2004

Synthesis, characterization and study of novel reagents for the detection of saccharides and amino acids

Nadia Nadette St. Luce
Louisiana State University and Agricultural and Mechanical College, nstluc1@lsu.edu

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations

Part of the Chemistry Commons

Recommended Citation
https://digitalcommons.lsu.edu/gradschool_dissertations/2445

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please contact gradetd@lsu.edu.
SYNTHESIS, CHARACTERIZATION AND STUDY OF NOVEL REAGENTS FOR THE DETECTION OF SACCHARIDES AND AMINO ACIDS

A Dissertation

Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirement for the degree of Doctor of Philosophy

in

The Department of Chemistry

By

Nadia N. St. Luce
B.S., University of the Virgin Islands, 1999
May, 2004
DEDICATION

I dedicate this dissertation to Lucinthia St. Luce. Thank you for being a wonderful mother; for giving me life, unconditional love, support, education, guidance, prayers and most importantly the freedom to make my own decisions. You have always been my source of strength and inspiration. I love you very much and I hope I have made you proud.
ACKNOWLEDGMENTS

First and foremost, I would like to thank God without whom none of this would be possible. Next, I would like to give my deepest thanks to my research advisor, Dr. Robert Strongin, for affording me the opportunity to work in his group. Thank you for guiding me in my research and for always being there to help and support me. I would also like to thank the members (past and present) of the Strongin Research Group especially Jorge Escobedo and Oleksandr Rusin for your willingness to always help me. Very special thanks to Rolanda Johnson, with whom I started and completed the doctoral program. Your unreserved friendship, support and encouragement made weathering the storms of graduate school much more bearable. Thanks for the directory and location information, the long talks on the phone (especially about SAM), the adventures we shared and the great trips we took together and for staying by my side during my health crisis. Most of all, thanks for always being there when I needed you the most. I love you. Thanks Mohammed Sherriff and Matthew Morbe for your friendship. Special thanks, to Dr. and Mrs. Isiah Warner for your constant support, and belief in me. I would like to thank Dr. Dale Trelevean, Dr. Frank Fronczek and Dr. Crowe for all their help on my research.

To my honey, Chideha Warner, thanks for bringing laughter and happiness into my life. You complete me, and my heart belongs to you. Mr. and Mrs. Rice; thank you for always being there for me, for your love, support and acceptance. Papa, thank you for all you have done for me. To my brother Janah, thank you for your companionship and support. To my baby brother, Kimo, you are the apple of my eye. Naomi thank you for
always being my biggest fan, I will always love you. Last but not least Sophia Aubin thanks for your willingness to always listen, much love. To the rest of my friends and family, thank you for all your support and love.
TABLE OF CONTENTS

DEDICATION...ii

ACKNOWLEDGMENTS..iii

LIST OF TABLES..viii

LIST OF FIGURES...ix

LIST OF SCHEMES...xii

LIST OF ABBREVIATIONS..xiii

ABSTRACT..xvii

CHAPTER 1. INTRODUCTION...1
 1.1 Discovery of Resorcinarenes...1
 1.2 Resorcinarene Synthesis and Stereochemistry.................................2
 1.3 Binding of Polar Organic Molecules...6
 1.4 Background on Boronic Acid Binding to Saccharides.......................7
 1.5 Significance of Boronic Acid Binding to Saccharides8
 1.6 References...9

CHAPTER 2 ELUCIDATION OF THE MECHANISM OF DYE FORMATION OF
RESORCINOL CONDENSATION PRODUCTS..12
 2.1 Introduction..12
 2.2 Background...12
 2.3 The Formation and Structure of the Chromophore in Resorcinarene
 Solutions..14
 2.4 Evidence for Acid Formation in DMSO Solutions..............................22
 2.5 Macrocycle Bond Breaking and Oxidation of Acyclic Products..........24
 2.6 Interaction of Boronic Acid with Saccharides.....................................29
 2.7 Conclusion..31
 2.8 Experimental...32
 2.9 References..35

CHAPTER 3 SYNTHESIS AND CHARACTERIZATION OF A NEW RHODAMINE
-DERIVED BORONIC ACID RECEPTER FOR THE DETECTION OF
SACCHARIDES VIA HPLC POST-COLUMN..38
 3.1 Introduction..38
 3.2 Background..38
 3.3 Synthesis and Isolation of Receptor Compound...............................40
 3.4 Design of Post-Column Reactor System...42
3.5 Results and Discussion...43
3.6 Conclusion..46
3.7 Experimental...46
3.8 References..48

CHAPTER 4 SYNTHESIS, CHARACTERIZATION AND STUDY OF A NOVEL FLUORESCIN DERIVED PHOSPHONIC ACID DYE FOR THE DETECTION OF VARIOUS COMPOUNDS VIA METAL COMPLEXATION..50
4.1 Introduction..50
4.2 Background..50
4.3 Synthesis of Fluorescein Diphosphonate......................................52
4.4 Results and Discussion...53
4.5 Conclusion..55
4.6 Experimental...55
4.7 References..58

CHAPTER 5 OPTICAL DETECTION OF L-CYSTEINE AND L-HOMOCYSTEINE VIA A FLUORESCIN DERIVATIVE...59
5.1 Introduction..59
5.2 Background..59
5.3 Synthesis of Fluorescein Dialdehyde Derivative..........................66
5.4 Results and Discussion...67
5.5 Conclusion..74
5.6 Experimental...75
5.7 References..76

CHAPTER 6 SYNTHESIS, ISOLATION, AND CHARACTERIZATION OF VARIOUS CHROMOPHORIC RECEPTORS FOR MULTIPLE FUNCTIONS..80
6.1 Introduction..80
6.2 Background..80
6.3 Synthesis of Model Resorcinol-Base Receptors.........................81
6.4 Synthesis of Fluorescein-Derived Tetraamine.............................83
6.5 Results and Discussion...83
6.6 Conclusion and Future Work...87
6.7 Experimental...87
6.8 References..89

APPENDIX
A: CHARACTERIZATION DATA FOR COMPOUND 2.7................91
B: CRYSTALLOGRAPHIC DATA FOR COMPOUND 2.7a AND 1H NMR OF COMPOUND 2.7b ..92
C: CHARACTERIZATION DATA FOR COMPOUND 3.1.................100
D: CHARACTERIZATION DATA FOR SYNTHESIS OF 4.4101
E: JOB PLOT RATIOS FOR 4.4-METAL COMPLEXES122
F: MONITORING OF THIAZOLIDINIC FORMATION123
G: PHOTOCYTATION OF CYSTEINE AND HOMOCYSTEINE DERIVED THIAZOLIDINE PRODUCT IN PLASMA126
H: CRYSTALLOGRAPHIC DATA FOR COMPOUND 5.5128
I: CHARACTERIZATION DATA OF COMPOUND 6.4143
J: CHARACTERIZATION DATA FOR COMPOUND 6.5176
K: CHARACTERIZATION DATA AND JOB PLOT RATIOS FOR COMPOUND 6.6 ...198
L: LETTERS OF PERMISSION ..200
VITA ..202
LIST OF TABLES

2.1 MALDI MS evidence for the Formation of Acyclic Oxidized and Unoxidized Products from the Thermolysis of 2.2b .. 27
LIST OF FIGURES

1.1 Proposed cyclic tetramer by Niederl and Vogel..2

1.2 Proposed mechanism for the acid-catalyzed synthesis of resorcinarenes.............3

1.3 Macrocyclic ring conformations..4

1.4 Relative configuruation of substituents at the methylene bridge.............................5

1.5 Formation of boronate esters with phenyl boronic acid. Top: Reaction with aqueous base. Bottom: Reaction in aprotic media...8

2.1 Solutions containing resorcinarenes and related condensation products exhibit significant color changes in the presence of sugars...13

2.2 Spectral changes of resorcinarene macrocycle upon standing for several hours or upon heating at 90 °C for 1 min...15

2.3 Solution colors of macrocycle in the presence of different sugars.........................15

2.4 Xanthene dyes including 2.4a and 2.4b...17

2.5 Energy-minimized structure (SYBYL® 6.6) of a hypothetical macrocyclic xanthene derived from 2.2b..18

2.6 2.2a (1.0mg), 2.3a (1.0mg), and 2.3c (1.0mg) each in 0.9 mL DMSO were heated to a gentle reflux over two minutes and cooled to room temperature before 0.1 mL H₂O was added to each solution. A solution of 2.4b (5.0 × 10⁻⁶ M) was prepared at rt in 9:1 DMSO:H₂O...19

2.7 Structure of compound 2.7b...20

2.8 Chromatogram of a reaction of resorcinol (r.t. =13.5 min) and acetaldehyde quenched after 10 min according to the procedure reported by Weinelt and Schneider²²⁷ showing the formation of 2.3b (r.t. =18 min).........................22

2.9 X-ray crystal structure of (CH₃)₃S⁺CH₃SO₃...23

2.10 Compound 2.8 and ORTEP...24

2.11 (A) Chromatogram of 2.2b (Control); (B) Chromatogram of the thermolysis products of 2.2b showing also the formation of 2.3b...25
Top: expansion of a 1H NMR spectrum of semi purified thermolysis reaction products of 2.2b showing the formation of 2.3b. Bottom: expansion of a 1H NMR spectrum of pure 2.3b.

2.13 2,4-dihydroxyacetophenone (2.9) formed upon oxidation of a DMSO solution of 2.3b.

2.14 1H NMR of the products of oxidation of 2.3b showing the formation of 2.4a (as its tautomer).

2.15 Equilibria of boronic acid receptors upon binding to sugar.

2.16 Resonance forms of quinone moiety of xanthene.

3.1 Compound 3.1.

3.2 Diagram of our post-column chromatographic set-up.

3.3 RBA = 1.64562 x 10^{-5} M, 0.16 M, pH 9.5 carbonate buffer in a mixture of 1:2 ratio of methanol and H$_2$O, the final concentration of fructose was 8.33 x 10^{-4} M.

3.4 Top: chromatogram of a 1:1 mixture of D-fructose (r.t. = 10.0 min) and D-glucose (r.t. = 12.0 min, 20.0 µg). Bottom: chromatogram of a mixture of D-fructose (4.5 µg) in the presence of a 100-fold excess of D-glucose.

3.5 Chromatogram of a 1:1 mixture of maltohexaose and maltotriose (80 µg).

4.1 Compound 4.4.

4.2 UV-Vis absorbance changes (λ = 500 and 510 nm) of 4.4-metal complexes in the presence of several saccharides, amino acids and anions.

5.1 Representative known thiol derivatizing agents.

5.2 Compound 5.6.

5.3 Top: color changes of solutions of 5.6 and various analytes. A = no analyte, B = L-cysteine, C = L-homocysteine, D = bovine serum albumin, E = L-glycine and F = n-propylamine. Bottom: co-spots of 5.6 (1.0 x 10^{-3} M) with and without various analytes (1.0 x 10^{-3} M) under visible and UV light.

5.4 Left: Absorption spectra of dialdehyde (2.5 x 10^{-6} M) and L-cysteine (4 x 10^{-6} M – 8 x 10^{-5} M) in H$_2$O, pH 9.5, rt, 5 min. Right: Interaction of the 5.6 (4 x 10^{-6} M) and Cys (4.9 x 10^{-5} to 7.4 x 10^{-4} M) in deproteinized human blood plasma.
containing 5.0 mM glutathione at room temperature. Detection limit is 4 x 10^{-5} M

5.5 Fluorescence emission spectra of dialdehyde alone (A, 1.3 x 10^{-6} M) and after L-cysteine (3 x 10^{-5} M) addition (B), pH 9.5, rt……………………………………71

5.6 Absorbance vs. concentration plots for L-cysteine△ and L-homocysteine○ in aqueous solutions of dialdehyde (2.5 x10^{-6} M) at pH 9.5…………………………72

5.7 Successive addition of L-serine (to final concentrations of 4 x 10^{-5} M to 8 x 10^{-4} M) to an aqueous solution of dialdehyde (2.5x10^{-6} M) at pH 9.5 results only in an absorbance change at 480 nm. Addition of L-cysteine (to final concentrations of 4 x 10^{-6} M - 8 x 10^{-5} M) to the L-serine-dialdehyde solution produces an absorbance change at 505 nm………………………………………………………………...72

5.8 Black: UV-Vis spectra of solutions of 5.8 (1.25 x 10^{-5} M) after irradiation for 10, 15, and 20 min in aqueous solutions at pH 9.5. Colored: UV-Vis spectra of solutions of 5.7 (1.25 x 10^{-5} M) after irradiation for 10, 15, and 20 min in aqueous solutions at pH 9.5………………………………………………………………..73

6.1 Resorcinarene colorimetric sensor…………………………………………………………81

6.2 Other resorcinol-based colorimetric sensors………………………………………………..81

6.3 Binding between 6.3 and sialic acid. Conditions: 9:1 DMSO/H2O, 260 mM HEPES buffer, pH 7.4……………………………………………………………………..84

6.4 Binding of 6.5 and sialic acid. Conditions: 9:1 DMSO/H2O, 260 mM HEPES buffer, pH 7.4…………………………………………………………………………….85

6.5 UV-Vis absorbance changes (λ = 490nm) of 6.6-metal complexes in the presence of several saccharides, amino acids and anions…………………………………….86
LIST OF SCHEMES

2.1 Dehydration and oxidation of macrocycle fragment (methine-bridged resorcinol oligomers) leading to a xanthene moiety..17

2.2 Synthesis of compound 2.7 (tripod)...18

2.3 Crystal structure of 4-formylphenylboronic acid 2.7a and structure of compound 2.7b...20

2.4 Reaction of paraldehyde and resorcinol showing the reversible formation of a variety of intermediates in acidic media including acyclic oligomers and resorcinarene. (compound 2.3b is labeled A)..21

3.1 Synthesis of rhodamine-derived boronic acid receptor..............................41

4.1 Synthesis of fluorescein-derived phosphonic acid dye...............................53

5.1 Homocysteine metabolism..62

5.2 Synthesis of intermediate compound 5.4...66

5.3 Synthesis of compound 5.6 from 5.4..67

5.4 Reaction of cysteine with aldehydes to form thiazolidines..........................67

5.5 Reaction of 5.6 with L-cysteine 5.2. Reaction conditions: 0.25 M Na₂CO₃ buffer pH 9.5, followed by precipitation with MeOH..68

5.6 Reaction of 5.6 with L-cysteine 5.1. Reaction conditions: 0.25 M Na₂CO₃ buffer pH 9.5, followed by precipitation with MeOH..69

6.1 Synthesis of dodecyl tripod..82

6.2 Synthesis of bromine tripod..82

6.3 Synthesis of tetraamino fluorescein (TAF)...83
LIST OF ABBREVIATIONS

amu Atomic Mass Units
BHT Butylated hydroxytoluene, 2,6-Di-tert-butyl-4-methylphenol
\(^{11}\text{B NMR}\) Boron-11 Nuclear Magnetic Resonance
\(^{\circ}\text{C}\) Degrees Celsius
calcd Calculated
CCl\(_4\) Carbon Tetrachloride
CDCl\(_3\) Dueterated Chloroform
C\(_6\)H\(_5\)Cl Chlorobenzene
CHCl\(_3\) Chloroform
CH\(_2\)Cl\(_2\) Dichloroethane
CH\(_3\)CN Acetonitrile
CH\(_3\)OD Dueterated Methanol
CH\(_3\)OH Methanol
\(^{13}\text{C NMR}\) Carbon-13 Nuclear Magnetic Resonance
(CH\(_3\))\(_4\)Si Tetramethyl silane
CH\(_3\)SO\(_3\)H Methanesulfonic acid
CH\(_3\)SO\(_2\)H Methanesulfinic acid
CH\(_3\)SOH Methanesulfenic acid
COSY Correlated Spectroscopy
DCE 1,2-Dichloroethane
DCM Dichloromethane
D₂O Dueterium oxide
DMSO Dimethyl sulfoxide
EtOAc Ethyl acetate
ETOH Ethanol
FAB Fast Atom Bombardment
FT-IR Fourier Transform Infrared
g Grams
h Hours
HCL Hydrochloric acid
HEPES 4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid
H₂O Water
H₂O₂ Hydrogen Peroxide
HPLC High-Performance Liquid Chromatography
¹H NMR 1-d Proton Nuclear Magnetic Resonance
HRMS High-Resolution Mass Spectrometry
H₂SO₄ Sulfuric acid
LOD Limit of Detection
M Molar (moles/Liter)
mM Millimolar (mmoles/Liter)
MgSO₄ Magnesium Sulfate
MALDI Matrix-Assisted Laser Desorption Ionization
MeOH Methanol
mg Milligrams
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mL</td>
<td>Milliliters</td>
</tr>
<tr>
<td>mmol</td>
<td>Millimoles</td>
</tr>
<tr>
<td>MS</td>
<td>Mass Spectrometry</td>
</tr>
<tr>
<td>MW</td>
<td>Molecular Weight</td>
</tr>
<tr>
<td>NaBH₄</td>
<td>Sodium Borohydride</td>
</tr>
<tr>
<td>NaBH(OAc)₃</td>
<td>Sodium Triacetoxyborohydride</td>
</tr>
<tr>
<td>Na₂CO₃</td>
<td>Sodium Carbonate</td>
</tr>
<tr>
<td>NaHCO₃</td>
<td>Sodium Bicarbonate</td>
</tr>
<tr>
<td>Na₂SO₄</td>
<td>Sodium Sulfate</td>
</tr>
<tr>
<td>NBA</td>
<td>N-Bromoacetamide</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear Magnetic Resonance</td>
</tr>
<tr>
<td>O₂</td>
<td>Oxygen</td>
</tr>
<tr>
<td>OH</td>
<td>Hydroxide</td>
</tr>
<tr>
<td>ORTEP</td>
<td>Oak Ridge Thermal Ellipsoid Plot</td>
</tr>
<tr>
<td>³¹P NMR</td>
<td>Phosphorous-31 Nuclear Magnetic Resonance</td>
</tr>
<tr>
<td>P(OEt)₃</td>
<td>Triethyl Phosphite</td>
</tr>
<tr>
<td>ppm</td>
<td>Parts Per Million</td>
</tr>
<tr>
<td>PTZ</td>
<td>Phenothiazene</td>
</tr>
<tr>
<td>R₉F</td>
<td>Ratio to Solvent Front</td>
</tr>
<tr>
<td>rt</td>
<td>Room Temperature</td>
</tr>
<tr>
<td>S/N</td>
<td>Signal to Noise</td>
</tr>
<tr>
<td>TLC</td>
<td>Thin-Layer Chromatography</td>
</tr>
<tr>
<td>TMSBr</td>
<td>Trimethylsilyl bromide</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>T_R</td>
<td>Retention Time</td>
</tr>
<tr>
<td>μM</td>
<td>Micromolar (micromoles/Liter)</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>UV-Vis</td>
<td>Ultraviolet-Visible</td>
</tr>
<tr>
<td>ZnCl$_2$</td>
<td>Zinc Chloride</td>
</tr>
<tr>
<td>λ</td>
<td>Wavelength</td>
</tr>
</tbody>
</table>
ABSTRACT

The design of synthetic receptors for the recognition and sensing of saccharides and amino acids is currently a major challenge. This is due to inherent structural similarity and a lack of chromophoric or fluorophoric properties of these compounds. The synthesis and study of novel detection agents for bioactive molecules as well as mechanistic studies are presented herein.

The elucidation of the mechanism by which tetraarylboronic acid resorcinarene interact with sugar molecules and promote a solution color change is explored. This vast collaborative study, reveals that DMSO solutions of boronic acid functionalized resorcinarene macrocycles afford visual color changes upon heating or standing and in the presence of saccharides. We found that the solution color is due to macrocycle ring opening and oxidation. Condensation reactions catalyzed by acid formed in situ from DMSO are responsible for xanthene dye formation.

As a result of our mechanistic knowledge we were able to design and synthesize a variety of novel receptors. To date two selective receptors for the purpose of saccharide sensing have been synthesized. The first is a rhodamine-derived boronic acid receptor, for use in a novel post-column chromatographic procedure for the detection of saccharides. The second involves the designed and synthesis of a fluorescein-derived phosphonic acid receptor, which interacts with saccharides amino acids and anions via metal complexation.

As an extension of our work with saccharides we are exploring the detection of amino acids. We have discovered a highly selective new method for the facile determination of cysteine and homocysteine via a fluorescein dialdehyde derivative. In
addition, we have made progress towards the selective, direct colorimetric and fluorometric differentiation between cysteine and homocysteine in the presence of each other despite their great similarity in structure.
CHAPTER 1

INTRODUCTION

1.1 Discovery of Resorcinarenes

While studying the synthesis of phenol-based dyes, Adolf von Baeyer\(^1\) discovered a new class of compounds later known as resorcinarenes.\(^2\) He reported a reddish product and a crystalline compound, which was found later to be an isomer of the reddish product, was obtained when benzaldehyde was mixed with resorcinol in the presence of sulfuric acid. It was also noted that the reddish material turned violet in the presence of base. In 1883, the elemental composition of the product was determined by Michael\(^3\) to be \((C_{13}H_{10}O_2)_n\). According to his studies, the product was formed by reacting an equimolar amount of resorcinol and benzaldehyde followed by loss of an equal number of moles of water. Still unknown however, was the correct composition, which was determined by Nierdl and Vogel\(^4\) in 1940. Their studies of several condensation reactions involving aliphatic aldehydes and resorcinol led to the conclusion that the ratio between resorcinol and benzaldehyde to form the product was 4:4. As a result, Nierdl and Vogel proposed the product to be a cyclic tetramer (1.1) similar to those found in nature such as porphyrins. The structure was later proven by Erdtman in 1968 by X-ray analysis (Figure 1.1).\(^5\) The name "resorcinarene" was recently suggested by Schneider\(^6\), Gutsche\(^7\) and Böhmer\(^8\) to be calix[4]resorcinarenes or resorcinol-derived calix[4]arenas.\(^7,8\)
1.2 Resorcinarene Synthesis and Stereochemistry

The preparation of resorcinarenes involves an acid-catalyzed condensation reaction between resorcinol and an aldehyde. The reactants are usually heated and allowed to reflux in a mixture of ethanol and concentrated hydrochloric acid for several hours.

