay area)

Ammobaculites
Ammodiscus
Ammonia
Ammoscalararia
Ammotium
Arenoparella
Bolivina
Buccella
Buliminella
Cibicides
Cribroelphidium
Discorbis
Elphidium
Eponidella
Gaudryna
Guttulina
Hanzawaia
Haplophragmoides
Hauerina
Massilina
Milliammina
Miliolinella
*Nonion (Melonis)
Nonionella
Palmerinella
Quiqueloculina
Rotalia
Spiroloculina
Trochammina
Triloculina

II. Open Marine Environments

a. Littoral environment (Delta edge, beach, intertidal, reef)

Ammobaculites
Ammonia
Arenoparella

*genus also includes genus in parenthesis

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Bigenerina
Bolivina
Buliminella
Cancris
Cibicides
Cibicidina
Elphidium
Epistominella
Gaudryina
Fursenkoina
Haplophragmoides
Massilina
*Nonion (Melonis)
Nonionella
Palmerinella
Quinqueloculina
Ammonia
Spirillina
Textularia
Triloculina
Trochammina

b. Inner Shelf (up to 20m)

Ammobaculites
Ammonia
Archaias
Asterigerina
Bifarina
Bigenerina
Bolivina
Buliminella
Cibicidina
Discorbis
Elphidium
Epistominella
Eponides
Fursenkoina
Gaudryina
Globulina
Guttulina
Hanwawaia
Lenticulina
Massilina
Nodobaculariella
Nonionella
Nouria
Peneroplis
Planulina
Pyrgo
Quinqueloculina
Reussella
Reophax
Ammonia
Spirillina
Textularia
Trochammina
Triloculina
Uvigerina
Wiesnerella

c. Middle Neritic (20+m - 100+m)

Ammobaculites
Amphistegina
Archaia
Asterigerina
Bifarina
Bigenerina
Bolivina
Bulimina
Bulliminella
Cancris
Cassidulina
Cibicides
Clavulina
Discorbis
Eggerella
Elphidium
Epistominella
Eponides
Fursenkoina
Gaudryina
Hanzawaia
Lenticulina
Marginulina
*Nonion (Melonis)
Nonionella
Nouria
Planobulina
Planulina
Pyrgo
Quinqueloculina
Reophax
Reussella
Ammonia
Siphonina
Textularia
Trifarina
Trochammina
Uvigerina
Valvulineria

d. Outer Neritic (100+m - 200+m)

Amphistagina
Bigenerina
Bolivina
Bulimina
Cassidulina
Cibicides
Clavulina
Discorbis
Eponides
Fursenkoina
Gaudryina
Hanzawaiia
Lenticulina
Nodosaria
Planulina
Pullenia
Rectobolivina
Reophax
Sigmoilina
Siphonina
Trifarina
Uvigerina
Valvulineria

e. Upper Bathyal (200+ m - 500+ m)

Bolivina
Bulimina
Cassidulina
Chilostomella
Cibicides
Clavulina
Cyclammina
Epistominella
Eponides
Fissulina
Fursenkoia
Glomospira
Gyroidinoides
Haplophragmoides
Karreriella
Lenticulina
Nodosaria
Planulina
Pullenia
Reophax
Ammonia
Trifarina
Trochammina
Uvigerina
Valvulineria
f. Lower Bathyal (500+m - 2000+m)

Bolivina
Vulimina
Cassidulina
Chilostomella
Cibicides
Cyclammina
Eggerella
Epistominella
Eponides
Fursenkoina
Glomospira
Gyroidina
Haplophragmoides
Laticarinina
Lenticulina
Osangularia
Pullenia
Rotalia
Spaeroidina
Trifarina
Trochammina
Uvigerina
Valvulineria

g. Abyssal (Depth 2000+m)

Bolivina
Vulimina
Eggerella
Eponides
Fursenkoina
Glomospira
Gyroidina
Haplophragmoides
Lenticulina
Nodosaria
Osangularia
Planulina
Pullenia
Uvigerina
PALEOECOLOGY

General

Except for transitional marginal marine environments in which the physiographic arrangement of the environment is of greater importance than absolute depth of the basin, a marine ecologic environment is generally defined as the area which is characterized by the distribution of unique species or faunal assemblage(s) controlled by the depth of water. In this regard, foraminifera are the most frequently studied fauna because of their abundant occurrence and persistent geologic record.

Phleger (1960) summarized the distributional pattern of the Foraminifera as follows:

1) Discrete depth range of species
2) Mutually inclusive assemblage of species
3) Frequencies of species

In the studies of foraminiferal ecology, most of the authors use these criteria to define the ecologic environments.

In the following, some comparisons between Claiborne species and Holocene relatives were attempted to see if any common criteria can be drawn from present ecologic implications which are applicable to a paleoecologic interpretation.
Bathymetry and Environment of Some Important Claiborne Foraminiferas Compared with Holocene Species

Species of twenty-seven Claiborne genera, which occur in more than 5% of the total benthonic population, were chosen for paleoecologic evaluation. They were compared with recent species for bathymetric and environmental inferences. Species occurring in less than 5% were treated separately and considered to be insignificant unless there was a definite preference of environment. The frequency of living species could only be denoted in such generalized scale as very rare (less than 1%), rare (1 to 5%), common (5-20%), abundant (20-50%), and dominant (more than 50%). Recent works in foraminiferal ecology frequently adopted such a scale, because this method can reasonably summarize frequency variations in most cases.

The genetic relationship between genera or species and evolutionary trend of species was not systematically studied because of their irrelevancy to the objectives of the present study. However, some homeomorphic comparison between old and living species was made directly in an attempt to determine the most closely related morphospecies and their environmental implication.

Depth range of living species represent the range in which the species occur most commonly or constitute a significant part of an assemblage. Where the specific depth range was not available, a generalized environmental term was given for the species. (See Table of Appendix II)
Only those species occurring in more than 5% in an assemblage are evaluated. Herein, Cane River is abbreviated C. and Weches W. Percentage numbers show the maximum frequency for the genus with a total of all species where applicable:

Alabamina

Maximum Frequency: C: 18% W: 15%

Claiborne Species: *A. wilcoxensis*

There are no *Alabamina* species reported from present Gulf of Mexico environments. *Alabamina* has been confused with *Eponides*; however, there is no Holocene *Eponides* in the Gulf of Mexico which resembles *Alabamina*. It is concluded, therefore, that genus *Alabamina* is an unique fossil species, at least in the Gulf Coastal region.

In both formations, *Alabamina* species occur in both the glauconitic and clayey sections; however, they are not associated with arenaceous species of marginal marine environs. It is assumed, therefore, that within the depth range of the Cane River and Weches environments this species was not depth sensitive as long as the overall environment remained marine.

Ammobaculites

Maximum Frequency: C: 14% W: 6%

Claiborne Species: *A. mauricensis*

A. mauricensis is confined to the upper brown clay of
both formations which grades into non-fossiliferous silt or sand. Most of the living species of *Ammobaculites* occur with high frequency in transitional areas of subnormal salinity. It would appear, therefore, that species of *Ammobaculites* have remained in a similar environment, at least since the Eocene.

Anomalinoideae

Maximum Frequency: C: 49% W: 9%
Claiborne Species: *A. costianus* *A. umbonatus*

Anomalinoideae species are more abundant in the Cane River Formation. The higher frequency of occurrence coincides with a high planktonic-benthonic ratio. It is assumed, therefore, that species of *Anomalinoideae* are indicative of a deeper marine environment.

Asterigerina

Maximum Frequency: C: 15% W: 69%
Claiborne Species: *A. texana*

A. texana, extremely abundant in the Weches samples, is insignificant in the Cane River except in a few isolated samples. Holocene species also show a "spotty" but concentrated distribution within a relatively wide range of depth.

Bolivina and Brizalina

Maximum Frequency: C: 21% W: 3%
Claiborne Species: *Bolivina gracilis* *Brizalina taylori*

Bolivina and *Brizalina*, minor constituents in the Claiborne assemblage, are more abundant in the Cane River
Formation. Based on studies of Holocene Foraminifera, these two genera appear to share similar ecologic niches, and are abundant in the deeper marine environments.

Some Holocene species of Bolivina have distinct and discrete range. When the overall frequency of total species is compared, relative to the depth alone, it is noted that the frequency of Bolivina species in a given assemblage is rare; however, they increase rather rapidly from middle neritic toward a deeper environment. A higher frequency of Bolivina and Brizalina specimens, therefore, is interpreted as an indicator of a deeper water environment.

Bulimina
Maximum Frequency: C: 18% W: 4%
Claiborne Species: B. byramensis
B. truncana subsp. akusuatica

Living species of Bulimina generally are part of the deep water fauna which occur in the upper to lower bathyal environments.

Ceratobulimina
Maximum Frequency: C: 13% W: 25%
Claiborne Species: C. eximia

No living relative of the genus Ceratobulimina is known from the Recent Gulf Coast environment. Although it is not a dominant species, the relative frequency is much higher in the Weches samples.

"Cibicides"
Maximum Frequency: C: 38% W: 27%
Claiborne Species:
- C. pseudowuellostorfi
- C. mamiformis
- C. lawi
- C. mimulus

Most of the Holocene species are limited to the middle neritic to outer neritic environment. The overall generic diversity and frequencies are higher in the Cane River than in the Weches Formation.

Cibicidina

Maximum Frequency:
- C: 15%
- W: 9%

Claiborne Species:
- C. mauricensis
- C. westi

There is no Cibicidina species reported from the Gulf of Mexico environments. The species of Hanzawaia, therefore, are substituted for Cibicidina because of their morphologic similarity. All seem to be characteristic of inner to middle neritic depth. In the Claiborne assemblages, the occurrence of Cibicidina is closely related to "Cibicides".

Cyclammina

Maximum Frequency:
- C: 3%
- W: 98%

Claiborne Species:
- C. cancellata obesa

In the present day environment, Cyclammina is strictly confined to the deeper water. A study by Robinson (1970) shows, however, that this genus, originally associated with a neritic assemblage, has migrated constantly toward the deeper environment since Miocene time. In the Claiborne, it is found in greater abundance associated with arenaceous forms of the transitional marginal environment; therefore, must be part of the transitional assemblage.
"Discorbis"
Maximum Frequency: C: 1% W: 51%
Claiborne Species: D. stenzeli
D. yeguaensis

The depth range of those suspicious species of "Discorbis", sometimes identified as Eponides, show some differences because of their questionable generic assignment. The general depth of Holocene "Discorbis" species indicates that they occur in shallower than middle neritic environments. In Weches-Cane River time, "Discorbis" species were confined strictly to the Weches environment.

Globulina
Maximum Frequency: C: 3% W: 7%
Claiborne Species: G. gibba

No Globulina species has been reported from the Gulf of Mexico; therefore, the bathymetry of this genus can not be ascertained. Claiborne species of Globulina occur randomly throughout the samples without any significant variations.

Guttulina
Maximum Frequency: C: 5% W: 7%
Claiborne Species: G. irregularis

There was no report of Guttulina species from the examined sources on Gulf of Mexico Foraminifera. This genus occurs in both formations; however, in much greater frequency in the Weches Formation.

Gyroidinoides
Maximum Frequency: C: 29% W: 52%
Claiborne Species: G. octocameratus
Two closely related genera, Gyroidina and Gyroidinoides, occur more abundantly in deep water environments. The Claiborne species, however, are more closely related to a very shallow environment. In a transgressive sequence, they immediately succeed brackish assemblages of arenaceous foraminifers and persist thereafter throughout the section. It is conceivable, therefore, that the species of Gyroidinoides gradually receded from the shallower environment and restricted itself to the deeper marine environment.

Haplophragmoides

Maximum Frequency: C: 32% W: 82%

Claiborne Species: H. canariensis

H. compalanata (Crisbrostomoides according to L & T)

Haplophragmoides species have been invariably a part of the marginal marine fauna except for the Holocene H. bradyi which occurs mainly in deep water.

Lamarckina

Maximum Frequency: C: 18% W: 46%

Claiborne Species: L. claibornensis

L. claibornensis is present, most dominantly, in the Weches section. The highest frequencies occur immediately adjacent to the brackish arenaceous assemblages. Although there is only one Lamarckina species which occurs rarely in the Holocene, this fossil species seem to have lived in a slightly deeper environment.

Lenticulina

Maximum Frequency: C: 18% W: 5%
Claiborne Species: $L.\ alatolimbata$
$L.\ midwayensis$

Claiborne species of *Lenticulina*, occurring sporadically throughout the sample examined, have a higher frequency of occurrence in the Cane River Formation. Holocene species seem to have a wide range of depth, therefore, the depth of *Lenticulina* species is undeterminable. However, it is more diverse and abundant in the Cane River which has a slightly deeper bathymetry than the Weches Formation.

Melonis

Maximum Frequency: $C: 9\%$ $W: 6\%$

Claiborne Species: $M.\ planatus$

In the Claiborne, *Melonis* accounts for a rather insignificant proportion of the total fauna. However, it occurs frequently throughout the normal marine sediments of both formations. In the Holocene environments of the Gulf of Mexico, the bathymetric distribution of this genus is determined by individual species much like the case of *Bolivina*. Obviously, this genus extended its depth range into shallow, transitional to as deep as bathyal or deeper environments.

Neoeponides

Maximum Frequency: $C: 14\%$ $W: 26\%$

Claiborne Species: $N.\ mexicana$

Because of their close relationship and previously less strict taxonomic differentiation, the species of *Neoeponides* and *Eponides* are combined here. In Holocene environments...
they are generally regarded as deep water species. In the Claiborne formations, this genus occurs with a conspicuously higher frequency in the Weches outcrops.

Quinqueloculina

Maximum Frequency:
C: 1%
W: 51%

Claiborne Species:
Q. claiborniana
Q. yeguaensis

All species of *Quinqueloculina* are considered to be a part of the shallow water fauna. *Quinqueloculina* species are extremely abundant in the Weches Formation, and are absent in the Cane River Formation. In the Holocene environments, *Quinqueloculina* ranges from inner to midlécneritic depth, and occurs more abundantly in the area of carbonate deposition. For example, the Florida shelf environment has a rich *Quinqueloculina* fauna; however, the Louisiana offshore shelf environment has a very reduced population of the genus *Quinqueloculina*. The distribution of *Quinqueloculina* in the two Claiborne formations can not be explained at this time.

Siphonina

Maximum Frequency:
C: 41%
W: 51%

Claiborne Species:
S. claibornensis
S. danvillensis

In the Claiborne formations, species of *Siphonina* occur very abundantly in the entire assemblages studied. Two Holocene species show a relatively wide depth range; however, they do not occur as abundantly as in the Claiborne. Some previous interpretations of Claiborne species (Curtis, 1955)
as being typically a deep water fauna are considered to be
doubtful.

Spiroplectamina

Maximum Frequency: \(C: 8\% \quad W: 18\% \)

Claiborne Species: \(S.\ zapotensis \)

* Spiroplectamina and **Textularia**, which are difficult to
differentiate, are treated as a homeomorphic group. In
recent environments, their depth of occurrence varies from
inner to outer neritic. The Claiborne species also occur
throughout the section without significant variation.

Trifarina

Maximum Frequency: \(C: 18\% \quad W: 1\% \)

Claiborne Species: \(T.\ wilcoxensis \)

Although not in great quantities, Claiborne species of
Trifarina are concentrated in the Cane River samples. Only
a few specimens were found from several samples in the Weches.
Holocene species are insignificantly distributed without any
specific depth preference. It appears, therefore, that the
distribution of genus **Trifarina** is not controlled by the
depth of water.

Triloculina

Maximum Frequency: \(C: 0\% \quad W: 13\% \)

Claiborne Species: \(T.\ paulocostata \)

Recent species of the genus **Triloculina** are dominently
shallow inner neritic. There trend of occurrence in both
the Holocene and Claiborne environments concur with the
Quinqueloculina species; therefore, the species of both
genera all could be treated as a single taxon in the family miliolidae.

Trochammina

Maximum Frequency: C: 85% W: 67%

Claiborne Species: T. sp.

There is some reservation herein as to the generic assignment of Claiborne species to the genus *Trochammina* because of the indistinctness of the aperature. It occurs exclusively in the transitional environments in the Cane River and Weches Formation.

Turrilina

Maximum Frequency: C: 6% W: 1%

Claiborne Species: T. robertsi

The single species of the genus *Turrilina* is more common in the Cane River. It is not present in the Holocene of the Gulf of Mexico; therefore, its ecological implication can not be ascertained.

Uvigerina

Maximum Frequency: C: 8% W: 1%

Claiborne Species: U. blancocostata

U. earzaensis

Recent species of *Uvigerina* occur most commonly in the environment deeper than the middle neritic zone. Their occurrence in a shallower environment is very rare. In the Claiborne samples, species of *Uvigerina* occur in very low frequency; however, they are more abundant in the Cane River fauna.
Discocyclina

Maximum Frequency: C: Abundant W: Absent
Claiborne Species: D. advena

Discocyclina is the largest Foraminifera in the samples studied. It requires special attention as to the environmental condition it represents, because of its unique occurrence relative to living species of other larger Foraminifera in modern environments.

Most of the living species of larger Foraminifera are confined to the depth zone of 35 m or less. Also, larger Foraminifera are closely related to the distribution of marine flora, a pattern of distribution which closely resembles that of modern species of coral. A survival range of temperature for these species is limited to between 18°C - 27°C. Although Discocyclina has no living relatives, it may be assumed that this species also thrived in a similar shallow environmental condition in the Eocene where it was consistently associated with the oyster, Cubitostrea lisbonensis, which was also a member of a shallow water environment.

Based upon ecologic studies resulting in the interpretations given above, the paleoecology of certain foraminiferal genera are summarized as follows: 1) foraminifers which are considered to have remained in a similar environment since the Eocene:

Ammobaculites
Bolivina and Brizalina
Bulimina
Cibicidina
2) Foraminifera which are considered to have adopted different environment since the Eocene:

Asterigerina: from inner Neritic to middle Neritic

Cibicides: from inner-middle Neritic to middle-outer Neritic

Cyclammina: from Transitional environment to UpperBathyal or deeper environment.

Discorbis: from inner Neritic to middle-outer Neritic environments

Gyroidinoides: from inner Neritic to deeper than outer Neritic environment

Lamarckina: from inner Neritic to Littoral environment

Melonis: from inner-middle Neritic to Transitional or bathyal or deeper environment

Neoeponides: from inner Neritic to outer Neritic or deeper environment

Siphonina: from inner-outer Neritic to middle Neritic to deeper environment

Trochammina: from Transitional environment to wider range of environment (Transitional, inner Neritic to Lower Bathyal)

3) Foraminifera not occurring in the present Gulf Coast environment but occur abundantly in the Claiborne stage. Inferred environments are:

Alabamina: inner to middle Neritic

Anomalinoides: middle to outer Neritic

Ceratobulimina: inner to middle Neritic
Environmental Assemblage

General

Despite the fact that both formations have 79 species of Foraminifera in common, there are apparent differences between the two formations in diversity of assemblages.

It is apparent that the two formations examined in the present study are the results of deposition during the period of marine transgression and regression in the Lower Claiborne. Therefore, it is assumed that within the lithologic sequence of each formation this deepening and shallowing in the depositional area is reflected in the faunal assemblages. One of the objectives of this research program, therefore, is to ascertain whether or not the depth variation can be recognized within the lithologic sequence of both the Weches and Cane River formations by examining quantitative variation of foraminiferal taxa.

Following are the main foraminiferal taxa which constitute the major portion of the faunal assemblage:

<table>
<thead>
<tr>
<th>Weches</th>
<th>Minor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major</td>
<td>Minor</td>
</tr>
<tr>
<td>Asterigerina</td>
<td>Alabamina</td>
</tr>
<tr>
<td>Cibicides</td>
<td>Ceratobulimina</td>
</tr>
<tr>
<td>Discorbis</td>
<td>Neoeponides</td>
</tr>
<tr>
<td>Gyroidinoides</td>
<td></td>
</tr>
<tr>
<td>Lamarckina</td>
<td></td>
</tr>
<tr>
<td>Siphonina</td>
<td></td>
</tr>
<tr>
<td>Lituolidae</td>
<td></td>
</tr>
<tr>
<td>Miliolidae</td>
<td></td>
</tr>
</tbody>
</table>
Cane River

<table>
<thead>
<tr>
<th>Major</th>
<th>Minor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anomalinoïdes</td>
<td>Alabamina</td>
</tr>
<tr>
<td>Cibicides</td>
<td>Asterigerina</td>
</tr>
<tr>
<td>Siphonina</td>
<td>Bolivina</td>
</tr>
<tr>
<td>Lituolidae</td>
<td>Brizalina</td>
</tr>
<tr>
<td></td>
<td>Bulimina</td>
</tr>
<tr>
<td></td>
<td>Gyroidinoïdes</td>
</tr>
<tr>
<td></td>
<td>Lamarckina</td>
</tr>
<tr>
<td></td>
<td>Lenticulina</td>
</tr>
<tr>
<td></td>
<td>Neoeponides</td>
</tr>
<tr>
<td></td>
<td>Trifarina</td>
</tr>
<tr>
<td></td>
<td>Uvigerina</td>
</tr>
</tbody>
</table>

Major taxa are those which, alone or in combinations of two or three, dominate the assemblage (more than 50% of the total fauna). In most instances the Cane River Assemblages can be distinguished from the Weches Assemblages by the absence or insignificance of the species which dominate the Weches assemblage. On the other hand, the Cane River Assemblage has a substantially higher ratio of planktonic species which are present in the Weches Assemblage only in insignificant numbers.

The most notable differences in benthonic faunas are the absence in the Cane River Formation of the species of Family Miliolidae and the genus "Discorbis" and the extreme rarity in the Weches Formation of Bolivina, Brizalina, Bulimina, Trifarina and Uvigerina species. Also, the mode of occurrence of the major foraminifers displays conspicuous difference. The Weches fauna shows short burst of prolificacy of certain genera and species in a relatively limited period of time. Such a trend is less apparent in the Cane River Formation where the major taxa remain stable throughout most of sample assemblages.
Result of Cluster Analysis

The purpose of cluster analysis is to see if the foraminiferal characteristics of assemblages could be systematically categorized and such a categorized unit have any implication in view of stratigraphic and environmental distribution of the assemblages.

The result of the cluster analysis of Unweighted Pair-Group Method using Centroid Averaging (UPGMC) is shown in the Appendix V (B) and a simplified dendrogram is derived as shown in the Figure 24.

The numbers on the similarity scale in the original dendrogram given in Appendix V (B) is a mathematical derivative of the data used and have no absolute value. The numbers at the bottom row in the Figure 24 is for the convenience of presenting arbitrary group of assemblages originally defined by the cluster analysis.

Foraminiferal assemblages could be categorized into distinctive groups on the basis of degree of similarity in their quantitative faunal property.

The distribution of assemblages in the sections examined is shown in the Figure 25.

At first, entire sample assemblages can be separated into three large groups (Figure 24, A, B, C). The Group "C" is further subdivided because there is significant clustering of assemblages at the greater similarity level.
Fig. 24. Simplified Dendrogram of Assemblage Group
Fig. 25. STRATIGRAPHIC DISTRIBUTION OF ASSEMBLAGE GROUP

Legend: See Fig. 24
No. 1-114: Sample Number
Group "A" (Assemblage Unit 1)

<table>
<thead>
<tr>
<th>Major Taxon</th>
<th>Minor Taxa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lituolidae</td>
<td>Neoeponides, Ceratobulimina</td>
</tr>
<tr>
<td></td>
<td>Gyroidinoides, Lamarckina</td>
</tr>
<tr>
<td></td>
<td>Siphonina</td>
</tr>
</tbody>
</table>

This group consists mainly of arenaceous species of the Family Lituolidae. A very small number of minor species are also included in the assemblage; however, their proportion is insignificant. All of the 20 samples belonging to this group came from the marginal environment which represents the initial period of transgression and terminal stage of a true marine environment.

Group "B" (Assemblage Unit 2)

<table>
<thead>
<tr>
<th>Major Taxa</th>
<th>Minor Taxa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siphonina</td>
<td>Lenticulina, "Cibicides"</td>
</tr>
<tr>
<td>Lamarckina</td>
<td>Abalamina, Globulina</td>
</tr>
<tr>
<td>Gyroidinoides</td>
<td>Neoeponides, Asterigerina</td>
</tr>
<tr>
<td>Discorbis</td>
<td>Anomalainoides, Spiroplectamina</td>
</tr>
<tr>
<td>Milliolidae</td>
<td></td>
</tr>
<tr>
<td>Lituolidae</td>
<td></td>
</tr>
</tbody>
</table>

This is the most heterogeneous group of assemblages in their constituent taxa and their frequency in the assemblage. Of 23 assemblages assigned to this group, 10 consist of less than 100 individuals. The Cane River assemblages belonging to this group were suspected of being abnormal because of some evidence of recrystallization.
and destruction of original biogenic contents by diagenesis. On the whole, this group is distinguished by the overwhelming dominance of a few selected species in an assemblage and fewer number of species in the assemblage. The major species often occupy as much as 50% of the total population. Except for 5 samples from the Cane River, which show abnormal concentration of some species, this group is the characteristically Weches assemblage usually succeeding and surrendering to the arenaceous assemblages, respectively, in a transgressive and/or regressive sequence.

Group "C" (Assemblage Unit 3-12)

Major Taxa

- Asterigerina
- Anomalinoïdes
- "Cibicides"
- "Discorbidus"
- Gyroidinoïdes
- Lamarckina
- Miliolidae
- Siphonidae
- Planktonics

Group "C" can be best classified as the assemblage of a normal marine environment, ranging from an assemblage with predominantly with species of Family Miliolidae to one with a high planktonic ratio.

Because there is so much variation within the group, it can be further divided into subgroups. In this subdivision, subgroups are hierarchically promoted and each subgroup is inclusive of previous subgroup resulting in
more comprehensive environment (and assemblage group) as the rank of a subgroup increases. Therefore, the degree of similarity between faunal assemblages and environmental homogeneity decreases as the subgroup accumulates more members of assemblages.

Subgroup "K" (Assemblage Unit 4)

<table>
<thead>
<tr>
<th>Major Taxa</th>
<th>Minor Taxa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planktonics</td>
<td>Gyroidinoides</td>
</tr>
<tr>
<td>"Cibicides"</td>
<td>Alabamina</td>
</tr>
<tr>
<td>Anomalinoidea</td>
<td>Bolivina</td>
</tr>
<tr>
<td>Siphonina</td>
<td>Brizalina</td>
</tr>
<tr>
<td></td>
<td>Lenticulina</td>
</tr>
<tr>
<td></td>
<td>Lamarckina</td>
</tr>
</tbody>
</table>

This subgroup, consisting of 33 assemblages (of which 28 are from the Cane River Formation) probably represents the deepest environment in the area studied and is characteristic of the Cane River Formation.

Subgroup "J" (Assemblage Units 4, 5)

This group is essentially similar to the subgroup "E" except that the genus *Asterigerina* and the Family Miliolidae become important as the major foraminiferas along with minor species such as genera *Neoeponides*, *Guttulina* and *Discorbis*. This may indicate some variation in the environment of subgroup "K", possibly indicating a shallower part of the basin.

Subgroup "I" (Assemblage Unit 4-6)

Assemblages with the genera *Ceratobulimina* and
Uvigerina were added to the subgroup "I"; however, without much deviation from either subgroup "K" or subgroup "J". Adding these genera may be merely a faunal variation of the assemblage without any significant environmental implication.

Subgroup "H" (Assemblage Unit 4-7)

Four assemblages with high Miliolidae and Ceratobulimina content but without planktonics and Uvigerina promote the subgroup "I" up to the subgroup "H". This could be interpreted as further expansion of the environment formerly defined as subgroup "J".

Subgroup "G" (Assemblage Unit 4-8)

This subgroup includes six additional assemblages in which Asterigerina dominates the assemblage. This is considered to have wide range of depth and environment.

