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Abstract

Certain universal features of photonic resonant scattering systems are encapsulated in

a simple model which is a resonant modification of the famous Lamb Model for free

vibrations of a nucleus in an extended medium. We analyze this “resonant Lamb model”

to garner information on dynamic resonant scattering of near-monochromatic fields when

an extended system is weakly coupled to a resonator. The transmitted field in a resonant

scattering process consists of two distinct pathways: an initial pulse (direct transmission)

and a tail of slow decay (resonant transmission). The resonant Lamb model incorporates

a two-part scatterer attached to an infinite string with a continuous spectrum. The non-

resonant part of the scatterer is associated with direct scattering; and the resonant part is

associated with field amplification and delayed transmission. We provide a mathematical

characterization of the “direct transmission” and the “resonant transmission” by analyzing

the pole structure of the resolvent operator of the system. The coupling constant (γ), the

proximity of resonance to the central frequency of incidence (η) and the spectral width (σ)

of the incident pulse are three distinguished parameters that are small and affect resonance

in the high-Q and near-monochromatic regime. The main objectives of this work are to

analyze resonant amplification and transmission anomalies in the simultaneous High-Q

and near-monochromatic regime as they depend on the three aforementioned parameters

and to quantify the accuracy of coupled mode theory in that same regime.

v



Chapter 1
Introduction

1.1 Resonant Scattering

Scattering of electromagnetic plane waves by certain photonic devices give rise to various

resonant phenomena under special conditions. Resonant scattering can be described as the

phenomenon of resonant amplification of fields in the scatterer while the transmission of

energy across the scatterer experiences sharp variations near certain resonant frequencies.

Such resonance phenomena and anomalous transmission of energy are observed more

generally in problems of scattering of waves by obstacles not only in electromagnetics but

also in acoustics, in mechanical waves and matter waves.

In this study we confine our interest to the resonant interaction between electromagnetic

waves and photonic scattering devices. These photonic devices include photonic crystals,

photonic crystal slabs, photonic crystal fibers and many other devices that have been

designed with the ability to control the flow of light [1]. The resonant interaction between

electromagnetic waves and a photonic device may materialize in different ways and therein

we are concerned only with the resonance of a particular nature.

We consider the situation in which the photonic scatterer supports source-free fields;

electromagnetic fields at specific frequencies present inside the photonic device in the

absence of any source field originating from the ambient medium outside the scatterer.

These fields confined to the scattering device called bound states can be mathematically

conceived as an eigen-state whose frequency is embedded in the frequency continuum of

the extended states admitted by the scattering system.

These bound states are dynamically decoupled from the energy carrying waves in the

ambient medium. If a bound state can be destroyed through radiation loss by coupling to

the energy carrying waves in the ambient space under a perturbation of the structure, such
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a bound state is called a non-robust bound state. When these non-robust bound states

are destroyed they become leaky modes radiating energy out of the device. These leaky

modes materialize as high amplitude fields in the scatterer that are resonantly excited

during the scattering of plane waves.

This type of non-robust bound states in a photonic scattering device referred to as

“guided modes” are known to be associated with anomalous scattering behavior in the

vicinity of the frequency and wavenumber of the mode. It is well documented that scatter-

ing anomalies associated with these non-robust guided modes are useful in the design of

photonic devices. Such resonance phenomena are utilized in many photonic devices such

as lasers, optical filters and light-emitting diodes and sensors. Guided modes and corre-

sponding resonant phenomena appear in many different photonic structures and numerous

studies that has been performed about them are abundant in literature. The existence

of such guided modes in certain loss-less two-dimensional electromagnetic structures is

discussed in [2] and in loss-less dielectric slabs is discussed in [3]. An analysis on the rela-

tion of anomalous transmission of energy across certain photonic slabs to leaky modes are

carried out in [4]. Guided modes and resonant scattering under certain types of perturba-

tions in slabs of two-phase dielectric photonic crystal materials have been presented in [5].

Guided modes and corresponding transmission anomalies in scattering of electromagnetic

fields by metal films is discussed in [6]. The connection between anomalous transmission

and particular types of guided modes on metal films called surface plasmons has been

studied in [7, 8].

Resonance in a scattering system can be conceived as the result of the proximity of

the system to a certain idealized one. This idealized system admits a discrete set of

frequencies corresponding to the bound states of the scatterer. Meanwhile, the system

admits a continuum of frequencies corresponding to extended states which are the plane

waves in the ambient medium. Under perturbation of certain system parameters, this
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idealized system is destroyed by the interaction between the bound states inside the

scatterer and the propagating plane waves in the ambient space. This interaction causes

the bound states to be destroyed and the extended states near the bound state frequency

are sharply modified.

When placed in the proper functional analytic setting, a frequency corresponding to

a bound state is realized by an eigen-mode, eigenvalues of which are embedded in the

continuous spectrum of an operator underlying the system. This continuous spectrum

corresponds to the continuum of frequencies of the extended states (plane waves in the

ambient medium). The perturbation of the idealized system corresponds to the dissolution

of this embedded eigenvalue. The dissolution of the embedded eigenvalue coincides with

the frequencies corresponding to the bound states attaining a small imaginary part and

moving down to the lower half plane becoming complex resonances.

1.2 The Direct and the Resonant Pathways

The transmitted field in resonant scattering by a photonic device consists of two tem-

poral pathways as described by Fan and Joannopoulos in [9]. The time sequence of a

transmission process in resonant scattering is observed to consist of two distinct stages:

an initial pulse and a tail of long decay. The presence of these two stages demonstrates

the existence of two pathways in the transmission process. This phenomenon indicates

that the guided modes in a resonant scatterer are resonantly exited only by a portion

of the incident energy of the source fields. The initial pathway corresponds to a direct

transmission process that is not responsible for the resonant excitation, which instead

carries a portion of the incident energy through the scatterer without a time delay. The

tail of long decay corresponds to an indirect resonant transmission process in which the

remaining portion of the incident energy excites the guided modes, resonantly enhancing

the fields in the resonator, and then slowly leaks out. The reflection process in resonant
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scattering of waves also has two temporal pathways; resonant and direct akin to that of

the transmission process.

The Fourier transform of the initial pulse should have a shape which closely resembles

that of the incident pulse, whereas the Fourier transform of the decaying tail should be a

Lorentzian line shape associated with a resonance. The understanding of this phenomenon

in resonant scattering has given new insight into related studies; resonance in scattering of

waves is understood to occur from the interference between the direct and the resonance-

assisted indirect pathway. Hence, the properties of the resonant transmission process is

determined by the interference between the direct and the resonant pathways.

This insight has led to the development of an intuitive theory based on a temporal

coupled-mode formalisms to explain complex features of certain resonance phenomena in

optical resonant scatterers.

1.3 Parameters that Affect Resonance

The resonant features of photonic resonant scattering depend on certain aspects of the

scatterer and properties of the incident field originating in the ambient medium. The most

prominent resonant features that can be analyzed are field amplification and the sharp

dips and peaks in the transmission coefficient characteristic of anomalous transmission of

energy across the scatterer. The transmission coefficient is a measure of the portion of the

energy transmitted across the scatterer. Analyzing how the transmission coefficient de-

pends on perturbations of system properties will give us detailed insight in to dependence

of resonant scattering characteristics of a photonic device on the system parameters.

The tuning of sharp resonant scattering features has been examined in discrete [10, 11]

and in continuous [12, 13] models, using a variety of different resonant scatterers. A

connection is established between the line shape of resonant transmission across a scatterer

in a discrete model and asymmetry of the structure and the field in [14]. The dependance

of resonant features on one angle of incidence is analyzed in [15, 16] and on two angles of
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incidence is presented in [17]. An analysis on the dependence of certain resonant scattering

anomalies on non-linearity and the coupling constant is carried out in [18].

Analyzing the delicate behavior of resonance features of a system with a high quality

factor and near-monochromatic incidence will be important in providing insight in to

resonant scattering characteristics of a photonic device. A high quality factor results

in high resonant amplification of the transmitted field and slow energy decay from the

resonator within a narrow frequency band while the near-monochromatic regime refers

to a resonant system operating under the incidence of a spectrally localized field of finite

energy. Under these conditions the resonant features will depend primarily on the constant

of coupling between the resonant scatterer and the incident waves, the spectral width of the

transmission resonance, the difference between the central frequencies of the resonance

and the source field and the angle of incidence. We will focus our study on the three

parameters excluding the angle of incidence in the regime when all three parameters are

small.

1.4 Temporal Coupled Mode Theory for Fano Resonances

The notion of coupling of modes is found extensively in the study of vibrational systems.

An electromagnetic mode can generally be viewed as electromagnetic energy that ex-

ists independent of other electromagnetic power. Different modes belonging to the same

system or to different systems, can exchange energy through a coupling perturbation.

Coupled mode theory approximates the solutions to complex problems associated with

the interaction of different modes of energy based on known solutions for simpler systems

[19].

Temporal coupled mode theory is the application of the coupled mode formalism to

coupling of modes in time. Temporal coupled mode theory allows a wide range of devices

and systems to be modeled as one or more coupled resonators. The assumptions about the

system generally made in applying a temporal coupled mode approach are weak mode
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coupling, linearity, time-reversal symmetry and energy conservation. Temporal coupled

mode formalisms for resonance in optical resonators has been derived in recent years. [20]

We wish to approximately describe the decay rate of resonance in the resonant Lamb

model using a temporal coupled mode approach and compare it to the true dynamics of

the system.
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Chapter 2
A Resonant Lamb Model

With the objective of investigating certain sensitive features of dynamic resonance char-

acteristic to a photonic resonant scattering system, we analyze a specific simplified model

that encapsulates the essential features of a photonic resonant scattering system. Our

model is a resonant modification of the famous Lamb model devised by H. Lamb [21] to

study the interaction between an oscillator and a continuum. Our resonant Lamb model

consists of a two-part scatterer attached to an infinite string. The non-resonant part of

the scatterer is associated with direct scattering while the resonant part is associated with

resonant scattering (field amplification and delayed scattering). The infinite string models

the ambient medium. Differing versions of Lamb-type models has been used in studies

to serve as prototypes for diverse scattering phenomena. Examples include irreversibility

[22], state transitions [23], gyroscopic instability [24], and nonlinear bi-stability [18].

2.1 Characteristics of a Resonant System

The fundamental mechanism of resonance associated with resonant scattering of waves

through a photonic device can be describes by analyzing the interaction between guided

electromagnetic modes of the scatterer and plane waves in the ambient medium. Certain

photonic devices act both as a guide of electromagnetic waves as well as a scatterer of waves

that originate from sources exterior to it. The wave-vector parallel to the waveguide admits

a discrete set of frequencies corresponding to guided modes but also admits a continuum

of frequencies corresponding to plane waves in the ambient space. An open waveguide is

one that is in contact with the ambient space and in this case fields originating in the

ambient space interact with the guided modes. The frequency of such a guided mode can
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be conceived as an eigenvalue that is embedded in the continuous spectrum corresponding

to a specific wave-vector.

The interaction between these guided electromagnetic modes in the scatterer and plane

waves in the ambient medium results in the dissolution of the eigenvalue and this corre-

sponds to the destruction of the guided mode. In this situation the real frequency of a

perfect guided mode attains a small imaginary part and moves to the lower half plane.

As a physical manifestation of this phenomenon, the system exhibits delicate resonance

phenomena. The most prominent resonant characteristics exhibited are high field amplifi-

cation and sharp variations of the transmitted energy across the scatterer. The character-

istic peak-dip shape of resonant transmission anomalies [By transmission anomalies, we

refer to sharp peaks and dips in the graph of the transmission coefficient as a function of

frequency] is often called a Fano resonance. The universal features of the type of photonic

resonant scattering system we consider can be identified as the following:

• The scatterer admits a set of idealized guided modes

• These guided modes can be conceived as eigen-modes with eigenvalues that are

embedded in the continuous spectrum of the extended states corresponding to the

plane waves of the ambient medium

• These guided modes are coupled to the plane waves of the ambient medium.

• This coupling results in the destruction of the guided mode and the plane waves

with frequencies close to the frequency of the guided mode is resonantly scattered.

In order for us to study characteristics of photonic resonant scattering by analyzing a

model we must ensure that the used model encapsulates the essential features of a photonic

resonant scattering system described above.

2.2 A Resonant Lamb Model

To study certain aspects of a resonant scattering system we will analyze a physical model

wherein the modes of the system are not postulated but arise from the model itself. We
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analyze what we feel is the simplest model that exhibits the essential features of photonic

resonance mentioned above. This model is inspired by the famous “Lamb model” proposed

by H. Lamb to elucidate the interaction between an extended medium and a nucleus [21].

Lamb’s model consists of an infinite string coupled to a spring-mass system, in which

radiation losses are felt by the mass as equivalent to instantaneous linear damping. In our

modification, illustrated in Figure 2.1, a point mass is attached to the string, and that

point mass is in turn weakly coupled to a separate spring-mass resonator.

FIGURE 2.1. Resonant Lamb Model

In our model the point-mass along with the spring mass oscillator serves as the scat-

terer of the system while the string models the ambient medium. Note that even though

a photonic scatterer with a complex structure does not have distinguishable resonant and

non-resonant parts, our simplified model actually has two such parts with a clear dis-

tinction. The point mass on the string serves as the non-resonant part of the scatterer,

and the spring-mass serves as the resonant part. The free oscillations of the spring-mass

resonator models the guided modes in a photonic resonant scattering system. The natural

frequencies ±ω0 are eigenvalues for the full system that are embedded in the continuous

spectrum of extended states of the string.
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The model of resonant scattering that we analyze is illustrated in detail in Figure 2.2.