Figure 1.1. Proposed cyclic tetramer by Niederl and Vogel.

However, the optimal reaction conditions vary depending on the aldehyde. In some cases the addition of water is necessary to isolate the product but, the resorcinarene product generally crystallizes from the reaction mixture. These synthetic schemes typically require an unsubstituted resorcinol. In addition, substituted resorcinols such as 2-methylresorcinol and pyrogallol have afforded some amounts of product which were isolated.

In contrast, a resorcinarene product is not generated when resorcinol derivatives contain an electron withdrawing group at the 2-position or when the phenolic hydroxyl groups are partially alkylated. In contrast, a broad range of aliphatic and aromatic aldehydes can be employed to yield product; with the exception of sterically hindered aldehydes such as 2,4,6-trimethylbenzaldehyde or aliphatic aldehydes with functionalities too close to the reaction center (e.g. glucose).
Figure 1.2. Proposed mechanism for the acid-catalyzed synthesis of resorcinarenes.

The mechanism for the formation of resorcinarenes is now well understood. The first step involves the protonation of the aldehyde (Figure 1.2), followed by an electrophilic addition to resorcinol. The resulting –OH is protonated forming H₂O which
is lost. This species undergoes an electrophilic addition with a second resorcinol to form a dimer.

![Macrocyclic ring stereoisomers](image)

Figure 1.3. Macrocyclic ring stereoisomers.¹²ᵃ

This process is repeated forming trimers, tetramers and higher order polymers. At the tetramer stage, cyclization usually occurs to form a resorcinarene. This cyclization is due to their conformation, which is bent in order to form stronger hydrogen bonds between phenolic groups on adjacent resorcinol units.

In theory, resorcinarenenes can exist in several isomeric forms, which are governed by three factors. The first is the conformation of the macrocyclic ring, where five symmetrical conformations (Figure 1.3) are possible: the crown (C₄ᵥ), boat (C₂ᵥ), chair (C₂₃), diamond (C₃) and saddle (D₂d). The boat, chair and diamond isomers have a
diastereomeric relationship. The two most common isomeric forms are the boat and chair. The boat conformation is often reported as being a crown. This is because boat conformers interconvert very rapidly giving a time-averaged crown structure.

The breaking of at least two covalent bonds leads to interconversion. The ratio in which the isomers are formed vary widely depending on reaction conditions. Under homogeneous conditions the thermodynamic stability of the different isomers usually determines their ratio due to the fact that these reactions are reversible under acidic conditions. Under heterogeneous conditions, product solubility is the major determining factor, with the least soluble isomer usually being the main product. The relative configuration of the substituents at the methylene bridges is the second factor (Figure 1.4). The third factor is the individual configuration of the substituents which can be either axial or equatorial. Only four resorcinarenes have been observed experimentally despite the large number of isomers possible.

Figure 1.4. Relative configuration of substituents at the methylene bridge.1,2
1.3 Binding of Polar Organic Molecules

Resorcinarenes can bind polar organic molecules due to the presence of eight phenolic hydroxyl groups on the upper rim. Aoyama and co-workers were the first to study the complexation of polar organic molecules using resorcinarenes.\(^{1,12}\) The boat isomers were employed, as is common with most resorcinarene research. A large portion of their research focused on the binding of cyclohexanediols. They found that cis-1,4-cyclohexanediol was the most strongly bound of the isomers studied.\(^{1,13}\) This observation can be attributed to pre-organization of the resorcinarene where one of the two related hydroxyl group is axial and the other is equatorial in the cis isomer. This allows for more favorable interactions between the hydroxyl groups. In addition, binding interactions of the cis isomers were eight times stronger than the corresponding trans isomers. Compared to their cyclic counterparts, open chain diols exhibited much weaker binding interactions.\(^{1,14}\)

Resorcinarenes can also bind carbohydrates. The 1,4-cis selectivity is also observed with sugar complexation.\(^{1,15}\) Upon complexation with resorcinarenes D-ribose, which is insoluble in CCl\(_4\), has revealed some degree of solubility. NMR studies have shown that it is bound exclusively in the α-pyranose form which is the only isomer possessing the 1,4-cis orientation. Additional extraction experiments have shown that a 3,4-cis arrangement strongly enhances binding. The C-2 hydroxyl does not play a major role in the binding process. The major factor governing complexation is hydrogen bonding; however, a significant contribution is also made by CH-π interactions between the aliphatic moiety of the guest and the aromatic rings of the resorcinarenes.\(^{1,16}\)
Resorcinarenes also possess the ability bind to amino and carboxylic acids.1,17 Amino acid complexations have only been investigated in water and those with polar side groups exhibit only insufficient binding. Amino acids containing aliphatic and aromatic side groups showed much better interactions due to greater CH-π interactions. Resorcinarenes hydrogen-bond with dicarboxylic acids in chloroform. The number of carbon spacers between the carboxylic moieties determines the strength of the binding interactions. For example, glutaric acid, which has a three-carbon spacer, is bound more than one hundred times stronger than pimelic acid, which has a five-carbon spacer.1,17b

1.4 Background on Boronic Acid Binding to Saccharides

Boron containing compounds have played a significant role in organic synthesis for many years.1,18 Great interest has been shown towards the synthesis of aromatic boronic acid compounds that can serve as receptors for molecules such as saccharides.1,19 The first synthesis of phenylboronic acid was performed in 1880 by Michaelis and Becker.1,20 Kuivila and co-workers published the first binding studies of boronic acids to diols in 1954. They discovered that boronic acids solubilized saccharides and polyols, and they proposed the formation of a cyclic ester product.1,21 Their result corresponded with the well known ability of borates to form complexes with polyhydroxyl compounds.1,22 Later in 1959, Lorand and Edwards published the first quantitative interactions between boronic acids and saccharides.1,23

In the reaction of boronic acids with diols, a covalent bond is formed with 1,2- or 1,3-diols for the formation of a five or six membered cyclic ester in both basic and nonaqueous media (Figure 1.5). Saccharides containing rigid, cis diols are able to form more stable cyclic esters than acyclic diol. Due to the isomerization
of the saccharide from the pyranose to furanose forms, the structure of the cyclic ester formed with saccharides is often complex. Based on their studies, Lorand and Edwards found that phenylboronic acid had the following binding affinity for saccharides: D-fructose > D-galactose > D-mannose > D-glucose.1,23

1.5 Significance of Boronic Acid Binding to Saccharides

The recognition of biologically important compounds by synthetic receptors is of great interest. Since saccharides play a significant role in the metabolic pathway of living organisms, the ability to detect the presence and concentration of biologically important sugars such as glucose, fructose, and galactose in aqueous solution is of interest to medicine and industry. Notable interest is placed towards the recognition of D-glucose, because the breakdown of glucose transport in humans has been linked to diseases such as renal glycosuria,1,24, 1,25 cystic fibrosis,1,26 diabetes1,27, 1,28 and cancer.1,29 There are a variety of industrial applications ranging from monitoring the process of fermentation to the determination of the enantiomeric purity of synthetic drugs. The current enzymatic
detection methods for saccharides can be limited in specificity. In addition, enzymatic sugar sensors are very unstable under harsh conditions. Thus, the development of a stable boronic acid derived receptor could lead to saccharide receptors that are sugar specific.

1.6. References

CHAPTER 2

ELUCIDATION OF THE MECHANISM OF DYE FORMATION OF RESORCINOL CONDENSATION PRODUCTS

2.1 Introduction

This was a collaborative project with other members of my research group. My personal contribution to this project involved:

1.1.1 Synthesis and isolation of substructures of the resorcinarene macrocycle
1.1.2 Providing initial evidence of retro-condensation and oxidation

2.2 Background

Resorcinarenes are unique three-dimensional cyclic aromatic tetramers. The colorimetric properties of resorcinarene solutions had not been studied since Bayer’s initial investigation. In 1872, in an effort to develop new dyes,²¹,²² he reported the acid-catalyzed condensation of resorcinol and benzaldehyde,²³ which resulted in the first resorcinarenes.²⁴ He observed a crystalline product and a reddish resin. The product mixture turned purple upon the addition of base. Nierdl and Vogel established the cyclic tetrameric crystalline product in 1940.²⁵a The exact structure of these macrocyclic molecules was not confirmed however, until Erdtman and coworkers performed a single X-ray analysis in 1968, almost 100 years after the initial synthesis of resorcinarenes.²⁶,²⁷ Four different resorcinarene isomers have been found experimentally since that time.²⁸ The impact of resorcinarenes in the disciplines of molecular recognition, supramolecular chemistry, and materials science has been the subject of extensive study and review.²⁹
Boronic acids as functional groups have recently achieved prominence in palladium-mediated coupling reactions, carbohydrate recognition, and sensing studies. Boronic acids readily form strong, reversible covalent bonds to diols to form boronate esters which are utilized as efficient asymmetric homologation substrates and catalysts. Resorcinarenes are the first compounds shown to bind sugars in apolar media. Since boronic acids are known to be the basis of carbohydrate

![Chemical structures](image)

Figure 2.1 Solutions containing resorcinarenes and related condensation products exhibit significant color changes in the presence of sugars.

affinity chromatography; the incorporation of arylboronic acid moieties into resorcinarenes framework might afford powerful sugar receptors. Thus Lewis and Davis synthesized 2.1 and 2.2a (Figure 2.1) and investigated their properties in the presence of sugars.
Sugars exhibit great similarity in structure and are transparent in the visible region (they lack chromophores or fluorophores), which makes analysis difficult. However, a resorcinol color test was reported by Seliwanoff in 1887, which was followed by other resorcinol-derived methods.2.15 Numerous other related reducing sugar assays, typically require toxic reagents, tedious and often harsh procedures.2.16 Significant progress was made in the 1990’s towards the improved selective and mild detection of monosaccharides via relatively strong solution color changes evident by visual inspection. Recent advances were due to the pioneering efforts of Shinkai and coworkers, where they studied primarily aniline-functionalized azo dyes containing appended arylboronic acids.2.17 Presented herein is evidence that xanthenes form and behave as the active chromophores in resorcinarene solutions.

2.3 The Formation and Structure of the Chromophore in Resorcinarene Solutions

The synthesis of compounds 2.1 and 2.2a has previously been reported.2.14 When separating the two stereoisomers by fractional crystallization white crystalline solids were afforded. X-ray quality crystals of the half-methyl tetraboronate ester of 2.1 via recrystallization from a 9:1 MeOH:EtOH solution was obtained by Davis. The isomer possessed an interesting solid-state architecture, which was characterized as an infinite, antiparallel, two-dimensional network of macrocycles, each of which exhibited twelve intermolecular hydrogen bonds.2.18

It was noted that upon allowing a colorless DMSO solution of the crystallized resorcinarene macrocycle (5.2 mM) to stand for several hours or upon heating at 90 °C for 1 min, a pinkish purple color change was observed. This color change was evident by
Figure 2.2 Spectral changes of resorcinarene macrocycle upon standing for several hours or upon heating at 90 °C for 1 min.

the increase in absorbance maxima at 535 nm and a less intense λ_{max} at 500 nm (Figure 2.2).2,19 Heating the macrocycle 2.1 in aqueous DMSO and in the presence of a variety of sugars resulted in eleven different solution colors (Figure 2.3).2,19 The sugars included

Figure 2.3 Solution colors of macrocycle in the presence of different sugars.
resorcinarene solutions. The color changes over time, when heated, and in the presence of different sugars were the main focus of this investigation.

Initial attempts at understanding the origin of the solution color changes involved; heating solutions of 2.1 in the absence of visible light or oxygen. Color intensities that were less intense, as apparent by both visual inspection and UV-vis spectroscopy were observed. For instance, heating a solution of 2.1 (5.2 mM in DMSO) in the absence of oxygen led to a 61% decrease in absorbance at 536 nm. This was evidence that light and oxygen promote color formation.

Furthermore, the solution remained colorless after acylating the phenolic hydroxyls of 2.1 and heating a DMSO solution of the resultant octaacetate to reflux. The phenolic hydroxyls therefore also play a key role in chromophore formation. As a result it was suggested that the chromophore formation arises via oxidation of a resorcinol moiety to a quinone. Further investigation into the chromophore formations performed by heating solutions of resorcinol or benzeneboronic acid separately or as an equimolar mixture using the same conditions and concentrations, resulted in only faint solution color by visual inspection. This result showed that a methine-bridged resorcinol/aldehyde condensation framework is needed for effective chromophore formation and optical sugar detection.

The macrocycle posses a similar structural relationship to xanthenes, thus it was proposed that a portion of the macrocycle can undergo dehydration and oxidation to give a xanthene moiety. Methine-bridged condensation product resorcinarene substructures, were noted as reaction intermediates in standard xanthene dye syntheses (e.g., the transformation of 2.5 to 2.6, n = m = 0, Scheme 2.1).
Scheme 2.1 Dehydration and oxidation of macrocycle fragment (methine-bridged resorcinol oligomers) leading to a xanthene moiety.

Xanthenes are some of the oldest known synthetic dyes. Examples include fluorescein, rhodamine B, 2.4a and 2.4b and many more (Figure 2.4). It is known that the colorimetric properties of xanthenes are a function of the ionization state of the C-6 moiety. They typically exhibit two absorbance maxima in the visible region, at 530 nm and a less intense λ_{max} at 500 nm.

Figure 2.4 Xanthene dyes including 2.4a and 2.4b.

An energy-minimized structure of the oxidized macrocycle, showed that incorporation of a planar xanthene within the macrocycle framework would impart considerable strain (Figure 2.5). Upon formation of the xanthene substructure within 2.2b, simulations (Sybyl 6.6) showed, that an increase in strain energy of 34.2 kcal/mol would occur. Also prior dehydration studies of the related calixarenes (macrocycles...
Figure 2.5 Energy-minimized structure (SYBYL® 6.6) of a hypothetical macrocyclic xanthene derived from 2.2b.

formally derived from phenol/formaldehyde condensations) showed that the xanthenes did not form in cyclic tetrameric structures. Thus, it was proposed that in order for xanthenes to form, ring opening to acyclic oligomers must occur.

Scheme 2.2 Synthesis of compound 2.7 (tripod).

An independent study was done using compound 2.7 (tripod) as a substructure of the macrocycle. Compound 2.7 embodies a substructure of the macrocycle 2.2a (Scheme 2.2). I was able to obtain compound 2.7 in 66% yield by using 4-dodecyleresorcinol and 4-formylphenylboronic acid (Appendix A). Figure 2.6 illustrates the relationship
Figure 2.6 2.2a (1.0mg), 2.3a (1.0mg), and 2.3c (1.0mg) each in 0.9 mL DMSO were heated to a gentle reflux over two minutes and cooled to room temperature before 0.1 mL H₂O was added to each solution. A solution of 2.4b (5.0 × 10⁻⁶ M) was prepared at rt in 9:1 DMSO:H₂O.

between the products of the macrocycle 2.2a, the brominated and dodecyle tripod when heated in DMSO overlaid with a commercially available xanthene. The overlaid UV-vis spectra shows a similar λ_{max} at about 535 nm accompanied by a less intense one at about 500 nm. This striking resemblance was strong evidence that we were oxidizing and dehydrating our compounds to form xanthenes.
Scheme 2.3 Crystal structure of 4-formylphenylboronic acid 2.7a and structure of compound 2.7b.

The synthesis of a xanthene directly from the dodecyle tripod was attempted in the presence of heat and/or light (Scheme 2.3). This resulted in crystals of 4-formylphenylboronic acid (2.7a, Appendix B).2,25 By means of this, I was able to provide initial and conclusive evidence that under our conditions fragmentation and reversible condensation was occurring.2,30 Compound 2.7b, (Appendix B) the target compound, was produced in traces as evident by both 1H-NMR and MALDI MS (Figure 2.7).

Figure 2.7 Structure of compound 2.7b.
It is known that condensation reactions producing resorcinarene are reversible under acidic conditions.2,4 A report by Weinelt and Schneider2,30 showed a detailed study of the genesis of resorcinarene from resorcinol and paraldehyde under acidic conditions.

Scheme 2.4 Reaction of paraldehyde and resorcinol showing the reversible formation of a variety of intermediates in acidic media including acyclic oligomers and resorcinarenes (compound 2.3b is labeled A).

They found that 2.2b and its macrocyclic stereoisomers interconverted via the intermediate of acyclic oligomers. Their studies include the rapid quenching of the condensation reaction between resorcinol and paraldehyde in MeOH in the presence of anhydrous HCl (Scheme 2.4).

Compound 2.3b (r.t. =18 min) was isolated from the reaction mixture (resorcinol and acetaldehyde) by preparative reverse-phase HPLC using a gradient H\textsubscript{2}O:MeOH 1:1
to 100% MeOH in 20 min (Figure 2.8). The opening of a resorcinarene ring has only been previously shown to occur upon the addition of strong acid, thus, the hypothesis of acyclic oligomer formation in aqueous or neat DMSO solutions without added acid warrants further analysis.

It was noted that 1H and 13C NMR spectra of DMSO-d_6 solutions of 2.1 (5.2 mM), heated at 90 °C for 3 min exhibited no readily observable change in chemical shifts or peak area integrals compared to fresh, colorless samples. Xanthenes are strongly absorbing materials and so they need be only produced in trace (ca. 0.5% conversion) amounts to afford solution colors under our conditions.

Figure 2.8 Chromatogram of a reaction of resorcinol (r.t. =13.5 min) and acetaldehyde quenched after 10 min according to the procedure reported by Weinelt and Schneider showing the formation of 2.3b (r.t. =18 min).

2.4 Evidence for Acid Formation in DMSO Solutions

The formation of numerous new products representing a 74 % conversion of 2.2b to products based on relative peak areas was unveiled. This occurred when a DMSO (10 mL) solution of freshly recrystallized 2.2b (100 mg, 18.4 mM) was heated at 120 °C for 8h and then followed by analysis via reversed-phase HPLC. It is known that acid production from DMSO is promoted by the presence of O$_2$ and peroxides. In addition,
certain oxidations in DMSO have been attributed to the \textit{in situ} formation of acid.2.27b Free radical scavengers has been used to inhibit acid formation observed during DMSO decomposition.2.27c Under the same thermolysis conditions as noted above, but in the presence of free radical scavengers (either BHT or PTZ, 10 mol %), less than 28 % conversion to products was observed by HPLC analysis.

Evidence concerning strong acid formation under our conditions was presented describing the first X-ray crystal structure of trimethyl sulfonium methane sulfonate

![X-ray crystal structure of (CH$_3$)$_3$S$^+$CH$_3$SO$_3^-$](image)

\textbf{Figure 2.9} X-ray crystal structure of (CH$_3$)$_3$S$^+$CH$_3$SO$_3^-$.

This compound was obtained from a thermolysis reaction of \textit{2.2b} in DMSO. It is known that (CH$_3$)$_3$S$^+$CH$_3$SO$_3^-$ forms, along with CH$_3$SO$_3$H, CH$_3$SO$_2$H and CH$_3$SOH (and other products) via the radical and acid promoted decomposition of DMSO.2.29 This result confirm that strong acids are formed during the thermolysis of DMSO in the presence of O$_2$.

23
2.5 Macrocycle Bond Breaking and Oxidation of the Acyclic Products

Compound 2.8 (Figure 2.10), is a rarely observed resorcinarene diamond stereoisomer, which was isolated in 2.3% yield from the thermolysis of 2.2b in DMSO, via flash column chromatography.2.26 The structure of 2.8 was previously assigned (as the octabutyrate derivative) via NMR evidence during the acid-catalyzed condensation/isomerization studies of Schneider.2.30 Notably, stereoisomer 2.8 can only arise from 2.2b via bond breakage and reformation.2.30 If 2.8 were a conformer of 2.2b, the methyl group (C18), would reside outside, rather than above the plane of the macrocycle cavity.

Figure 2.10 Compound 2.8 and ORTEP.
Acyclic products were seen during the thermolysis of $2.2b$. A key product $2.3b$ (also labeled as A in Scheme 2.2) was isolated from a broad HPLC fraction eluting from 16-19 min (Figure 2.11). Figure 2.12 depicts two 1H-NMR spectra; the lower 1H-NMR (A) illustrates pure, independently synthesized $2.3b$, which was isolated from an HPLC column eluting from 16-19 min. The upper 1H-NMR (B) illustrates a HPLC isolated product mixture, which contained $2.3b$, also eluted from 16-19 min.

![Figure 2.11](image)

Figure 2.11 (A) Chromatogram of $2.2b$ (Control); (B) Chromatogram of the thermolysis products of $2.2b$ showing also the formation of $2.3b$.

The 1H-NMR spectrum of the isolate shows several peaks including each of the resonances associated with $2.3b$2,27 $[(\text{CH}_3\text{OD}) \delta 1.46 (d, J = 7.3 \text{ Hz}), 4.53 (q, J = 7.3 \text{ Hz}), 6.18-6.22 (m), 6.89 (d, J = 8.0 \text{ Hz})]$. Overlay of the 1H-NMR spectra of the HPLC isolate with a sample of independently synthesized and isolated $2.3b$ confirms the assignment. Additionally, the MALDI MS of the HPLC fraction contains a peak at 245.59 amu (246.26 amu calcd). The production of these compounds ($2.7a$, $2.3b$ and 2.8) under our conditions constitutes an important link between our investigation and the prior acid-catalyzed macrocycle genesis mechanism studies.2,30
Evidence of higher order oligomer production involving thermolysis of 2.2b in DMSO was observed. At least five sets of doublets appear between 0.72 and 1.53 ppm in the 1H NMR of each of two flash column fractions (TLC $R_f = 0.54$ and 0.63, 9:1 CH$_2$Cl$_2$:CH$_3$OH, δ 1.53, 1.08, 1.01, 0.97, 0.83, 0.72 ppm, and δ 1.29, 1.15, 1.00, 0.89, 0.84 ppm, CH$_3$OD, respectively). In addition, the MALDI mass spectrum (anthracene matrix) of other fractions ($R_f = 0.29$ and 0.44) exhibit peaks for higher homologues of 2.3b (entries 1 and 2, Table 1.1). MALDI MS evidence also suggests the formation of xanthene materials not previously reported in previous fragmentation and equilibration studies of 2.2b (Table 2.1, entries 3-6).231,232

Several products were formed by heating an air-saturated solution of 2.3b (0.880 g, 3.576 mmol) dissolved in DMSO (78 mL) at 100 °C for 28 h. This was done in an effort to study oxidation products. The very complex 1H NMR of the crude mixture reveals the presence of resorcinol as the predominant (90 %) product and a minor conversion to 2,4-dihydroxy-acetophenone 2.9 (ratio of integrals of resorcinol triplet 6.94
ppm to **2.9** doublet at 7.76 ppm is 153:1, CH$_3$OD) and very small traces of xanthene **2.4a** (d, 7.65 ppm).

