A New Species and Introgression in Eastern Asian Hemlocks (Pinaceae: Tsuga)

Garth Holman
University of Maine

Peter Del Tredici
Harvard University

Nathan Havill
USDA Forest Service

Nam Sook Lee
Ewha Womans University

Richard Cronn
USDA ARS Corvallis Forestry Sciences Laboratory

See next page for additional authors

Follow this and additional works at: https://digitalcommons.lsu.edu/biosci_pubs

Recommended Citation
Authors
Garth Holman, Peter Del Tredici, Nathan Havill, Nam Sook Lee, Richard Cronn, Kevin Cushman, Sarah Mathews, Linda Raubeson, and Christopher S. Campbell
A New Species and Introgession in Eastern Asian Hemlocks (Pinaceae: *Tsuga*)

Garth Holman,1,9 Peter Del Tredici,2 Nathan Havill,3 Nam Sook Lee,4 Richard Cronn,5 Kevin Cushman,6 Sarah Mathews,7 Linda Raubeson,8 and Christopher S. Campbell1

1School of Biology and Ecology, University of Maine, Orono, Maine 04469, U. S. A.
2Arnold Arboretum, 125 Arborway, Boston, Massachusetts 02130-3519, U. S. A.
3USDA Forest Service, Northern Research Station, 51 Mill Pond Rd., Hamden, Connecticut 06514, U. S. A.
4Ewha Womans University, Department of Life Sciences, Seoul, 120-750, Korea
5Pacific Northwest Research Station, USDA Forest Service, Corvallis, Oregon 97331, U. S. A.
6Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas 79409, U. S. A.
7CSIRO National Research Collections Australia, Australian National Herbarium, Canberra, ACT 2601, Australia
8Department of Biological Sciences, Central Washington University, Ellensburg, Washington 98926, U. S. A.
9Author for correspondence (garth.holman@maine.edu)

Communicating Editor: Min Feng

Abstract—Species delimitation in Pinaceae is often challenged by limited morphological differentiation and introgression. In *Tsuga* (hemlocks), species delimitation has been most challenging among northeastern Asian taxa, where the species are weakly marked morphologically and range in number from three to five in previous studies. Two low-copy nuclear four-coumarase-ligase (4CL) genes and morphology strongly support a clade of the Japanese endemic *T. diversifolia* and *T. sieboldii* from Japan and Ulleung island (Ulleungdo) in Korea. This clade is here referred to as the oceanic hemlocks. 4CL strongly supports a sister-group relationship of the widespread northeastern Asian *T. chinensis* and eastern North American *T. caroliniana*. In contrast, chloroplast genomes, which are markedly reduced in *Tsuga* and relatives, strongly support Japanese *T. sieboldii* as sister to *T. chinensis* and moderately support *T. caroliniana* as sister to a clade of *T. diversifolia* and hemlocks from Ulleungdo. These divergent topologies suggest chloroplast capture of *T. chinensis* by Japanese *T. sieboldii*. Ulleungdo hemlocks are distinct from other northeastern Asian species in leaf and cone morphology and phenologically in common-garden observations. We therefore describe these hemlocks as a new species, *T. ulleungensis*.

Keywords—Chloroplast capture, island endemic, plastid genomes, quantitative morphology, Ulleungdo.

Pinaceae species are often weakly differentiated using DNA and morphological inferences (Carruthers et al. 2005; Syring et al. 2005, 2007; Havill et al. 2008; Xiang et al. 2009). Individuals of Pinaceae typically form large populations, are long-lived, and readily cross with congeners (Tsutsui et al. 2009; Willyard et al. 2009; Zhang et al. 2010). These conditions retard evolutionary divergence by prolonging retention of ancestral polymorphisms and admixing parental genomes, resulting in morphologically similar species (Syring et al. 2005, 2007; Cun and Wang 2014). Difficulties in species delimitation in Pinaceae may also result from recent diversification (Aguirre-Planter et al. 2000, 2012; Bouillé et al. 2011), convergent evolution (Wang and Ran 2014), and hybrid speciation (Havill et al. 2008; Abbott et al. 2010; Ren et al. 2012; Xiang et al. 2015).

Delimiting *Tsuga* species is difficult only in eastern Asia (Table 1), where the number of recognized species is three (Eckenwalder 2009), four (Farjon 1990, 2010), or five (Fu et al. 1999). Long-accepted species, such as northern Japanese hemlock (*T. diversifolia*) and southern Japanese hemlock (*T. sieboldii*), differ subtly by presence of twig pubescence, stomatic band color, and seed (ovulate) cone scale texture (Farjon 1990; Baker 2009). These species also differ in the shape and margins of the ovulate cone-scale bracts, characters that are useful across living and fossil *Tsuga* (LePage 2003; Xing et al. 2013).

Although widespread across northern temperate continents during the Neogene, *Tsuga* contracted during the Quaternary to eastern Asia, and eastern and western North America, perhaps due to its dependence on moist environments (LePage 2003; Tsuyama et al. 2014). The two western North American hemlocks, mountain hemlock (*T. mertensiana*) and western hemlock (*T. heterophylla*), form a clade that is sister to the remainder of the genus (Vining 1999; Havill et al. 2008). Eastern hemlock (*T. canadensis*) is sister to a well-supported clade consisting of the southern Appalachian endemic Carolina hemlock (*T. caroliniana*) plus Asian hemlocks (Havill et al. 2008). Central Asian *T. dumosa* is morphologically distinct from northeastern Asian hemlocks, and *T. chinensis*, which is widespread in China plus a small region of Vietnam (Farjon 2010), is morphologically diverse. The Japanese endemic *T. diversifolia* is morphologically most similar to *T. sieboldii*, which is native to Japan and the small Korean island, Ulleungdo. Havill et al.’s (2008) ITS data did not resolve relationships within the clade of *T. caroliniana* and Asian hemlocks. Their cpDNA did find a sister-group relationship of *T. chinensis* and Japanese *T. sieboldii* and weakly supported *T. caroliniana* as sister to a clade of *T. diversifolia* and Korean *T. sieboldii*. The close relationship between northeastern Asian *Tsuga* and eastern North American *T. caroliniana* is a common pattern in the boreotropical flora (Tiffney 1985; Manos and Meireles 2015).

