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Abstract

The author of this dissertation studies the spectral properties of high-contrast pho-

tonic crystals, i.e. periodic electromagnetic waveguides made of two materials (a

connected phase and included phase) whose electromagnetic material properties

are in large contrast. A spectral analysis of 2nd-order divergence-form partial dif-

ferential operators (with a coupling constant k) is provided. A result of this analysis

is a uniformly convergent power series representation of Bloch-wave eigenvalues in

terms of the coupling constant k in the high-contrast limit k → ∞. An explicit

radius of convergence for this power series is obtained, and can be written explic-

itly in terms of the Bloch-wave vector α, the Dirichlet eigenvalues of the inclusion

geometry, and a lower bound on another spectrum known as the ”generalized elec-

trostatic resonances”. This lower bound is derived from geometric properties of the

inclusion geometry for the photonic crystal.
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Chapter 1
Preliminaries

1.1 Framework and Notation

Throughout this thesis, Rd will denote the d-dimensional real Euclidean space;

its standard basis will be denoted {~ej}dj=1. For a vector x ∈ Rd, we denote the

magnitude of x by |x| :=
√
x2

1 + . . .+ x2
d. The standard scalar product on Rd will

be given by x · y := x1y1 + . . . xdyd.

Integration will be handled in the Lebesgue sense, usually with respect to the

standard Lebesgue measure dx. There will often be a need to consider integrals

along d−1-dimensional submanifolds of Rd, for which the standard surface measure

dσ(x) (c.f. [11]) will be the measure against which we integrate. In either case, the

L2-norm,

‖f‖2 =

√∫
X

|f(x)|2dµ(x)

for a given measure space X with measure µ, of complex-valued measurable func-

tions f : X → C will be extensively used. Of course, the L2-norm is induced by

the L2-inner-product

(f, g) =

∫
X

f(x)g(x)dµ(x)

in the sense that ‖f‖2 =
√

(f, f). We will denote the set of all (µ-measureable)

functions on X with finite L2-norm by L2(X): this forms a Hilbert space under

the L2-inner-product.

Much of this thesis will revolve around the analysis of a certain divergence-form

partial differential equation. As a result, there will be need for the consideration

of derivatives of functions in L2(Ω), where Ω is an open domain in R. However,
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most functions in L2(Ω) aren’t even continuous, and, even more problematically,

the space C∞(Ω) ⊂ L2(Ω) of smooth functions is not complete with respect to any

norm induced by an inner product. Thankfully, C∞(Ω) is dense in L2(Ω), and by

completing (in the sense of Cauchy sequences) C∞(Ω) under a slightly different

norm induced by the scalar product

〈u, v〉 =

∫
Ω

∇u · ∇vdx+

∫
Ω

uvdx,

‖u‖1,2 =
√
〈u, u〉,

one obtains the well known Sobolev space H1(Ω). This space is also a Hilbert

Space (with respect to the inner product 〈, 〉), and consists of functions in L2(Ω)

whose distributional partial derivatives are themselves in L2(Ω), e.g. those functions

f ∈ L2(Ω) such that for each j = 1, . . . , d there exists a uj ∈ L2(Ω) such that, for

all ϕ ∈ C∞(Ω) with compact support one has

∫
Ω

f∂xjϕdx = −
∫

Ω

ujϕdx.

The function uj is called the j-th weak partial derivative of f . For more information

on the nature of functions in H1(Ω), see [10].

This thesis will often consider open, bounded subdomains Ω ⊂ Rd; when doing

so, it will be necessary to also consider the smoothness of its boundary, which we

denote ∂Ω := Ω\Ω. For a natural number k ∈ N, we will say that a bounded domain

Ω ⊂ Rd has Ck boundary if, for every point x ∈ ∂Ω there exists a neighborhood

U ⊂ ∂Ω of x, an open set V ⊂ Rd−1, and a k-continuously-differentiable, invertible

map φ : U → V whose inverse is also k-continuously-differentiable. For γ ∈ (0, 1)

we say that Ω has C1,γ boundary if the maps φ : U → V given above have Hölder-

continuous gradient with Hölder exponent γ, i.e. for all x, y ∈ ∂Ω there exists a
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C > 0 independent of x and y such that

|∇φ(x)−∇φ(y)| ≤ C|x− y|γ.

When working with partial differential equations on a bounded domain Ω (with

suitably smooth boundary), it is natural and often necessary to consider boundary

values of solutions to the equation at hand, i.e. the value of functions u ∈ H1(Ω)

along ∂Ω. However, functions in H1(Ω) are only equivalence classes of measurable

functions, and therefore may not even be well-defined on a sets of d-dimensional

Lebesgue measure zero, such as ∂Ω. To rectify this problem, we have the following

well known Trace Theorem, which allows one to make sense of ”boundary values”

of H1 functions.

Theorem 1. Let Ω be a bounded domain in Rd with C1 boundary. Then there

exists a bounded linear operator T : H1(Ω)→ L2(Ω) such that

1. for u ∈ H1(Ω) ∩ C(Ω), Tu = u|∂Ω

2. for u ∈ H1(Ω), ‖Tu‖L2(∂Ω) ≤ C‖u‖1,2

where C > 0 depends only on Ω.

We denote the kernel of the Trace operator T by H1
0 (Ω), which is interpreted as

the set of functions in H1(Ω) with zero boundary value. Note that T given above is

not typically surjective: its range is given by the so-called fractional Sobolev space

H1/2(∂Ω), which is defined by

H1/2(∂Ω) := {u ∈ L2(∂Ω) :
|u(x)− u(y)|
|x− y| d+1

2

∈ L2(∂Ω× ∂Ω)}

Indeed, for general s ∈ (0, 1) one may define the fractional Sobolev space

Hs(∂Ω) := {u ∈ L2(∂Ω) :
|u(x)− u(y)|
|x− y| d2+s

∈ L2(∂Ω× ∂Ω)}
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Its dual is denoted H−s(∂Ω). For more information on fractional Sobolev spaces,

the interested reader is directed to [9].

1.2 Maxwell’s Equations

This thesis will focus primarily on the modeling and analysis of propagation of

electromagnetic waves through specific kinds of waveguides. Such wave propagation

is governed by the well known Maxwell system of partial differential equations,

which, in the absence of point charges and currents, is given by:

∇ ·D = 0

∇ ·B = 0

∇× E = −∂B
∂t

∇×H = ∂D
∂t

.

(1.1)

Here E,B : R3 × [0,∞) → R3 represent the electric and magnetic fields, while D

and H represent the electric displacement field and magnetizing field respectively.

In order to reduce this system to a solvable one, one needs equations which relate

the electric field E to the electric displacement D as well as the magnetic field B

to the magnetizing field H. For linear, isotropic, non-dispersive materials (which

will be the kind considered in this thesis), the constitutive relations are given by

D = εE

H = 1
µ
B,

(1.2)

where ε, µ ∈ C are the electric permittivity and magnetic permeability of the ma-

terial respectively. Substituting (1.2) into (1.1) yields the following system of PDE
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for E and H:

∇ · E = 0

∇ ·H = 0

∇× E = −µ∂H
∂t

∇×H = ε∂E
∂t

.

(1.3)

This system of first-order partial differential equations can be transformed into

a single second-order partial differential equation for both the H and E fields,

through careful manipulation. To obtain the equation for H, we proceed as follows:

first, apply the curl operator to both sides of the fourth equation in (1.3) to obtain

∇× (ε−1∇×H) = ∇× ∂H

∂t
. (1.4)

Using the vector identity

∇×∇× F = ∇(∇ · F )−∇ · (∇F ),

and using the second equation of (1.3), equation (1.4) becomes

µ
∂2H

∂t2
= ∇ · (ε−1∇H). (1.5)

Equation (1.5) is known as a wave equation. One can obtain a similar wave equation

for the electric field following the same process:

ε
∂2E

∂t2
= ∇ · (µ−1∇E). (1.6)

The above two equations for E and H contain both time- and spacial-second-

order derivatives. To eliminate the time-dependence, a natural approach is to con-

sider time-harmonic solutions, i.e. solutions of the form

E(x, t) = E(x)e−iωt

H(x, t) = H(x)e−iωt,
(1.7)
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where ω ∈ R is called the frequency of the wave. Applying (1.7) to (1.3), (1.5),

and (1.6), one obtains the following Helmholtz-type equations for H and E,

∇ · (ε−1∇H) = µω2H, (1.8)

∇ · (µ−1∇E) = εω2E, (1.9)

together with the following differential relation between the two fields:

∇× E = iµωH

∇×H = −iεωE
(1.10)

In the sequel, materials with unitary magnetic permiability µ will be considered. In

this case, equation (1.8) is in fact an eigenvalue problem for the operator∇·(ε−1∇);

it is this perspective which will guide and motivate the analysis that follows.
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Chapter 2
Introduction

2.1 Two Physical Examples

The goal of this dissertation is the spectral analysis of Bloch wave modes cor-

responding to periodic, 2nd-order differential operators of divergence form. The

periodic coefficient of these operators will be taken to be very large in one, con-

nected (though not typically bounded) subdomain of Rd, d = 2, 3 and unitary in

the rest of Euclidean space. To motivate the study of the spectral behavior of these

operators, we consider two important models in acoustic and optical materials.

2.1.1 Photonic Crystals

A photonic crystal is a periodic array of materials which acts as a waveguide for

electromagnetic waves. Though the term ”photonic crystal” was not coined un-

til the mid 1980’s, periodic dielectric arrays were analyzed as early as the late

nineteenth century by Lord Rayleigh (see [30]). In that study, Lord Rayleigh dis-

covered that periodic multi-lyaer dieletric stacks exhibited a (one-dimensional)

photonic band gap, i.e. a range of frequencies whose propagation through the array

is greatly inhibited (also sometimes called a stop-band). The study of photonic

crystals began to grow rapidly after the publication of two major papers by E.

Yablonovich and S. John, which discussed three-dimensional photonic crystals,

their band structure, and possible applications of their stop-bands to controlling

spontaneous emission by atoms ([32]) and localisation of light ([14])

Since then, photonic crystals have seen development in a variety of designs and

applications. In the mid 90’s, Figotin and Kuchment produced several papers on
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thin-walled photonic crystals, which consist of walled cubic lattices surrounding a

low-permittivity material. Indeed, the existence of band-gaps was explicitly proven

in [20], [21], [22] for thin-walled lattices as the permittivity of the wall and the re-

ciprocal of the width of the walls tend to infinity. Three-phase periodic media are

considered by authors Chen and Lipton in [7]. In that paper, the authors developed

a power series expansion to recover dispersion relations for the three-phase mate-

rial; these dispersion relations rigorously demonstrated backwards wave propaga-

tion (i.e. double-negative behavior) across certain frequency intervals. Yet another

kind of photonic crystal structure has been analyzed by Hempel and Lienau. In

their 2000 paper [13], the authors considered a crystal composed of a connected

”host” phase which into which an ”inclusion” phase is periodically embedded.

There, the authors rigorously prove the existence of band gaps as the ratio of per-

mittivities between the host and the inclusion tends to infinity, which is sometimes

called the ”high-contrast limit”, for a wide class of (fixed) inclusion geometries.

This dissertation will focus on crystals of the type considered by [13].

When considering Maxwell’s equations in a two-dimensional photonic crystal,

it is often helpful to consider specific kinds of electromagnetic modes where the

electric and magnetic fields are in some sense perpendicular; these kinds of modes

are called transverse modes. Since this thesis concerns materials with unitary mag-

netic permiability, transverse modes with the magnetic field propagating out of

the ”plane of periodicity” of the crystal will be considered. For clarity, the plane of

periodicity will be identified with the standard real plane R2, while the magnetic

field will consist only of a ”~e3” component, i.e.

H(x) = h(x1, x2)~e3,

E(x) = i
εω
∇×H(x),

(2.1)
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for some scalar function h defined on R2. Applying this representation of H to

equation (1.8) with µ = 1 reveals the following eigenvalue problem defined on R2:

∇ · (ε−1(x)∇h(x)) = ω2h(x). (2.2)

2.1.2 Acoustics

Similar to a photonic crystal, an acoustic crystal is a periodic waveguide for acous-

tic waves (as opposed to electromagnetic waves). The differential equation which

governs acoustic wave propogation is given by

∆p− 1

c

∂2p

∂t2
= 0, (2.3)

where p is pressure, ∆ := ∂2
x1

+∂2
x2

+∂2
x3

is the Laplace operator, and c is the speed of

sound through the medium; this equation is known as the acoustic wave equation.

Just as one can consider a photonic crystal made of a ”host” and ”inclusion” phase

with widely different perimttivities ε1 and ε2 arrayed periodically, one may similarly

consider a periodic acoustic crystal consisting of two materials with drastically

different speeds of sound c1 and c2, making the coefficient c−1 periodic in R3.