Table 2.1 MALDI MS evidence for the formation of acyclic oxidized and unoxidized products from the thermolysis of **2.2b**.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Structure</th>
<th>TLC R$_F$</th>
<th>(m/z) calcd</th>
<th>(m/z) obsd</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.4, R=Me, m=1, n=0</td>
<td>0.29</td>
<td>382.41</td>
<td>381.89</td>
</tr>
<tr>
<td>2</td>
<td>2.4, R=Me, m=3, n=2</td>
<td>0.44</td>
<td>926.36</td>
<td>926.28</td>
</tr>
<tr>
<td>3</td>
<td>2.6a</td>
<td>0.44</td>
<td>226.23</td>
<td>225.61</td>
</tr>
<tr>
<td>4</td>
<td>2.5, R=Me, m+n=4</td>
<td>0.26</td>
<td>906.01</td>
<td>906.33</td>
</tr>
<tr>
<td>5</td>
<td>2.5, R=Me, m+n=3</td>
<td>0.84</td>
<td>770.79</td>
<td>770.82</td>
</tr>
<tr>
<td>6</td>
<td>2.5 R=Me, n=1, m=0</td>
<td>0.79</td>
<td>362.51</td>
<td>361.38</td>
</tr>
</tbody>
</table>

The production of resorcinol and **2.9** (Figure 2.13) gives further evidence that is consistent with the reversible opening and fragmentation of the resorcinarenes in acidic media.$^{2.30}$ Also, in acidic media, the addition of water at the methine carbon of **2.5** (R=Ar, n=0, m=0) followed by elimination has been described as an intermediate step in the synthesis of xanthenes.$^{2.33}$ By reducing thermolysis time to 2 h better conversion to xanthene **2.4a** from **2.3b** was accomplished. The 1H NMR spectrum (DMSO-d_6) of the crude reaction mixture clearly shows a doublet at 7.65 ppm characteristic of **2.4a** with

![Figure 2.13](image-url)
Figure 2.13 2,4-dihydroxyacetophenone (**2.9**) formed upon oxidation of a DMSO solution of **2.3b**.
improved S/N compared to the 28 h experiment (vide supra). Resonances centered at 5.26, 6.49 and 6.60 ppm are also discernable, overlaying with the \(^1\)H NMR of an analytical sample\(^2,33\) of \(2.4a\). Since it is known that oxidation to xanthenes can be promoted by peroxides and acid,\(^2,33,2,34\) heating a solution of \(2.3b\) (50 mg, 0.203 mmol), \(\text{H}_2\text{SO}_4\) (0.15 mL) and \(\text{K}_2\text{S}_2\text{O}_8\) (1.0 mg) in 1.5 mL MeOH at reflux for 2 h produces the most significant conversion (4 % yield) of \(2.3b\) to \(2.4a\) observed to date (Figure 2.14).\(^2,35\)

![Figure 2.14](image)

Figure 2.14 \(^1\)H NMR of the products of oxidation of \(2.3b\) showing the formation of \(2.4a\) (as its tautomer).

It has now been demonstrated that an oxidative acid catalyzed mechanism is responsible for xanthene formation in solutions containing resorcinarene macrocycles (Scheme 2.1). The \(\text{O}_2\)-induced radical decomposition of DMSO leads to strong acid formation *in situ*. The acid catalyzes a reverse condensation reaction to afford acyclic oligomers. The acyclic oligomers undergo oxidation also via the action of acid and peroxide to form xanthenes.
2.6 Interaction of Boronic Acid with Saccharides

The color of xanthene dyes are due to the ionization state of the C-6 hydroxyl functionality.2.21 It is known that boronic acid-appended dyes can produce color changes in the presence of saccharides.2.36 Importantly, when saccharides form cyclic boronates the Lewis acidity of boron is enhanced.2.37 Upon saccharide binding, sp2 hybridized neutral boron is more readily converted to an sp3 hybridized anion via the addition of H\textsubscript{2}O or HO- as a fourth ligand (Figure 2.15). This change from a neutral, sp2 boronic acid to an sp3 hybridized anionic boronate-saccharide complex has been shown to be the cause of the spectral changes of boronic acid-appended chromophores upon saccharide binding.2.36, 2.37b We thus set out to determine whether the formation of sp3-hybridized sugar boronates occurs under our experimental conditions.

The complexation formation between 2.1 and D-fructose was investigated using 13C NMR spectroscopy in a 9:1 DMSO\textsubscript{d\text{6}}:D\textsubscript{2}O solvent system to see if the boronate-saccharide complex is formed and what kind of complexes are formed under our conditions. Isotopically labeled D-fructose-2-13C was employed to study complexation with 2.1. In the presence of 2.1 (40 mM), D-fructose-2-13C (1 equiv) in 9:1 DMSO\textsubscript{d\text{6}}:D\textsubscript{2}O exhibits several new 13C-2 resonances, which correspond to cyclic sugar boronic esters. The 13C chemical shifts are in agreement with the values obtained by Norrild for the analogous p-tolylboronic acid sugar complexes.2.38
Figure 2.15 Equilibria of boronic acid receptors upon binding to sugar.

Further proof that anionic sugar boronates are forming derives from 11B NMR spectroscopy. The 11B NMR chemical shifts of boronates change as a result of complexation with sugars due to differential electronic shielding of the 11B atom. An upfield shift of the 11B NMR signal accompanies the conversion of sp2-hybridized neutral species to sp3-hybridized boronate anions. At pH = 6.5, compound 2.1 (10 mM) 1:1 DMSO:H$_2$O (pH value refers to the buffered aqueous portion before mixing) exhibited a single broad resonance at -19.1 ppm which was assigned to the neutral sp2 hybridized boronic acid (2.10, Figure 2.15). At pH = 11.0, but in the presence of 0.5 equiv D-fructose, a new resonance appeared at -32.9 ppm which intensifies when the amount of D-fructose is increased to 5 equiv. The resonance at -32.9 ppm was thus assigned to D-fructose cyclic boronate anion 2.13. A solution of 2.1 (20 mM) in DMSO also exhibited a resonance at -32.9 ppm upon D-fructose (3 equiv) addition. The observation of the
resonance at –32.9 ppm corresponding to boronate 2.13 in DMSO is consistent with 13C NMR results.

The formation of the sugar boronate anion allows us to establish a mechanism for the sugar-induced color changes with our receptors. Anionic boronate formation, favored in the presence of sugars, leads to the diminished acidity of the C-6 hydroxyl.

![Figure 2.16](image)

Figure 2.16 Resonance forms of quinone moiety of xanthene.

One way to envision this is via examination of xanthene resonance forms 2.14 and 2.15 (Figure 2.16). Structure 2.15 possesses a more stable cation than 2.14, making the C-6 hydroxyl of 2.15 relatively less ionizable. Thus, the different binding affinities of the boronic acid for different sugars leads to different color changes observed.

2.7 Conclusion

Strong evidence has been presented that the color changes observed are due to the presence of xanthenes. It has been shown that the colored products existing in solutions of resorcinarene macrocycles can serve as colorimetric indicators. The major findings presented include the determination of the origin and structure of the active chromophore and elucidation of mechanisms associated with the solution color changes induced by saccharides.
Ongoing in our laboratory is the investigation of colorimetric and fluorimetric properties of resorcinarenes, xanthenes, and related chromophoric materials. Our direction is geared towards designing and synthesizing more powerful and selective receptors. We envision xanthenes dyes containing well-positioned boronic acid or related binding moieties should find application as powerful receptors for saccharides and other polar analytes such as carboxylates, and phosphates, and even amino acids.

Resorcinarenes, however, do offer potential advantages compared to functionalized dye materials. One advantage is their ease of synthesis in one step on a 200 g scale.2,4d Given that we have addressed many of the main mechanistic issues associated with the colorimetric sugar detection process, we are now also focusing on the study and optimization of important applied sensing parameters such as detection selectivity, sensitivity and reversibility in aqueous and biological media.

2.8 Experimental

General. Matrix Assisted Laser Desorption Ionization mass spectra were acquired using a Bruker Proflex III MALDI mass spectrometer with either anthracene or dithranol matrices. FT-IR spectra were recorded at room temperature on a Perkin-Elmer 1760X FT-IR spectrophotometer. UV-Visible spectra were recorded at room temperature on a Spectramax Plus (Molecular Devices). Analytical thin-layer chromatography (TLC) was performed using general-purpose silica gel on glass (Scientific Adsorbants). Flash chromatography columns were prepared with silica gel (Scientific Adsorbants, 32-63 µm particle size, 60Å). Analytic and preparative-scale HPLC were performed on a CM4000 multiple solvent delivery system (Milton Roy) and a Spectromonitor 5000 photodiode array detector (LDC Analytical) using a Dynamax 60Å C18 (21.4 mm ID x 25 cm L)
with a flow rate of 5 mL/min and a gradient of 50% water/MeOH to 100% MeOH in 20 min. unless otherwise stated. The following compounds were prepared according to literature methods: 2.1,2.14 2.2a,2.14 2.2b,2.5 2.3a,2.20 2.3b,2.30 and 2.4a.1.22 All other chemicals were purchased from Sigma or Aldrich and used without further purification. Proton NMR spectra were acquired in either CD$_3$OD, CH$_3$OD or DMSO-d_6 on a Bruker DPX-250, DPX-400, or AMX-500 spectrometer. All δ values are reported with (CH$_3$)$_4$Si at 0.00 ppm or DMSO at 2.45 ppm as references.

X-ray crystallographic data. Intensity data were collected on a Nonius Kappa CCD diffractometer equipped with MoKα radiation and a graphite monochromator. The sample was cooled to 120 K by an Oxford Cryosystems Cryostream chiller. Data collection parameters and crystallographic data are provided in Supporting Information. Absorption and decay effects were negligible. The structure was solved by direct methods, using SIR9730 and refined using SHELXL97.31 H atoms were observed in difference maps, but were constrained to be in idealized positions in the refinement. OH hydrogen atoms are all disordered into two sites, all of which were treated as half populated. O-H distances were constrained to be 0.84 Å, but otherwise, these H positions were refined.

Compound 2.7. To a 300 ml three neck round bottom flask, 4-dodecylresorcinol (2.00 g, 7.18 mmol), 4-formylphenylboronic acid (0.538 g, 3.59 mmol), and ethanol (30 ml) were added and stirred until clear. Concentrated HCl (15 ml) was added dropwise to the reaction mixture. The mixture was allowed to stir at room temperature under N$_2$ for 24 hours. The reaction mixture was neutralized with sodium bicarbonate, and filtered. Ethanol was removed in vacuo. The compound was extracted into ethyl acetate and the
solvent was removed in vacuo. The compound was purified by a solid-liquid extraction using DCM. That provided the filtered compound, (1.64g, 66%) as a lightish brown solid. m.p. >300°C; 1H NMR (250 MHz, DMSO-d$_6$) δ 1.31 (m, 46H), 2.25-2.29 (m, 4H), 5.83 (s, 1H), 6.29 (s, 2H), 6.36 (s, 2H), 6.89 (d, J = 7.9 Hz, 2H), 7.61 (d, J = 7.8 Hz, 2H), 7.84 (bs, 2H), 8.74 (s, 2H), 8.78 (s, 2H); 13C NMR (250 MHz, DMSO-d$_6$) δ 14.8, 23.0, 29.6, 29.7, 30.0, 30.1, 30.5, 32.2, 41.3, 103.1, 118.1, 121.5, 128.7, 131.8, 134.4, 149.1, 154.1; UV λ_{max} 465 nm (DMSO/H$_2$O); MALDI m/z calcd. for C$_{43}$H$_{65}$BO$_6$ 688.8 M$^+$, found 688.7 M$^+$; FT IR ν_{max}/cm$^{-1}$ (OH) 3461, (CH$_2$) 2925, (CH) 2854, (aromatic C=C) 1657, 1521, 1055, 1027, 1008.

Compound 2.8. Compound 2.7 (0.300 g, 0.448 mmol), 27 mL of DMSO, and 3 mL of water were added to a sealable tube. The mixture was heated to 220°C for five days. The reaction mixture was then cooled, filtered, and DMSO/H$_2$O was removed in vacuo. That provided the compound, (0.210 g, 72%) as a yellowish film-like substance. m.p. >300°C; 1H NMR (250 MHz, DMSO-d$_6$) δ 1.24 (s, 9H), 2.32 (m, 41H), 6.55 (s, 2H), 6.56 (s, 2H), 7.87 (d, J = 8.1 Hz, 2H), 7.99 (d, J = 8.0 Hz, 2H), 8.37 (s, 2H), 10.0 (s, 1H); 13C NMR (250 MHz, DMSO-d$_6$) δ 13.9, 14.3, 14.7, 22.1, 28.7, 29.0, 31.3, 59.7, 113.5, 115.5, 119.9, 128.3, 129.4, 134.5, 137.1, 151.4, 152.2, 193.5; UV λ_{max} 535 nm MALDI m/z calcd. for C$_{43}$H$_{61}$BO$_5$ 668.7 M$^+$, found 667.9 M$^+$.

Compound 2.7a. Compound 2.7 (0.300 g, 0.448 mmol), 27 mL of DMSO, and 3 mL of water were added to a sealable tube. The mixture was heated to 220°C for five days. The reaction mixture was then cooled, filtered, and DMSO/H$_2$O was removed in vacuo. Compound 2.7a, (0.200 g, 69%) was acquired as a yellowish film-like substance. X-ray
quality crystal of 4-formylphenylboronic acid were obtained upon slow recrystallization from 98:2 DCM:MeOH.

2.9 References

2.23 The energy-minimized structure was constructed by a colleague, Jorge Escoberdo.

2.26 The thermolysis of 2b in a 9:1 DMSO:H2O solution for 8h in the presence of O2 was done by a colleague, Rolanda Johnson.

2.31 In the previous work (reference 2.24), acyclic oligomeric products (2.3b and two stereoisomeric trimeric compounds, three resorcinol rings, 2.5, R=Me, m=1, n=0, Scheme 2.1) were isolated and characterized. Higher order acyclic oligomers (e.g., pentamers and hexamers) were also observed as major reaction products. Methyl 1H NMR resonances, appearing as several doublets between 0.7 and 2.0 ppm (CH$_3$OD) that corresponded to neither 2.3b, 2.5 (R=Me, m=1, n=0), or resorcinarene macrocycles, thus were assigned to acyclics with five or more resorcinol moieties.

2.32 Flash column chromatography and TLC analysis of the thermolysis products of 2.2b were complicated by the multiple product formation and fraction streaking.

2.35 A colleague, KyuKwang Kim, produced 2.35 2.4a by subjecting 2.3b to thermolysis using H$_2$SO$_4$ and K$_2$S$_2$O$_4$ in MeOH for 2 h.

CHAPTER 3

SYNTHESIS AND CHARACTERIZATION OF A NEW RHODAMINE-DERIVED BORONIC ACID RECEPTOR FOR THE DETECTION OF SACCHARIDES VIA HPLC POST-COLUMN

3.1 Introduction

This was a collaborative project with other members of my research group. My personal contribution to this project involved:

3.1.1 Optimizing the synthesis of the rhodamine boronic acid receptor

3.1.2 Developing an HPLC method for isolation of rhodamine boronic acid receptor

3.1.2 Providing characterization data

3.2 Background

The structural diversity of carbohydrates has caused great difficulty in analytical detection, hence, their analysis by HPLC is very useful. Carbohydrates generally cannot be detected by absorption in the visible and ultraviolet regions or by fluorescence, because of their lack of chromophores or fluorophores. The detection of specific saccharides could aid in the monitoring of disease. For example, high intake of D-fructose, is associated with several diseases, such as hypertriglyceridaemia, and atherosclerosis. There has been a high demand for efficient, reliable, and inexpensive techniques for carbohydrate detection. In general, the working ranges of some known methods require high pH values, greater than pH 9, in aqueous media. They can be detected by measuring refractivity, but this method is not sensitive enough to detect samples of less than 10 nmol and, in addition, this method can be affected considerably
by changes in column temperature and solvent composition. Due to this, the refractivity detection is usually limited to isocratic chromatography. Ultraviolet detection operated below 210 nm limits solvent choice and requires ultra pure solvents. Mass spectrometry, coupled with chromatographic separations, requires specialized, expensive equipment. Evaporative light scattering detection (ELSD) has attracted great recent attention for the chromatographic detection of carbohydrates; however, molecules with a lower MW range that have the potential to evaporate along with the mobile phase may require advanced detector design. Buffer choice is also limited to only a few salts due to evaporation with the mobile phase. The system also requires relatively high maintenance.

Much effort has been made to develop methods for the colorimetric or fluorometric detection of carbohydrates. Carbohydrates may be derivatized with chromophores or fluorophores prior to separation; however, this procedure can hamper separation by the addition of compounds with inherently similar properties. Thus post-column derivatization systems have attracted great attention in carbohydrate analysis. Detection systems based on a specific post-column reaction of sugars were the first ones used in the automated liquid chromatography of these compounds. Nevertheless, these detection systems based on the use of strong acid are difficult to handle, required a specially designed acid-resistant reagent delivery and detection system, caused excessive peak broadening and are incompatible with some solvents for separations such as acetonitrile. Recently, the development of much milder reactions with fluorogens have been reported.
The reagents currently used in post-column derivatization are typically selective for a family of compounds (for instance, aldoses, ketoses, uronic acids, aminosugars, etc.). The reactions are irreversible. The use of more selective synthetic chromogenic and/or fluorogenic receptors as post-column detection agents could significantly improve the analysis of a component of interest. Furthermore, if binding is via non- or reversible covalent interactions, recovery of expensive or rare biomolecules should be possible.

Presented herein is the synthesis of a new rhodamine-derived boronic acid 3.1 (Figure 3.1), which is used as a post-column derivatization agent in an automated HPLC method for the detection of mono- and oligosaccharides.

![Figure 3.1](image_url)
Figure 3.1 Compound 3.1.

3.3 Synthesis and Isolation of Receptor Compound

Boronic acids have been known for over one century since Michaelis and Becker first synthesized phenylboronic acid in 1880. It wasn’t until 1959 that Lorand and Edwards published a quantitative evaluation of the interaction between boronic acid and saccharides. They discovered based on formation constants that phenylboronic acid is selective towards fructose over glucose. Phenylboronic acid forms a strong and reversible covalent bonding interaction with saccharide even in aqueous media. Due to this, increasing interest in saccharide recognition by phenylboronic acid has intensified.
Previous saccharide receptors formed hydrogen bonding interactions with saccharides which limits the choice of solvent media. Shinkai and James have both carried out numerous interesting studies utilizing phenylboronic acid towards saccharides.

It has been proposed by Wuff and confirmed by Shinkai that having an intramolecular nitrogen-boron interaction can lower the pseudo pK_a of the boronic acid and therefore allows for strong binding of saccharides at lower pH including neutral pH values. Rhodamines are among one of the oldest known synthetic dyes and show excellent molar absorptivity ($\sim 10^5$ L mol$^{-1}$ cm$^{-1}$) in the visible region of the spectrum. These properties allow rhodamines to be used as fluorescent markers for microscopic studies and the detection of specific nucleic acid sequences as photosensitizers and laser dyes. The nitrogen of the amino groups of the rhodamine, influences the absorption, which could also be utilized to promote boron-nitrogen intramolecular interaction. Based on this, compound 3.1 was synthesized (Scheme 3.1).

\[\begin{array}{c}
\text{Rhodamine 110} \\
\text{1. } \text{NaBH}_4, \text{MeOH} \\
\text{2. } \text{NaBH}_4, \text{MeOH} \\
\text{85\%} \\
\end{array} \]

\[\begin{array}{c}
\text{3.1} \\
\end{array} \]

Scheme 3.1 Synthesis of rhodamine-derived boronic acid receptor.

The synthesis of compound 3.1 was carried out by condensing rhodamine 110 with 2-phenylboronic acid, followed by reduction with NaBH$_4$ in MeOH. This dye proved typically difficult to isolate and characterize. However, I was able to optimize the
synthesis by implementing a different protocol. I also developed a HPLC method for the isolation and characterization of compound 3.1. Thus, by preparative scale HPLC, I obtained an analytically pure sample for sensing work and characterization data including MS and 1H NMR.

3.4 Design of a Post-Column Reactor System

A schematic of the HPLC post-column derivatization system used in our laboratory is shown in Figure 3.2. After injection, the saccharides move into a carbohydrate column to be separated prior to derivatization by way of a delivery pump. Compound 3.1 is delivered from the reagent reservoir via pressurized gas. Both saccharide and receptor meet at the mixing tee. Following this the mixture moves into the reactor where they react, forming chromophoric species. Each of the separated

![Diagram of post-column chromatographic set-up](image)

Figure 3.2 Diagram of our post-column chromatographic set-up.
saccharides is converted into detectable derivatives. This is done by the continuous process of mixing the flow of reagent solution followed by reaction for an appropriate length of time at a suitable temperature. The mixed effluent is then passed through the reaction tube. The reaction species formed are then successively led to the detector (commonly used UV-Vis) and finally, the data is outputted onto the computer.

This process is naturally automatic, since separated carbohydrates and reagent are supplied in steady streams and the products formed after reaction in the combined stream are transported to a detector cell.