Ulleungdo is a volcanic island about 130 km east of the Korean peninsula and separated from the closest point in Japan by about 284 km (Fig. 1). Ulleungdo is approximately 73 km², reaches an altitude of 983 m above sea level, and originated 2.7 ± 0.9 million years ago (Kim and Lee 1983). Ulleungdo has 30–40 endemic angiosperms (Stuessy et al. 2006; Jung et al. 2013), which make up 4–6% of the vascular plant species on the island (Jung et al. 2013). The majority of Ulleungdo endemics are hypothesized to have evolved by anagenesis (Stuessy et al. 2006). Ulleungdo has eight gymnosperm species, all of which are native, and Ulleungdo hemlocks are the first endemic gymnosperm to be described from the island. In Korea, *Tsuga* is only found on Ulleungdo (Jung et al. 2013), and has been treated as *T. sieboldii* (Wilson 1918; Nakai 1919; Kim 1988; Lee 1993; Lee 2001; Sun 2007). The goal of this paper is to resolve the evolutionary relationships of Ulleungdo hemlocks. We assess their phylogenetic relationships to other hemlocks with DNA
sequences from nearly complete chloroplast genomes and the low-copy nuclear gene 4CL. We test their phenotypic distinctness with quantitative morphology and their phenological distinctness in a common garden.

Materials and Methods

Plant Samples—We follow Eckenwalder (2009; Table 1) in recognizing three northeastern Asian hemlocks: *T. chinesis*, *T. diversifolia*, and *T. sieboldii*. We collected plant tissue for DNA extraction from 14 hemlock individuals (Appendix 1), including Ulleungdo hemlocks and multiple accessions of each northeastern Asian hemlock species. For quantitative morphology, we studied 78 Gray Herbarium specimens of wild-collected (Invitrogen, San Diego, California), and screened for the correct insert using from Wang et al. (2000), using an Eppendorf Mastercycler ep (Eppendorf Biosystems, Foster, California). We sampled three individuals of *Nothotsuga longibracteata* (AF144525, AF144526), which is robust for comparison of means from unbalanced data. Maximum parsimony analyses utilized PAUP* version 4.0b10 (Swofford 2002). Parsimony heuristic searches were performed in two steps, first to find the most parsimonious tree(s) using 1,000 random addition sequence replicates with tree-bisection-reconnection (TBR). Subsequent MP bootstrap analyses utilized the same settings as above, retaining 10 trees per replicate. Selection of models for use in maximum likelihood was conducted in ModelTest version 2.1.4, using the Akaike information criterion (Guindon and Gascuel 2003; Darriba et al. 2012). Maximum likelihood analyses were conducted with Garli 2.0, with an initial run to find the best tree, followed by 1,000 bootstrap replicates (Zwickl 2006).

Table 1. Comparison of three recent species classifications of *Tsuga* and *Nothotsuga*. NA = Not Applicable.

<table>
<thead>
<tr>
<th>Eckenwalder 2009</th>
<th>Fanjon 2010</th>
<th>Fu et al. 1999</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tsuga longibracteata (W. C. Cheng)</td>
<td>Tsuga longibracteata W. C. Cheng</td>
<td></td>
</tr>
<tr>
<td>H. H. Hu ex C. N. Page</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T. canadensis Carrière</td>
<td>T. canadensis</td>
<td>NA</td>
</tr>
<tr>
<td>T. caroliniana Engelm.</td>
<td>T. caroliniana</td>
<td>NA</td>
</tr>
<tr>
<td>T. chinensis (Franch.) E. Pritz. in Diels</td>
<td>T. chinensis var. chinesis</td>
<td>T. chinensis var. chinesis</td>
</tr>
<tr>
<td>T. chinensis</td>
<td>T. chinensis var. chinesis</td>
<td>T. chinensis var. formaosa (Hayata) H. L. Li & H. Keng</td>
</tr>
<tr>
<td>T. diversifolia (Maxim.) Mast.</td>
<td>T. diversifolia</td>
<td>T. oblongisquamata (W. C. Cheng & L. K. Fu) L. K. Fu & Nan Li</td>
</tr>
<tr>
<td>T. × forrestii Downie</td>
<td>T. forestii Downie</td>
<td>T. chinensis var. forresti (Downie) Silba</td>
</tr>
<tr>
<td>T. chinensis</td>
<td>T. chinensis var. robusta W. C. Cheng & L. K. Fu</td>
<td>T. chinensis var. robusta</td>
</tr>
<tr>
<td>T. diversifolia</td>
<td>T. diversifolia</td>
<td>T. chinensis var. pateis (Downie) L. K. Fu & Nan Li</td>
</tr>
<tr>
<td>T. mertensiana Carrière</td>
<td>T. mertensiana</td>
<td>NA</td>
</tr>
<tr>
<td>T. mertensiana Baroni Carrière</td>
<td>T. mertensiana</td>
<td>NA</td>
</tr>
<tr>
<td>T. reevesiana</td>
<td>T. reevesiana</td>
<td>NA</td>
</tr>
<tr>
<td>T. siemidowii Carrière</td>
<td>T. siemidowii</td>
<td>NA</td>
</tr>
</tbody>
</table>

Common Garden Leaf Morphology—We studied morphological variation in three mature individuals each of *T. diversifolia* and Japanese.
T. sieboldii plus two Ulleungdo hemlocks at the Arnold Arboretum. We used four branches from each individual from the same aspect, exposure, and developmental stage.