Additionally, the consideration of time-harmonic solutions

p(x, t) = p(x)eiωt (2.4)

reveals another scalar-valued Helmholtz equation

c(x)∆p(x) + ω2p(x) = 0 (2.5)

2.2 Periodicity and the Floquet Transform

In both (2.2) and (2.5), the spectrum of the 2nd-order differential operator ∇ ·

(ε−1(x)∇) : L2(R2) → L2(R2) (resp. c(x)∆ : L2(R3) → L2(R3)) is continuous,

which creates some difficulty in the analysis of Helmholtz equation. However, for
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crystals considered in this paper, the material coefficient will be Zd-periodic in

Rd, (d = 2, 3), which allows for a convenient decomposition of the spectrum of the

operator on L2(Rd) into a union of spectra over smaller, more well-behaved function

spaces of Bloch-waves, i.e. functions u ∈ L2(Rd) such that, for some α ∈ (−π, π]d

and some Zd-periodic function ψ(x) one has

u(x) = ψ(x)eiα·x (2.6)

In each of these Bloch-wave spaces, the inverse of ∇ · (ε−1(x)∇) (resp. c(x)∆)

becomes a compact operator, so that its spectrum (and hence the spectrum of the

original operator) becomes discrete.

To that end, Bloch waves on a given unit cell Y = (0, 1]d will be defined, as well

as the Floquet Transform, which will act as a map between the spaces L2
#(α, Y )

of Bloch waves and L2(Rd).

2.2.1 The Floquet Transform

Let f ∈ L2(Rd), and define the Floquet Transform of f by

U [f ](x, α) =
∑
n∈Zd

f(x− n)eiα·n (2.7)

The Fourier-like variable α is typically referred to as the quasi-periodicity or quasi-

momentum. Shifting x by k ∈ Zd reveals the quasi-periodicity condition

U [f ](x+ k, α) = eiα·kU [f ](x, α) (2.8)

This shows that ϕ(x) := U [f ](x, α)e−iα·x is periodic, so that U [f ](x, α) is deter-

mined completely by its behavior on the unit cell Y = (0, 1]d and thus belongs to

the space

L2(α, Y ) = {u ∈ L2(Y ) : u(x)e−iα·x is Y -periodic} (2.9)

of L2 Bloch-waves with quasi-momentum α. As with L2(Y ), this is a a Hilbert

Space under the usual L2 inner product (·, ·). Moreover, U [f ](x, α) is periodic with
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respect to the quasi-momentum α, i.e. for k ∈ Zd one has

U [f ](x, α + 2πk) = U [f ](x, α) (2.10)

Thus, in order to obtain complete information on U [f ](x, α), one needs only con-

sider α in the domain B = (−π, π]2, hereafter referred to as the (first) Brillouin

zone.

Suppose that B and the measure dα on B are both normalized. Then we have

the following theorem, which acts as an analogue of the well known Plancherel

theorem for the Fourier Transform.

Theorem 2. The Floquet Transform

U : L2(Rd)→ L2(B,L2(Y )) (2.11)

is an isometry. Its inverse is given by

U−1[g](x) =

∫
B

g(x, α)dα, (2.12)

where g(x, α) ∈ L2(B,L2(Y )) is extended from Y to Rd by condition (2.8)

There are many references which provide greater detail on the nature and struc-

ture of the Floquet Transform; the interested reader is directed to [16], [31].

A fascinating feature feature of the Floquet Transform is its interactions with

linear differential operators with Zd-periodic coefficients. As a relevant example,

consider the differential operator Lε := ∇·(ε−1(x)∇) found in equation (2.2). Con-

sidering Lε : L2(R2)→ L2(R2), it is easy to see that the singular continuous spec-

trum of Lε is empty. Though the question of the presence of eigenvalues (elements

in the point spectrum) remains an open one, many physicists are in agreement

that the point spectrum of Lε on L2(R2) should be empty as well: though widely

believed, this statement has been shown to be very difficult to prove (see [23]).
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However, there is a way to decompose the operator Lε on L2(R2) into a family of

operators (each with discrete spectrum) acting on smaller domains of Bloch Waves.

First, one notes that, due to the periodicity of the coefficient ε−1(x), the operator

Lε commutes with the Floquet Transform. Indeed, for any f ∈ L2(R2), we have

U [Lεf ](x, α) =
∑
n∈Z2

∇ · (ε−1(x− n)∇f(x− n))eiα·n

=
∑
n∈Z2

∇ · (ε−1(x)∇f(x− n))eiα·n

= ∇ · (ε−1(x)∇
∑
n∈Z2

f(x− n)eiα·n)

= LεU [f ](x, α)

(2.13)

A similar proof works for any differential operator L on L2(Rd) with Zd-periodic

coefficients for d = 2, 3. in Thus, for fixed α ∈ B, the a periodic operator L can be

thought of as acting only on those functions f ∈ L2(α, Y ). Denoting this operator

restricted to α-Bloch Waves by

Lα : L2(α, Y )→ L2(α, Y ) (2.14)

and making use of the Plancherel-type theorem 2, we see that the Floquet Trans-

form expands L into a direct integral of operators

⊕∫
B

Lαdα. (2.15)

For symmetric L with real coefficients (e.g. those considered in (2.2) and (2.5)), L

will be a self-adjoint operator: in that case, one can prove that the decomposition

(2.15) yields a similar decomposition for the spectrum of L:

σ(L) =
⋃
α∈B

σ(Lα) (2.16)

This allows the spectral problems (2.2) and (2.5), originally posed on L2(Rd), to

instead be posed on the smaller spaces L2(α, Y ). Once the problem has been solved
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on L2(α, Y ) for each α ∈ B, one needs only take the union given by (2.16) to recover

the solution to the original problem. In light of this result, this dissertation will

focus entirely on solutions to (2.2) belonging to L2(α, Y ) for α in the first Brillioun

zone.

2.3 Layer Potentials and Boundary Value Problems for the Laplacian

For the kinds of crystals considered in this dissertation, the material coefficient

will be Zd-periodic (as discussed above) as well as piecewise-constant, taking on a

value k−1 � 1 in the connected phase of the material while being unitary in the

”inclusion” phase D, which will consist of a disjoint union of bounded, separated

domains periodically arranged (with Zd-periodicity) in Rd. As a preliminary step

to understanding the spectral properties of the operators Lα coming from the

differential operators in (2.2) and (2.5), it will be necessary to obtain information

on the boundary value problem

∆u = 0 in D, Y \D

u|+ = u|− on ∂D

u is α− quasiperiodic in Y

(2.17)

Here, ∆ = ∂2

∂x21
+ ∂2

∂x22
+ ∂2

∂x23
is the Laplace operator (also known as the Laplacian),

and

u|±(x) = lim
t→0+

u(x± tνx) (2.18)

where x ∈ ∂D and νx is the outward pointing normal vector at x on ∂D. The key

to unlocking the nature of solutions to this problem will revolve around the theory

of layer potentials, which are integral operators defined for functions on ∂D whose

kernels are intrinsically related to Poisson’s equation

∆u = f (2.19)
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for suitable boundary conditions prescribed to u. For now, the boundary values

for u will be ignored, and the theory of layer potentials will be introduced for the

free-space Laplacian (i.e. the Laplace operator for functions on Rd).

2.3.1 The Newtonian Potential

For d ≥ 2, we define the Newtonian Potential on Rd by

Γ(x) =


1

2π
log|x| d = 2

1
(2−d)ωd

|x|d−2 d ≥ 2

, (2.20)

where ωd is the area of the unit sphere in Rd. Γ(x) is sometimes known as the

fundamental solution of the Laplacian, as it satisfies the equation

∆Γ(x) = δ(x), (2.21)

where δ(x) is the Dirac-delta distribution. This distribution is characterized by the

following identity for ϕ ∈ C∞0 (Rd):∫
Rd
δ(x)ϕ(x)dx = ϕ(0) (2.22)

We define the following integral operator for f ∈ L2(Rd):

L[f ](x) :=

∫
Rd

Γ(x− y)f(y)dy (2.23)

From equations (2.21) and (2.22), and since L is a convolution operator, one readily

checks that L[f ] satisfies

∆L[f ](x) =
∫
Rd ∆Γ(x− y)f(y)dy

=
∫
Rd δ(x− y)f(y)dy

= f(x)

(2.24)

for x ∈ Rd. Thus we may view L as the inverse of the Laplace operator, i.e.

L = ∆−1, in the sense that, if we would like to solve Poisson’s equation (2.19) for
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u given f ∈ L2(Rd), we may simply apply L to f to obtain the solution

u(x) = ∆−1[f ](x) =

∫
Rd

Γ(x− y)f(y)dy (2.25)

There are many valuable sources which expound further on the fundamental solu-

tion Γ(x); the interested reader is directed to e.g. [11], [10].

2.3.2 Layer Potentials

Consider a (bounded, locally connected and locally path-connected) domain Ω ⊂

Rd, and suppose that Ω has finitely many connected components Ω1,Ω2, . . . ,Ωn.

Let ρ ∈ L2(∂Ω), and let Γ(x) be the Newtonian Potential defined in the previous

section. The single-layer potential of ρ is defined by the boundary integral formula

SΩ[ρ](x) :=

∫
∂Ω

Γ(x− y)ρ(y)dσ(y), x ∈ Rd. (2.26)

Similarly, the double-layer potential of ρ is defined

DΩ[ρ](x) :=

∫
∂Ω

∂

∂νy
Γ(x− y)ρ(y)dσ(y), x ∈ Rd \ ∂Ω, (2.27)

where νy is the outward pointing normal vector to y on ∂Ω. As a consequence of

the choice of kernels of the integral operators in (2.26) and (2.27), one can readily

check that, if u = SΩ[ρ] and v = DΩ[ρ], then

∆u = ∆v = 0 in Ω,Rd \ Ω (2.28)

Another equally important property of the layer potential operators is their

behavior along ∂Ω. First, define the following operator from L2(∂Ω) to L2(∂Ω):

KΩ[ρ](x) := p.v.

∫
∂Ω

∂

∂νy
Γ(x− y)ρ(y)dσ(y), x ∈ ∂Ω, (2.29)

and its adjoint

(KΩ)∗[ρ](x) := p.v.

∫
∂Ω

∂

∂νx
Γ(y − x)ρ(y)dσ(y), x ∈ ∂Ω. (2.30)
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Here, p.v. denotes the Cauchy principal value. The operators defined in (2.29) and

(2.30) are known to be bounded on L2(∂Ω). Indeed, for smooth enough boundaries

(C1,γ for γ ∈ (0, 1)), these operators are in fact compact. Proofs of compactness

of these operators for C1,γ-class domains can be found in [25]; a somewhat simpler

proof for the case of C2 boundaries can be found in [11].

The following jump relations along ∂Ω hold for the layer potentials (2.26) and

(2.27):

Lemma 3. If Ω is a domain with smooth enough boundary, then for every ρ ∈

L2(∂Ω) and almost every x ∈ ∂Ω,

SΩ[ρ]|+(x) = SΩ[ρ]|−(x)

DΩ[ρ]|±(x) = (∓I +KΩ)[ρ](x)

∂
∂ν
SΩ[ρ]|±(x) = (±I + (KΩ)∗)[ρ](x)

(2.31)

Thus one can see that the trace of double-layer potentials onto ∂Ω, as well as

the normal derivatives of single-layer potentials on ∂Ω, are not continuous across

∂Ω. Proofs for these jump relations can again be found in [11] (for C2 boundaries)

or [25] (for C1,γ boundaries).
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Chapter 3
Quasi-Periodic Resonances and Bloch
Wave Band Structure

Consider a Bloch wave h(x) with Bloch eigenvalue ω2 propagating through a two

or three dimensional crystal lattice characterized by the periodic coefficient a(x) =

a(x + p), p ∈ Zd, d = 2, 3, with unit cell Y = (0, 1]d. The Bloch wave satisfies the

differential equation,

−∇ · (a(x)∇h(x)) = ω2h(x), x ∈ Rd, d = 2, 3 (3.1)

together with the α quasi-periodicity condition h(x + p) = h(x)eiα·p. Here α lies

in the first Brillouin zone of the reciprocal lattice given by Y ? = (−π, π]d. As dis-

cussed in previous chapters, Equation (3.1) describes transverse magnetic (TM)

wave propagation through a two dimensional photonic crystal.

We examine Bloch wave propagation through high contrast crystals made from

periodic configurations of two materials. One material occupies disjoint inclusions

and is completely contained within each period cell and surrounded by the second

material.The coefficient is taken to be 1 inside the inclusions and k > 0 outside.

D2
D6

D5

D4

D1

Y \D
D3

Figure 3.1: Period Cell.
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The domain occupied by the union of all the inclusions D1, D2, . . . , Dn inside Y

is denoted by D, see figure 3.1. The coefficient is specified on the unit period cell

by a(x) = (kχY \D(x) + χD(x)) where χD and χY \D are indicator functions for the

sets D and Y \D and are extended by periodicity to Rd. In this paper we consider

periodic crystals made from finite collections of separated inclusions each with C1,γ

boundary.