3.5 Results and Discussion

Compound 3.1 showed selectivity for fructose over glucose in solution. (Figure 3.3). Fructose is an important, common energy source and a sweetener metabolized at a high rate in animals and humans. Thus, proper determination of the level of D-fructose in humans (and animals) requires better methods of analysis. For example, excess glucose

![Graph](image)

Figure 3.3 RBA = 1.645 \times 10^{-5} \text{ M}, 0.16 \text{ M}, \text{pH} \text{ 9.5 carbonate buffer in a mixture of 1:2 ratio of methanol and H}_2\text{O, the final concentration of fructose was} \text{ 8.33 \times 10^{-4} M.}
(100-fold) in plasma impedes the reliable determination of low levels of D-fructose.3,15

However, we can monitor mixtures of D-glucose and D-fructose via automated post-column HPLC detection in the presence of compound 3.13,16 As a result, mixtures of D-glucose and D-fructose were injected at different ratios. When a mixture of 20 µg of each sugar with compound 3.1 was injected, D-fructose (LOD: 2.3 x 10-6g) exhibited a higher response compared with D-glucose (LOD: 7.1 x 10-6g). Also, in the presence of a 100-fold excess of D-glucose a peak can be seen for D-fructose (Figure 3.4). This emphasizes the advantage of this method over other methods.

\textbf{Figure 3.4} Top: chromatogram of a 1:1 mixture of D-fructose (r.t. = 10.0 min) and D-glucose (r.t. = 12.0 min, 20.0 µg). Bottom: chromatogram of a mixture of D-fructose (4.5 µg) in the presence of a 100-fold excess of D-glucose.
We are also able to detect oligosaccharides using the HPLC post-column method. Oligosaccharides are much more difficult to detect than monosaccharides. The classical color tests for monosaccharides fail to directly detect oligosaccharides containing more than three residues.3.17 Current oligosaccharide colorimetric HPLC detection methods typically require prior complete hydrolysis to monosaccharides or pre-column covalent attachment to a chromophore.3.18

We have developed a method which allows us to generate strong colorimetric responses for larger oligosaccharides. This method is based on our recent report of boronic acid functionalized dyes exhibiting binding constants for the linear maltodextrins series that increases with increasing molecular weight.3.19 These findings has been used to employ a new colorimetric HPLC detection method for oligosaccharides. Using similar conditions as used for the monosaccharides mentioned, mixtures of maltotriose and maltohexaose (80 µg) were monitored via HPLC post-column (Figure 3.5).

![Figure 3.5 Chromatogram of a 1:1 mixture of maltohexaose and maltotriose (80 µg).](image-url)
3.6 Conclusion

In conclusion, I have presented the synthesis of a new boronic acid dye 3.1 and confirmed its use as a detection agent for saccharides in an automated post-column HPLC system. The selectivity of 3.1 for fructose can advance fructose monitoring in the presence of a large excess of glucose. The affinity of 3.1 for oligosaccharides allows for colorimetric monitoring upon their chromatographic elution. The synthesis and properties of chromophoric and fluorophoric synthetic receptors are currently being investigated in our laboratory. We are considering to explore the fluorescent properties of 3.1 that may lead to much better limits of detection and to use this compound in biological samples.

3.7 Experimental

General. Matrix Assisted Laser Desorption Ionization mass spectra were acquired using a Bruker Proflex III FAB mass spectrometer with glycerol matrix. UV-Visible spectra were recorded at room temperature on a Spectramax Plus (Molecular Devices). HPLC experiments were performed on a CM4000 multiple solvent delivery system (LDC/Milton Roy) and a SpectroMonitor 3100 UV-vis detector (LDC/Milton Roy) using an Alltech 700CH carbohydrate column (6.5 mm ID x 30 cm L) with a flow rate of 0.5 mL/min at a constant temperature of 85 °C. The column is maintained at constant temperature using a CH-30 column heater (Eppendorf).

The post-column detection system consisted of a Helium Cylinder connected to a Timberline® RDR-1 Reagent Delivery/Reaction Module. The RDR-1 unit contains a pressurized reagent reservoir, a mixing tee, and a thermostated reaction block with a Teflon® reaction coil (0.02 in. I.D. x 1 m L) with a nominal volume of 0.2 mL. The HPLC
column was attached to the RDR-1. The RDR-1 was attached to a SpectroMonitor 3100 UV-vis detector (LDC/Milton Roy). The temperature of the reaction block to 50 °C and absorbance is monitored at 560 nm.

Compound 3.1 Rhodamine 110 (0.1 g, 0.27 mmol) and 2-formylphenylboronic acid (0.082 g, 0.54 mmol) were mixed in absolute EtOH (20 ml) and toluene (3.1 ml). A Dean and Stark trap was fitted to permit the azeotropic removal of water, and the reaction mixture was heated at reflux overnight (18-24 hrs). After cooling, the solvent was removed in vacuo to afford a yellow oil. NaBH₄ (0.041 g, 1.08 mmol, 4 equiv.) was added over 5 min to dry MeOH (25 ml). The reaction was left to stir at room temperature for 2 hr, and poured into ice-water (10 ml) where a small amount of saturated NaHCO₃ was added. The aqueous solution was extracted into CH₂Cl₂ (3 x 50 ml). The solvent was removed in vacuo to afford (0.13g, 81%) of product in the aqueous layer. To obtain an analytical standard, further purification was executed by using HPLC, C₁₈ column (70/30 MeOH/H₂O to 100 MeOH in 30 min), Tᵣ = 33.6 min; ¹H NMR (300 MHz, DMSO-d₆) δ 4.53 (s, 4 H), 6.74-6.86 (m, 4 H), 7.11-7.23 (m, 8 H), 7.58-7.63 (m, 2 H), 8.05 (d, J = 7.2 Hz, 2 H), 8.54 (s, 2 H). ¹³C NMR (500 MHz, DMSO-d₆) δ 22.07, 28.66, 28.95, 46.45, 97.17, 105.85, 114.91, 118.83, 122.48, 124.05, 124.33, 125.24, 126.38, 128.13, 128.83, 129.73, 150.87, 152.33, 154.98, 168.87; uv λₘₐₓ 545 nm FAB-MS m/z (glycerol matrix) calcd for C₃₄H₂₈B₂N₂O₇ 598.22 M⁺, found 710.1 [M + 2 C₂H₆O₂ – 4 H₂O]⁺.
3.8 References

3.2 Honda, S. Analytical Biochemistry 1984, 140, 1.

3.14 Rhodamine-derived boronic acid was first synthesized by K.K. Kim.

3.16 The reagent solution was prepared by dissolving 3.1 in 0.05M buffer (pH=10.5, carbonates). The reagent was introduced at a flow rate of 0.5 mL/min and the reactor temperature was kept at 50 °C. The mobile phase is 100 % deionized H2O. Mixtures of D-glucose and D-fructose were injected at various ratios. We observed the best response for D-fructose (LOD = 2.3 µg) even in a 100-fold excess of D-glucose (LOD = 7.1 µg).

CHAPTER 4

SYNTHESIS, CHARACTERIZATION AND STUDY OF A NOVEL FLUORESCIN DERIVED PHOSPHONIC ACID DYE FOR THE DETECTION OF VARIOUS COMPOUNDS VIA METAL COMPLEXATION

4.1 Introduction

This was a collaborative project with another member of my research group. My personal contribution to this project involved:

4.1.1 Design and synthesis of a fluorescein diphosphonate (FDP)

4.1.2 Developing an HPLC method for isolation and providing characterization data

4.1.2 Determining stoichiometry of FDP-metal complex

4.1.3 Monitoring various compounds using the FDP-metal complex

4.2 Background

Remarkable effort has been devoted to the design of saccharide receptors.4.1 Great effort has been made towards the development of new sensing techniques for visual detection of various bioanalytes. Simple methods for detecting and monitoring saccharides are of vast importance to medical diagnostics and industry. A current challenge in this area is the fabrication of readily accessible, stable artificial receptors that promote fast, sensitive and selective detection.4.2 Such materials could lead to improved indicators relative to degradable enzyme-based systems or to those requiring complex and expensive syntheses or instrumentation. The design of artificial receptors that bind strongly and selectively to carbohydrates continues to be a very active area in bioorganic chemistry.4.3
Numerous systems for the optical detection of anions and neutral molecules have been reported.\(^4\) However, selective systems are relatively rare and a wider range of application is needed. Fluorescein based indicators are well known as reagents for determination of inorganic pH, anions, drugs and food additives.\(^5\) The big advantage of fluorescein dyes is that many are soluble in aqueous media and shows great molar absorptivity \((\varepsilon)\) in the visible region of the spectrum. Also, various fluorescein indicators have long been utilized towards numerous analytical applications.

Fluorescein dyes can also be used as signaling units for artificial receptors. Their ability to form complexes with many metals is of great interest. These complexes can be easily monitored by UV-Vis or fluorescent spectroscopy. It is a well known fact, that receptor-metal complexes are widespread in the nature. Numerous membrane receptors in living cells, enzymes, lectins or oxygen transferring proteins contain certain metal cations in their binding sites.

Phosphates and phosphonates represents a group of compounds with interesting binding properties, where the these groups play a vital role as they are known to be strong hydrogen bond donors/acceptors.\(^6\) Several examples of synthetic receptors containing P=O groups have been published in connection with sugar recognition.\(^6\) Receptors containing phophonate groups have been used for sensing of numerous compounds via the formation of non-covalent complexes.\(^6,\) They are also known to act as chelators and are able to form strong complexes with different metals.\(^8\)

Based on this we proposed that a fluorescein based phosphonic acid receptor would easily form a binary complex with different metas and can be used for the detection of certain analytes. Presented herein are the binding and complexation studies
between 4.4 with different metals in buffer aqueous solution to reveal binding and signaling in the presence of saccharides, amino acid and other organic and inorganic anions.

4.3 Synthesis of Fluorescein Diphosphonate

![Image of compound 4.4]

Figure 4.1 Compound 4.4.

Based on our previous knowledge with xanthene dyes, I designed and synthesized a fluorescein diphosphonate (FDP, 4.4) for the purpose of molecular recognition of saccharides. I chose a phosphonate derivative as the basis of the design because such derivatives are known to remain anionic over a wider range of pH than carboxylates (pK$_a$ \approx 1.8, 6.7 compared to \approx 4.8 for carboxylates)4,9

The synthesis of 4.4 begins with an Arbuzov reaction. This involves treatment of 4',5'-bis(bromomethyl)fluorescein dibenzoate, 4.14,10 with P(OEt)$_3$ to afford compound 4.2 as a yellow oil. An X-ray quality crystal of 4.2 was also obtained (Appendix D). Hydrolysis of compound 4.2 with TMSBr yields compound 4.3. This is followed by saponification of compound 4.3 to give the desired compound, 4.4. An analytically pure sample of 4.4 was obtained via HPLC isolation to supply characterization data such as MS, 1H and 31P NMR (Appendix D).
4.1 Synthesis of fluorescein-derived phosphonic acid dye.

4.4 Results and Discussion

In our experiments seven metals were examined. These metal ions are known for their ability to form complexes with different biomolecules. All complexation studies were carried out in 0.1M of HEPES buffer pH 7.5. Job plots completed for the different binary dye-metal complexes indicates various stoichiometries. The results showed that the complexes formed are of the 1:1 and 2:1 type ratio (Appendix E). A simple screening assay was carried out utilizing 14 different analytes. This screening involved adding equimolar amount of the analyte to a solution of corresponding 4.4-metal complex in buffer (final concentration of the dye-metal complex and analyte was 1.1x10^{-4} mol/L). Formation of the chromogenic ternary complexes was monitored by UV-Vis spectroscopy and quantitatively estimated.
Figure 4.2 illustrates graphically the selectivity profile of 4.4-metal complexes towards the series of the analytes. Control experiments demonstrated only negligible absorbance changes during interaction of free 4.4 with mentioned analytes. We observed a significant selectivity for cyanide anion with 4.4-Bi(III) and 4.4-Ni(II) complexes. Complex 4.4-Zn(II) exhibits an affinity for different types of amino acids, D-glucose and D-fructose, complex 4.4-Fe(III) for citrate and tartrate, and complex 4.4-Cu(II) for D-fructose and L-hystidine. Complexes 4.4-Co(II) and 4.4-Mn(II) however, demonstrate

![Figure 4.2](image_url)
significant interaction with just about all the various groups of analytes but, without expressed tendency to bind specifically certain analyte.

The binding of saccharides, anions and amino acids to the 4.4-metal complex is not yet fully understood. However, it is believed to occur via ternary complex formation in the presence of buffer. We observe a non-boronic acid based selectivity for fructose with certain of these complexes.

4.5 Conclusion

I have synthesized a new fluorescein derived phosphonic acid dye, 4.4 which has potential application for detecting various bioanalytes via metal complexation. The advantages of our detection technique are the simplicity and non-tedious preparation of the complex and experiments with mild buffered conditions. The latter is important due to competition of buffer components with analytes for binding of the receptor. The binding properties of these dye-metal complexes are currently being investigated in our laboratory.

The future direction of this work is guided towards determining the structure of 4.4-metal complex, which will be done by \(^{31}\)P NMR and related studies. This will enable us to then propose a mechanism by which binding occurs by molecular modeling.

4.6 Experimental

General. Matrix Assisted Laser Desorption Ionization mass spectra were acquired using a Bruker Proflex III MALDI mass spectrometer with either anthracene or dithranol matrices. UV-Visible spectra were recorded at room temperature on a Spectramax Plus (Molecular Devices). Analytical thin-layer chromatography (TLC) was
performed using general-purpose silica gel on glass (Scientific Adsorbants). Flash chromatography columns were prepared with silica gel (Scientific Adsorbants, 32-63 µm particle size, 60Å). Preparative-scale HPLC were performed on a CM4000 multiple solvent delivery system (Milton Roy) and a Spectromonitor 5000 photodiode array detector (LDC Analytical) using a Dynamax 60Å C18 (21.4 mm ID x 25 cm L) with a flow rate of 5 mL/min.

Compound 4.2. To a 50ml round bottom flask 4’5’-bis(bromomethyl)fluorescein dibenzoate, 4.1 (3.00 g, 4.13 mmol) and excess P(OEt)₃ (10 ml, 49.56 mmol) were added. The reaction mixture was allowed to stir for 3 h at 100 °C. A yellow oil was isolated after solvent removal. Flash chromatography on silica gel (98/2 EtOAc/MeOH or 70/30 ETOAc/hexanes) yielded the product (2.99 g, 86%) as a goldish yellow oil. TLC R_f = 0.46 (100 % EtOAc). ¹H NMR (250 MHz, CDCl₃) δ 1.12-1.38 (m, 20 H), 3.73-3.88 (m, 4 H), 6.79 (dd, J = 2.5 Hz, 2.6 Hz 2 H), 7.06 (d, J = 8.7 Hz, 2 H), 7.27 (d, J = 5.0 Hz, 1 H), 7.50 (t, J = 8.2 Hz, 4 H), 7.61-7.72 (m, 4 H), 8.05 (d, J = 7.2 Hz, 1 H), 8.25 (d, J = 8.4 Hz, 4 H); ¹³C NMR (250 MHz, CDCl₃) δ 16.69, 22.24, 24.49, 30.10, 62.16, 62.55, 62.79, 63.99, 64.09, 82.71, 114.48, 116.80, 119.07, 124.72, 125.68, 126.82, 127.18, 129.33, 130.63, 134.30, 135.72, 150.54, 151.05, 152.91, 164.49, 169.53; ³¹PNMR (250 MHz, CDCl₃) δ 26.7; MALDI m/z (anthracene matrix) calcd for C₄₄H₄₂O₁₃P₂ 840.74 M⁺, found 841.73 M⁺.

Compound 4.3. To a dried round bottom flask (2.99 g, 3.56 mmol) of compound 4.2, and 40 ml of anhydrous DCM was added via syringe. The mixture was allowed to stir until 4.2 were completely dissolved. Excess amount of distilled TMSBr (2.82 ml, 21.34 mmol) was then added. The reaction mixture was allowed to stir at room temperature for
2 h. H₂O was then added with continued stirring. The solvent was removed in vacuo after 30 minutes. This provided the product (2.57 g, 98%) as a yellow solid. \(^1\)H NMR (250 MHz, CDCl₃) \(\delta\) 3.41–3.58 (m, 4 H), 6.67 (d, \(J = 7.95\) Hz, 2 H), 6.97 (d, \(J = 8.73\) Hz 2 H), 7.25 (d, \(J = 11.1\) Hz, 2 H), 7.47 (t, \(J = 10.9\) Hz, 4 H), 7.57-7.67 (m, 2 H), 8.01 (d, \(J = 7.42\) Hz, 2 H), 8.34 (d, \(J = 7.20\) Hz, 4 H); \(^{13}\)C NMR (250 MHz, CDCl₃) \(\delta\) 7.83, 16.93, 61.73, 82.63, 116.46, 166.55, 120.00, 124.72, 126.27, 126.97, 129.58, 129.80, 130.87, 131.50, 135.02, 137.00, 149.94, 150.83, 150.93, 153.28, 164.63, 169.44; \(^{31}\)P NMR (250 MHz, DMSO-d₆) \(\delta\) 17.3; MALDI m/z (dithranol matrix) calcd for C₃₆H₂₆O₁₃P₂ 728.53 M⁺, found 729.69 M⁺.

Compound 4.4. 4.3 was suspended in alcoholic sodium hydroxide (5%, 12 ml) and the mixture was kept at room temperature for 2 hr with occasional slow stirring. The reddish solution was poured into water and neutralized with HCl to give an orange solution. The solvent was removed in vacuo to yield quantitatively compound 4.4 (1.20 g) as a reddish solid. To obtain an analytically pure sample, 4.4 was purified by HPLC (50/50 H₂O/CH₃CN to 100% CH₃CN in 40 min, \(T_r = 14.52\) min). \(^1\)H NMR (250 MHz, D₂O-d) \(\delta\) 3.30-3.50 (m, 4 H), 6.80 (d, \(J = 9.3\) z, 2 H), 7.22 (d, \(J = 9.2\) Hz, 2 H), 7.38 (d, \(J = 8.5\) Hz, 1 H), 7.47-7.52 (m, 1 H), 7.66 (t, \(J = 7.1\) Hz, 1 H), 7.86-7.89 (m, 1H); \(^{13}\)C NMR (250 MHz, D₂O-d) \(\delta\) 24.74, 26.46, 111.91, 116.12, 120.74, 131.53, 132.55, 133.24, 136.54, 136.78, 137.94, 155.53, 170.47, 175.43, 176.42; \(^{31}\)P NMR (250 MHz, D₂O-d) \(\delta\) 21.9; uv \(\lambda_{max} = 470\) nm (DMSO/H₂O); MALDI m/z (NBA matrix) calcd for C₂₂H₁₈O₁₁P₂ 520.32 M⁺, found 520.9 M⁺.
4.7 References

CHAPTER 5

OPTICAL DETECTION OF L-CYSTEINE AND L-HOMOCYSTEINE VIA A FLUORESCEIN DERIVATIVE

5.1 Introduction

This was a collaborative project with another member of my research group. My personal contribution to this project involved:

5.1.1 Synthesis of fluorescein derivative

5.1.2 Execution of 1H NMR experiments

5.2 Background

Naturally occurring thiols exhibit a variety of structures as well as physiological properties that are of great concern to public health. The detection of low molecular weight biological thiols is of great importance for diagnosing and understanding disease states. The amino acid L-homocysteine (Hcy, 5.1), for instance, has been attracting significant recent attention. It has been shown that elevated amounts of homocysteine in blood plasma is a risk factor associated with serious disorders such as Cardiovascular5.1 and Alzheimer’s disease.5.2 Cysteine (Cys, 5.2) can be obtained as the final product of the transulfuration pathway through homocysteine metabolism (Figure 5.1). Like homocysteine and other thiols, cysteine can dimerize through disulfide bond formation. Poor water solubility of the disulfide cystine reduces its excretion. It therefore accumulates either in urine, leading to cystinuria5.3 or in various organs of the body, forming for example kidney stones.5.4 Also low levels of cysteine are associated
with slowed growth, hair depigmentation, edema, lethargy, liver damage, muscle and fat loss, skin lesions and weakness.4,5

\begin{center}
\begin{tabular}{cc}
\textbf{5.1} & \textbf{5.2} \\
\end{tabular}
\end{center}

General Detection Methods: Due to the risk associated with Hcy, there is a significant need for improved methods for biological thiol detection. There are various detection methods, which mainly include chromatographic separations, immuno- and enzymatic assays, electrochemical, and mass spectrometric technology. Each of these methods contains intrinsic limitations. These restrictions include interference from oxidizable impurities,5,6 toxicity, and poor stability. Also some of these methods require long run times,5,7 tedious procedures and high operating temperatures.5,8 Of course these limitations are due to the fact that thiols are extremely difficult to work with. Firstly, thiols are readily prone to oxidation. They are mostly found in either homodisulfide or mixed disulfide forms. Many have similar structures and are typically colorless and non-fluorescent in the visible region.

Derivatization of Thiols using Chromophores or Fluorophores: Derivatization of thiols are based on chromophores or fluorophores, which can be non-selective and/or unstable.5,9 Figure 5.1 contains several representative compounds sold by Molecular Probes for the detection of thiols. They often contain electrophilic alkylating groups for reaction with sulfhydryl moieties and include iodoacetamides,5,10 maleimides,5,11 and monobromobimanes (mBrB).5,12 Most of these compounds are thiol selective. However, the main drawback is a lack of selectivity among the thiols. In addition, other
interferences are of concern, such as the reaction of iodoacetamides with histidine, tyrosine and methionine.5,13

\textbf{Figure 5.1} Representative known thiol derivatizing agents.

Sample preparation (thiol derivatization) conditions can also lead to problems5,14 such as removal of excess derivatization agents from reaction mixture, which can be a time consuming and complex effort. No adduct formation takes place at pH lower than 9.5,15 Other concerns include, the tendency of the derivatives to undergo unwanted reactions. For instance, the products of isothiocyanates with biological thiols undergo further reactions with neighboring amines to give thioureas.