Phenology—We recorded bud burst and leaf maturation on reproductively mature plants of Ulleungdo hemlocks, T. chinensis, T. diversifolia, and Japanese T. sieboldii growing out-of-doors at the Arnold Arboretum in 2010, 2011, and 2012. We measured one branch on the north, east, south, and west sides of each specimen weekly from April 1 through September 1.

Results

Alignments of 4CL were 1,049 base pairs in length. Preliminary phylogenetic analysis of 4CL revealed two distinct copies of the gene in Tsuga, as in Larix (Semerikov and Lascoux 2003). We analyzed alleles from these two 4CL copies to better understand patterns that may be attributed to retention of ancestral polymorphisms, a phenomenon of non-coalescence.
Table 2. Morphological differentiation of northeastern Asian Tsuga in six quantitative leaf characters, and three qualitative characters. Sample sizes are given in parentheses following taxon name. All measurements are in millimeters. Means differing significantly between T. ulleungensis and other taxa are indicated by different letters (ANOVA with post hoc Tukey HSD test). \(a = p < 0.001; b = p < 0.01; c = p < 0.05; d = \text{not significant}; p > 0.05; \text{and} \ e = \text{irrelevant comparisons. See text for} \ p \ \text{values of quantitative characters for} \ T. \ sieboldii \ \text{and} \ T. \ ulleungensis. \)

<table>
<thead>
<tr>
<th>Character</th>
<th>T. chinensis (10)</th>
<th>T. diversifolia (20)</th>
<th>T. sieboldii (32)</th>
<th>T. ulleungensis (13)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaf blade length</td>
<td>9.73 ± 2.03</td>
<td>7.35 ± 1.23</td>
<td>9.25 ± 1.76</td>
<td>10.87 ± 1.06</td>
</tr>
<tr>
<td>Petiole width</td>
<td>0.41 ± 0.05</td>
<td>0.39 ± 0.07</td>
<td>0.40 ± 0.03</td>
<td>0.44 ± 0.02</td>
</tr>
<tr>
<td>Leaf width at apex</td>
<td>1.53 ± 0.17</td>
<td>1.56 ± 0.11</td>
<td>1.64 ± 0.15</td>
<td>1.74 ± 0.10</td>
</tr>
<tr>
<td>Leaf notch depth</td>
<td>0.07 ± 0.02</td>
<td>0.10 ± 0.02</td>
<td>0.11 ± 0.03</td>
<td>0.13 ± 0.02</td>
</tr>
<tr>
<td>Leaf notch width</td>
<td>0.19 ± 0.08</td>
<td>0.33 ± 0.04</td>
<td>0.33 ± 0.06</td>
<td>0.41 ± 0.04</td>
</tr>
<tr>
<td>Resin canal width</td>
<td>0.11 ± 0.03</td>
<td>0.14 ± 0.02</td>
<td>0.13 ± 0.02</td>
<td>0.06 ± 0.01</td>
</tr>
<tr>
<td>Twig hairiness</td>
<td>None to sparse</td>
<td>Entire to crenulate</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Cone-scale bract margins</td>
<td>Erose</td>
<td>Moderate to dense</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

that is inferred in nuclear phylogenies in Pinus (Syring et al. 2007; Wilyard et al. 2009) and organellar markers in Tsuga (Cun and Wang 2014). Tsuga canadensis was selected as an outgroup given its phylogenetic position as sister to Asian hemlocks plus T. caroliniana (Havill et al. 2008). The ILD tests revealed no significant differences in phylogenetic signal between the two copies, which were combined for further analysis. The combined, two-copy 4CL alignment was 2,098 base pairs in length, with 46 parsimony-informative characters, and the best-fitting model, HKY + I, was selected. The strongly supported clade of T. caroliniana and T. chinensis is sister to the strongly supported oceanic hemlock clade of T. diversifolia, T. sieboldii, and Ulleungdo hemlocks (Fig. 3).

The abietoid clade (Abies, Cedrus, Keteleeria, Nothotsuga, Pseudolarix, and Tsuga) has a synapomorphic reduction in the chloroplast inverted repeat (IR; Lin et al. 2010). Like Keteleeria, Nothotsuga and Tsuga chloroplast genomes are also compact, sharing intron reductions documented by Wu et al. (2009). Out of 68 protein-coding genes in the chloroplast, we document 13 genes (accD, ccmA, chlN, matK, psbM, rpl2, rpl20, rpoB, rpoC2, rps2, and rps4) that are shorter in Tsuga than in Keteleeria, typically by a one- or two-codon deletion near the 3' end of the gene. On the other hand, insertions near the 5' end of psaI and psbA make these two genes 24 total base pairs longer in Nothotsuga and Tsuga than in Keteleeria. A nine-base-pair insertion at the 5' end of psbH is shared by Asian hemlocks and T. caroliniana. Numerous small (3–24 base pairs) indels are found in the giant open reading frame ycf2.

The cpDNA alignment was 122,525 bp, with 1,574 parsimony-informative characters. For the cpDNA dataset, the best fitting model, GTR + G, was selected, with four separate rate categories. With one exception, branches in the cpDNA phylogeny (Fig. 4) have 100% bootstrap (BS) support from MP and ML. The cpDNA phylogeny resolves T. caroliniana as sister to a clade of T. diversifolia and Ulleungdo hemlocks with moderate support (80 MPBS/77% MLBS), and these three taxa are in turn sister to a clade of Japanese T. sieboldii and T. chinensis. The 4CL and cpDNA phylogenies are therefore not congruent. Sequence divergence (Table 3) between Ulleungdo hemlocks and T. diversifolia (0.0015) is similar to that between Japanese T. sieboldii and T. chinensis (0.00168).