Subgroups "E", "F" (Assemblage Units 4-8, 4-9)

In these subgroups 12 assemblages characterized by the unique combination of Siphonina, "Cibicides", "Discorbis", Lamarckina and Ceratobulimina were included. Because these genera are already present in the previous assemblage, it may be just another spontaneous faunal variation in terms of their relative frequency in the assemblage. However, stratigraphically the added assemblages mark the upper part of the Weches Formation.
Subgroup "D" (Assemblage Unit 4-11)

Two more anomalous clusters of assemblages were included in the subgroup "D". An extraordinarily high frequency of Asterigerina, Lamarckina and Miliolidae characterizes these assemblages.

With the remaining few assemblages in which Gyroidinoides, Lamarckina, "Discorbis" and Lituolidae species form the major constituents, group "C" comprises almost two-thirds of all the samples examined.

Asterigerina, Ceratobulimina, "Discorbis", Gyroidinoides, and Lamarckina are practically controlling the assemblages which expand initial subgroup into later subgroup of lesser similarity.
Comparison Between the Weches and Cane River Environments

This environmental interpretation of the Weches and Cane River Formations is based mainly on the foraminiferal assemblages supplemented with any other member of the fauna whenever available. As a sedimentary unit containing transgressive and regressive cycles, there are a number of environments in the Weches and Cane River Formations which reflect different stages of inundation. The most important environmental stage, however, is the time of maximum transgression which defines the inner boundary of the sedimentary regime. In these two Lower Claiborne units, glauconitic sediments are thought to represent such a condition.

Both formations possess transitional sections in which the major Foraminifera species are arenaceous. The species within this zone are quite similar in their relative frequencies and constituent species.

There are marked differences in the assemblages of the normal marine environment which constitute the major part of the two formations. Therefore, the resulting faunal statistics from these sections were expected to reflect the differences in basinal tectonics between the two formations in this deeper environment.

Following are some comparisons of foraminiferal statistics in the normal marine sections of the two formations:
Total No. of Benthonic Genera 40 61
Total No. of Benthonic Species 84 109
No. of Benthonic Genera occurring in more than 5% of total assemblage 22 24
No. of Benthonic Species occurring in more than 5% of the total population in an assemblage 27 30
Average No. of Genera per sample in the glauconitic sediments 13.5 20.3
Average No. of Species per sample in the glauconitic sediments 18.2 28.5
Average % of the most dominant species in the sample 35% 23.7%
Maximum frequency of the planktonic population among samples 13% 44%

Based on the ecologic criteria, above figures can be summarized as follows:

1) Diversity of species - increases in the deeper environment with Cane River greater than Weches
2) Degree of species equitability - increases in the deeper environment with Cane River greater than Weches
3) Frequency of the most dominant species - decreases in the deeper environment with Cane River less than Weches
4) Ratio of Planktonic/Total Population - increases in the deeper environment with Cane River greater than Weches.

The above summary suggests that the marine Cane River
Fig. 26. Relationship between number of species and per cent dominance (Walton, 1964)
environment was relatively deeper than the Weches environment even without examining environmentally distinctive species.

In recent environment diversity of species and degree of species domination in a given assemblage also reflects bathymetric differences. When the statistics derived from the Claiborne samples were compared with the recent data (Walton, 1964). It was found that there is close correlation between Eocene and Holocene assemblages as shown in Figure 26 where the Weches and Cane River Foraminifera are plotted on Walton's distribution curve.

Walton (1964) concluded that the distribution of the samples on the curve, with regard to numbers of species and the depth of the samples, shows the following characteristics:

1. 100% of all faunas with less than 20 species occurs in water shallower than 10 fathoms.
2. 100% of all faunas with less than 30 species occurs in water shallower than 20 fathoms.
3. 80% of all faunas with 21 to 30 species occurs in water shallower than 10 fathoms.
4. 60% of all faunas with 31 to 40 species occurs between 10 and 20 fathoms (25%, less than 10 fathoms; 15%, 20 to 50 fathoms).
5. 46% of all faunas with 41 to 50 species occurs between 10 and 20 fathoms (7%, less than 10 fathoms; 29%, 20 to 50 fathoms; 18%, greater than 50 fathoms)
6. 36% of all faunas with 51 to 60 species occurs between 20 and 50 fathoms (4%, less than 10 fathoms; 26%, 20 to
50 fathoms; 23%, greater than 50 fathoms; 4%, greater than 50 fathom reefs)

7. 68% of all faunas with 61 to 70 species occurs deeper than 50 fathoms (7%, 10 to 20 fathoms; 26%, 20 to 50 fathoms)

8. 91% of all faunas with 71 to 80 species occurs deeper than 50 fathoms (9%, 20 to 50 fathoms), thus 100% of all faunas with more than 71 species occurs deeper than 20 fathoms.

9. 100% of all faunas with more than 81 species occurs deeper than 50 fathoms."

(Walton, 1964, p. 217)

The following are the relationship between percent dominance of a species and depth of the sample.

"1. 100% of all faunas whose dominant species constitutes over 35% of the entire fauna occurs shallower than 10 fathoms.

2. 36% of all faunas with dominant species constituting 21% to 30% occurs between 10 and 20 fathoms (31%, less than 10 fathoms; 13%, from 20 to 50 fathoms; 21%, deeper than 50 fathoms)

3. 57% of all faunas with dominant species constituting 11% to 20% of the fauna occurs deeper than 50 fathoms (4%, less than 10 fathoms; 18%, 10 to 20 fathoms; 20%, 20 to 50 fathoms)

4. 92% of all faunas with dominant species constituting less
than 10% of the fauna occurs deeper than 50 fathoms (8%, from 20 to 50 fathoms).

Diversity of the dominant species is also greater in the Weches Formation, possibly indicating ecologically unstable condition of the basin. In the Weches assemblages, species of Asterigerina, "Cibicides", "Discorbis", Gyroidinoides, Lamarckina, Quinqueloculina and Siphonina compete against each other for the dominance in the faunal assemblage, while in the Cane River, Anomalinoides, "Cibicides" and Siphonina form the major portion of the assemblage with compatible proportions.

Should the bathymetry be inferred strictly on the basis of species diversity and dominance, the average Weches environment has never been deeper than 10 fathoms. (This is approximately the maximum depth (20 ± m) of the inner neritic zone as defined in the present study.) On the same basis, the Cane River environment could have been anywhere from the inner neritic to the outer neritic but more probably middle to outer neritic. The relative percentage of planktonic species also suggests that the Weches Formation was mostly under inner neritic conditions (planktonic/ total population ratio = less than 5%) except in the middle portion of the section, where, for a brief period of time, up to 13% of the planktonic population observed indicates a period of middle neritic deposition (at least on the basis of planktonic foraminifers). In the Cane River Formation, the population of planktonic Foraminifera varies but maintains
a relatively high frequency in the glauconitic sections (up to 44%). This indicates at least a middle neritic environment often including outer neritic depth also.

The following genera, found to be common at shallow depth in Holocene environments, are very abundant in the Weches Formation but are absent or occur rarely in the Cane River Formation.

<table>
<thead>
<tr>
<th>Asterigerina</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discorbis</td>
</tr>
<tr>
<td>Lamarckina</td>
</tr>
<tr>
<td>Quinqueloculina</td>
</tr>
<tr>
<td>Triloculina</td>
</tr>
</tbody>
</table>

The following genera commonly occurring only in the Cane River Formation. They are generally considered to be indications of a deep water facies.

| Bolivina |
| Brizalina |
| Bulimina |
| Uvigerina |

Related species to the above group, such as Siphouvigerina, Turrilina, Robertina and Trifarina, are also more abundant in the Cane River environment.

This study of the Weches and Cane River faunal groups also reveals that there is a lateral discontinuity in the pattern of foraminiferal distribution. This contradicts the former theory of basinal continuity between the Weches and Cane River environments which has long been accepted as the correct relationship between the two formations.

The foraminiferal genera and species listed as commonly occurring in each formation show considerable lateral persistence within the individual formation. When those genera
are compared in terms of frequency between the Weches and Cane River formations the following trend can be noted.

From Cane River to Weches:

- **Anomalinoïdes** decreased
- **Asterigerina** increased
- **Ceratobulimina** increased
- "Cibicides" decreased
- "Discorbis" increased from 0%
- **Gyroidinoides** increased
- **Lamarckina** increased
- **Quinqueloculina** increased from 0%
- **Siphonina** remained in similar frequency

The general trend is that those of deep water genera (Cane River taxa) decreased; those of shallower species (Weches taxa) increased. This variation in the two environments, Cane River and Weches, should imply: 1) that the species were so depth sensitive in Eocene time that they were more prosperous in their preferred depth environment; or, 2) that the population maturity of individual species had peaked during the time of either environment; or, 3) that there was an environmental constriction between the two areas that prevented equal distribution of the species. None of these hypotheses can be ruled out as a possible cause for such a trend; however, the latter two alternatives seem to be a more probable explanation for such faunal characteristic, which necessarily required separation of the two basins by either time or space or both.
Ostracoda species could not be systematically analyzed to prove any environmental differences because of the lack of ecologic information on the Ostracoda. However, there are apparent differences in their overall occurrence and frequencies of individual species as noted in the previous discussion on Ostracoda fauna. These differences were tentatively interpreted as the reflection of basinal differences between the two formations either in time or spatial relation. Burrowed zones are more common in the Weches section than in the Cane River section.

On the basis of all combined criteria it is concluded that the Weches sedimentary basin was mostly within the inner neritic zone while the Cane River sedimentary environment was within the middle to outer neritic zone. It is also assumed that the two basins were under two physically and chronologically separated environments in which different types of biologic organization have resulted.

Such a possibility is explained in the succeeding chapter.
Fig. 27. Conceptual stratigraphic correlations between the Lower Claiborne Formations in the vicinity of West Louisiana and East Texas.
STRATIGRAPHIC CORRELATION

Lithostratigraphy

The fundamental similarities of Gulf Coast Claiborne formations in lithology and sedimentary sequence is the result of periodic marine transgressions and regressions. The transgressive unit is generally characterized by a basal glauconite and an upper clay, while the regressive unit consists of widespread sands. This sequence has often been referred to as the Eocene sedimentary cycle in which the Reklaw - Queen City, Weches - Sparta, and Cook Mountain - Cockfield have been considered typical. Regional stratigraphy, based on the transgression-regression sedimentary concept, has been widely accepted for its apparent agreement in field observations despite frequent discontinuities. For the peculiar relationship between early Claiborne formations in east Texas and west Louisiana, however, two different correlations have been proposed, neither of which can be fully substantiated in this study either lithologically or biostratigraphically.

One correlation as initially conceived (Figure 27 (A)), is that the Cane River and Weches are time lithostratigraphically equivalent units constituting the transgressive portion of the Weches-Sparta cycle (Murray, 1961). The underlying Queen City and Reklaw were thought to form another cycle by themselves. The immediate difficulty for such a
correlation, however, is the necessity of delineating the
Reklaw-Queen City cycle into comparable units below the
Cane River in Louisiana. The Queen City Formation is known
to be thinning eastward along its strike and pinches out in
the subsurface just west of the Texas-Louisiana boundary.
The Reklaw Formation, on the other hand, shows no tendency
to decrease its thickness toward the east, maintaining a
glaucosbic-clay sequence throughout east Texas. Also, it
has been demonstrated in many subsurface sections, that the
undifferentiated units below the Cane River Formation in
west Louisiana consist mainly of a thick sand without con­
spicuous glauconite and clay units, which belong either to
the Upper Wilcox or Carrizo Formation. Therefore, a Reklaw-
Queen City cycle seems to be improbable and, in fact, was
not seriously considered as the correct relationship between
the two formations except by a few authors, and is certainly
not a considered opinion in this study.

The most widely accepted theory relative to the Weches-
Cane River relationship is that the Reklaw, Queen City, and
Weches together are equivalent to the Cane River (Figure 27
(B)). In this theory, the Queen City, a deltaic unit, is
thought to be strictly a Texas formation which interrupted
the marine environments of the Reklaw and Weches Formations.
In this sequence, from the base of the Reklaw to the top of
the Weches, sedimentary environments were interpreted as
having shifted laterally, producing an irregularly deposited
lithic facies horizontally along the margin of the depositional
basin with the Reklaw glauconite being a shelf facies, the Reklaw clay a prodelta clay facies, the Queen City a deltaic facies, the Weches glauconite again a shelf facies, and the Weches clay another prodelta clay facies. The Reklaw and Weches would then merge to form a single unit to the east in the vicinity of the Texas-Louisiana boundary where, collectively, they have been designated as the Cane River Formation. This concludes, in essence, that the sedimentary units bounded by the Carrizo (or its equivalent in Louisiana) at the base, and the Sparta Sand at the top, are time stratigraphic equivalents, and that the sediments in between are equally time stratigraphic equivalents. This is true except for a difficulty in relating different sedimentary facies between Texas and Louisiana because of the greater variety of sedimentary facies in the Texas units. It seems natural to relate the basal glauconite of the Reklaw to that of the Cane River and their upper clay units in the same manner. However, it is difficult to explain the status of the Weches basal glauconite at the point of Weches-Reklaw mergence because there is no additional glauconite unit in the Cane River which would be equivalent to the Weches glauconite. Because the glauconite is a product of typical marine environment and laterally persistent in all Claiborne units, it is difficult to explain why such a unit would disappear suddenly in the middle of a marine environment.

Also, their mode of mergence is incorrect if normal marine environment deepens toward the Cane River, because
it contends that shallowing (Upper Reklaw) and deepening (Lower Weches) occur simultaneously at the point of mergence.

Guevara and Garcia (1972) proposed that the Queen City is a complex of deltaic sediment prograding gulfward from different sources, and at different times in the Claiborne. It is possible, therefore, that the outcrop area south of the Sabine Uplift remained a positive element in a later period of time due to the sediment deposited during Queen City time which acted as a barrier between the Weches and Cane River environments. In other words, a marine transgression proceeded eastward after Queen City progradation, leaving the western part of the Weches in Texas partially equivalent to the Cane River in time. But before the area south of the Sabine Uplift reached normal marine conditions, non-marine sediments of the Sparta Formation began to construct another blanket of sand over the entire area, thus ending marine sedimentation both in Texas and Louisiana. This, in effect, suggests that the Weches sea had never been connected with the Cane River sea in the outcrop area near the Louisiana-Texas boundary, and, therefore, the Cane River is most nearly correlative with the Reklaw Formation in terms of time and lithologic continuity. This alternative is shown in Figure 27 (C).

Another speculative reason to believe that there existed some environmental barrier between the two formations in the unique distributional pattern of Queen City sediments in east Texas. This deltaic mass, so widely distributed only
in the area to the west of the Sabine Uplift, is also known to be traceable around the north of the Sabine Uplift, but never shows any sign of sandy influence on the Cane River sequence. This suggests two possibilities: 1) that the ancient ocean current was trending west to west along the coastline preventing any sand migration to the east (into the Cane River basin); or 2) that there was a physical barrier extending between the two basins which may have been a part of the southern portion of the Sabine Uplift since the beginning of the Queen City sedimentation.

Such a correlation was once proposed by Ellisor (1929) in which she suggested that the Weches pinched out between the Sparta and the Cane River (Reklaw of Ellisor at the time). She designated the lower section of the glauconitic Reklaw as the Cane River because of their traceability in the subsurface and paleontologic similarity. As it is believed that the migration of deltaic deposition, not eustatic change of sea level, resulted in shifting depositional environments during the Eocene, the alternative suggested in this study may well be the most acceptable explanation for the stratigraphic relationship between the Weches and Cane River formations.

Biostratigraphy

Because the Weches and Cane River Formations are so closely related in time, with nearly identical lithologic sequences and faunal associations which show similarity,
two units may be regarded as contemporaneous in a broader sense.

The planktonic species of Foraminifera which are commonly used as the index fossil of the Claiborne also show similar occurrence in both formations, as expected, because zonations based on the planktonic species are generally too broad to detect any minor stratigraphic difference. However, some notable differences can be recognized in terms of relative position of a few important species in each formation and their unique association with other species.

Among all faunal characteristics which may be stratigraphically important, species of Cubitostrea show the most unique occurrence in the two formations. C. lisbonensis in the Weches always occurs in the lower part of the section. However, in the Cane River section it is characteristically present at a considerably higher level in the section marking the boundary between a predominantly glauconitic unit and the upper clay unit. Furthermore, the C. lisbonensis zone in the Cane River is always associated with the larger Foraminifer species Discocyclina advena. The Discocyclina advena zone has also been reported, frequently, in the Reklaw Formation in Texas but it never occurs in the Weches Formation.

The other oyster species, Cubitostrea smithvillensis which occurs only in the upper Weches Section, is absent in the Cane River section. Because the lower limit of each formation is confined by sand units of two different ages,
the above clues are concluded to place the Weches stratigraphically higher than the Cane River Formation, thus correlating the lower glauconitic section (Tyus member) of the Weches with the upper part of the Cane River. If the differences in the frequency of the major species in the two formations are time-stratigraphically controlled, as suggested in the Environmental Comparison, all the above faunal characteristics support the above proposed stratigraphic arrangement.

This conclusion coincides with the previously suggested idea of migrating environments. Since Discocyclina occurs in the Reklaw Formation in Texas, the Discocyclina zone in the Cane River Formation must be older than the Queen City of East Texas. After the appearance of D. advena, the Cane River environment also began to shoal while the deltaic Queen City sand was being deposited farther in East Texas. Eventually, and shortly after Cubitostrea lisbonensis moved into the shallowing Cane River basin. Later C. lisbonensis also appeared in the Weches sea which was regaining its territory from the then receding Queen City. After this interval of the Queen City sedimentation, the Weches environment (that part of the East Texas Embayment) was deepening while the Cane River basin (North Louisiana Syncline) was shallowing.

Species of Asterigerina, Lamarckina and Neoeponides began their appearance in appreciable quantity only in the latter stage of the Cane River environment. These species
merge as the dominant species in the lower Weches assemblages along with Discorbis and miliolids which were not yet present in the Cane River environment.

The absence of Discorbis and miliolids may be regarded as the result of bathymetric difference between the two formations. However, the inferred depth of the Cane River sedimentary basin (middle to outer neritic) is well within the tolerance limit of the two taxa. Therefore, the only feasible interpretation of such an occurrence is that there is a stratigraphic gap between the Weches and Cane River formations. Differences in the distribution of the Ostracoda species also seem to indicate the possibility of time stratigraphic difference in the same manner as the foraminiferal distribution in the two formations.

It is concluded, therefore, that the Cane River and the Reklaw formations are lithostratigraphically equivalent units while only the upper part of the Cane River is correlative with the entire Weches Formation time-stratigraphically.

Numerous subzones within each formation, on the basis of different foraminiferal species, are rather meaningless because they are neither particularly indicative of a certain environment nor laterally persistent in frequency nor discretely ranging vertically to mark any unique horizon. However, when the species are included in an assemblage their occurrence and relative abundance in relation with other taxa would generalize the subzones (or faunal zone) within the Formation. These were presented in the environmental assemblages and faunal distributions of previous chapters.
CONCLUSIONS

1. It is inferred that there was a physical barrier between the Cane River and Weches depositional basins at their updip or northern margins near the Louisiana-Texas line. A physical change which resulted in the deposition of the Queen City non-marine sediments between marine Reklaw and Weches in East Texas could have been responsible for isolating these two basins.

2. The paleoecologic interpretation of Eocene Foraminifera, based on ecologic studies of living genera, proved to be reasonably reliable in reconstructing paleoenvironmental conditions in the Cane River and Weches Formations. On the whole, the bathymetry of most of the foraminiferal genera studied have remained essentially unchanged since the Eocene. Using these data in a quantitative analysis, the foraminifers revealed numerous biofacies within the two formations studied, which, in turn, lead to the following interpretations:

 a) that the bathymetry of the Cane River depositional basin is estimated to have been between 20 to 100 meters during most of its sedimentary cycle; however, during its time of maximum transgression the water may have been as deep as 200 meters (in the outer neritic zone); and

 b) that the Weches basin is inferred to have had a depth of less than 20 meters (inner neritic zone) throughout its depositional cycle.
In general, Cane River sediment was deposited in deeper water than the Weches sediment of equivalent ages.

3. It is proposed herein that the Cane River Formation is lithostratigraphically equivalent to the Reklaw Formation, and that only the upper part of the Cane River Formation is time-stratigraphically equivalent to the Weches Formation.

4. As a result of the taxonomic reexamination of the Weches and Cane River foraminiferal faunas, the following genera are regarded to have four undescribed species and one subspecies.

- **Ammobaculoides**
- "Cibicides"
- **Elphidium**
- **Lenticulina pseudosecan**
- **Trifarina**
PART II. TAXONOMY OF FORAMINIFERA

SYSTEMATIC DESCRIPTION OF CANE RIVER AND WECHES FORAMINIFERA

A total of 144 species of 72 genera have been described from the samples of Weches and Cane River formations examined in this study. Four new species and one new subspecies were described. A total of 48 species which had been described as new species originally from the Cane River Formation were identified as synonyms of previously described species.

In reassigning the previously described species from the Cane River, each holotype and topotype were reexamined and compared with other pertinent type specimens preserved in the Museum of Geoscience of Louisiana State University.

Treatise of Invertebrate Paleontology (C) Protista was used for generic identification and Catalogue of Foraminifera (The American Museum of Natural History) was used for specific identification.
SYSTEMATICS
ORDER FORAMINIFERIDA
SUBORDER TEXTULARIINA
Family Ammodiscidae Reuss, 1862
Genus Ammodiscus Reuss, 1862
Ammodiscus incertus (d'Orbigny)

Plate 1, Figure 1

Operculina incertus d'Orbigny, 1839, Foram. Cuba, p. 71, pl. 6, figs. 16, 17

Test finely arenaceous, cyclopyrine tubular coil gradually increases in size; slightly concave bilaterally; aperture an open end. Diameter: up to .25 mm.

Family Lituolidae de Bainville, 1825
Genus Haplophragmoides Cushman, 1910
Haplophragmoides canariensis (d'Orbigny)

Plate 1, Figure 2

Nonionina canariensis d'Orbigny, 1839, Foram. les canaries, p. 128, pl. 2, figs. 33, 34.

Test coarsely arenaceous; periphery lobulate, sub-acutely rounded; chambers about 6 in the final whorl, increasing rapidly in size, last two chambers slightly inflated; sutures distinctly depressed, almost straight; aperture equatorial slit at the base of the last chamber. Diameter: up to .34 mm.

Genus Cribrostomoides Cushman, 1910
Cribrostomoides complanatus (Hussey)

Plate 1, Figure 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Test finely arenaceous, much compressed, biumblicate; periphery sharply angled, faintly carinate; chambers 6-7 in the adult coil; sutures depressed, straight or very slightly curved near the periphery; aperture area, ovate opening located slightly above the base of the last chamber with faint but distinct rim. Diameter: up to .42 mm.

Remarks: Hussey described the aperture as being "simple arched slit at the base of the apertural face." However, the holotype and topotypes do not confirm this statement.

Genus Cyclammina Brady, 1876

Cyclammina cancellata Brady subsp. obesa

Cushman and Laiming

Plate 1, Figure 4

Test nautiloid, finely arenaceous, subglobose, planispiral, biumblicate, subcircular in outline; both sides somewhat flattened; periphery broadly rounded; chambers about 9 in the final whorl, increasing gradually in size; sutures radial, almost straight, depressed, aperture low equatorial slit at the base of the last chamber and small areal openings on the apertural face. Diameter: up to .6 mm.

Remarks: The type figure and description of C. caneriverensis exactly coincide with those of C. cancellata var. obesa.
Genus Ammobaculites Cushman, 1910

Ammobaculites mauricensis Howe

Plate 1, Figure 5

Test coarsely arenaceous, compressed; early chambers coiled, later ones uncoiled in a uniserial series; slightly biumblicate; sutures indistinct; aperture elliptical opening, terminal. Length: up to .45 mm.

Genus Ammobaculoides Plummer, 1932

Ammobaculoides, new species

Plate 1, Figure 6

Test coarsely arenaceous; large planispiral stage followed by loosely arranged biserial stage with tendency to become uniserial; uniserial stage consists of the last chamber; overall tear-drop shaped; periphery round; slightly biumblicate; sutures indistinct but slightly depressed; aperture indistinct, terminal. Length: up to .30 mm. Diameter of planispiral stage: up to .12 mm.

Family Textulariidae Ehrenberg, 1838

Genus Spiroplectammina Cushman, 1927

Spiroplectammina plummerae (Lalicker)

Plate 1, Figure 7

Test elongate, slightly compressed, initial stage very small and coiled, biserial in adult; periphery rounded; wall rather coarsely arenaceous; chambers numerous, slightly inflated; sutures distinct, straight, oblique toward the initial end; depressed; aperture small arch at the base of the last chamber. Length: up to 1. mm.

Remarks: Hussey's *P. regularis* was erroneously described as having terminal aperture. Holotype specimen has small interiomarginal arch at the base of the last chamber.

Spiroplectamina zapotensis (Cole)

Plate 1, Figure 8

Textularia mexicana Cole (not Cushman), 1927, Bull. Am. Pal., Vol. 14, no. 51, p. 11, pl. 5, fig. 5.

Textularia zapotensis Cole, 1929, Corrigenda slip to same publication. *T. mexicana* was preoccupied.

Test finely arenaceous, strongly tapering toward initial end, broadest across the last two chambers; periphery acutely angled often with slight keel; sutures distinct, broadly depressed; aperture a low arch at the base of the last chamber. Length: up to .42 mm. Width: up to .28 mm.

Genus *Textularia* Defrance in de Blainville, 1824

Textularia claibornensis Weinzierl and Applin

Test finely arenaceous, elongate, slightly compressed, broadest across the last two chambers; periphery subacutely rounded, later chambers somewhat inflated; sutures indistinct in early portion, depressed in later portion; aperture low interiomarginal arch. Length: up to .8 mm. Width: up to .31 mm.
Family Trochamminidae Schwager, 1877
Genus Trochammina Parker and Jones, 1859

Trochammina sp.
Plate 1, Figure 10

Test small, almost as high as broad, finely arenaceous, somewhat conical; chambers subglobular, inflated, increasing rapidly in size; initial end broadly rounded; sutures on the ventral side straight, radial, depressed, indistinct in early portion but later slightly depressed on the dorsal side; 4 to 5 chambers in the final whorl; ventrally umbilicate; aperture small, umbilical and/or areal opening. Length: up to .30 mm.

Remarks: There are some reservations as to the generic assignment of this Claiborne species because of ambiguous position of aperture. Here it is tentatively classified under **Trochammina** because of its trochospiral test.

Family Ataxophragmiidae Schwager, 1977
Genus Tritaxis Reuss, 1860

Tritaxis columbiana (Howe)
Plate 1, Figure 11

Pseudoclavulina elongata Hussey, 1943, Jour. Pal. Vol. 17, no. 2, p. 161, pl. 26, figs. 3-4

Early portion triserial, later uniserial occupying most of the test; circular in cross-section; wall thick and coarsely agglutinated with arenaceous material and minute foraminifera shells; chambers numerous, not labyrinthic;
sutures indistinct except the last one which is broadly depressed; aperture terminal, rather indistinct. Length: up to 1.3 mm. Diameter: up to .57 mm.

Genus Karreriella Cushman, 1933

Karreriella mauricensis Howe and Ellis

Plate 1, Figure 12

Test elongate, finely arenaceous, tapering very rapidly toward initial end, broader across the last two chambers; periphery broadly rounded; later chambers somewhat inflated, increasing rapidly in size; sutures rather indistinct; aperture areal, produced on a short neck or a rim above the base of the final chamber. Length: up to .45 mm. Width: up to .22 mm.

SUBORDER MILIOLINA

Family Fischerinidae Millett, 1898

Genus Cyclogyra Wood, 1842

Cyclogyra lisbonensis (Bandy)

Plate 1, Figure 13

Test planispiral, composed of round tube enlarging gradually; periphery rounded; sutures distinct, slightly depressed; aperture oval open end. Diameter: .50 mm.
Family Nubeculariidae Jones, 1875
Genus Spiroloculina d'Orbigny, 1826

Spiroloculina lamposa Hussey

Plate 1, Figure 14

Test elliptical in outline, strongly compressed, slightly biconcave; chambers added in a single plane, initial chambers indistinct; aperture terminal, simple, rounded, on a short neck. Length: up to .45 mm. Width: up to .22 mm.