Some thiol-chromophores/fluorophores derivatives are sensitive to light and hydrolysis. The OPA-Hcy adduct is stable only in dark.5,16 On the other hand, mBrB produces fluorescent hydrolysis products.5,17 Some derivatization agents themselves are prone to instability. For example, iodiacetamides are unstable to light5,18 and mBrB is known to be photosensitive and unstable in water.5,19 Thiol and sulfide quantitation kits are available. The procedure necessitates an enzymatic reaction to release the thiols followed by their determination by Ellman’s reagent. However, enzymes are expensive, and fragile which makes them very difficult to work with.
5.2.1 The Importance of Biological Thiols to Public Health

Homocysteine Metabolism: S-adenosylmethionine (SAM), the universal methylating agent, is synthesized from methionine and ATP (Scheme 5.1).5,20 SAM, which is used for one carbon metabolism produces S-adenosyl homocysteine (SAH) via methylation. This reaction is followed by the enzymatic hydrolysis of SAH by S-adenosyl homocysteine hydrolyase (SAHH) to afford adenosine and Hcy. At this point, a transsulfuration pathway leading from Hcy to Cys is initiated. The reaction of Hcy with serine via cystathionine-\(\beta\)-synthase (CBS), the vitamin B\(\text{VI}_6\)-dependent enzyme, affords

![Diagram of Homocysteine Metabolism](image)

Scheme 5.1 Homocysteine metabolism
cystathionine. Cystathionine is cleaved to form cysteine, which serves as a source of glutathione, sulfate and sulfite.5.20

Cystathionine synthesis is not the only fate of Hcy. Homocysteine can be methylated, released into the extracellular medium or deaminated.5.21 Hcy methylation to methionine can be carried out by methionine synthase in a folate dependent manner or via betaine homocysteine methylase.5.20

Hyperhomocysteinemia: Disruption in Hcy metabolism causes the export of Hcy from the cellular to the extracellular medium to become imbalanced. At lower Hcy cellular levels, export rates are elevated. More Hcy is then exported to plasma and urine as a result. Higher Hcy levels in plasma and urine are thus directly related to lower methionine synthase activity and folate or vitamin B\textsubscript{12} deficiency. The condition where the concentration of Hcy in plasma exceeds 14 \(\mu\text{M}\)5.1, 5.2 is defined as hyperhomocysteinemia. Vitamin or folate therapy has thus been proposed to be useful for hyperhomocysteinemia-related disorders. The physiological effects of hyperhomocysteinemia can be depressed after diagnosis.

Homocysteine in Plasma: After being released into plasma, Hcy is found in several forms. The sum of all these forms is the plasma total homocysteine level. Approximately 99% of Hcy is bound via disulfide linkages to proteins, other Hcy molecules or thiols in plasma. Monomeric Hcy is only ca. 1% of total Hcy content of plasma.5.22

Oxidation to disulfides in plasma is coupled to \(O_2\) reduction, leading to oxidative stress. Reactive oxygen species (ROS) levels can be diminished by peroxidases.
Unfortunately, hyperhomocysteinemia appears to inhibit the expression of peroxidases.5,20

Nitric oxide (NO) released by endothelial cells can react with Hcy to furnish S-nitrosohomocysteine (SNOHO), which is a strong antiplatelet and vasodilator agent. The consequence of nitrosylation is the repression of peroxide production and therefore inhibition of ROS formation.5,23 Hcy cannot be effectively deactivated by this mechanism, when present at hyperhomocysteinemic levels.

Hcy is believed to lower NO availability upon nitrosylation.5,22 This is due to low-density lipoprotein oxidized by ROS suppresses endothelial nitric oxide synthase expression.5,24 NO is a neurotransmitter and involved in muscle relaxation5,25 and so, lowered NO availability should be listed among the physiological results of hyperhomocysteinemia. More importantly, Hcy impairs endothelial cell function in the absence of NO. Although the mechanism is not perfectly understood, it is believed that the direct action of homocysteine on endothelial cells could either involve enhanced oxidative stress or result from a direct effect of the oxidation products of homocysteine.

The impairment of endothelial cells by hyperhomocysteinemia is believed to be an origin of cardiovascular diseases. It is believed that Hcy switches their phenotype from anticoagulant to procoagulant. It has been reported that high homocysteine levels were detected in up to 20\% of people suffering from heart disease.5,23

Since blood vessels carry oxygen to the brain and heart brain damage could be caused by oxidative stress generated by hyperhomocysteinemia, and, in turn, Alzheimer’s disease. Increased risks of birth defects, and5,26-5,30 renal failure5,31 are other diseases also related to hyperhomocysteinemia. According to recent studies, the over expression of
glutathione peroxidases is encountered in Alzheimer patients, linking the disease to oxidative stress in the brain. Additionally, elevated levels of plasma homocysteine have been detected under the same conditions. Further evidence for the role of oxidative stress is that antioxidant supplement delays the Alzheimer's-related complications.

Glutathione: In addition to disulfide formation, pollutants, UV radiation and other sources such as mitochondria oxidative phosphorylation can cause oxidative stress by generating ROS such as superoxide, hydrogen peroxide (H$_2$O$_2$), hydroxyl radical (OH$^•$) and peroxynitrite (ONOO$^-$). Under oxidative stress conditions, macromolecular lipids, nucleic acids, and proteins can be oxidized. Cells are more readily protected against this threat by native antioxidant molecules and enzymes$^{5,32, 5,33}$ thus avoiding oxidative stress.

Glutathione is the most abundant intracellular non-protein thiol compound. Glutathione dependent peroxidases couple its disulfide-forming reactions with the reduction of H$_2$O$_2$. The overall reaction catalyzed by peroxidases is used to reduce peroxides to water to prevent free radical formation. This process is the origin of the antioxidant properties of GSH.5,34

GSH also plays a critical role in the recycling of other antioxidants such as vitamins C and E. Glutathione depletion thus leaves cells exposed to oxidative stress. For instance, GSH is known to be the primary defense mechanism of the lung.5,35 Pulmonary diseases can be caused from cases of low GSH concentrations, where the lung become susceptible to oxidative stress originating from the inhalation of pure oxygen, airborne toxins, and oxygen radicals produced by lung phagocytes. Similarly, oxidative stress has been shown to occur at every stage of AIDS.5,36 Researchers have shown that patients
with elevated levels of GSH have a greater chance of life extension than HIV-infected individuals with lower GSH levels.

5.3 Synthesis of Fluorescein Dialdehyde Derivative

![Figure 5.2 Compound 5.6.](image)

The synthesis of the fluorescein dialdehyde derivative 5.6 (Figure 5.2), was recently describe in the literature. Based on our work with xanthene dyes we became interested in compound 5.6. The aldehyde moieties incorporated in compound 5.6 are very reactive and can be used as potential receptor or as a building block. I was able to synthesize 5.6 with several modifications to the literature procedure. The synthesis begins by condensing 2-methyresorcinol with phthalic anhydride via the Lewis acid ZnCl2 to afford compound 5.3. The intermediate 5.3 wasn’t previously isolated however, is isolated here as a red solid by using aqueous HCl (6M).

![Scheme 5.2 Synthesis of intermediate compound 5.4.](image)
This is followed by the protection of compound 5.3 with benzoic anhydride in pyridine. This provided compound 5.4 as a white crystalline solid after recrystallization using 4:1 toluene/EtOH (Scheme 5.2).

Compound 5.4 is brominated by means of 1,3-dibromo-5,5-dimethylhydantoin in C₆H₅Cl to afford compound 5.5 (appendix). Compound 5.5 then undergoes oxidation via DMSO followed by work-up with aqueous HCl (2M). Purification by column chromatography yields compound 5.6 (Scheme 5.3).

Scheme 5.3 Synthesis of compound 5.6 from 5.4.

5.4 Results and Discussion

Our initial interest in compound 5.6 was derived from the interference of cysteine with known sialic acid determination.⁵,³⁸ The colorometric properties of 5.6 have not been previously investigated. It was employed as an intermediate towards the synthesis of a fluorescent sensor for zinc.⁵,³⁷

Scheme 5.4 Reaction of cysteine with aldehydes to form thiazolidines.
It is known that the selective reaction of \textit{N}-terminal cysteine with aldehydes to form thiazolidines has been used to label and immobilize proteins and peptides5,39 (Scheme 5.4).

We reasoned that the reaction of the aldehyde moieties of 5.6 with Cys and Hcy would promote colorometric and fluorometric responses, which would be easily monitored. The use of the xanthene dye 5.6 for the efficient detection of Cysy and Hcy is presented herein. The methodology also shows promise towards the direct and simultaneous determination of both Cys and Hcy.

Scheme 5.5 Reaction of 5.6 with L-cysteine 5.2. Reaction conditions: 0.25 \textit{M} Na$_2$CO$_3$ buffer pH 9.5, followed by precipitation with MeOH.

The formation of thiazolidinic acids 5.7 and 5.8 were observed upon the reaction of 5.6 with Cys (Scheme 5.5) and Hcy (Scheme 5.6) in buffered solution. The mechanism of this process begins with initial formation of an imine (Schiff base)
Scheme 5.6 Reaction of 5.6 with L-cysteine 5.1. Reaction conditions: 0.25 M Na₂CO₃ buffer pH 9.5, followed by precipitation with MeOH.

with subsequent cyclization into thiazolidinic acids. The thiazolidine derivatives formed were monitored by Uv-vis spectroscopy, ¹H NMR, and confirmed by MALDI TOF MS. I performed some proton NMR experiments in D₂O, using glucosamine hydrochloride and propylamine (1:2 ratio of 5.6 to analyte), which showed formation of Schiff base without cyclization. As a result diminishing aldehyde resonances are also observed at 10.2 ppm of 5.6 and the appearance of new resonances at 9.6 ppm of the Schiff base are observed. When 5.1 and 5.2 are added to solutions of 5.6, Schiff base resonances are also observed at 9.6 ppm and disappears over time (5 min). This corresponds to the initial decrease of absorbance by UV-vis spectra. New resonances fixed at 6.13 ppm and 6.04 ppm appear, and we’ve assigned them to the methine protons of the thiazolidine diastereomers 5.7 and 5.8 respectively. It is evident from a 1:1 ratio of the integral areas of the new methine protons to the chromophore aromatic proton peaks that complete conversion to the bisthiazolidines 5.7 and 5.8 occurred. This was confirmed by the complete disappearance
Figure 5.3 Top: color changes of solutions of 5.6 and various analytes. A = no analyte, B = L-cysteine, C = L-homocysteine, D = bovine serum albumin, E = L-glycine and F = n-propylamine. Bottom: co-spots of 5.6 (1.0 x 10^-3 M) with and without various analytes (1.0 x 10^-3 M) under visible and UV light.

of the starting aldehydes and intermediate Schiff base peaks. By UV-vis spectra, this corresponds to the shift in wavelength and increase in absorbance.

The visual detection of L-cysteine and L-homocysteine is seen shown below. When Cys or Hcy (1.0 x 10^-3 M) is added to a solution of 5.6 (1.0 x 10^-6 M), in H2O at pH 9.5 using

Figure 5.4 Left: Absorption spectra of dialdehyde (2.5 x 10^-6 M) and L-cysteine (4 x 10^-6 M – 8 x 10^-5 M) in H2O, pH 9.5, rt, 5 min. Right: Interaction of the 5.6 (4 x 10^-6 M) and Cys (4.9 x 10^-5 to 7.4 x 10^-4 M) in deproteinized human blood plasma containing 5.0 mM glutathione at room temperature. Detection limit is 4 x 10^-5 M.
Na₂CO₃ buffer, a solution color change is observed from bright yellow to brownish-orange. However, no significant color changes were observed, with the use of a commonly used protein, amino acid, and amine at the same concentrations. Similar effects are observed on C₁₈-bonded silica (Figure 5.3).

Figure 5.4 illustrates UV-Vis characteristic absorbance changes of cysteine-5.6 solutions. This solution was readily monitored in the cysteine concentration range of 10⁻⁵-10⁻⁶ M. A decrease in absorbance at 480 nm followed by a 25 nm red shift to 505 nm with an increase in absorbance⁵ ⁴⁰ was displayed. This was also done using Csy in a sample commercial human blood plasma (previously centrifuged at 3000 g through a cellulose 3000 MW cut-off filter), containing 5.6 and excess glutathione (1 mM). This resulted in concentration-dependent spectrophotometric changes (Figure 5.4). It shows use of 5.6 for calibration and determination of concentrations of aminothiols in plasma samples in the presence of other biological thiols. Addition of L-cysteine to solutions of 5.6 results in fluorescence quenching (Figure 5.5).

![Figure 5.5](image-url)
Figure 5.6 Absorbance vs. concentration plots for L-cysteine ▲ and L-homocysteine ○ in aqueous solutions of dialdehyde \((2.5 \times 10^{-6} \text{ M})\) at pH 9.5.

Solutions of 5.6 containing identical concentrations of 5.1 and 5.2 exhibit similar spectrophotometric changes (Figure 5.6). An initial characteristic decrease in absorbance

Figure 5.7 Successive addition of L-serine (to final concentrations of \(4 \times 10^{-5} \text{ M}\) to \(8 \times 10^{-4} \text{ M}\)) to an aqueous solution of dialdehyde \((2.5 \times 10^{-6} \text{ M})\) at pH 9.5 results only in an absorbance change at 480 nm. Addition of L-cysteine (to final concentrations of \(4 \times 10^{-6} \text{ M} - 8 \times 10^{-5} \text{ M}\)) to the L-serine-dialdehyde solution produces an absorbance change at 505 nm.
is observed at 480 nm, this is followed by a 25 nm red shift to 505 nm with an increase in absorbance. The selectivity of 5.6 and other common thiols (L-methionine, mercaptoethanol, glutathione), other amino acid (L-glutamine, L-serine, L-glycine, L-glutamic acid), and amines (D-glucosamine hydrochloride and n-propylamine (8 x 10^{-4} M, pH 9.5). Only a 15% decrease in absorbance at 480 nm is observed in response to the analytes mentioned above. No wavelength shift is viewed (Figure 5.7). Another control experiment using solutions containing 5.6 and bovine serum albumin or urease also show signs of only small absorbance decrease and no wavelength shift.

We have begun to study methods, which might allow for the direct colorimetric discrimination between L-cysteine and L-homocystiene. It is known that photooxidation of cysteine-derived thiazolidines leads to fragmentation of the heterocycle.5,41 We are uninformed of any further studies, of those describing homocysteine-derived

![Figure 5.8](image)

Figure 5.8 Black: UV-Vis spectra of solutions of 5.8 (1.25 x 10^{-5} M) after irradiation for 10, 15, and 20 min in aqueous solutions at pH 9.5. Colored: UV-Vis spectra of solutions of 5.7 (1.25 x 10^{-5} M) after irradiation for 10, 15, and 20 min in aqueous solutions at pH 9.5.
thiazolidines. We reasoned that the homocysteine-derived thiazolidine (5.8) might be more stable to photolysis than the cysteine-derived thiazolidine (5.7). As a result 5.7 was exposed (1 x 10^{-5} \ M, \ H_2O, \ pH \ 9.5) to a visible light source (100 W) for 10, 15 and 20 min. This showed an absorbance change at 505 nm. On the contrary, aqueous solutions of 5.8 showed no significant absorbance change when monitored at 10, 15, and 20 min (Figure 5.8)

The selectivity for the L-cysteine-derived thiazolidine 5.7 (1.0 x 10^{-3} \ M) is also seen in a human blood plasma, which has been centrifuged as described above. When 5.7 or 5.8 in plasma is exposed to visible light, time-dependent spectrophotometric responses at 500 nm result for plasma containing 5.8 and relatively minor responses for 5.7 (Appendix G). In contrast, a decrease in absorbance at 500 nm for the homocysteine-derived thiazolidine 5.8 was observed when solutions of 3:2 CH_{3}CN:H_{2}O, containing either 5.7 or 5.8 (1 x 10^{-3} \ M) was irradiated for 25 min with visible light. No changes in absorbance were observed for the solutions containing cysteine-derived thiazolidine 5.7. Significantly, there is a clear selectivity observed for 5.8 in plasma when treated with CH_{3}CN.5.42,5.43

5.5 Conclusion

We have shown that compound 5.6 can be used to readily detect L-cysteine and L-homocysteine in the range of their physiological level. This is done with negligible interference from amines, amino acids, and certain thiols and proteins. Exposure of the thiazolidines derived from L-cysteine and L-homocysteine with a visible light, leads to absorbance changes only for the cysteine-derived thiazolidine. This may allow for the
instant detection of L-cysteine and L-homocysteine. We are currently exploring and optimizing new methods for the selective detection of L-cysteine and L-homocysteine.

5.6 Experimental

General. Matrix Assisted Laser Desorption Ionization mass spectra were acquired using a Bruker Proflex III MALDI mass spectrometer with either anthracene or dithranol matrices. UV-Visible spectra were recorded at room temperature on a Spectramax Plus (Molecular Devices). Analytical thin-layer chromatography (TLC) was performed using general-purpose silica gel on glass (Scientific Adsorbants). Flash chromatography columns were prepared with silica gel (Scientific Adsorbants, 32-63 µm particle size, 60Å). The following compounds were prepared according to literature methods: 5.4,5.37 5.5,5.37 and 5.6,5.37 All other chemicals were purchased from Sigma or Aldrich and used without further purification. Proton NMR spectra were acquired in either CD3OD, CH3OD or DMSO-d6 on a Bruker DPX-250, DPX-400, or AMX-500 spectrometer. All δ values are reported with (CH3)4Si at 0.00 ppm or DMSO at 2.45 ppm as references.

X-ray crystallographic data. Intensity data were collected on a Nonius Kappa CCD diffractometer equipped with MoKα radiation and a graphite monochromator. The sample was cooled to 120 K by an Oxford Cryosystems Cryostream chiller.

Compound 5.3 Phthalic anhydride (16.7 g, 113 mmol) and 2-methylresorcinol (24.9 g, 201 mmol) were crushed and melted into a brown liquid at 150 °C. Fused ZnCl2 (15 g, 110 mmol) was added slowly over 35 min, and the temperature was slowly increased to 230 °C over 30 min until the material solidified. The brick red solid was pulverized and boiled in 400 mL of 6 M HCl for 30 min. The red solid was collected on a frit, washed thoroughly with distilled water, and dried in vacuo overnight to afford (26g, 63%). 1H
NMR (DMSO-d$_6$, 250 MHz) δ 2.27 (s, 6 H), 6.38 (d, $J = 8.6$ Hz, 2 H), 6.61 (d, $J = 8.6$ Hz, 2 H), 7.25 (d, $J = 7.4$ Hz, 1 H), 7.66-7.81 (m, 2 H), 7.97 (d, $J = 7.3$ Hz, 1 H), 8.91 (s, 1 H), 8.93 (s, 1 H). 13C NMR (DMSO-d$_6$, 250 MHz) δ 10.40, 111.88, 112.90, 113.70, 126.44, 126.84, 127.41, 128.57, 129.30, 132.02, 137.32, 152.39, 159.51, 170.64. MALDI m/z (anthracene matrix) calcd for C$_{22}$H$_{16}$O$_5$, 360.10 M$^+$, found 360.00 M$^+$.

Compound 5.7 Compound 5.6 (0.020 g, 0.0514 mmol) and cysteine (15 eq, 0.0934 g, 0.771 mmol) were added to a vial along with D$_2$O (1.5 mL), and NaOD (2 drops). The reaction mixture was allowed to stir overnight to yield the product as an orange sediment. 1H NMR (D$_2$O, 250 MHz) δ 3.09 (t, $J = 9.8$ Hz, 2 H), 3.73-3.78 (m, 4 H), 6.13 (s, 1 H), 6.14 (s, 1 H), 6.46 (d, $J = 9.4$ Hz, 2 H), 7.02 (d, $J = 9.4$ Hz, 2 H), 7.15 (d, $J = 6.6$ Hz, 1 H), 7.43-7.54 (m, 2 H), 7.68 (d, $J = 6.7$ Hz, 1 H). MALDI TOF MS, calcd for C$_{28}$H$_{21}$N$_2$O$_9$S$_2$Na (M+Na)$^+$ 618.61, found 618.42.

Compound 5.8 Compound 5.6 (0.020 g, 0.0514 mmol) and cysteine (15 eq, 0.1042 g, 0.771 mmol) were added to a vial along with D$_2$O (1.5 mL), and NaOD (2 drops). The reaction mixture was allowed to stir overnight to yield the product as an orange sediment. 1H NMR (D$_2$O, 250 MHz) δ 2.15-2.20 (m, 4 H), 2.68 (t, $J = 7.6$ Hz, 4 H), 3.00-3.06 (m, 4 H), 6.02 (s, 1 H), 6.06 (s, 1 H), 6.52 (d, $J = 9.4$ Hz, 2 H), 7.05 (d, $J = 9.4$ Hz, 2 H), 7.21 (d, $J = 6.6$ Hz, 1 H), 7.52-7.55 (m, 2 H); 7.74 (d, $J = 6.0$ Hz, 1 H). FAB MS, calcd for C$_{30}$H$_{25}$N$_2$O$_9$S$_2$Na (M+Na)$^+$ 646.66, found 646.80.

5.7 References

We obtained analogous absorption spectra under identical conditions but at pH 6.5; however, we observe minor amounts of precipitate.

CHAPTER 6

SYNTHESIS, ISOLATION, AND CHARACTERIZATION OF VARIOUS CHROMOPHORIC RECEPTORS FOR MULTIPLE FUNCTIONS

6.1 Introduction

This chapter features work that has been accomplished in our laboratory, a summary of several novel receptors I synthesized, their significance, and the future direction of the Strongin research group.

6.2 Background

In 1872 von Baeyer studied the condensation of benzaldehyde and resorcinol. He found that a red-colored product was formed which changed color to violet in the presence of base. We have recently reported that resorcinarene receptors (Figures 6.1 and 6.2) synthesized in our laboratories afford the most versatile color sensing of specific saccharides observed to date. In this paper we reported that resorcinarenes, upon oxidation develop color due to the formation of xanthenes. We have also reported progress towards the selective, colorimetric and fluorimetric differentiation between L-cysteine and L-homocysteine within range of their levels in plasma.