Morphology—Ulleungdo hemlocks resemble Japanese T. sieboldii in having glabrous branches, but Ulleungdo hemlocks have larger leaves (Figs. 5, 6), wider petioles, larger leaf notches, buff-colored stomatal bands, and smaller resin canals. The margins of Ulleungdo hemlocks cone-scale bracts are crenulate, with large, wave-like teeth, especially evident on the proximal-most one to three cone-scale bract margins, whereas bracts of Japanese T. sieboldii have finely serrate teeth (erose margins, Table 2, Fig. 7). The taxonomic utility of cone-scale bract morphology is limited by the absence of cones from many herbarium specimens. The diameter of Japanese T. sieboldii and T. diversifolia resin canals averages more than twice that of Ulleungdo hemlocks (Table 2) resin canals. We did not record any overlap in resin canal diameters between Japanese T. sieboldii plus T. diversifolia and Ulleungdo hemlocks. Plants in a common garden setting at the Arnold Arboretum have larger leaves than those observed on wild-collected specimens. Differences between species are similar in the common garden and the wild; just as we observe in wild-collected specimens, the common garden Ulleungdo hemlocks have larger leaves on average than T. sieboldii, which are in turn larger than T. diversifolia.

Four quantitative characters (Table 2) differed significantly between Ulleungdo hemlocks and Japanese T. sieboldii (with ANOVA and post hoc Tukey HSD test): leaf length \(p = 0.030 \), petiole width \(p = 0.0029 \), leaf notch width \(p = 0.0013 \), and resin canal width \(p = 0.001 \) (Fig. 6). Two additional quantitative characters were included in the PCA, as they significantly differed between T. chinensis and Ulleungdo hemlocks: leaf width at apex \(p = 0.027 \), and leaf notch depth \(p = 0.0001 \) (Table 2). The broken-stick model indicates that only two principal components were significant. PCA reveals that Ulleungdo hemlocks form a cluster that is mostly separate from the broadly overlapping grouping of T. diversifolia and Japanese T. sieboldii (Fig. 5). The two Japanese T. sieboldii herbarium samples (Kobayashi 1731; Wilson 6037; Appendix 1) that are close or adjacent to the Ulleungdo hemlocks cluster have large leaves and are from Yakushima, the southernmost occurrence of Japanese T. sieboldii (Fig. 1). Yakushima hemlocks, however, have large resin canals and finely-toothed ovulate cone-scale bracts typical of Japanese T. sieboldii. Two T. chinensis herbarium samples from Anhui Province (Steward 7194; Wilson 2100; Appendix 1) are also close or adjacent to the Ulleungdo hemlocks cluster. Like Ulleungdo hemlocks and Yakushima T. sieboldii, these two T. chinensis have large leaves with short petioles, but the diameter of their resin canals (0.074, 0.069 mm, respectively) approach that of Ulleungdo hemlocks (Table 2). Anhui T. chinensis have, however, smaller leaf notches and rhomboid shaped ovulate
cone-scale bracts with irregularly serrate margins typical of *T. chinensis*.

Phenology—At the Arnold Arboretum, Ulleungdo hemlocks and *T. chinensis* break bud at nearly the same time, but *T. chinensis* ceases its annual growth about four weeks later than Ulleungdo hemlocks (Fig. 8). *Tsuga diversifolia* has a relatively short period of growth; bud break occurs just over a week after *T. chinensis* and Ulleungdo hemlocks, and growth

![Fig. 2. Tsuga ulleungensis. A. Abaxial leaf surface. B. Adaxial leaf surface. LW90, LW50, LW10 = leaf width at 90, 50, and 10% of leaf length, respectively. LL = leaf length. PL = petiole length. FW = petiole width. C. Enlarged view of portion of leaf tip, adaxial surface. LNW = leaf notch width. LND = leaf notch depth. D. Foliated branch, with ovulate cone. E. Leaf cross section at leaf midpoint, with central resin canal near abaxial surface. F. Enlarged view of portion of leaf at midpoint, adaxial surface. RCW = resin canal width at transverse section of leaf at midpoint. G. Seeds. H. Ovulate cone, side view. I. Ovulate cone, proximal view. J. Large ovulate scale, abaxial view with bract. K. Large ovulate scale, adaxial view with impressions of winged seeds. L. Small ovulate scale, abaxial view with bract. M. Small ovulate scale, adaxial view with impression of seed body.](image-url)
ceases about two and a half weeks earlier than Ulleungdo hemlocks. Japanese T. sieboldii initiates growth almost 40 d later (Fig. 9) than T. chinensis and Ulleungdo hemlocks, but concludes its growth a week earlier than T. chinensis. Earlier bud break in Ulleungdo hemlocks than Japanese T. sieboldii was observed in native habitats of both species during fieldwork in May 2008.

Discussion

The Species Problem in Pinaceae—Delimitation of species has been challenging in all Pinaceae genera with more than one species. This challenge is shown by Farjon’s (2010) recognition of 18% more species in the family than Eckenwalder (2009). Species delimitation is difficult in Pinaceae because speciation may be slowed by long lifespans, large population sizes, extensive gene flow among populations, and large genomes (Knight et al. 2005; Syring et al. 2005, 2007). During such protracted speciation, criteria for species status (such as morphological distinctness, allelic coalescence (distinct lineage status), and reproductive isolation) may occur at different times. Complete allelic coalescence of nuclear markers, for example, could take up to 7.6 million years in Pinus (Syring et al. 2007) and has lagged behind morphological distinctness in many conifer species (Syring et al. 2005). Ulleungdo hemlocks, which have not achieved allelic monophyly in 4CL (Fig. 3) but are morphologically distinct, fit this pattern. Intergradation of taxa, such as some western North American Abies (Aguirre-Planter et al. 2012) and some members of Pinus (Wang and Szmidt 1994; Jasinski et al. 2010) may represent ecogeographic but not morphological separation.

