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THE MASSIVE NEUTRON STAR OR LOW-MASS BLACK HOLE IN 2S 0921�630

T. Shahbaz,1 J. Casares,1 C. A. Watson,2 P. A. Charles,3 R. I. Hynes,4 S. C. Shih,3 and D. Steeghs5

Received 2004 August 6; accepted 2004 October 6; published 2004 October 25

ABSTRACT

We report on the optical spectroscopy of the eclipsing halo low-mass X-ray binary 2S 0921�630, which reveals
the absorption-line radial velocity curve of the K0 III secondary star with a semiamplitude kmK p 92.89 � 3.842

s�1, a systemic velocity km s�1, and an orbital period of days (1 j). Giveng p 34.9 � 3.3 P 9.0035 � 0.0029orb

the quality of the data, we find no evidence for the effects of X-ray irradiation. Using the previously determined
rotational broadening of the mass donor and applying conservative limits on the orbital inclination, we constrain
the compact object mass to be 2.0–4.3 M, (1 j), ruling out a canonical neutron star at the 99% level. Since the
nature of the compact object is unclear, this mass range implies that the compact object is either a low-mass black
hole with a mass slightly higher than the maximum possible neutron star mass (2.9 M,) or a massive neutron star.
If the compact object is a black hole, it confirms the prediction of the existence of low-mass black holes, while if
the object is a massive neutron star, its high mass severely constrains the equation of state of nuclear matter.

Subject headings: black hole physics — stars: individual (V395 Carinae) — stars: neutron —
X-rays: binaries — X-rays: individual (2S 0921�630)

1. INTRODUCTION

A knowledge of the neutron star mass distribution provides a
fundamental test of theories of the equation of state of nuclear
matter, the applicability of general relativity as the correct theory
of gravity, and information on the evolutionary history of the
progenitor stars. To date, only studies of radio pulsars have pro-
vided accurate mass determinations of neutron stars, reflecting
their mass at formation, M, (van Kerkwijk 2001).1.35 � 0.04
Although masses can also be obtained from accreting X-ray
pulsars, there are large uncertainties. In high-mass X-ray binaries
(HMXBs) there are uncertainties due to non-Keplerian pertur-
bations in the radial velocity curves caused by effects such as
stellar wind contamination and X-ray heating. In low-mass X-
ray binaries (LMXBs), the situation is worse because the intense
X-ray irradiation usually suppresses the light from the donor
(Charles & Coe 2004). It is only in a few exceptional cases in
which the companion is evolved (and hence more luminous), or
during X-ray off-states, that dynamical information can be ex-
tracted about the nature of the compact object.

The SAS-3 X-ray source, 2S 0921�630, was identified with a
∼16 mag blue star (Li et al. 1978), V395 Car, whose optical
spectrum was characteristic of LMXBs (Branduardi-Raymont et
al. 1983). EXOSAT observations showed a broad (11 day), shallow
X-ray eclipse, during which the spectrum softened, allowing an
estimate of the size of the accretion disk corona (ADC; Mason et
al. 1987). Only a handful of ADC sources are known in which
the compact object is permanently obscured from our line of sight
by the accretion disk. Limited optical photometry and emission-
line spectroscopy (Cowley et al. 1982; Branduardi-Raymont et al.
1983) shows that 2S 0921�630 has an orbital period of 9.02
days and (∼1 mag) dips, where the reddening by up to(B � V )
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0.4 mag has been interpreted as the eclipse of the disk by the late-
type star (Chevalier & Ilovaisky 1982). High-resolution optical
spectroscopy revealed the donor to be a K0 III star with a rotational
velocity of km s�1, contributing ∼25% to thev sin i p 65 � 9
observed flux (Shahbaz et al. 1999, hereafter S99). 2S 0921�630
is one of those rare LMXBs in which the secondary is visible
despite the presence of a luminous disk.

Since there has been no detection of type I X-ray bursts of
pulsations, the nature of the compact object is unclear. In this
Letter we present the results of an intensive campaign to measure
the dynamical mass of the compact object in 2S 0921�630.