Most sugars and biological thiols are a very challenging class of compounds to analyze due to their similarity in structure. A visual sensing test for specific saccharides and thiols should allow for improved monitoring of disease states as well as the products of fermentation processes. Our preliminary studies indicate that this fundamentally new methodology could potentially have broad applicability. The exceptional color responses
to saccharides are sensitive to variations in receptor structure and experimental parameters. We can optimize both host structure and experimental conditions6.1,6.2 in an effort to visually sense a variety of biologically significant molecules.

Figure 6.1 Resorcinarene colorimetric sensor.

Figure 6.2 Other resorcinol-based colorimetric sensors.

6.3 Synthesis of Model Resorcinol-Base Receptors

During our investigation toward elucidating the mechanism of color formation in resorcinarene solutions, we explored the synthesis of several triaryl compounds. We
reported that heating resorcinol and phenylboronic acid alone or as a mixture in the presence of added sugars did not produce dramatic solution colors observed with 6.1.6,3 To broaden the scope of the sensing process with a simple receptor, compound 6.3 was synthesized, and was found to afford vivid solution color changes.6,3 Based on this, I synthesized several resorcinol-based model compounds, which incorporates a variety of functional groups, with and without boronic acids.

Scheme 6.1 depicts the synthesis of the triaryl tripod, 6.4. The synthesis involves the condensation of dodecyl resorcinol with benzaldehyde in EtOH and HCl to afford compound 6.4. 1H NMR, MS, and X-ray confirmed this compound (Appendix H).

\begin{scheme}
\begin{center}
\begin{tikzpicture}
 \node [draw] (a) {\(\text{HO-CH-CH-CH-CH} \quad + \quad \text{HO-CH-CH-CH-CH} \quad \rightarrow \quad \text{HO-CH-CH-CH-CH} \quad \)};
 \node at (a) [left] {\text{EtOH, HCl}};
 \node at (a) [below] {\text{24 h, rt}};
 \node at (a) [below] {\text{66\%}};
\end{tikzpicture}
\end{center}
\caption{Synthesis of dodecyl tripod.}
\end{scheme}

\textbf{Scheme 6.1} Synthesis of dodecyl tripod.

Scheme 6.2 illustrates the synthesis of another triaryl tripod that embodies a bromine-containing substructure. This involves the condensation of 4-bromoresorcinol

\begin{scheme}
\begin{center}
\begin{tikzpicture}
 \node [draw] (a) {\(\text{HO-CH-CH-CH-CH} \quad + \quad \text{HO-CH-CH-CH-CH} \quad \rightarrow \quad \text{HO-CH-CH-CH-CH} \quad \)};
 \node at (a) [left] {\text{EtOH, HCl}};
 \node at (a) [below] {\text{3 h, 70\degree C}};
 \node at (a) [below] {\text{80\%}};
\end{tikzpicture}
\end{center}
\caption{Synthesis of bromine tripod.}
\end{scheme}

\textbf{Scheme 6.2} Synthesis of bromine tripod.
with benzaldehyde in EtOH and HCl to afford compound 6.5. Compound 6.5 was confirmed by 1H NMR, MS, and X-ray crystal (Appendix I).

6.4 Synthesis of Fluorescein-Derived Tetraamine

Based on our work accomplished in chapter 5 with amino thiols, L-cysteine and L-homocysteine, we sought to optimize our detection method by synthesizing and studying several new dyes based on the fluorescein framework.

I was able to synthesize a fluorescein-derived tetraamine dye (TAF). The synthesis involves the condensation of the fluorescein-dialdehyde (5.6)6,6 with N,N,N’-trimethyl-1,3-propanediamine (C$_6$N$_2$H$_{14}$) in DCE. This is followed by reductive amination using NaBH(OAc)$_3$ to afford compound 6.6 after work-up. Confirmation of this compound was provided by 1H NMR and MS (Appendix J).

![Scheme 6.3 Synthesis of tetraamino fluorescein (TAF).](image)

6.5 Results and Discussion

Sialic acids generally occupy the terminal sites of glycoproteins, glycopeptides, and glycolipids. Free sialic acid also appears in biological fluids. An increase in the levels of both soluble and cellular sialic acid can be a marker for cancer diagnosis.6,7 The
most prevalent and significant sialic acid is \textit{N}-acetylneuramic acid.6,7 The function of sialic acids in gangliosides is presently not completely understood. Sialic acids appear to be essential to the biological effects of gangliosides, as the amphiphilic donor of negative charge to the cell surface.6,8 A simple and rapid method for the determination of sialic acid using commercial xanthene dye may be possible.6,3

Based on preliminary results, it appears that our resorcinol-based sensor \textbf{6.3} could potentially serve as a selective color-sensing agent for sialic acid (Figure 6.3). Compound \textbf{2.7}6,9, \textbf{6.4}, and \textbf{6.5}, have been utilized as model compounds towards the detection of sialic acid.

\begin{center}
\textbf{Figure 6.3} Binding between \textbf{6.3} and sialic acid. Conditions: 9:1 DMSO/H\textsubscript{2}O, 260 mM HEPES buffer, pH 7.4.
\end{center}

As a result of intensive research, it was discovered that compounds \textbf{2.7} and \textbf{6.4} were not suitable model compounds due to the non-polarity of the long chain functionalities. Compound \textbf{2.7} will bind sialic acid, however the reproducibility of the experiment is very poor. The problem stems from crystal-like particles, which appears after stirring for several minutes. It is believed to be a factor of the interaction between
the hydrocarbon chain and the solvent. To date an efficient solvent system hasn’t been achieved. On the other hand, compound 6.4 does not bind sialic acid. Compound 6.5 however was found to be a suitable model compound to be used as a control for compound 6.3 (Figure 6.4).

Figure 6.4 Binding of 6.5 and sialic acid. Conditions: 9:1 DMSO/H$_2$O, 260 mM HEPES buffer, pH 7.4.

The color is very similar to that of the compound 6.3. However, no significant spectral responses were observed. This confirmed that the boronic acid is the key factor involved in the binding between dye and sialic acid.

Compound 6.6, was synthesized to be utilized as a chelating agent with various inorganic metals. This may exhibit different absorbance or fluorescent degrees of selectivity for specific biological analytes. To date, five metals were examined. The complexation studies done were carried out in 0.1 M of HEPES buffer pH 7.5. Job plots for the different binary 6.6-metal complexes reveals a range of stoichiometry (Appendix J). A screening of six different analytes was executed. This screening involved adding
Figure 6.5 UV-Vis absorbance changes ($\lambda = 490$nm) of 6.6-metal complexes in the presence of several saccharides, amino acids and anions.

An equimolar amount of the analyte to a solution of corresponding 6.6-metal complex buffer (final concentration of the dye-metal complex and analyte was 1.1×10^{-4} mol/L). Formation of the ternary complexes was monitored by UV-Vis spectroscopy and quantitatively estimated.

Figure 6.5 displays graphically the selectivity profile for 6.6-metal complexes with the series of analytes. Control experiments demonstrate negligible absorbance responses during interaction of free 6.6 with mentioned analytes. We observe a strong significant selectivity for L-cysteine with 6.6-Co(II), and a smaller interaction with L-histidine, D-glucose, D-fructose and hydrophosphate. Complex 6.6-Cu(II), 6.6-Zn(II), 6.6-Mn(II), and 6.6-La(I) all display an affinity for D-glucose, and D-fructose.
6.6 Conclusion and Future Work

Based on the promising results obtained with compound 6.3 and 6.4 in the first attempts; the optimization of the conditions for the selective detection of sialic acid in gangliosides, with our receptor, 6.3, is presently being investigated.

I have presented the synthesis of a new tetraamino fluorescein dye, 6.6 which show potential application towards the detection of amino acids and anions via metal complexation. The fluorescent properties of compound 6.6 are currently being investigated in our laboratory. Our efforts are now guided towards synthesizing a library of dyes, based on the fluorescein chromophore, which will allow us to detect a variety of specific thiols. These compounds will be used to chelate different metals in an effort to enhance selectivity with saccharides, amino acids and anions.

6.7 Experimental

General. Matrix Assisted Laser Desorption Ionization mass spectra were acquired using a Bruker Proflex III MALDI mass spectrometer with either anthracene or dithranol matrices. FT-IR spectra were recorded at room temperature on a Perkin-Elmer 1760X FT-IR spectrophotometer. UV-Visible spectra were recorded at room temperature on a Spectramax Plus (Molecular Devices). Analytical thin-layer chromatography (TLC) was performed using general-purpose silica gel on glass (Scientific Adsorbants). Flash chromatography columns were prepared with silica gel (Scientific Adsorbants, 32-63 µm particle size, 60Å).

Compound 6.4. To a 100 ml three neck round bottom flask, 4-dodecylresorcinol (2.00 g, 7.18 mmol), benzaldehyde (0.365 ml, 3.59 mmol), and ethanol (30 ml) were added and stirred until clear. Concentrated HCl (15 ml) was added dropwise to the reaction mixture.
The mixture was allowed to stir at room temperature under N₂ for 24 hours. The reaction mixture was neutralized with sodium bicarbonate, and filtered. EtOH was evaporated and the compound was extracted into ethyl acetate to afford crude product (1.48 g, 66%). Flash chromatography on silica gel (85:10:5 DCM:EtOAc:MeOH) yielded the compound, as a dark brown solid. m.p. >300°C; ¹H NMR (250 MHz, DMSO-d₆) δ 1.13-1.35 (m, 46 H), 1.98-2.00 (m, 4, H), 5.81 (s, 1H), 6.27 (s, 2 H), 6.33 (s, 2 H), 6.91 (d, J = 7.2 Hz, 2 H), 7.06-7.16 (m, 3 H), 8.73 (s, 1 H), 8.77 (s, 1 H). ¹³C NMR (250 MHz, (DMSO-d₆) δ 15.9, 16.7, 22.8, 24.1, 30.0, 31.6, 33.4, 61.8, 104.3, 119.6, 122.7, 126.9, 129.5, 130.7, 132.9, 148.1, 154.9, 155.3, 158.2, 158.8, 159.0, 172.4. MALDI m/z (anthracene matrix) calcd for C₄₃H₆₄O₄ 644.9 M⁺, found 644.80 M⁺

Compound 6.5 To a 100ml three neck round bottom flask, 4-bromoresorcinol (3.00 g, 15.9 mmol), benzaldehyde (0.807 ml, 7.94 mmol), and ethanol (30 ml) were added and stirred until clear. Concentrated HCl (15 ml) was added dropwise to the mixture. The reaction mixture was allowed to stir at room temperature under N₂ for 24 h. Ethanol was removed in vacuo. This was followed by neutralization with aqueous saturated sodium bicarbonate. The compound was extracted into ethyl acetate and the solvent was evaporated. Flash chromatography on silica gel (75:25 EtOAc:hexanes - 100% EtOAc) afforded the product (2.96 g, 80%) as a brown solid. m.p. > 300°C; ¹H NMR (250 MHz, DMSO-d₆) δ 5.72 (s, 1 H), 6.51 (s, 2 H), 6.55 (s, 2 H), 6.97 (d, J = 6.0 Hz, 2 H), 7.19-7.29 (m, 3 H), 9.51 (s, 2 H), 9.95 (s, 2 H); ¹³C NMR (250 MHz, (DMSO-d₆) δ 16.1, 22.9, 43.8, 61.8, 99.4, 105.6, 125.2, 130.1, 130.7, 134.3, 145.7, 154.8, 156.9; uv λmax 533 nm, (DMSO/H₂O); FAB-MS (glycerol matrix) calcd for C₁₉H₁₄Br₂O₄ 466.12 M⁺, found 467.6 M⁺.
Compound 6.6. 4’5’-fluorescein-dicarboxaldehyde (200 mg, 0.514 mmol) and acetic acid (0.119 ml, 2.11 mmol) were combined in 1,2-dichloroethane (30 ml), and stirred. To the resulting solution, N, N, N’-trimethyl-1,3-propanediamine (0.158 ml, 1.08 mmol) in DCE (20 ml) was added dropwise and stirred overnight. Sodium triacetoxyborohydride (0.229 g, 1.08 mmol) was added and the reaction mixture was stirred for 12 h at room temperature. The reaction was chilled to 0 °C and H2O was added to solution with stirring. The aqueous layer was extracted with CH2Cl2, and the aqueous layer was evaporated to give the product (0.28 g, 93%) as an orange solid after solvent removal. 1H NMR (250 MHz, CD3OD-d4) δ 1.91-1.95 (m, 4 H), 2.40-2.44 (m, 6 H), 2.56-2.66 (m, 12 H), 2.88-3.05 (m, 8 H), 4.12 (s, 4 H), 6.60 (d, J = 9.3 Hz, 2 H), 7.09 (d, J = 9.2 Hz, 2 H), 7.23 (d, J = 5.0 Hz, 1 H), 7.60-7.63 (m, 2 H), 8.06 (d, J = 5.0 Hz, 1 H); 13C NMR (250 MHz, CD3OD-d4) δ 21.4, 22.4, 23.2, 32.6, 43.1, 43.2, 51.2, 55.4, 57.4, 61.7, 108.2, 109.9, 111.4, 112.0, 116.9, 121.6, 129.3, 129.5, 129.6, 130.1, 130.9, 131.4, 135.2, 138.9, 145.1, 149.6, 154.1, 156.0, 156.5, 157.0, 166.6, 172.6, 177.6, 179.2; ESI m/z calcd for C34H42O5N2 588.33 M+, found 589.17 M+.

6.8 References

6.6 Compound 5.6 was synthesize according to procedure in chapter 5, scheme 5.2.

6.9 Compound 2.7 was synthesized according to procedure in chapter 2, scheme 2.2.
APPENDIX A: CHARACTERIZATION DATA FOR COMPOUND 2.7

Figure A.1. 1H NMR of compound 2.7

Figure A.2. MALDI MS of compound 2.7
APPENDIX B: CRYSTALLOGRAPHIC DATA FOR COMPOUND 2.7a AND 1H NMR OF COMPOUND 2.7b.

Figure B.1. Crystal structure of compound 2.7a

Table B.1. CIF data for compound 2.7a

<table>
<thead>
<tr>
<th>_chemical_name_systematic</th>
<th>; 4-formylphenylboronic acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>_chemical_name_common</td>
<td>?</td>
</tr>
<tr>
<td>_chemical_melting_point</td>
<td>?</td>
</tr>
<tr>
<td>_chemical_compound_source</td>
<td>'local laboratory'</td>
</tr>
<tr>
<td>_chemical_formula_moiet</td>
<td>'C7 H7 B O3'</td>
</tr>
<tr>
<td>_chemical_formula_sum</td>
<td>'C7 H7 B O3'</td>
</tr>
<tr>
<td>_chemical_formula_weight</td>
<td>149.94</td>
</tr>
</tbody>
</table>

loop_

_atom_type_symbol
_atom_type_description
_atom_type_scat_dispersion_real
_atom_type_scat_dispersion_imag
_atom_type_scat_source
'C' 'C' 0.0033 0.0016
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
'H' 'H' 0.0000 0.0000
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
CRYSTAL DATA

_symmetry_space_group_name_H-M 'C c
_symmetry_cell_setting 'Monoclinic'

loop_
_symmetry_equiv_pos_as_xyz
'x, y, z'
'x, -y, z+1/2'
'x+1/2, y+1/2, z'
'x+1/2, -y+1/2, z+1/2'

_cell_length_a 11.1238(3)
_cell_length_b 9.8718(3)
_cell_length_c 7.1988(2)
_cell_angle_alpha 90
_cell_angle_beta 119.071(2)
_cell_angle_gamma 90
_cell_volume 690.92(3)
_cell_formula_units_Z 4
_cell_measurement_temperature 120
_cell_measurement_reflns_used 1107
_cell_measurement_theta_min 2.5
_cell_measurement_theta_max 32.0
_exptl_crystal_description 'lath fragment'
_exptl_crystal_colour colorless
_exptl_crystal_size_max 0.37
_exptl_crystal_size_mid 0.25
_exptl_crystal_size_min 0.22
_exptl_crystal_density_meas ?
_exptl_crystal_density_diffrn 1.441
_exptl_crystal_density_method 'not measured'
_exptl_crystal_F_000 312
_exptl_absorpt_coefficient_mu 0.109
_exptl_absorpt_correction_type none
_exptl_absorpt_correction_T_min ?
_exptl_absorpt_correction_T_max ?
_exptl_absorpt_process_details ?
EXPERIMENTAL DATA

_diffrn_ambient_temperature 120
_diffrn_radiation_wavelength 0.71073
_diffrn_radiation_type MoKα
_diffrn_radiation_source 'fine-focus sealed tube'
_diffrn_radiation_monochromator graphite
_diffrn_measurement_device 'KappaCCD (with Oxford Cryostream)'
_diffrn_measurement_method '/w scans with /k offsets'
_diffrn_detector_area_resol_mean ?
_diffrn_standards_number 0
_diffrn_standards_interval_count ?
_diffrn_standards_interval_time ?
_diffrn_standards_decay_% <1
_diffrn_reflns_number 4518
_diffrn_reflns_av_R_equivalents 0.021
_diffrn_reflns_av_sigmaI/netI 0.0289
_diffrn_reflns_limit_h_min -15
_diffrn_reflns_limit_h_max 16
_diffrn_reflns_limit_k_min -14
_diffrn_reflns_limit_k_max 14
_diffrn_reflns_limit_l_min -10
_diffrn_reflns_limit_l_max 10
_diffrn_reflns_theta_min 2.5
_diffrn_reflns_theta_max 32.0
_reflns_number_total 1192
_reflns_number_gt 1110
_reflns_threshold_expression I>2σ(I)

_computing_data_collection 'COLLECT (Nonius, 2000)'
_computing_data_reduction 'Denzo and Scalepack (Otwinowski & Minor, 1997)'
_computing_cell_refinement 'Denzo and Scalepack (Otwinowski & Minor, 1997)'
_computing_structure_solution 'SIR97 (Altomare, et al., 1999)'
_computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)'
_computing_molecular_graphics 'ORTEP-3 (Farrugia, 1997)'
_computing_publication_material 'SHELXL-97 (Sheldrick, 1997)'

REFINEMENT DATA

_refine_special_details
;
Refinement of F^2^ against ALL reflections. The weighted R-factor wR and
goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>refine_ls_structure_factor_coef</td>
<td>Fsqd</td>
</tr>
<tr>
<td>refine_ls_matrix_type</td>
<td>full</td>
</tr>
<tr>
<td>refine_ls_weighting_scheme</td>
<td>calc</td>
</tr>
<tr>
<td>refine_ls_weighting_details</td>
<td>'calc w=1/[s^2^(Fo^2^)+(0.0689P)^2^+0.1001P] where P=(Fo^2^+2Fc^2^)/3'</td>
</tr>
<tr>
<td>atom_sites_solution_primary</td>
<td>direct</td>
</tr>
<tr>
<td>atom_sites_solution_secondary</td>
<td>difmap</td>
</tr>
<tr>
<td>atom_sites_solution_hydrogens</td>
<td>geom</td>
</tr>
<tr>
<td>refine_ls_hydrogen_treatment</td>
<td>mixed</td>
</tr>
<tr>
<td>refine_ls_extinction_method</td>
<td>none</td>
</tr>
<tr>
<td>refine_ls_extinction_coef</td>
<td>?</td>
</tr>
<tr>
<td>refine_ls_abs_structure_details</td>
<td>?</td>
</tr>
<tr>
<td>refine_ls_abs_structure_Flack</td>
<td>?</td>
</tr>
<tr>
<td>refine_ls_number_reflns</td>
<td>1192</td>
</tr>
<tr>
<td>refine_ls_number_parameters</td>
<td>106</td>
</tr>
<tr>
<td>refine_ls_number_restraints</td>
<td>2</td>
</tr>
<tr>
<td>refine_ls_R_factor_all</td>
<td>0.043</td>
</tr>
<tr>
<td>refine_ls_R_factor_gt</td>
<td>0.038</td>
</tr>
<tr>
<td>refine_ls_wR_factor_ref</td>
<td>0.104</td>
</tr>
<tr>
<td>refine_ls_wR_factor_gt</td>
<td>0.099</td>
</tr>
<tr>
<td>refine_ls_goodness_of_fit_ref</td>
<td>1.073</td>
</tr>
<tr>
<td>refine_ls_restrained_S_all</td>
<td>1.072</td>
</tr>
<tr>
<td>refine_ls_shift/su_max</td>
<td>0.000</td>
</tr>
<tr>
<td>refine_ls_shift/su_mean</td>
<td>0.000</td>
</tr>
</tbody>
</table>