To proceed we complexify the problem and consider k ∈ C. Now a(x) takes on

complex values inside Y \D and the divergence form operator −∇·(kχY \D+χD)∇

is no longer uniformly elliptic. Our approach develops an explicit representation

formula for −∇·(kχY \D+χD)∇ that holds for complex values of k. We identify the

subset z = 1/k ∈ Ω0 of C where this operator is invertible. The explicit formula

shows that the solution operator (−∇ · (kχY \D + χD)∇)−1 may be regarded more

generally as a meromorphic operator valued function of z for z ∈ Ω0 = C \ S, see

section 4.1 and Lemma 10. Here the set S is discrete and consists of poles lying on

the negative real axis with only one accumulation point at z = −1. For the prob-

lem treated here we expand about z = 0 and the distance between z = 0 and the

set S is used to bound the radius of convergence for the power series. The spectral

representation for −∇ · (kχY \D + χD)∇ follows from the existence of a complete

orthonormal set of quasi-periodic functions associated with the quasi-periodic res-

onances of the crystal, i.e., quasi periodic functions v and real eigenvalues λ for

which

−∇ · (χD)∇v = −λ∆v. (3.2)

These resonances are shown to be connected to the spectra of Neumann-Poincaré

operators associated with quasi-periodic double layer potentials. For α = 0 these

are the well known electrostatic resonances identified in [5], [4], [27], and [26]. Both
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Neumann-Poincaré operators and associated electrostatic resonances have been the

focus of theoretical investigations [15], [28] and applied in analysis of plasmonic

excitations for suspensions of noble metal particles [24] and electrostatic breakdown

[3]. The explicit spectral representation for the operator −∇ · (kχY \D + χD)∇ is

crucial for elucidating the interaction between the contrast k and the quasi-periodic

resonances of the crystal, see (3.39), (3.36), and (3.37).

The chapter is organized as follows: In the next section we introduce the Hilbert

space formulation of the problem and the variational formulation of the quasi-static

resonance problem. The completeness of the eigenfunctions associated with the

quasi-static spectrum is established and a spectral representation for the operator

−∇ · (kχY \D + χD)∇ is obtained. These results are collected and used to continue

the frequency band structure into the complex plane, see Theorem 9 of section 3.2.

Spectral perturbation theory [17] is applied to recover the power series expansion

for Bloch spectra in section 4.1. The leading order spectral theory is developed for

quasi-periodic α 6= 0 and periodic α = 0 problems in sections 4.2 and 4.3. The main

theorems on radius of convergence and separation of spectra given by Theorems 13

and 14 are presented in section 5.1. The class of buffered inclusions is introduced

in section 5.2 and the explicit radii of convergence for a random suspension of

buffered disks is presented in section 5.3. Explicit formulas for each term of the

power series expansion is recovered and expressed in terms of layer potentials in

section 6.1. In section 6.2 the explicit formula for the first order correction in the

power series is presented in the form of the Dirichlet energy of the solution of a

transmission boundary value problem. This formula follows from the layer potential

representation for the first term and agrees with the first order correction obtained

in the work of [1]. The explicit formulas for the convergence radii are derived in
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section 7 as well as hands on proofs of Theorems 13 and 14 and the explicit error

estimates for the series truncated after N terms.

3.1 Hilbert space setting, quasi-periodic resonances and representation

formulas

We denote the spaces of all α quasi-periodic complex valued functions belonging

to L2
loc(Rd) by L2

#(α, Y ) and the L2 inner product over Y is written

(u, v) =

∫
Y

uv dx. (3.3)

For α 6= 0 the eigenfunctions h for (3.1) belong to the space

H1
#(α, Y ) = {h ∈ H1

loc(Rd) : h is α quasiperiodic}. (3.4)

The space H1
#(α, Y ) is a Hilbert space under the inner product

〈u, v〉 =

∫
Y

∇u(x) · ∇v̄(x)dx. (3.5)

When α = 0, the pair h(x) = 1, ω2 = 0 is a solution to (3.1). For this case

the remaining eigenfunctions associated with nonzero eigenvalues are orthogonal

to 1 in the L2(Y ) inner product. These eigenfunctions are periodic and belong to

L2
loc(Rd). The set of Y periodic functions with zero average over Y belonging to

L2
loc(Rd) is denoted by L2

#(0, Y ). The periodic eigenfunctions of (3.1) associated

with nonzero eigenvalues belong to the space

H1
#(0, Y ) = {h ∈ H1

loc(Rd) : h is periodic,
∫
Y
h dx = 0}. (3.6)

The space H1
#(0, Y ) is also Hilbert space with the inner product 〈u, v〉 defined

by (3.5).
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For any k ∈ C, the the variational formulation of the eigenvalue problem (3.1)

for h and ω2 is given by

Bk(h, v) = ω2(h, v) (3.7)

for all v in H1
#(α, Y ) where Bk : H1

#(α, Y ) × H1
#(α, Y ) −→ C is the sesquilinear

form

Bk(u, v) = k

∫
Y \D
∇u(x) · ∇v̄(x)dx+

∫
D

∇u(x) · ∇v̄(x)dx. (3.8)

The linear operator Tαk : H1
#(α, Y ) −→ H1

#(α, Y ) associated with Bk is defined by

〈Tαk u, v〉 := Bk(u, v). (3.9)

In what follows we decompose H1
#(α, Y ) into invariant subspaces of source free

modes and identify the associated quasi-periodic resonance spectra. This decom-

position will provide an explicit spectral representation for the operator Tαk , see

Theorem 8. We first address the case α ∈ Y ? \ {0}. Let W1 ⊂ H1
#(α, Y ) be

the completion in H1
#(α, Y ) of the subspace of functions with support away from

D, and let W2 ⊂ H1
#(α, Y ) be the subspace of functions in H1

0 (D) extended by

zero into Y . Clearly W1 and W2 are orthogonal subspaces of H1
#(α, Y ), so define

W3 := (W1 ⊕W2)⊥. We therefore have

H1
#(α, Y ) = W1 ⊕W2 ⊕W3. (3.10)

The orthogonal decomposition and integration by parts shows that elements u ∈

W3 are harmonic separately in D and Y \D.

Now consider α = 0 and decompose H1
#(0, Y ). Let W1 ⊂ H1

#(0, Y ) be the

completion in H1
#(0, Y ) of the subspace of functions with support away from D.

Here let H̃1
0 (D) denote the subspace of functions H1

0 (D) extended by zero into
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Y \D and let 1Y be the indicator function of Y . We define W2 ⊂ H1
#(0, Y ) be the

subspace of functions given by

W2 = {u = ũ−
(∫

D

ũdx

)
1Y | ũ ∈ H̃1

0 (D)}. (3.11)

Clearly W1 and W2 are orthogonal subspaces of H1
#(0, Y ), and W3 := (W1⊕W2)⊥.

As before we have

H1
#(0, Y ) = W1 ⊕W2 ⊕W3 (3.12)

and W3 is identified with the subspace of H1
#(0, Y ) functions that are harmonic

inside D and Y \ D respectively. The orthogonality between W2 and W3 follows

from the identity
∫
∂D
∂nw ds = 0 for w ∈ W3. We summarize with the following

observation.

Lemma 4. For every α ∈ Y ?, if u ∈ W3 then u is harmonic in Y \ D and D

separately.

To set up the spectral analysis observe that Lemma 4, together with uniqueness

of traces onto ∂D of functions in H1
#(α, Y ) for α ∈ Y ∗, implies that elements of

W3 can be represented in terms of single layer potentials supported on ∂D. We

introduce the d-dimensional α-quasi-periodic Green’s function, d = 2, 3 given by,

see, e.g., [2],

Gα(x, y) = −
∑
n∈Zd

ei(2πn+α)·(x−y)

|2πn+ α|2
for α 6= 0 (3.13)

and the periodic Green’s function given by

G0(x, y) = −
∑

n∈Zd\{0}

ei2πn·(x−y)

|2πn|2
for α = 0. (3.14)

In both cases d = 2, 3, one can show that Gα(x, y)− Γ(x− y) is harmonic is both

x− and y−harmonic in Y , where Γ(x − y) is the free-space Newtonian Potential

defined in (2.20) for any α ∈ Y ∗. For α ∈ Y ∗ \ {0}, the α-quasi-periodic Green’s
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function Gα(x, y) acts as a fundamental solution of the Laplace operator, in the

sense that

−∆xG
α(x, y) = δ(x− y) ,x, y ∈ Y . (3.15)

Note also that, for any quasi-periodic f ∈ L2(Y ) with quasimomentum α, we have

u(x) :=

∫
Y

Gα(x, y)f(y)dy ,x ∈ Y (3.16)

is in H1
#(α, Y ). Thus, denoting the negative Laplacian acting on H1

#(α, Y ) by

(−∆α), we may identify its inverse with the integral operator

(−∆α)−1f(x) := u(x) :=

∫
Y

Gα(x, y)f(y)dy ,x ∈ Y (3.17)

The periodic Green’s function is not exactly a fundamental solution of the Laplace

operator, but it is in some sense very close to one. Indeed, the G0(x, y) satisfies

the following differential equation:

−∆xG
0(x, y) = δ(x− y)− 1Y , (3.18)

where 1Y is the constant function on Y with value 1. For periodic, mean-zero

functions f ∈ L2(Y ), one still obtains the identity

−∆x

∫
Y

G0(x, y)f(y)dy =

∫
Y

δ(x− y)f(y)dy = f(x) (3.19)

since f is mean-zero on Y , and

u(x) :=

∫
Y

G0(x, y)f(y)dy ,x ∈ Y (3.20)

is in H1
#(0, Y ) as well. Thus, as in the quas-periodic case, we identify the inverse

of −∆ acting on H1
#(0, Y ), denoted −∆0, with

(−∆0)−1f(x) :=

∫
Y

G0(x, y)f(y)dy ,x ∈ Y (3.21)
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Let H1/2(∂D) be the fractional Sobelev space on ∂D defined in the usual way,

and denote its dual by (H1/2(∂D))∗ = H−1/2(∂D). For ρ ∈ H−1/2(∂D), and α ∈ Y ?

define the single layer potential

SD[ρ](x) =

∫
∂D

Gα(x, y)ρ(y)dσ(y), x ∈ Y. (3.22)

It follows from [8], that for any ρ ∈ H−1/2(∂D)

∆SDρ = 0 in D and Y \D,

SDρ |+∂D = SDρ |−∂D,
∂

∂ν
SDρ |±∂D = ±1

2
ρ+ (K̃−αD )∗ρ, (3.23)

where ν is the outward directed normal vector on ∂D and (K̃−αD )∗ is the Neumann

Poincaré operator defined by

(K̃−αD )∗ρ(x) = p. v.

∫
∂D

∂Gα(x, y)

∂ν(x)
ρ(y)dσ(y), x ∈ ∂D, (3.24)

and K̃α
D is the Neumann Poincaré operator

K̃α
Dρ(x) = p. v.

∫
∂D

∂Gα(y, x)

∂ν(y)
ρ(y)dσ(y), x ∈ ∂D. (3.25)

Before continuing, note that while the Layer Potentials defined in (2.26) and

(2.27) were defined as integral operators for L2 densities ρ on the boundary of the

domain, the layer potentials defined above for the present problem are defined for

densities in H−1/2(∂D). The primary reason for this adjustment is to represent the

trace of every function in W3 as the image of a single layer potential. In order to

obtain this one-to-one correspondence, it is necessary to widen the domain of SD

to the larger domain H−1/2(∂D); indeed, if we consider S∂D := SD|∂D as a map on

L2(∂D), then it can be shown that the domain of its inverse is H1(∂D), which is

smaller than the target space of H1/2(∂D) ([2]). That the domain of S∂D can be
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widened from L2(∂D) to H−1/2(∂D) follows from the identity

(S∂Dρ, ρ)L2(∂D) = ‖SDρ‖2
H1

#(α,Y ) (3.26)

A complete proof of this result can be found in [28].

In what follows we assume the boundary ∂D is C1,γ, for some γ > 0. Here

the layer potentials K̃α
D, and (K̃−αD )∗ are continuous linear mappings from L2(∂D)

to L2(∂D) and compact, since ∂Gα(x,y)
∂ν(x)

is a continuous kernel of order d − 2 in

dimensions d = 2, 3 (since Gα(x, y) − Γ(x − y) is smooth). The operator SD is

a continuous linear map from H−1/2(∂D) into H1
#(α, Y ) and we define S∂Dρ =

SDρ |∂D for all ρ ∈ H−1/2(∂D). Here S∂D : H−1/2(∂D) −→ H1/2(∂D) is continuous

and invertible, see [8].

One readily verifies the symmetry

Gα(x, y) = G−α(y, x), (3.27)

and application delivers the Plemelj symmetry for K̃−α, (K̃−α)∗ and S∂D as oper-

ators on L2(∂D) given by

K̃−αS∂D = S∂D(K̃−α)∗. (3.28)

Moreover as seen in [28] the operator −S∂D is positive and selfadjoint in L2(∂D)

and in view of (3.28) (K̃−αD )∗ is a compact operator on H−1/2(∂D).

Let G : W3 −→ H1/2(∂D) be the trace operator, which is bounded and onto.

Lemma 5. SD : H−1/2(∂D) −→ W3 is a one-to-one, bounded linear map with

bounded inverse S−1
D = S−1

∂DG.