The transmission line (the string) modeling the ambient space, in which disturbances

u(x, t) travel according to the linear wave equation, has a linear mass density of τ . The

two-part scatterer consisting of a non-resonant part and a resonant part is attached to

the string at x = 0. The displacements of the non-resonant and the resonant parts are

denoted consecutively by y(t) and z(t). The spring constant of the resonator is K0. The

coupling between the resonant and the non-resonant parts are physically provided by a

mass-less spring with spring constant k0.

FIGURE 2.2. Detailed Resonant Lamb Model

The equations of motion for the system are the following.

On the string for x 6= 0

utt = c2uxx

For the non-resonant scatterer at x = 0 we have,

mÿ = k0 (z − y) + τ [ux]0 , y (t) = u (0, t)

10



Letting γ = k0
m

and β = τ
m

we get

ÿ = γ (z − y) + β [ux]0

For the resonant part of the scatterer (the spring-mass oscillator) we have

mz̈ = −K0z − γ0 (z − y)

with γ = γ0
m

and letting ω0
2 = K0

m
we get

z̈ = −ω0
2z + γ (y − z)

So the equations governing the system becomes;

utt (x, t) = c2uxx (x, t) , x 6= 0

ÿ (t) = γ (z (t)− y (t)) + β [ux]0 , y (t) = u (0, t)

z̈ (t) = −ω0
2z (t) + γ (y (t)− z (t))

The constant c is the velocity of waves in the string, β controls the force exerted by the

string on the point-mass, γ is the coupling constant between the non-resonant and the

resonant parts of the scatterer, and ω0 is the natural frequency of the resonator.

We have devised this resonant Lamb model so that, when γ = 0, the string with

the point-mass is completely decoupled from the spring-mass. The free oscillation of the

spring-mass is then trivially an infinite-lifetime, finite-energy state, and its frequencies

±ω0 are eigenvalues for the full system that are embedded in the continuous spectrum of

extended states of the string. When the coupling γ is turned on, these eigenvalues become

resonances in the lower-half complex plane with imaginary part on the order of γ2. This

system will display sharp resonant behavior for scattering of waves with frequencies in

the proximity of ω0.
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It should be noted that the parameter of the system that can be perturbed in order to

facilitate resonance in our simple model is the frequency of the incident waves (the central

frequency in case of a non-monochromatic incidence). However in a general photonic

system, perturbation of any one or more of the parameters such as the structure of the

scatterer, frequency of incidence or angle of incidence could result in resonant scattering

of waves and anomalous transmission of energy across the scatterer.

2.3 The Monochromatic Case

In order to illustrate the resonant behavior of this model we will first demonstrate the

scattering of a monochromatic wave across the scatterer. We will consider a monochro-

matic source field in the string that travel from left to right and are partly reflected by

the scatterer and partly transmitted across it as illustrated in figure 2.3.

FIGURE 2.3. Monochromatic Incidence

Suppose that the function J(ξ) is a unit monochromatic incident field, and R(ξ) and

T (ξ) are consecutively the reflected and transmitted fields. Since the incident field, being

monochromatic, is a purely oscillatory wave travelling from left to right we have J (ξ) =

eik(x−ct), R (ξ) = Reik(x+ct) and T (ξ) = Teik(x−ct).

Now since the wave equation governs the motion of disturbances in the infinite string

the solution to the scattering problem for our model will be of the form;

u (x, t) = eik(x−ct) +Reik(x+ct) ; x < 0

12



u (x, t) = Teik(x−ct) ; x > 0

y (t) = u (0, t) = Te−ikct

z (t) = Ze−ikct

Solving for T, R and Z we obtain

T =

[
2iβk (ω0

2 − c2k2 + γ)

[(ω0
2 − c2k2) c2k2 + γ (2c2k2 − ω0

2)] + i [2βk (ω0
2 − c2k2 + γ)]

]
R =

[
− (ω0

2 − c2k2 + γ) (c2k2 − γ)− γ2

[(ω0
2 − c2k2 + γ) (c2k2 − γ) + γ2] + i [2βk (ω0

2 − c2k2 + γ)]

]
Z =

[
2iγβk

[(ω0
2 − c2k2) c2k2 + γ (2c2k2 − ω0

2)] + i [2βk (ω0
2 − c2k2 + γ)]

]
To demonstrate the resonant feature of this “resonant Lamb model” we consider the

amplitude of the resonator, given by Z. When the frequency of the incident harmonic

field is away from the natural frequency ω0 of the resonator the spring-mass is not exited.

However, when ω is in the proximity of ω0, the resonator is resonantly amplified. This is

evident from the plot of log(z) against frequency of the incident field ω in figure 2.4 (For

γ = 0.8, α = 1.5 and ω0 = 1.2).

0.5 1.0 1.5 2.0 2.5
ω

-4

-2

0

2

4

FIGURE 2.4. Resonant amplification of the model

To understand the energy transfer across the scatterer, we consider the monochromatic

transmission coefficient defined by |T |2 which is a measure of the portion of energy

transmitted across the scatterer. With k0 = ω0

c
we get
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|T (k)|2 =

[
4τ 2k2

[
c2
(
k0

2 − k2
)

+ γ
]2[

c4
(
k0

2 − k2
)
k2 + γc2

(
2k2 − k0

2
)]2

+ 4τ 2k2
[
c2
(
k0

2 − k2
)

+ γ
]2
]

Plotting the transmission coefficient |T (ω)|2 against frequency ω we observe sharp

resonant behavior near the natural frequency ω0 of the resonator. Here, γ = 0.8, α = 1.5

and ω0 = 1.2. The dashed line represents the Transmission Coefficient of the system with

no coupling (γ = 0) between the resonator and the point-mass scatterer.

0.5 1.0 1.5 2.0 2.5
ω0.0

0.2

0.4

0.6

0.8

1.0

FIGURE 2.5. Transmission Coefficient

The resulting sharp peak-dip anomaly of the transmission coefficient near the resonant

frequency is a characteristic of Fano resonance. The term ”Fano resonance” which is often

used to refer to this type of a double-spiked anomaly observed in many resonant systems.

The name ”Fano resonance” is attributed to Ugo Fano [25] who derived the following

formula for such a line shape:

fq (e) = k
|q + e|
1 + e2

, e =
E − Er
(Γ/2)

where k is a constant, E is the incident frequency, Er is the resonant frequency, Γ is

the width of the resonance anomaly at half the maximum height and q is a parameter

that controls the relative size of the peak and dip as a function of energy.
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The formula for the transmission coefficient as a function of the wave number of the

incident monochromatic wave in our model is akin to the above formula for the Fano line

shape.

|T (k)|2 =
4τ 2k2

[
c2
(
k0

2 − k2
)

+ γ
]2[

c4
(
k0

2 − k2
)
k2 + γc2

(
2k2 − k0

2
)]2

+ 4τ 2k2
[
c2
(
k0

2 − k2
)

+ γ
]2

We note that;

|T (k)|2 =


0; when(c2

(
k0

2 − k2
)

+ γ = 0

1; when(c4
(
k0

2 − k2
)
k2 + γc2

(
2k2 − k0

2
)

= 0

We explicitly calculate

|T (k)|2 =


0, whenk =

√
k0

2 + γ
c2

1, whenk =

√
k0

2

2
+ γ

c2
+
√

k0
4

4
+ γ2

c4

Since and R defined above are the transmission and reflection for this system under

unit incidence of a monochromatic wave at wave number k, T and R are in fact the

Fourier coefficients for the transmission and reflection of this system under any incident

field. Therefore we denote

t̂ (k) =

[
2iβk (ω0

2 − c2k2 + γ)

[(ω0
2 − c2k2) c2k2 + γ (2c2k2 − ω0

2)] + i [2βk (ω0
2 − c2k2 + γ)]

]

r̂ (k) =

[
− (ω0

2 − c2k2 + γ) (c2k2 − γ)− γ2

[(ω0
2 − c2k2 + γ) (c2k2 − γ) + γ2] + i [2βk (ω0

2 − c2k2 + γ)]

]
We can make use of these Fourier coefficients to study the behavior and the resonant

features of the resonant lamb model under the incidence of a general non-monochromatic

wave pulse in the Fourier domain. This would give us insight in to the anomalous trans-

mission of energy across the scatterer and also enable us to quantify the delicate behavior

of resonance features of our model and hence all photonic resonant scattering systems

that has the basic resonant features of our model.

15



In order to better examine and understand the time dynamics of the transmitted pulse of

this resonant transmission process (under the incidence of a general non-monochromatic

wave pulse), we would have to delve in to the solutions to the scattering problem and

analyze it in the spacial domain.
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Chapter 3
Resonant Scattering of a
Non-monochromatic Field

In the previous chapter we analyzed the resonant scattering of a monochromatic wave

incident on the scatterer in our Resonant Lamb Model. We observed sharp resonant fea-

tures when the incident frequency was in close proximity to the natural frequency of the

spring-mass oscillator (the resonant part of our model). In reality however, a monochro-

matic source field is only an idealization which requires the source of this monochromatic

wave to have oscillated as a sine wave for infinite past time and to continue to do so for

infinite future time. Further in the monochromatic case the total energy of the source field

is infinite. In this chapter we will analyze the more realistic situation when a source field

with finite energy undergoes resonant scattering. Here we wish to study certain aspects of

the resonant scattering of a wave pulse incident upon our Resonant Lamb Model and hence

understand certain universal features of resonant scattering of a non-monochromatic field.

Non-monochromatic incidence will cause significant alterations to the crisp frequency

domain picture of the resonant features of the scattering process. It also gives rise to

further questions in relation to the dynamical nature of the resulting resonance process,

such as how the resonant field would build up and decay with time and the corresponding

time dynamics of the transmitted field.

One important consequence of non-monochromatic resonant scattering is the partition

of energy into direct and resonant scattering channels resulting in two temporal pathways

in the transmission and reflection processes.

In this chapter we will first place the scattering problem in a rigorous functional ana-

lytic setting. Within this setting we will compute the transmitted field for our Resonant

Lamb Model for a general non-monochromatic incidence. We will then provide a rigor-
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ous definition of the two distinct temporal pathways in the transmission process of a

non-monochromatic field. The transmission coefficient of a scattering system under non-

monochromatic incidence will also be discussed.

3.1 Functional Analytic Formulation

Here we wish to discuss the mathematical formulation of the solution to the scattering

problem for our model.

Recall that the equations for the unforced system is given by

utt (x, t) = c2uxx (x, t) , x 6= 0

ÿ (t) = γ (z (t)− y (t)) + β [ux]0 , y (t) = u (0, t)

z̈ (t) = −ω0
2z (t) + γ (y (t)− z (t))

Applying the Fourier-Laplace transform we obtain

−ω2U (x, ω) = c2Uxx (x, ω) , x 6= 0

−ω2Y (x, ω) = γ (Z − Y ) + β [Ux]0 , Y (ω) = U (0, ω)

−ω2Z (ω) = −ω0
2Z (ω) + γ (Y − Z)

To place the problem in a proper functional analytic setting we consider the frequency

domain problem in the Hilbert space H = L2(R)
⊕

C2.

We now define the operator L on the domain

D(L) =
{

[U, Y, Z]T ∈ H | U ∈ H2 (R∗) , U
(
0−
)

= U
(
0+
)

= Y
}
⊆ H

by

L


U

Y

Z

 =


−c2Uxx

−β [Ux]0 − γ (Z − Y )

ω0
2Z − γ (Y − Z)


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Then the unforced system in the frequency domain is given by

LU = ω2U , U =


U

Y

Z



Theorem 3.1. The operator L defined on H = L2(R)
⊕

C2 by

L


U

Y

Z

 =


−c2Uxx

−β [Ux]0 − γ (Z − Y )

ω0
2Z − γ (Y − Z)


is a positive self – adjoint operator in its domain,

D(L) =
{

[U, Y, Z]T ∈ H | U ∈ H2 (R∗) , U
(
0−
)

= U
(
0+
)

= Y
}

with respect to the inner product

〈
U1

Y1

Z1

 ,


U2

Y2

Z2


〉
H

= β

∫
U1U2 + c2

(
Y1Y2 + Z1Z2

)

Proof. We first show that L is symmetric.

For


U

Y

Z

 ,


U2

Y2

Z2

 ∈ D(L)

〈
L


U

Y

Z

 ,


U2

Y2

Z2


〉
H

=

〈
−c2Uxx

−β [Ux]0 − γ (Z − Y )

ω0
2Z − γ (Y − Z)

 ,


U2

Y2

Z2


〉
H
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= β

∫
R∗
−c2UxxU2 + c2

[(
−β
[
Ux

]
0
− γ

(
Z − Y

))
Y2 +

(
ω0

2Z − γ
(
Y − Z

))
Z2

]
= βc2

∫
R∗
Ux(U2)x + c2β

[
UxU2

]
0
− c2β

[
Ux

]
0
Y2−

− c2
[(
γ
(
Z − Y

))
Y2 −

(
ω0

2Z − γ
(
Y − Z

))
Z2

]
= βc2

∫
R∗
Ux(U2)x + c2β

([
UxU2

]
0
−
[
Ux

]
0
Y2

)
−

− c2
[
γZY2 − γY Y2 − ω0

2ZZ2 + γY Z2 − γZZ2

]
= βc2

∫
R∗
Ux(U2)x − c

2
[
γ
(
ZY2 + Y Z2 − Y Y2 − ZZ2

)
− ω0

2ZZ2

]
since Y2 = U2 (0−) = U2 (0+)

and

〈
U

Y

Z

 , L


U2

Y2

Z2


〉
H

=

〈
U

Y

Z

 ,


−c2(U2)xx

−β [(U2)x]0 − γ (Z2 − Y2)

ω0
2Z2 − γ (Y2 − Z2)


〉
H

= β

∫
R∗
U
(
−c2(U2)xx

)
+ c2

[
Y
(
−β [(U2)x]0 − γ (Z2 − Y2)

)
+

+ Z
(
ω0

2Z2 − γ (Y2 − Z2)
)

= βc2

∫
R∗

(U2)xUx + c2β
[
(U2)xU

]
0
− c2βY [(U2)x]0−

− c2
[
γ Y (Z2 − Y2)− Z

(
ω0

2Z2 − γ (Y2 − Z2)
)]

= βc2

∫
R∗

(U2)xUx + c2β
([

(U2)xU
]

0
− [(U2)x]0Y

)
−

− c2
[
γZ2Y − γY2Y − ω0

2Z2Z + γY2Z − γZ2Z
]

= βc2

∫
R∗
Ux(U2)x − c

2
[
γ
(
ZY2 + Y Z2 − Y Y2 − ZZ2

)
− ω0

2ZZ2

]
since Y = U (0−) = U (0+)

hence 〈
L


U

Y

Z

 ,


U2

Y2

Z2


〉
H

=

〈
U

Y

Z

 , L


U2

Y2

Z2


〉
H
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We will now show that L is a closed operator. Along with the fact that both its deficiency

subspaces are trivial this is sufficient for the symmetric operator L to be self-adjoint [26].