ATOMIC COORDINATES AND THERMAL PARAMETERS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>atom_site_label</td>
<td></td>
</tr>
<tr>
<td>atom_site_type_symbol</td>
<td></td>
</tr>
<tr>
<td>atom_site_x</td>
<td></td>
</tr>
<tr>
<td>atom_site_y</td>
<td></td>
</tr>
<tr>
<td>atom_site_z</td>
<td></td>
</tr>
<tr>
<td>atom_site_U_iso_or_equiv</td>
<td></td>
</tr>
<tr>
<td>atom_site_adp_type</td>
<td></td>
</tr>
<tr>
<td>atom_site_occupancy</td>
<td></td>
</tr>
<tr>
<td>atom_site_symmetry_multiplicity</td>
<td></td>
</tr>
<tr>
<td>_atom_site_calc_flag</td>
<td>_atom_site_refinement_flags</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>O1 O 0.40379(15) 0.06712(11) 0.7216(3) 0.0272(3) Uani 1 1 d . . .</td>
<td>O2 O 0.37961(12) 0.79497(11) 0.6533(2) 0.0201(3) Uani 1 1 d . . .</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MOLECULAR GEOMETRY

loop

<table>
<thead>
<tr>
<th>_atom_site_aniso_label</th>
<th>_atom_site_aniso_U_11</th>
<th>_atom_site_aniso_U_22</th>
<th>_atom_site_aniso_U_33</th>
<th>_atom_site_aniso_U_23</th>
<th>_atom_site_aniso_U_13</th>
<th>_atom_site_aniso_U_12</th>
</tr>
</thead>
<tbody>
<tr>
<td>O1 0.0225(6) 0.0138(5)</td>
<td>0.0429(7) -0.0017(5)</td>
<td>0.0140(5) -0.0026(4)</td>
<td>0.0215(5) 0.0105(5)</td>
<td>0.0293(7) 0.0001(4)</td>
<td>0.0062(5) 0.0002(4)</td>
<td>0.0300(5) 0.0115(5)</td>
</tr>
<tr>
<td>O2 0.0149(5) 0.0105(5)</td>
<td>0.0293(7) 0.0001(4)</td>
<td>0.0062(5) 0.0002(4)</td>
<td>0.0300(5) 0.0115(5)</td>
<td>0.0105(5) 0.0293(7)</td>
<td>0.0001(4) 0.0062(5)</td>
<td>0.0002(4) 0.0300(5)</td>
</tr>
<tr>
<td>O3 0.0133(5) 0.0141(5)</td>
<td>0.0287(7) 0.0002(4)</td>
<td>0.0044(5) -0.0010(4)</td>
<td>0.0002(4) 0.0044(5)</td>
<td>0.0010(4) -0.0002(4)</td>
<td>0.0004(5) 0.0024(5)</td>
<td></td>
</tr>
<tr>
<td>B1 0.0148(5) 0.0125(6)</td>
<td>0.0075(5) -0.0001(8)</td>
<td>0.0064(4) -0.0008(7)</td>
<td>0.0012(5) 0.0075(6)</td>
<td>0.0001(8) -0.0064(4)</td>
<td>0.0008(7) -0.0012(5)</td>
<td>0.0001(8) -0.0064(4)</td>
</tr>
<tr>
<td>C1 0.0141(5) 0.0115(5)</td>
<td>0.0160(5) 0.0009(7)</td>
<td>0.0059(4) 0.0006(6)</td>
<td>0.0160(5) 0.0009(7)</td>
<td>0.0059(4) 0.0006(6)</td>
<td>0.0009(7) 0.0059(4)</td>
<td>0.0006(6) 0.0160(5)</td>
</tr>
<tr>
<td>C2 0.0139(7) 0.0149(6)</td>
<td>0.0195(7) -0.0005(6)</td>
<td>0.0071(6) -0.0016(5)</td>
<td>0.0195(7) -0.0005(6)</td>
<td>0.0071(6) -0.0016(5)</td>
<td>0.0005(6) 0.0195(7)</td>
<td>0.0071(6) -0.0016(5)</td>
</tr>
<tr>
<td>C3 0.0142(7) 0.0138(6)</td>
<td>0.0212(8) -0.0004(5)</td>
<td>0.0073(7) 0.0024(5)</td>
<td>0.0212(8) -0.0004(5)</td>
<td>0.0073(7) 0.0024(5)</td>
<td>0.0004(5) 0.0212(8)</td>
<td>0.0073(7) 0.0024(5)</td>
</tr>
<tr>
<td>C4 0.0168(5) 0.0118(5)</td>
<td>0.0193(5) -0.0007(7)</td>
<td>0.0079(4) -0.0004(6)</td>
<td>0.0193(5) -0.0007(7)</td>
<td>0.0079(4) -0.0004(6)</td>
<td>0.0007(7) 0.0193(5)</td>
<td>0.0079(4) -0.0004(6)</td>
</tr>
<tr>
<td>C5 0.0145(7) 0.0144(7)</td>
<td>0.0200(9) 0.0090(6)</td>
<td>0.0076(7) 0.0000(5)</td>
<td>0.0200(9) 0.0090(6)</td>
<td>0.0076(7) 0.0000(5)</td>
<td>0.0090(6) 0.0145(7)</td>
<td>0.0076(7) 0.0000(5)</td>
</tr>
<tr>
<td>C6 0.0140(7) 0.0137(6)</td>
<td>0.0188(8) 0.0000(6)</td>
<td>0.0068(6) -0.0005(5)</td>
<td>0.0188(8) 0.0000(6)</td>
<td>0.0068(6) -0.0005(5)</td>
<td>0.0000(6) 0.0140(7)</td>
<td>0.0068(6) -0.0005(5)</td>
</tr>
<tr>
<td>C7 0.0193(6) 0.0118(5)</td>
<td>0.0276(6) -0.0007(8)</td>
<td>0.0092(5) 0.0029(7)</td>
<td>0.0276(6) -0.0007(8)</td>
<td>0.0092(5) 0.0029(7)</td>
<td>0.0007(8) 0.0193(6)</td>
<td>0.0029(7) 0.0092(5)</td>
</tr>
</tbody>
</table>
_geom_special_details

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

loop_
 _geom_bond_atom_site_label_1
 _geom_bond_atom_site_label_2
 _geom_bond_distance
 _geom_bond_site_symmetry_2
 _geom_bond_publ_flag
O1 C7 1.222(2) . yes
O2 B1 1.370(2) . yes
O2 H2O 0.87(3) . ?
O3 B1 1.363(2) . yes
O3 H3O 0.83(3) . ?
B1 C1 1.5724(17) . yes
C1 C2 1.403(2) . ?
C1 C6 1.407(2) . ?
C2 C3 1.394(2) . ?
C2 H2 0.9500 . ?
C3 C4 1.398(3) . ?
C3 H3 0.9500 . ?
C4 C5 1.401(2) . ?
C4 C7 1.4740(17) . ?
C5 C6 1.392(2) . ?
C5 H5 0.9500 . ?
C6 H6 0.9500 . ?
C7 H7 0.9500 . ?

loop_
 _geom_angle_atom_site_label_1
 _geom_angle_atom_site_label_2
 _geom_angle_atom_site_label_3
 _geom_angle
 _geom_angle_site_symmetry_1
 _geom_angle_site_symmetry_3
 _geom_angle_publ_flag
B1 O2 H2O 111.8(17) . ?
B1 O3 H3O 117.3(19) . ?
O3 B1 O2 117.70(11) . yes
O3 B1 C1 124.09(16) . . yes
O2 B1 C1 118.21(15) . . yes
C2 C1 C6 118.39(10) . . ?
C2 C1 B1 121.06(15) . . ?
C6 C1 B1 120.55(16) . . ?
C3 C2 C1 120.91(14) . . ?
C3 C2 H2 119.5 . . ?
C1 C2 H2 119.5 . . ?
C2 C3 C4 119.82(15) . . ?
C2 C3 H3 120.1 . . ?
C4 C3 H3 120.1 . . ?
C3 C4 C5 120.21(11) . . ?
C3 C4 C7 119.34(18) . . ?
C5 C4 C7 120.45(18) . . ?
C6 C5 C4 119.43(15) . . ?
C6 C5 H5 120.3 . . ?
C4 C5 H5 120.3 . . ?
C5 C6 C1 121.24(15) . . ?
C5 C6 H6 119.4 . . ?
C1 C6 H6 119.4 . . ?
O1 C7 C4 123.21(19) . . yes
O1 C7 H7 118.4 . . ?
C4 C7 H7 118.4 . . ?

loop_
_geom_torsion_atom_site_label_1
_geom_torsion_atom_site_label_2
_geom_torsion_atom_site_label_3
_geom_torsion_atom_site_label_4
_geom_torsion
_geom_torsion_site_symmetry_1
_geom_torsion_site_symmetry_2
_geom_torsion_site_symmetry_3
_geom_torsion_site_symmetry_4
_geom_torsion_publ_flag
O3 B1 C1 C2 -20.6(3) yes
O2 B1 C1 C2 159.8(2) ?
O3 B1 C1 C6 159.0(2) ?
O2 B1 C1 C6 -20.6(3) ?
C6 C1 C2 C3 -0.3(3) ?
B1 C1 C2 C3 179.28(17) ?
C1 C2 C3 C4 -0.4(3) ?
C2 C3 C4 C5 0.7(4) ?
C2 C3 C4 C7 180.00(18) ?
C3 C4 C5 C6 -0.2(4) ?
C7 C4 C5 C6 -179.48(18) ?
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C4 C5 C6 C1</td>
<td>-0.6(3)</td>
<td>. . .</td>
<td>. ?</td>
<td></td>
</tr>
<tr>
<td>C2 C1 C6 C5</td>
<td>0.8(3)</td>
<td>. . .</td>
<td>. ?</td>
<td></td>
</tr>
<tr>
<td>B1 C1 C6 C5</td>
<td>-178.76(16)</td>
<td>. . .</td>
<td>. ?</td>
<td></td>
</tr>
<tr>
<td>C3 C4 C7 O1</td>
<td>178.8(2)</td>
<td>. . .</td>
<td>. ?</td>
<td></td>
</tr>
<tr>
<td>C5 C4 C7 O1</td>
<td>-1.8(4)</td>
<td>. . .</td>
<td>yes</td>
<td></td>
</tr>
</tbody>
</table>

loop_
 _geom_hbond_atom_site_label_D
 _geom_hbond_atom_site_label_H
 _geom_hbond_atom_site_label_A
 _geom_hbond_distance_DH
 _geom_hbond_distance_HA
 _geom_hbond_distance_DA
 _geom_hbond_angle_DHA
 _geom_hbond_site_symmetry_A

O2 H2O O1 0.87(3) 1.86(3) 2.7209(16) 171(3) 1_565
O3 H3O O2 0.83(3) 2.02(3) 2.8321(13) 165(3) 4_565
 _diffrn_measured_fraction_theta_max 0.99
 _diffrn_reflns_theta_full 32.0
 _diffrn_measured_fraction_theta_full 0.99
 _refine_diff_density_max 0.44
 _refine_diff_density_min -0.22
 _refine_diff_density_rms 0.053

END OF NADIA1 CIF

Figure B.2. 1H NMR of compound 2.7b.
APPENDIX C: CHARACTERIZATION DATA FOR COMPOUND 3.1.

Figure C.1. 1H NMR of compound 3.1

Figure C.2. FAB MS of compound 3.1
APPENDIX D: CHARACTERIZATION DATA FOR SYNTHESIS OF 4.4

Figure D.1. 1H NMR of compound 4.2

Figure D.2. 31P NMR of compound 4.2
Figure D.3. Crystal structure of compound 4.2

Table D.1. CIF data for compound 4.2

==
CHEMICAL DATA

_audit_creation_method SHELXL-97
_chemical_name_systematic
;
_chemical_name_common ?
_chemical_melting_point ?
_chemical_compound_source 'local laboratory'
_chemical_formula_moiety 'C44 H42 O13 P2'
_chemical_formula_sum 'C44 H42 O13 P2'
_chemical_formula_weight 840.72

loop

_atom_type_symbol
_atom_type_description
_atom_type_scat_dispersion_real
_atom_type_scat_dispersion_imag
_atom_type_scat_source

==
CRYSTAL DATA

_symmetry_space_group_name_H-M 'P 21/n '
_symmetry_space_group_name_Hall '-P 2yn'
_symmetry_cell_setting 'Monoclinic'

loop_
_symmetry_equiv_pos_as_xyz
'x, y, z'
'-x+1/2, y+1/2, -z+1/2'
'-x, -y, -z'
'x-1/2, -y-1/2, z-1/2'

_cell_length_a 10.454(2)
_cell_length_b 7.987(2)
_cell_length_c 48.542(11)
_cell_angle_alpha 90
_cell_angle_beta 90.336(6)
_cell_angle_gamma 90
_cell_volume 4053.0(16)
_cell_formula_units_Z 4
_cell_measurement_temperature 100
_cell_measurement_reflns_used 6510
_cell_measurement_theta_min 2.5
_cell_measurement_theta_max 25.4

_exptl_crystal_description needle
_exptl_crystal_colour colorless
_exptl_crystal_size_max 0.35
_exptl_crystal_size_mid 0.12
_exptl_crystal_size_min 0.07
_exptl_crystal_density_meas ?
_exptl_crystal_density_diffrn 1.378
_exptl_crystal_density_method 'not measured'
_exptl_crystal_F_000 1760
Experimental data

Experimental details:

- Experimental absorbance coefficient: 0.175
- Experimental absorbance correction type: multi-scan
- Experimental absorbance correction temperature range: 0.941 to 0.988
- Experimental absorbance correction details: HKL Scalepack (Otwinowski & Minor 1997)

Diffractometer details:

- Ambient temperature: 100
- Radiation wavelength: 0.71073
- Radiation type: MoKα
- Radiation source: fine-focus sealed tube
- Radiation monochromator: graphite
- Measurement device: KappaCCD (with Oxford Cryostream)
- Measurement method: w scans with k offsets
- Detector area resolution mean: ?
- Standards number: 0
- Standards interval count: ?
- Standards interval time: ?
- Standards decay %: <2
- Reflections number: 30729
- Reflections average R-equivalents: 0.046
- Reflections average signal/netI: 0.0899
- Reflections limit h min: -12
- Reflections limit h max: 12
- Reflections limit k min: -9
- Reflections limit k max: 5
- Reflections limit l min: -58
- Reflections limit l max: 58
- Reflections theta min: 2.5
- Reflections theta max: 25.4
- Reflections number total: 6718
- Reflections number gt: 3180
- Reflections threshold expression: I > 2σ(I)

Computational details:

- Data collection: COLLECT (Nonius, 2000)
- Data reduction: Denzo and Scalepack (Otwinowski & Minor, 1997)
- Structure refinement: Denzo and Scalepack (Otwinowski & Minor, 1997)
- Structure solution: SIR97, (Altomare et al., 1999)
- Structure refinement: SHELXL-97 (Sheldrick, 1997)
- Molecular graphics: ORTEP-3 (Farrugia, 1997)
- Publication material: PLATON (Spek, 2002)
Refinement of F^2^ against ALL reflections. The weighted R-factor wR and
goodness of fit S are based on F^2^, conventional R-factors R are based
on F, with F set to zero for negative F^2^.
The threshold expression of
F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is
not relevant to the choice of reflections for refinement. R-factors based
on F^2^ are statistically about twice as large as those based on F, and R-
factors based on ALL data will be even larger.

atom sites solution primary direct
atom sites solution secondary difmap
atom sites solution hydrogensgeom
refine ls hydrogen treatment constr
refine ls extinction method SHELXL
refine ls extinction coef 0.012(3)
refine ls extinction expression
'Fc^*^=kFc[1+0.001xFc^2\^]/(\^3^/sin(2\(\theta\))\^-1/4^)
refine ls number reflns 6718
refine ls number parameters 533
refine ls number restraints 0
refine ls R factor all 0.192
refine ls R factor gt 0.103
refine ls wR factor ref 0.349
refine ls wR factor gt 0.286
refine ls goodness of fit ref 1.062
refine ls restrained S all 1.062
refine ls shift/su max 0.002
refine ls shift/su mean 0.000