Proof. Let ρ ∈ H−1/2(∂D), and set f = SDρ. Then by the first equation of (3.23),

f is harmonic in D and Y \D separately, and so for any v1 ∈ W1 and v2 ∈ W2 we

have

〈f, v1〉 = 0 = 〈f, v2〉. (3.29)
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But W3 = (W1 ⊕W2)⊥, so f = SDρ ∈ W3 for every ρ ∈ H−1/2(∂D).

Now suppose u ∈ W3, and consider Gu = u |∂D∈ H1/2(∂D). For all x ∈ Y

define w(x) = SD(S−1
∂DGu). Since u,w ∈ W3, it follows that w − u ∈ W3 as well.

Since Gu = Gw, we have that G(w − u) = 0, and so w − u ∈ (W1 ⊕W2). But

W3 = (W1 ⊕W2)⊥, so w = u as desired.

We introduce an auxiliary operator T : W3 −→ W3, given by the sesquilinear

form

〈Tu, v〉 =
1

2

∫
Y \D
∇u(x) · ∇v̄(x)dx− 1

2

∫
D

∇u(x) · ∇v̄(x)dx. (3.30)

The next theorem will be useful for the spectral decomposition of Tαk and in the

proof of Theorem 15.

Theorem 6. The linear map T defined in equation (3.30) is given by

T = SD(K̃−αD )∗S−1
D

and is compact and self-adjoint.

Proof. For u, v ∈ W3, consider

〈SD(K̃−αD )∗S−1
D u, v〉 =

∫
Y

∇[SD(K̃−αD )∗S−1
D u] · ∇v̄. (3.31)

Since ∆SDρ = 0 in D and Y \D for any ρ ∈ H−1/2(∂D), an integration by parts

yields

〈SD(K̃−αD )∗S−1
D u, v〉 =

∫
∂D

v̄(
∂[SD(K̃−αD )∗S−1

D u]

∂ν
|−∂D −

∂[SD(K̃−αD )∗S−1
D u]

∂ν
|+∂D)dσ.

Applying the jump conditions from (3.23) yields

〈SD(K̃−αD )∗S−1
D u, v〉 = −

∫
∂D

(K̃−αD )∗S−1
D uv̄dσ. (3.32)
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Note that by the same jump conditions

(K̃−αD )∗S−1
D u =

1

2
(
∂u

∂ν
|−∂D +

∂u

∂ν
|+∂D). (3.33)

Application of (3.33) to equation (3.32) and an integration by parts yields the

desired result. Compactness follows directly from the properties of SD and (K̃−α)∗.

Rearranging terms in the weak formulation of (3.2) and writing µ = 1/2−λ de-

livers the equivalent eigenvalue problem for quasi-periodic electrostatic resonances.

〈Tu, v〉 = µ〈u, v〉, u, v ∈ W3.

Since T is compact and self adjoint on W3, there exists a countable subset {µi}i∈N

of the real line with a single accumulation point at 0 and an associated family of

orthogonal finite-dimensional projections {Pµi}i∈N such that

〈
∞∑
i=1

Pµiu, v〉 = 〈u, v〉, u, v ∈ W3

and

〈
∞∑
i=1

µiPµiu, v〉 = 〈Tu, v〉, u, v ∈ W3.

Moreover, it is clear by (3.30) that

−1

2
≤ µi ≤

1

2
.

The upper bound 1/2 is the eigenvalue associated with the eigenfunction Π ∈

H1
#(α, Y ) such that Π = 1 in D and is harmonic on Y \ D. In section 5.2 an

explicit lower bound µ− is identified such that the inequality −1/2 < µ− ≤ µi,

holds for a generic class of geometries uniformly with respect to α ∈ Y ?.
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Lemma 7. The eigenvalues {µi}i∈N of T are precisely the eigenvalues of the

Neumann-Poincaré operator (K̃−αD )∗ associated with quasi-periodic double layer

potential restricted to ∂D.

Proof. If a pair (µ, u) belonging to (−1/2, 1/2] × W3 satisfies Tu = µu then

SD(K̃−αD )∗S−1
D u = µu. Multiplication of both sides by S−1

D shows that S−1
D u is an

eigenfunction for function for (K̃−αD )∗ associated with µ. Suppose the pair (µ,w)

belongs to (−1/2, 1/2]×H−1/2(∂D) and satisfies (K̃−αD )∗w = µw. Since the trace

map from W3 to H1/2(∂D) is onto then there is a u in W3 for which w = S−1
D u

and (K̃−αD )∗S−1
D u = µS−1

D u. Multiplication of this identity by SD shows that u is

an eigenfunction for T associated with µ.

Finally, we see that if u1 ∈ W1 and u2 ∈ W2, then

〈Tu1, v〉 =
1

2
〈u1, v〉,

〈Tu2, v〉 = −1

2
〈u2, v〉

for all v ∈ H1
#(α, Y ).

Let Q1, Q2 be the orthogonal projections of H1
#(α, Y ) onto W1 and W2 re-

spectively, and define P1 := Q1 + P1/2, P2 := Q2. Here P1/2 is the projection

onto the one dimensional subspace spanned by the function Π ∈ H1
#(α, Y ). Then

{P1, P2} ∪ {Pµi}− 1
2
<µi<

1
2

is an orthogonal family of projections, and

〈P1u+ P2u+
∑

− 1
2
<µi<

1
2

Pµiu, v〉 = 〈u, v〉

for all u, v ∈ H1
#(α, Y ).

We now recover the spectral decomposition for Tαk associated with the sesqua-

linear form (3.9).
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Theorem 8. The linear operator Tαk : H1
#(α, Y ) −→ H1

#(α, Y ) associated with the

sesqualinear form Bk is is given by

〈Tαk u, v〉 = 〈kP1u+ P2u+
∑

− 1
2
<µi<

1
2

[k(1/2 + µi) + (1/2− µi)]Pµiu, v〉

for all u, v ∈ H1
#(α, Y ).

Proof. For u, v ∈ H1
#(α, Y ) we have

Bk(Pµiu, v) = k

∫
Y \D
∇Pµiu · ∇v̄ +

∫
D

∇Pµiu · ∇v̄.

Since Pµiu is an eigenvector corresponding to µi 6= ±1
2
, we have∫

Y \D
∇Pµiu · ∇v̄ =

(1/2 + µi)

(1/2− µi)

∫
D

∇Pµiu · ∇v̄

and so we calculate

Bk(Pµiu, v) = [k
(1/2 + µi)

(1/2− µi)
+ 1]

∫
D

∇Pµiu · ∇v̄.

But we also know that∫
D

∇Pµiu · ∇v̄ = (1/2− µi)
∫
Y

∇Pµiu · ∇v̄

and so

Bk(Pµiu, v) = [k(1/2 + µi) + (1/2− µi)]
∫
Y

∇Pµiu · ∇v̄.

Since we clearly have

Bk(P1u, v) = k

∫
Y \D
∇P1u · ∇v̄,

Bk(P2u, v) =

∫
D

∇P2u · ∇v̄,

and the projections P1, P2, Pµi are mutually orthogonal for all −1
2
< µi <

1
2
, the

proof is complete.
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It is evident that Tαk : H1
#(α, Y ) −→ H1

#(α, Y ) is invertible whenever

k ∈ C \ Z where Z = {µi − 1/2

µi + 1/2
}{− 1

2
≤µi≤ 1

2
} (3.34)

and for z = k−1,

(Tαk )−1 = zP1u+ P2u+
∑

− 1
2
<µi<

1
2

z[(1/2 + µi) + z(1/2− µi)]−1Pµi . (3.35)

For future reference we also introduce the set S of z ∈ C for which Tαk is not

invertible given by

S = {µi + 1/2

µi − 1/2
}{− 1

2
<µi<

1
2
} (3.36)

which also lies on the negative real axis. In section 5.2 we will provide explicit

upper bounds on S that depend upon the geometry of the inclusions.

Collecting results, the spectral representation of the operator−∇·(kχY \D+χD)∇

on H1
#(α, Y ) is given by

−∇ · (kχY \D + χD)∇ = −∆αT
α
k , (3.37)

in the sense of linear functionals over the space H1
#(α, Y ). Here −∆α is the Laplace

operator associated with the bilinear form 〈·, ·〉 defined on H1
#(α, Y ). This formu-

lation is useful since it separates the effect of the contrast k from the underlying

geometry of the crystal.

3.2 Band Structure for Complex Coupling Constant

We set ω2 = λ in (3.1) and extend the Bloch eigenvalue problem to complex

coefficients k outside the set Z given by (3.34). The operator representation is

applied to write the Bloch eigenvalue problem as

−∇ · (kχY \D + χD)∇u = −∆αT
α
k u = λu. (3.38)
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We characterize the Bloch spectra by analyzing the operator

Bα(k) = (Tαk )−1(−∆α)−1, (3.39)

where the operator (−∆α)−1 defined for all α ∈ Y ∗ is given by

(−∆α)−1u(x) = −
∫
Y

Gα(x, y)u(y) dy. (3.40)

The operator Bα(k) : L2
#(α, Y ) −→ H1

#(α, Y ) is easily seen to be bounded for

k 6∈ Z, see Theorem 28. Since H1
#(α, Y ) embeds compactly into L2

#(α, Y ) we find

by virtue of Poincare’s inequality that Bα(k) is a bounded compact linear operator

on L2
#(α, Y ) and therefore has a discrete spectrum {γi(k, α)}i∈N with a possible

accumulation point at 0, see Remark 29. The corresponding eigenspaces are finite

dimensional and the eigenfunctions pi ∈ L2
#(α, Y ) satisfy

Bα(k)pi(x) = γi(k, α)pi(x) for x in Y (3.41)

and also belong to H1
#(α, Y ). Note further for γi 6= 0 that (3.41) holds if and only

if (3.38) holds with λi(k, α) = γ−1
i (k, α), and −∆αT

α
k pi = λi(k, α)pi. Collecting

results we have the following theorem

Theorem 9. Let Z denote the set of points on the negative real axis defined by

(3.34). Then the Bloch eigenvalue problem (3.1) for the operator −∇(kχY \D+χD)∇

associated with the sesquilinear form (3.8) can be extended for values of the coupling

constant k off the positive real axis into C \ Z, i.e., for each α ∈ Y ? the Bloch

eigenvalues are of finite multiplicity and denoted by λj(k, α) = γ−1
j (k, α), j ∈ N

and the band structure

λj(k, α) = ω2, j ∈ N (3.42)

extends to complex coupling constants k ∈ C \ Z.
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Chapter 4
Power Series Expansion of Bloch
Eigenvalues

Now that the band structure of the Bloch eigenvalues of the photonic crystal has

been identified, the next goal is to obtain a power series representation of the

eigenvalues γj(k, α), j ∈ N in equation (3.41) in reciprocal powers of the high

contrast parameter k. In order to accomplish this goal, we will use the expansion

(3.39) of operator (Tαk )−1 in terms of z = k−1 and develop a power series expansion

in terms of z using standard perturbation theory, see e.g. [18], [19], [17].

4.1 Power Series Representation of Bloch Eigenvalues for High Con-

trast Periodic Media

In what follows we set γ = λ−1(k, α) and analyze the spectral problem

Bα(k)u = γ(k, α)u (4.1)

Henceforth we will analyze the high contrast limit by by developing a power series

in z = 1
k

about z = 0 for the spectrum of the family of operators associated with

(4.1).

Bα(k) := (Tαk )−1(−∆α)−1

= (zP1 + P2 + z
∑
− 1

2
<µi<

1
2
[(1/2 + µi) + z(1/2− µi)]−1Pµi)(−∆α)−1

= Aα(z).

Here we define the operator Aα(z) such that Aα(1/k) = Bα(k) and the associated

eigenvalues β(1/k, α) = γ(k, α) and the spectral problem is Aα(z)u = β(z, α)u for

u ∈ L2
#(α, Y ).

32



It is easily seen from the above representation that Aα(z) is self-adjoint for k ∈ R

and is a family of bounded operators taking L2
#(α, Y ) into itself and we have the

following:

Lemma 10. Aα(z) is holomorphic on Ω0 := C \ S. Where S = ∪i∈Nzi is the

collection of points zi = (µi + 1/2)/(µi − 1/2) on the negative real axis associated

with the eigenvalues {µi}i∈N. The set S consists of poles of Aα(z) with only one

accumulation point at z = −1.