2. OBSERVATIONS AND DATA REDUCTION

Time-resolved spectroscopic observations of 2S 0921�630
were obtained on the 1.9 m telescope at the South African
Astronomical Observatory (SAAO) during 2003 March 30 to
April 18. Grating 5 (1200 lines mm�1) was used, centered at
4900 and covering a wavelength range of 4529–5377 with˚ ˚A A
a dispersion of 0.49 pixel�1. A 2�.0 slit gave a spectral res-Å
olution of 1.1 (p64 km s�1 at 5200 ) as measured from˚ ˚A A
the Cu-Arc arc lines. In general, the conditions were good, with
the seeing varying between 1� and 3�. A total of 83 spectra
were obtained with an exposure time of 1800 s. Template field
stars of a variety of spectral types were also observed. The
images were debiased and flat-fielded, and the one-dimensional
spectra were extracted using the standard method.

In addition, 34 spectra were also obtained at the Very Large
Telescope (VLT), New Technology Telescope (NTT), Anglo-
Australian Telescope (AAT; Australia), and Magellan Telescope
as part of a long-term project on X-ray binaries. A total of nine
FORS2 spectra with exposure times in the range 300–900 s were
obtained on the nights of 2003 May 18 and June 22–23. The
R1400V grating was used in combination with a 0�.7 slit resulting
in a wavelength coverage of 4514–5815 and a resolution ofÅ
70 km s�1. Instrumental flexure was monitored by cross-correlating
the sky spectra and was found to be very small, always within
6 km s�1. Eleven Magellan spectra were obtained during 2003
December 12–16 with the Baade telescope at Las Campanas using
the Inamori Magellan Areal Camera and Spectrograph in the long-
camera mode using an exposure time of 300 s. The 600 grating
together with a 0�.7 long slit provided spectra covering 3720–



L124 SHAHBAZ ET AL. Vol. 616

Fig. 1.—Radial velocity curve of the secondary star. The plus signs show
the SAAO data, and the asterisks show the VLT, NTT, AAT, and Magellan
data. The solid line shows a sinusoidal fit. The data have been phase-folded,
and 1.5 orbital cycles are shown for clarity.

Fig. 2.—Top: Variance-weighted Doppler-shifted average spectrum of 2S
0921�630 in the rest frame of the secondary star. The H and He emission lines
arising from the accretion disk are clearly seen. Bottom: K0 III template star HD
82565. The spectra have been normalized and shifted vertically for clarity.

TABLE 1
Radial Velocity Curve fits (1 j; HJD 2,453,099�)

Template Spectral Type
g

(km s�1)
Porb

(day) ∗T0

K2

(km s�1) 2xn

f
(%)

HD 122571 . . . . . . G6 III 33.3 (3.8) 9.0019(36) 9.54(10) 95.1(4.4) 5.8 6.7
HD 63513 . . . . . . . G7 III 34.2 (3.6) 9.0017(32) 9.53(9) 94.2(3.7) 5.3 7.8
HD 40359 . . . . . . . G8 III 36.9 (3.1) 9.0040(30) 9.51(9) 92.2(3.7) 4.5 8.6
HD 71863 . . . . . . . G9 III 35.1 (3.3) 9.0027(29) 9.51(8) 93.9(3.8) 4.3 9.6
HD 82565 . . . . . . . K0 III 34.9 (3.3) 9.0035(29) 9.51(8) 92.9(3.8) 4.3 9.9
HD 39523 . . . . . . . K1 III 37.6 (3.2) 9.0036(28) 9.53(7) 94.3(3.7) 4.6 9.0
HD 61248 . . . . . . . K3 III 41.0 (3.5) 9.0062(32) 9.58(7) 96.5(4.1) 6.1 7.9
HD 40522 . . . . . . . K4 III 42.0 (3.7) 9.0057(34) 9.59(7) 98.6(4.3) 6.0 8.2

6830 with a dispersion of 0.75 pixel�1. Ten AAT spectra˚ ˚A A
were obtained using the Royal Greenwich Observatory spectro-
graph on the nights of 2002 June 6–11 with an exposure time of
1800 s. The R1200B grating centered at 4350 together with aÅ
1�.0 slit provided spectra covering 3500–5250 with a resolutionÅ
of 70 km s�1. A total of four NTT spectra were obtained with the
ESO Multimode Instrument and grating 6 on the nights of 2002
June 8–10 with exposure times of 600–900 s. The spectra cover
the spectral range 4400–5150 with a resolution of 75 km s�1.Å
The AAT and NTT data reduction details are given in Casares et
al. (2003).