Family Milolidae Ehrenberg, 1839
Genus Quinqueloculina d'Orbigny, 1826

Quinqueloculina sp.

Plate 1, Figure 15

Test almost circular to ovate in side view, subtriangular in transverse section; periphery rounded; smooth, aperture round, not produced, with simple tooth. Length: up to .27 mm Width: up to .23 mm.

Quinqueloculina claiborniana Standnichenko

Plate 1, Figure 19

Size of test varies. Transverse section bluntly triangular; chamber ventricose; periphery rounded; sutures distinct, unequally curving; final chamber projecting beyond
the base of the penultimate chamber, aperture large, rounded, produced on a short neck with a simple tooth. Length: up to .97 mm. Width: up to .55 mm.

Quinqueloculina danvillensis Howe and Wallace

Plate 1, Figure 16

Test slender, elongated, about 3 times as long as broad; sutures broadly depressed; aperture round with small bifurcated tooth produced on a long neck. Length: up to .56 mm. Width: up to .20 mm.

Quinqueloculina cf. Q. lamarckiana d'Orbigny

Plate 1, Figure 18

Quinqueloculina lamarckiana d'Orbigny, 1839, in *De la Sagra, Historie Physique, Politique et naturelle de lile de Cuba, Foraminiferas*, p. 189, pl. 11, figs. 14-15.

Test ovate in side view, sharply triangular in end view; periphery acutely angled but not carinate; sutures distinct, slightly depressed; last chamber slightly extended at the apertural end forming an elliptical neck; aperture round with simple tooth. Length: up to .72 mm. Width: up to .42 mm.

Remarks: *Q. lamarckiana* is a recent species. However, this Eocene species resembles so close to the type description and figures of *Q. lamarckiana* that it is tentatively assigned as *Q. lamarckiana*. If further examination proves any differences between the two species, *Q. fragilissima* will

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
retain its original designation.

Quinqueloculina cf. Q. leonensis Applin and Jordan
Plate 1, Figure 17

Quinqueloculina leonensis Applin and Jordan, 1945, Jour. Pal.
Vol. 19, no. 1, pl. 18, fig. 9.

Test fusiform, nearly twice as long as broad; periphery
rounded; well ornamented with closely spaced papillae
throughout the surface; sutures depressed; apertural end
extended very shortly; aperture round. Length: up to
1.1 mm. Width: up to .6 mm.

Quinqueloculina veguaensis Weinzierl and Applin
Plate 2, Figure 1

Quinqueloculina veguaensis Weinzierl and Applin, 1929, Jour.
Pal. Vol. 3, p. 393, pl. 44, fig. 4.

Test medium sized for the genus, roughly ovate in out-
line, somewhat triangular in transverse section; periphery
smoothly angled; wall smooth; polished; sutures distinct,
curved, depressed; aperture a simple round opening at the
end of a short neck with a simple tooth which may be
slightly bifid. Length: up to .60 mm. Width: up to .37 mm.

Genus Triloculina d'Orbigny, 1826

Triloculina paulocostata Cushman and Garrett
Plate 2, Figure 2

Triloculina paulocostata Cushman and Garrett, 1934, Contr.
6-7.

Test about twice as long as broad, slightly compressed;
periphery broadly rounded; surface strongly ornamented by
numerous longitudinal costae; final chamber broadest at
the base, strongly overlapping previous chamber; sutures
depressed but obscured by costae; aperture round with a
prominent lip. Length: up to .32 mm. Width: up to .17 mm.

Triloculina rotunda d'Orbigny

Plate 2, Figure 3

p. 299, no. 4

Test small, oval in outline, compressed; surface smooth
polished; periphery broadly rounded; sutures rather indistinct but depressed; aperture semicircular opening without
a neck or lip. Length: up to .28 mm. Width: up to .20 mm.

Triloculina trigonula (Lamarck)

Plate 2, Figure 4

no. 3, Vol. 9, pl. 17, fig. 4, 1807

Test strongly built, slightly longer than broad, distinctively triangular in transverse section; periphery subacutely rounded; sutures distinct; wall smooth; aperture circular with a bifid tooth. Length: up to .77 mm. Width: up to .6 mm.

SUBORDER ROTALIINA

Family Nodosariidae Ehrenberg, 1838

Genus Nodosaria Lamarck, 1812

Nodosaria latejugata Gümbel

Plate 2, Figure 5

München, Mat.-Physk. Cl., Abh.*, bd. 10 (1870), abt. 2, p. 619, pl. 1, fig. 32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Test large, straight, stout; chambers are broad as long, globose; sutures broadly depressed; surface ornamented with 10 to 12 high costae continuous across the chambers.

Genus Dentalinoides Marie, 1941

? Dentalinoides resupinata (Gümbel)

Plate 2, Figure 6

Test elongated; chambers truncated, fusiform; wall smooth, thin, finely perforate; sutures straight, horizontal, broadly depressed; some initial chambers bulbous with spine; aperture round, central, terminal, with slight rim. Length: up to .7 mm or more.

Genus Dentalina Risso, 1826

Dentalina communis (d'Orbigny)

Plate 2, Figure 7

Dentalina acinacoides Hussey, Jour. Pal. vol. 23, no. 2, 1849, p. 126, pl. 26, fig. 29.

Test arcuate, circular in cross section; chambers increasing rapidly in length, 6 to 8 in adult; dorsal side gently lobulate; sutures oblique to the periphery; aperture radiate, terminal at peripheral angle. Length: up to 1.1 mm.
Dentalina cf. D. consobrina d'Orbigny

Plate 2, Figure 8

Test slightly curved; initial chamber somewhat inflated with short spine; sutures oblique to the periphery, broadly depressed; wall thin, hyaline, finely perforate; aperture terminal, radiate at the peripheral angle. Length: up to .43 mm.

Dentalina vertebralis (Batsch) subsp. *albatrossi* (Cushman)

Plate 2, Figure 9

Nodosaria vertebralis (Batsch) var. *albatrossi* Cushman, 1923, *U. S. Nat. Mus.*, Bull., no. 104, p. 87, pl. 15, fig. 1

Test elongate, slightly curved; initial chamber often greater than penultimate one; chambers numerous; sutures broad, of clear shell material, not depressed except near the apertural end; wall ornamented with numerous sharp longitudinal costae; initial end often with short spine; aperture radiate, terminal. Length: up to 5 mm.

Genus *Lagena* Walker and Jacob in Kammacher, 1798

Lagena hispida Reuss

Plate 2, Figure 10

Test globular; wall finely hispid; aperture rounded, at the end of a long slender neck. Diameter: up to .16 mm.
Lagena cf. L. laevis (Montagu) subsp. stavensis Bandy

Plate 2, Figure 11

Lagena laevis (Montagu) var. stavensis Bandy, 1949, Bull. Amer. Pal., Vol. 32, no. 131, p. 56, pl. 7, fig. 15.

Test ovate in side view, circular in cross-section; wall smooth, finely perforate; aperture round on a short neck; length: up to .28 mm. Diameter: up to .20 mm.

Lagena ouachitaensis Howe and Wallace subsp. alabamensis Bandy

Plate 2, Figure 12

Test ovate, tapering toward apertural end, base rounded circular in cross section; wall ornamented with numerous fine longitudinal costae (at least 20 or more); widest below the middle; aperture open end on a relatively long neck with a few ring-like costae. Length: up to .2 mm. Diameter: up to .09 mm.

Lagena striata (d'Orbigny) subsp. strumosa Reuss

Plate 2, Figure 13

Test globular, slightly ovate in side view, circular in cross-section; wall ornamented with more than 24 fine longitudinal costae; aperture open end on relatively long tubular neck; neck may be ornamented by one or more ring like costae around it. Longer diameter: up to .25 mm.
Lagena sp.
Plate 2, Figure 14

Test equidimensionally globular; wall smooth, polished; aperture round on a relatively long slender neck. Diameter: up to .19 mm.

Genus Lenticulina Lamarck, 1804

Lenticulina abuillotensis (Bermudez)
Plate 2, Figure 15

Test circular in outline, equally biconvex; strongly umbonate, clear shell material occupying a large part of the central area; periphery angled with a narrow keel; 9-12 chambers in the last coil, increasing gradually in size; sutures slightly curved, flush, may be slightly limbate; aperture radiate at peripheral angle with a narrow median slit. Diameter: up to .95 mm.

Lenticulina alatolimbata (Gümbel)
Plate 2, Figure 16

Test relatively small for the genus, almost circular in outline, biconvex, lensoid; periphery sharp to bluntly keeled; wall smooth; 6-7 chambers in the final coil; umbonal area filled with clear shell material; sutures distinct, thick, slightly curved, flush, transparent; aperture radial at the peripheral angle. Diameter: up to .60 mm.
Lenticulina inhabilis (Israelsky)

Plate 2, Figure 17

Test almost circular in outline, strongly biconvex; periphery narrow but sharply keeled, later portion rather bluntly keeled; wall smooth, polished; chambers about 5 in the final whorl, sutures limbate, flush, almost straight, strongly oblique to the periphery and umbo; umbo somewhat eccentric; apertural face V-shaped, concave, distinctly rimmed; aperture radiate with median slit extending downward from the peripheral angle. Diameter: up to .71 mm.

Lenticulina kimituensis (Asano)

Plate 2, Figure 18

Test large, circular in outline; periphery smoothly angled, not keeled; wall smooth, polished; chamber about 10 in the last whorl; sutures flush, slightly curved; strongly umbonate, umbo filled with clear shell material; aperture radiate at peripheral angle. Diameter: up to 1.7 mm.

Lenticulina laticostata (Tutkovski)

Plate 2, Figure 19

Cristellaria laticostata Tutkovski, 1888, Soc. Nat. Kieff, Mem., Vol. 9, no. 1-2, p. 36, pl. 5, fig. 2 a-c.

Test equally biconvex; periphery distinctly keeled; chambers 6-7 in the last whorl; wall smooth; sutures thick; strongly limbate, elevated, spirally curving from the center,
oblique to the periphery; apertural fact distinctly rimmed, flat to slightly concave; aperture radiate at the peripheral angle. Diameter: up to .85 mm.

Lenticulina mayi (Cushman and Parker)

Plate 2, Figure 26

Test small, much compressed, later chambers tend to elongate; periphery subacute, slightly keeled; sutures distinct, curved; wall smooth, finely perforate; aperture radiate at the peripheral angle. Length: up to .36 mm.

Lenticulina midwayensis (Plummer)

Plate 2, Figure 20

Cristellaria midwayensis Plummer, 1927, *Texas Univ. Bull.* 2644, p. 95, pl. 13, fig. 5.

Test large, circular in outline; periphery angular and bluntly keeled; chambers about 11 in the final whorl in adult; surface smooth, polished; sutures thickly limbate, elevated, very slightly curved, radiating from large clear central umbo; aperture radiate at the apex of the last chamber. Diameter: up to 1.2 mm.

Lenticulina pseudocultrata (Cole)

Plate 2, Figure 21

Test circular in outline, somewhat compressed; periphery broadly and sharply keeled with clear shell material; wall smooth, polished; chambers about 7-8 in the final whorl; sutures distinct gently curved, flush, widening as they approach the keel; aperture radiate. Diameter: up to .65 mm.

Lenticulina pseudoligostegia (Martin)

Plate 2, Figure 21

Robulus pseudoligostegius Margin, 1964, Austria Geol. Bundesanst., Jahrb., Sonderb., no. 9, p. 69, pl. 6, figs. 12 a-c.

Test broadly biconvex, with tendency to uncoil; periphery bluntly rounded; chambers about 6 in the final whorl, last chamber somewhat inflated; wall smooth; finely perforate; sutures distinct, flush, slightly curved; aperture radiate at the peripheral angle on a slight protuberance. Length: up to .3 mm.

Lenticulina cf. *L. pseudoeseicans* (Cushman) new subsp.

Plate 2, Figure 23

Test unequally biconvex; strongly umbonate; periphery bluntly keeled; wall smooth; chambers about 9 in the final whorl, increasing gradually in size; sutures strongly limbate, raised, curved, somewhat thickened at the peripheral end, inner end of sutures fused together to form a ring circling the umbonal boss which is separated from this ring by a narrow, circling furrow; aperture radiate at the peripheral angle with a short slit extending downward on the apertural face. Diameter: up to .8 mm.
Remarks: This subspecies differs from *Lenticulina pseudosecans* only by a depressed circle around the umbo which is a consistent characteristic in this subspecies.

Lenticulina stephensoni (Cushman)

Plate 2, Figure 24

Test large, circular in outline; strongly biconvex; biumbonate; periphery acute, somewhat bluntly keeled; wall smooth, polished; chambers 9-10 in the final whorl, increasing gradually in size; umbonal area filled with clear shell material; sutures clear, flush, curved; aperture radiate at peripheral angle with a short narrow slit extending downward on the apertural face. Diameter: up to 1.5 mm.

Lenticulina velascoensis White

Plate 2, Figure 25

Lenticulina velascoensis White, 1928, *Jour. Pal.*, Vol. 2, pl. 28, fig. 8 a-b, p. 199

Test flattened, small for the genus, biconvex; lenticular; sharply and broadly carinate with thin, clear shell material; umbonal area filled with clear shell material through which most of previous chambers can be seen; about 9 chambers in the final whorl; sutures clear, flush, curved; aperture radiate, slightly pointed. Diameter: up to .32 mm.
Genus Marginulina d'Orbigny, 1826

Marginulina subbullata Hantken

Plate 3, Figure 1

Early stage coiled, later uncoiling uniserially, circular in transverse section; chambers bulbous, inflated, rapidly increasing in size; sutures strongly depressed, wall smooth; aperture radiate, pointed at the peripheral angle. Length: up to .4 mm.

Marginulina sp.

Plate 3, Figure 2

Test elongate, circular in cross-section, slightly coiled; chambers inflated; wall smooth, finely perforate; sutures depressed, oblique; aperture radiate, pointed at the peripheral angle. Length: up to .32 mm.

Remarks: This species may have been described but due to insufficient number of specimens, a correct identification is impossible.

Genus Orthomorphina Stainforth, 1952

Orthomorphina antillea (Cushman)

Plate 3, Figure 3

Nodosaria antillea Cushman, 1923, U. S. Nat. Mus., Bull. No. 104, p. 91, pl. 14, fig. 9.

Test straight or slightly arcuate; chambers globular, up to 7 in adult; wall smooth, polished; sutures horizontal,
straight, clear, broadly depressed; aperture round, terminal on a short cylindrical neck with distinct phialine lip. Length: up to .52 mm.

Remarks: This species is placed on the genus Orthomorphina on the basis of inflated globular chambers and round terminal aperture produced on the short neck. Overall figure of the test somewhat looks more similar to Stilostomella; however, Stilostomella has an indented terminal aperture with internal spatulate tooth.

Orthomorphina camerani (Dervieux)
Plate 3, Figure 4

Test elongate, arcuate, tapering into sharp apex; sutures straight, not depressed except last two; chambers increasing gradually in size; aperture radiate; eccentrically produced on a neck. Length: up to 1.2 mm.

Orthomorphina delicata (Hussey)
Plate 3, Figure 5

Test arcuate, ornamented with faint longitudinal costae which tend to develop short spines near the base of each chamber; chambers longer than broad; sutures distinct, broadly depressed, straight to slightly oblique; aperture terminal, radiate at the peripheral angle. Length: up to .8 mm.
Remarks: Holotype of *N. delicata* has a round terminal aperture instead of terminal radiate aperture.

Genus Pseudonodosaria Boomgart, 1949

Pseudonodosaria conica (Neugeboren)

Plate 3, Figure 6

Test stout, conical with broadly rounded end, circular in cross-section, broadest near the apertural end; chambers few about 4-5, last chamber slightly inflated; sutures distinct in later stage, horizontal, straight, slightly depressed, if at all; wall smooth, polished; aperture radiate, terminal, slightly produced. Length: up to .4 mm. Diameter: up to .22 mm.

Pseudonodosaria elliptica (Reuss)

Plate 3, Figure 7

Test elongate, fusiform, circular in transverse section; later chambers enlarging rapidly and strongly overlap previous one; wall smooth, finely perforate; sutures straight, horizontal, flush, the last septum slightly depressed; initial end more rounded; aperture radiate, somewhat pointed. Length: up to .42 mm.

Pseudonodosaria cf. _P. ovula_ (d'Orbigny)

Plate 3, Figure 8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Glandulina ovula d' Orbigny, 1846, Foraminiferes fossiles du bassin tertiaire de Vienne. Gide et Comp., p. 29, pl. 1, figs. 6-7.

Test ovate, initial end sharply pointed; chambers enlarging and overlapping strongly, last chamber slightly inflated; wall smooth; sutures indistinct, horizontal in early stage, last sutures slightly to strongly depressed; aperture radiate, terminal, slightly produced on a neck-like extension. Length: up to .37 mm. Diameter: up to .19 mm.

Pseudonodosaria pleniluna (Howe and Wallace)

Plate 3, Figure 9

Lagena pleniluna Howe and Wallace, 1932, Louisiana Dept. Conserv., Geol. Bull. no. 2, p. 29, pl. 6, fig. 5.

Test consists of 2 to 3 chambers in adult, circular in cross-section; chambers globular, initial chamber larger than the succeeding one; wall smooth; sutures straight, horizontal, depressed; aperture terminal, radiate. Length: up to .21 mm. Diameter: up to .14 mm.

Remarks: Holotype of L. pleniluna was originally described on a specimen which has a terminal radiate aperture on a single globular chamber. However, there is no foraminiferal genus established for such a species. Since there are a number of specimens observed from Claiborne samples which possess one or more chambers uniserially arranged but with the same characteristic aperture and shape of chamber, L. pleniluna was amended to include multichambered species.

Genus Saracenaria Defrance in de Blainville, 1824

Saracenaria limbata Hussey

Plate 3, Figure 10

Saracenaria parva Hussey, 1949, Jour. Pal., Vol. 23, no. 2, p. 126, pl. 26, fig. 13

Test triangular in transverse section; early coiled portion narrow and bluntly keeled, later keel less prominent; 6 to 7 chambers visible; wall smooth, polished; sutures curved, limbate, flush; apertural face broadly convex, triangular in outline; aperture radiate with elongated slit extending downward. Length: up to .57 mm.

Genus Vaginulina d'Orbigny, 1826

Vaginulina lineara (Carsey)

Plate 3, Figure 11

Cristellaria lineara Carsey, 1926, Texas Univ. Bull., no. 2612, p. 36, pl. 2, fig. 3.

Test elongate, slightly arcuate, gently lobulate on the ventral side of the later portion, slightly compressed; periphery broadly rounded; elliptical in transverse section; wall smooth, finely perforate; chambers broader than long, early portion slightly coiled, later chambers may be somewhat inflated; sutures wide, clear, flush; aperture pointed, radiate at peripheral angle. Length: up to .90 mm. Width: up to .12 mm.

Remarks: This species has been called Vaginulina legumen var. elegans without any apparent reason. There is no resemblance at all between the two species. In some specimens the last one or two chambers tend to be globular with circular cross-section. Specimens with this morphologic characteristic were described as Dentalina colei by Cushman.
Genus Vaginulinopsis Silverstri, 1904

Vaginulinopsis hybrida (Terquem)

Plate 3, Figure 12

Marginulina nonconforma Hussey, Ibid, p. 122, pl. 26, fig. 9.

Marginulina inornata Hussey, Ibid, p. 123, pl. 26, fig. 11, 12.

Test coiled in early stage, later uncoiled, transverse section of later portion triangular; initial chamber globular, chambers broader than high; dorsal periphery bluntly angled, but not carinate; suture distinct, wide, clear, depressed, gently curved; aperture radiate, somewhat pointed at the peripheral angle. Length: up to .45 mm.

Remarks: In the years between 1870 and 1885 Terquem described numerous similar species of Cristellaria with hundreds of figures, one of which was C. hybrida. There is some doubt about the variety of species designation, because there were 30 figures given as C. hybrida in the original description. Figure 30 of those original C. hybrida appears to match exactly with M. subglobosa. Examined holotypes of M. subglobosa, M. nonconforma, and M. inornata show no differences at all between them.

Vaginulinopsis mexicanus (Cushman)

Plate 3, Figure 13

Marginulina anocoides Hussey, 1943, Jour. Pal., Vol. 17, no. 2, p. 161, pl. 25, fig. 3.

Marginulina insignifica Hussey, Ibid, p. 122, pl. 25, fig. 7.

Marginulina producta Hussey, Ibid, p.123, pl. 25, fig. 9.

Robulus limbatus Hussey, Ibid, p. 124, pl. 25, fig. 13.

Test biconvex, early portion involute, lenticular, later portion tends to uncoil into arcuate uniserial stage; transverse section of later chambers elliptical; chambers numerous, much broader than high; periphery sharply or bluntly keeled in early stage; sutures raised, strongly limbate, curved, sometimes broken into bead-like knobs in the center of the coiled stage; aperture radiate, slightly produced at peripheral angle. Length: up to 1.35 mm.

Family Polymorphinidae d'Orbigny, 1839

Genus Globulina d'Orbigny in de la Sagra, 1839

Globulina gibba d'Orbigny

Plate 3, Figure 14

Test globular to subglobular, cross-section almost circular; sutures not depressed; wall smooth, finely perforate; aperture radiate, sometimes pointed. Length: up to .4 mm. Diameter: up to .3 mm.

Globulina inaequalis Reuss

Plate 3, Figure 15

Test elongated, ovate, slightly compressed, more rounded at the base; apertural end pointed; sutures indistinct, not depressed; wall smooth, finely perforate; aperture radiate.
Length: up to .43 mm. Diameter: up to .27 mm.

Globulina minuta (Roemer)
Plate 3, Figure 17

Polymorphina minuta Roemer, 1838, *Neues Jahrb. für Min.*, p. 386, pl. 3, fig. 35.

Test elongated, more or less fusiform, broadest below the middle, both ends pointed; sutures not depressed; wall smooth; aperture radiate, pointed. Length: up to .37 mm. Diameter: up to .22 mm.

Genus **Guttulina** d'Orbigny in de la Sagra, 1839

Guttulina irregularis (d'Orbigny)
Plate 3, Figure 16

Test subdeltoidal, equilaterally triangular both longitudinally and transversely; peripheral angles rounded; initial end flat to broadly rounded, apertural end pointed; sutures distinct, slightly depressed; later chambers strongly overlap previous ones, almost reaching to the base; wall smooth; aperture radiate. Length: up to .33 mm.

Guttulina problema d'Orbigny
Plate 3, Figure 18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Test roughly fisiform, acute at the apertural end, pointed but rounded at the initial end, broadest below the middle; chambers arranged with increasing distance from the base; sutures distinct, strongly depressed; wall thick, smooth; aperture radiate. Length: up to .55 mm.

Genus Sigmomorphina Cushman and Ozawa, 1928

Sigmomorphina jacksonensis (Cushman)

Plate 3, Figure 19

Test large, broad, compressed; periphery rounded; base of the test rounded, apertural end narrowed, somewhat produced; chambers distinct, sigmoidally arranged; sutures distinct, slightly depressed; wall smooth, polished aperture rounded, radiate. Length: up to .9 mm.

Genus Ramulina Jones in Wright, 1875

Ramulina kittlii Rzehak

Plate 3, Figure 20

Ramulina kittlii Rzehak, 1885, Austria, Geol. Reichsanst., Verh., Wien, p. 187 (Type figure in 1895, Ann naturh. Hofmus. Wien, Bd. 10, pl. 6, figs. 7, 9, 11).

Test composed of one subglobular chamber branching in several directions as a slender tube; wall hyaline, generally smooth except some scattered short spines.

Ramulina mariae (d'Orbigny)

Plate 3, Figure 21

Nodosaria mariae d'Orbigny, 1846, Foraminiferes fossiles du bassin tertiaire de Vienne. Gide et Camp., p. 33, pl. 1, figs. 15-16.
Test consists of elongated bulbous chamber connected by long narrow tube; wall thin, hyaline, finely perforate; aperture simple open end.

Family Glandulinidae Reuss, 1860
Genus Fissulina Reuss, 1850
Fissulina obvia Sequenza
Plate 3, Figure 22

Fissulina (Fissurine) obvia Sequenza, 1862, Dei Terreni Terziarii del distretto di Messina: Part II, p. 60, pl. 2, fig. 1.

More or less ovate, compressed; periphery keeled; aperture elliptical slit on the slightly produced end.
Length: up to .13 mm.

Fissulina cf. F. orbignyana Sequenza
Plate 3, Figure 23

Fissulina (Fissurine) orbignyana Sequenza, 1862, Dei Terreni, Terziarii del distretto di Messina, p. 69, pl. 2, fig. 39.

Test small, oval in outline; periphery thinly carinated which is broader around the neck; wall thin, finely perforate, hyaline; aperture elongated slit produced on long neck.
Length: up to .15 mm. Width: up to .10 mm.

Family Turrilinidae Cushman, 1927
Genus Turrilina Andrea, 1884
Turrilina robertsi (Howe and Ellis)
Plate 3, Figure 24

Bulimina robertsi Howe and Ellis, 1939, Louisiana Dept. Conserv., Geol. Bull., no. 14, p. 63, pl. 8, figs. 32, 33,
Test small, somewhat inflated, slightly longer than broad, ovate in side view, circular in cross-section; chambers spirally coiled increasing rapidly in size; wall smooth, finely perforate; sutures distinct, very slightly depressed; aperture low elongated arch at the base of the last chamber. Length: up to .14 mm. Diameter: up to .11 mm.

Family Bolivinitidae Cushman, 1927
Genus Bolivina d'Orbigny, 1839
Bolivina gracilis Cushman and Applin
Plate 4, Figure 1

Test small, very slightly curved; periphery rounded; chambers somewhat inflated; sutures distinct, oblique to the periphery, depressed; wall coarsely perforated, perforations often linearly arranged in lengthwise position; aperture comma-shaped. Length: up to .44 mm. Width: up to .12 mm.

Bolivina louisiana Howe
Plate 4, Figure 2

Test small, broad, thickest in the middle, tapering toward the initial end; sloping chambers projecting sharply backward forming strongly serrate periphery; wall smooth, finely perforate; sutures distinct, oblique, slightly depressed; aperture elongated arch at the base of the last
chamber. Length: up to .21 mm. Width: up to .11 mm.

Bolivina cf. **B. plicatella** Cushman subsp. **merra**
Cushman and Ponton

Plate 4, Figure 3

Bolivina plicatella Cushman var. **merra** Cushman and Ponton, 1932, Florida Geol. Survey. Bull. 9, p. 82-83, pl. 12, fig. 4 a-b.

Test small, short and broad, slightly compressed; periphery subacute; sutures curved, oblique and sinuous due to retral processes, depressed; aperture comma-shaped, extending from the base of the last chamber upward on apertural face. Length: .2 mm. Width: .1 mm.

Genus *Brizalina* Costa, 1856

Brizalina taylori (Howe)

Plate 4, Figure 4

Bolivina taylori Howe, 1939, Louisiana Dept. Conserv., Geol. Bull. no. 14, p. 67, pl. 9, figs. 9, 10.

Test compressed, early portion slightly twisted, broadest around last two chambers; periphery subacutely rounded; chambers obliquely arranged with both median and peripheral portions extending backward; sutures flush with surface in early stage, slightly depressed in later stage; wall finely perforate, smooth; aperture elongated comma on the apertural face. Length: up to .3 mm. Width: up to .11 mm.

Genus *Loxostomoides* Reiss, 1957

Loxostomoides nuttalli (Cushman and Siegfus)

Plate 4, Figure 5

Bifarina turriiformis Hussey, 1943, Jour. Pal., Vol. 17, no. 2, p. 166, pl. 26, fig. 2.

Test elongated, early stage slightly compressed, biserial, later half uniserial with circular cross-section; chambers distinct with basal margin crenulating; wall coarsely perforate, early biserial portion ornamented with fine longitudinal costae, later uniserial portion rather smooth; aperture terminal, slightly elliptical with a faint rim. Length: up to 1 mm.

Remarks: This is an unique species which has all the external characteristics of Loxostomoides except for its terminal aperture with a rim. It differs from the typical Loxostomoides by its complete, longer uniserial stage and terminal aperture; however, it is tentatively placed under Loxostomoides.