In the sections 5.2 and 5.3 we develop explicit lower bounds −1/2 < µ− ≤

µ−(α) = mini{µi}, that hold for generic classes of inclusion domains D and for

every α ∈ Y ?. The corresponding upper bound z+ on S is written

max
i
{zi} =

µ−(α) + 1/2

µ−(α)− 1/2
= z∗ ≤ z+ < 0. (4.2)

Let βα0 ∈ σ(Aα(0)) with spectral projection P (0), and let Γ be a closed contour

in C enclosing βα0 but no other β ∈ σ(Aα(0)). The spectral projection associated

with βα(z) ∈ σ(Aα(z)) for βα(z) ∈ int(Γ) is denoted by P (z). We write M(z) =

P (z)L2
#(α, Y ) and suppose for the moment that Γ lies in the resolvent of Aα(z)

and dim(M(0)) = dim(M(z)) = m, noting that Theorems 13 and 14 provide

explicit conditions for when this holds true. Now define β̂α(z) = 1
m

tr(Aα(z)P (z)),

the weighted mean of the eigenvalue group {βα1 (z), . . . βαm(z)} corresponding to

βα1 (0) = . . . = βαm(0) = βα0 . We write the weighted mean as

β̂α(z) = βα0 +
1

m
tr[(Aα(z)− βα0 )P (z)]. (4.3)

Since Aα(z) is analytic in a neighborhood of the origin we write

Aα(z) = Aα(0) +
∞∑
n=1

znAαn. (4.4)
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The explicit form of the sequence {Aαn}n∈N is given in Section 5.1. Define the

resolvent of Aα(z) by

R(ζ, z) = (Aα(z)− ζ)−1,

and expanding successively in Neumann series and power series we have the identity

R(ζ, z) = R(ζ, 0)[I + (Aα(z)− Aα(0))R(ζ, 0)]−1

= R(ζ, 0) +
∑∞

p=1[−(Aα(z)− Aα(0))R(ζ, 0)]p

= R(ζ, 0) +
∑∞

n=1 z
nRn(ζ),

(4.5)

where

Rn(ζ) =
∑

k1+...kp=n,kj≥1

(−1)pR(ζ, 0)Aαk1R(ζ, 0)Aαk2 . . . R(ζ, 0)Aαkp

for n ≥ 1.

Application of the contour integral formula for spectral projections [29], [18],

[19] delivers the expansion for the spectral projection

P (z) = − 1
2πi

∮
Γ
R(ζ, z)dζ

= P (0) +
∑∞

n=1 z
nPn

(4.6)

where Pn = − 1
2πi

∮
Γ
Rn(ζ)dζ. Now we develop the series for the weighted mean of

the eigenvalue group. Start with

(Aα(z)− βα0 )R(ζ, z) = I + (ζ − βα0 )R(ζ, z) (4.7)

and we have

(Aα(z)− βα0 )P (z) = − 1

2πi

∮
Γ

(ζ − βα0 )R(ζ, z)dζ, (4.8)
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so

β̂(z)− βα0 = − 1

2mπi
tr

∮
Γ

(ζ − βα0 )R(ζ, z)dζ. (4.9)

Equation (4.9) delivers an analytic representation formula for a Bloch eigenvalue

or more generally the eigenvalue group when βα0 is not a simple eigenvalue. Sub-

stituting the third line of (4.5) into (4.9) and manipulation yields

β̂α(z) = βα0 +
∞∑
n=1

znβαn , (4.10)

where

βαn = − 1

2mπi
tr

∑
k1+···+kp=n

(−1)p

p

∮
Γ

Aαk1R(ζ, 0)Aαk2 . . . R(ζ, 0)AαkpR(ζ, 0)dζ; n ≥ 1.

(4.11)

4.2 Spectrum in the High Contrast Limit: Quasi-periodic Case

We now identify the spectrum of the limiting operator Aα(0) when α 6= 0. Using

the representation

Aα(z) = (zP1 + P2 + z
∑

− 1
2
<µi<

1
2

[(1/2 + µi) + z(1/2− µi)]Pµi)(−∆α)−1, (4.12)

we see that

Aα(0) = P2(−∆α)−1. (4.13)

Denote the spectrum of Aα(0) by σ(Aα(0)). The following theorem provides the

explicit characterization of σ(Aα(0)).

Theorem 11. Let −∆D be the negative Laplacian with zero Dirichlet boundary

conditions on ∂D with inverse −∆−1
D : L2(D) → L2(D). Denote the spectrum of

−∆−1
D by σ(−∆−1

D ). Then σ(Aα(0)) = σ(−∆−1
D ).
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To establish the theorem we first show that the eigenvalue problem

P2(−∆α)−1u = λu

with λ ∈ σ(Aα(0)) and eigenfunction u ∈ L2
#(α, Y ) is equivalent to finding λ and

u ∈ W2 for which

(u, v)L2(Y ) = λ〈u, v〉, for all v ∈ W2. (4.14)

To conclude we will then show that the set of eigenvalues for (4.14) is given by

σ(−∆−1
D ). To see the equivalence note that we have u = P2u and for v ∈ H1

#(α, Y ),

〈P2(−∆α)−1u, v〉 = λ〈u, v〉 = λ〈P2u, v〉 (4.15)

hence

〈(−∆α)−1u, P2v〉 = λ〈u, P2v〉. (4.16)

Since 〈(−∆α)−1u, v〉 =
∫
Y
uv dx = (u, v)L2(Y ) for any u ∈ L2

#(α, Y ) and v ∈

H1
#(α, Y ), equation (4.16) becomes

(u, P2v)L2(Y ) = λ〈u, P2v〉, (4.17)

and the equivalence follows noting that P2 is the projection of H1
#(α, Y ) onto W2.

To conclude we show that the set of eigenvalues for (4.14) is given by σ(−∆−1
D ).

Note that P2v is supported in D, so

λ−1

∫
D

uP2v =

∫
D

∇u · ∇P2v. (4.18)

Now since P2 : H1
#(α, Y )→ W2 = H̃1

0 (D) is onto, it follows that λ−1 is a Dirichlet

eigenvalue of the negative Laplacian acting on D and the proof of Theorem 11 is

complete.
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4.3 Spectrum in the High Contrast Limit: Periodic Case

Recall for the periodic case P2 is the projection onto W2 given by (3.11) and the

limiting operator A0(0) is written

A0(0) = P2(−∆0)−1. (4.19)

Here the operator (−∆0)−1 is compact and self-adjoint on L2
#(0, Y ) and given by

(−∆0)−1u(x) = −
∫
Y

G0(x, y)u(y)dy. (4.20)

Denote the spectrum of A0(0) by σ(A0(0)). To characterize this spectrum we intro-

duce the sequence of numbers {νj}j∈N given by the positive roots ν of the spectral

function S(ν) defined by

S(ν) = ν
∑
i∈N

a2
i

ν − δ∗i
− 1, (4.21)

where {δ∗j}j∈N are the Dirichlet eigenvalues for −∆D associated with eigenfunctions

ψj for which
∫
D
ψj dx 6= 0 and aj = |

∫
D
ψj dx|. The following theorem provides the

explicit characterization of σ(Aα(0)).

Theorem 12. Let {δ′j}j∈N denote the collection of Dirichlet eigenvalues for −∆D

associated with eigenfunctions ψj for which
∫
D
ψj dx = 0. Then σ(A0(0)) = {δ′j

−1}j∈N∪

{νj−1}j∈N.

To establish the theorem we proceed as before to see that the eigenvalue problem

P2(−∆0)−1u = λu

with λ ∈ σ(A0(0)) and eigenfunction u ∈ L2
#(0, Y ) is equivalent to finding λ and

u ∈ W2 for which

(u, v)L2(Y ) = λ〈u, v〉, for all v ∈ W2. (4.22)
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To conclude we show that the set of eigenvalues for (4.22) is given by {δ′j
−1}j∈N∪

{ν−1
j }j∈N. We see that u ∈ W2 and from (3.11) we have the dichotomy:

∫
D
ũdx = 0

and u = ũ ∈ H̃1
0 (D) or

∫
D
ũdx 6= 0 and u = ũ− γ1Y with γ =

∫
D
ũdx. It is evident

for the first case that the eigenfunction u ∈ H̃1
0 (D) and for v ∈ W2 given by

v = ṽ −
(∫

D

ṽdx

)
1Y for ṽ ∈ H̃1

0 (D) (4.23)

the problem (4.22) becomes∫
D

uṽ = λ

∫
D

∇u · ∇ṽ, for all ṽ ∈ H̃1
0 (D), (4.24)

and we conclude that ũ is a Dirichlet eigenfunction with zero average over D so

λ ∈ {δ′j
−1}j∈N. While for the second, we have u ∈ W2 and again∫

D

uṽ = λ

∫
D

∇u · ∇ṽ, for all ṽ ∈ H̃1
0 (D). (4.25)

Writing u = ũ − γ1Y and integration by parts in (4.25) shows that ũ ∈ H̃1
0 (D) is

the solution of

∆ũ+ νũ = −νγ for x ∈ D. (4.26)

We normalize ũ so that γ =
∫
D
ũdx = 1 and write

ũ =
∞∑
j=1

cjψj (4.27)

where, ψj are the Dirichlet eigenfunctions of −∆D associated with eigenvalue δj

extended by zero to Y . Substitution of (4.27) into (4.26) gives

∞∑
j=1

(−δj + ν)cjψj = −ν. (4.28)

Multiplying both sides of (4.28) by ψk over Y and orthonormality of {ψj}j∈N,

shows that ũ is given by

ũ = ν
∑
k∈N

∫
D
ψk

ν − δ∗k
ψk, (4.29)
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where δ∗k correspond to Dirichlet eigenvalues associated with eigenfunctions for

which
∫
D
ψk dx 6= 0. To calculate ν, we integrate both sides of (4.29) over D to

recover the identity

ν
∑
k∈N

a2
k

ν − δ∗k
− 1 = 0. (4.30)

It follows from (4.30) that λ ∈ {ν−1
i }i∈N and the proof of Theorem 12 is complete.
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Chapter 5
Radius of Convergence and Separation
of Bloch Spectra

With the power series expansion being identified in chapter 4, it remains to de-

termine when, exactly, this power series converges. In this chapter, the radius of

convergence for the power series (4.10) is given in terms of the quasi-momentum

α and a lower bound on the quasi-periodic resonances described in Lemma 7. The

lower bound on the resonances plays a critical role in the existence of the radius

of convergence, and it is proven to exist for a large class of ”buffered geometries.”

A specific geometry of randomly placed, buffered discs is considered in section 5.3,

and a precise lower bound on the radius of convergence for (4.10) is calculated for

that geometry.

5.1 Radius of Convergence and Separation of Spectra

Fix an inclusion geometry specified by the domain D. Suppose first α ∈ Y ? and

α 6= 0. Recall from Theorem 11 that the spectrum of Aα(0) is σ(−∆−1
D ). Take Γ to

be a closed contour in C containing an eigenvalue βαj (0) in σ(−∆−1
D ) but no other

element of σ(−∆−1
D ), see Figure 5.1. Define d to be the distance between Γ and

σ(−∆−1
D ), i.e.,

d = dist(Γ, σ(−∆−1
D ) = inf

ζ∈Γ
{dist(ζ, σ(−∆−1

D )}. (5.1)

The component of the spectrum of Aα(0) inside Γ is precisely βαj (0) and we denote

this by Σ′(0). The part of the spectrum of Aα(0) in the domain exterior to Γ is

denoted by Σ′′(0) and Σ′′(0) = σ(−∆−1
D ) \ βαj (0). The invariant subspace of Aα(0)

associated with Σ′(0) is denoted by M ′(0) with M ′(0) = P (0)L2
#(α, Y ) .
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d d

βαj−1(0) βαj (0) βαj+1(0)

Γ

Figure 5.1: Γ

Suppose the lowest quasi-periodic resonance eigenvalue for the domain D lies

inside −1/2 < µ−(α) < 0. It is noted that in the sequel a large and generic class of

domains are identified for which −1/2 < µ−(α). The corresponding upper bound

on the set z ∈ S for which Aα(z) is not invertible is given by

z∗ =
µ−(α) + 1/2

µ−(α)− 1/2
< 0, (5.2)

see (4.2). Now set

r∗ =
|α|2d|z∗|
1

1/2−µ− + |α|2d
. (5.3)

Theorem 13. Separation of spectra and radius of convergence for α ∈ Y ?, α 6= 0.

The following properties hold for inclusions with domains D that satisfy (5.2):

1. If |z| < r∗ then Γ lies in the resolvent of both Aα(0) and Aα(z) and thus

separates the spectrum of Aα(z) into two parts given by the component of

spectrum of Aα(z) inside Γ denoted by Σ′(z) and the component exterior to

Γ denoted by Σ′′(z). The invariant subspace of Aα(z) associated with Σ′(z)

is denoted by M ′(z) with M ′(z) = P (z)L2
#(α, Y ).

2. The projection P (z) is holomorphic for |z| < r∗ and P (z) is given by

P (z) =
−1

2πi

∮
Γ

R(ζ, z) dζ. (5.4)

3. The spaces M ′(z) and M ′(0) are isomorphic for |z| < r∗.

4. The power series (4.10) converges uniformly for z ∈ C inside |z| < r∗.
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Suppose now α = 0. Recall from Theorem 12 that the limit spectrum for A0(0)

is σ(A0(0)) = {δ′j
−1}j∈N ∪ {νj−1}j∈N. For this case take Γ to be the closed contour

in C containing an eigenvalue β0
j (0) in σ(A0(0)) but no other element of σ(A0(0))

and define

d = inf
ζ∈Γ
{dist(ζ, σ(A0(0)))}. (5.5)

Suppose the lowest quasi-periodic resonance eigenvalue for the domain D lies inside

−1/2 < µ−(0) < 0 and the corresponding upper bound on S is given by

z∗ =
µ−(0) + 1/2

µ−(0)− 1/2
< 0. (5.6)

Set

r∗ =
4π2d|z∗|
1

1/2−µ− + 4π2d
. (5.7)

Theorem 14. Separation of spectra and radius of convergence for α = 0.