3. THE RADIAL VELOCITY CURVE AND SPECTRUM

To increase the signal-to-noise ratio of the spectra prior to cross-
correlation, the individual spectra were variance-averaged into
nightly means or groups of ∼3 hr, depending on the quality of the
individual spectra. The spectra were interpolated onto a constant
velocity scale (32 km s�1 pixel�1) and normalized by fitting a
spline function to the continuum. A total of 31 absorption-line
radial velocities were measured by cross-correlation with a tem-
plate star. The region 5100–5300 common to all the spectra,Å
primarily containing the Mg i (5167.3, 5172.7, and 5183.6 )Å
absorption blend, was used in the analysis. The template star’s
radial velocity, determined using the position of the Fe i l4957.597
absorption line, was then added to the radial velocities of 2S
0921�630. The resulting radial velocity data (see Fig. 1) were
then fitted with a sinusoidal function. Using spectral type template
stars in the range G6–K4 III, we obtain -values in the rangeK2

92–99 km s�1 (see Table 1). The secondary star’s spectral type

has previously been determined from high-resolution spectroscopy
to be K0 III (S99), and our work confirms this. Fitting the radial
velocities with a K0 III template star, we find a minimum reduced
x2 of 4.3 with the best-fit parameters km s�1,g p 34.9 � 3.3

km s�1, days, andK p 92.89 � 3.84 P p 9.0035 � 0.00292 orb

, where Porb is the orbital period,T p HJD 2,453,099.51 � 0.080

is the time at phase 0.0 defined as the inferior conjunction ofT0

the secondary star, g is the systemic velocity, and is the radialK2

velocity semiamplitude (1 j errors are quoted with the error bars
rescaled so that the reduced of the fit is 1). Our ephemeris is2x
consistent with that determined by Mason et al. (1987). We also
computed a periodogram of the data to investigate the signif-2x
icance of other periods. No significant peaks (at 199.99% level)
were present other than the one at 9.0035 days. Finally, to check
if the 9.0035 day period is affected by an alias, we computed the
window function; no significant peaks were present at 9.0035 days.
Fitting the radial velocity data with an eccentric orbit did not
yield a better fit; the eccentric fit was significant only at the
38% level.

At a distance of ∼10 kpc (Cowley et al. 1982), 2S 0921�630
lies 1.6 kpc below the Galactic plane and so belongs to the halo
population. Note that the systemic velocity is not consistent with
the radial velocity because of Galactic differential rotation,
∼60 km s�1 at ∼10 kpc (Dehnen & Binney 1998). However, what
is interesting is that the magnitude of the systemic velocity seems
to be about a factor of ∼4 lower compared to other neutron star
halo systems (Casares et al. 1998, 2002; Torres et al. 2002).

In Figure 2 we show the variance-weighted Doppler-
averaged spectrum. The strongest features are the H, He emission
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Fig. 3.—Irradiation model ergs s�1. The effect of X-ray heating on the secondary star’s radial velocity curve. The solid and dashed contours35L p 2 # 10X

show the 68% confidence level for and 70�, respectively. The dotted lines mark the canonical and maximum neutron star mass.i p 90�

lines, which appear single peaked, even at the resolution of these
data. Weak absorption features of Mg i l5175 and the Ca/Fe
blend at 5269 allow us to determine the fraction of light fromÅ
the secondary star. We find that the secondary star contributes
∼10% to the observed flux at 5200 (see Table 1).Å