Family Buliminidae Jones, 1875

Genus Bulimina d'Orbigny, 1826

Bulimina byramensis Cushman and Todd

Plate 4, Figure 6

Test small, initial end subacute, tapering from the greatest width near the aperturan end; triangular in transverse section; the angles rounded; the sides flat or slightly concave; sutures distinct, slightly depressed in later portion; wall distinctly perforate; aperture an elongated loop, extending from the base of the last chamber nearly to the apex of the test. Length: up to .17 mm. Width: up to .10 mm.
Bulimina simplex Terquem

Plate 4, Figure 7

Bulimina simplex Terquem, 1882, Mem. Soc. Geol. France, ser. 3, vol. 2, p. 109, pl. 11 (19), figs. 23 (24 A)

Test small, broadest at the apertural end, tapering; chambers slightly inflated; wall smooth, finely perforate; sutures distinct, depressed; aperture broad, circular arch, occupying most of apertural face. Length: up to .20 mm. Diameter: up to .10 mm.

Bulimina truncana Gumbel subsp. aksuatica Morozova

Plate 4, Figure 8

Bulimina truncana Gumbel Var. aksuatica Morozova, 1939, Soc. Nat. Moscow, Bull., Moscow, N. S. vol. 47, (Sect. Geol., vol. 177, no. 4-5, p. 74 (Russian), p. 86 (English)).

Reussella costata Hussey, 1949, Jour. Pal., Vol. 23, no. 2, p. 133, pl. 27, fig. 3.

Test small, triangular in cross section, broadest near the apertural end, rapidly tapering near apex to sharp point; chambers indistinct; apertural end obliquely truncated; peripheral angles rounded; sutures indistinct; surface ornamented with thin, longitudinal costae of up to 18 in number except on the last one or two chambers; aperture loop-shaped, extending upward from the base of the last chamber. Length: up to .20 mm.

Genus *Globobulimina* Cushman, 1927

Globobulimina winniana (Howe)

Plate 4, Figure 9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Test ovate, broadest around the middle, both ends tapering; wall smooth, perforate; chambers inflated, elongated, strongly overlapping early chambers; sutures distinct, depressed; aperture comma-shaped at the base of apertural face, with tooth plate attached at one side. Length: up to .40 mm. Width: up to .23 mm.

Remarks: Holotype of B. rotunda Hussey was described as being more tapered at the apertural end and broadest below the middle. But when the holotype and topotypes were examined, there was substantial variation in these morphologic features.

Genus Stainforthia Hofker, 1956

Stainforthia eocaenica (Hussey)
Plate 4, Figure 10

Test elongate, early stage triserial, later twisted biserial, strongly overlapping laterally; chambers slightly inflated, elongate; wall smooth, finely perforate; sutures distinct, depressed, strongly oblique to the periphery; apertural face highly arched and recessed, aperture loop-shaped with incurved lip at one side. Length: up to .39 mm.

Family Uvigerinidae Haeckel, 1894

Genus Uvigerina d'Orbigny, 1826

Uvigerina blancacostata Cole
Plate 4, Figure 11

Test almost circular in transverse view; later chambers may be loosely arranged; periphery lobulate; wall ornamented with numerous sharp, discontinuous, longitudinal costae; sutures distinct, deeply depressed, at the base of the chamber the costae tend to break into short spines; aperture round, produced on a prominent cylindrical neck with a phialine lip. Length: up to .37 mm. Diameter: up to .20 mm.

Uvigerina gardnerae Cushman

Plate 4, Figure 12

Test relatively small, early triserial portion closely arranged, later loosely arranged; periphery lobulate; wall ornamented with numerous low, discontinuous longitudinal costae in early portion; these costae tend to break into spines at the initial end; finely spinose on the last two chambers or so; later chambers somewhat inflated; sutures distinct, deeply depressed on later portion; aperture round, on a slender neck with a faint phialine lip. Length: up to .36 mm. Diameter: up to .16 mm.

Uvigerina cf. U. garzaensis Cushman and Siegfus

Plate 4, Figure 13

Test roughly fusiform, early portion tapering, later chamber inflated and loosely arranged, about twice as long as wide; inner face of the last chamber flattened or slightly concave; sutures distinct, much depressed on later portion; wall finely hispid throughout; aperture round, on a short cylindrical neck with a phialine lip. Length: up to .25 mm. Diameter: up to .11 mm.

Genus Trifarina Cushman, 1923

Trifarina vicksburgensis (Cushman)

Plate 4, Figure 14

Uvigerina subquadrata Hussey, 1949, Jour. Pal., Vol. 23, no. 2, p. 131, pl. 27, fig. 12.

Test elongate, about 2½ times as long as broad, broadest just below the last chamber; periphery rounded; chambers increasing rapidly in size; wall smooth, finely perforate; sutures indistinct in early portion, depressed in later stage; aperture circular on a short neck with prominent lip. Length: up to .52 mm. Width: up to .15 mm.

Trifarina wilcoxensis (Cushman and Ponton)

Plate 4, Figure 15

Pseudouvigerina wilcoxensis Cushman and Ponton, 1932, Contr. Cushman Lab., Foram. Res., Vol. 8, p. 66, pl. 8, figs. 18 a-b.

Test somewhat elongated in adult, about twice as long as broad, sides in adult nearly flat and parallel; peripheral angle ornamented with narrow, longitudinal, double ridges with deep furrow in between; chambers distinct;
sutures curved and slightly depressed; wall smooth, finely perforate; aperture terminal with a short neck and a narrow lip. Length: up to .35 mm. Width: up to .16 mm.

Trifarina new species

Plate 4, Figure 16

Test small, triangular in cross-section; wall finely but sharply spinose; periphery angled, marked by double longitudinal ridges which are discontinued beyond each chamber; chambers distinct, later portion somewhat inflated; sutures curved, strongly depressed; aperture terminal, produced on a short tubular neck with phialine lip. Length: up to .30 mm. Width: up to .13 mm.

Remarks: This species shows some variation in spinosity and angularity of the periphery. Also, ridges and later chamber arrangement vary very slightly. However, all the major characteristics are consistent in all specimens.

Genus Sagrina d'Orbigny in de la Sagra, 1839

Sagrina ellisi (Howe)

Plate 4, Figure 17

Bitubulogerina ellisi Howe, 1939, Louisiana Dept. Conserv., Geol. Bull., no. 14, p. 69, pl. 8, figs. 36-37.

Test very small, triserial to biserial; portion above the angulation of each chamber is smooth and flattened, lower portion spinose; aperture large, terminal with well defined lip; sutures distinct, depressed in biserial stage, indistinct in triserial stage. Length: about .15 mm.

Genus Siphouvigerina Parr, 1950

Siphouvigerina elongata (Cole)

Plate 4, Figure 18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Test elongate, composed of a compact early triserial stage with a tendency to become loosely arranged uniserial; wall hispid; sutures distinct, strongly depressed; aperture terminal on a short neck with narrow phialine lip. Length: up to .40 mm.

Family Discorbidae Ehrenberg, 1838

Genus Discorbis Lamarck, 1804

Discorbis stenzeli Garrett
Plate 4, Figure 19

Discorbis stenzeli Garrett, 1942, Jour. Pal., Vol. 16, no. 4, p. 484, (112) text figs. 1 a-c.

Test heavily constructed, almost equally biconvex; periphery subacutely rounded, very slightly lobulate in later portion; ventral side deeply umblicate; chambers about 8 in the final whorl; sutures strongly limbate on both sides, elevated; dorsal side more perforate, ventral side almost glassy, non-perforate; aperture low interiormarginal arch. Diameter: up to .48 mm.

Discorbis tallahattensis Bandy
Plate 4, Figure 20

Discorbis tallahattensis Bandy, 1949, Bull. Amer. Pal., Vol. 32, no. 131, p. 27, pl. 16, figs. 7 a-c.

Test small, circular to oval in outline, biconvex; dorsal side usually higher, ventral side convex but deeply umblicate; periphery angled gently, lobulate, narrowly
carinate; chambers 7-8 in the final whorl, increasing rapidly in size; inner portion of last few chambers tend to develop flaps over the umbilicus; wall smooth, perforate; sutures curved, limbate, slightly depressed on the later portion of the ventral side; more strongly limbate, obliquely curved on the dorsal side; aperture at the base of the last chamber, extending from near the periphery into the umbilicus. Diameter: up to .35 mm.

Discorbis veguaensis Weinzierl and Applin

Plate 4, Figure 21

Discorbis veguaensis Wienzierl and Applin, 1929, Jour. Pal., Vol. 3, no. 4, p. 405, pl. 44, figs. 5 a-c.

Test roughly oval in outline, compressed, unequally biconvex, more convex on dorsal side; periphery slightly lobulate, thinly carinate; 7-8 chambers on the last whorl, increasing very rapidly in size; sutures curved, depressed, limbate; wall coarsely perforate, hyaline; umblical area depressed, covered by thin transparent projections extending over the area from the base of the last chamber; aperture elongated interiormarginal opening at the base of the last chamber on the ventral side extending to near the umbilical region. Diameter: up to .43 mm.

Genus Epistominella Husezima and Maruhasi, 1944

Epistominella huneri (Howe)

Plate 4, Figure 22

Test small, subcircular in outline, biconvex, lensoid; periphery sharply carinate with thin, broad, sometimes serrate, clear shell material; sutures straight, oblique to the periphery, distinctively raised on the dorsal side forming reticulate network especially on the central portion; radial, slightly depressed on the outer portion of the ventral side, centrally raised sharply, giving pitted look at the center; chambers 5-6 in the final whorl; wall perforate; aperture elongated opening on the ventral side, parallel to the periphery, with denticulate inner rim. Diameter: up to .30 mm.

Remarks: In the original description of the holoype, the ventral sutures were incomplete due to poor preservation.

Family Siphoninidae Cushman, 1927

Genus Siphonina Reuss, 1850

Siphonina claibornensis Cushman

Plate 4, Figure 23

Siphonina claibornensis Cushman, 1927, Proc. U. S. Nat. Mus., Vol. 72, art. 20, p. 4, pl. 3, figs. 5 a-c.

Test almost circular in outline, compressed but equally biconvex; periphery slightly lobulate, acute with sharp, serrate, narrow keel; 5 chambers in the final whorl; sutures distinct, depressed, radial, slightly curved on the ventral side, strongly oblique and somewhat limbate on the dorsal side; umbilical regions filled with clear shell material;
wall coarsely perforate; aperture peripheral, elongate, elliptical occupying entire height of the last chamber, with distinct lip, no prominent neck. Diameter: up to .28 mm.

Siphonina danvillensis Howe and Wallace

Plate 4, Figure 24

Test nearly circular in outline, almost equally biconvex; periphery acute with sharp, often serrate keel, gently lobulate; 5 chambers on the final whorl, inflated in later portion; ventral sutures radial, depressed, almost straight, dorasal sutures strongly oblique, slightly depressed in later portion; wall smooth, coarsely perforate; aperture peripheral occupying entire height of the last chamber, produced on a short neck with a distinct lip. Diameter: up to .32 mm.

Genus *Siphonides* Feray, 1941

Siphonides biserialis Feray

Plate 4, Figure 25

Siphonides biserialis Feray, 1941, Jour. Pal., Vol. 15, no. 1, p. 175, figs. 1-4.

Test very small, compressed, dorso-ventrally arcuate, early stage like *Siphonina*, later biserial; periphery lobate, acutely angled; wall smooth; clear; sutures curved, depressed; aperture elliptical opening, with a phialine lip, produced on a very stout neck positioned eccentrically and obliquely toward the periphery. Length: up to .23 mm. Width: up to .09 mm.
Genus Siphoninella Cushman, 1927

Siphoninella chambersi Howe and Roberts

Plate 4, Figure 26

Test unequally biconvex; dorsal side more strongly convex; periphery narrow but sharply keeled, serrate; chambers about 6 in the final whorl, only one in the uncoiled stage; wall smooth, coarsely punctuate; sutures limbate, indistinct, slightly raised on the dorsal side, almost straight, radial, depressed on the ventral side; aperture terminal, elliptical with a distinct phialine lip. Length: up to .33 mm.

Diameter of coiled portion: up to .22 mm.

Siphoninella parva Hussey

Plate 4, Figure 27

Test elongated, small, compressed, trochoid early stage, uniserial stage forms more than 4/5 of the entire test; about 5 chambers in the uncoiled stage, spinose at the base of each chamber; sutures in early spiral portion indistinct, deeply depressed in uniserial stage; aperture terminal, elliptical on a short neck with a heavy lip. Length: up to .48 mm.

Family Asterigerinidiae d'Orbigny, 1939

Genus Asterigerina d'Orbigny in de la Sagra, 1839

Asterigerina texana (Stadnichenko)

Plate 5, Figure 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Eponides texana Stadnichenko, 1927, Jour. Pal., Vol. 1
p. 232, pl. 38, figs. 1-5.

Test unequally biconvex, ventrally more convex; periphery sharply keeled with thin, broad, serrate, transparent shell material; 9-10 chambers in the final whorl; chambers on the dorsal side crescentic, supplementary chambers on the ventral side occupying inner half of the primary chambers; surface smooth, perforate except initial one-third of the last whorl on the ventral side which is ornamented by numerous small tubercles; sutures oblique on the dorsal side, sinus on ventral side due to addition of sutures of supplementary chambers; biumentate with clear shell material; aperture elongated, low, interiomarginal arch on the ventral side.
Diameter: up to .9 mm.

Genus Asterigerinata Bermudez, 1949

Asterigerinata, new species

Plate 5, Figure 5

Test small, planoconvex to concave-convex, dorsal side evenly convex; almost circular in outline, slightly lobulate periphery narrowly carinated; chambers strongly crescentic, 5 chambers in the final whorl; central half of the ventral side occupied by equal number of irregularly rounded, stallate-shaped, supplementary chambers; dorsal surface smooth, ventral side often covered by minute granules; sutures distinct, curved and oblique to the periphery on the dorsal side, radial, curved, slightly depressed on the ventral side, aperture elliptical, distinctly rimmed, located at the anterior base of the last chamber. Diameter: up to .4 mm.
Family Elphidiidae Galloway, 1933

Genus Elphidium de Montfort, 1808

Elphidium, new species

Plate 4, Figure 28

Test circular in outline, rather compressed; periphery slightly lobulate, rounded; chambers about 8 to 10 in the final whorl; wall smooth, finely perforate, polished; sutures gently curved, slightly depressed, with distinct retral process; very spinose in the area below the base of the last chamber; umbilical area often filled with clear shell material; aperture rather obscure, consisting of a series of pores at the base of the last chamber. Diameter: up to .45 mm.

Family Heterohelicidae Cushman, 1927

Genus Chiloguembelina Loeblich and Tappan, 1956

Chiloguembelina crinita (Glaessner)

Plate 5, Figure 1

Gumbelina multicellularis Hussey, Jour. Pal., Vol. 23, no. 2, 1949, p. 130, pl. 27, fig. 10,

Test small, slightly twisted, especially in early stage, biserial throughout, broadest around the last two chambers, tapering very rapidly; chambers globose, rapidly enlarging, inflated; sutures distinct, depressed; wall finely perforate, fragile; aperture asymmetrically located arch toward the flat side of the test with narrow hood-like extension over it. Length: up to .25 mm. Width: up to .9 mm.
Genus Guembelitria Cushman, 1933

Guembelitria columbiana Howe

Plate 5, Figure 2

Test small, chambers globose and inflated in later portion; sutures distinct, depressed, wall perforate, smooth, aperture small, semicircular arch at the base of the last chamber. Length: up to .16 mm.

Family Hantkeninidae Cushman, 1927

Genus Pseudohastigerina Banner and Blow, 1959

Pseudohastigerina micra (Cole)

Plate 5, Figure 3

Test partially evolute; chambers globular, inflated, increasing rapidly in size; periphery rounded, strongly lobulate; sutures distinct, depressed, slightly curved; wall thin, smooth, finely perforate; aperture equatorial arch with distinct lip. Diameter: up to .26 mm.

Family Globorotaliidae Cushman, 1927

Genus Globorotalia Cushman, 1927

Globorotalia aequa Cushman and Renz

Plate 5, Figure 6

Test small, compressed, almost plano-convex with ventral side more convex; wall hispid except on the last chamber.
which tends to be smooth; periphery lobulate, acutely angled but not carinate; chambers about 4-5 in the final whorl, increasing rapidly in size; sutures curved and depressed on the dorsal side, depressed and radial on the ventral side; aperture interiomarginal arch extending into open umbilicus. Diameter: up to .30 mm.

Globorotalia compressa (Plummer)

Plate 5, Figure 7

Globigerina compressa Plummer, 1927, Univ. Texas. Bull. 2644, p. 135, pl. 8, figs. 11 a-c.

Test small, almost circular in outline, very much compressed; periphery acutely rounded, gently lobulate; wall smooth, finely perforate; chambers about 5 in the final whorl, increasing rather rapidly in size, slightly inflated; sutures curved, depressed; umbilicate; aperture elongated, interiomarginal arch with narrow but distinct flap extending onto the umbilicus. Diameter: up to .19 mm.

Genus *Turborotalia* Cushman and Bermudez, 1949

Turborotalia bullbrooki (Bolli)

Plate 5, Figure 8

Test nearly plano-convex, ventrally strongly convex; wall very hispid; chambers peripherally compressed; periphery angled but not carinate, lobulate; chambers 4 in the last whorl increasing rapidly in size; umbilicate; sutures depressed, slightly curved on the dorsal side, straight and
radial on the ventral side; aperture interiomarginal, extra-
umbilical arch. Diameter: up to .41 mm.

Turborotalia centralis (Cushman and Bermudez)
Plate 5, Figure 9

Globorotalia centralis Cushman and Bermudez, 1937, Contr.
figs. 62-65.

Globorotalia inflata Hussey, 1949, Jour. Pal., Vol. 23, no. 2,
1949, p. 141, pl. 29, fig. 4-5.

Test almost plano-convex, periphery rounded, lobulate;
wall distinctly pitted, some may be spinose on the early
portion and around the umbilical region; sutures depressed,
straight, radial on the ventral side, slightly curved on the
spiral side; aperture large, extraumbilical-umbilical arch
bordered by a distinct rim. Diameter: up to .37 mm.

Turborotalia mckannai (White)
Plate 5, Figure 10

Globigerina mckannai White, 1929, Jour. Pal., Vol. 2, no. 3,
p. 134, pl. 27, figs. 16 a-c.

Test almost circular in outline; wall distinctly hispid,
more so on the umbilical region; chambers 5-6 in the final
whorl, closely coiled, somewhat compressed peripherally;
ventrally more convex; deeply umblicate; sutures depressed;
curved on the dorsal side, straight and radial on the ventral
side; aperture relatively large, extraumbilical-umbilical
arch often faintly rimmed. Diameter: up to .30 mm.

Turborotalia tribulosa Loeblich and Tappan
Plate 5, Figure 11
Globorotalia tribulosa Loeblich and Tappan, 1957, U. S. Nat. Mus. Bull. 215, p. 185, pl. 56, figs. 3 a-c; pl. 61, figs. 7 a-c.

Test unequally biconvex, ventrally more convex; wall relatively coarsely hispid; periphery lobulate, broadly rounded; chambers subspherical, about 4 in the final whorl, sutures slightly curved, depressed on the spiral side, deeply depressed and straight, radial on the ventral side; aperture interiomarginal, extraumbilical-umbilical arch. Diameter: up to .32 mm.

Family Globigerinidae Carpenter, Parker and Jones, 1862
Genus Globigerina d'Orbigny, 1826
Globigerina gravelli Bronnimann

Plate 5, Figure 12

Test relatively large, low trochospiral; periphery slightly lobulate; wall finely hispid; chambers 5 to 6 in the final whorl, subglobular, flattened peripherally; sutures curved, depressed on the spiral side, almost straight and radial on the ventral side; umbilicus deep, subcircular, aperture large arch, opens into the umbilicus with faint rim, apertural face smooth. Diameter: up to .37 mm.

Globigerina officialis Subbotina

Plate 5, Figure 13

Globigerina officialis Subbotina, 1953, Fossil Foraminifera of the USSR, Trudy, n. s., Bypusk 76, p. 78, pl. 11, figs. 1-7.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Test relatively small, high trochospiral; equatorial periphery strongly lobulate; wall pitted to finely hispid; chambers inflated, spherical 4 in the last whorl, increasing rapidly in size; dorsal side is more convex; sutures deeply depressed, usually not curved, aperture medium high, umbilical arch with faint lip. Diameter: up to .30 mm.

Globigerina cf. G. officalis Subbotina
Plate 5, Figure 14

This species differs from the typical one only by slightly higher trochospiral dorsal side and larger, arched aperture.

Genus **Subbotina** Brotzen and Pozaryska, 1961

Subbotina boweri (Bolli)
Plate 5, Figure 15

Test low trochospiral; equatorial periphery lobate; chambers globular, increasing rapidly in size, last chamber much inflated, early ones somewhat compressed, only 3 or 3½ chambers visible on the umbilical side; wall perforate pitted; sutures depressed, slightly curved on the dorsal side, almost straight, radial on the umbilical side; aperture relatively high, umbilical-extrambilical arch bordered by a narrow, upper rim. Diameter: up to .35 mm.

Family **Eponididae** Hofker, 1951
Genus **Neoeponides** Reiss, 1910

Neoeponides mexicanus (Cushman)
Plate 5, Figure 16
Pulvinulina mexicana Cushman, 1925, Bull. Amer. Assoc. Petrol. Geol. Vol. 9, no. 2, p. 300, pl. 7, figs. 7-8

Test unequally biconvex, dorsally more convex; periphery subacute, bluntly carinate; wall smooth, perforate; chambers 8-11 in the final whorl; sutures distinct, ventral sutures straight to slightly curved, limbate, thicken toward the center where they fuse to form an elevated rim circling the umbilicus, dorsal sutures less limbate, curved; aperture interiomarginal, extending into the umbilicus. Diameter: up to .7 mm.

Family Cibicididae Cushman, 1927

Genus Cibicidina Bandy, 1949

Cibicidina mauricensis (Howe and Roberts)
Plate 5, Figure 17

Test plano convex, spiral side almost involute and slightly concave, ventral side evenly convex; periphery acute, sometimes faintly carinate in early portion; chambers about 10 in the last formed coil, increasing gradually in size; central area on both sides filled with clear shell material; sutures distinct, curved, flush with surface; wall finely perforate, smooth; aperture peripheral, extending on the dorsal side along the base of last 2 or 3 chambers. Diameter: up to .28 mm.

Cibicidina mississippiensis (Cushman)
Plate 5, Figure 18
Anomalina mississippiensis Cushman, 1922, U. S. Geol. Survey, Prof. Paper 129-E, p. 98, pl. 21, figs. 6-8.

Test planoconvex, almost involute, strongly convex on ventral side, dorsal side slightly concave; periphery slightly lobulate, bluntly rounded; chambers about 7 in the final whorl, rapidly increasing in size; last chamber inflated and elevated higher than the other chambers; wall smooth, finely perforate; sutures curved, broad and flush on the dorsal side, depressed on later portion of the ventral side due to inflation of chambers; aperture peripheral, extending along the base of the last two chambers or so on the dorsal side where narrow chamber flaps may extend over the opening. Diameter: up to .27 mm.

Cibicidina hypoconoides (Hussey)
Plate 5, Figure 19

Cibicides hypoconoides Hussey, 1943, Jour. Pal., Vol. 17, no. 2, p. 107, pl. 26, fig. 6-8.

Test high planoconvex, even slightly concavoconvex; periphery angled, almost circular in outline; chambers about 8 in the final whorl; wall smooth, finely perforate; sutures radially curved on the ventral side, somewhat sinuous on the dorsal side; aperture peripheral, extending onto the ventral side at the base of the last few chambers where it is obscured by narrow chamber flaps. Diameter: up to .37 mm.

Genus Cibicides de Montfort, 1808

Cibicides delicatus LeRoy
Plate 5, Figure 20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Test somewhat circular in outline, strongly planoconvex, ventrally convex, even slightly concave on the dorsal side; periphery sharply angled, faintly carinate; wall finely perforate, polished; chambers about 7 in the final whorl; sutures distinct, gently curved, radial and depressed on the ventral side, faintly limbate, curved on the dorsal side; aperture peripheral, extending onto the dorsal side along the base of last one or two chambers. Diameter: up to .28 mm.

Cibicides jeffersonensis Garrett
Plate 5, Figure 21

Test small, unequally biconvex, ventrally more convex, nearly circular in outline; periphery subacute; wall coarsely perforate; chambers about 9 in the final whorl; sutures slightly curved, strongly limbate; aperture low, peripheral arch extending a short distance onto the dorsal side. Diameter: up to .45 mm.

Cibicides lawi Howe
Plate 5, Figure 22

Test circular in outline; almost equally biconvex; periphery subacute; wall smooth, finely perforate; about
9 chambers in the final whorl; sutures distinct, slightly depressed and curved on the ventral side, oblique on the dorsal side; aperture peripheral with slight lip. Diameter: up to .28 mm.

Cibicides lucidus (Reuss)

Plate 5, Figure 23

Test small, plano-convex to unequally biconvex, ventrally more convex; periphery lobulate, subcarinate; wall rather coarsely perforate; chambers about 8-9 in the last whorl; sutures curved, depressed on the ventral side, indistinct, limbate, oblique on the dorsal side; aperture a small, peripheral arch with a lip extending on to the spiral side along the base of last 2 or 3 chambers. Diameter: up to .30 mm.

Cibicides mammiformis Hussey

Plate 5, Figure 24

Cibicides mammiformis Hussey, 1949, Jour. Pal., Vol. 23, no. 2, pl. 29, p. 142, figs. 16, 17.

Test planoconvex, almost circular in outline; periphery acutely carinate, slightly lobulate; ventral side evenly convex with distinct umbonal boss; chambers about 8-9 in the last whorl; wall coarsely perforate; sutures slightly curved, rather indistinct and slightly depressed on the ventral side, dorsal sutures distinct, limbate, curved, slightly depressed in later portion, often fused into clear shell.
material at the center; aperture small, peripheral arch with faintly developed lip extending into the dorsal side along the base of the last two or three chambers. Diameter: up to .6 mm.

Cibicides cf. C. mimulus Bandy

Plate 6, Figure 1

Test planoconvex to biconvex, ventral side more convex; periphery subacute, slightly lobulate; wall smooth; perforate; chambers about 8 in the final whorl; umbilicate on the ventral side; sutures slightly curved, radial, depressed on the ventral side, curved, oblique, limbate on the dorsal side; aperture small, peripheral arch extending a very short distance onto the dorsal side. Diameter: up to .32 mm.

Cibicides cf. C. pseudowuellerstorfi Cole

Plate 6, Figure 2

Test unequally biconvex to planoconvex, generally dorsal side is flat, nearly circular in outline; periphery subacute to slightly carinate; chambers 9-10 in the final whorl; wall smooth, coarsely perforate; sutures distinct, slightly limbate, curved; relatively high umbo on the ventral side; aperture peripheral, extending a short distance onto the dorsal side. Diameter: up to .36 mm.

Remarks: This species shows great variety in size and convexity. Generally small.
"Cibicides" new sp.
Plate 6, Figure 3

Test unequally biconvex, dorsal side more strongly convex, nearly circular in outline; periphery bluntly angled; wall smooth, coarsely perforate on the dorsal side; chambers about 9 to 10 in the final whorl, gradually increasing in size; sutures distinct, oblique, curved and limbate on the dorsal side, almost straight to very slightly curved, radial, flush on the ventral side; last chamber tends to inflate slightly above the plane of coiling; slightly umbilicate; median portion of the apertural peripheral with narrow but distinct lip, extending a short distance on both sides.
Diameter: up to .33 mm.

Family Discocyclinidae Galloway, 1928
Genus Discocyclina Gümbel, 1870
Discocyclina advena (Cushman)
Plate 6, Figure 4

Orthophragmina advena Cushman, 1921, U. S. Geol. Survey, Prof. paper 128, p. 139, pl. 22, figs. 1-5.
Test very large, very flat, disc-shaped. Diameter: up to 8 mm.