Although hybridization is generally not a source of difficulty in delimiting species (Rieseberg et al. 2006), it obscures some species boundaries in Pinaceae. Frequent hybridization between *Picea mariana* and *P. rubens*, for example, creates numerous intermediate forms that are difficult to distinguish from parental species (Bouillé et al. 2011). Hybridization has been reported as frequent in some genera of Pinaceae (Lanner and Van Devender 1998; Semerikov and Lascoux 2003; Kormatak et al. 2004; Bouillé et al. 2011; Xiang et al. 2015), but there is little evidence for current hybridization in Tsuga. *Tsuga caroliniana* and *T. canadensis* are partially sympatric, but hybrids have not been documented. *Tsuga canadensis* does not hybridize with northeastern Asian hemlocks in cross-pollination trials, but *T. caroliniana* will produce fertile hybrids with northeastern Asian hemlocks (Bentz et al. 2002). Morphological intermediates between *T. heterophylla* and *T. mertensiana* have been attributed to hybridization. Phytochemical analysis showed that hybridization between the two species is rare, however, and morphological intermediacy was attributed to phenotypic plasticity (Taylor 1972). Support for a sister-group relationship of *T. heterophylla* and *T. mertensiana* is unequivocal from ITS, but only moderately supported by cpDNA, which may be evidence of past hybridization (Havill et al. 2008). *Tsuga chinensis* var. *forrestii* is morphologically intermediate between *T. dumosa* and *T. chinensis* and has been hypothesized to be their hybrid (Eckenwalder 2009). In contrast, ITS, cpDNA, and mtDNA place *T. chinensis* var. *forrestii* close to *T. chinensis* and far from *T. dumosa* (Havill et al. 2008, Cun and Wang 2014). A close relationship between *Tsuga chinensis* var. *forrestii* to *T. dunosa* var. *forrestii* to *T. chinensis* var. *forrestii* was hypothesized to result from their progenitor-derivative relationship and subsequent introgression from *T. chinensis* var. *forrestii* to *T. chinensis* var. *forrestii* (Cun and Wang 2014).

Ancient hybridization has been suggested in many conifers (Wei and Wang 2004). ITS phylogenies divide *Larix* into Eurasian and North American clades (Semerikov and Lascoux...
Chloroplast phylogenies, on the other hand, resolved Eurasian *L. sibirica* as sister to all other *Larix*. Semerikov and Lascoux (2003) suggested that this incongruence arose through ancient hybridization between a member of the Eurasian clade *Larix* and an extinct, stem-lineage *Larix*. Taiwanese endemic *Pseudotsuga wilsoniana* retains divergent copies of *LEAFY* that may be a signal of introgression of ancestors of *P. brevifolia* and the *P. gaussenii-P. sinensis-P. japonica* clade.

Table 3. Kimura 2-parameter cpDNA sequence divergence.

<table>
<thead>
<tr>
<th></th>
<th>K. davidiana</th>
<th>N. longibracteata</th>
<th>T. heterophylla</th>
<th>T. canadensis</th>
<th>T. chinensis</th>
<th>T. sieboldii</th>
<th>T. ulleungensis</th>
<th>T. diversifolia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keteleeria davidiana</td>
<td>0.04502</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nothotsuga longibracteata</td>
<td>0.04288</td>
<td>0.02284</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T. canadensis</td>
<td>0.04328</td>
<td>0.02327</td>
<td>0.00837</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T. chinensis</td>
<td>0.04395</td>
<td>0.02346</td>
<td>0.00807</td>
<td>0.00594</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T. sieboldii</td>
<td>0.04343</td>
<td>0.02374</td>
<td>0.00818</td>
<td>0.00615</td>
<td>0.00168</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T. ulleungensis</td>
<td>0.04462</td>
<td>0.02448</td>
<td>0.00884</td>
<td>0.00653</td>
<td>0.00476</td>
<td>0.00501</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T. diversifolia</td>
<td>0.04371</td>
<td>0.02314</td>
<td>0.00791</td>
<td>0.00613</td>
<td>0.00418</td>
<td>0.00416</td>
<td>0.0015</td>
<td></td>
</tr>
<tr>
<td>T. caroliniana</td>
<td>0.04369</td>
<td>0.02359</td>
<td>0.00833</td>
<td>0.00601</td>
<td>0.00435</td>
<td>0.00457</td>
<td>0.00507</td>
<td>0.00426</td>
</tr>
</tbody>
</table>

Fig. 5. PCA biplots of morphological analyses for 78 accessions of Asian *Tsuga*. The percentage of variation represented in each PCA axis is displayed. Vectors depict contributions of quantitative characters. See text for a fuller description of leaf morphological characters.
Fig. 6. Boxplots of Asian *Tsuga* leaf morphology. Y-axis is millimeters. CHI = *T. chinensis* (10 accessions); DIV = *T. diversifolia* (20 accessions); DUM = *T. dumosa* (3 accessions); SIE = *T. sieboldii* (32 accessions); ULL = *T. ulleungensis* (13 accessions).