Suppose {Un}, where Un =


Un

Yn

Zn

 ∈ D(L) is a Cauchy sequence in the operator norm

of L,

‖U‖L =
[
c4‖Uxx‖2 + β2 |[Ux]0|

2 + +4γ2|Z − Y |2 + |Y |2 +
(
ω0

4 + 1
)
|Z|2 + ‖U‖2

] 1
2

Then {Un} is Cauchy in H2 (R∗) = H2 (−∞, 0)
⊕

H2 (0,∞), {(Un)xx} is Cauchy in

L2 (R), {(Un)x} is Cauchy in L2(R∗) while {Yn}, {Zn} and
{

[(Un)x]0
}

are Cauchy in C,

with Un (0−) = Un (0+) = Yn.

Since L2 (R) is complete (Un)xx converges in L2 (R) while {Yn}, {Zn} and
{

[(Un)x]0
}

converge in C since C is complete.

Consider Un
+ = Un|(0,∞) and Un

− = Un|(−∞,0)

Note that Un
− (0) = Un (0−) and Un

+ (0) = Un (0+)

Then
{
Un
−} is Cauchy in H2 (R−) and

{
Un

+
}

is Cauchy in H2 (R+)

Now since H2 (R−) is complete, Un
− −→ U− in H2 (R−)

Then by the trace theorem we have the existence of U−|∂H2(R−) = U− (0).

Define U− (0) = Y

Then Yn −→ Y in C

Also since H2 (R+) complete, Un
+ −→ U+ in H2 (R+).

The trace theorem guarantees the existence of U+|∂H2(R−) = U+ (0) and

Un
+ (0) −→ U+ (0) .

Now we have

U
(
0−
)

= U− (0) = Y = lim
n
Yn = lim

n
Un
(
0+
)

= lim
n

Un
+ (0) = U+ (0) = U

(
0+
)
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Define

U =


U− in H2 (−∞, 0)

Y x = 0

U+ in H2 (0,∞)

Then we have Un −→ U in H2 (R∗) with U (0−) = Y = U (0+)

Hence Un −→ U in the operator norm and U ∈ H2 (R∗).

So we have that U =


U

Y

Z

 ∈ D(L)

Hence the operator L is closed.

Moreover the solutions to the systems LU = iU and LU = −iU are trivial. Thus the

deficiency subspaces Ni, N−i = {0} .

This implies that L has no non-trivial self-adjoint extensions in H.

Hence L is self-adjoint.

Finally we show that L is a positive operator.

For


U

Y

Z

 ∈ D(L)

〈
L


U

Y

Z

 ,


U

Y

Z


〉
H

=

〈
−c2Uxx

−β [Ux]0 − γ (Z − Y )

ω0
2Z − γ (Y − Z)

 ,


U

Y

Z


〉
H

= β

∫
R∗

(
−c2Uxx

)
U + c2

[(
−β

[
Ux

]
0
− γ

(
Z − Y

))
Y +

(
ω0

2Z − γ
(
Y − Z

))
Z
]

= βc2

∫
R∗

∣∣Ux

∣∣2 + c2β
([
UxU

]
0
−
[
Ux

]
0
Y
)

+ c2

[
Y Z

] γ −γ

−γ ω0
2 + γ


 Y

Z


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= βc2

∫
R∗

∣∣Ux

∣∣2 + c2

[
Y Z

] γ −γ

−γ ω0
2 + γ


 Y

Z

 ≥ 0

Now we wish to present the system as a first order evolution in time. We denote V =

∂U
∂t

=


U̇

Ẏ

Ż

 Then the system can be expressed as

∂

∂t

 U
V

 =

 0 1

−L 0


 U
V


Define Q (L) by

Q(L) =
{

(U, Y, Z) ∈ H|U ∈ H1 (R) , U(0) = Y
}
,

with inner product

〈
U1

Y1

Z1

 ,


U2

Y2

Z2


〉
Q

= βc2

∫
Ū ′1U

′
2 + c2ω2

0Z̄1Z2 + γc2
[
(Ȳ1Y2 + Z̄1Z2)− (Ȳ1Z2 + Z̄1Y2)

]

Note that for U ∈ D (L)

〈U ,V〉Q(L) = 〈LU ,V〉H

and for V ∈ D (L)

〈U ,V〉Q(L) = 〈U , LV〉H

Define the operator A in Q (L)
⊕
H as follows:

On its domain, D (A) = D (L)
⊕
Q (L) the operator A has the block form

A =

 0 1

−L 0


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Then our unforced system is equivalent to the two dimensional first order system given

by

∂

∂t

 U
V

 = A

 U
V



in which U =


U

Y

Z

 , V = ∂U
∂t

Theorem 3.2. The operator A defined by

A =

 0 1

−L 0


is anti-self-adjoint in its domain

D (A) = D (L)
⊕
Q (L)

Proof. First we prove that A is anti-symmetric

For  U1

V1

 ,
 U2

V2

 ∈ D (A) = D (L)
⊕
Q (L)

〈
A

 U1

V1

 ,

 U2

V2

〉
Q(L)

⊕
H

=

〈 V1

−LU1

 ,

 U2

V2

〉
Q(L)

⊕
H

= 〈V1 ,U2〉Q(L) + 〈−LU1 ,V2〉H

= 〈V1 , LU2〉H − 〈LU1 ,V2〉H

Since U2 ∈ D (L).

〈 U1

V1

 , A

 U2

V2

〉
Q(L)

⊕
H

=

〈 U1

V1

 ,

 V2

−LU2

〉
Q(L)

⊕
H
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= 〈U1 ,V2〉Q(L) + 〈V1 ,−LU2〉H

= 〈LU1 ,V2〉H − 〈V1 , LU2〉H

Since U2 ∈ D (L).

Hence we’ve proved that〈
A

 U1

V1

 ,

 U2

V2

〉
Q(L)

⊕
H

= −

〈 U1

V1

 , A

 U2

V2

〉
Q(L)

⊕
H

Now we prove that D (A∗) = D (A)

Let

 U2

V2

 ∈ D (A∗)

Then the map l : D (A) −→ C given by U1

V1

 7−→ 〈
A

 U1

V1

 ,

 U2

V2

〉
Q(L)

⊕
H

is bounded.

Then by the Reisz theorem there exists

 U∗
V∗

 ∈ Q (L)
⊕
H such that for all

 U2

V2

 ∈
D (A∗) = D (L)

⊕
Q (L)

〈
A

 U1

V1

 ,

 U2

V2

〉
Q(L)

⊕
H

=

〈 U1

V1

 ,

 U∗
V∗

〉
Q(L)

⊕
H

⇒

〈 V1

−LU1

 ,

 U2

V2

〉
Q(L)

⊕
H

=

〈 U1

V1

 ,

 U∗
V∗

〉
Q(L)

⊕
H

⇒ 〈V1 ,U2〉Q(L) + 〈−LU1 ,V2〉H = 〈U1 ,U∗〉Q(L) + 〈V1 ,V∗〉H

⇒ 〈V1 ,U2〉Q(L) − 〈U1 ,V2〉Q(L) = 〈U1 ,U∗〉Q(L) + 〈V1 ,V∗〉H

⇒ 〈V1 ,U2〉Q(L) + 〈U1 ,−V2〉Q(L) = 〈U1 ,U∗〉Q(L) + 〈V1 ,V∗〉H

Now we take V1 = 0 and let U1 range over all D (L)
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Then we have

〈U1 ,−V2〉Q(L) = 〈U1 ,U∗〉Q(L) , ∀ U1 ∈ D (L)

⇒ V2 = −U∗ ⇒ V2 ∈ Q (L)

Now recall that map l : D (A) = D (L)
⊕
Q (L) −→ Q (L)

⊕
H given by U1

V1

 7−→ 〈
A

 U1

V1

 ,

 U2

V2

〉
Q(L)

⊕
H

is bounded.

Take U1 = 0 and let V1 range over all of Q (L)

Then we have l|{0}⊕D(L) given by 0

V1

 7−→ 〈
A

 0

V1

 ,

 U2

V2

〉
Q(L)

⊕
H

= 〈V1 ,U2〉Q(L)

is bounded, so that the map α : D (L) −→ C given by

V1 7−→ 〈V1 ,U2〉Q(L) = 〈LV1 ,U2〉Q(L)

is bounded. But this means that U2 ∈ D (L∗) and since D (L) = D (L∗) we have that

U2 ∈ D (L)

Since U2 ∈ D (L) and V2 ∈ Q (L) we conclude

 U2

V2

 ∈ D (A) = D (L)
⊕
Q (L)

Hence D (A∗) = D (A)

Recall that the unforced scattering problem is given by

(
L− ω2

)
U = 0

26



The forced system is given by

(
L− ω2

)
U = F ; U =


U

Y

Z

 , F =


f

f0

f∗


f (x): force at the point x on the string, x 6= 0

f0: force on the point-mass scatterer

f∗: force on the mass-resonator

When γ = 0, ±ω0 are eigen-values of the operator L. Hence the natural frequencies

±ω0 of the resonator (the frequencies corresponding to the bound states of the system)

are realized as the eigen-value of the operator L underlying the scattering system when

the point-mass and the spring-mass resonator are decoupled.

These eigenvalues are embedded in the continuous spectrum of the operator. This con-

tinuous spectrum corresponds to the continuum of frequencies of the extended states

(waves that travel in the string in our model which models the ambient medium).

When γ > 0, the point-mass and the mass-spring resonator are coupled and hence bound

states of the scatterer are destroyed due to the interaction with the waves travelling on

the sting (extended states in the ambient medium). The perturbation of the idealized

system via the coupling of the point-mass and the spring-mass resonator is materialized

within the operator L underlying the system by the dissolution of these eigenvalues in to

the continuous spectrum and the corresponding eigen-values moving down in to the lower

half plane.

3.2 Solution to The Scattering Problem

Let us now solve the scattering problem for our system under a non-monochromatic

incidence. Suppose a wave pulse (non-monochromatic) is incident upon the system from

the left. We will consider a wave pulse in the string that travel from left to right and
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is partly reflected by the scatterer and partly transmitted across it. Suppose that the

non-monochromatic incident field is J(ξ) and that R(ξ) and T (ξ) are consecutively the

reflected and transmitted fields. Since the infinite string in our Resonant Lamb Model

admits the wave equation for its traveling disturbances, the displacement of the string at

the point x at time t must be of the form;

u(x, t) =


J(x− ct) +R(x+ ct), x ≤ 0,

T (x− ct), x ≥ 0.

If J(ξ) = 0 for ξ > ξ0, then for time t < −ξ0 /c, the source field J(x−ct) is supported

completely to the left of the scatterer and is approaching it. Assuming that there are no

disturbances other than J(ξ) affecting the string, the scatterer (point-mass) and the right

side of the string are at rest t < −ξ0/c. This means that R(ξ) = 0 for ξ < −ξ0 and

T (ξ) = 0 for ξ > ξ0. By moving ξ0 to ∞, one can allow J(ξ) to be an infinitely supported

finite energy wave pulse; A Gaussian, for example.

FIGURE 3.1. Non Monochromatic Incidence

To compute the solution for the system under an arbitrary non-monochromatic inci-

dence as described above, we note that the scatterer remains at rest until time t = −ξ0 /c

and then it is impulsively forced by the velocity of the incident pulse. The system that

we must solve is given by
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utt (x, t) = c2uxx (x, t) + v (x) δ (t) , x 6= 0

ÿ (t) = γ (z (t)− y (t)) + β [ux]0 + v0δ (t) , y (t) = u (0, t)

z̈ (t) = −ω0
2z (t) + γ (y (t)− z (t)) + v∗δ (t)

In the Fourier domain we have:

−ω2U (x, ω) = c2Uxx (x, ω) +
v (x)

2π
, x 6= 0

−ω2Y (x, ω) = γ (Z − Y ) + β[Ux]0 +
v0

2π
, Y (ω) = U (0, ω)

−ω2Z (ω) = −ω0
2Z (ω) + γ (Y − Z) +

v∗
2π

where v (x) = ut (x, 0), the velocity of the incident pulse.

Hence we seek solutions of

(
L− ω2

)
U = F ; U =


U

Y

Z

 , F =


f

f0

f∗


where f (x) = v(x)

2π
for x 6= 0, f0 = v0

2π
and f∗ = v∗

2π
Response of the system to this

impulsive forcing will be given by the resolvent of the operator L at ω2.

U =
(
L− ω2I

)−1
F

The response of the system when the forcing is a point source is given by Green’s

functions. We will use Green’s functions to compute the general response of the system.