Family Caucasinidae N. K. Bykova, 1959
Genus Fursenkoina Loeblich and Tappan, 1961
Fursenkoina mcguirti (Howe and Roberts)
Plate 6, Figure 5

Test elongate, compressed; chambers sloping backward strongly ending in spinose projections at the periphery; early portion slightly twisted; wall smooth; sutures strongly oblique, depressed; aperture elongate loop on the apertural face. Length: up to .32 mm.

Fursenkoina zetina (Cole)
Plate 6, Figure 6

Test small, about $3\frac{1}{2}$ times as long as broad, axis of early portion twisted, biserial throughout; sutures distinct, slightly depressed, oblique to the periphery; wall smooth, finely perforate; aperture comma-shaped at the base of the last chamber extending upward. Length: up to .4 mm. Width: up to .11 mm.

Family Cassidulinidae d'Orbigny, 1839

Genus Globocassidulina voloshinova, 1960

Globocassidulina globosa (Hantken)
Plate 6, Figure 7

Test small, subglobose; periphery broadly rounded; about 4 pairs of chambers visible; sutures slightly curved, slightly

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
depressed; aperture loop-shaped on the apertural face, parallel to the direction of coiling. Diameter: about .12 mm.

Globocassidulina lomitensis (Galloway and Wissler) subsp. *mexicana* (Cole)

Plate 6, Figure 8

Test small, subcircular in outline, biserially enrolled, gently flattened; periphery broadly rounded; chambers not inflated, about 4-5 pairs visible ventrally; wall smooth; finely perforate; sutures slightly depressed; aperture loop-shaped, parallel to the plane of coiling. Diameter: up to .14 mm.

Family Nonionidae Schultz, 1854

Genus Nonionellina voloshinova, 1958

Nonionellina winniana (Howe)

Plate 6, Figure 9

Test generally ovate, longer than broad; periphery broadly rounded; dorsal side evolute, ventral side involute; chambers 8-9 in the last formed whorl, increasing rather rapidly in size; umbilicate, umbilical region on the ventral side filled with granular material, slightly so on the dorsal side; sutures distinct, gently curved, depressed; aperture equatorial arch extending into the ventral side along the base of the last two chambers. Length: up to .30 mm.
Genus Nonionella Cushman, 1926

Nonionella cf. N. jacksonensis subsp. spiralis Bandy

Plate 6, Figure 10

Nonionella jacksonensis var. spiralis Bandy, 1949, Bull. Amer. Pal. Vol. 32, no. 131, p. 77, pl. 11, figs. 7 a-b.

Test small, ovate in outline, ventrally umbilicate, longer than broad, ventral side involute; periphery rounded; last chamber almost reaching over the umbilical region; about 6 chambers in the final whorl, becoming increasingly elongate; sutures rather indistinct, slightly depressed on later portion; wall smooth; finely perforate; aperture peripheral slit extending a short distance into the umbilicus at the base of the last chamber. Length: up to .23 mm.

Family Alabaminidae Hofker, 1951
Genus Alabamina Toulmin, 1941

Alabamina wilcoxensis Toulmin

Plate 6, Figure 11

Alabamina wilcoxensis Toulmin, 1941, Jour. Pal. Vol. 15, no. 6, p. 603, pl. 81, figs. 10-14.

Test low trochospiral, subcircular in outline, unequally biconvex with ventral side being more convex; periphery bluntly acute; usually 6 chambers visible on the final whorl; wall smooth, finely perforate; sutures straight, radial, flush on the ventral side, strongly oblique to the periphery on the dorsal side; aperture narrow, interiomarginal slit hooded by extension of folded wall of the last chamber. Diameter: up to .40 mm.
Family Osangulariidae Loeblich and Tappan, 1964

Genus Gyroidinoides Brotzen, 1942

Gyroidinoides octocameratus (Cushman and Hanna)

Plate 6, Figure 12

Test nearly planoconvex, ventrally strongly convex, periphery rounded; about 8 chambers in the final whorl; umbilicate; sutures straight, radial, slightly depressed, sometimes limbate on the ventral side, curved and may be limbate on the dorsal side; wall polished, finely perforate; aperture interiomarginal slit extending into umbilicus where it is covered by the umbilical flap extending from the base of the last chamber. Diameter: up to .38 mm.

Family Anomaliniidae Cushman, 1927

Genus Anomalinioides Brotzen, 1942

Anomalinioides ammonoides (Reuss)

Plate 6, Figure 13

Rosaline ammonoides Reuss, 1844, Geognostische Skizzen aus Böhmen, band 2, p. 214, type fig. not given.

Test weakly biconvex, circular in outline, biumbilicate; partially involute; 11-12 chambers in the final whorl; periphery smoothly rounded; sutures flush; slightly depressed; wall perforate, more coarsely so on the ventral side; aperture peripheral, extending on to the ventral side along the base of the last few chambers, with faint lip. Diameter: up to .32 mm.
Anomalinoides costianus (Weinzierl and Applin)
Plate 6, Figure 14

Test unequally biconvex, ventrally convex, partially evolute; peripheral margin subangular to rounded; 10 to 11 chambers on the last formed coil; sutures gently curved; limbate in early stages, slightly depressed in later chambers; dorsal sutures thicken and end abruptly near the center where they form beaded circle; ventral sutures merge into low umbonal boss of clear shell material; aperture peripheral, extending onto the dorsal side with the length of last two chambers or so. Diameter: up to .28 mm.

Anomalinoides umbonatus (Cushman)
Plate 6, Figure 15

Test unequally biconvex or planoconvex, ventral side more convex, dorsal side flat, sometimes slightly concave; periphery subacutely rounded; about 12-13 chambers in the final whorl; last whorl is not completely involute in the portion of last few chambers; dorsal sutures distinct, radial, curved, flush with surface; umbonal area filled with low lying umbo of clear shell material; ventral sutures radial, strongly limbate, thickening toward the center but abruptly ended near the umbo, sometimes forming knob-like pillars surrounding distinct central umbo; aperture low peripheral
arch, extending onto the ventral side along the base of the last 3 chambers. Diameter: up to .51 mm.

Genus Melonis de Montfort, 1808

Melonis planatus (Cushman and Thomas)

Plate 6, Figure 16

Nonion planatum Cushman and Thomas, 1930, Jour. Pal, Vol. 4, p. 37, pl. 3, fig. 5 a-b.

Test almost circular in outline, slightly compressed, bilaterally symmetrical; biumbonate; periphery broadly rounded; 8-9 chambers in the final whorl; sutures radial, slightly curved, slightly depressed; wall smooth; finely perforate; aperture equatorial slit at the base of the last chamber. Diameter: up to .26 mm.

Melonis cf. *M. umblicatula* (Montagu) subsp. *pacific*

Plate 6, Figure 17

Test somewhat ovate in outline, biumbicate, flattened; periphery gently lobulate; broadly rounded; chambers 8-9 in the final whorl; wall smooth; finely perforate; sutures distinct, slightly curved and depressed; aperture equatorial extending into umblicus. Diameter: up to .3 mm.

Family Ceratobuliminidae Cushman, 1927

Genus Ceratobulimina Toula, 1915

Ceratobulimina eximia (Rzehak)

Plate 6, Figure 18

Test large, smooth and polished, biconvex, finely perforate; periphery smoothly rounded; up to 9 chambers on the final whorl; umblicate; sutures straight to slightly curved, depressed, incised near the center on the ventral side, somewhat limbate on spiral side; aperture large, comma-shaped in the last septal face open into umbilicus; may have rim around the portion near the umbilicus. Diameter: up to .67 mm.

Genus Lamarckina Berthelin, 1881

Lamarckina claibornensis Cushman

Plate 6, Figure 19

Test subcircular, biconvex; sharply carinate; about 6-7 chambers on the final whorl gradually increasing in size; sutures on the ventral side indistinct, but slightly curved, depressed in later portion; heavily limbate; curved on the dorsal side, coalescing at the umbonal area; wall smooth, polished; aperture semicircular arch at the medium portion of the base of the last chamber, more or less toward the umbilical region. Diameter: up to .47 mm.

Genus Hoeglundina Brotzen, 1948

Hoeglundina eocenica (Cushman and Hanna)

Plate 6, Figure 20

Test unequally biconvex, more convex on the ventral side, circular in outline; periphery acute, bluntly carinate; 6 chambers on the final whorl; sutures distinct, thick, slightly elevated and whiter than the chamber wall; straight, radial, ventral sutures coalescing at the center of the ventral side in an umbilical thickening; aperture low interiomarginal slit, secondary aperture long, narrow slit on the distal end of each chamber, parallel to the periphery on the ventral side. Diameter: up to .44 mm.

Family Robertinidae Reuss, 1850
Genus Robertina d'Orbigny, 1846

Robertina plummerae Cushman and Parker

Plate 6, Figure 21

Test about two and a half times as long as broad, greatest breath around the middle, initial end gently tapering; chambers gradually increasing in size, about 6 pairs visible on apertural side; sutures slightly depressed; wall smooth, finely perforate; primary aperture elliptical slit extended over the apertural face from the base of the last chamber; narrow secondary aperture along the basal suture of the last chamber, almost as large as the primary. Length: up to .42 mm. Width: up to .12 mm.
REFERENCES

Akers, W. H., 1954
Ecologic aspects and stratigraphic significance of the foraminifer Cyclammina cancellata Braey, Jour. Pal.
Vol. 28, no. 2, p. 132-152

Albers, C. C. et al, 1966
Foraminiferal ecological zones of the Gulf Coast, Trans.
GCAGS Vol. 16, p. 345-348

Alexander, C. I., 1934
Ostracoda of the Midway (Eocene) of Texas, Jour. Pal.
Vol. 8, no. 2, p. 206-237

Andersen, H. V., 1960
Bull. 34

Arnold, Z. M., 1953
v. 4, p. 24-26

Bandy, O. L., 1953
Eocene and Oligocene Foraminifera from Little Stave Creek, Clark County, Alabama, Bull. Am. Paleontology,

Bandy, O. L., 1953
V. 10, p. 200-203

, 1954
Distribution of some shallow water Foraminifera in the Gulf of Mexico. USGS. Prof. Paper No. 254-F, p.
125-152.

, 1956
Ecology of Foraminifera in Northeastern Gulf of Mexico, USGS Prof. Paper No. 274-G, p. 179-204, pls. 29-31

Bandy, O. L., 1956
Paleotemperature of Pacific bottom waters and multiple hypothesis. Science V. 123, no. 3194 (March); p. 459

, 1960a
Planktonic foraminiferal criteria for paleoclimatic zonation. Science reports, Tohoku Univ., 2nd ser.
______, 1960b

______, 1960c
The geologic significance of coiling ratios in the foraminifer Globigerina pachyderma (Ehrenberg), Jour. Pal. V. 34, no. 4, p. 671-681

______, 1964
Cenozoic planktonic foraminiferal zonation. Micro-paleontology, Vol. 10, no. 1, p. 1-17

Bandy, O., L, and R. E. Arnal, 1957
Distribution of Recent Foraminifera off west coast of Central America, Bull. AAPG, V. 41, no. 9, p. 2037-2053

______, and R. E. Arnal, 1960

______, and M. B. Chierici, 1966

Banner, F. T. and W. H. Blow, 1959

Barr, A. J. and J. H. Goodnight, 1972
Statistical Analysis System, North Carolina State University

Barry, J. O. and R. J. LeBlanc, 1942

Be, A. W. H., 1956
Ecology of Recent planktonic Foraminifera. Micro-paleontology, Vol. 5, no. 1, p. 77-100, pt. 1

Beard, J. H., 1969
Pleistocene paleotemperature record based on planktonic Foraminifera, Gulf of Mexico, Trans. Gulf Coast Assoc. Geol. V. 19, p. 535-553

Benda, W. K. and H. S. Puri, 1962
The distribution of Foraminifera and Ostracoda of the Gulf Coast off the Cape Romano area, Florida. Trans. Gulf Coast Assoc. Geol. Soc., Vol. 12, p. 303-348

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Berggren, W., 1968
Planktonic Foraminifera selective solution and paleoclimate interpretation., Deep Sea Res., V. 5, p. 31

Blake, D., 1950

Blanpied, B. W., 1960
Interior piercement salt domes of east Texas, North Louisiana and Mississippi, Guidebook, 1960 Spring Field trip, Shreveport Geol. Soc.

Bornhauser, M., 1958

Bradshaw, J. W., 1957

Bradshaw, J. W., 1961

Brooks, F. E. and A. R. Messina

Canu, F. and R. S. Bassler, 1920

Chawner, W. D., 1936

Cole, W. S., 1959

Crouch, R. W., 1952
Significance of temperature on Foraminifera from deep basin off Southern California coast, Bull. AAPG V. 36 p. 807-843.
Curtis, N. M. jr., 1955

Cushman, J. A. and A. C. Ellisor, 1933
Two new Texas Foraminifera, Contr. Cushman Lab. Foram. Res., Vol. 9, p. 95, pl. 10

Cushman, J. A. and Y. Ozawa, 1930

Cushman, J. A. and N. L. Thomas, 1929

Cushman, J. A. and N. L. Thomas, 1930
Common Foraminifera of the east Texas greensands, Jour. Pal. Vol. 4, no. 1, p. 33-41, pls. 3, 4

Davies, D. K. and F. G. Ethridge, 1971

Dumble, E. T., 1911
The Carrizo Sands, Texas Acad. Sci. Trans. VII, p. 52-53

Durham, C. O. jr. and White, W. S. jr., 1960
A guided geological tour through north and central Louisiana, Guidebook 1960 Spring Field Trip. Shreveport Geol. Soc., p. 88

Dzilsky, T. E., 1953
Queen City Formation, Nacogdoches County, Texas, Unpublished Master Thesis, University of Texas

Eargle, D. H., 1953

Ellisor, A. C., 1929
Correlation of the Claiborne of east Texas with the Claiborne of La., Bull. AAPG Vol. 13, p. 1335-1346

Emiliani, C., 1954
Depth habitats of some species of pelagic Foraminifera as indicated by oxygen isotope ratios. Amer. Jour. Sci. V. 252, no. 3, p. 149-158
Fenner, P. (convener), 1969
Models of geologic processes, an introduction to mathematical geology, Amer. Geol. Inst.

Feray, D. E., 1948
Relation of the Foraminifera to the sedimentary characteristics of the Weches Formation in Texas, unpublished Ph.D. Dissertation, Univ. of Wisconsin.

Fisher, W. L., 1961

Fisk, H. N., 1938

Frerichs, W. E., 1970

Frerichs, W. E., 1971
Evolution of Planktonic Foraminifera and paleotemperatures, Jour. Pal. Vol. 45, no. 6, p. 963-968

Frizzell, D. L., 1949
Rotaliid foraminifera of the Chapmanninae: their natural distinction and parallelism to the Dictyoconus lineage, Jour. Pal. Vol. 23, no. 5, p. 483-492

Garrett, J. B., 1942
A new species of Discorbis from the Weches Formation of Texas, Jour. Pal. Vol. 17, no. 4, p. 484

Gibson, T. G. and Buzad, M. A., 1973

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Greiner, G. O., 1970
Distribution of major bentonic foraminiferal groups on the Gulf of Mexico Continental. Micropaleo. Vol. 16, p. 83-100

Grimsdale, T. F. and van Morkhoven, F. P. C. M., 1955
The ratio between pelagic and bentonic Foraminifera as means of estimating depth of deposition of sedimentary rocks. Proc. 4th World Petroleum Congr. Sect. I/D, paper 4, p. 473-491

Guevara, E. H. and R. Garcia, 1972
Depositional Systems and oil-gas reserves in the Queen City Formation (Eocene), Texas, Trans. Gulf Coast Assoc. Geol. Soc.

Hargis, R. N., 1962

Harris, G. D., 1919

Harris, G. D. and K. V. Palmer, 1946

Hecht, A. D., 1973
A model for determining Pleistocene paleotemperature from planktonic foraminiferal assemblages. Micropal. V. 19, no. 1, p. 68-77

Hedgpeth, J. W., 1957
Classification of marine environments, Geol. Soc. Am. Memoir 67, V. 1, p. 17-27

Howe, H. V., 1933
Review of Tertiary Stratigraphy of La., Bull. AAPG Vol. 17, p. 613-655

Howe, H. V. and J. Chambers, 1935

Howe, H. V. and J. B. Garrett, Jr., 1934

Huntley, L. G., 1923
The Sabine Uplift, Bull. AAPG Vol. 7, no. 1, p. 179-181
Hussey, K. M., 1943
Distinctive new species of Foraminifera from the Cane River Eocene of La., Jour. Pal. Vol. 17, no. 1, p. 160-167

________, 1949

Israelsky, M. C., 1949
Oscillation chart (from Foraminifera in oil well, Terrebonne Parish, La.), Bull. AAPG Vol. 33, no. 1 p. 92-98

Kane, H. E., 1962
The distribution of the Foraminifera of Sabine Lake and Sabine Pass, Texas and Louisiana and near shore area of the Gulf of Mexico, Jour. Pal. Vol. 36, no. 4, p. 834-836

Kane, J., 1953
Temperature correlations of Planktonic Foraminifera from the North Atlantic Ocean, Micropal. V. 7, no. 3, p. 25-50

________, 1956
North Atlantic planktonic Foraminifera as Pleistocene temperature-indicators, Micropal., V. 2, no. 3, p. 287-293

Kennedy, W., 1892
A section from Terrell, Kaufman County to Sabine Pass on the Gulf of Mexico, 3rd Annual Rept. of the Geol. Surv. of Texas, pp. 82

Kormfeld, M. M., 1931
Recent littoral Foraminifera from Texas and Louisiana, Stanford Univ. Dept. Geology Contr., Vol. 1, no. 3, p. 77-93

LahkkFord, R. R., 1959
Distribution and ecology of Foraminifera from east Miss. Delta margin, Bull. AAPG, Vol. 43, no. 9, p. 2068-2099.

Lehman, E. P., 1957
Statistican study of Texas Gulf Coast Recent foraminiferal facies, Micropaleontology Vol. 3, p. 325-356

Loeblic, A. P. jr. and Tappan, H., 1957a
Correlation of the Gulf and Atlantic Coastal Plain Paleocene and Lower Eocene formations by means of Planktonic Foraminifera, Jour. Pal. Vol. 31, no. 6, p. 1109-1137

Loep, K. J., 1965

Lowenstam, H. A. and S. Epstein, 1954
Paleotemperatures of the post-Aptian Cretaceous as determined by the oxygen isotope method, Jour. Geol. V. 62, p. 207-248

Lowman, S. W., 1949
Sedimentary facies in Gulf Coast, Bull. AAPG Vol. 33, no. 12, p. 1939-1997

Lynts, G. W., 1962

Marszlek, D. S, Wright, R. C., and Hay, W. W., 1969

Martin, J. L., 1939

Miller, R. L. and J. S. Kahn, 1962
Statistical analysis in the geological sciences, John Wiley and Sons

Moody, G. L., 1931

Moore, W. E, 1957
Ecology of recent Foraminifera in northern Florida Keys, AAPG Vol. 41, p. 727-741

Morgan, J. X., 1967
Quaternary micromolluscan fauna of the mudlump province, Mississippi River delta, unpublished Dissert. Louisiana State University

Murray, G. E. jr., 1938

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Cenozoic deposits of central Gulf Coastal plain, Bull. AAPG, Vol. 31, no. 10, p. 1825-1850

History and development of Paleocene, Lower Eocene nomenclature, central Gulf Coastal plain, Guidebook 10th field trip Miss. Geol. Soc. p. 48-54.

Midway-Wilcox surface stratigraphy of Sabine Uplift, Louisiana and Texas, Bull. AAPG Vol. 29, no. 1, p. 45-70

Murray, G. E. jr., 1961
Geology of the Atlantic and Gulf Coastal province of North America, 692 p., Harper

Murray, J. W., 1963
Ecological experiments on Foraminiferida, Jour. Marine Biol. Assoc., United Kingdom, V. 43, no. 3, p. 621-642

Murray, J. W., 1973
Distribution and ecology of living benthonic Foraminiferids, 274 p, Crane, Russak and Co., Inc.

Myers, E. H., 1935a
Culture methods for the marine Foraminifera of the littoral zone, Trans. Micro. Soc., V. LIV, no. 3, p. 264-267

The life cycle of Spirillina vivipara Ehrenberg, a Foraminifera, Jour. Royal Micro. Soc., V. LVII, p. 120-146

Myers, E. H., 1943

Owen, J., 1889
(1888) First report of progress Geol. and Mineralogical Survey of Texas, 1889, 78 p
Palmer, K. V., W., 1937

________, and D. C. Branz, 1965

Parker, F. L., 1954

Parker, F. L., 1960

Parker, F. L., Phleger, F. B. and Pierson, J. F., 1953

Phleger, F. B., 1951
Ecology of Foraminifera and associated microorganisms from Mississippi Sound and environs, Bull AAPG Vol. 38 no. 4, p. 584-647

________, 1955
Geology of Foraminifera in SE Mississippi delta area, Bull. AAPG Vol. 39, no. 5, p. 712, 752

________, 1956

________, 1960
Ecology and distribution of recent Foraminifera. The Johns Hopkins press

________, 1964
Foraminiferal Ecology and marine geology, Marine Geol. Vol. 1, no. 1, p. 16-43

________, 1970 (abs.)
Gulf of Mexico Foraminifera; in Gulf of Mexico its origin, waters and marine life, Fishery Bull. 89, U. S. Dept. of Interior, Fish and Wildlife Serv., p. 235-256

Phleger, F. B., and A. Soutar, 1973
Production of benthic Foraminifera in three east Pacific oxygen minima. Micropal. V. 19, no. 1, p. 10-115

Plummer, F. B., 1932

Post, R. J., 1951

Postuma, J. A., 1971

Rainwater, E. H., 1962
Geological history and oil and gas possibilities, Miss. Geol. Econ. and Topog. Surv. Bull. 97, p. 77-105

Robinson, G. S., 1970

Shaw, A. B., 1964

Shearer, H. K., 1930
Geology of Catahoula Parish, La., Bull. AAPG Vol. 14, no. 4, p. 443-450

Shenton, E. H., 1959

Shifflett, E., 1961
Living, dead and total foraminiferal faunas, Head bank, Gulf of Mexico, Micropaleontology, Vol. 7, p. 45-54

Skinner, H. C., 1972
Gulf Coast stratigraphic correlation methods. La. Heritage Press
Smith, C. R., 1958
Queen City-Sparta relationships in Caddo Parish, La. Bull. AAPG Vol. 42, p. 2517-2122

Smith, L. E., 1965

Spooner, W. C., 1926
Interior salt domes of La., Bull AAPG Vol. 10, no. 1, p. 220-236

Stadnichenko, M. M., 1927
The Foraminifera and Ostracoda of the marine Yegua of the type sections, Jour. Pal. Vol. 1, no. 3, p. 221-243

Stainforth, R. M., 1952
Ecology of arenaceous Foraminifera, Micropaleo. Vol. 6, p. 42-44

Stenzel, H. B., 1932
Unconformities of the Weches Formation in Texas (abs) Pan Am. Geologist, Vol. 57, no. 4, p. 318

________, 1938
Geology of Leon County, Texas, Univ. Texas Publ. no. 3818, 255 p.

________, 1941 (abs)
Sedimentary cycles in Eocene of Texas Gulf Coastal plain, Bull AAPG Vol. 25, no. 5, p. 933

________, 1948 (abs)

________, 1949
Successional speciation in paleontology the case of the oysters of the Sellaeformis stock, Evolution Vol. 3, p. 34-50

________, 1952a
Boundary problems, Miss. Geol. Soc. Guidebook 9th Field Trip, 93 p.

________, 1952b
Notes on surface correlation chart in Claiborne of western Alabama and eastern Miss., Miss. Geol. Soc. Guidebook 9th Field Trip, p. 32-33
E. K. Krause and J. T. Twining, 195?
Palecypoda from the type locality of the Stone City beds (Middle Eocene) of Texas, The Unive. Texas Pub. no. 5704, 237 p.

Stephenson, M. B., 1942
A new Ostracoda from the Claiborne Eocene of Texas, Jour. Pal. Vol. 16, no. 4, p. 482-483

, 1942
Some Claiborne Eocene Ostracoda of the genus Cytheridea from the Gulf Coast, Jour. Pal., Vol. 16, no. 1, p. 105-115.

, 1944

, 1946

Sutton, A. H. and Williams, J. R., 1939
Ostracoda from the Weches Formation at Smithville, Texas, Jour. Pal. Vol. 15, p. 561-574

Toulmin, L. D., 1967
Summary of Lower Paleogene lithostratigraphy and biostratigraphy of Alabama; in Geology of the Coastal plain of Alabama, a Guidebook for the 80th Ann. Mtg. of Geol. Soc. Am., p. 34, fig. 5

USGS.
Geologic Map of the United States

van Morkhoven, F. P. C. M., 1972

vaughan, T. W., 1896
A brief contribution to the geology and paleontology of northwestern La., USGS Bull. 142, 65 p

Walton, W. R., 1960
Diagnostic faunal characteristics on and near a barrier island, Horn Island, Mississippi, Trans. Gulf Coast Assoc. Geol. Soc. Vol. 10, p. 7-24

Walton, W. R., 1964
Recent Foraminiferal ecology and paleoecology in Approaches to Paleoecology by Imbrie and Newell, p. 151-237, John Wiley and Sons.
Warren, A. D., 1956

Weinzierl, L. L. L. and Applin, E. R., 1929

Wendlandt, E. A. and Knebel, G. M., 1929
Lower Claiborne of East Texas with special reference to Mount Sylvan dome and sale movements, Bull. AAPG Vol. 13, no. 10, p. 1347-1375

Williamson, J. P. M., 1959
Gulf Coast Cenozoic history, Trans. Gulf Coast Assoc. Geol. Soc., Vol. 9, p. 15-29

Wilmarth, M. G., 1938
APPENDIX I. Description of Sampled Sections

<table>
<thead>
<tr>
<th>Legend to Lithologic Sections</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Clay Pattern]</td>
<td>Clay</td>
</tr>
<tr>
<td>![Silty Clay Pattern]</td>
<td>Silty Clay</td>
</tr>
<tr>
<td>![Clay with Sand or Silt Partings Pattern]</td>
<td>Clay with Sand or Silt Partings</td>
</tr>
<tr>
<td>![Marl Pattern]</td>
<td>Marl</td>
</tr>
<tr>
<td>![Massive Sand Pattern]</td>
<td>Massive Sand</td>
</tr>
<tr>
<td>![Cross Bedded Sand Pattern]</td>
<td>Cross Bedded Sand</td>
</tr>
<tr>
<td>![Glaucnite Pattern]</td>
<td>Glaucnite</td>
</tr>
<tr>
<td>![Limestone Pattern]</td>
<td>Limestone</td>
</tr>
<tr>
<td>![Micromollusk Pattern]</td>
<td>Micromollusk</td>
</tr>
<tr>
<td>![Oyster Pattern]</td>
<td>Oyster</td>
</tr>
<tr>
<td>![Burrow Pattern]</td>
<td>Burrow</td>
</tr>
<tr>
<td>![Oxidized Iron Concretion Pattern]</td>
<td>Oxidized Iron Concretions</td>
</tr>
<tr>
<td>![Lignite Pattern]</td>
<td>Lignite</td>
</tr>
<tr>
<td>![Pyrite Crystals Pattern]</td>
<td>Pyrite Crystals</td>
</tr>
<tr>
<td>FT.</td>
<td>SAMPLE NO.</td>
</tr>
<tr>
<td>-------</td>
<td>------------</td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Clay, chocolate brown, with pockets of glauconite

Alternation of glauconite and clay

Clay, silty to sandy

Clay, silty

Alternation of glauconite and brown clay with glauconite being a minor member

Clay, silty, with some gray sand partings

Clay, brown, with silt and/or sand partings, sparsely distributed glauconite
Clay, intensely weathered into brick red layers with abundant iron concretions

Clay, slightly glauconitic, abundant Oyster shells, burrowed

Glaucnitic marl, blueish green, numerous oyster shells, limestone benches with the same lithology.