In Abies, Asian-North American disjunct section Balsamea is monophyletic in ITS, but paraphyletic in cpDNA, with the North American Balsamea species sister to a clade of sections Momi, Pseudopica, and Asian Balsamea species (Xiang et al. 2015). Xiang et al. (2015) posited that section Balsamea originated by ancient hybridization with northeastern Asian firs contributing pollen (cpDNA) and North American firs as the seed parent (mitochondrial DNA), followed by backcrossing between Asian Balsamea and sections Momi and Pseudopica (or their ancestors). CpDNA placed Tsuga dumosa in a clade containing T. chinensis and T. sieboldii, whereas ITS supported T. dumosa as sister to a clade of T. caroliniana and all other Asian hemlocks (Havill et al. 2008). Tsuga dumosa may be a hybrid between an extinct Eurasian hemlock that was similar to T. canadensis and an Asian hemlock (Havill et al. 2008). Finally, conflict between 4CL, which has T. caroliniana and T. chinensis as sister species (Fig. 3), and cpDNA, which has T. caroliniana as sister to the clade of T. diversifolia and Ulleungdo hemlocks may be evidence for an ancient hybridization involving T. caroliniana.

Evolution of Ulleungdo Hemlocks—The 4CL phylogeny defines two clades of northeastern Asian hemlocks: the T. caroliniana-T. chinensis clade and the oceanic clade (Fig. 3). The T. caroliniana-T. chinensis clade has smaller leaf notches and shorter petioles than oceanic hemlocks (Nan and Li-kuo 1997), and morphology shows strong similarities among hemlocks of the oceanic clade (Figs. 5, 6). Because Ulleungdo hemlocks are genetically most closely related to, but morphologically and phenologically distinct from the Japanese hemlocks, we describe them as the new species, T. ulleungensis.

Of the 30–40 endemic vascular plants on Ulleungdo, most are assumed to result from progenitor-derivative relationships because they are the only species in their genera on the island (Stuessy et al. 2006). Lack of resolution within the 4CL oceanic clade blocks identification of a progenitor of T. ulleungensis. Our two 4CL loci together moderately support a sister-group relationship of our two accessions of T. ulleungensis and one of our two accessions of T. sieboldii (Fig. 3). However, our other accession of T. sieboldii nests with T. diversifolia in a well-supported clade (Fig. 3). While T. diversifolia and T. sieboldii are the most morphologically similar Asian hemlock species, T. ulleungensis is morphologically closest to T. sieboldii and relatively distinct from T. diversifolia (Figs. 5, 6). It is therefore plausible that T. ulleungensis evolved anagenetically from T. sieboldii prior to the latter’s putative capture of the T. chinensis chloroplast.

Hybridization may have been involved in the ancestry of the Ulleungdo endemic Fagus multirnervis based on incongruence between cpDNA and LEAFY (Oh et al. 2016). In addition, it appears to be distinct from but closely related to the Japanese endemic F. japonica and the Chinese F. engleriana. The prevalence of hybridization in conifers suggests its potential role in the ancestry of T. ulleungensis, but there is no clear evidence for this possibility.

Use of cpDNA as a molecular clock would be misleading for T. sieboldii because of putative chloroplast capture. If T. sieboldii and T. ulleungensis are indeed sister taxa, then their divergence would have been more recent than Havill et al.’s (2008) estimate of about 10 MYA for the split between T. ulleungensis and T. diversifolia. Volcanic analyses indicate that Ulleungdo originated about 2.7 MYA (Kim and Lee 1983) and has likely been occupied by vegetation only since 1.7 MYA (Kim 1985). While the oceanic clade does not currently occur on mainland Asia, fossils similar to T. diversifolia were widely distributed in North America and Eurasia in the Eocene (Matsumoto et al. 1995; LePage 2003). Miocene fossils from Japan resemble T. caroliniana, T. diversifolia, and T. heterophylla (LePage 2003), and Tsuga fossils from the Pliocene have been discovered on the Korean mainland (Kong 2000). Despite the presence of suitable habitat, T. diversifolia is currently absent from Hokkaido, but was present there in the late Quaternary (Tsuyama et al. 2014). Tsuyama et al. (2014) hypothesized that T. diversifolia was extirpated from Hokkaido by the colder, drier climate during the last glacial period, and has not yet been able to recolonize. A similar climate in Korea in the late Quaternary may have restricted Korean Tsuga to the climatically milder Ulleungdo. This glacial refuge may have been the place of origin of T. ulleungensis.

Taxonomic Treatment

Tsuga ulleungensis G. P. Holman, Del Tredici, Havill, N. S. Lee, and C. S. Campb., sp. nov.—TYPE: SOUTH KOREA. Ulleungdo. 2 June 1917, E. H. Wilson 8529 (GH!).

Korean name: Ul-leung-sol-song-na-mu

Trees to 22 m, trunk 0.5–0.8 m diam. Branchlets glabrous, 1–1.5 mm in diam. Buds: 2–3(–4.1) mm long, 1.8–2.4(–3.8) mm wide; globular or obovoid; glabrous; scales orbicular, dark brown, with crenate margins. Mature leaves: petioles 0.9–1.6 mm long, 0.3–0.6 mm wide; blades (4)–8–14(–22) mm long, (1.0–)1.7–2.1(–2.3) mm wide; base attenuate; margins entire and slightly thickened; apex emarginate; hypostomatic, stomata in two broad, dull white to buff bands on either side of midrib, each band with mostly 8 rows of stomata, decreasing to 2–3 proximally, and 4–5 distally; with a single resin canal,
Fig. 9. Comparison of northeastern Asian Tsuga. From left to right: foliated branches on 23 May 2012, showing phenological state; proximal view of ovulate cone, showing ovulate cone-scale bracts near the peduncle; side view of ovulate cone.
Mature ovulate cones globular to ovoid; 19–26 mm wide when open; on 1–2 mm long peduncles; cone scales number 20–26, 9–15 mm long, 10–15 mm wide. Seeds 4.5–5.5 mm long, 2–2.5 mm wide; with wings 4.3–8.5 mm long, 3.4–4.2 mm wide. Figure 2.