Let G (x, x0;ω) be the influence felt by the system at x due to a unit point source forcing

at x0 on the string for x0 6= 0

G (x, x0;ω) =
(
L− ω2I

)−1
F, F =


δ(x− x0)

0

0


Let G0 (x;ω) be the influence felt by the system at x due to a unit forcing at the point-mass

scatterer
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G0 (x;ω) =
(
L− ω2I

)−1
F, F =


0

1

0


Let G∗ (x;ω) be the influence felt by the system at x due to a unit forcing at the spring-

mass resonator

G∗ (x;ω) =
(
L− ω2I

)−1
F, F =


0

0

1


We first find G (x, x0;ω) by solving

(
L− ω2

)

G (x, x0;ω)

Yx0 (ω)

Zx0(ω)

 =


δ(x− x0)

0

0


where

G (x, x0;ω) =


G (x, x0;ω)

Yx0 (ω)

Zx0(ω)

 , Yx0 (ω) = G (0, x0;ω)

So we have to solve

−c2Gxx (x, x0;ω)− ω2G (x, x0;ω) = δ(x− x0), x 6= 0

−γ (Zx0(ω)− Yx0 (ω))− β [Gx (x, x0;ω)]0 − ω
2Yx0 (ω) = 0

ω0
2Zx0 (ω)− γ (Yx0 (ω)− Zx0(ω))− ω2Zx0(ω) = 0

The solution for G (x, x0;ω) has the form of a field produced by a source concentrated at

x = x0 6= 0 and then modified due to being scattered by the scatterer (point-mass and

mass-spring pair) at x = 0 given by

G (x, x0;ω) =
1

2iωc
e
iω|x−x0|

c + g (x0;ω) e
iω|x|
c
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Note that

[Gx (x, x0;ω)]0 =

[
∂

∂x

(
1

2iωc
e
iω|x−x0|

c

)]
0

+

[
∂

∂x

(
g (x0;ω) e

iω|x|
c

)]
0

Since x0 6= 0, limx−→0 (x− x0) 6= 0 and hence

[
∂

∂x

(
1

2iωc
e
iω|x−x0|

c

)]
0

=
1

2iωc

[
lim

x−→0+

∂

∂x

(
e
iω|x−x0|

c

)
− lim

x−→0−

∂

∂x

(
e
iω|x−x0|

c

) ]
=

1

2iωc

iω

c

[
lim

x−→0+

(
e
iω|x−x0|

c

)
− lim

x−→0−

(
e
iω|x−x0|

c

) ]
=
(
e
iω|x−x0|

c

)
−
(
e
iω|x−x0|

c

)
= 0

So we have

[Gx (x, x0;ω)]0 =

[
∂

∂x

(
g (x0;ω) e

iω|x|
c

)]
0

= g (x0;ω)

[
lim

x−→0+

∂

∂x

(
e
iω|x|
c

)
− lim

x−→0−

∂

∂x

(
e
iω|x|
c

) ]
= g (x0;ω)

[
iω

c
−
(
−iω
c

)]
=

2iω

c
g (x0;ω)

Since Yx0 (ω) = G (0, x0;ω) we also have

Yx0 (ω) =
1

2iωc
e
iω|x0|
c + g (x0;ω)

Therefore to find G (x, x0;ω) we compute g (x0;ω) and Zx0(ω) using the equations

−γ (Zx0 (ω)− g (x0;ω))− 2iβω

c
g (x0;ω)− ω2g (x0;ω) =

(
ω2−γ

) 1

2iωc
e
iω|x0|
c

ω0
2Zx0 (ω)− γ (g (x0;ω)− Zx0(ω))− ω2Zx0(ω) =

γ

2iωc
e
iω|x0|
c

These equations can be expressed as γ − ω2 − 2iβ ω
c

−γ

−γ ω0
2 − ω2 + γ


 g (x0;ω)

Zx0(ω)

 =
1

2iωc
e
iω|x0|
c

 ω2 − γ

γ


Denote
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A =

 γ − ω2 − 2iβω
c

−γ

−γ ω0
2 − ω2 + γ


Then g (x0;ω) and Zx0(ω) is given by g (x0;ω)

Zx0(ω)

 =
e
iω|x0|
c

2iωc

1

det(A)

 ω0
2 − ω2 + γ γ

γ γ − ω2 − 2iβ ω
c


 ω2 − γ

γ


Hence, the solution for G (x, x0;ω) is given by

G (x, x0;ω) =


1

2iωc
e
iω|x−x0|

c + g (x0;ω) e
iω|x|
c

1
2iωc

e
iω|x0|
c + g (x0;ω)

Zx0(ω)


with

g (x0;ω) =
1

2iωc

[(ω2 − γ) (ω2 − ω0
2 − γ)− γ2][(

2iβω
c

+ ω2 − γ
)

(ω0
2 − ω2 + γ) + γ2

] e iω|x0|c

Zx0(ω) =
γ

c2

β[(
2iβω
c

+ ω2 − γ
)

(ω0
2 − ω2 + γ) + γ2

] e iω|x0|c

We then find G0 (x;ω) by solving

(
L− ω2

)

G0 (x;ω)

Y0 (ω)

Z0(ω)

 =


0

1

0


where

G0 (x;ω) =


G0 (x;ω)

Y0 (ω)

Z0(ω)

 , Y0 (ω) = G0 (0;ω)

The solution for G0 (x;ω) has the form of a field produced by a source concentrated at

x = 0 given by
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G0 (x;ω) = g0 (ω) e
iω|x|
c

Since Y0 (ω) = G0 (0;ω) we have

Y0 (ω) = g0 (ω)

and we also compute

[G0 (x;ω)]0 = g0 (ω)

[
lim

x−→0+

∂

∂x

(
e
iω|x|
c

)
− lim

x−→0−

∂

∂x

(
e
iω|x|
c

) ]
=

2iω

c
g0 (ω)

We solve for Z0(ω) and g0(ω) by using the equations:

−γ (Z0(ω)− g0 (ω))− 2iβω

c
g0 (ω)− ω2g0 (ω) = 1

ω0
2Z0(ω)− γ (g0 (ω)− Z0(ω))− ω2Z0(ω) = 0

These equations can be expressed as γ − ω2 − 2iβ ω
c

−γ

−γ ω0
2 − ω2 + γ


 g0 (ω)

Z0(ω)

 =

 1

0


Then g0 (ω) and Z0(ω) are given by

 g0 (ω)

Z0(ω)

 =
1

det(A)

 ω0
2 − ω2 + γ γ

γ γ − ω2 − 2iβ ω
c


 1

0


Hence the solution for G0 (x;ω) is given by

G0 (x;ω) =


g0 (ω) e

iω|x|
c + g0 (ω)

g0 (ω)

Z0(ω)


with

g0 (ω) =
(ω2 − ω0

2 − γ)[(
2iβω
c

+ ω2 − γ
)

(ω0
2 − ω2 + γ) + γ2

]
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Z0(ω) =
−γ[(

2iβω
c

+ ω2 − γ
)

(ω0
2 − ω2 + γ) + γ2

]
We now find G∗ (x;ω) by solving

(
L− ω2

)

G∗ (x;ω)

Y∗ (ω)

Z∗(ω)

 =


0

0

1


where

G∗ (x;ω) =


G∗ (x;ω)

Y∗ (ω)

Z∗(ω)

 , Y∗ (ω) = G∗ (0;ω)

The solution for G∗ (x;ω) has the form of a field produced by a source concentrated at

x = 0 given by

G∗ (x;ω) = g∗ (ω) e
iω|x|
c

Since Y∗ (ω) = G∗ (0;ω) we have

Y∗ (ω) = g∗ (ω)

and we also compute

[G∗ (x;ω)]0 = g∗ (ω)

[
lim

x−→0+

∂

∂x

(
e
iω|x|
c

)
− lim

x−→0−

∂

∂x

(
e
iω|x|
c

) ]
=

2iω

c
g∗ (ω)

We solve for Z∗(ω) and g∗(ω) by using the equations:

−γ (Z∗(ω)− g∗ (ω))− 2iβ ω

c
g∗ (ω)− ω2g∗ (ω) = 0

ω0
2Z∗(ω)− γ (g∗ (ω)− Z∗(ω))− ω2Z∗(ω) = 1

These equations can be expressed as
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 γ − ω2 − 2iβ ω
c

−γ

−γ ω0
2 − ω2 + γ


 g∗ (ω)

Z∗(ω)

 =

 0

1


Hence g∗ (ω) and Z∗(ω) are given by g∗ (ω)

Z∗(ω)

 =
1

det(A)

 ω0
2 − ω2 + γ γ

γ γ − ω2 − 2iβ ω
c


 0

1


Therefore we have

G∗ (x;ω) =


g∗ (ω) e

iω|x|
c

g∗ (ω)

Z∗(ω)


with

g∗ (ω) =
−γ[(

2iβω
c

+ ω2 − γ
)

(ω0
2 − ω2 + γ) + γ2

]
Z∗(ω) =

−
(

2iβω
c

+ ω2 − γ
)[(

2iβω
c

+ ω2 − γ
)

(ω0
2 − ω2 + γ) + γ2

]
Now we have the solutions for all basis elements that will make up the forcing F and

hence we can write down the solution U in the Fourier domain for the general forced

system.

Note that the impulsive forcing f (x) on the string can be expressed as

f (x) =

∫
x0 6=0

δ (x− x0) f (x0) dx0 ;x 6= 0

The solution for the forced system (L− ω2I)U = F is given by

U =

∫
x0 6=0

G (x, x0;ω) f (x0) dx0 + G0 (x;ω) f0 + G∗ (x;ω) f∗
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Explicitly for U =


U

Y

Z

 ∈ H and F =


f

f0

f∗


U =

∫
x0 6=0

G (x, x0;ω) f (x0) dx0 +G0 (x;ω) f0 +G∗ (x;ω) f∗

Y =

∫
x0 6=0

Yx0 (ω) f (x0) dx0 + Y0 (ω) f0 + Y∗ (ω) f∗

Z =

∫
x0 6=0

Zx0 (ω) f (x0) dx0 + Z0 (ω) f0 + Z∗ (ω) f∗

Now for f (x) = v(x)
2π
, f 0 = v0

2π
and f∗ = v∗

2π
, the Fourier coefficients U (x, ω) , Y (x, ω)

and Z (x, ω) are given by,

U (x, ω) =
1

2π

[∫
G (x, x0;ω) v (x0) dx0 +G0 (x;ω) v0 +G∗ (x;ω) v∗

]
Y (x, ω) =

1

2π

[∫
Yx0 (ω) v (x0) dx0 + Y0 (ω) v0 + Y∗ (ω) v∗

]
Z (x, ω) =

1

2π

[∫
Zx0 (ω) v (x0) dx0 + Z0 (ω) v0 + Z∗ (ω) v∗

]

We can now express the disturbance on the string at a point x at time t, u (x, t) as an

integral superposition of all harmonic oscillations using the inverse Fourier transform;

u (x, t) =

∫
U (x, ω)e−iωtdω

=
1

2π

∫ [∫
G (x, x0;ω) v (x0) dx0 +G0 (x;ω) v0 +G∗ (x;ω) v∗

]
e−iωtdω

in which (denoting α = 2β
c

)

G (x, x0;ω) =
1

2iωc

[
e
iω|x−x0|

c +
[(ω2 − γ) (ω2 − ω0

2 − γ)− γ2]

[(iαω + ω2 − γ) (ω0
2 − ω2 + γ) + γ2]

e
iω(|x|+|x0|)

c

]

G0 (x;ω) =
(ω2 − ω0

2 − γ)

[(iαω + ω2 − γ) (ω0
2 − ω2 + γ) + γ2]

e
iω|x|
c
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G∗ (x;ω) =
−γ

[(iαω + ω2 − γ) (ω0
2 − ω2 + γ) + γ2]

e
iω|x|
c

We now write down the displacement of the point-mass at x = 0 at time t, y(t);

y (t) =

∫
Y (x, ω)e−iωtdω

=
1

2π

∫ [∫
Yx0 (ω) v (x0) dx0 + Y0 (ω) v0 + Y∗ (ω) v∗

]
e−iωtdω

where

Yx0 (ω) =
e
iω|x0|
c

2iωc

[
1 +

[(ω2 − γ) (ω2 − ω0
2 − γ)− γ2]

[(iαω + ω2 − γ) (ω0
2 − ω2 + γ) + γ2]

]

Y0 (ω) =
(ω2 − ω0

2 − γ)

[(iαω + ω2 − γ) (ω0
2 − ω2 + γ) + γ2]

Y∗ (ω) =
−γ

[(iαω + ω2 − γ) (ω0
2 − ω2 + γ) + γ2]

The displacement of the spring-mass at time t, y(t) is given by;

z (t) =

∫
Z(x, ω)e−iωtdω

=
1

2π

∫ [∫
Zx0 (ω) v (x0) dx0 + Z0 (ω) v0 + Z∗ (ω) v∗

]
e−iωtdω

where

Zx0(ω) =
γ

c2

β

[(iαω + ω2 − γ) (ω0
2 − ω2 + γ) + γ2]

e
iω|x0|
c

Z0(ω) =
−γ

[(iαω + ω2 − γ) (ω0
2 − ω2 + γ) + γ2]

Z∗(ω) =
− (iαω + ω2 − γ)

[(iαω + ω2 − γ) (ω0
2 − ω2 + γ) + γ2]
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3.3 Poles of the Resolvent Operator of the System

The operator L, underlying the scattering system is self-adjoint and positive. Since L is

a self-adjoint operator (its spectrum, σ (L) is a subset of real numbers [27]), its resolvent,

(L− ω2)
−1

of L at ω2 exists everywhere on the upper-half and the lower-half of the ω2

plane. This corresponds to quadrant 1 and 2 on the ω plane, excluding the axes. Further,

since L is also a positive operator, the spectrum σ (L) ⊆ [0,∞). Therefore (L− ω2)
−1

exists for all ω2 ∈ (−∞, 0) or equivalently for all positive imaginary ω as well. Thus, the

resolvent exists everywhere on the upper half ω plane.