Glaucnite and glauconitic marl, blueish green, fossiliferous
Clay, weathered into brick red color

Glaucnite, glauconitic marl and brown clay alternating. glauconitic layers richly fossiliferous with micromolluscs

Clay, light chocolate brown, with glauconite. micaceous near the lower part, more glauconitic upward

Sand, silty, light gray (Queen City Sand)
4. **BAYOU CARRIZO**
NACOGDOCHES COUNTY, TEXAS

Clay, calcareous, greenish tan, with sparsely distributed oysters and glauconite. Richly fossiliferous.

5. **CHIRENO II**
NACOGDOCHES COUNTY, TEXAS

Clay, weathered, brick red

Glaucocitic marl, dark brownish green, thick, massive, abundant macrofossils

Glaucocite and glauconitic marl, blueish green, fossiliferous, Limestone ledges burrowed
Glaucenic marl, pale green, richly fossiliferous. Limestone ledges composed of the same material as the neighboring layers.

Sand, clayey, glauconitic, pale greenish gray

Glaucenic marl, light greenish, hardened and burrowed

Glaucenic marl, light brownish green, fossiliferous
7. BAYOU ATTOYAC SAN AUGUSTINE COUNTY, TEXAS

Glaucnitic marl, dark brown on weathered surface, bluish green on fresh break, richly fossiliferous

8. SAN AUGUSTINE SAN AUGUSTINE COUNTY, TEXAS

Glaucnitic marl, intensely weathered into brownish gray color, richly fossiliferous but mostly leached out
9. BAYOU NEGREET SABINE PARISH, LA.

<table>
<thead>
<tr>
<th>SAMPLE NO</th>
<th>FT.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>72</td>
<td>0</td>
<td>Glauconitic marl</td>
</tr>
<tr>
<td>73</td>
<td>5</td>
<td>Glauconitic marl, small borrow fills</td>
</tr>
<tr>
<td>74</td>
<td>10</td>
<td>Clay and glauconite marl, brownish</td>
</tr>
<tr>
<td>75</td>
<td>15</td>
<td>Glauconite and quartz sand</td>
</tr>
</tbody>
</table>

(reef?)
Sand, bright orange tan

Sand, light brown or gray clay, interlaminating

Clay, chocolate brown, with gray sand partings

Clay, chocolate brown

Clay, chocolate brown, fossiliferous
Clay, glauconitic, fossiliferous

Clay, calcareous, glauconitic, with hardened oyster layers

Glaucnité and glauconitic marl, clayey, blueish green

Glaucnité and brownish sand, interlayered

Brownish sand, glauconitic
11. HAGEWOOD MATCHITOCNES PARISH, LA.

Glaucnìtic marl, yellowish tan, abundant oyster shells, lower section hardened into ledge

Interlayers of glauconitic marl and chocolate brown clay, fossiliferous
Glaconitic marl, yellowish tan, fossiliferous, sparsely distributed oysters in the upper section
13. CLEAR LAKE
MATCHTOCHES PARISH, LA.

Glaucocitic marl, yellowish tan

Glaucocitic marl and clay, grayish green

Glaucocitic marl, grayish tan, clay content increased

Glaucocitic marl, grayish tan, fossiliferous with micromolluscs
Sand, gray to tan

Clay, silty, light brown

Clay, dark gray, slightly glauconitic

Clay, chocolate brown, with some silt or sand partings

Glauconite, greenish, slightly clayey

Clay, gray

Glauconite with brownish sand, lignitic

Clay, sandy, glauconitic, lignitic

Clay, brownish gray, sandy, slightly glauconitic

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
APPENDIX II

Table of Frequency and Depth Range of Foraminiferal Species living in the Gulf of Mexico.

<table>
<thead>
<tr>
<th>Genus and Species</th>
<th>Frequency</th>
<th>Depth Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammobaculites</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. exiguss</td>
<td>rare</td>
<td>Sound</td>
</tr>
<tr>
<td>A. salsus</td>
<td>common</td>
<td>Marsh-Inner neritic</td>
</tr>
<tr>
<td>A. dilatatus</td>
<td>rare</td>
<td>Sound-Inner neritic</td>
</tr>
<tr>
<td>A. exillis</td>
<td>abundant</td>
<td>Estuary</td>
</tr>
<tr>
<td>A. angularis</td>
<td>common</td>
<td>Inner neritic</td>
</tr>
<tr>
<td>A. foliaceus</td>
<td>rare</td>
<td>Inner neritic</td>
</tr>
<tr>
<td>Anomalinoideas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*A. mexicana</td>
<td>rare</td>
<td>250-1,000m</td>
</tr>
</tbody>
</table>

*Holotype figures and descriptions show that most probably this species does not belong to Anomalinoideas.

<table>
<thead>
<tr>
<th>Asterigerina</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A. carinata</td>
<td>common-abundant</td>
<td>Middle neritic</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bolivina and Brizalina</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bolivina albatrossi</td>
<td>common</td>
<td>250-1,200m</td>
</tr>
</tbody>
</table>
| B. barbata | rare | 50-350m
<p>| | | 1,000-3,000m |
| B. daggarius | common | 150-200m |
| B. flagilis | common | 60-150m |
| B. goësis | rare | 100-250m |
| B. hastata | rare | 90-400m |</p>
<table>
<thead>
<tr>
<th>Genus and Species</th>
<th>Frequency</th>
<th>Depth Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. inflata</td>
<td>rare</td>
<td>Inner neritic</td>
</tr>
<tr>
<td>B. lowmani</td>
<td>common</td>
<td>of all depths</td>
</tr>
<tr>
<td>B. minima</td>
<td>common</td>
<td>150-350m</td>
</tr>
<tr>
<td>B. ordinaria</td>
<td>common</td>
<td>150-750m</td>
</tr>
<tr>
<td>B. pulchella</td>
<td>rare</td>
<td>100m</td>
</tr>
<tr>
<td>B. pulchella primitiv</td>
<td>rare</td>
<td>Inner neritic</td>
</tr>
<tr>
<td>B. spathulata</td>
<td>rare</td>
<td>Inner neritic</td>
</tr>
<tr>
<td>B. striatula</td>
<td>rare</td>
<td>30-1,000m</td>
</tr>
<tr>
<td>B. subaenariensis</td>
<td>common</td>
<td>100-350m</td>
</tr>
<tr>
<td>B. subaenariensis</td>
<td>abundant</td>
<td></td>
</tr>
<tr>
<td>B. cf. subexcavata</td>
<td>rare</td>
<td>Inner neritic</td>
</tr>
<tr>
<td>B. subspinescens</td>
<td>rare</td>
<td>50-1,000m</td>
</tr>
<tr>
<td>Bulimina</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. aculeata</td>
<td>common</td>
<td>500-2,500m</td>
</tr>
<tr>
<td>B. alazamensis</td>
<td>common</td>
<td>500-1,000m</td>
</tr>
<tr>
<td>B. marginata</td>
<td>rare</td>
<td>400m</td>
</tr>
<tr>
<td>B. spicata</td>
<td>common</td>
<td>400-1,000m</td>
</tr>
<tr>
<td>B. striata mexicana</td>
<td>common</td>
<td>450-2,000m</td>
</tr>
<tr>
<td>B. tenuis</td>
<td>rare</td>
<td>80-120m</td>
</tr>
<tr>
<td>Cibicides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. americanus</td>
<td>rare</td>
<td>Littoral</td>
</tr>
<tr>
<td>C. americanus strattoni</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. concentricas</td>
<td>rare</td>
<td>80-120m</td>
</tr>
<tr>
<td>C. copulentus</td>
<td>rare</td>
<td>100-1,000m</td>
</tr>
<tr>
<td>C. floridanus</td>
<td>abundant</td>
<td>60-100m</td>
</tr>
<tr>
<td></td>
<td></td>
<td>up to 1,000m</td>
</tr>
<tr>
<td>Genus and Species</td>
<td>Frequency</td>
<td>Depth Range</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>C. deprimus</td>
<td>rare</td>
<td>40-200m</td>
</tr>
<tr>
<td>C. io</td>
<td>rare</td>
<td>150m</td>
</tr>
<tr>
<td>*C. kullenberg</td>
<td>rare</td>
<td>1,000m</td>
</tr>
<tr>
<td>C. lobatulus</td>
<td>rare</td>
<td>beach</td>
</tr>
<tr>
<td>C. molli</td>
<td>rare</td>
<td>40-200m</td>
</tr>
<tr>
<td>C. protuberans</td>
<td>abundant</td>
<td>100-250m</td>
</tr>
<tr>
<td>C. pseudoungerianus</td>
<td>abundant</td>
<td>80-130m</td>
</tr>
<tr>
<td>C. robertsonianus</td>
<td>rare</td>
<td>500-250m</td>
</tr>
<tr>
<td>C. umbonatus</td>
<td>rare</td>
<td>90-350m</td>
</tr>
<tr>
<td>*C. wuellostorfi</td>
<td>rare</td>
<td>700-3,000m</td>
</tr>
<tr>
<td>*Probably Planulina</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cibicidina

*Hanzawaia strattoni | abundant | 10-100m |
*H. concentrica | abundant | 10-100m |
*H. bertheloti | rare | 100-200m |

*See remarks in the chapter of Bathymetry and Environment

Cyclammina

C. cancellata | common | 450-2,000m |

Discorbis

D. bertheloti | rare | 30-200m |
D. bulbosa | rare | <200m |
*D. concinna | common | =35 |
D. cf. cocinna | common | beach |
D. cf. columbiensis | common | Inner neritic |
D. floridana | common | <100m |
<table>
<thead>
<tr>
<th>Genus and Species</th>
<th>Frequency</th>
<th>Depth Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>D. floridensis</td>
<td>rare</td>
<td>100-200m</td>
</tr>
<tr>
<td>D. suezensis</td>
<td>rare</td>
<td><350m</td>
</tr>
<tr>
<td>*May be Eponides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gyroidinoideis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G. soldanii altiformis</td>
<td>common</td>
<td>200-3,000m</td>
</tr>
<tr>
<td>Gyroidina orbicularis</td>
<td>common</td>
<td>200-3,000m</td>
</tr>
<tr>
<td>Haplophragmoides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H. manilaensis</td>
<td>common</td>
<td>marsh</td>
</tr>
<tr>
<td>H. subinvelutum</td>
<td>common</td>
<td>marsh-sound</td>
</tr>
<tr>
<td>H. wilberti</td>
<td>common</td>
<td>marsh</td>
</tr>
<tr>
<td>H. canariensis mexicana</td>
<td>rare</td>
<td>Littoral</td>
</tr>
<tr>
<td>H. bradvi</td>
<td>present</td>
<td>500-3,000m</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90-3,000m</td>
</tr>
<tr>
<td>Lamarckina</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. atlantica</td>
<td>rare</td>
<td>Littoral</td>
</tr>
<tr>
<td>Lenticulina</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. peregrina</td>
<td>rare</td>
<td>50-1,500m</td>
</tr>
<tr>
<td>L. calcar</td>
<td>common</td>
<td>10-200m</td>
</tr>
<tr>
<td>Melonis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Nonion barlceana</td>
<td>rare</td>
<td>=150m</td>
</tr>
<tr>
<td>*N. formosum</td>
<td>rare</td>
<td>70-1,500m</td>
</tr>
<tr>
<td>*N. germaicum</td>
<td>rare</td>
<td>Transitional</td>
</tr>
<tr>
<td>*N. pauciloculum</td>
<td>rare</td>
<td>Transitional</td>
</tr>
<tr>
<td>*N. pompilicoides</td>
<td>rare</td>
<td>30-3,000m</td>
</tr>
<tr>
<td>Genus and Species</td>
<td>Frequency</td>
<td>Depth Range</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>N. cf. pompilioides</td>
<td>rare</td>
<td>=150m</td>
</tr>
<tr>
<td>N. depressulum</td>
<td>rare</td>
<td>bay</td>
</tr>
<tr>
<td>N. depressulum matagordana</td>
<td>rare</td>
<td>Littoral</td>
</tr>
<tr>
<td>N. cf. granosum</td>
<td>rare</td>
<td>Transitional</td>
</tr>
<tr>
<td>N. cf. grateloupi</td>
<td>rare</td>
<td><100m</td>
</tr>
</tbody>
</table>

Melonis. Also see remarks in the Chapter of Bathymetry and Environment

Neoeponides

<table>
<thead>
<tr>
<th>Species</th>
<th>Frequency</th>
<th>Depth Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>N. antillarum</td>
<td>common</td>
<td>=120m</td>
</tr>
<tr>
<td>Eponides hannai</td>
<td>rare</td>
<td>Inner neritic</td>
</tr>
<tr>
<td>E. regularis</td>
<td>common-abundant</td>
<td>150-400m</td>
</tr>
<tr>
<td>E. repandus</td>
<td>rare-common</td>
<td><200m</td>
</tr>
<tr>
<td>E. polius</td>
<td>rare</td>
<td>>500m</td>
</tr>
<tr>
<td>E. tumidulus</td>
<td>abundant</td>
<td>1,500-3,000m</td>
</tr>
<tr>
<td>E. turgidus</td>
<td>rare</td>
<td>200-3,000m</td>
</tr>
</tbody>
</table>

Quinqueloculina

<table>
<thead>
<tr>
<th>Species</th>
<th>Frequency</th>
<th>Depth Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q. agglutinans</td>
<td>rare</td>
<td>Inner neritic</td>
</tr>
<tr>
<td>Q. akneriana</td>
<td>abundant</td>
<td>bay</td>
</tr>
<tr>
<td>Q. auberiana</td>
<td>rare</td>
<td>Littoral</td>
</tr>
<tr>
<td>Q. bicostata</td>
<td>common</td>
<td>±40m</td>
</tr>
<tr>
<td>Q. bosciana</td>
<td>rare</td>
<td>Inner neritic</td>
</tr>
<tr>
<td>Q. condeiana</td>
<td>common</td>
<td>Inner neritic</td>
</tr>
<tr>
<td>Q. cataliensis</td>
<td>rare</td>
<td>Inner neritic</td>
</tr>
<tr>
<td>Q. compata</td>
<td>common</td>
<td>Inner neritic</td>
</tr>
<tr>
<td>Q. costata</td>
<td>common</td>
<td>Inner neritic</td>
</tr>
<tr>
<td>Genus and Species</td>
<td>Frequency</td>
<td>Depth Range</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>Q. cultrata</td>
<td>common</td>
<td>Inner neritic</td>
</tr>
<tr>
<td>Q. dutemplei</td>
<td>rare</td>
<td>Inner neritic</td>
</tr>
<tr>
<td>Q. faunafutienisi</td>
<td>rare</td>
<td>Inner neritic</td>
</tr>
<tr>
<td>Q. horrida</td>
<td>common</td>
<td>≤40m</td>
</tr>
<tr>
<td>Q. jugosa</td>
<td>rare</td>
<td>Inner neritic</td>
</tr>
<tr>
<td>Q. lamarkiana</td>
<td>rare</td>
<td>bay</td>
</tr>
<tr>
<td>Q. poeyana</td>
<td>rare</td>
<td>Inner neritic</td>
</tr>
<tr>
<td>Q. rhodiensis</td>
<td>rare</td>
<td>sound</td>
</tr>
<tr>
<td>Q. sabulosa</td>
<td>rare</td>
<td>bay</td>
</tr>
<tr>
<td>Q. seminulum</td>
<td>common</td>
<td>Inner neritic</td>
</tr>
<tr>
<td>Q. subpoeyana</td>
<td>rare</td>
<td>bay</td>
</tr>
<tr>
<td>Q. subquadra</td>
<td>rare</td>
<td>=30m</td>
</tr>
<tr>
<td>Q. vulgaris</td>
<td>rare</td>
<td>Inner neritic</td>
</tr>
</tbody>
</table>

Siphonina

<table>
<thead>
<tr>
<th>Genus</th>
<th>Frequency</th>
<th>Depth Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. pulchra</td>
<td>rare-common</td>
<td>80-500m</td>
</tr>
<tr>
<td>S. bradyana</td>
<td>rare</td>
<td>40-750m</td>
</tr>
</tbody>
</table>

Spiroplectamina

<table>
<thead>
<tr>
<th>Genus</th>
<th>Frequency</th>
<th>Depth Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. floridana</td>
<td>rare</td>
<td>80-200m</td>
</tr>
<tr>
<td>T. agglutians</td>
<td>rare</td>
<td>Littoral</td>
</tr>
<tr>
<td>T. candeiana</td>
<td>common</td>
<td>Inner neritic</td>
</tr>
<tr>
<td>T. conica</td>
<td>rare</td>
<td><200m</td>
</tr>
<tr>
<td>T. earlandi</td>
<td>rare-abundant</td>
<td><100m</td>
</tr>
<tr>
<td>T. foliacea</td>
<td>rare</td>
<td>30-200m</td>
</tr>
<tr>
<td>T. gramen</td>
<td>rare</td>
<td>Inner neritic</td>
</tr>
<tr>
<td>Genus and Species</td>
<td>Frequency</td>
<td>Depth Range</td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------</td>
<td>---------------</td>
</tr>
<tr>
<td>T. mayori</td>
<td>rare-common</td>
<td><60m</td>
</tr>
<tr>
<td>T. mexicana</td>
<td>rare</td>
<td>100-350m</td>
</tr>
<tr>
<td>T. pseudotrochus</td>
<td>rare</td>
<td>60-80m</td>
</tr>
</tbody>
</table>

Trifarina

<table>
<thead>
<tr>
<th>Genus and Species</th>
<th>Frequency</th>
<th>Depth Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. bella</td>
<td>rare</td>
<td>120m</td>
</tr>
<tr>
<td>T. bradyi</td>
<td>rare</td>
<td>0-2,000m</td>
</tr>
</tbody>
</table>

Triloculina

<table>
<thead>
<tr>
<th>Genus and Species</th>
<th>Frequency</th>
<th>Depth Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. bassensis</td>
<td>rare</td>
<td>bay</td>
</tr>
<tr>
<td>T. bermudezi</td>
<td>rare</td>
<td>bay</td>
</tr>
<tr>
<td>T. brevidentata</td>
<td>rare</td>
<td><200m</td>
</tr>
<tr>
<td>T. carinata</td>
<td>rare</td>
<td>bay</td>
</tr>
<tr>
<td>T. fiterrei</td>
<td>rare</td>
<td>bay</td>
</tr>
<tr>
<td>T. linneiana</td>
<td>rare</td>
<td>bay</td>
</tr>
<tr>
<td>T. oblonga</td>
<td>rare</td>
<td>bay</td>
</tr>
<tr>
<td>T. sidebottomi</td>
<td>rare</td>
<td>Inner neritic</td>
</tr>
<tr>
<td>T. squamosa</td>
<td>rare</td>
<td><30m</td>
</tr>
<tr>
<td>T. striatotrigonula</td>
<td>rare</td>
<td>bay</td>
</tr>
<tr>
<td>T. trigonula</td>
<td>common</td>
<td>Inner neritic</td>
</tr>
</tbody>
</table>

Trochammina

<table>
<thead>
<tr>
<th>Genus and Species</th>
<th>Frequency</th>
<th>Depth Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. comprimata</td>
<td>rare-common</td>
<td>Transitional</td>
</tr>
<tr>
<td>T. globulosa</td>
<td>common</td>
<td>1,000-3,000m</td>
</tr>
<tr>
<td>T. inflata</td>
<td>abundant</td>
<td>Transitional</td>
</tr>
<tr>
<td>T. cf. laevigata</td>
<td>rare</td>
<td>Inner neritic</td>
</tr>
<tr>
<td>T. cf. lobata</td>
<td>rare</td>
<td>Inner neritic</td>
</tr>
<tr>
<td>T. macrescens</td>
<td>common</td>
<td>Transitional</td>
</tr>
<tr>
<td>Genus and Species</td>
<td>Frequency</td>
<td>Depth Range</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>T. cf. ochracea</td>
<td>common</td>
<td>Inner neritic</td>
</tr>
<tr>
<td>T. quadriloba</td>
<td>rare</td>
<td>100-300m</td>
</tr>
<tr>
<td>T. squamata</td>
<td>rare</td>
<td>Inner neritic</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uvigerina</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U. auberianae var.</td>
<td>common</td>
<td>80-150m</td>
</tr>
<tr>
<td>laevis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U. bellula</td>
<td>rare</td>
<td>80-200m</td>
</tr>
<tr>
<td>U. flinti</td>
<td>common</td>
<td>100-350m</td>
</tr>
<tr>
<td>U. hispido-costata</td>
<td>common</td>
<td>200-700m</td>
</tr>
<tr>
<td>U. laevis</td>
<td>rare</td>
<td>up to 3,000m</td>
</tr>
<tr>
<td>U. parvula</td>
<td>rare</td>
<td>80-350m</td>
</tr>
<tr>
<td>U. peregrina</td>
<td>common</td>
<td>100-1,800m</td>
</tr>
<tr>
<td>U. peregrina parvula</td>
<td>rare</td>
<td>> 50m</td>
</tr>
</tbody>
</table>
APPENDIX III

LIST OF OSTRACODA SPECIES AND THEIR REFERENCES

Acanthocythereis cf. washburni (Stephenson) pl. 7, fig. 1

Acanthocythereis species A pl. 7, fig. 2

Acanthocythereis species B pl. 7, fig. 3

Actinocythereis davidwhitei (Stadnichenko) pl. 1, fig. 4

Actinocythereis (?) elmana (Stadnichenko) pl. 1, fig. 5

Actinocythereis cf. hilgardi (Howe and Garrett) pl. 1, fig. 6

Actinocythereis species pl. 1, fig. 7

Bairdia species pl. 1, figs. 8, 9, 10.

Brachycythere species pl. 1, fig. 11

Buntonia howei (Stephenson) pl. 1, fig. 12

Pyricythereis howei Stephenson, Jour. Pal. Vol. 20, no. 4, 1946, p. 330, pl. 42, figs. 16, 17

Buntonia alabamensis (Howe and Pyeatt) pl. 1, fig. 13

Cythereis (?) alabamensis Howe and Pyeatt, Louisiana Dept. Cons. Geol. Bull. no. 4, 1934, p. 50, pl. 4, figs. 2, 5, 7-10

Bythocypris gibsonensis Howe and Chambers pl. 1, fig. 14

Bythocypris gibsonensis Howe and Chambers, Louisiana Dept. Cons. Geol. Bull. no. 5, 1935, p. 9, pl. 3, fig. 10, pl. 4, fig. 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Clithrocytheridea wechensis (Stephenson) Stephenson pl. 8, fig. 1

Cythereidea (Clithrocytheridea) subpyriformis Sutton and Williams, var. wechensis Stephenson, Jour. Pal. Vol. 16, 1942, p. 113, pl. 18, fig. 14

Clithrocytheridea wechensis (Stephenson) Stephenson, Jour. Pal. Vol. 20, 1946, p. 329, pl. 42, fig. 19

Clithrocytheridea species pl. 8, fig. 2

Cocoaia smithvillensis (Stephenson) pl. 8, fig. 3

Cythereidea (Clithrocytheridea) smithvillensis Stephenson, Jour. Pal. Vol. 16, no. 1, p. 113, 1942, pl. 18, fig. 2

"Cythereis" evergreenica (Stadnichenko) pl. 8, fig. 4

"Cythereis" russelli Howe and Garrett

Cythereis russelli Howe and Garrett, Louisiana Dept. Cons. Geol. Bull. no. 4, 1934, p. 54, pl. 4, fig. 11

"Cythereis" suttoni Stephenson pl. 8, fig. 5

Pyricythereis smithvillensis Sutton and Williams, Jour. Pal. Vol. 13, no. 6, 1939, p. 568, pl. 64, figs. 16-19

Cytherella species pl. 8, fig. 6

Cytherelloidea smithvillensis Howe pl. 8, fig. 7

Cytherelloidea smithvillensis Howe, Jour. Pal. Vol. 8, no. 1, 1934, p. 30-31, pl. 5, fig. 3

Cythereura (?) species pl. 8, fig. 8

Digmocythere russelli (Howe and Lea) pl. 8, fig. 9

Brachycythere russelli Howe and Lea, Louisiana Dept. Cons. Geol. Bull. no. 7, 1936, p. 41, pl. 2, figs. 30, 31

Haplocytheridea bastropensis (Sutton and Williams) pl. 8, fig.10

Cythereidea (Haplocytheridea) bastardensis Sutton and Williams (new name) Jour. Pal. Vol. 14, no. 2, 1940, p. 163

Haplocytheridea lisbonensis (Stephenson) pl. 8, fig. 11

Cytheridea (Haplocytheridea) lisbonensis Stephenson, Jour. Pal. Vol. 16, no. 1, 1942, p. 168, pl. 18, figs. 11, 12.

Haplocytheridea elliisi Stephenson pl. 8, fig. 12

Haplocytheridea elliisi Stephenson, Jour. Pal. Vol. 20, no. 4, p. 322, pl. 42, fig. 21

Haplocytheridea habropapillosa (Sutton and Williams) pl. 8, fig. 13

Cytheridea (Haplocytheridea) habropapillosa Sutton and Williams, Jour. Pal. Vol. 13, no. 6, 1939, p. 570, pl. 64, figs. 20-22.