The following properties hold for inclusions with domains D that satisfy (5.6):

1. If |z| < r∗ then Γ lies in the resolvent of both A0(0) and A0(z) and thus

separates the spectrum of A0(z) into two parts given by the component of

spectrum of A0(z) inside Γ denoted by Σ′(z) and the component exterior to

Γ denoted by Σ′′(z). The invariant subspace of A0(z) associated with Σ′(z) is

denoted by M ′(z) with M ′(z) = P (z)L2
#(α, Y ).

2. The projection P (z) is holomorphic for |z| < r∗ and P (z) is given by

P (z) =
−1

2πi

∮
Γ

R(ζ, z) dζ. (5.8)

3. The spaces M ′(z) and M ′(0) are isomorphic for |z| < r∗.

4. The power series (4.10) converges uniformly for z ∈ C inside |z| < r∗.

42



Next we provide an explicit representation of the integral operators appearing

in the series expansion for the eigenvalue group.

Theorem 15. Representation of integral operators in the series expansion for

eigenvalues

Let P3 be the projection onto the orthogonal complement of W1 ⊕W2 ⊕ span{Π}

and let I denote the identity on L2(∂D), then the explicit representation for for

the operators Aαn in the expansion (4.10), (4.11) is given by

Aα1 = [SD((K̃−αD )∗ +
1

2
I)−1S−1

D P3 + P1](−∆α)−1 and

Aαn = SD((K̃−αD )∗ +
1

2
I)−1S−1

D [SD((K̃−αD )∗ − 1

2
I)((K̃−αD )∗ +

1

2
I)−1S−1

D ]n−1P3(−∆α)−1.

(5.9)

We have a corollary to Theorems 13 and 14 regarding the error incurred when

only finitely many terms of the series 4.10 are calculated.

Theorem 16. Error estimates for the eigenvalue expansion.

1. Let α 6= 0, and suppose D, z∗, and r∗ are as in Theorem 13. Then the

following error estimate for the series (4.10) holds for |z| < r∗:∣∣∣∣∣β̂α(z)−
p∑

n=0

znβαn

∣∣∣∣∣ ≤ d|z|p+1

(r∗)p(r∗ − |z|)
. (5.10)

2. Let α = 0, and suppose D, z∗, and r∗ are as in Theorem 14. Then the

following error estimate for the series (4.10) holds for |z| < r∗:∣∣∣∣∣β̂0(z)−
p∑

n=0

znβ0
n

∣∣∣∣∣ ≤ d|z|p+1

(r∗)p(r∗ − |z|)
. (5.11)

We summarize results in the following theorem.
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Theorem 17. The Bloch eigenvalue problem (3.1) is defined for the coupling con-

stant k extended into the complex plane and the operator −∇ · (kχY \D + χD)∇

with domain H1
#(α, Y ) is holomorphic for k ∈ C \Z. The associated Bloch spectra

is given by the eigenvalues λj(k, α) = (βαj (1/k))−1, for j ∈ N. For α ∈ Y ? fixed,

the eigenvalues are of finite multiplicity. Moreover for each j and α ∈ Y ?, the

eigenvalue group is analytic within a neighborhood of infinity containing the disk

|k| > r∗−1 where r∗ is given by (5.3) for α 6= 0 and by (5.7) for α = 0.

The proofs of Theorems 13, 14 and 16 are given in section 7. The proof of

Theorem 15 is given in section 6.1.

5.2 Radius of Convergence and Separation of Spectra for Periodic Scat-

terers of General Shape

We start by identifying an explicit condition on the inclusion geometry that guar-

antees a lower bound µ− on the quasi-periodic spectra that holds uniformly for

α ∈ Y ∗, i.e., −1
2
< µ− ≤ µ−(α) = mini{µi} ≤ 1

2
.

Let D b Y be a union of simply connected sets (inclusions) Di, i = 1, . . . , N with

C2 boundary. Recall that, for any eigenpair (µ,w) of T |W3 and all v ∈ H1
#(α, Y ),

1

2

∫
Y \D

∇w · ∇v̄ − 1

2

∫
D

∇w · ∇v̄ = µ

∫
Y

∇w · ∇v̄. (5.12)

Adding 1
2

∫
Y

∇w · ∇v̄ to both sides yields

∫
Y \D

∇w · ∇v̄ = (µ+
1

2
)

∫
Y

∇w · ∇v̄. (5.13)
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We will show that there exists a ρ > 0 such that µi+
1
2
> ρ independent of i ∈ N

and α ∈ Y ∗. If such a ρ exists, then clearly µi > ρ − 1
2

for all i and α, providing

an explicit lower bound µ− = ρ− 1
2

satisfying the desired inequality.

Theorem 18. Let µ−(α) be the lowest eigenvalue of T in W3 ⊂ H1
#(α, Y ). Suppose

there is a θ > 0 such that for all u ∈ W3 we have

‖∇u‖2
L2(Y \D) ≥ θ‖∇u‖2

L2(D). (5.14)

Let ρ = min{1
2
, θ

2
}. Then µ−(α) + 1

2
> ρ for all α ∈ Y ∗.

Proof. We proceed by contradiction: suppose that µ−(α)+1
2
< 1

2
and µ−(α)+1

2
< θ

2
.

Let u− be the normalized eigenvector of T associated with µ−(α). Then we have

∫
Y \D

|∇u−|2 < 1

2
(5.15)

and

θ

2
>

∫
Y \D

|∇u−|2 ≥ θ

∫
D

|∇u−|2. (5.16)

Thus we have ∫
D

|∇u−|2 < 1

2
. (5.17)

Inequalities (5.15) and (5.17) yield

‖∇u−‖2
L2(Y ) < 1.

But u− was normalized so that

‖∇u−‖2
L2(Y ) = 1,

completing the proof.

45



Clearly the parameter θ is a geometric descriptor for D. The class of periodic

distributions of inclusions for which Theorem (18) holds for a fixed positive value

of θ is denoted by Pθ and we have the corollary given by:

Corollary 19. For every inclusion domain D belonging to Pθ Theorems 14 through

17 hold with z∗ replaced with z+
θ given by

z+
θ =

µ− + 1/2

µ− − 1/2
< 0, (5.18)

where µ− = min{1
2
, θ

2
} − 1

2
.

Now we introduce a wide class of inclusion shapes with θ > 0 that satisfy (5.14).

Consider an inclusion domain D = ∪Ni=1Di. Suppose we can surround each Di by a

buffer layer Ri so that each inclusion Di together with its buffer does not intersect

with the any of the other buffered inclusions, i.e., Di ∪ Ri ∩ Dj ∪ Rj = ∅, i 6= j.

The set of such inclusion domains will be called buffered geometries, see Figure

5.2. We now denote the operator norm for the Dirichlet to Neumann map for each

inclusion by ‖DNi‖ and the Poincare constant for each buffer layer by CRi and we

have the following theorem.

Theorem 20. The buffered geometry lies in Pθ provided

θ−1 = max
i
{(1 + CRi)‖DNi‖} <∞. (5.19)

Proof. To prove this theorem it suffices to consider one of the components Di

denoted by D and its buffer Ri denoted by R. The union of inclusion and buffer

is denoted by D′ = D ∪ R. We now show for any function w′ ∈ H1(R) there is a

w ∈ H1(D′) such that

w(x) = w′(x), x ∈ R

46



and

∫
D

|∇w|2dx ≤ θ−1

∫
R

|∇w′|2, (5.20)

where θ−1 = {1 + CR‖DN‖} and DN is the Dirichlet to Neumann map for D.

Let w ∈ H1(D′) such that w = w′ in R and ∆w = 0 in D with boundary

condition w|∂D = w′. Note that since w is harmonic in D, we have

∫
∂D

∂νwdσ = 0,

where ν is the outward pointing normal vector on ∂D. Thus

∫
D

|∇w|2 =
∫
∂D

∂νww̄ =
∫
∂D

∂νw(w − (w′)∗)

=
∫
∂D

∂νw(w′ − (w′)∗),

(5.21)

where (w′)∗ is the average of w′ over R, given by

(w′)∗ =
1

|R|

∫
R

w′dx. (5.22)

Taking DN as the Dirichlet-to-Neumann map on H1/2(∂D), we have

∫
∂D

∂νw(w′ − (w′)∗) ≤ H−1/2(∂D)〈DN |∂Dw,w′ − (w′)∗〉H1/2(∂D)

= H−1/2(∂D)〈DN |∂D[w′ − (w′)∗], w′ − (w′)∗〉H1/2(∂D)

≤ ‖DN |∂D‖‖w′ − (w′)∗‖2
H1/2(∂D)

.

(5.23)
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The second line of (5.23) holds since w = w′ on ∂D and Ker(DN) is simply the

constant functions on ∂D. Let CR be the Poincaré constant of R, i.e.

‖q − (q)∗‖2
L2(R) ≤ CR‖∇q‖2

L2(R) (5.24)

for all q ∈ H1(R). Then we calculate

‖w′ − (w′)∗‖2
H1/2(∂D)

≤ ‖w′ − (w′)∗‖2
H1/2(∂R)

= inf
v|∂R=w′−(w′)∗

‖v‖2
H1(R)

≤ ‖w′ − (w′)∗‖2
H1(R) ≤ (1 + CR)‖∇w′‖2

L2(R).

(5.25)

Substituting the last line of (5.25) into the last line of (5.23) and setting θ−1 =

‖DN‖(1 + CR), we obtain inequality (5.20) as desired.

Let u ∈ W3, and set w′ = u in R. Then the w arising from the above theorem

is a harmonic function in D satisfying w|∂D = u. Since u is also harmonic in D,

we have that u = w in D by uniqueness of solutions to Laplace’s equation with

Dirichlet boundary conditions, and inequality (5.20) becomes

θ

∫
D

|∇u|2 ≤
∫
R

|∇u|2 ≤
∫

Y \D

|∇u|2. (5.26)

5.3 Radius of Convergence and Separation of Spectra for Disks

We now consider Bloch spectra for crystals in R2 with each period cell containing

an identical random distribution of N disks Di, i = 1, . . . , N of radius a. We

suppose that the smallest distance separating the disks is td > 0. The buffer layers
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Figure 5.2: Random buffered suspension.

Ri are annuli with inner radii a and outer radii b = a + t where t ≤ td/2 and is

chosen so that the collection of buffered disks lie within the period cell. For this

case the constant θ is computed in [6] and is given by

θ =
b2 − a2

b2 + a2
. (5.27)

Since a < b, we have that

0 < θ < 1. (5.28)

We also note that when Di is a disc of radius a > 0, we can recover an explicit

formula for d from equation 5.1. In particular, any eigenvalue βαj (0) of −∆−1
D , for

α 6= 0. may be written

βαj (0) =
(ηn,k
a

)−2

, (5.29)

where ηn,k is the kth zero of the nth Bessel function Jn(r). Let η̃ be the minimizer

of

min
m,j∈N

|(ηn,k)−2 − (ηm,j)
−2|. (5.30)

Then we may choose Γ from section 5.1 so that

d =
1

2
|( a

ηn,k
)2 − (

a

η̃
)2|. (5.31)

We apply explicit form for θ to obtain a formula for r∗ in terms of a,b, d given

above, and α. Recall that ρ from Theorem 18 is given by ρ = min{1
2
, θ

2
}. In light
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of inequality (5.28), we have that

ρ =
1

2

(
b2 − a2

b2 + a2

)
, (5.32)

and we calculate the lower bound µ−:

µ− = ρ− 1

2
= − a2

b2 + a2
. (5.33)

Recalling that

|z∗| ≤ |z+| = µ− + 1/2

1/2− µ−
,

we obtain an explicit radius of convergence r∗ in terms of a, b, ηn,k, η̃, and α for

α 6= 0,

r∗ =
|α|2|( a

ηn,k
)2 − (a

η̃
)2|(b2 − a2)

4(b2 + a2) + |α|2|( a
ηn,k

)2 − (a
η̃
)2|(b2 + 3a2)

. (5.34)

When α = 0 Theorem 12 shows that the limit spectrum consists of a component

given by the roots ν0k of

1 = Nν
∑
k∈N

a2
0k

ν − (η0k/a)2
, (5.35)

where N is the number of discs and a0k =
∫
Ba(0)

u0k dx are averages over discs of

radius a of the rotationally symmetric normalized eigenfunctions u0k given by

u0k = J0(rη0k/a)/(a
√
πJ1(η0k)). (5.36)

The other component is comprised of the eigenvalues exclusively associated with

mean zero eigenfunctions. The collection of these eigenvalues is given by {∪n6=0,k(ηnk/a)2}

The elements λnk of the spectrum σ(A0(0)) are given by the set {∪n6=0,k(ηnk/a)2}∪

{∪kν0k}. Now fix an element λnk and let η̃ be the minimizer of

min
m,j∈N

|(λn,k)−1 − (λm,j)
−1|. (5.37)

Then as before we may choose Γ from section 5.1 so that

d =
1

2
|(λn,k−1 − η̃−1| (5.38)
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and in terms of a, b, λn,k, and η̃ for α = 0:

r∗ =
4π2|(λn,k)−1 − η̃−1|(b2 − a2)

4(b2 + a2) + 4π2|(λn,k)−1 − η̃−1|(b2 + 3a2)
. (5.39)

The collection of suspensions of N buffered disks is an example of a class of

buffered inclusion geometries and collecting results we have the following:

Corollary 21. For every suspension of buffered disks with θ given by (5.27): The-

orem 13 holds with r∗ given by (5.34) for α ∈ Y ?, α 6= 0, and Theorem 14 holds

with r∗ given by (5.39) for α = 0.
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Chapter 6
High Order Terms and Correctors for
Power Series Representations

Now that the radius of convergence has been found for expansion (4.10), a natural

course of action is to determine higher order terms in the series. To that effect,

the following section calculates explicit representations of the operators found in

the contour-integral formulation (4.11) of higher-order correctors in terms of layer

potential operators. The resulting representations rely again on the H1
#(α, Y )-

orthogonal decomposition (3.39) of (Tαk )−1. In section 6.2, the representations ob-

tained in section 6.1 are used to recover an explicit representation of the first two

terms in the k−1-power series expansion for α-Bloch eigenvalues of the high-contrast

photonic crystal.