The above discussion shows that the analytic continuation of the resolvent (L− ω2)
−1

will not have poles in the upper half ω plane. Poles of the resolvent are obtained when

the denominator of the system D (ω) = 0. That is when

D (ω) =
(
iαω + ω2 − γ

) (
ω0

2 − ω2 + γ
)

+ γ2 = 0

When γ = 0 we have,

D (ω) = ω (iα + ω)
(
ω0

2 − ω2
)

So the roots of D (ω) when γ = 0 are ω = −ω0, 0, ω0, −αi

When γ = 0, ω0
2 is an eigen-value of L that is embedded in the spectrum of the

operator L. When γ 6= 0, the system is perturbed by the coupling between the resonator

and the point-mass. This causes the embedded eigen-value to dissolve and move down to

the lower-half plane.

When γ 6= 0 let,

D (ω) =
(
iαω + ω2 − γ

) (
ω0

2 − ω2 + γ
)

+ γ2 = (ω − ω∗) (ω + ω∗) (ω − ω1) (ω − ω2)

Then these poles are given in terms of γ by

ω∗ = ω0 +
1

2ω0

γ +

(
(3ω0

2 − α2)

2ω0
3 (ω0

2 + α2)
− α

ω0
2 (ω0

2 + α2)
i

)
γ2 +O(γ3)
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−ω∗ = −ω0 −
1

2ω0

γ −
(

(3ω0
2 − α2)

2ω0
3 (ω0

2 + α2)
+

α

ω0
2 (ω0

2 + α2)
i

)
γ2 +O(γ3)

ω1 = − i
α
γ +

2 (ω0
2 − α2)

α3ω0
2 iγ2 +O(γ3)

ω2 = −iα +
i

α
γ +

2ω0
2

α3 (ω0
2 + α2)

iγ2 +O(γ3)

The corresponding roots of D (ω), denoted by ω1, ω2, ω∗ and −ω∗ all moving down to

the lower half ω plane are illustrated in figure 3.2

FIGURE 3.2. Poles of the Resolvent

Two of the poles, ω∗ and −ω̄∗, originate from the spring-mass (within the two-part

scatterer in the system) and are perturbations of its characteristic frequencies ω0 and

−ω0 consecutively. These two poles are analytic functions of γ, with negative imaginary

parts on the order of γ2. The spring-mass being the resonant part in our two-part scatterer

it is natural that these poles become resonances. These two poles contribute to a “resonant

pathway” in the transmitted field.

ω∗(γ) = ωc(γ)− iγ2κ(γ),

−ω̄∗(γ) = −ωc(γ)− iγ2κ(γ),
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in which ωc is the central (real) frequency of the resonance, which is detuned from ω0

by order γ,

ωc(γ) = ω0 +
1

2ω0

γ +O(γ2),

and the attenuation term κ(γ) has an expansion

κ (γ) =
α

ω0
2 (ω0

2 + α2)
+O (γ) .

The other two poles originate from the point-mass (within the two-part scatterer in

the system) are also analytic functions of γ, but lies on the negative imaginary axis.

Originating from the non-resonant pat in our two-part scatterer, these poles contribute

to a “direct pathway” in the transmitted field.

ω1 = −iγβ(1)

and

ω2 = iβ(2)

in which

β(1) =
1

α
− 2 (ω0

2 − α2)

α3ω0
2 γ +O(γ2)

and

β(2) = α− 1

α
γ − 2ω0

2

α3 (ω0
2 + α2)

γ2 +O(γ3)

3.4 The Transmitted Field

The transmitted field of the scattering solution is obtained from u (x, t) when x > 0. We

will assume that the support of the impulsive force function v (x) is to the left of the point

mass scatterer at x = 0 and that a forcing is applied neither at the point-mass nor at the

spring-mass resonator. Therefore in

u (x, t) =
1

2π

∫ [∫
G (x, x0;ω) v (x0) dx0 +G0 (x;ω) v0 +G∗ (x;ω) v∗

]
e−iωtdω
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we have that supp v ⊆ (−∞, 0), v0 = 0 and v∗ = 0. Denoting the transmitted field by

uT (x, t) we have

uT (x, t) =
1

2π

∫ ∞
−∞

∫ 0

−∞
v (x0)G (x, x0;ω) e−iωtdx0dω

=
1

2π

∫ ∞
−∞

∫ 0

−∞
v (x0)

[
1

2iωc
e
iω|x−x0|

c + g (x0;ω) e
iω|x|
c

]
e−iωtdx0dω

=
1

2π

∫ 0

−∞

v (x0)

2ic

∫ ∞
−∞

[
ei
ω
c

(|x−x0|−ct)

ω
+ 2icg (x0;ω) ei

ω
c

(|x|+|x0|−ct)
]
dωdx0

=
1

2π

∫ 0

−∞

v (x0)

2ic

[∫ ∞
−∞

ei
ω
c

(|x−x0|−ct)

ω
+ 2icg (x0;ω) ei

ω
c

(|x|+|x0|−ct)dω

]
dx0

Denote

I =

∫ ∞
−∞

A (ω)dω and J =

∫ ∞
−∞

ei
ω
c

(|x−x0|−ct)

ω
dω

in which

A (ω) = 2icg (x0;ω) ei
ω
c

(|x|+|x0|−ct)

=
[(ω2 − γ) (ω2 − ω0

2 − γ)− γ2]

ω [(ω − ω∗) (ω + ω∗) (ω − ω1) (ω − ω2)]
ei
ω
c

(|x|+|x0|−ct)

Now since x > 0 and x0 < 0

|x|+ |x0| − ct = |x− x0| − ct = x− ct− x0

Denote x− ct = ξ, then |x|+ |x0| − ct = ξ − x0

Then,

J =

∫ ∞
−∞

ei
ω
c

(ξ−x0)

ω
dω

and

I =

∫ ∞
−∞

[(ω2 − γ) (ω2 − ω0
2 − γ)− γ2]

ω [(ω − ω∗) (ω + ω∗) (ω − ω1) (ω − ω2)]
ei
ω
c

(ξ−x0)dω

Now since ei
ω
c

(ξ−x0) decays exponentially in the upper-half ω plane for ξ − x0 > 0 and

decays exponentially in the lower-half ω plane for ξ − x0 < 0 residue calculus yields

J =


0, ξ − x0 > 0

2πi, ξ − x0 < 0
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Also since A (ω) decays exponentially in the upper-half ω plane for ξ − x0 > 0, we have

that

I = 0 when ξ − x0 > 0

and when ξ − x0 < 0, A (ω) decays exponentially in the lower-half ω plane and residue

calculus gives

I = 2πi [Res (A, 0) +Res (A, ω1) +Res (A, ω2) +Res (A, ω∗) +Res (A,−ω∗)]

Now we can express the transmitted field, uT (x, t) in terms of the integrals I and J

using the expressions for these residues.

Hence, for x > 0, denoting x− ct = ξ and uT (x, t) = T (ξ)

T (ξ) =
1

2π

∫ ∞
−∞

v (x0)χ(−∞,0)

2ic
[ J + I ] dx0

=
1

2c

∫ 0

ξ

v (x0) [Res (A, ω1) +Res (A, ω2) +Res (A, ω∗) +Res (A,−ω∗)]dx0

where

Res (A, ω∗) = γ2Cω∗e
ikc(ξ−x0).eγ

2κ∗(ξ−x0)

Res (A,−ω∗) = γ2C−ω∗e
−ikc(ξ−x0).eγ

2κ∗(ξ−x0)

Res (A, ω1) = Cω1e
γκ(1)(ξ−x0)

Res (A, ω2) = Cω2e
κ(2)(ξ−x0)

with kc = ωc
c
, κ∗ = κ

c
, Cω∗ , C−ω∗ , κ

(1) = β(1)

c
, κ(2) = β(2)

c
, Cω1 , Cω2 = O(1)

We have thus expressed the transmitted field as an integral of the residues of the poles

at ω∗,−ω̄∗, ω1, ω2 of the analytic continuation of the resolvent (L− ω2I)
−1

.

3.5 Resonant and Modified Direct Pathways

The presence of two temporal pathways in the transmission and reflection processes in

resonant scattering by photonic crystal slabs is described in [9]. The time sequence of a

transmission process is observed to consist of two distinct stages: an initial pulse and a tail
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of long decay. The presence of these two stages indicates the existence of two pathways in

the transmission process. The initial pulse corresponds to a direct transmission process

in which a portion of the incident energy goes straight through the slab. The tail of long

decay corresponds to an indirect resonant transmission process: The remaining portion

of the incident energy excites the guided resonances, builds up in the resonator and then

slowly leaks out.

Intuitively, the Fourier transform of the initial pulse should have a shape which closely

resembles that of the incoming pulse and should account for the background in the trans-

mission spectra, while the Fourier transform of the decaying tail should be Lorentzian line

shapes associated with resonances.

We can provide a rigorous definition of these two temporal pathways that are intuitively

well understood and experimentally observed. The analysis of the pole structure of the

resolvent operator underlying the scattering problem for our Resonant Lamb model en-

ables us to mathematically characterize the two transmission processes as “The resonant

transmission” and “The direct transmission”

The expression we obtained for the transmitted field using the residues of the poles

of the resolvent in the last section enables us to distinguish between the four poles as

ones contributing to the direct transmission and the ones contributing to the resonant

transmission.

We identify the residues of the poles at ω∗ and −ω̄∗, originating form the resonant part

of the two-part scatterer to be contributing to the resonant transmission. The residues of

the poles at ω1 and ω2 originating form the non-resonant part of the two-part scatterer

are identified to be contributing to the direct transmission.

Definition 3.3. Resonant transmission and Direct transmission

1. The part of the transmitted field which is the contribution from the residues at the

poles of the resolvent operator originating from the resonant mode of the scatterer
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is defined as the resonant transmission;

TR (ξ) =
1

2c

∫ 0

ξ

v (x0) [Res (A, ω∗) +Res (A,−ω̄∗)] dx0

2. The part of the transmitted field which is the contribution from the residues at the

poles of the resolvent operator originating from the non-resonant part of the scatterer

is defined as the direct transmission;

TD (ξ) =
1

2c

∫ 0

ξ

v (x0) [Res (A, ω1) +Res (A, ω2)] dx0

We can express the transmitted field T (ξ)as the sum of direst transmission TD (ξ) and

resonant transmission TR (ξ).

T (ξ) = TD (ξ) + TR (ξ)

Resonance in a scattering process occurs from the interference between the direct pathway

and the resonant (resonance-assisted indirect) pathway. Hence, the properties of a resonant

transmission process can be determined by analyzing the interference between the direct

and the resonant pathways. The same analysis holds for the reflected field of a resonant

scattering process as well.

This insight has led to an important development in the theory of Fano resonance for

optical resonators: An intuitive theory based on a temporal coupled-mode formalism has

been introduced [20] to explain complex features of such resonances. This theory leads to

good approximations of resonant behavior of fields.

3.6 Examples

In this section we will compute the actual resonant transmission and the direct transmis-

sion for our system under the incidence of two types of wave pulses. These computations

will better illustrate the resonant feature of the “resonant transmission”.
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Before looking at examples under specific forcing fields, let us convert the expressions

for the resonant transmission and direct transmission in to a form that can be easily

analyzed.

Denote

TR∗ (ξ) = γ2

∫ 0

ξ

v (x0)Res (A, ω∗)dx0

TR∗ (ξ) = γ2

∫ 0

ξ

v (x0)Res (A, ω∗)dx0

So that the resonant transmission TR (ξ) is given by

TR (ξ) =
1

2c

[
Cω∗T

(∗)
R + C−ω∗T

(∗)
R

]
Depending on which frequency out of kc = ωc

c
or −kc = −ωc

c
lie closer to the forcing

frequency k = ω
c
, only one of TR∗ (ξ) or TR∗ (ξ) will make a significant contribution to

resonant amplification of TR (ξ). Hence without any loss of generality let us analyze TR∗ (ξ)

given by

TR∗ (ξ) = γ2

∫ 0

ξ

v (x0) eikc(ξ−x0).eγ
2κ∗(ξ−x0)dx0

Denoting h (x) = eikcx.eγ
2κ∗x, TR∗ (ξ) is given by

TR∗ (ξ) = γ2

∫ 0

ξ

v (x0)h (ξ − x0)dx0

Let vb (x0) = v (x0 + b) and define

T bR∗ (ξ) = γ2

∫ 0

ξ

v (x0 + b)h (ξ − x0)dx0

So that

TR∗ (ξ) = γ2

∫ b

ξ

v (x0)h (ξ − x0)dx0

Similarly the direct transmission TD (ξ) is given by

TD (ξ) =
1

2c

∫ b

ξ

v (x0)
[
Cω1e

γκ(1)(ξ−x0) + Cω2e
κ(2)(ξ−x0)

]
dx0
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Example 1. As the first example we will consider the situation when the forcing v (x0)

is given by

v (x0) = χ[a, b]cos
(
kx0

)
Considering vb (x0) = v (x0 + b) would give us a forcing that is supported completely to

the left of the scatterer and by the preceding discussion for ξ < b, TR∗ (ξ) is given by

TR∗ (ξ) = γ2

∫ b

ξ

v (x0)h (ξ − x0)dx0

To analyze TR∗ (ξ) when the whole pulse has passed the scatterer, let ξ < a. In this case

TR∗ (ξ) = γ2

∫ b

a

v (x0)h (ξ − x0)dx0

We compute TR∗ (ξ), taking [a, b] = [0, L] (so that v (x0) = χ[0, L]cos
(
kx0

)
)

TR∗ (ξ) = Re

{
γ2Cω∗

2c

∫ L

0

eikx0e
ikc(ξ−x0)

.eγ
2κ∗(ξ−x0)dx0

}
= Re

{
γ2Cω∗e

γ2κ∗ξeikcξ

2c

∫ L

0

ei(k−kc)x0−γ
2κ∗x0dx0

}

= Re

{
Cω∗e

γ2κ∗ξeikcξ

2c

(
γ2

γ2κ∗ − i
(
k − kc

))[1− e−γ2κ∗Lei(k−kc)L]}

Suppose that the frequency mismatch between the central frequency of the incoming pulse

and the resonance frequency, k − kc is of order γ2 and the spectral width of the incident

pulse, 1/L is also of order γ2 (so that for a weak coupling we have a spatially broad pulse

with spatial width of order γ−2). Then TR∗ (ξ) becomes

TR∗ (ξ) = Re

{
Cω∗e

γ2κ∗ξeikcξ

2c

(
1− e(i∆−κ∗)L̃

κ∗ − i∆

)}

in which γ2∆ = k − kc and γ2L = L̃ with ∆, L̃=O(1)

This expression for TR∗ (ξ) shows us that when the forcing is concentrated spectrally in

the proximity of the resonance frequency kc, the resonant part of the transmitted field

TR (ξ) grows to order 1 despite the factor of γ2 in TR (ξ) coming from the residues of the
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poles at ω∗ and −ω∗. The factor eγ
2κ∗ξ gives the slow decay of the resonant transmission

pathway.