Additional Specimens Examined—All specimens are from Korea, North Gyeongsang Province. Specimen information is organized by locality, date, collector, collection number (herbarium). Specimens from botanical gardens also include the garden, accession number, and wild collection locality, if known. Plants included in the common garden phenology study are noted as CG #. GenBank accession numbers for specimens used in molecular analyses indicated as: (cpDNA; 4CL locus 1; 4CL locus 2). A dash (–) indicates locus not sequenced for that specimen. AA = Arnold Arboretum; cult. = in cultivation; PDT = collected by Peter Del Tredici. AA 1251–83A, cult., CG #4, wild origin: Nameose, between Taeha-dong and Manyang-dong, voucher: Holman 09–16 (AAH); KX256185; KX354396w; KX354397; AA 1251–83B, cult., CG #3, wild origin: Nameose, between Taeha-dong and Manyang-dong, voucher: Holman 08–13 (AAH); Jeodong, Jeodong, 35 m, 10 May 2008, PDT 3; Jeodong, Sol-song-na-mu, 22 Feb 2005, Lee, Y.N. (AAH); Nameose, Taeha Ryeong Protected Reserve, 440–480 m, 11 May 2008, PDT 4–1, 8, 13 (–); KX354394; KX354395), 15, 20, and 24 (AAH); Nameose, below the Taeha Ryeong Protected Reserve, 310 m, 11 May 2008, PDT 5–2 (AAH); Nameose, end of paved road #5, below the Taeha Ryeong Protected Reserve, 240 m, 11 May 2008, PDT 7–2 and 3 (AAH); Nari, Nari Basin, 400 m, 11 May 2008, PDT 8; Ulleung, Naesujeon, 10 May 2008, PDT 1 (AAH).

Distribution and Habitat—Tsuga ulleungensis is known only from Ulleungdo, where it grows on north facing slopes from 310 to 500 m above sea level (Fig. 10). Plants occur primarily on well-drained rocky ridges in a forest community type dominated by Pinus parviflora Siebold & Zuccarini (Kim 1988). Other woody plants commonly associated with T. ulleungensis include Acer pseudosieboldianum subsp. takasimense (Nakai) P.C. de Jong, Camellia japonica L., and Fagus multinervis Nakai.

Conservation—According to IUCN criteria, T. ulleungensis may be considered “critically endangered” due to its restricted geographic range (IUCN 2001). Pacific islands are a global hotspot for endemic conifers (Rumeu et al. 2014), and recognition of T. ulleungensis evidences uniqueness of the Ulleungdo flora.

Etymology—The epithet “ulleungensis” is derived from Ulleungdo, where the new species is found.

Key to Oceanic Hemlocks

1. Twigs hairy, stomatal bands snow-white, proximal (closest to the peduncle) 2–3 ovulate cone-scale bract margins entire to crenulate .. T. diversifolia

2. Twigs glabrous, stomatal bands dull white to buff, proximal 2–3 ovulate cone-scale bract margins erose to crenulate . . . 2

2. Resin canals at midpoint of leaf length 0.8–1.5 mm in diam, proximal 2–3 ovulate cone-scale bract margins erose to denticulate (with many tiny sharply-pointed teeth distributed along the whole margin) T. sieboldii

2. Resin canals at midpoint of leaf length 0.40–0.7 mm in diam, proximal 2–3 ovulate cone-scale bract margins crenulate to entire (with small, rounded teeth on the sides and no teeth or wavy, large teeth towards central cone-scale bract notch) .. T. ulleungensis

Acknowledgments. We thank Susan Bentz of the United States National Arboretum, and Kathryn Richardson and Kyle Port of the Arnold Arboretum for facilitating access to living plant materials; Eric Doucette and Joyce Longcore for helpful comments on the manuscript; and Alison Dibble for illustrating the new species. This paper is part of the Ph.D. thesis research of Garth Holman and was supported by NSF Gymnosperm Tree of Life grant (0629817) and in the USDA National Institute of Food and Agriculture, Hatch project number MEB-21405 to C. S. Campbell.

Literature Cited

Tsuga canadensis UNITED STATES. FHBG, cult., wild origin: Maine, voucher: Holman 08-02 (AAH) (KX255640; KX354416; --) (relevant publication: Wang et al. 2000); Holman 09-50 (AAH) (KX354412; KX354407).

Tsuga chinensis CHINA. Anhui Prov.: Huangshan, 23 Oct 1933, W.C. Cheng 4594 (NA); Anhui Prov.: Huangshan, 12 Aug 1924, A.N. Steward 7194 (NA); Fujian Prov.: Wuysian, 1,800 m, 1 Jan 1981, Y.-T. Zhang 2561 (NA); Guizhou Prov.: Yinzhang, Tongren, 840 m, 1931, W.C. Cheng 7972 (AAH); Huebi Prov.: Fangcian, Shyan, 8,000–9,000 ft, 1 May 1907, E.H. Wilson 5096 (AAH); AA 17596, cult., wild origin: Huebi Prov., voucher: Holman 09-72 (AAH) (KX354401; KX354411). Shiquan Prov.: Ziyang, 3 Aug 1989, B. Tong-Sheng 207 (AAH); Sichuan Prov.: Luchang, Kangding, N.E. of Tachenliu, 7,000–9,000 ft, 2 Jul 1908, E.H. Wilson 2100 (AAH); Sichuan Prov.: Lixian, Ching-Chi Hsien, 8,500 ft, 1 Aug 1908, E.H. Wilson 5097 (AAH); AA 233-2003, cult., wild origin: Sichuan Prov., voucher: Holman 10-02 (AAH) (KX256181; KX354408; KX354409).

Tsuga diversifolia VIETNAM. Ha Giang Prov.: Ngan Chai, Ha Giang Prov., Yen Minh dist., 1,400 m, 26 Nov 2004, S. Wu 705 (AAH).

Appendix 1. List of accessions examined for species other than Tsuga diversifolia.