6.1 Layer Potential Representation of Operators in Power Series

In this section we identify explicit formulas for the operators Aαn appearing in the

power series (4.11). It is shown that Aαn, n 6= 0 can be expressed in terms of integral

operators associated with layer potentials and we establish Theorem 15.

Recall that Aα(z)− Aα(0) is given by

(zP1 +
∑

− 1
2
<µi<

1
2

z[(1/2 + µi) + z(1/2− µi))−1Pµi)(−∆−1
α ). (6.1)

Factoring (1/2 + µi)
−1 from the second summand, we expand in power series

[(1/2 + µi) + z(1/2− µi)]−1 = (1/2 + µi)
−1

∞∑
n=0

zn
(
µi − 1/2

µi + 1/2

)n
, (6.2)

and
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Aα(z)−Aα(0) = (zP1 +
∞∑
n=1

zn
∑

− 1
2
<µi<

1
2

(µi + 1/2)−1

(
µi − 1/2

µi + 1/2

)n−1

PµiP3)(−∆−1
α ).

(6.3)

It follows that

Aα1 = [P1 +
∑

− 1
2
<µi<

1
2

(1/2 + µi)
−1PµiP3](−∆−1

α ) (6.4)

and

Aαn = [
∑

− 1
2
<µi<

1
2

(µi + 1/2)−1

(
µi − 1/2

µi + 1/2

)n−1

PµiP3](−∆−1
α ). (6.5)

Recall also that we have the resolution of the identity

IH1
#(α,Y ) = P1 + P2 + P3 with P3 =

∑
− 1

2
<µi<

1
2

Pµi , (6.6)

and the spectral representation

〈Tu, v〉 = 〈(SD(K̃−αD )∗S−1
D )P3u+ 1

2
P1u− 1

2
P2u, v〉

= 〈
∑

− 1
2
<µi<

1
2

µiPµiu+ 1
2
P1u− 1

2
P2u, v〉.

(6.7)

Adding 1
2
I to both sides of the above equation, we obtain

〈(T + 1
2
I)u, v〉 = 〈(

∑
− 1

2
<µi<

1
2

(µi + 1
2
)Pµi + P1)u, v〉

= 〈((SD(K̃−αD )∗S−1
D + 1

2
P3)P3 + P1)u, v〉

= 〈((SD((K̃−αD )∗ + 1
2
Ĩ)S−1

D )P3 + P1)u, v〉,

(6.8)

where Ĩ is the identity on H−1/2(∂D). Now from (6.8) we see that
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∑
− 1

2
<µi<

1
2

(1
2

+ µi)
−1PµiP3 = (SD(K̃−αD )∗S−1

D + 1
2
P3)−1P3

= (SD((K̃−αD )∗ + 1
2
Ĩ)S−1

D )−1P3

= (SD((K̃−αD )∗ + 1
2
Ĩ)−1S−1

D )P3.

(6.9)

Combining the first line of (6.4) and (6.9), we obtain

Aα1 = [SD((K̃−αD )∗ +
1

2
Ĩ)−1S−1

D P3 + P1](−∆α)−1. (6.10)

We now turn to the higher-order terms. By the mutual orthogonality of the

projections Pµi , we have that

∑
− 1

2
<µi<

1
2

(µi + 1/2)−1
(
µi−1/2
µi+1/2

)n−1

Pµi

=

( ∑
− 1

2
<µi<

1
2

(1/2 + µi)
−1Pµi

)( ∑
− 1

2
<µi<

1
2

(
µi−1/2
µi+1/2

)
Pµi

)n−1

=

( ∑
− 1

2
<µi<

1
2

(1/2 + µi)
−1Pµi

)( ∑
− 1

2
<µi<

1
2

(µi − 1/2)Pµi

)n−1( ∑
− 1

2
<µi<

1
2

(µi + 1/2)Pµi

)1−n

.

(6.11)
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As above, we have that∑
− 1

2
<µi<

1
2

(1/2 + µi)
−1PµiP3 = SD((K̃−αD )∗ + 1

2
Ĩ)−1S−1

D P3,

∑
− 1

2
<µi<

1
2

(1/2 + µi)PµiP3 = SD((K̃−αD )∗ + 1
2
Ĩ)S−1

D P3,

∑
− 1

2
<µi<

1
2

(µi − 1/2)PµiP3 = SD((K̃−αD )∗ − 1
2
Ĩ)S−1

D P3.

(6.12)

Combining (6.12), (6.11), and (6.4), we obtain the layer-potential representation

for Aαn, proving Theorem 15:

Aαn = SD((K̃−αD )∗+
1

2
I)−1S−1

D [SD((K̃−αD )∗−1

2
I)((K̃−αD )∗+

1

2
I)−1S−1

D ]n−1P3(−∆α)−1.

(6.13)

6.2 Explicit First Order Correction to the Bloch Band Structure in

the High Contrast Limit

In this section we develop explicit formulas for the second term in the power series

βαj (z) = βαj (0) + zβαj,1 + z2βαj.2 + ... (6.14)

for simple eigenvalues. We use the analytic representation of Aα(z) and the Cauchy

Integral Formula to represent βαj,1

βαj,1 = 1
2πim

tr
∮

Γ
Aα1R(0, ζ)dζ

= 1
2πim

tr
(
Aα1
∮

Γ
R(0, ζ)dζ

)

= tr (Aα1P (0)) = 1
m

m∑
k=1

〈ϕk, Aα1P (0)ϕk〉L2
#(α,Y ).

(6.15)
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Here P (0) is the L2
#(α, Y ) projection onto the eigenspace corresponding to the

Dirichlet eigenvalue (βαj (0))−1 of −∆ on D. For simple eigenvalues consider the

normalized eigenvector P (0)ϕ = ϕ and

βαj,1 = 〈ϕ,Aα1P (0)ϕ〉L2
#(α,Y ). (6.16)

We apply the integral operator representation of Aα1 to deliver an explicit formula

for the first order term βαj,1 in the series for βαj (z). The explicit formula is given by

the following theorem.

Theorem 22. Let βαj (z) be an eigenvalue of Aα(z). Then for |z| < r∗ there is a

βj(0) ∈ σ(−∆−1|D) with corresponding eigenfunction ϕj such that

βαj (z) = βj(0) + z(βj(0))2

∫
Y \D
|∇v|2 + z2βαj.2 + ... (6.17)

Where v takes α-quasi periodic boundary conditions on ∂Y , is harmonic in Y \D,

and takes the Neumann boundary condition on ∂D given by

∂nv|∂D+ = ∂nϕ|∂D−,

where ∂n is the normal derivitave on ∂D with normal vector n pointing into Y \D.

Remark 23. Recall from Theorem 17 that the eigenvalues λαj (k) = (βαj (1/k))−1,

for j ∈ N. The high coupling limit expansion for λαj (k) is written in terms of the

expansion βαj (z) = βj(0) + zβαj,1 + · · · as

λαj (k) = (βj(0))−1 − 1

k
(βj(0))−2βαj,1 + · · ·

= λj(0)− 1

k

∫
Y \D
|∇v|2 + · · · , (6.18)

where λj(0) = (βj(0))−1 is the jth Dirichlet eigenvalue for the Laplacian on D.

This naturally agrees with the formula for the leading order terms presented in [2].
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Proof. Recall from the previous section that

Aα1 = [SD((K̃−αD )∗ + 1
2
I)−1S−1

D P3 + P1](−∆α)−1

= Kα
1 (−∆α)−1,

(6.19)

where Kα
1 := SD((K̃−αD )∗ + 1

2
I)S−1

D P3 + P1. Moreover,

(−∆α)−1f = −
∫
Y

Gα(x, y)f(y)dy. (6.20)

Since ϕ is a Dirichlet eigenvector of D with eigenvalue (βj(0))−1 and ϕ = 0 in

Y \D, we have

ϕ = −βj(0)χD(−∆ϕ). (6.21)

Now from (6.21)

−∆−1
α ϕ = βj(0)

∫
Y

Gα(x, y)χD(∆yϕ)dy

= βj(0)

∫
D

Gα(x, y)(∆yϕ)dy

= βj(0)(

∫
D

∇y · (Gα(x, y)∇yϕ) dy −
∫
D

∇yG
α(x, y) · ∇yϕdy)

= βj(0)(SD[∂nϕ|
∂D−

](x)−R(x)), (6.22)

where the last equality follows from the divergence theorem and definition of the

single layer potential SD and

R(x) =

∫
D

∇yG
α(x, y) · ∇yϕdy. (6.23)

Hence

Aα1ϕ = Kα
1 βj(0)(SD[∂nϕ∂D− ](x)−R(x)). (6.24)

Now we aply the definition of Kα
1 and compute P1R(x) and P3R(x). Integrating

by parts, we find
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R(x) =
∫
D
∇yG

α(x, y) · ∇yϕdy

=
∫
D
∇y · (∇yG

α(x, y)ϕ)dy −
∫
D
−∆yG

α(x, y)ϕdy

= ϕ(x).

(6.25)

Thus P1R(x) = P3R(x) = 0 since ϕ ∈ W1. Combining this result, (6.15), (6.24),

and the definition of Kα
1 we obtain

βαj,1 = tr (Aα1P (0)) = 〈ϕ,Aα1P (0)ϕ〉L2
#(α,Y )

= 〈ϕ, βj(0)SD((K̃−αD )∗ + 1
2
I)−1[∂nϕ|

∂D−
]〉L2

#(α,Y ).

(6.26)

Let v ∈ H1
#(α, Y ) be defined

v := SD((K̃−αD )∗ +
1

2
I)−1[∂nϕ|

∂D−
]. (6.27)

Then v is harmonic in D and Y \D, and

∂nv|∂D+ = ∂nϕ|∂D− . (6.28)

On applying (6.21), (6.27), and (6.28) equation (6.26) becomes

βαj,1 = βj(0)〈ϕ, v〉 = −(βj(0))2

∫
D

v∆ϕdy (6.29)

= −(βj(0))2(

∫
∂D

∂nϕ|
∂D−

v̄dσ −
∫
D

∇ϕ · ∇v̄)

= −(βj(0))2(

∫
∂D

∂nv|
∂D+

v̄dσ −
∫
D

∇ϕ · ∇v̄).

Last an integration by parts yields∫
D

∇ϕ · ∇v̄ =

∫
D

∇ · (∇v̄ϕ)−∆v̄ϕ

=

∫
∂D

∂nv̄|∂D−ϕdσ = 0. (6.30)
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Combining this result with the last line of (6.29) and integrating by parts a final

time reveals a representation of the second term in (6.14)

βαj,1 = (βj(0))2

∫
Y \D
|∇v|2dx, (6.31)

and the theorem follows.
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Chapter 7
Derivation of the Convergence Radius
and Separation of Spectra

Here we prove Theorems 13 and 14. To begin, we suppose α 6= 0 and recall that the

Neumann series (4.5) and consequently (4.6) and (4.10) converge provided that

‖(Aα(z)− Aα(0))R(ζ, 0)‖L[L2
#(α,Y );L2

#(α,Y )] < 1. (7.1)

With this in mind we will compute an explicit upper bound B(α, z) and identify

a neighborhood of the origin on the complex plane for which

‖(Aα(z)− Aα(0))R(ζ, 0)‖L[L2
#(α,Y );L2

#(α,Y )] < B(α, z) < 1, (7.2)

holds for ζ ∈ Γ. The inequalityB(α, z) < 1 will be used first to derive a lower bound

on the radius of convergence of the power series expansion of the eigenvalue group

about z = 0. It will then be used to provide a lower bound on the neighborhood

of z = 0 where properties 1 through 3 of Theorem 13 hold.