Example 2. As the next example we will consider the situation when the forcing v (x0)

is given by

v (x0) = c
(
σ2x0 − ik

)
e
ikx0

.e−
σ2x0

2

2

so that the incident field is a Gaussian pulse with central frequency k and with spectral

width σ. This is not a forcing that satisfies the finite time condition but will serve as an

example of an infinitely supported finite energy pulse and we will be able to observe the

features of the “resonant” and “direct” transmission pathways by analyzing approximate

expressions.

Considering vb (x0) = v (x0 + b) and taking b −→∞ gives us a forcing that is supported

completely to the left of the scatterer and by the preceding discussion TR∗ (ξ) is given by

TR∗ (ξ) = γ2

∫ ∞
ξ

v (x0)h (ξ − x0)dx0

=
γ2Cω∗

2c

∫ ∞
ξ

(
σ2x0 − ik

)
e
ikx0

.e−
σ2x0

2

2 eikc(ξ−x0).eγ
2κ∗(ξ−x0)dx0

=
γ2Cω∗

2c
eikcξeγ

2κ∗ξ

∫ ∞
ξ

(
σ2x0 − ik

)
e
i(k−kc+i γ2κ∗)x0

.e−
σ2x0

2

2 dx0

Now define,

I
(θ)
ξ =

∫ ∞
ξ

(
σ2x0 − ik

)
.eiθx0−

σ2x0
2

2 dx0

Iξ = σ2

∫ ∞
ξ

te−
σ2t2

2 dt

Jξ =

∫ ∞
ξ

e−
σ2t2

2 dt

then, using the substitution t = x0 − i θσ2 in I
(θ)
ξ we arrive at

I
(θ)
ξ = e−

θ2

2σ2

[
Iξ + i

(
θ − k

)
J
ξ

]
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Now since Jξ cannot be analytically evaluated, we express Jξ in terms of the Gaussian

Error function erf(x) given by

erf(x) =
2√
π

∫ x

0

e−t
2

dt.

Let

Jξ
0 =

∫ 0

ξ

e−
σ2x0

2

2 dx0 so that Jξ = Jξ
0 +

∫ ∞
0

e−
σ2x0

2

2 dx0 = Jξ
0 +

√
π

2
.
1

σ

The substitution σx0 = −
√

2 t in Jξ
0 yields;

Jξ
0 =

√
2

σ

∫ − σξ√
2

0

e−t
2

dt =

√
π

2
.
1

σ
.erf

(
− σ√

2
ξ

)
So

Jξ =

√
π

2
.
1

σ

[
erf

(
− σ√

2
ξ

)
+ 1

]
we also evaluate Iξ to get, Iξ = e−

σ2ξ2

2

hence

I
(θ)
ξ = e−

θ2

2σ2

[
e−

σ2ξ2

2 + i
(
θ − k

)√π

2
.
1

σ
.

[
erf

(
− σ√

2
ξ

)
+ 1

]]
We can obtain TR∗ (ξ) from I

(θ)
ξ when θ = k − kc + iγ2κ∗

TR∗ (ξ) =
γ2Cω∗

2c
eikcξeγ

2κ∗ξ. I
(k−kc+iγ2κ∗)
ξ

=
γ2Cω∗

2c
eikcξeγ

2κ∗ξe
−

[k−kc+iγ2κ∗]
2

2σ2
[
e−

σ2ξ2

2 −
√
π (ikc − γ2κ∗)√

2σ

[
erf

(
− σ√

2
ξ

)
+ 1

]]
Let η = k−kc be the frequency mismatch between the carrier frequency of the incoming

pulse and the resonant frequency. Then

T
(∗)
R =

γ2Cω∗

2c
eikcξeγ

2κ∗ξ.e
−

[η+iγ2κ∗]
2

2σ2
[
e−

σ2ξ2

2 −
√
π (ikc − γ2κ∗)√

2σ

[
1− erf

(
σ√
2
ξ

)]]

Now suppose that the frequency mismatch η is of order γ2 and the spectral width of

the incident pulse, σ is also of order γ2 (so that for a weak coupling we have a spatially

broad pulse with spatial width of order γ−2).
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Let 1
σ

= L : Spatial width of the incident Gaussian pulse

Hence TR∗ (ξ) becomes,

T
(∗)
R =

γ2Cω∗

2c
eikcξeγ

2κ∗ξe−
[L(η+iκ∗)]2

2

[
e−

σ2ξ2

2 −
√
π (ikc − γ2κ∗)√

2σ

[
1− erf

(
σ√
2
ξ

)]]
in which σ = γ2 σ, γ2L = L and k − kc = η = γ2η ;

σ : Normalized spectral width

η : Normalized frequency mismatch
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Chapter 4
Asymptotic Nature of High-Q and
Near-monochromatic Resonance

The resonant features of a resonant scattering process depend on certain aspects of the

system, including aspects of the resonant scatterer as well as some aspects of the incident

pulse. Quantifying the delicate behavior of resonance features in the simultaneous high-

Q (high quality factor as a consequence of a small bandwidth of resonance) and near-

monochromatic (spectrally localized incident field) regimes will give us detailed insight in

to resonant scattering characteristics of a photonic device. High Q-factor result in high

resonant amplification of the transmitted field and slow energy decay from the resonator

within a narrow frequency band; and the near-monochromatic regime refers to a resonant

system operating under the incidence of a source field with a well-defined central (carrier)

frequency that is tapered in time and space (finite energy source).

The scattering characteristics of a photonic device operating at resonance are very

sensitive to parameters of the structure and the source field. Specific devices are analyzed

with a combination of mathematical and numerical methods, and the analysis often treats

the resonant scattering of Gaussian beams and pulses and how it depends on the angle of

incidence [28, 29].

The model we devised as our Resonant Lamb Model is not complicated enough to

address aspects of angle of incidence. Our aim is to rigorously address universal aspects

of resonant amplification with regard to the delicate balance between the spectral widths

of the resonance and the source field.

4.1 Three Distinguished Parameters that Affect Resonance

We will study the effects of three distinguished parameters on the resonant features of

the system. The high-Q near-monochromatic regime involves three simultaneously small
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physical parameters. The constant of coupling, γ, between the point-mass and the res-

onator controls the spectral width of the transmission resonance, which is of order γ2,

and the Q-factor, which is of order γ−2. The spectrum of the resonator is centered about

a frequency ωc. The source field will be a wave packet centered about a frequency ω with

spectral width σ. The difference between the central frequencies of the resonance and the

source field is denoted by η = ω − ωc. The three parameters

γ2 : spectral width of transmission resonance

σ : spectral width of source field

η : difference between resonant and source frequencies

are considered to be small, and we will analyze the effects of differing their relative sizes.

We will analyze the effects of differing the relative sizes of the three above mentioned

parameters has on the resonant features of our resonant Lamb model. However, the dis-

cussion will be universal for a resonant system that has the essential features of resonance

captured in this model as described in chapter two.

In order to perform the appropriate analysis, we will first reduce the dynamics of the

scattering system to the two-part scatterer and analyze the amplitude y(t) of the point-

mass (non-resonant part of the scatterer) and the amplitude z(t) of the spring-mass (res-

onant part of the sactterer). Similar to the notion of resonant and direct pathways of the

transmitted field that was defined in chapter 3, we will define resonant and regular parts

of the fields y(t) and z(t). The analysis of the effects of the preceding three parameters

on the resonant features of our model will then essentially come down to analyzing the

effects of differing their relative size has on the resonant part of the field y(t) (amplitude

of the point-mass).
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4.2 Reduction of the system to the scatterer

Recall that the scattering solutions for our resonant Lamb model is of the form

u(x, t) =


J(x− ct) +R(x+ ct), x ≤ 0,

T (x− ct), x ≥ 0.

where the function J(ξ) is the source field incident upon the scatterer from the left, and

R(ξ) and T (ξ) are the reflected and transmitted fields. If J(ξ) = 0 for ξ > ξ0, then

before time t = −ξ0/c, the excitation J(x− ct) is supported completely to the left of the

scatterer. In this case, we assume that the scatterer and the right side of the string are at

rest before time t = −ξ0/c so that R(ξ) = 0 for ξ < −ξ0 and T (ξ) = 0 for ξ > ξ0.

Letting ξ = x − ct and setting x = 0, we observe that the point-mass on the string at

x = 0 experiences the source field J(ξ) as a time-dependent input j(t) given by

j(t) := J(−c t) .

The Fourier-Laplace transform, ̂(ω) of j(t) is given by

̂(ω) =

∫
j(t)eiωt dt .

The equations for the dynamics of the string and scatterer;

utt (x, t) = c2uxx (x, t) , x 6= 0

ÿ (t) = γ (z (t)− y (t)) + β [ux]0 , y (t) = u (0, t)

z̈ (t) = −ω0
2z (t) + γ (y (t)− z (t))

can be reduced to the two-part scatterer given by the following system of ordinary differ-

ential equations for y and z,

ÿ(t) = −α ẏ(t) + γ
(
z(t)− y(t)

)
+ αj′(t)

z̈(t) = −ω0
2z (t) + γ

(
y(t)− z(t)

)
.
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in which α = 2β/c.

Once we have a solution to this system in hand, the transmitted and reflected fields,

and therefore the full field u(x, t), can be obtained through

T (ξ) = y(−ξ/c)

R(ξ) = y(ξ/c)− J(−ξ).

Under the Fourier-Laplace transform, the above system of equations becomes ω2 + iα ω − γ γ

γ ω2 − ω2
0 − γ


ŷ(ω)

ẑ(ω)

 =

iα ω̂(ω)

0

 .

The solution is given by

ŷ(ω) = iα
ω(ω2 − ω2

0 − γ)

D(ω)
̂(ω) (4.1)

ẑ(ω) = −iαγ ω

D(ω)
̂(ω), (4.2)

in which the determinant of the system is the same denominator D(ω) we had in chapter

three for the resolvent given by

D(ω) = (ω2 + iαω − γ)(ω2 − ω2
0 − γ)− γ2

= (ω − ω∗) (ω + ω∗) (ω − ω1) (ω − ω2)

A partial-fraction decomposition of the rational functions multiplying ̂(ω) in ŷ(ω)

and ẑ(ω) splits the solutions y(t) and z(t) into four parts, so that each root of D(ω)

correspond to one partial fraction of each rational function. Recall that the poles ω∗

and −ω̄∗ correspond to resonant transmission and the poles ω1, ω2 correspond to direct

transmission within the transmitted field. This same notion stands for the field y(t) of

the scatterer as well as the field z(t) of the resonator. We define the “resonant part” and

the “regular part” of these fields;
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yres(t) =
i

2π
γ2

∫ (
A(γ)

ω − ω∗
− Ā(γ)

ω + ω̄∗

)
̂(ω) e−iωt dω ,

zres(t) =
i

2π
γ

∫ (
B(γ)

ω − ω∗
− B̄(γ)

ω + ω̄∗

)
̂(ω) e−iωt dω .

yreg(t) =
i

2π

∫ (
C1(γ)

ω − ω1

+
C2(γ)

ω − ω2

)
̂(ω) e−iωt dω ,

zreg(t) =
i

2π
γ

∫ (
D1(γ)

ω − ω1

+
D2(γ)

ω − ω2

)
̂(ω) e−iωt dω .

Powers of γ have been extracted from these expressions so that the γ-dependent residues

A,B,C,D are of order 1.

The factor of γ2 in yres(t) is due to the numerator in (4.1) when computing the residues.

The factor of γ in zres(t) and zreg(t) manifests the weak coupling from the string to the

resonator, and the γ2 in yres(t) manifests the weak coupling back to the string.