4. THE MASS OF THE COMPACT OBJECT

The observed X-rays are reflected into our line of sight by
scattering. Although the observed X-ray luminosity is low,

ergs s (Kallman et al. 2003), it is still inter-35 �1L p 2 # 10X

esting to explore the possible effects that X-rays may have on
the secondary star’s radial velocity curve. We do this using the
X-ray binary model described by Phillips et al. (1999) and
Shahbaz et al. (2000, 2003). We first phase-fold the radial
velocities using the orbital ephemeris derived in § 3, bin into
31 orbital phase bins, and fit the resulting curve with the model.
We consider two extreme cases for the X-ray irradiation: case
a, in which the X-rays produced near the compact object ir-
radiate the whole inner face of the secondary star, and case b,
in which the X-rays do not affect the secondary star. Note that
invoking a flared accretion disk will have intermediate solu-
tions. The model parameters are the compact object mass ,M1

secondary star mass , X-ray luminosity , and the incli-M L2 X

nation i. To determine which elements on the star contribute
to the absorption-line radial velocity, we use the factor , whichfX

is the fraction of the external radiation flux that exceeds the
unperturbed flux. For a given i and combination of andM1

, we fit the data and use the constraints imposed byM v sin i2

to produce plots in the - plane (Fig. 3).M M1 2

Given the evidence for optical and X-ray partial eclipse, i
must lie in the range 70�–90�. Although the lack of X-ray dips
suggests (Frank et al. 1987), we prefer to adopt a morei 1 80�
conservative range, since i has not been measured accurately.
Therefore, we consider cases a and b for and, morei p 70�
importantly, , because it gives a firm lower limit to M1.i p 90�
For case a we fix ergs s�1 and find that the35L p 2 # 10X

best fit ( ) is obtained when all the elements on the2x p 122

inner face contribute to the radial velocity, i.e., , i.e.,f 1 60%X

X-ray heating is not preferred. Note, however, that the radial
velocity curve will not be sinusoidal because there will still be
some irradiated elements that contribute to the radial velocity.
Even if we increase to ergs s�1 as could be the case39L p 10X

for an LMXB, the fits are significantly worse ( ), and2x p 190
the best fit still occurs when all the inner face contributes to
the radial velocity. For case b we set , implying no X-L p 0X

ray heating, and find that it gives a fit with similar quality
( ). We conclude that the best fit to the radial velocity2x p 119
curve is the case in which the X-rays do not have an observable
effect given the quality of the data. For our range in i, our fits
for cases a and b give (1 j), which2.0 M ! M ! 4.3 M, 1 ,

means we can rule out a canonical 1.4 M, neutron star at the
99% level. is either a massive neutron star or a low-massM1

black hole; the maximum possible neutron star mass is 2.9 M,

(Kalogera & Baym 1996).
Since the donor star fills its Roche lobe and is synchronized

with the binary motion, we use and to determine thev sin i K2

binary mass ratio (Horne et al.q p (M /M ) p 0.89 � 0.182 1

1986). Given the measured masses, the temperature inferred from
the spectral type and , we can determine the semimajor axisPorb

, the radius , and56.1 R ! a ! 72.4 R 10.4 R ! R ! 13.4 R, , , 2 ,

luminosity of the secondary star (1 j).52.5 L ! L ! 87.1 L, 2 ,

5. DISCUSSION

The position of the secondary star of 2S 0921�630 in an
H-R diagram corresponds to a normal star that has crossed the
Hertzsprung gap and now lies on the Hayashi line. The evo-
lution of the binary is dominated by the evolution of the
evolved secondary. Since such a star no longer burns hydrogen
in its core, the mass transfer is early massive case B. For a
binary with a secondary star near the onset of such mass trans-
fer, one requires throughout its history (King & Ritterq ! 1
1999). The case for a 1.4 M, neutron star can be ruled out
since it requires , which is inconsistent with ourM ! 1.4 M2 ,

results; the position of a secondary on the H-R diagram un-
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dergoing early massive case B mass transfer is close to that of
a single star of the same mass (Kolb 1998). For M,,M p 31

M,, which is consistent with our observations. It isM ! 3.02

interesting to note that the q that we derive lies on the limit
of stable mass transfer (King & Ritter 1999). It is pos-5q p 6

sible that 2S 0921�630 is undergoing unstable mass transfer
similar to the supersoft sources and other X-ray binaries (Ka-
habka & van den Heuvel 1997).