Haplocytheridea moodyi (Howe and Garrett) pl. 8, fig. 14

Cytheridea moodyi Howe and Garrett, Louisiana Dept. Cons. Geol. Bull. no. 4, 1934, p. 35-36, pl. 2, figs. 2-6

Haplocytheridea stuckeyi (Stephenson) pl. 9, fig. 1

Cythereis studkeyi Stephenson (new Name), Jour. Pal., Vol. 21, no. 6, 1947, p. 580

Cythereis (?) elongata Sutton and Williams, Jour. Pal. Vol. 13, no. 6, 1939, p. 565, pl. 64, figs. 31-33

Hemicytheridea (?) species pl. 9, fig. 2

Hermanites (?) claibornensis (Gooch) pl. 9, fig. 3

Cythereis claibornensis Gooch, Jour. Pal. Vol. 13, no. 6, 1939, pl 581, pl. 67, figs. 5, 6, 10

Loxoconcha chamfera Murray pl. 9, fig. 4

Loxoconcha chamfera Murray, Jour. Pal. Vol. 12, no. 6, 1938, p. 588, pl. 68, figs. 3, 18

Loxoconcha claibornensis Murray pl. 9, fig. 5

Ouachitaia gosportensis (Stephenson) pl. 9, fig. 6
Cytheridea (Clithrocytheridea) gosportensis Stephenson,
Jour. Pal. Vol. 16, no. 1, 1942, p. 111, pl. 18,
figs. 5, 6

Ouachitaia semireticulata (Stephenson) pl. 9, fig. 7
Cytheridea (Clithrocytheridea) semireticulata Stephenson,
15, 16

Opimocythere martini (Murray and Hussey) pl. 9, fig. 8
Brachocythere martini Murray and Hussey, Jour. Pal.
Vol. 16, no. 2, 1942, p. 177, pl. 28, figs. 6, 10

Paracypris franquesi Howe and Chambers pl. 9, fig. 9
Paracypris franquesi Howe and Chambers, Louisiana Dept.
Cons. Geol. Bull. no. 5, 1935, p. 10-11, pl. 3, fig. 13

Pterygocythere bernardi (Murray and Hussey) pl. 9, fig. 10
Brachocythere bernardi Murray and Hussey, Jour. Pal.
Vol. 16, no. 2, 1942, p. 176-177, pl. 28, figs. 7, 9;
Test. figs. 2, figs. 14, 15, 16

Pterygocythere murrayi Hill pl. 9, fig. 11
Pterygocythere murrayi Hill, Jour. Pal. Vol. 28, no. 6,
1934, p. 822, pl. 100, figs. 5a-c

Quadracythere winniana (Gooch) pl. 9, fig. 12
Cythereis winniana Gooch, Jour. Pal. Vol. 13, no. 6,
1939, p. 582-583, pl. 67, figs. 4, 9

Trachyleberis (?) linospinosa (Sutton and Williams) pl. 9, fig.13
Cythereis linospinosa Sutton and Williams, Jour. Pal.
Vol. 13, no. 6, 1939, p. 566, pl. 63, figs. 5, 6

Trachyleberis orelliana (Stadnichenko) pl. 9, fig. 14
Cythere orelliana Stadnichenko, Jour. Pal. Vol. 1,
no. 3, p. 236-237, 1927, pl. 39, figs. 8-10

Kestoleberis dumblei Stephenson pl. 9, fig. 15
Kestoleberis dumblei Stephenson, Jour. Pal. Vol. 20,
no. 4, 1946, p. 320, pl. 43, fig. 16
APPENDIX IV

Regression Equations

1. Weches

Cibicides
\[Y = 0.32559639 + 0.02537313x - 0.00048363x^2 + 0.00000265x^3 \]
\[R^2 = 0.37508251 = .05 \]

Milliolidae
\[Y = -0.09179922 + 0.02036624x^2 - 0.00000765x^3 + 0.0000004x^4 \]
\[R^2 = 0.14110864 \]

Discorbis
\[Y = 0.52443338 + 0.04146701x - 0.00075587x^2 + 0.00000397x^3 \]
\[R^2 = 0.33539241 = .1 \]

Siphonina
\[Y = 0.73914826 + 0.0609276x - 0.00119330x^2 + 0.00000665x^3 \]
\[R^2 = 0.56187714 = .05 \]

Lamarckina
\[Y = 0.03559446 + 0.00000222x^3 - 0.00000002x^4 \]
\[R^2 = 0.17170073 = .1 \]

Asterigerina
\[Y = -0.03823072 + 0.00000241x^3 - 0.00000002x^4 \]
\[R^2 = 0.21728.45 = .05 \]

Planktonics
\[Y = -13.57295297 + 0.98554140x - 0.01777557x^2 + 0.0009324x^3 \]
\[R^2 = 0.16137102 \]
2. Palestine

<table>
<thead>
<tr>
<th>Species</th>
<th>Regression Equation</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabamina</td>
<td>$Y = 0.12466894 - 0.02556104x + 0.00119613x^2$</td>
<td>0.82240228</td>
</tr>
<tr>
<td>Neoeponides</td>
<td>$Y = 0.00^{.73132} + 0.01768448x + 0.00005800x^3$</td>
<td>0.49372269</td>
</tr>
<tr>
<td>Lamarckina</td>
<td>$Y = -0.01565618 + 0.01250429x$</td>
<td>0.69084699</td>
</tr>
<tr>
<td>Asterigerina</td>
<td>$Y = -0.03612469 + 0.00012772x^3$</td>
<td>0.73746389</td>
</tr>
<tr>
<td>Discorbis</td>
<td>$Y = 0.34386403 - 0.01980459x$</td>
<td>0.64489316</td>
</tr>
<tr>
<td>Siphonina</td>
<td>$Y = 0.17335945 + 0.07105193x - 0.00535442x^2$</td>
<td>0.71365646</td>
</tr>
</tbody>
</table>

3. Nacagdoches

<table>
<thead>
<tr>
<th>Species</th>
<th>Regression Equation</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discorbis</td>
<td>$Y = 0.14017902 - 0.00018865x^3$</td>
<td>0.34511626</td>
</tr>
<tr>
<td>Cibicides</td>
<td>$Y = 0.01087987 + 0.00361983x^2 - 0.00039240x^3$</td>
<td>0.55751426</td>
</tr>
</tbody>
</table>
Lamarckina

\[Y = 0.29417383 - 0.02247765x \]
\[R^2 = 0.22962431 \]

Gyroidinoides

\[Y = 0.20473601 + 0.09369965x - 0.00144088x^3 \]
\[R^2 = 0.89626686 = 0.05 \]

4. Chireno II

Neoeponides

\[Y = 0.00291780 + 0.00047589x^2 \]
\[R^2 = 0.51476548 = 0.05 \]

Lamarckina

\[Y = 0.17377533 - 0.04480316x + 0.00261190x^2 \]
\[R^2 = 0.72241403 = 0.05 \]

Siphonina

\[Y = 0.09931980 + 0.01030943x \]
\[R^2 = 0.49491526 = 0.1 \]

Milliolidae

\[Y = 0.13631174 + 0.12092700x - 0.00743840x^2 \]
\[R^2 = 0.52506538 = 0.1 \]

Discorbis

\[Y = 0.60793890 - 0.10508363x + 0.00560384x^2 \]
\[R^2 = 0.68192034 = 0.05 \]

Planktonics

\[Y = 0.13095238 + 0.03081232x^2 \]
\[R^2 = 0.50741232 \]
5. Chireno

Milliodae

\[Y = 0.27124296 - 0.00000348x^3 \]
\[R^2 = 0.74503385 = 0.05 \]

Asterigerina

\[Y = -0.13315337 + 0.03315310x - 0.0001375x^2 \]
\[R^2 = 0.23061384 = 0.1 \]

Lamarckina

\[Y = 0.06204167 + 0.00000259x^3 \]
\[R^2 = 0.33428242 = 0.05 \]

Cibicides

\[Y = 0.05128004 + 0.01238502x - 0.00030642x^3 \]
\[R^2 = 0.63489693 = 0.05 \]

Planktonics

\[Y = 4.20974270 + 0.0006046x^3 \]
\[R^2 = 0.16218062 \]

6. Bayou Negreet

Lamarckina

\[Y = 0.18536126 - 0.01853994x + 0.00002543x^3 \]
\[R^2 = 0.99999101 \]

Anomalinoïdes

\[Y = 0.03172802 + 0.00034570x^2 \]
\[R^2 = 0.91211838 = 0.05 \]

Siphonina

\[Y = 0.12478557 + 0.00116531x^2 - 0.00005568x^3 \]
\[R^2 = 0.56244151 \]
Gyroidinoides
\[Y = 0.05394143 + 0.00073524x^2 \]
\[R^2 = 0.96237213 = 0.05 \]

Cibicides
\[Y = 0.34622090 + 0.00221924x^2 - 0.00014990x^3 \]
\[R^2 = 0.99852783 = 0.05 \]

Planktonics
\[Y = 12.13238291 + 0.33529340x^2 - 0.01686656x^3 \]
\[R^2 = 0.90842909 \]

7. Provencal

Cibicidina
\[Y = -0.00947968 + 0.00000006x^3 \]
\[R^2 = 0.52557196 = 0.05 \]

Alabamina
\[Y = 0.00849214 + 0.00000007x^3 \]
\[R^2 = 0.38524205 \]

Lenticulina
\[Y = -0.06199241 + 0.00157772x \]
\[R^2 = 0.33331254 = 0.05 \]

Gyroidinoides
\[Y = 0.05428493 - 0.00006401x^2 + 0.0000073x^3 \]
\[R^2 = 0.71956173 = 0.05 \]

Cibicides
\[Y = -0.01642732 + 0.00000017x^3 \]
\[R^2 = 0.68380410 = 0.05 \]

Anomaloides
\[Y = -0.03231215 - 0.00002234x^2 \]
\[R^2 = 0.55814125 = 0.05 \]
Siphonina
\[Y = -0.05753319 + 0.00003395x^2 \]
\[R^2 = 0.73854695 = 0.05 \]

Planktonics
\[Y = 24.86305110 - 1.14853932x + 0.01226446x^2 \]
\[R^2 = 0.80430690 = 0.1 \]

8. Hagewood

Uvigerina
\[Y = 0.00033495 + 0.00006188x^3 \]
\[R^2 = 0.60859216 = 0.05 \]

Trifarina
\[Y = 0.07671726 - 0.02890903x + 0.00263902x^2 \]
\[R^2 = 0.9190772 \]

Lenticulina
\[Y = 0.04950149 + 0.00010077x^3 \]
\[R^2 = 0.67237591 = 0.05 \]

Cibicides
\[Y = 0.11485345 + 0.12545606x - 0.03930032x^2 + 0.00282695x^3 \]
\[R^2 = 0.9653448 \]

Anomalinoiodes
\[Y = 0.11057844 + 0.00827641x \]
\[R^2 = 0.19301814 \]

Siphonina
\[Y = 0.08864112 + 0.00236743x^2 \]
\[R^2 = 0.52358489 = 0.1 \]
Planktonics
\[Y = 36.35684927 - 30.5586137x + 9.12295226x^2 \]
\[R^2 = .77249683 \]

9. Clear Lake II

Uvigerina
\[Y = .08131901 - .02048291x + .00123947x^2 \]
\[R^2 = .99237350 = .05 \]

Anomalinoidea
\[Y = .13348072 + .01016642x - .00059079x^2 \]
\[R^2 = .16487704 \]

Cibicidae
\[Y = .11163771 + .00010796x^3 \]
\[R^2 = .78231297 = .05 \]

Siphonina
\[Y = .28867272 - .04208123x + .00263719x^2 \]
\[R^2 = .71723925 \]

Planktonics
\[Y = 14.29741379 - 2.17272167x + .8736847x^2 - .06250000x^3 \]
\[R^2 = .58877704 \]

10. Clear Lake

Lenticulina
\[Y = .07834111 - .00011211x^2 \]
\[R^2 = .51557119 = .05 \]

Cibicidina
\[Y = .06237178 - .00000282x^3 \]
\[R^2 = .33834539 = .05 \]
Gyroidinoides
\[Y = 0.12677022 - 0.02564746x + 0.00234657x^2 - 0.00005518x^3 \]
\[R^2 = 0.18207611 \]

Cibicides
\[Y = 0.17519274 - 0.0021084x^2 \]
\[R^2 = 0.37764208 = 0.05 \]

Anomalinoides
\[Y = 0.08986554 + 0.00000855x^3 \]
\[R^2 = 0.39769381 = 0.05 \]

Siphonina
\[Y = 0.21454009 + 0.00088252x^2 - 0.00002440x^3 \]
\[R^2 = 0.20728667 \]

Planktonics
\[Y = 38.48303623 - 0.03512555x^2 \]
\[R^2 = 0.56870947 = 0.05 \]
APPENDIX V (A)

Reference for Sample Identification

<table>
<thead>
<tr>
<th>Locality & Sample No.</th>
<th>Code</th>
<th>Locality & Sample No.</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Wecches</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>10116</td>
<td>2. Palestine</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10119</td>
<td>22</td>
<td>10201</td>
</tr>
<tr>
<td>3</td>
<td>10123</td>
<td>23</td>
<td>10203</td>
</tr>
<tr>
<td>4</td>
<td>10125</td>
<td>24</td>
<td>10205</td>
</tr>
<tr>
<td>5</td>
<td>10129</td>
<td>25</td>
<td>10206</td>
</tr>
<tr>
<td>6</td>
<td>10133</td>
<td>26</td>
<td>10207</td>
</tr>
<tr>
<td>7</td>
<td>10135</td>
<td>27</td>
<td>10208</td>
</tr>
<tr>
<td>8</td>
<td>10137</td>
<td>28</td>
<td>10210</td>
</tr>
<tr>
<td>9</td>
<td>10140</td>
<td>29</td>
<td>10212</td>
</tr>
<tr>
<td>10</td>
<td>10142</td>
<td>30</td>
<td>10213</td>
</tr>
<tr>
<td>11</td>
<td>10144</td>
<td>31</td>
<td>10214</td>
</tr>
<tr>
<td>12</td>
<td>10147</td>
<td>32</td>
<td>10215</td>
</tr>
<tr>
<td>13</td>
<td>10150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>10153</td>
<td>33</td>
<td>10301</td>
</tr>
<tr>
<td>15</td>
<td>10155</td>
<td>34</td>
<td>10302</td>
</tr>
<tr>
<td>16</td>
<td>10158</td>
<td>35</td>
<td>10303</td>
</tr>
<tr>
<td>17</td>
<td>10162</td>
<td>36</td>
<td>10304</td>
</tr>
<tr>
<td>18</td>
<td>10166</td>
<td>37</td>
<td>10305</td>
</tr>
<tr>
<td>19</td>
<td>10175</td>
<td>38</td>
<td>10306</td>
</tr>
<tr>
<td>20</td>
<td>10193</td>
<td>39</td>
<td>10307</td>
</tr>
<tr>
<td>21</td>
<td>10199</td>
<td>40</td>
<td>10308</td>
</tr>
<tr>
<td>Locality & Sample No.</td>
<td>Code</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>10309</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>10501</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>10603</td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>10617</td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>10638</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. Bayou Carrizo

<table>
<thead>
<tr>
<th>Locality & Sample No.</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
<td>10401</td>
</tr>
<tr>
<td>45</td>
<td>10503</td>
</tr>
<tr>
<td>53</td>
<td>10608</td>
</tr>
<tr>
<td>58</td>
<td>10620</td>
</tr>
<tr>
<td>62</td>
<td>10636</td>
</tr>
</tbody>
</table>

5. Chireno II

<table>
<thead>
<tr>
<th>Locality & Sample No.</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>43</td>
<td>10403</td>
</tr>
<tr>
<td>46</td>
<td>10505</td>
</tr>
<tr>
<td>47</td>
<td>10507</td>
</tr>
<tr>
<td>48</td>
<td>10509</td>
</tr>
<tr>
<td>49</td>
<td>10511</td>
</tr>
<tr>
<td>50</td>
<td>10513</td>
</tr>
<tr>
<td>51</td>
<td>10515</td>
</tr>
<tr>
<td>54</td>
<td>10610</td>
</tr>
<tr>
<td>55</td>
<td>10613</td>
</tr>
<tr>
<td>56</td>
<td>10614</td>
</tr>
<tr>
<td>57</td>
<td>10617</td>
</tr>
<tr>
<td>58</td>
<td>10620</td>
</tr>
<tr>
<td>59</td>
<td>10622</td>
</tr>
<tr>
<td>60</td>
<td>10627</td>
</tr>
<tr>
<td>61</td>
<td>10629</td>
</tr>
<tr>
<td>62</td>
<td>10636</td>
</tr>
<tr>
<td>63</td>
<td>10638</td>
</tr>
</tbody>
</table>

7. Bayou Attoyac

<table>
<thead>
<tr>
<th>Locality & Sample No.</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
<td>10401</td>
</tr>
<tr>
<td>44</td>
<td>10501</td>
</tr>
<tr>
<td>46</td>
<td>10505</td>
</tr>
<tr>
<td>47</td>
<td>10507</td>
</tr>
<tr>
<td>48</td>
<td>10509</td>
</tr>
<tr>
<td>49</td>
<td>10511</td>
</tr>
<tr>
<td>50</td>
<td>10513</td>
</tr>
<tr>
<td>51</td>
<td>10515</td>
</tr>
<tr>
<td>52</td>
<td>10603</td>
</tr>
<tr>
<td>53</td>
<td>10608</td>
</tr>
<tr>
<td>54</td>
<td>10610</td>
</tr>
<tr>
<td>55</td>
<td>10613</td>
</tr>
<tr>
<td>56</td>
<td>10614</td>
</tr>
<tr>
<td>57</td>
<td>10617</td>
</tr>
<tr>
<td>58</td>
<td>10620</td>
</tr>
<tr>
<td>59</td>
<td>10622</td>
</tr>
<tr>
<td>60</td>
<td>10627</td>
</tr>
<tr>
<td>61</td>
<td>10629</td>
</tr>
<tr>
<td>62</td>
<td>10636</td>
</tr>
<tr>
<td>63</td>
<td>10638</td>
</tr>
</tbody>
</table>

8. San Augustine

<table>
<thead>
<tr>
<th>Locality & Sample No.</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>43</td>
<td>10403</td>
</tr>
<tr>
<td>46</td>
<td>10505</td>
</tr>
<tr>
<td>47</td>
<td>10507</td>
</tr>
<tr>
<td>48</td>
<td>10509</td>
</tr>
<tr>
<td>49</td>
<td>10511</td>
</tr>
<tr>
<td>50</td>
<td>10513</td>
</tr>
<tr>
<td>51</td>
<td>10515</td>
</tr>
<tr>
<td>52</td>
<td>10603</td>
</tr>
<tr>
<td>53</td>
<td>10608</td>
</tr>
<tr>
<td>54</td>
<td>10610</td>
</tr>
<tr>
<td>55</td>
<td>10613</td>
</tr>
<tr>
<td>56</td>
<td>10614</td>
</tr>
<tr>
<td>57</td>
<td>10617</td>
</tr>
<tr>
<td>58</td>
<td>10620</td>
</tr>
<tr>
<td>59</td>
<td>10622</td>
</tr>
<tr>
<td>60</td>
<td>10627</td>
</tr>
<tr>
<td>61</td>
<td>10629</td>
</tr>
<tr>
<td>62</td>
<td>10636</td>
</tr>
<tr>
<td>63</td>
<td>10638</td>
</tr>
</tbody>
</table>

9. Bayou Negreet

<table>
<thead>
<tr>
<th>Locality & Sample No.</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td>10501</td>
</tr>
<tr>
<td>45</td>
<td>10503</td>
</tr>
<tr>
<td>46</td>
<td>10505</td>
</tr>
<tr>
<td>47</td>
<td>10507</td>
</tr>
<tr>
<td>48</td>
<td>10509</td>
</tr>
<tr>
<td>49</td>
<td>10511</td>
</tr>
<tr>
<td>50</td>
<td>10513</td>
</tr>
<tr>
<td>51</td>
<td>10515</td>
</tr>
<tr>
<td>52</td>
<td>10603</td>
</tr>
<tr>
<td>53</td>
<td>10608</td>
</tr>
<tr>
<td>54</td>
<td>10610</td>
</tr>
<tr>
<td>55</td>
<td>10613</td>
</tr>
<tr>
<td>56</td>
<td>10614</td>
</tr>
<tr>
<td>57</td>
<td>10617</td>
</tr>
<tr>
<td>58</td>
<td>10620</td>
</tr>
<tr>
<td>59</td>
<td>10622</td>
</tr>
<tr>
<td>60</td>
<td>10627</td>
</tr>
<tr>
<td>61</td>
<td>10629</td>
</tr>
<tr>
<td>62</td>
<td>10636</td>
</tr>
<tr>
<td>63</td>
<td>10638</td>
</tr>
</tbody>
</table>

10. Provencal

<table>
<thead>
<tr>
<th>Locality & Sample No.</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>57</td>
<td>10617</td>
</tr>
<tr>
<td>58</td>
<td>10620</td>
</tr>
<tr>
<td>59</td>
<td>10622</td>
</tr>
<tr>
<td>60</td>
<td>10627</td>
</tr>
<tr>
<td>61</td>
<td>10629</td>
</tr>
<tr>
<td>62</td>
<td>10636</td>
</tr>
<tr>
<td>63</td>
<td>10638</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
<table>
<thead>
<tr>
<th>Locality & Sample No.</th>
<th>Code</th>
<th>Locality & Sample No.</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>86</td>
<td>21095</td>
<td>13. Clear Lake</td>
<td>21302</td>
</tr>
<tr>
<td>87</td>
<td>21099</td>
<td>100</td>
<td>21304</td>
</tr>
<tr>
<td>11. Hagewood</td>
<td></td>
<td>101</td>
<td>21306</td>
</tr>
<tr>
<td>88</td>
<td>21101</td>
<td>102</td>
<td>21308</td>
</tr>
<tr>
<td>89</td>
<td>21103</td>
<td>103</td>
<td>21310</td>
</tr>
<tr>
<td>90</td>
<td>21104</td>
<td>104</td>
<td>21312</td>
</tr>
<tr>
<td>91</td>
<td>21106</td>
<td>105</td>
<td>21314</td>
</tr>
<tr>
<td>92</td>
<td>21107</td>
<td>106</td>
<td>21316</td>
</tr>
<tr>
<td>93</td>
<td>21109</td>
<td>107</td>
<td>21318</td>
</tr>
<tr>
<td>94</td>
<td>21111</td>
<td>108</td>
<td>21320</td>
</tr>
<tr>
<td>12. Clear Lake II</td>
<td></td>
<td>109</td>
<td>21322</td>
</tr>
<tr>
<td>95</td>
<td>21201</td>
<td>110</td>
<td>21324</td>
</tr>
<tr>
<td>96</td>
<td>21203</td>
<td>111</td>
<td>21326</td>
</tr>
<tr>
<td>97</td>
<td>21206</td>
<td>112</td>
<td>21328</td>
</tr>
<tr>
<td>98</td>
<td>21209</td>
<td>113</td>
<td>21330</td>
</tr>
<tr>
<td>99</td>
<td>21211</td>
<td>114</td>
<td></td>
</tr>
</tbody>
</table>

Sample No. used only for Taxonomic description

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Depth (Feet)</th>
<th>Sample No.</th>
<th>Depth (Feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>115</td>
<td>1468</td>
<td>122</td>
<td>1482</td>
</tr>
<tr>
<td>116</td>
<td>1470</td>
<td>123</td>
<td>1483</td>
</tr>
<tr>
<td>117</td>
<td>1472</td>
<td>124</td>
<td>1486</td>
</tr>
<tr>
<td>118</td>
<td>1473</td>
<td>125</td>
<td>1487</td>
</tr>
<tr>
<td>119</td>
<td>1476</td>
<td>126</td>
<td>1488</td>
</tr>
<tr>
<td>120</td>
<td>1479</td>
<td>127</td>
<td>1490</td>
</tr>
<tr>
<td>121</td>
<td>1480</td>
<td>128</td>
<td>1491</td>
</tr>
<tr>
<td>Sample No.</td>
<td>Depth (Feet)</td>
<td>Sample No.</td>
<td>Depth (Feet)</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>--------------</td>
</tr>
<tr>
<td>129</td>
<td>1496</td>
<td>133</td>
<td>1531</td>
</tr>
<tr>
<td>130</td>
<td>1498</td>
<td>134</td>
<td>1533-1538</td>
</tr>
<tr>
<td>131</td>
<td>1499</td>
<td>135</td>
<td>1551-1552</td>
</tr>
<tr>
<td>132</td>
<td>1503-1509</td>
<td>136</td>
<td>1553-1555</td>
</tr>
</tbody>
</table>
PLATE 1.

Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Name</th>
<th>Magnification</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ammodiscus incertus (d'Orbigny)</td>
<td>80x</td>
<td>139</td>
</tr>
<tr>
<td>2</td>
<td>Haplophragmoides canariensis (d'Orbigny)</td>
<td>80x</td>
<td>139</td>
</tr>
<tr>
<td>3</td>
<td>Cribrostomoides complanatus (Hussey)</td>
<td>65x</td>
<td>139</td>
</tr>
<tr>
<td>4</td>
<td>Cyclammina cancellata obesa Cushman and Laimig</td>
<td>50x</td>
<td>140</td>
</tr>
<tr>
<td>5</td>
<td>Ammobaculites mauricensis Howe</td>
<td>70x</td>
<td>141</td>
</tr>
<tr>
<td>6</td>
<td>Ammobaculinoides new sp.</td>
<td>200x</td>
<td>141</td>
</tr>
<tr>
<td>7</td>
<td>Spiroplectammina plummerae (Lalicker)</td>
<td>35x</td>
<td>141</td>
</tr>
<tr>
<td>8</td>
<td>S. zapotensis (Cole)</td>
<td>70x</td>
<td>142</td>
</tr>
<tr>
<td>9</td>
<td>Textularia claibornensis Weinzierl and Applin</td>
<td>50x</td>
<td>142</td>
</tr>
<tr>
<td>10</td>
<td>Trochammina sp.</td>
<td>90x</td>
<td>143</td>
</tr>
<tr>
<td>11</td>
<td>Tritaxia columbiana (Howe)</td>
<td>40x</td>
<td>143</td>
</tr>
<tr>
<td>12</td>
<td>Karreriella mauricensis Howe and Ellis</td>
<td>80x</td>
<td>144</td>
</tr>
<tr>
<td>13</td>
<td>Cyclogyra lisbonensis (Bandy)</td>
<td>50x</td>
<td>144</td>
</tr>
<tr>
<td>14</td>
<td>Spiroloculina lamposa Hussey</td>
<td>140x</td>
<td>145</td>
</tr>
<tr>
<td>15</td>
<td>Quinqueloculina sp.</td>
<td>70x</td>
<td>145</td>
</tr>
<tr>
<td>16</td>
<td>Q. danvillensis Howe and Wallace</td>
<td>170x</td>
<td>146</td>
</tr>
<tr>
<td>17</td>
<td>Q. cf. Q. leonensis Applin and Jordan</td>
<td>30x</td>
<td>147</td>
</tr>
<tr>
<td>18</td>
<td>Q. cf. Q. lamarckina d'Orbigny</td>
<td>55x</td>
<td>146</td>
</tr>
<tr>
<td>19</td>
<td>Q. claiborniana Stadnichenko</td>
<td>45x</td>
<td>145</td>
</tr>
</tbody>
</table>
PLATE 2.

Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Species Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Quinqueloculina yeguaensis Weinzierl and Applin 65x.</td>
<td>147</td>
</tr>
<tr>
<td>2.</td>
<td>Triloculina paulocostata Cushman and Garrett 90x.</td>
<td>147</td>
</tr>
<tr>
<td>3.</td>
<td>T. rotunda d'Orbigny 80x.</td>
<td>148</td>
</tr>
<tr>
<td>4.</td>
<td>T. trigonula (Lamarck) 35x.</td>
<td>148</td>
</tr>
<tr>
<td>5.</td>
<td>Nodosaria latejugata Gumbel 30x.</td>
<td>148</td>
</tr>
<tr>
<td>6.</td>
<td>? Dentalinoides resupinata (Gumbel) 55x.</td>
<td>149</td>
</tr>
<tr>
<td>7.</td>
<td>Dentalina communis (d'Orbigny) 60x.</td>
<td>149</td>
</tr>
<tr>
<td>8.</td>
<td>D. cf. D. consobrina d'Orbigny 80x.</td>
<td>150</td>
</tr>
<tr>
<td>9.</td>
<td>D. vertebralis albatrossi (Cushman) 100x.</td>
<td>150</td>
</tr>
<tr>
<td>10.</td>
<td>Lagena hispida Reuss 110x.</td>
<td>150</td>
</tr>
<tr>
<td>11.</td>
<td>L. cf. L. laevis stavensis Bandy 85x.</td>
<td>151</td>
</tr>
<tr>
<td>12.</td>
<td>L. ouachitaensis alabamensis Bandy 85x.</td>
<td>151</td>
</tr>
<tr>
<td>13.</td>
<td>L. striata strumosa Reuss 100x.</td>
<td>151</td>
</tr>
<tr>
<td>14.</td>
<td>L. sp. 105x.</td>
<td>152</td>
</tr>
<tr>
<td>15.</td>
<td>Lenticulina abuillotensis (Bermudez) 30x.</td>
<td>152</td>
</tr>
<tr>
<td>16.</td>
<td>L. alatolimbata (Gumbel) 60x.</td>
<td>152</td>
</tr>
<tr>
<td>17.</td>
<td>L. inhabilis (Israelsky) 40x.</td>
<td>153</td>
</tr>
<tr>
<td>18.</td>
<td>L. kimituensis (Asano) 15x.</td>
<td>153</td>
</tr>
<tr>
<td>19.</td>
<td>L. laticostata (Tutkvski) 25x.</td>
<td>153</td>
</tr>
<tr>
<td>20.</td>
<td>L. midwayensis (Plummer) 25x.</td>
<td>154</td>
</tr>
<tr>
<td>21.</td>
<td>L. pseudoculturata (Cole) 45x.</td>
<td>154</td>
</tr>
<tr>
<td>22.</td>
<td>L. pseudoligostegia (Martin) 60x.</td>
<td>155</td>
</tr>
<tr>
<td>23.</td>
<td>L. pseudosecans (Cushman) new subsp. 35x.</td>
<td>155</td>
</tr>
<tr>
<td>24.</td>
<td>L. stephensoni (Cushman) 20x.</td>
<td>156</td>
</tr>
<tr>
<td>25.</td>
<td>L. velascoensis White 70x.</td>
<td>156</td>
</tr>
<tr>
<td>26.</td>
<td>L. mayi (Cushman and Parker) 60x.</td>
<td>154</td>
</tr>
</tbody>
</table>
PLATE 3.

Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Marginulina subbullata Hantken 80x</td>
<td>157</td>
</tr>
<tr>
<td>2.</td>
<td>M. sp. 75x</td>
<td>157</td>
</tr>
<tr>
<td>3.</td>
<td>Orthomorphina antillea (Cushman) 55x</td>
<td>157</td>
</tr>
<tr>
<td>4.</td>
<td>O. camerani (Dervieux) 45x</td>
<td>158</td>
</tr>
<tr>
<td>5.</td>
<td>O. delicata (Hussey) 50x</td>
<td>158</td>
</tr>
<tr>
<td>6.</td>
<td>Pseudonodosaria conica (Neugeboren) 80x</td>
<td>159</td>
</tr>
<tr>
<td>7.</td>
<td>P. elliptica (Reuss) 60x</td>
<td>159</td>
</tr>
<tr>
<td>8.</td>
<td>P. cf. P. ovula (d'Orbigny) 80x</td>
<td>159</td>
</tr>
<tr>
<td>9.</td>
<td>P. pleniluna (Howe) 110x</td>
<td>160</td>
</tr>
<tr>
<td>10.</td>
<td>Saracenaria limbata Hussey 55x</td>
<td>160</td>
</tr>
<tr>
<td>11.</td>
<td>Vaginulina linearis (Carsey) 50x</td>
<td>161</td>
</tr>
<tr>
<td>12.</td>
<td>Vaginulinopsis hybrida (Terquem) 65x</td>
<td>162</td>
</tr>
<tr>
<td>13.</td>
<td>V. mexicanus (Cushman) 30x</td>
<td>162</td>
</tr>
<tr>
<td>14.</td>
<td>Globulina gibba d'Orbigny 50x</td>
<td>163</td>
</tr>
<tr>
<td>15.</td>
<td>G. inaequalis Reuss 60x</td>
<td>163</td>
</tr>
<tr>
<td>16.</td>
<td>Guttulina irregularis (d'Orbigny) 75x</td>
<td>164</td>
</tr>
<tr>
<td>17.</td>
<td>Globulina minuta (Roemer) 80x</td>
<td>164</td>
</tr>
<tr>
<td>18.</td>
<td>Guttulina problema d'Orbigny 60x</td>
<td>164</td>
</tr>
<tr>
<td>19.</td>
<td>Sigmomorphina jacksonensis (Cushman) 40x</td>
<td>165</td>
</tr>
<tr>
<td>20.</td>
<td>Ramulina kittii Rzehak 100x</td>
<td>165</td>
</tr>
<tr>
<td>21.</td>
<td>R. mariae (d'Orbigny) 55x</td>
<td>165</td>
</tr>
<tr>
<td>22.</td>
<td>Fissulina obvia Sequenza 100x</td>
<td>166</td>
</tr>
<tr>
<td>23.</td>
<td>F. cf. F. orbignyanana Sequenza 100x</td>
<td>166</td>
</tr>
<tr>
<td>24.</td>
<td>Turillina robertsi (Howe and Willis) 100x</td>
<td>166</td>
</tr>
</tbody>
</table>
Figures

<table>
<thead>
<tr>
<th>Number</th>
<th>Species Description</th>
<th>Magnification</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Bolivina gracilis Cushman and Applin</td>
<td>70x</td>
<td>167</td>
</tr>
<tr>
<td>2.</td>
<td>B. louisiana Howe</td>
<td>90x</td>
<td>167</td>
</tr>
<tr>
<td>3.</td>
<td>B. cf. B. plicatella mera Cushman and Ponton</td>
<td>100x</td>
<td>168</td>
</tr>
<tr>
<td>4.</td>
<td>Brizalina tayroli (Howe)</td>
<td>..................</td>
<td>168</td>
</tr>
<tr>
<td>5.</td>
<td>Loxostomoides nuttalli (Cushman and Siegfus)</td>
<td>40x</td>
<td>169</td>
</tr>
<tr>
<td>6.</td>
<td>Bulimina byramensis Cushman and Todd</td>
<td>80x</td>
<td>169</td>
</tr>
<tr>
<td>7.</td>
<td>B. simplex Terquem</td>
<td>100x</td>
<td>170</td>
</tr>
<tr>
<td>8.</td>
<td>B. truncana aksuatica Morozova</td>
<td>100x</td>
<td>170</td>
</tr>
<tr>
<td>9.</td>
<td>Globobulimina winniana (Howe)</td>
<td>70x</td>
<td>170</td>
</tr>
<tr>
<td>10.</td>
<td>Stainforthia eocenica (Hussey)</td>
<td>70x</td>
<td>171</td>
</tr>
<tr>
<td>11.</td>
<td>Uvigerina blanca costata Cole</td>
<td>70x</td>
<td>171</td>
</tr>
<tr>
<td>12.</td>
<td>U. gardnerae Cushman</td>
<td>80x</td>
<td>172</td>
</tr>
<tr>
<td>13.</td>
<td>U. cf. U. garzensis Cushman and Siegfus</td>
<td>80x</td>
<td>172</td>
</tr>
<tr>
<td>14.</td>
<td>Trifarina vicksburgensis (Cushman)</td>
<td>50x</td>
<td>172</td>
</tr>
<tr>
<td>15.</td>
<td>T. wilcoensis (Cushman and Ponton)</td>
<td>80x</td>
<td>173</td>
</tr>
<tr>
<td>16.</td>
<td>T. new sp.</td>
<td>80x</td>
<td>174</td>
</tr>
<tr>
<td>17.</td>
<td>Sagrena ellisi (Howe)</td>
<td>100x</td>
<td>174</td>
</tr>
<tr>
<td>18.</td>
<td>Siphouvierina elongata (Cole)</td>
<td>70x</td>
<td>174</td>
</tr>
<tr>
<td>19.</td>
<td>Discorbis stenzeli Garrett</td>
<td>60x</td>
<td>175</td>
</tr>
<tr>
<td>20.</td>
<td>D. tallahattensis Bandy</td>
<td>60x</td>
<td>175</td>
</tr>
<tr>
<td>21.</td>
<td>D. yeguaensis Weinzerl and Applin</td>
<td>80x</td>
<td>176</td>
</tr>
<tr>
<td>22.</td>
<td>Epistominella heucri (Howe)</td>
<td>90x</td>
<td>176</td>
</tr>
<tr>
<td>23.</td>
<td>Siphonina claibornensis Cushman</td>
<td>80x</td>
<td>177</td>
</tr>
<tr>
<td>24.</td>
<td>S. danvillensis Howe and Wallace</td>
<td>80x</td>
<td>178</td>
</tr>
<tr>
<td>25.</td>
<td>Siphonides biserialis Peray</td>
<td>80x</td>
<td>178</td>
</tr>
<tr>
<td>26.</td>
<td>Siphoninella chambersi Howe and Roberts</td>
<td>70x</td>
<td>179</td>
</tr>
<tr>
<td>27.</td>
<td>S. parva Hussey</td>
<td>80x</td>
<td>179</td>
</tr>
<tr>
<td>28.</td>
<td>Elphidium new sp.</td>
<td>60x</td>
<td>181</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
PLATE 5

Figures page

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Chiloguembelina crinita (Glaessner) 80x</td>
<td>181</td>
</tr>
<tr>
<td>2.</td>
<td>Guembelitria columbiana Howe 100x</td>
<td>182</td>
</tr>
<tr>
<td>3.</td>
<td>Pseudohastigerina micra (Cole) 80x</td>
<td>182</td>
</tr>
<tr>
<td>4.</td>
<td>Asterigerina texana (Stadjnichenko) 30x</td>
<td>179</td>
</tr>
<tr>
<td>5.</td>
<td>Asterigerinata new sp. 65x</td>
<td>180</td>
</tr>
<tr>
<td>6.</td>
<td>Globorotalia aequa Cushman and Renz 80x</td>
<td>182</td>
</tr>
<tr>
<td>7.</td>
<td>G. compressa (Plummer) 90x</td>
<td>183</td>
</tr>
<tr>
<td>8.</td>
<td>Turborotalia bullbrooki (Bolli) 70x</td>
<td>183</td>
</tr>
<tr>
<td>9.</td>
<td>T. centralis (Cushman and Bermudez) 80x</td>
<td>184</td>
</tr>
<tr>
<td>10.</td>
<td>T. mokannai (White) 70x</td>
<td>184</td>
</tr>
<tr>
<td>11.</td>
<td>T. tribulosa Loeblic and Tappan 70x</td>
<td>184</td>
</tr>
<tr>
<td>12.</td>
<td>Globigerina gravelli Bronnimann 70x</td>
<td>185</td>
</tr>
<tr>
<td>13.</td>
<td>G. officialis Subbotina 80x</td>
<td>185</td>
</tr>
<tr>
<td>14.</td>
<td>G. cf. G. officialis 75x</td>
<td>186</td>
</tr>
<tr>
<td>15.</td>
<td>Subbotina boweri (Bolli) 70x</td>
<td>186</td>
</tr>
<tr>
<td>16.</td>
<td>Neoeponides mexicanus (Cushman) 40x</td>
<td>186</td>
</tr>
<tr>
<td>17.</td>
<td>Cibicidina mauricensis (Howe and Roberts) 80x</td>
<td>187</td>
</tr>
<tr>
<td>18.</td>
<td>C. mississippiensis (Cushman) 90x</td>
<td>187</td>
</tr>
<tr>
<td>19.</td>
<td>C. hypoconoides (Hussey) 70x</td>
<td>188</td>
</tr>
<tr>
<td>20.</td>
<td>Cibicides delicatus Leroy 80x</td>
<td>188</td>
</tr>
<tr>
<td>21.</td>
<td>C. jeffersonensis Garrett 60x</td>
<td>189</td>
</tr>
<tr>
<td>22.</td>
<td>C. lawi Howe 85x</td>
<td>189</td>
</tr>
<tr>
<td>23.</td>
<td>C. lucidus (Reuss) 100x</td>
<td>190</td>
</tr>
<tr>
<td>24.</td>
<td>C. mamiformis Hussey 55x</td>
<td>190</td>
</tr>
</tbody>
</table>
Plate 6.

Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cibicides cf. C. mimulus Bandy 65x</td>
<td>191</td>
</tr>
<tr>
<td>2</td>
<td>C. cf. C. pseudowuellerstorfi Cole 65x</td>
<td>191</td>
</tr>
<tr>
<td>3</td>
<td>"Cibicides" new sp. 80x</td>
<td>192</td>
</tr>
<tr>
<td>4</td>
<td>Discocyclina advena (Cushman) 5x</td>
<td>192</td>
</tr>
<tr>
<td>5</td>
<td>Fursenkoina mcguirti (Howe and Roberts) 80x</td>
<td>192</td>
</tr>
<tr>
<td>6</td>
<td>F. zetina (Cole) 105x</td>
<td>193</td>
</tr>
<tr>
<td>7</td>
<td>Globocassidulina globosa (Hantken) 100x</td>
<td>193</td>
</tr>
<tr>
<td>8</td>
<td>G. lomitensis mexicana (Cole) 110x</td>
<td>194</td>
</tr>
<tr>
<td>9</td>
<td>Nonionellina winniana (Howe) 80x</td>
<td>194</td>
</tr>
<tr>
<td>10</td>
<td>Nonionella cf. N. jacksonensis spiralis Bandy</td>
<td>195</td>
</tr>
<tr>
<td>11</td>
<td>Alabamina wilcoxensis Toulmin 50x</td>
<td>195</td>
</tr>
<tr>
<td>12</td>
<td>Gyroidinoides octocameratus (Cushman and Hana)</td>
<td>196</td>
</tr>
<tr>
<td>13</td>
<td>Anomalinoides ammonoids (Reuss) 80x</td>
<td>196</td>
</tr>
<tr>
<td>14</td>
<td>A. costianus (Weinzierl and Applin) 80x</td>
<td>197</td>
</tr>
<tr>
<td>15</td>
<td>A. umbonatus (Cushman) 60x</td>
<td>197</td>
</tr>
<tr>
<td>16</td>
<td>Melonis planatus (Cushman and Thomas) 70x</td>
<td>198</td>
</tr>
<tr>
<td>17</td>
<td>M. cf. M. umblicatula pacifica (Cushman)</td>
<td>198</td>
</tr>
<tr>
<td>18</td>
<td>Ceratobulimina eximia (Rzehak) 50x</td>
<td>198</td>
</tr>
<tr>
<td>19</td>
<td>Lamarckina claibornensis Cushman 70x</td>
<td>199</td>
</tr>
<tr>
<td>20</td>
<td>Hoeglundina eocenica (Cushman and Hanna)</td>
<td>199</td>
</tr>
<tr>
<td>21</td>
<td>Robertina plummerae Cushman and Parker 80x</td>
<td>200</td>
</tr>
</tbody>
</table>
PLATE 7

Figures

1. Acanthocythereis cf. washburni (Stephenson)
 RV 65x 238
2. A. sp. A LV 50x 238
3. A. sp. B LV 55x 238
4. Actinocythereis davidwhitei (Stadnichenko)
 LV 50x 238
5. A. (?) elmana (Stadnichenko) LV 50x 238
6. A. cf. hilgardi (Howe and Garrett) RV 60x 238
7. A. sp. RV 50x 238
8. Bairdia sp. A LV 45x 238
9. B. sp. B RV 45x 238
10. B. sp. C LV 40x 238
11. Brachycythere sp. LV 85x 238
12. Buntonia howei (Stephenson) LV 55x 238
13. B. alabamensis (Howe and Pyeatt) LV 60x 238
14. Bythocypris gibsonensis Howe and Chambers
 RV 45x 238

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
PLATE 8

Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Clithrocytheridea wechesensis (Sutton and Williams) LV 55x</td>
<td>239</td>
</tr>
<tr>
<td>2.</td>
<td>C. sp. LV 60x.</td>
<td>239</td>
</tr>
<tr>
<td>3.</td>
<td>Cocoaia smithvillensis (Stephenson) RV 55x.</td>
<td>239</td>
</tr>
<tr>
<td>4.</td>
<td>"Cythereis" evergreenica (Stadnichenko) LV 50x.</td>
<td>239</td>
</tr>
<tr>
<td>5.</td>
<td>"Cythereis" suttoni Stephenson LV 70x.</td>
<td>239</td>
</tr>
<tr>
<td>6.</td>
<td>Cytherella sp. RV 40x.</td>
<td>239</td>
</tr>
<tr>
<td>7.</td>
<td>Cytherelloidea smithvillensis Howe LV 70x.</td>
<td>239</td>
</tr>
<tr>
<td>8.</td>
<td>Cytherura (?) sp. RV 70x.</td>
<td>239</td>
</tr>
<tr>
<td>9.</td>
<td>Digmocythere russelli (Howe and Lea) LV 40x.</td>
<td>239</td>
</tr>
<tr>
<td>10.</td>
<td>Haplocytheridea bastropensis Sutton and Williams LV 45x</td>
<td>239</td>
</tr>
<tr>
<td>11.</td>
<td>H. lisbonensis Stephenson LV 55x.</td>
<td>240</td>
</tr>
<tr>
<td>12.</td>
<td>H. ellisi Stephenson RV 55x.</td>
<td>240</td>
</tr>
<tr>
<td>13.</td>
<td>H. habropapillosa (Sutton and Williams) RV 55x.</td>
<td>240</td>
</tr>
<tr>
<td>14.</td>
<td>H. moodyi (Howe and Garrett) RV 45x.</td>
<td>240</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Magnification</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>---------------</td>
</tr>
<tr>
<td>1.</td>
<td>Haplocytheridea stuckeyi (Stephenson)</td>
<td>RV 55x</td>
</tr>
<tr>
<td>2.</td>
<td>Hemicytheridea (?) sp.</td>
<td>RV 55x</td>
</tr>
<tr>
<td>3.</td>
<td>Hermanites (?) claibornensis (Gooch)</td>
<td>RV 70x</td>
</tr>
<tr>
<td>4.</td>
<td>Loxoconcha chamfera Murray</td>
<td>RV 95x</td>
</tr>
<tr>
<td>5.</td>
<td>L. claibornensis Murray</td>
<td>RV 80x</td>
</tr>
<tr>
<td>6.</td>
<td>Ouachitaia gosportensis (Stephenson)</td>
<td>RV 55x</td>
</tr>
<tr>
<td>7.</td>
<td>O. semireticulata (Stephenson)</td>
<td>LV 55x</td>
</tr>
<tr>
<td>8.</td>
<td>Opimocythere martini (Murray and Hussey)</td>
<td>RV 50x</td>
</tr>
<tr>
<td>9.</td>
<td>Paracypris franquesi Howe and Chambers</td>
<td>LV 50x</td>
</tr>
<tr>
<td>10.</td>
<td>Pterygocythere bernardi (Murray and Hussey)</td>
<td>LV 50x</td>
</tr>
<tr>
<td>11.</td>
<td>P. murrayi Hill</td>
<td>LV 40x</td>
</tr>
<tr>
<td>12.</td>
<td>Quadracythere winniana (Gooch)</td>
<td>RV 70x</td>
</tr>
<tr>
<td>13.</td>
<td>Trachylebereis (?) linospinosa (Sutton and Williams)</td>
<td>RV 55x</td>
</tr>
<tr>
<td>14.</td>
<td>T. orelliana (Stadnichenko)</td>
<td>RV 55x</td>
</tr>
<tr>
<td>15.</td>
<td>Xestoleberis dumblei Stephenson</td>
<td>LV 75x</td>
</tr>
</tbody>
</table>
VITA

Haeung "Tom" Choung was born in Seoul Korea on February 16, 1942, as a first son of Mr. Yun J. Choung and Mrs. Young S. Choung, both school teachers at the time. After graduating from Kyung Bock high school in 1960, he entered the Seoul University majoring in geology. His college education was briefly interrupted by military service in the Korean Army as a non-commissioned officer between 1963 and 1965. Subsequently, he earned B.S. degree in geology in 1967 and took temporary employment with the Korea Geological Survey until he resumed his graduate study toward the Master's degree at the University of Connecticut in the fall of 1968. Upon completion of M.S. degree in geology, he entered Louisiana State University for his final degree, which he completed in May, 1975. While he was in graduate school, he served as a teaching and research assistant and since August, 1974, he has been employed with Texaco Inc. as a petroleum geologist.
EXAMINATION AND THESIS REPORT

Candidate: Haeung Choung

Major Field: Geology

Title of Thesis: Paleoecology, Stratigraphy, and Taxonomy of the Foraminifera of the Weches Formation of East Texas and the Cane River Formation of Louisiana.

Approved:

[Signatures]

Major Professor and Chairman

Dean of the Graduate School

EXAMINING COMMITTEE:

[Signatures]

Date of Examination:

November 26, 1974
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A. marina</td>
<td>50.7</td>
<td></td>
</tr>
<tr>
<td>A. acuta</td>
<td>1.6</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>A. angusta</td>
<td>12.6</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>A. aselliformis</td>
<td>10.1</td>
<td></td>
</tr>
<tr>
<td>A. cribraria</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>A. cirrosa</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>A. elongata</td>
<td>5.7</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>A. exigua</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>A. globulosa</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>A. horrida</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>A. hyalina</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>A. incrustata</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>A. irregularis</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>A. japonica</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>A. lagenaria</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>A. lentiginosa</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>A. longa</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>A. minuta</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>A. mycetica</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>A. obtusa</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>A. ovalis</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>A. plana</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>A. pseudomarginata</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>A. radiata</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>A. rotundata</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>A. simplex</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>A. sp.</td>
<td>2.0</td>
<td></td>
</tr>
</tbody>
</table>

APPENDIX VI. FREQUENCY AND OCCURRENCE OF THE REPRESENTATIVE FAUNAS (A) FORAMINIFERA

[Table continues with more species and their occurrence percentages.]
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
<table>
<thead>
<tr>
<th>Genus</th>
<th>Family</th>
<th>Common Name</th>
<th>Habitat</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. lunaei</td>
<td>Cottoptilinae</td>
<td>Cottontail Leptotila</td>
<td>Desert & Sagebrush</td>
</tr>
<tr>
<td>G. rhombea</td>
<td>Epicentridae</td>
<td>G. rhombea</td>
<td>Alpine & Tundra</td>
</tr>
<tr>
<td>C. occidentalis</td>
<td>Crotalidae</td>
<td>C. occidentalis</td>
<td>Desert & Sagebrush</td>
</tr>
<tr>
<td>C. constrictor</td>
<td>Colubridae</td>
<td>C. constrictor</td>
<td>Forest & Grassland</td>
</tr>
<tr>
<td>C. atrox</td>
<td>Boidae</td>
<td>C. atrox</td>
<td>Rainforest &沼泽</td>
</tr>
<tr>
<td>C. carolina</td>
<td>Deirochilidae</td>
<td>C. carolina</td>
<td>Rainforest &沼泽</td>
</tr>
<tr>
<td>C. imperatrix</td>
<td>Boaconidae</td>
<td>C. imperatrix</td>
<td>Rainforest &沼泽</td>
</tr>
<tr>
<td>C. rigida</td>
<td>Viperidae</td>
<td>C. rigida</td>
<td>Desert & Sagebrush</td>
</tr>
<tr>
<td>C. horrida</td>
<td>Viperidae</td>
<td>C. horrida</td>
<td>Forest & Grassland</td>
</tr>
<tr>
<td>C. durissus</td>
<td>Bothriechidae</td>
<td>C. durissus</td>
<td>Rainforest &沼泽</td>
</tr>
</tbody>
</table>

Table:

<table>
<thead>
<tr>
<th>Planorotinae/Totals (%)</th>
<th>2</th>
<th>26</th>
<th>6</th>
<th>3</th>
</tr>
</thead>
</table>

Legend:

- /= 1% or less
- X = Present (Non-Quantitative Sample)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
<table>
<thead>
<tr>
<th>SPECIES</th>
<th>SAMPLE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSTRACODA</td>
<td></td>
</tr>
<tr>
<td>Acanthocytheris cf. washburni</td>
<td></td>
</tr>
<tr>
<td>A. sp.</td>
<td></td>
</tr>
<tr>
<td>A. cf.</td>
<td></td>
</tr>
<tr>
<td>Actinocytheris davidhirti</td>
<td></td>
</tr>
<tr>
<td>A. (1) eliana</td>
<td></td>
</tr>
<tr>
<td>A. cf. hilerdi</td>
<td></td>
</tr>
<tr>
<td>Bardiae sp.</td>
<td></td>
</tr>
<tr>
<td>Brachycythere sp.</td>
<td></td>
</tr>
<tr>
<td>Brunonia howell</td>
<td></td>
</tr>
<tr>
<td>B. alphonensis</td>
<td></td>
</tr>
<tr>
<td>Bythocythere gibouensis</td>
<td></td>
</tr>
<tr>
<td>Clithocythereidae truegen</td>
<td></td>
</tr>
<tr>
<td>C. sp.</td>
<td></td>
</tr>
<tr>
<td>Coccula smithvillensis</td>
<td></td>
</tr>
<tr>
<td>'Cymenea' eugeneensis</td>
<td></td>
</tr>
<tr>
<td>Cythereis russeli</td>
<td></td>
</tr>
<tr>
<td>C. successi</td>
<td></td>
</tr>
<tr>
<td>Cythereis sp.</td>
<td></td>
</tr>
<tr>
<td>Cythereoides smithvillensis</td>
<td></td>
</tr>
<tr>
<td>Cytherura (2) sp.</td>
<td></td>
</tr>
<tr>
<td>Diacythere fuscelli</td>
<td></td>
</tr>
<tr>
<td>Epicythereidae haeppelense</td>
<td></td>
</tr>
<tr>
<td>H. lihoensis</td>
<td></td>
</tr>
<tr>
<td>H. multitalis</td>
<td></td>
</tr>
<tr>
<td>H. habrocalpis</td>
<td></td>
</tr>
<tr>
<td>H. moudyi</td>
<td></td>
</tr>
<tr>
<td>H. stocki</td>
<td></td>
</tr>
<tr>
<td>Hemicythereina (1) sp.</td>
<td></td>
</tr>
<tr>
<td>Hercestrites (3) clabornensis</td>
<td></td>
</tr>
<tr>
<td>Lessoucha chamberi</td>
<td></td>
</tr>
<tr>
<td>L. clabornensis</td>
<td></td>
</tr>
<tr>
<td>Luechtaea monacensis</td>
<td></td>
</tr>
<tr>
<td>O. semitubularis</td>
<td></td>
</tr>
<tr>
<td>Ostrocythere martini</td>
<td></td>
</tr>
<tr>
<td>Patacythere francsisi</td>
<td></td>
</tr>
<tr>
<td>Piecythere bernardi</td>
<td></td>
</tr>
<tr>
<td>P. macrasi</td>
<td></td>
</tr>
<tr>
<td>Quadractinella winiana</td>
<td></td>
</tr>
<tr>
<td>Trachyleberola (?) lihoanala</td>
<td></td>
</tr>
<tr>
<td>T. okaila</td>
<td></td>
</tr>
<tr>
<td>T. orielana</td>
<td></td>
</tr>
<tr>
<td>Xestoleberis dubhei</td>
<td></td>
</tr>
<tr>
<td>BIVALVIA</td>
<td></td>
</tr>
<tr>
<td>Alveina minor</td>
<td></td>
</tr>
<tr>
<td>Caucorbulida murchiteum</td>
<td></td>
</tr>
<tr>
<td>Cina sp.</td>
<td></td>
</tr>
<tr>
<td>"Lucina" prionidea</td>
<td></td>
</tr>
<tr>
<td>Limopsis radiata</td>
<td></td>
</tr>
<tr>
<td>Modiolus (1) sp.</td>
<td></td>
</tr>
<tr>
<td>Notocorbula tasmania</td>
<td></td>
</tr>
<tr>
<td>Nucula (Nucula) magnifica</td>
<td></td>
</tr>
<tr>
<td>Nucula sp.</td>
<td></td>
</tr>
<tr>
<td>Venericardia cf. turricula</td>
<td></td>
</tr>
<tr>
<td>Vokesella smithvillensis smithvillensis</td>
<td></td>
</tr>
<tr>
<td>Cubitoidea lihowensis</td>
<td></td>
</tr>
<tr>
<td>G. nioliformis</td>
<td></td>
</tr>
<tr>
<td>GASTROPODA</td>
<td></td>
</tr>
<tr>
<td>Acteonella subguttata</td>
<td></td>
</tr>
<tr>
<td>Athleta cf. lihowomensis</td>
<td></td>
</tr>
<tr>
<td>Mitrella (1) sp.</td>
<td></td>
</tr>
<tr>
<td>Neverita cf. lihowenis</td>
<td></td>
</tr>
<tr>
<td>Pyraminella cf. moltrei</td>
<td></td>
</tr>
<tr>
<td>Rangia cf. milipes</td>
<td></td>
</tr>
<tr>
<td>Terebra cf. jacksonensis</td>
<td></td>
</tr>
<tr>
<td>T. (?) sp.</td>
<td></td>
</tr>
<tr>
<td>T. sp.</td>
<td></td>
</tr>
<tr>
<td>Turritella arenicola davillensis</td>
<td></td>
</tr>
<tr>
<td>T. elwesiana</td>
<td></td>
</tr>
<tr>
<td>PHYLUM</td>
<td></td>
</tr>
<tr>
<td>ANIMALIA</td>
<td></td>
</tr>
<tr>
<td>Adenostrobus cyclops</td>
<td></td>
</tr>
<tr>
<td>Comantherella sp.</td>
<td></td>
</tr>
<tr>
<td>Cylindrocoelum lamillae</td>
<td></td>
</tr>
<tr>
<td>Eilithia clabornensis</td>
<td></td>
</tr>
<tr>
<td>Holopleura gauli</td>
<td></td>
</tr>
<tr>
<td>Nella acidula</td>
<td></td>
</tr>
<tr>
<td>Olivella perforata</td>
<td></td>
</tr>
<tr>
<td>Schisoptyphis intermedia</td>
<td></td>
</tr>
<tr>
<td>S. radiatum</td>
<td></td>
</tr>
<tr>
<td>Trochopora boucl</td>
<td></td>
</tr>
<tr>
<td>T. truncata</td>
<td></td>
</tr>
<tr>
<td>ANTHOZOA</td>
<td></td>
</tr>
<tr>
<td>Turbinella pharetra</td>
<td></td>
</tr>
<tr>
<td>Haliclytus sp.</td>
<td></td>
</tr>
<tr>
<td>Platytochus stockei</td>
<td></td>
</tr>
</tbody>
</table>

/ = PRESENT

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.