The interesting resonant regime, in which the parameter analysis is applicable, occurs

when ̂(ω) is concentrated near the central frequency ωc = Re(ω∗) (and/or −ωc) of the

resonance (near-monochromatic). In this case the resonator experiences resonant ampli-

tude enhancement: zres becomes very large despite the factor of γ and then it experiences

slow decay. The decay of its energy back into the string through the point-mass scatterer

is manifest in yres(t), which grows to order 1 despite the factor of γ2. This phenomenon is

referred to as “delayed resonant transmission” since the transmitted field experiences res-

onant amplification after a certain delay, due to the slow decay of the resonantly amplified

resonator field z(t). The analysis of the corresponding resonant enhancements is subtle

with regard to the relationships between σ, γ, and η = ω − ωc when all three parameters

are small.
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4.3 Asymptotic Behavior of High-Q and Near-monochromatic Resonance

Let us first clarify the near-monochromatic field that we consider in this analysis. The

near-monochromatic field J(ξ) we consider is a pure oscillation at frequency ω modulated

by a broad envelope whose width is controlled by σ−1 with σ being a small parameter,

J(ξ) = g
(
−σ ξ/c

)
exp

(
i
ω

c
ξ

)
.

By putting ξ = x − ct and setting x = 0, we observe that the point-mass on the string

experiences this wave temporally as

j(t) := J(−c t) = g(σt) exp (−iωt) .

The Fourier-Laplace transform of j,

̂(ω) =

∫
j(t)eiωt dt =

1

σ
ĝ

(
ω − ω
σ

)
.

shows us that the spectral width of this source field is σ.

Suppose that the source field j(t) driving the scatterer at x = 0 is “turned on” at t = 0

and “turned off” at some later time. We might as well let g(t) be supported in the interval

[0, 1], so that g(t) = 0 for t < 0 and for t > 1. According to the definition of j(t), this

means that j(t) begins oscillating at time t = 0 and stops at time t = σ−1.

In this case the scatterer is at rest for t ≤ 0, then once it starts being “driven” by the

source field, the resonator builds up energy (its amplitude z(t) builds up) during the time

interval from t = 0 to t = σ−1, and then once the source field stops “driving” the scatterer

at t = σ−1, the energy stored in the resonator slowly decays back in to the string via the

point-mass scatterer (y(t) and the transmitted field T (ξ) experiences delayed resonant

enhancement).

Given that the forcing frequency ω is close to the central frequency ωc of the resonance

(meaning that η is small), ̂(ω) is concentrated near the complex resonance ω∗. Hence only

the first of the two terms of zres(t) contributes significant amplification of the resonator
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field. We therefore wish to determine the strength of the normal mode corresponding to

the resonance at ω∗, as it depends on γ, η, and σ, when all three parameters are considered

to be small.

Hence we analyze the quantity

zres*(t) =
i

2π
γ

∫
1

ω − ω∗
̂(ω)e−iωtdω

to quantify the dependance of resonant enhancement of the spring-mass resonator of

our system on the relative sizes of γ, η, and σ.

Lemma 4.1. For t > σ−1

zres*(t) =
γ

η + iκγ2
h
(η + iκγ2

σ

)
e−iσ

−1ω−i(t−σ−1)e−κγ
2(t−σ−1)

Further when σ � γ2, zres*(t) reduces to

zres*(t) ∼
γ

η + iκγ2
ig(1)e−iσ

−1

e−i(t−σ
−1)e−κγ

2(t−σ−1)

Proof. Consider

zres*(t) =
i

2π
γ

∫
1

ω − ω∗
̂(ω)e−iωtdω

Under the change of variable

ω = σφ+ ω,

and recalling that ω∗ = ωc − iκγ2 and η = ω − ωc, the expression for zres*(t) becomes

zres*(t) =
γ

η + iκγ2
e−iωt

i

2π

∫
η + iκγ2

σφ+ η + iκγ2
ĝ(φ)e−iσφtdφ (4.3)

Denote

I(t) =
i

2π

∫
η + iκγ2

σφ+ η + iκγ2
ĝ(φ)e−iσφtdφ (4.4)
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Since g(t) is bounded and supported in the time interval [0, 1], we have

|ĝ(φ)| ≤ Ce|Imφ|/φ as Imφ→ −∞,

|ĝ(φ)| ≤ C as Imφ→ 0,

ĝ(φ) ∼ C/φ for φ real and |φ| → ∞

(4.5)

Thus for t > σ−1 the integrand of I(t) is exponentially decaying as Imφ→ −∞ and the

integral can be computed by residue calculus. Hence we get

I(t) =
η + iκγ2

σ
ĝ
(
− η + iκγ2

σ

)
e−κγ

2teiηt.

By defining the function

h(φ) = φ eiφ ĝ(−φ) ,

we obtain the following expression for zres*(t) for large time, t > σ−1

zres*(t) =
γ

η + iκγ2
h
(η + iκγ2

σ

)
e−iσ

−1ω−i(t−σ−1)e−κγ
2(t−σ−1) (4.6)

Because of the bounds (4.5) on |ĝ(φ)|, the function h(φ) is bounded by a constant for

Imφ < 0.

Now suppose σ � γ2. In this case, the imaginary part of the argument of ĝ becomes

unbounded, and we obtain the asymptotic value

ĝ
(
− η + iκγ2

σ

)
∼ g(1)

iσ

η + iκγ2
e−iη/σeκγ

2/σ (σ � γ2),

uniformly in η/σ.

Substituting this expression for ĝ
(
− η+iκγ2

σ

)
in zres*(t) we have,

for σ � γ2 and t > σ−1,

zres*(t) ∼ γ

η + iκγ2
ig(1)e−iσ

−1

e−i(t−σ
−1)e−κγ

2(t−σ−1) (4.7)
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Thus the above theorem provides us with an expression for the resonantly enhanced

part of the resonator field zres*(t) when it starts decaying for t > σ−1. This expression

simplifies further and we get an explicit asymptotic relation for the decaying zres*(t) when

we consider the case when σ � γ2, which is the regime in which the spectral width of the

source field is small compared to the spectral width of the resonance.

We are now in a position to analyze resonant amplification of the spring-mass resonator

z(t) in the high-Q (γ small) and near-monochromatic (σ small) regime. Equations (4.6)

and (4.7) for zres*(t) give an explicit expression for the coefficient of the slowly decaying

normal mode Ce−i(+κγ
2)(t−σ−1) associated to the complex resonance ω∗ for large time

t > σ−1. This is one component of the solution z(t). The other three normal modes in z(t)

come from the second term in the integrand of zres(t) (4.2) and the non-resonant part of

z(t) (4.2). All of these are of order γ.

Any resonant amplification of the spring-mass will come from the pre-factors to the

exponential e−i(+κγ
2)(t−σ−1) in (4.6) or (4.7).

The resonant amplification of zres(t) in different regimes involving the three parameters,

σ, γ2 and η is provided by the following theorem.

Theorem 4.2. In the regime γ2 � σ;

|z(t = σ−1)| '


γ/σ (η < Cσ)

γ/η (σ � η � γ)

(γ2 � σ � γ).

In the regime σ < Cγ2;

|z(t = σ−1)| ∼ Cγ−q, q = min {p− 1, 1} .

where

η ∼ Cγp.

In either regime,
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|z(t = σ−1)| ≤ Cγ−1 (γ2 � σ � γ).

Proof. Consider first the regime γ2 � σ.

In this case, the imaginary part in the argument of h in (4.6) tends to zero, and we can

use the definition (4.3) of h and the second bound in (4.5) to obtain

zres*(t) ∼ γ

σ
ĝ(−η/σ)e−ite−κγ

2(t−σ−1)

for γ2 � σ and η < Cσ

The reason for the constraint η < Cσ is that ĝ(−η/σ) vanishes when the argument

becomes unbounded. The condition η < Cσ guarantees that ĝ(−η/σ) is not zero.

In this regime, resonant amplification occurs when the additional relation σ � γ is satis-

fied.

Now, if γ2 � σ � η, we get ĝ(−η/σ) ∼ Cσ/η, so that

zres*(t) ∼ C
γ

η
e−ite−κγ

2(t−σ−1)

for γ2 � σ � η

Resonant amplification occurs under the additional condition η � γ. Resonance in the

regime γ2 � σ occurs in the following situations:

|z(t = σ−1)| '


γ/σ (η < Cσ)

γ/η (σ � η � γ)

(γ2 � σ � γ).

The symbol “'” indicates that |z| is bounded from above and below by positive multiples

of the right-hand side.

We also note that resonant amplification of z(t) in this regime is always less than Cγ−1,

|z(t = σ−1)| ≤ Cγ−1 (γ2 � σ � γ).
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Now we consider the regime σ < Cγ2;

In this situation, the nonzero function h is bounded by a constant, so all the important

information is in the amplification factor

A :=
γ

η + iκγ2
.

This factor depends only on γ and η, not on σ.

Given that |zres*(t)| ' A for t = σ−1 and that the other normal modes in z(t) are of order

γ, we have that

|z(t = σ−1)| '


γ/η (γ2 � η < Cγ)

γ−1 (η < Cγ2)

(σ < Cγ2).

To inspect how A depends on the asymptotic relation between η and γ, we assume a

power relation

η ∼ Cγp.

If p < 2, then the denominator of A is dominated by η, so that |A| ∼ Cγ1−p (for a

different constant C). If p ≥ 2, then the denominator is dominated by γ2, and one obtains

|A| ∼ Cγ−1. In either case, |A| ∼ Cγ−q with q = min {p− 1, 1}:

|z(t = σ−1)| ' |A| ∼ Cγ−q, q = min {p− 1, 1}

By the preceding theorem resonance in the regime γ2 � σ (when the spectral width

of the resonance is smaller than the spectral width of the source field) occurs when the

additional relations σ � γ and η � γ are satisfied by the parameters.

In the regime σ < Cγ2 (when the spectral width of the source field is at least as small as

the spectral width of the resonance) the field in the resonator at time t = σ−1, given by

|z(t = σ−1)| ' |A| ∼ Cγ−q, q = min {p− 1, 1}
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has experienced resonant amplification over the interval [0, σ−1] only if p > 1.

If p < 1, the forcing frequency is sufficiently far from the resonant frequency so that the

spring-mass is practically at rest. However, if p > 1, the forcing frequency is close enough

to the resonant frequency so that the spring-mass experiences resonant amplification.

The resonantly amplified z(t = σ−1) does not exceed the order of γ−1. As time progresses

past t = σ−1, z(t) slowly decays by a factor of e−κγ
2(t−σ−1).

4.4 The Transmission Coefficient of a Near-monochromatic Field

The sharp asymmetric anomaly in the monochromatic transmission coefficient depicted

in Figure 2.3 is typically known as a Fano resonance, in reference to Ugo Fano’s famous

paper. It is the result of the resonant interaction between a continuum of extended states

and a near-bound state. We will analyze how this anomaly is modified when the source

field has a finite lifetime but is nearly monochromatic. It degenerates as the source pulse

becomes temporally shorter and spectrally wider.

The transmission number T for a given incident source field J(ξ) is defined as the ratio

of total energy transmitted across the resonator to the energy of J(ξ). Because of the

relations j(t) = J(−ct) and y(t) = T (−ct) and unitarity (up to a constant) of the Fourier-

Laplace transform, one has

T =
‖T‖2

‖J‖2
=
‖y‖2

‖j‖2
=
‖ŷ‖2

‖̂‖2
, (4.8)

in which ‖f‖ = (
∫
|f(s)|2ds)1/2, with integration over the real line, denotes the

quadratic norm of any function f .

We define a σ-dependent transmission coefficient Tσ(ω) to be the transmission number

for a near-monochromatic source field j(t) = g(σt) exp (−iωt),

Tσ(ω) :=

∥∥t(ω)σ−1ĝ
(
σ−1(ω − ω)

)∥∥2∥∥σ−1ĝ
(
σ−1(ω − ω)

)∥∥2 =

∥∥t(ω)ĝ
(
σ−1(ω − ω)

)∥∥2

σ ‖ĝ(ω)‖2 (4.9)

Note that in taking the norms we integrate over ω with ω fixed.
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If the normalization ‖ĝ‖2 = 1 is taken, then this coefficient simplifies to a convolution of

t(ω) with σ−1 |ĝ(σ−1ω)|2,

Tσ(ω) = |t|2 ∗ 1

σ

∣∣∣ĝ( ·
σ

)∣∣∣2 (ω), (4.10)

in which we have integrated over ω in (4.9) to compute the norm and then replaced ω

with the variable ω. The mollifier σ−1 |ĝ(σ−1ω)|2 tends to a delta-function as σ vanishes,

so that

Tσ(ω)→ |t(ω)|2 as σ → 0.

The near-monochromatic transmission coefficient Tσ(ω) is a regularization of the monochro-

matic one T0(ω) := |t(ω)|2.

The width of the Fano resonance in our system is of order γ2. In other words, the trans-

mission coefficient deviates significantly from the “background” direct transmission when

η < Cγ2. Rigorous analyses are carried out in [15, 17]. Equation (4.10) shows that

the transmission anomaly persists for Tσ(ω) if σ is small compared to γ2 and becomes

smoothed out as σ becomes relatively large, so that we have the following;

σ � γ2 sharp anomaly,

σ ' γ2 weak anomaly,

σ � γ2 no anomaly.
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Chapter 5
Comparison of Coupled Mode Formalism to
the True Dynamics

5.1 Temporal Coupled Mode Theory

The notion of coupling of modes is found extensively in the study of vibrational systems.

An electromagnetic mode can generally be viewed as electromagnetic energy that ex-

ists independent of other electromagnetic power. Different modes belonging to the same

system or to different systems, can exchange energy through a coupling perturbation.

Coupled mode theory approximates the solutions to complex problems associated with

the interaction of different modes of energy based on known solutions for simpler sys-

tems. In this formalism, the complex structure of a system is viewed as a collection of

simpler waveguides; the modes corresponding to each simple waveguide are perturbed by

the presence of other modes and this in turn causes the modes to be coupled and energy

is exchanged among these coupled modes.