The distribution of measured neutron star masses provides
fundamental constraints on the equation of state of nuclear
matter and the observational identification of a black hole,
which is based on the maximum possible mass allowed for a
neutron star, 2.9 M, (Kalogera & Baym 1996). There is some
evidence that neutron stars with a mass in excess of 1.4 M,

do exist. LMXBs are expected to contain massive (∼2 M,)
neutron stars, resulting from the accretion of a considerable
amount of material over extended (108 yr) periods of time
(Zhang et al. 1985). However, while a neutron star mass of

M, for the LMXB Cyg X-2 is reported (Orosz1.78 � 0.23
& Kuulkers 1999), Titarchuk & Shaposhnikov (2002) have
recently proposed a mass of M, based on the1.44 � 0.06
spectral and temporal properties of the type I X-ray bursts. The
analysis of optical data for the X-ray pulsar Vela X-1 suggests
that the pulsar has a mass of M, (Barziv et al. 2002).�0.231.87�0.17

Probably the strongest case for a massive neutron star or low-
mass black hole is in the eclipsing HMXB 4U 1700�37, which
contains a M, compact object (Clark et al. 2002).2.44 � 0.27
Such masses already test soft nuclear equations of state (Miller
et al. 1998b). We obtain M, in 2S 0921�630,M p 2.0–4.31

which lies between the range of masses observed for neutron
stars and black holes. Models for nuclear equations of state,
which include the effects of three nucleon interactions and re-
alistic models of nuclear forces, limit the maximum mass of
neutron stars to less than 2.5 M, (Akmal et al. 1998). However,
it should be noted that unconventional forms of matter such as
Q stars do allow the existence of extremely massive neutron stars
(Miller et al. 1998a). Although our results do not allow us to
distinguish between a massive neutron star and a low-mass black

hole, the existence of a greater than 2.5 M, neutron star would
place strong constraints on high-density nuclear matter.

Theoretical predictions suggest that the death of a 60 M,

star in a close binary can produce anything from a low-mass
1.2 M, neutron star to a 10 M, black hole, depending on the
wind mass-loss rate during the Wolf-Rayet phase (Fryer &
Kalogera 2001). The formation of a low-mass black hole with
a high space velocity is possible via a two-stage process in-
volving the formation of a neutron star (Brown et al. 1996).
However, if there is symmetric mass ejection in the supernova,
then a kick at the formation of a black hole is not required to
explain the varied range in the observed space velocities of the
black hole LMXBs (Nelemans et al. 1999).

The unusual mass for the compact object in 2S 0921�630,
and the fact that the nature of the compact object is not clear,
conjures up many formation scenarios. If it is a neutron star,
then its present mass can be explained by either the accumulation
of matter (1–2 M,) by a canonical 1.4 M, neutron star or the
direct collapse of a massive star forming a massive neutron star.
If the compact object in 2S 0921�630 is a black hole, then its
low mass can be explained by the accretion-induced collapse of
a massive 2.9 M, neutron star or the formation of a low-mass
black hole (Brown et al. 1996). Given the fact that we do not
observe a peculiar systemic velocity comparable to other neutron
star LMXBs, this suggests that we can rule out canonical neutron
star formation scenarios in which a kick is produced during a
Type II supernova. The most likely scenario for the formation
of the compact object is the direct formation of a massive neutron
star or a low-mass black hole.

T. S. and J. C. acknowledge support from the program Ramón
y Cajal. R. I. H. is currently supported by NASA through
Hubble Fellowship grant HF-01150.01-A awarded by the
STSci, which is operated by AURA, Inc., for NASA under
contract NAS 5-26555. D. S. acknowledges an SAO Clay Fel-
lowship. The PAMELA and MOLLY routines of K. Horne and
T. R. Marsh are gratefully acknowledged. This Letter uses ob-
servations made at the SAAO.
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