We have the basic estimate given by

‖(Aα(z)− Aα(0))R(ζ, 0)‖L[L2
#(α,Y );L2

#(α,Y )] ≤ (7.3)

‖(Aα(z)− Aα(0))‖L[L2
#(α,Y );L2

#(α,Y )]‖R(ζ, 0)‖L[L2
#(α,Y );L2

#(α,Y )].

Here ζ ∈ Γ as defined in Theorem 13 and elementary arguments deliver the esti-

mate

‖R(ζ, 0)‖L[L2
#(α,Y );L2

#(α,Y )] ≤ d−1, (7.4)

where d is given by (5.1).

Next we estimate ‖(Aα(z) − Aα(0))‖L[L2
#(α,Y );L2

#(α,Y )]. Denote the energy semi-

norm of u by
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‖u‖ = ‖∇u‖L2(Y ). (7.5)

To proceed we introduce the Poincare estimate for functions belonging to H1
#(α, Y )

for α 6= 0:

Lemma 24.

‖u‖L2(Y ) ≤ |α|−1‖u‖. (7.6)

Proof. A straight forward calculation using (3.13) gives the upper bound

(−∆−1
α v, v)L2(Y ) ≤ |α|−2‖v‖2

L2(Y ) (7.7)

and we have the Cauchy inequality

‖v‖2
L2(Y ) = 〈−∆−1

α v, v〉 ≤ ‖ −∆−1
α v‖‖v‖. (7.8)

Applying (7.7) we get

‖ −∆−1
α v‖ = (〈−∆−1

α v,−∆−1
α v〉)1/2 = ((−∆−1

α v, v))1/2 ≤ |α|−1‖v‖L2(Y ) (7.9)

and the Poincare inequality follows from (7.8) and (7.9).

For any v ∈ L2
#(α, Y ), we apply (7.6) to find

‖(Aα(z)− Aα(0))v‖L2(Y )

≤ |α|−1‖(Aα(z)− Aα(0))v‖ (7.10)

= |α|−1‖((Tαk )−1 − (Tα0 )−1)(−∆α)−1v‖

≤ |α|−1‖((Tαk )−1 − P2)‖L[H1
#(α,Y );H1

#(α,Y )]‖ −∆−1
α v‖.

Applying (7.9) and (7.10) delivers the upper bound:

‖(Aα(z)−Aα(0))‖L[L2
#(α,Y );L2

#(α,Y )] ≤ |α|−2‖((Tαk )−1−P2)‖L[H1
#(α,Y );H1

#(α,Y )]. (7.11)

61



The next step is to obtain an upper bound on ‖((Tαk )−1 − P2)‖L[H1
#(α,Y );H1

#(α,Y )].

For all v ∈ H1
#(α, Y ), we have

‖((Tαk )−1 − P2)v‖
‖v‖

≤ |z|{w0 +
∞∑
i=1

wi|(1/2 + µi) + z(1/2− µi)|−2}1/2, (7.12)

where w0 = ‖P1v‖2/‖v‖2, wi = ‖Piv‖2/‖v‖2, and w0 +
∑∞

i=1 wi = 1. So maximizing

the right hand side is equivalent to calculating

max
w0+

∑
wi=1
{w0 +

∞∑
i=1

wi|(1/2 + µi) + z(1/2− µi)|−2}1/2

= sup{1, |(1/2 + µi) + z(1/2− µi)|−2}1/2.

(7.13)

Thus we maximize the function

f(x) = |1
2

+ x+ z(
1

2
− x)|−2 (7.14)

over x ∈ [µ−(α), µ+(α)] for z in a neighborhood about the origin. Let Re(z) = u,

Im(z) = v and we write

f(x) = |1
2

+ x+ (u+ iv)(1
2
− x)|−2

= ((1
2

+ x+ u(1
2
− x))2 + v2(1

2
− x)2)−1

≤ (1
2

+ x+ u(1
2
− x))−2 = g(Re(z), x),

(7.15)

to get the bound

‖((Tαk )−1 − P2)‖L(H1
#(α,Y )) ≤ |z| sup{1, sup

x∈[µ−(α),µ+(α)]

g(u, x)}1/2. (7.16)

We now examine the poles of g(u, x) and the sign of its partial derivative

∂xg(u, x) when |u| < 1. If Re(z) = u is fixed, then g(u, x) = ((1
2

+ x) + u(1
2
− x))−2

62



has a pole when (1
2

+ x) + u(1
2
− x) = 0. For u fixed this occurs when

x̂ = x̂(u) =
1

2

(
1 + u

u− 1

)
. (7.17)

On the other hand, if x is fixed, g has a pole at

u =
1
2

+ x

x− 1
2

. (7.18)

The sign of ∂xg is determined by the formula

∂xg(u, x) = N/D, (7.19)

where N = −2(1−u)2x− (1−u2) and D := ((1
2

+x) +u(1
2
−x))4 ≥ 0. Calculation

shows that ∂xg < 0 for x > x̂, i.e. g is decreasing on (x̂,∞). Similarly, ∂xg > 0 for

x < x̂ and g is increasing on (−∞, x̂).

Now we identify all u = Re(z) for which x̂ = x̂(u) satisfies

x̂ < µ−(α) < 0. (7.20)

Indeed for such u, the function g(u, x) will be decreasing on [µ−(α), µ+(α)], so that

g(u, µ−(α)) ≥ g(u, x) for all x ∈ [µ−(α), µ̄], yielding an upper bound for (7.16).

Lemma 25. The set U of u ∈ R for which −1
2
< x̂(u) < µ−(α) < 0 is given by

U := [z∗, 1]

where

−1 ≤ z∗ :=
µ−(α) + 1

2

µ−(α)− 1
2

< 0.

Proof. Note first that µ−(α) = infi∈N{µi} ≤ 0 follows from the fact that zero is

an accumulation point for the sequence {µi}i∈N so it follows that −1 ≤ z∗. Noting

x̂ = x̂(u) = 1
2
u+1
u−1

, we invert and write

u =
1
2

+ x̂

x̂− 1
2

. (7.21)
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We now show that

z∗ ≤ u ≤ 1 (7.22)

for x̂ ≤ µ−(α). Set h(x̂) =
1
2

+x̂

x̂− 1
2

. Then

h′(x̂) =
−1

(x̂− 1
2
)2

, (7.23)

and so h is decreasing on (−∞, 1
2
). Since µ−(α) < 1

2
, h attains a minimum over

(−∞, µ−(α)] at x = µ−(α). Thus x̂(u) ≤ µ−(α) implies

z∗ =
µ−(α) + 1

2

µ−(α)− 1
2

≤ u ≤ 1 (7.24)

as desired.

Combining Lemma 25 with inequality (7.16), noting that −|z| ≤ Re(z) ≤ |z|

and on rearranging terms we obtain the following corollary.

Corollary 26. For |z| < |z∗|:

‖(Aα(z)− Aα(0))‖L[L2
#(α,Y );L2

#(α,Y )] ≤ |α|−2|z|(−|z| − z∗)−1(
1

2
− µ−(α))−1. (7.25)

From Corollary 26, (7.3), and (7.4) we easily see that

‖(Aα(z)− Aα(0))R(ζ, 0)‖L[L2
#(α,Y );L2

#(α,Y )] ≤ (7.26)

B(α, z) = |α|−2|z|(−|z| − z∗)−1(
1

2
− µ−(α))−1d−1.

a straight forward calculation shows that B(α, z) < 1 for

|z| < r∗ :=
|α|2d|z∗|
1

1
2
−µ−(α)

+ |α|2d
(7.27)

and property 4 of Theorem 13 is established since r∗ < |z∗|.

Now we establish properties 1 through 3 of Theorem 13. First note that inspec-

tion of (4.5) shows that if (7.1) holds and if ζ ∈ C belongs to the resolvent of
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Aα(0) then it also belongs to the resolvent of Aα(z). Since (7.1) holds for ζ ∈ Γ

and |z| < r∗, property 1 of Theorem 13 follows. Formula (4.6) shows that P (z)

is analytic in a neighborhood of z = 0 determined by the condition that (7.1)

holds for ζ ∈ Γ. The set |z| < r∗ lies inside this neighborhood and property 2

of Theorem 13 is proved. The isomorphism expressed in property 3 of Theorem

13 follows directly from Lemma 4.10 ([17], Chapter I §4) which is also valid in a

Banach space.

The proof of 14 proceeds along identical lines. To prove Theorem 14, we need

the following Poincaré inequality for H1
#(0, Y ).

Lemma 27.

‖v‖L2
#(0,Y ) ≤

1

2π
‖v‖. (7.28)

This inequality is established using (3.14) and proceeding using the same steps

as in the proof of Lemma 24. Using (7.28) in place of (7.6) we argue as in the proof

of Theorem 13 to show that

‖(A0(z)− A0(0))R(ζ, 0)‖L[(L2
#(0,Y );L2

#(0,Y )] < 1 (7.29)

holds provided |z| < r∗, where r∗ is given by (5.7). This establishes Theorem 14.

The error estimates presented in Theorem 16 are easily recovered from the ar-

guments in ([17] Chapter II, §3); for completeness, we restate them here. We begin

with the following application of Cauchy inequalities to the coefficients βαn of (4.10)

from ([17] Chapter II, §3, pg 88):

|βαn | ≤ d(r∗)−n. (7.30)

It follows immediately that, for |z| < r∗,∣∣∣∣∣β̂α(z)−
p∑

n=0

znβαn

∣∣∣∣∣ ≤
∞∑

n=p+1

|z|n|βαn | ≤
d|z|p+1

(r∗)p(r∗ − |z|)
, (7.31)
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completing the proof.

For completeness we establish the boundedness and compactness of the operator

Bα(k).

Theorem 28. The operator Bα(k) : L2
#(α, Y ) −→ H1

#(α, Y ) is bounded for k 6∈ Z.

To prove the theorem for α 6= 0 we observe for v ∈ L2
#(α, Y ) that

‖Bα(k)v‖ = |(Tαk )−1(−∆α)−1v‖ ≤

≤ ‖((Tαk )−1‖L[H1
#(α,Y );H1

#(α,Y )]‖ −∆−1
α v‖

≤ |α|−1‖((Tαk )−1‖L[H1
#(α,Y );H1

#(α,Y )]‖v‖L2(Y ), (7.32)

where the last inequality follows from (7.9). The upper estimate on ‖((Tαk )−1‖L[H1
#(α,Y );H1

#(α,Y )]

is obtained from

‖Tαk )−1v‖
‖v‖

≤ {|z|ŵ + w̃ + |
∞∑
i=1

wi|(1/2 + µi) + z(1/2− µi)|−2}1/2, (7.33)

where ŵ = ‖P1v‖2/‖v‖2=, w̃ = ‖P2v‖2/‖v‖2, wi = ‖Piv‖2/‖v‖2. Since ŵ + w +∑∞
i=1wi = 1 one recovers the upper bound

‖Tαk )−1v‖
‖v‖

≤M, (7.34)

where

M = max{1, |z|, sup
i
{|(1/2 + µi) + z(1/2− µi)|−1}}, (7.35)

and the proof of Theorem 28 is complete. An identical proof can be carried out

when α = 0.

Remark 29. The Poincare inequalities (7.6) and (7.28) together with Theorem 28

show that Bα(k) : L2
#(α, Y ) −→ L2

#(α, Y ) is a bounded linear operator mapping

L2
#(α, Y ) into itself. The compact embedding of H1

#(α, Y ) into L2
#(α, Y ) shows the

operator is compact on L2
#(α, Y ).
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Conclusions

To conclude, a thorough perturbative spectral analysis of certain divergence form

2nd-order operators acting on quasi-periodic and periodic Hilbert Spaces arising

from modelling of electromagnetic wave propagation through photonic crystals is

achieved. For a fixed quasi-momentum α, Theorem 13 describes the band structure

of Bloch-eigenvalues in the high-contrast limit k → ∞: for large enough contrast

k, the α-Bloch-eigenvalues may be represented by a uniformly convergent power

series with radius of convergence (5.3). Moreover, for k−1 smaller than this radius,

the α-Bloch spectrum remains separated in the sense that no α-Bloch eigenvalues

”run into eachother” as k →∞. Theorem 14 reveals a similar result for the periodic

case with radius of convergence given by equation (5.7).

The first-order correction to the Bloch-eigenvalue power series is recovered in

section 6.2, which agrees with similar results obtained in the literature (c.f. [2]).

This recovery is obtained via an integral operator representation of the terms in

the z-power series expansion of the family Aα(z) = (Tαk )−1(−∆α)−1: this integral

operator represenation is found in section 6.1.

These spectral results were driven primarily by a different kind of spectral repre-

sentation (see (3.39)) of the divergence form operator in terms of the gradient inner

product on Y , which in turn is driven by the problem (3.2). These ”generalized

electrostatic resonances” are found to be exactly the eigenvalues of the Neumann-

Poincaré operator (K̃−αD )∗. For certain types of inclusion geometries, these reso-

nances are found to have a lower bound (see Theorems 18 and 20), which is used to

obtain the radius via Neumann series, a Poincaré inequality, and an optimization

problem on the real line (see section 7).
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