Temporal coupled mode theory is the application of the coupled mode formalism to cou-

pling of modes in time. Temporal coupled mode theory allows a wide range of devices and

systems to be modeled as one or more coupled resonators (coupling among resonators and

with free propagating modes). The following assumptions about the system are generally

made in applying a temporal coupled mode approach:

• Linearity

• Time-reversal symmetry

• Time-invariance

• Energy conservation

• Weak mode coupling (small perturbation of modes due to coupling)

This formalism can be applied to diverse cases, including coupling between guided

modes and the coupling between free propagating modes and guided modes; thus this
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theory is applicable to the type of resonant scattering systems for which our resonant

Lamb model served as a prototype.

In this chapter we wish to approximately describe the decay rate of resonance in the

resonant Lamb model using a temporal coupled mode approach and compare it to the

true dynamics of the system.

5.2 Coupled Mode Theory for the Resonant Lamb Model

We express the equations for the resonant lamb model using a temporal coupled mode

formalism. We consider the situation when a resonator with natural frequency ωo is weakly

coupled to two propagating modes incident upon the resonator from the left and the right.

Let fields JL and JR be incident upon a resonator with natural frequency ωo from the

left and right respectively. Let the outgoing field to the right be OL and the outgoing field

to the left be OR.

Let γL,R be the coupling constant of the resonator to the incoming fields from the left

and right, αL,R the reflection coefficients, βL,R the direct transmission coefficients and θL,R

the coupling constant of the resonator to the outgoing fields. Suppose the amplitude of

the resonator is a and that τ is the lifetime of the resonance ( 1
τ

is the resonance width).

Then the dynamic equations for the amplitude a of the resonance mode can be written as

d2a

dt2
= −ωo2a− 1

τ

da

dt
+ [γL γR]

 J̇L

J̇R


 ȮL

ȮR

 =

 αL βR

βL αR


 J̇L

J̇R

+
da

dt

 θL

θR


Denote ȮL

ȮR

 = S−, [γL γR] = Γ,

 J̇L

J̇R

 = S+,

 θL

θR

 = Θ,

 αL βR

βL αR

 = C
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Then the temporal coupled mode equations for the system can be written as

d2a

dt2
= −ωo2a− 1

τ

da

dt
+ ΓS+ (5.1)

S− = CS+ + Θ
da

dt
(5.2)

Temporal coupled mode theory uses assumptions of weak coupling between the incom-

ing modes and the resonator, conservation of energy, reciprocity (time-reversal symmetry)

to eliminate all unknowns except for ωo and τ and hence express all coupling coefficients

in terms of the natural frequency of the resonator and the lifetime of the resonance.

5.3 Comparison of Coupled Mode Approximation to the True Dynamics

We now find the true dynamic equations for our resonant Lamb model, with the objective

of comparing them to the temporal coupled mode equations approximating the system.

Consider the system reduced to the two-part scatterer given by

ÿ(t) = −α ẏ(t) + γ
(
z(t)− y(t)

)
+ αj′(t)

z̈(t) = −ω0
2z (t) + γ

(
y(t)− z(t)

)
.

We can present this as a first order system in time in the following manner:

We denote Y =

 y

ẏ

 and Z =

 z

ż


then

dY
dt

= BY + ΓZ + F (5.3)

dZ
dt

= CZ + ΓY (5.4)

where

B =

 0 1

−γ −α

 , C =

 0 1

−(ω0
2 + γ) 0


Γ =

 0 0

γ 0

 , F =

 0

f(t)

 , f (t) = −αc
(
J1
′
(−ct) + J2

′
(ct)
)
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From equation 5.3 Y is given by

Y =

∫ t

0

eB(t−s) [γZ (s) + F (s)] ds

We eliminate Y from equation 5.4 to get

dZ
dt

= CZ + γ2

∫ t

0

eB(t−s)Z (s) ds+ γ

∫ t

0

eB(t−s)F (s) ds

So we have

 ż

z̈

 =

 0 1

−(ω0
2 + γ) 0


 z

ż

+ γ2

∫ t

0

eB(t−s)

 z(s)

ż(s)

+ γ

∫ t

0

eB(t−s)

 0

f(s)


From equation 5.4 Z is given by

Z =

∫ t

0

eC(t−s)γY (s) ds

We eliminate Z from equation 5.3 to get

dY
dt

= BY + γ2

∫ t

0

eC(t−s)Y (s) ds+ F (t)

So we have ẏ

ÿ

 =

 0 1

−γ −α


 y

ẏ

+ γ2

∫ t

0

eC(t−s)

 y(s)

ẏ(s)

 ds+

 0

f(t)


Hence the true dynamics of the system are given by the following explicit equations for

z (t) and y(t)

z̈ (t) = −
(
ω0

2 + γ
)
z + γ3 1√

α2 − 4γ

∫ t

0

g (t− s)z (s) ds+

+ γ2 1

c
√
α2 − 4γ

∫ t

0

h (t− s)ż(s)dsγ
α√

α2 − 4γ

∫ t

0

h (t− s)f (s) ds

(5.5)

66



in which g (t) = e
− 1

2

(
α+
√
α2−4γ

)
t − e

1
2

(√
α2−4γ−α

)
t

and

h (t) =
c

2

(√
α2 − 4γ + α

)
e
− 1

2

(
α+
√
α2−4γ

)
t
+
c

2

(√
α2 − 4γ − α

)
e

1
2

(√
α2−4γ−α

)
t

ÿ (t) = −γy − γ2
√
ω0

2 + γ

∫ t

0

sin
((√

ω0
2 + γ

)
(t− s)

)
y (s) ds−

− αẏ + γ2

∫ t

0

cos
((√

ω0
2 + γ

)
(t− s)

)
ẏ(s)ds+ f(t)

(5.6)

We note the perturbation of the resonant mode in the order of γ and the delayed con-

tribution to the decay rate in equation 5.5 as the most prominent deviations in this true

dynamics from the coupled mode approximation for our system.

In order to perform a meaningful comparison between the actual decay rate and the

decay rate obtained by the coupled mode formalism for this system, we now express the

true dynamics of the two-part scatterer in the Fourier domain. Analyzing the equations in

the Fourier domain will be algebraically easier since the convolutions in the time domain

will become multiplications while the time derivative will be a multiplication by (−iω).

This would enable us to analyze the accuracy of the decay rate obtained for the resonant

Lamb model by a temporal coupled mode formalism.

Recall that the system reduced to the two-part scatterer is given in the Fourier domain

by (
ω2 + iαω − γ

)
ŷ + γẑ = iαωĵ

γŷ +
(
ω2 − ω0

2 − γ
)
ẑ = 0

We eliminate ŷ(ω) and obtain an equation in ẑ(ω) .

−ω2ẑ = −
(
ω0

2 + γ
)
ẑ −

(
γ2

ω2 + iαω − γ

)
ẑ + γ

(
iαω

ω2 + iαω − γ

)
ĵ
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Now since 1
ω2+iαω−γ =

(ω2−γ)
(ω2−γ)2+α2ω2 − iαω

(ω2−γ)2+α2ω2 we have,

(−iω)2ẑ + γ2

[
α

(ω2 − γ)2 + α2ω2

]
(−iω) ẑ +

[
ω0

2 + γ + γ2

(
(ω2 − γ)

(ω2 − γ)2 + α2ω2

)]
ẑ

= γ

(
iαω

ω2 + iαω − γ

)
ĵ

(5.7)

where the terms of ẑ multiplied by (−iω) and (−iω)2 = −ω2 have been isolated. Now we

consider the homogeneous equation of 5.7:

(−iω)2ẑ +

[
γ2α

(ω2 − γ)2 + α2ω2

]
(−iω) ẑ +

[
ω0

2 + γ +

(
γ2 (ω2 − γ)

(ω2 − γ)2 + α2ω2

)]
ẑ = 0 (5.8)

which is the equation for the oscillator with no incident field.

In this situation, the coefficients of equation 5.8 are not constant but are also dependent

on frequency, which is the manifestation of the convolutions in the coefficients of equation

5.5 in the Fourier domain.

We define

B (ω, ω̃) = (−iω)2 +

(
γ2α

(ω̃2 − γ)2 + α2ω̃2

)
(−iω) +

(
ω0

2 + γ +
γ2 (ω̃2 − γ)

(ω̃2 − γ)2 + α2ω̃2

)
The real resonant frequency of the oscillator will be obtained when ω = ω̃ = ω∗ in B (ω, ω̃)

are both variable and we had computed this solution to B (ω∗, ω∗) = 0 in section 3.5.

ω∗ = ω0 +
1

2ω0

γ +

(
(3ω0

2 − α2)

2ω0
3 (ω0

2 + α2)
− α

ω0
2 (ω0

2 + α2)
i

)
γ2 +O(γ3)

From this solution the actual decay rate is given by,

Im ω∗ = −γ2

(
α

ω0
2 (ω0

2 + α2)

)
+O

(
γ3
)

(5.9)

Next we proceed to obtain a decay rate that would be approximated using a temporal

coupled mode formalism. Basic assumptions made in coupled mode theory [19] are that the

perturbation of modes due to weak coupling is negligible and that the coupling coefficients
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are constants. The latter assumption translates to coefficients in B (ω, ω̃) being constant

and since the perturbation of the mode ω0 is assumed to be negligible, a logical coupled

mode approximation for ω∗ can be obtained by the solution to B (ω∗
cm, ω0) = 0.

ω∗
cm =

i

2

[
− γ2α

(ω0
2 − γ)2 + α2ω0

2
±

±

√(
γ2α

(ω0
2 − γ)2 + α2ω0

2

)2

− 4

(
ω0

2 + γ +
γ2 (ω0

2 − γ)

(ω0
2 − γ)2 + α2ω0

2

)
The decay rate approximated by this coupled mode formalism is then given by

Im ω∗
cm = − γ2α

ω0
2 (ω0

2 + α2) + γ (−2ω0
2 + γ)

= −γ2

(
α

ω0
2 (ω0

2 + α2)

)
+O

(
γ3
)

(5.10)

Comparing the actual decay rate with the rate approximated by the temporal coupled

mode formalism we arrive at the following proposition.

Proposition 5.1. The decay rate of the oscillator approximated by the temporal coupled

mode formalism Im ω∗
cm differs from the actual decay rate Im ω∗ by an order of γ3
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Chapter 6
Conclusion and Future Work

A resonant modification of the famous Lamb model was used as a prototype of a pho-

tonic resonant scattering system to analyse the fine features of Fano resonance under

the incidence of near-monochromatic field. Our resonant Lamb model consists of a two-

part scatterer attached to an infinite string. The point mass on the string serves as the

non-resonant part of the scatterer, and the spring-mass serves as the resonant part. The

non-resonant part of the scatterer is associated with direct scattering while the resonant

part is associated with resonant scattering (field amplification and delayed scattering).

The infinite string models the ambient medium. The free oscillations of the spring-mass

resonator models the guided modes in a photonic resonant scattering system. This sim-

plified system models a photonic scattering system in which a resonant mode is weakly

coupled to a continuum of radiation states. It allows us to investigate the type of reso-

nant scattering when the interaction between the guided modes inside a scatterer and the

propagating plane waves in the ambient space cause the guided modes to be destroyed

and the extended states near the bound state frequency are sharply modified.

When placed in the proper functional analytic setting, a frequency corresponding to

a guided mode is realized by an eigenvalue embedded in the continuous spectrum of an

operator underlying the system. This continuous spectrum corresponds to the continuum

of frequencies of the extended states (plane waves in the ambient medium). The operator

L, underlying the scattering system is self-adjoint and positive and hence its spectrum,

σ (L) ⊆ [0,∞). Therefore the resolvent, (L− ω2)
−1

exists everywhere on the upper half

ω plane. The perturbation of the idealized system corresponds to the dissolution of this

eigenvalue in to the continuous spectrum. The dissolution of the embedded eigenvalue
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coincides with the frequencies corresponding to the guided modes attaining a small imag-

inary part and moving down to the lower half plane becoming resonances.

The time sequence of a resonant transmission process is observed to consist of two dis-

tinct stages: an initial pulse and a tail of long decay corresponding to two pathways in

the transmission (and reflection) process; “Direct transmission” and “Resonant transmis-

sion”. We provide a rigorous definition of these two temporal pathways by analyzing the

pole structure of the resolvent operator (L− ω2)
−1

.

The high-Q near-monochromatic regime involves three simultaneously small physi-

cal parameters that affect resonant features: the constant of coupling, γ, difference be-

tween resonant and source frequencies, η and the spectral width σ of the incident near-

monochromatic field. The resonant amplification of the slowly decaying quasi-normal

mode associated to the decay of energy out of the resonator depends delicately on the

relative sizes of these three parameters and our analysis yields the following about the

dependence of the resonant amplitude z(t) of the spring-mass oscillator at time t = σ−1;

When σ is much larger than γ2,

|z(t)| ' γ

max{σ, η}
� γ−1 (γ2 � σ),

and when σ is not much larger than γ2, one has

|z(t)| ' γ

max{η, γ2}
(σ < Cγ2).

After time t = σ−1, the field decays at a slow exponential rate on the order of γ2.
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The properties of a resonant scattering system can be determined by analyzing the

interference between the direct and the resonant pathways. This insight has led to an

important development in the theory of Fano resonance for optical resonators: An intu-

itive theory based on a temporal coupled-mode formalism has been introduced to explain

complex features of these resonances. Such models isolate phenomenological component

“modes” of a resonant scattering process and this theory leads to good approximations of

resonant behavior of photonic resonators. Evaluation of the accuracy of a coupled-mode

theory for a scattering system by comparing it to the true dynamics of the system would

be beneficial.

More elaborate versions of the Lamb model can be used to analyze more complex

resonance phenomena. The problem of analyzing the dependence of resonant features of a

more complex photonic scatterer simultaneously on the constant of coupling, the spectral

width of the transmission resonance, the frequency mismatch of the resonance and the

source field as well as the angle of incidence would also be beneficial.
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