B. Bartholomew 293
C.S. Sargent 205
H. Muroi 3436
M. Mizushima 1195

Appendix 2. List of accessions examined for species other than Tsuga diversifolia.

Chuang et al. 2007
United States. FHBG, cult., wild origin: Maine, voucher: Holman 08-02 (AAH) (KX255640; KX354416; --) (relevant publication: Wang et al. 2000).
Pref.: Futtsu, Mt. Nokogiri, Nishitama-gun, 19 Mar 1953, M. Miyushima
11411 (AAH); Chiba Pref.: Kamogawa, Awazu-gun, Ms. Kiyosumi, Yomogi,
200 m, 9 May 1976, Y. Tateishi 2317 (AAH); Gifu Pref.: Hida, 7 Aug
1933, K. Shiota 6685 (AAH); Gifu Pref.: Hida, 7 Aug 1933, K. Shiota 6746 (AAH); Gifu
Pref.: Mino, 9 Aug 1933, K. Shiota 6790 (AAH); Hiroshima Pref.: Miyajima,
17 Apr 1903, Bauerie 5349 (AAH); Hyogo Pref.: Fukuoka, Hyogo Pref.:
Mt. Nanakusa-yama, Kanzaki-gun, 200–300 m, 26 May 1979, S. Tsugaru
5375 (AAH); Kagoshima Pref.: Yakushima, Kumage-forest, Yak-cro, Yugo
forestry road to Mt. Shichigo, 880–1,488 m, 30 Jul 1992, S. Kojouhishi
1731 (AAH); Kagoshima Pref.: Yakushima, 500–1,150 m, 21 Feb 1914, E.H.
Wilson 6037 (AAH); Kanagawa Pref.: Nakahara, Japonia, Yokohama, 1862,
Maximowicz (NA); Kishi Pref.: Koya, 1,000m, 2 Dec 1914, E.H. Wilson
7845 (AAH); Kyoto Pref.: Hiyoshi, Kibidani, Yotsuya, Funai-gun, 650m, 5 Jul
1995, S. Tsugaru 22360 (AAH); Kyoto Pref.: Keihoku, near Koshiki-toge, Kitakuwada-gun, 780m, 6
Jul 1995, T. Takahashi 2861 (AAH); Kyoto Pref.: Keihoku, Hattyo-rindo,
Kitakuwada-gun, 490 m, 17 Sep 1994, S. Tsugaru 20940 (AAH); Kyoto Pref.:
Nantan, Hiyoshi, Kyushu, 3 Aug 1914, E.H. Wilson 6221 (AAH); Nagano
Pref.: Nagawa, Minami-azumi-gun, Nuyuyamaguchi, 900 m, 6 Jun 1983,
T. Yabara 6946 (AAH); Nagano Pref.: Shimoina, Uruugi, 13 Jun 1957, Yamanaka
3794 (AAH); Nara Pref.: Wakakusayama, 310 m, 18 May 2008, PDT 15-11
(AAH); Nara Pref.: Wakakusayama, 310m, 18 May 2008, PDT 15-12 (AAH); Osaka
Pref.: Kawachinagano, Iwawaki-san, 570 m, 8 Jun 2004, E.H. Wilson
13-9 (AAH); Osaka Pref.: Takatsuki, Myo-on-ji Temple, 375–400 m, 15 May
2008, PDT 13-8 (AAH); Osaka Pref.: Takatsuki, Myo-on-ji Temple,
375–400 m, 17 May 2008, PDT 13-9 (AAH); Osaka Pref.: Nakahata, 370m, 9 Jun 2004, E.H. Wilson
7791A (AAH); Osaka Pref.: Toyono, Yoshikawa, Toyono-cho, 180 m, 9 Jun 2004, E.H. Wilson
7791 (AAH); Wakayama Pref.: Koga, Tomisato, Oto-mura, Nishinuma-
gun., 500 m, 11 Aug 1965, G. Murata (AAH); Wakayama Pref.: Koya,
Kongo-bui Temple, Koya-cho, 820 m, 8 Jun 2004, E.H. Wilson
04-31 (AAH); Wakayama Pref.: Koya, Mt. Benten, Koya-san, 920 m, 8 Jun 2004, E.H. Wilson
04-32 (AAH).

Appendix 2. Third-generation DNA sequencing metrics.

<table>
<thead>
<tr>
<th>Species</th>
<th>Barcode</th>
<th>Contigs</th>
<th>Read Length</th>
<th>Reads Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nothotsuga longibracteata</td>
<td>CGTT</td>
<td>27</td>
<td>2,411,734</td>
<td>676</td>
</tr>
<tr>
<td>Tsuga canadensis</td>
<td>GATT</td>
<td>93</td>
<td>350,266</td>
<td>98</td>
</tr>
<tr>
<td>Tsuga caroliniana</td>
<td>CACTCA</td>
<td>23</td>
<td>2,651,733</td>
<td>2,253</td>
</tr>
<tr>
<td>Tsuga chinensis</td>
<td>ACCT</td>
<td>38</td>
<td>952,434</td>
<td>647</td>
</tr>
<tr>
<td>Tsuga diversifolia</td>
<td>CTGT</td>
<td>31</td>
<td>1,734,013</td>
<td>1,178</td>
</tr>
<tr>
<td>Tsuga heterophylla</td>
<td>AACT</td>
<td>61</td>
<td>1,855,346</td>
<td>788</td>
</tr>
<tr>
<td>Tsuga sieboldii</td>
<td>GATT</td>
<td>44</td>
<td>1,808,736</td>
<td>1,229</td>
</tr>
<tr>
<td>Tsuga ulleungensis</td>
<td>TCAT</td>
<td>30</td>
<td>1,726,604</td>
<td>1,173</td>
</tr>
</tbody>
</table>