loop_
 atom site label
 atom site type symbol
 atom site fract x
 atom site fract y
 atom site fract z
 atom site U iso or equiv
 atom site adp type
 atom site occupancy
<table>
<thead>
<tr>
<th>Atom</th>
<th>Symbol</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>Uequ</th>
<th>Bond Distance</th>
<th>Uiso</th>
<th>Bond Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>C19</td>
<td>C</td>
<td>0.0114(6)</td>
<td>0.7926(12)</td>
<td>0.58968(12)</td>
<td>0.062(2)</td>
<td>Uani 1 1 d . . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C20</td>
<td>C</td>
<td>-0.0369(6)</td>
<td>0.6209(12)</td>
<td>0.58927(12)</td>
<td>0.067(2)</td>
<td>Uani 1 1 d . . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C21</td>
<td>C</td>
<td>0.4227(6)</td>
<td>0.3714(12)</td>
<td>0.68589(14)</td>
<td>0.078(2)</td>
<td>Uani 1 1 d . . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H21A</td>
<td>H</td>
<td>0.4420</td>
<td>0.2869</td>
<td>0.6716</td>
<td>0.093</td>
<td>Uiso 1 1 calc R . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H21B</td>
<td>H</td>
<td>0.6845</td>
<td>0.3541</td>
<td>0.5931</td>
<td>0.077</td>
<td>Uiso 1 1 calc R . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C22</td>
<td>C</td>
<td>0.4227(6)</td>
<td>0.3714(12)</td>
<td>0.68589(14)</td>
<td>0.078(2)</td>
<td>Uani 1 1 d . . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H22A</td>
<td>H</td>
<td>0.4420</td>
<td>0.2869</td>
<td>0.6716</td>
<td>0.093</td>
<td>Uiso 1 1 calc R . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H22B</td>
<td>H</td>
<td>0.3948</td>
<td>0.3104</td>
<td>0.7026</td>
<td>0.093</td>
<td>Uiso 1 1 calc R . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C23</td>
<td>C</td>
<td>0.1483(8)</td>
<td>0.4845(12)</td>
<td>0.73889(14)</td>
<td>0.082(3)</td>
<td>Uani 1 1 d . . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H23</td>
<td>H</td>
<td>0.3618</td>
<td>0.6110</td>
<td>0.7614</td>
<td>0.107</td>
<td>Uiso 1 1 calc R . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C24</td>
<td>C</td>
<td>0.1905(8)</td>
<td>0.4923(13)</td>
<td>0.76804(15)</td>
<td>0.088(3)</td>
<td>Uani 1 1 d . . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H24</td>
<td>H</td>
<td>0.6165</td>
<td>0.3881</td>
<td>0.6220</td>
<td>0.077</td>
<td>Uiso 1 1 calc R . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C25</td>
<td>C</td>
<td>0.3058(8)</td>
<td>0.5701(12)</td>
<td>0.77521(14)</td>
<td>0.089(3)</td>
<td>Uani 1 1 d . . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H25</td>
<td>H</td>
<td>0.6845</td>
<td>0.3541</td>
<td>0.5931</td>
<td>0.077</td>
<td>Uiso 1 1 calc R . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C26</td>
<td>C</td>
<td>0.2561(11)</td>
<td>0.5229(15)</td>
<td>0.82240(16)</td>
<td>0.108(4)</td>
<td>Uani 1 1 d . . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H26</td>
<td>H</td>
<td>0.3368(9)</td>
<td>0.3805</td>
<td>0.7833</td>
<td>0.109</td>
<td>Uiso 1 1 calc R . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C27</td>
<td>C</td>
<td>0.2561(11)</td>
<td>0.5229(15)</td>
<td>0.82240(16)</td>
<td>0.108(4)</td>
<td>Uani 1 1 d . . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H27</td>
<td>H</td>
<td>0.2781</td>
<td>0.5336</td>
<td>0.8413</td>
<td>0.130</td>
<td>Uiso 1 1 calc R . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C28</td>
<td>C</td>
<td>0.1451(10)</td>
<td>0.4448(13)</td>
<td>0.81547(14)</td>
<td>0.099(3)</td>
<td>Uani 1 1 d . . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H28</td>
<td>H</td>
<td>0.0917</td>
<td>0.3997</td>
<td>0.8294</td>
<td>0.119</td>
<td>Uiso 1 1 calc R . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C29</td>
<td>C</td>
<td>0.1106(8)</td>
<td>0.4316(12)</td>
<td>0.78828(14)</td>
<td>0.091(3)</td>
<td>Uani 1 1 d . . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H29</td>
<td>H</td>
<td>0.0317</td>
<td>0.3805</td>
<td>0.7833</td>
<td>0.109</td>
<td>Uiso 1 1 calc R . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C30</td>
<td>C</td>
<td>0.5924(7)</td>
<td>0.2627(10)</td>
<td>0.52617(13)</td>
<td>0.067(2)</td>
<td>Uani 1 1 d . . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C31</td>
<td>C</td>
<td>0.7198(7)</td>
<td>0.2378(10)</td>
<td>0.51344(13)</td>
<td>0.067(2)</td>
<td>Uani 1 1 d . . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C32</td>
<td>C</td>
<td>0.8277(7)</td>
<td>0.3218(11)</td>
<td>0.52255(14)</td>
<td>0.074(2)</td>
<td>Uani 1 1 d . . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H32</td>
<td>H</td>
<td>0.8236</td>
<td>0.3977</td>
<td>0.5376</td>
<td>0.089</td>
<td>Uiso 1 1 calc R . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C33</td>
<td>C</td>
<td>0.9431(7)</td>
<td>0.2917(11)</td>
<td>0.50901(15)</td>
<td>0.079(2)</td>
<td>Uani 1 1 d . . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H33</td>
<td>H</td>
<td>0.1082</td>
<td>0.3479</td>
<td>0.5151</td>
<td>0.095</td>
<td>Uiso 1 1 calc R . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C34</td>
<td>C</td>
<td>0.9507(8)</td>
<td>0.1837(12)</td>
<td>0.48722(15)</td>
<td>0.080(2)</td>
<td>Uani 1 1 d . . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C35</td>
<td>C</td>
<td>0.8428(8)</td>
<td>0.0982(12)</td>
<td>0.47880(14)</td>
<td>0.083(3)</td>
<td>Uani 1 1 d . . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C36</td>
<td>C</td>
<td>0.7287(7)</td>
<td>0.1223(11)</td>
<td>0.49166(13)</td>
<td>0.076(2)</td>
<td>Uani 1 1 d . . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H36</td>
<td>H</td>
<td>0.6553</td>
<td>0.0611</td>
<td>0.4859</td>
<td>0.091</td>
<td>Uiso 1 1 calc R . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C37</td>
<td>C</td>
<td>0.8115(8)</td>
<td>0.3741(18)</td>
<td>0.6865(3)</td>
<td>0.147(5)</td>
<td>Uani 1 1 d . . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H37A</td>
<td>H</td>
<td>0.8544</td>
<td>0.2933</td>
<td>0.6989</td>
<td>0.177</td>
<td>Uiso 1 1 calc R . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H37B</td>
<td>H</td>
<td>0.8249</td>
<td>0.4879</td>
<td>0.6941</td>
<td>0.177</td>
<td>Uiso 1 1 calc R . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C38</td>
<td>C</td>
<td>0.8742(9)</td>
<td>0.363(2)</td>
<td>0.6568(2)</td>
<td>0.152(5)</td>
<td>Uani 1 1 d . . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H38A</td>
<td>H</td>
<td>0.9659</td>
<td>0.3869</td>
<td>0.6583</td>
<td>0.228</td>
<td>Uiso 1 1 calc R . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H38B</td>
<td>H</td>
<td>0.8336</td>
<td>0.4452</td>
<td>0.6446</td>
<td>0.228</td>
<td>Uiso 1 1 calc R . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H38C</td>
<td>H</td>
<td>0.8617</td>
<td>0.2504</td>
<td>0.6493</td>
<td>0.228</td>
<td>Uiso 1 1 calc R . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C39</td>
<td>C</td>
<td>0.5899(13)</td>
<td>0.333(2)</td>
<td>0.7432(2)</td>
<td>0.148(5)</td>
<td>Uani 1 1 d . . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C40</td>
<td>C</td>
<td>0.6873(13)</td>
<td>0.370(2)</td>
<td>0.7632(3)</td>
<td>0.183(6)</td>
<td>Uani 1 1 d . . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H40A</td>
<td>H</td>
<td>0.6987</td>
<td>0.2742</td>
<td>0.7755</td>
<td>0.275</td>
<td>Uiso 1 1 calc R . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H40B</td>
<td>H</td>
<td>0.6618</td>
<td>0.4685</td>
<td>0.7740</td>
<td>0.275</td>
<td>Uiso 1 1 calc R . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H40C</td>
<td>H</td>
<td>0.7679</td>
<td>0.3941</td>
<td>0.7538</td>
<td>0.275</td>
<td>Uiso 1 1 calc R . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atom</td>
<td>x</td>
<td>y</td>
<td>z</td>
<td>Anisotropy 11</td>
<td>Anisotropy 22</td>
<td>Anisotropy 33</td>
<td>Anisotropy 23</td>
<td>Anisotropy 13</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>C41</td>
<td>0.7224</td>
<td>-0.105</td>
<td>0.6402</td>
<td>0.154</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H41A</td>
<td>0.6345</td>
<td>-0.1402</td>
<td>0.6449</td>
<td>0.185</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H41B</td>
<td>0.7608</td>
<td>-0.1915</td>
<td>0.6283</td>
<td>0.185</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C42</td>
<td>0.7966</td>
<td>-0.0855</td>
<td>0.6449</td>
<td>0.146</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H42A</td>
<td>0.8013</td>
<td>-0.1929</td>
<td>0.6743</td>
<td>0.219</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H42B</td>
<td>0.7566</td>
<td>-0.0018</td>
<td>0.6765</td>
<td>0.219</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H42C</td>
<td>0.8830</td>
<td>-0.0487</td>
<td>0.6597</td>
<td>0.219</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C43</td>
<td>0.5750</td>
<td>-0.1283</td>
<td>0.5721</td>
<td>0.118</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H43A</td>
<td>0.4806</td>
<td>-0.1374</td>
<td>0.5712</td>
<td>0.142</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H43B</td>
<td>0.6055</td>
<td>-0.2051</td>
<td>0.5867</td>
<td>0.142</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C44</td>
<td>0.6284</td>
<td>-0.1806</td>
<td>0.5458</td>
<td>0.080</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H44A</td>
<td>0.6031</td>
<td>-0.2965</td>
<td>0.5421</td>
<td>0.120</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H44B</td>
<td>0.7219</td>
<td>-0.1731</td>
<td>0.5468</td>
<td>0.120</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H44C</td>
<td>0.5961</td>
<td>-0.1075</td>
<td>0.5312</td>
<td>0.120</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Loop</th>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>Anisotropy 11</th>
<th>Anisotropy 22</th>
<th>Anisotropy 33</th>
<th>Anisotropy 23</th>
<th>Anisotropy 13</th>
<th>Anisotropy 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>0.0516</td>
<td>0.139</td>
<td>0.0691</td>
<td>0.0036</td>
<td>-0.0189</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2</td>
<td>0.0444</td>
<td>0.125</td>
<td>0.0461</td>
<td>0.0025</td>
<td>0.0067</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O1</td>
<td>0.046</td>
<td>0.125</td>
<td>0.032</td>
<td>-0.001</td>
<td>0.0017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2</td>
<td>0.0443</td>
<td>0.116</td>
<td>0.043</td>
<td>-0.005</td>
<td>0.002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O3</td>
<td>0.0434</td>
<td>0.141</td>
<td>0.050</td>
<td>-0.003</td>
<td>0.006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O4</td>
<td>0.0544</td>
<td>0.167</td>
<td>0.030</td>
<td>0.004</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O5</td>
<td>0.0593</td>
<td>0.183</td>
<td>0.055</td>
<td>0.024</td>
<td>-0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O6</td>
<td>0.0543</td>
<td>0.111</td>
<td>0.041</td>
<td>-0.014</td>
<td>0.007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O7</td>
<td>0.0563</td>
<td>0.134</td>
<td>0.053</td>
<td>-0.016</td>
<td>-0.007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O8</td>
<td>0.0694</td>
<td>0.227</td>
<td>0.116</td>
<td>0.066</td>
<td>-0.022</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O9</td>
<td>0.0544</td>
<td>0.177</td>
<td>0.220</td>
<td>-0.031</td>
<td>-0.035</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O10</td>
<td>0.1095</td>
<td>0.380</td>
<td>0.071</td>
<td>-0.069</td>
<td>0.013</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O11</td>
<td>0.0493</td>
<td>0.128</td>
<td>0.069</td>
<td>0.008</td>
<td>0.016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O12</td>
<td>0.0533</td>
<td>0.136</td>
<td>0.056</td>
<td>-0.001</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O13</td>
<td>0.0623</td>
<td>0.108</td>
<td>0.058</td>
<td>-0.012</td>
<td>0.013</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>0.0394</td>
<td>0.128</td>
<td>0.042</td>
<td>0.000</td>
<td>0.007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>0.0393</td>
<td>0.122</td>
<td>0.039</td>
<td>0.005</td>
<td>0.002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td>0.0514</td>
<td>0.130</td>
<td>0.037</td>
<td>0.011</td>
<td>-0.005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4</td>
<td>0.0414</td>
<td>0.151</td>
<td>0.042</td>
<td>0.005</td>
<td>0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5</td>
<td>0.0434</td>
<td>0.129</td>
<td>0.048</td>
<td>0.003</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C6</td>
<td>0.0383</td>
<td>0.133</td>
<td>0.032</td>
<td>0.001</td>
<td>-0.002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C7</td>
<td>0.0424</td>
<td>0.122</td>
<td>0.040</td>
<td>-0.007</td>
<td>-0.003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C8</td>
<td>0.0484</td>
<td>0.115</td>
<td>0.042</td>
<td>0.004</td>
<td>-0.004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C9</td>
<td>0.059(4)</td>
<td>0.119(7)</td>
<td>0.033(3)</td>
<td>0.003(4)</td>
<td>0.004(3)</td>
<td>0.025(4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C10</td>
<td>0.066(5)</td>
<td>0.120(7)</td>
<td>0.037(4)</td>
<td>0.002(4)</td>
<td>0.007(3)</td>
<td>0.028(5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C11</td>
<td>0.067(5)</td>
<td>0.098(6)</td>
<td>0.042(4)</td>
<td>0.007(4)</td>
<td>0.008(3)</td>
<td>0.033(4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C12</td>
<td>0.048(4)</td>
<td>0.100(6)</td>
<td>0.042(4)</td>
<td>0.003(4)</td>
<td>0.002(3)</td>
<td>0.031(4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C13</td>
<td>0.048(4)</td>
<td>0.111(6)</td>
<td>0.035(3)</td>
<td>0.001(4)</td>
<td>0.001(3)</td>
<td>0.027(4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C14</td>
<td>0.047(4)</td>
<td>0.095(6)</td>
<td>0.034(3)</td>
<td>0.001(4)</td>
<td>0.000(3)</td>
<td>0.017(4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C15</td>
<td>0.056(4)</td>
<td>0.122(8)</td>
<td>0.037(4)</td>
<td>0.008(4)</td>
<td>0.005(3)</td>
<td>0.040(5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C16</td>
<td>0.078(6)</td>
<td>0.105(8)</td>
<td>0.046(4)</td>
<td>0.006(4)</td>
<td>0.009(4)</td>
<td>0.029(5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C17</td>
<td>0.065(5)</td>
<td>0.107(7)</td>
<td>0.042(4)</td>
<td>0.003(4)</td>
<td>0.001(3)</td>
<td>0.012(5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C18</td>
<td>0.054(4)</td>
<td>0.140(9)</td>
<td>0.035(4)</td>
<td>0.004(5)</td>
<td>0.006(3)</td>
<td>0.027(5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C19</td>
<td>0.044(4)</td>
<td>0.109(7)</td>
<td>0.034(3)</td>
<td>0.004(4)</td>
<td>0.001(3)</td>
<td>0.019(4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C20</td>
<td>0.041(4)</td>
<td>0.122(7)</td>
<td>0.038(4)</td>
<td>0.006(4)</td>
<td>0.003(3)</td>
<td>0.024(4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C21</td>
<td>0.056(4)</td>
<td>0.134(7)</td>
<td>0.042(4)</td>
<td>0.009(4)</td>
<td>0.008(3)</td>
<td>0.030(4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C22</td>
<td>0.039(3)</td>
<td>0.112(7)</td>
<td>0.041(3)</td>
<td>0.009(4)</td>
<td>0.006(3)</td>
<td>0.029(4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C23</td>
<td>0.059(5)</td>
<td>0.145(8)</td>
<td>0.043(4)</td>
<td>0.011(4)</td>
<td>0.005(4)</td>
<td>0.005(5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C24</td>
<td>0.070(5)</td>
<td>0.153(9)</td>
<td>0.042(4)</td>
<td>0.008(5)</td>
<td>0.005(4)</td>
<td>0.024(5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C25</td>
<td>0.073(5)</td>
<td>0.150(9)</td>
<td>0.045(4)</td>
<td>0.002(5)</td>
<td>0.009(4)</td>
<td>0.028(5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C26</td>
<td>0.095(6)</td>
<td>0.154(9)</td>
<td>0.050(5)</td>
<td>0.025(5)</td>
<td>0.022(5)</td>
<td>0.064(6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C27</td>
<td>0.113(8)</td>
<td>0.178(11)</td>
<td>0.033(4)</td>
<td>0.005(5)</td>
<td>0.002(5)</td>
<td>0.088(8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C28</td>
<td>0.099(7)</td>
<td>0.154(10)</td>
<td>0.043(4)</td>
<td>0.007(5)</td>
<td>0.012(5)</td>
<td>0.059(7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C29</td>
<td>0.076(5)</td>
<td>0.155(9)</td>
<td>0.041(4)</td>
<td>0.016(5)</td>
<td>0.014(4)</td>
<td>0.041(5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C30</td>
<td>0.069(5)</td>
<td>0.099(6)</td>
<td>0.033(3)</td>
<td>0.000(4)</td>
<td>0.006(3)</td>
<td>0.017(4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C31</td>
<td>0.063(5)</td>
<td>0.104(6)</td>
<td>0.034(3)</td>
<td>0.004(4)</td>
<td>0.003(3)</td>
<td>0.013(4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C32</td>
<td>0.063(5)</td>
<td>0.113(7)</td>
<td>0.045(4)</td>
<td>0.002(4)</td>
<td>0.008(3)</td>
<td>0.017(4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C33</td>
<td>0.060(5)</td>
<td>0.118(7)</td>
<td>0.060(5)</td>
<td>0.006(5)</td>
<td>0.001(4)</td>
<td>0.024(4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C34</td>
<td>0.068(5)</td>
<td>0.124(8)</td>
<td>0.048(4)</td>
<td>0.001(5)</td>
<td>0.009(4)</td>
<td>0.005(5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C35</td>
<td>0.082(6)</td>
<td>0.126(8)</td>
<td>0.040(4)</td>
<td>0.009(4)</td>
<td>0.006(4)</td>
<td>0.001(5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C36</td>
<td>0.073(5)</td>
<td>0.113(7)</td>
<td>0.042(4)</td>
<td>0.002(4)</td>
<td>0.005(4)</td>
<td>0.011(5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C37</td>
<td>0.055(5)</td>
<td>0.221(14)</td>
<td>0.165(11)</td>
<td>0.041(10)</td>
<td>0.017(6)</td>
<td>0.024(7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C38</td>
<td>0.067(6)</td>
<td>0.282(17)</td>
<td>0.106(8)</td>
<td>0.007(9)</td>
<td>0.007(6)</td>
<td>0.064(8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C39</td>
<td>0.152(11)</td>
<td>0.206(14)</td>
<td>0.086(8)</td>
<td>0.007(8)</td>
<td>0.010(7)</td>
<td>0.038(10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C40</td>
<td>0.185(13)</td>
<td>0.201(14)</td>
<td>0.162(12)</td>
<td>0.035(11)</td>
<td>0.119(10)</td>
<td>0.004(11)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C41</td>
<td>0.116(9)</td>
<td>0.261(17)</td>
<td>0.085(7)</td>
<td>0.008(9)</td>
<td>0.020(6)</td>
<td>0.079(10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C42</td>
<td>0.100(8)</td>
<td>0.195(14)</td>
<td>0.142(11)</td>
<td>0.006(9)</td>
<td>0.023(7)</td>
<td>0.034(8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C43</td>
<td>0.154(10)</td>
<td>0.105(8)</td>
<td>0.097(7)</td>
<td>0.019(6)</td>
<td>0.054(7)</td>
<td>0.047(7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C44</td>
<td>0.065(5)</td>
<td>0.113(7)</td>
<td>0.062(5)</td>
<td>0.014(5)</td>
<td>0.007(4)</td>
<td>0.016(4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

_geom_special_details

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
loop_
__geom_bond_atom_site_label_1
__geom_bond_atom_site_label_2
__geom_bond_distance
__geom_bond_site_symmetry_2
__geom_bond_publ_flag
P1 O8 1.411(7) . ?
P1 O10 1.477(7) . ?
P1 O9 1.649(8) . ?
P1 C21 1.785(7) . ?
P2 O11 1.464(5) . ?
P2 O12 1.561(5) . ?
P2 O13 1.574(5) . ?
P2 C22 1.794(8) . ?
O1 C13 1.374(7) . ?
O1 C1 1.396(8) . ?
O2 C20 1.352(9) . ?
O2 C7 1.494(7) . ?
O3 C20 1.204(7) . ?
O4 C23 1.378(8) . ?
O4 C3 1.401(7) . ?
O5 C23 1.200(9) . ?
O6 C30 1.370(8) . ?
O6 C11 1.404(8) . ?
O7 C30 1.195(8) . ?
O9 C37 1.481(10) . ?
O10 C39 1.732(17) . ?
O12 C41 1.555(15) . ?
O13 C43 1.429(10) . ?
C1 C6 1.373(10) . ?
C1 C2 1.391(9) . ?
C2 C3 1.394(10) . ?
C2 C21 1.502(11) . ?
C3 C4 1.365(10) . ?
C4 C5 1.376(9) . ?
C4 H4 0.9500 . ?
C5 C6 1.384(9) . ?
C5 H5 0.9500 . ?
C6 C7 1.510(8) . ?
C7 C14 1.500(11) . ?
C7 C8 1.527(10) . ?
C8 C13 1.365(10) . ?
C8 C9 1.395(8) . ?
C9 C10 1.384(10) . ?
C9 H9 0.9500 . ?
C10 C11 1.380(10).?
C10 H10 0.9500.?
C11 C12 1.380(9).?
C12 C13 1.412(9).?
C12 C22 1.508(9).?
C14 C19 1.372(9).?
C14 C15 1.406(10).?
C15 C16 1.369(11).?
C15 H15 0.9500.?
C16 C17 1.408(10).?
C16 H16 0.9500.?
C17 C18 1.376(11).?
C17 H17 0.9500.?
C18 C19 1.406(11).?
C18 H18 0.9500.?
C19 C20 1.462(11).?
C21 H21A 0.9900.?
C21 H21B 0.9900.?
C22 H22A 0.9900.?
C22 H22B 0.9900.?
C23 C24 1.481(10).?
C24 C29 1.381(11).?
C24 C25 1.399(12).?
C25 C26 1.397(10).?
C25 H25 0.9500.?
C26 C27 1.361(13).?
C26 H26 0.9500.?
C27 C28 1.357(14).?
C27 H27 0.9500.?
C28 C29 1.370(10).?
C28 H28 0.9500.?
C29 H29 0.9500.?
C30 C31 1.485(9).?
C31 C32 1.383(9).?
C31 C36 1.407(10).?
C32 C33 1.398(10).?
C32 H32 0.9500.?
C33 C34 1.367(11).?
C33 H33 0.9500.?
C34 C35 1.378(11).?
C34 H34 0.9500.?
C35 C36 1.364(10).?
C35 H35 0.9500.?
C36 H36 0.9500.?
C37 C38 1.587(14).?
C37 H37A 0.9900.?
C37 H37B 0.9900 . ?
C38 H38A 0.9800 . ?
C38 H38B 0.9800 . ?
C38 H38C 0.9800 . ?
C39 C40 1.432(14) . ?
C39 H39A 0.9900 . ?
C39 H39B 0.9900 . ?
C40 H40A 0.9800 . ?
C40 H40B 0.9800 . ?
C40 H40C 0.9800 . ?
C41 C42 1.419(13) . ?
C41 H41A 0.9900 . ?
C41 H41B 0.9900 . ?
C42 H42A 0.9800 . ?
C42 H42B 0.9800 . ?
C42 H42C 0.9800 . ?
C43 C44 1.454(10) . ?
C43 H43A 0.9900 . ?
C43 H43B 0.9900 . ?
C44 H44A 0.9800 . ?
C44 H44B 0.9800 . ?
C44 H44C 0.9800 . ?

loop_
 _geom_angle_atom_site_label_1
 _geom_angle_atom_site_label_2
 _geom_angle_atom_site_label_3
 _geom_angle
 _geom_angle_site_symmetry_1
 _geom_angle_site_symmetry_3
 _geom_angle_publ_flag
O8 P1 O10 114.0(6) . . ?
O8 P1 O9 106.5(5) . . ?
O10 P1 O9 108.7(6) . . ?
O8 P1 C21 114.7(4) . . ?
O10 P1 C21 111.9(4) . . ?
O9 P1 C21 99.8(4) . . ?
O11 P2 O12 114.5(3) . . ?
O11 P2 O13 114.9(3) . . ?
O12 P2 O13 104.5(3) . . ?
O11 P2 C22 116.3(3) . . ?
O12 P2 C22 102.7(3) . . ?
O13 P2 C22 102.2(3) . . ?
C13 O1 C1 118.7(5) . . ?
C20 O2 C7 110.2(6) . . ?
C23 O4 C3 119.4(5) . . ?
C30 O6 C11 118.5(5) . . ?
C37 O9 P1 120.8(7) . . ?
P1 O10 C39 112.7(8) . . ?
C41 O12 P2 117.2(5) . . ?
C43 O13 P2 122.3(5) . . ?
C6 C1 C2 123.7(6) . . ?
C6 C1 O1 122.6(6) . . ?
C2 C1 O1 113.7(7) . . ?
C1 C2 C3 115.7(7) . . ?
C1 C2 C21 121.0(6) . . ?
C3 C2 C21 123.3(6) . . ?
C4 C3 C2 122.9(6) . . ?
C4 C3 O4 121.7(7) . . ?
C2 C3 O4 115.1(7) . . ?
C3 C4 C5 118.5(7) . . ?
C3 C4 H4 120.8 . . ?
C5 C4 H4 120.8 . . ?
C4 C5 C6 122.0(7) . . ?
C4 C5 H5 119.0 . . ?
C6 C5 H5 119.0 . . ?
C1 C6 C5 117.2(6) . . ?
C1 C6 C7 122.4(6) . . ?
C5 C6 C7 120.4(7) . . ?
O2 C7 C14 103.0(6) . . ?
O2 C7 C6 108.2(5) . . ?
C14 C7 C6 112.9(6) . . ?
O2 C7 C8 107.1(6) . . ?
C14 C7 C8 114.4(6) . . ?
C6 C7 C8 110.5(6) . . ?
C13 C8 C9 118.3(7) . . ?
C13 C8 C7 122.2(6) . . ?
C9 C8 C7 119.5(7) . . ?
C10 C9 C8 121.0(7) . . ?
C10 C9 H9 119.5 . . ?
C8 C9 H9 119.5 . . ?
C11 C10 C9 118.2(6) . . ?
C11 C10 H10 120.9 . . ?
C9 C10 H10 120.9 . . ?
C12 C11 C10 123.8(7) . . ?
C12 C11 O6 115.1(7) . . ?
C10 C11 O6 120.7(6) . . ?
C11 C12 C13 115.4(7) . . ?
C11 C12 C22 122.7(6) . . ?
C13 C12 C22 121.9(5) . . ?
C8 C13 O1 123.2(6) . . ?
C8 C13 C12 123.3(6) . . ?
O1 C13 C12 113.5(6) . . ?
C19 C14 C15 120.9(8) . . ?
C19 C14 C7 108.8(7) . . ?
C15 C14 C7 130.1(7) . . ?
C16 C15 C14 118.9(8) . . ?
C16 C15 H15 120.5 . . ?
C14 C15 H15 120.5 . . ?
C15 C16 C17 120.3(8) . . ?
C15 C16 H16 119.8 . . ?
C17 C16 H16 119.8 . . ?
C18 C17 C16 120.7(8) . . ?
C18 C17 H17 119.6 . . ?
C16 C17 H17 119.6 . . ?
C17 C18 C19 118.8(7) . . ?
C17 C18 H18 120.6 . . ?
C19 C18 H18 120.6 . . ?
C14 C19 C18 120.3(8) . . ?
C14 C19 C20 109.1(8) . . ?
C18 C19 C20 130.6(6) . . ?
O3 C20 O2 121.7(8) . . ?
O3 C20 C19 129.7(8) . . ?
O2 C20 C19 108.6(6) . . ?
C2 C21 P1 116.0(6) . . ?
C2 C21 H21A 108.3 . . ?
P1 C21 H21A 108.3 . . ?
C2 C21 H21B 108.3 . . ?
P1 C21 H21B 108.3 . . ?
H21A C21 H21B 107.4 . . ?
C12 C22 P2 112.7(5) . . ?
C12 C22 H22A 109.0 . . ?
P2 C22 H22A 109.0 . . ?
C12 C22 H22B 109.0 . . ?
P2 C22 H22B 109.0 . . ?
H22A C22 H22B 107.8 . . ?
O5 C23 O4 123.2(6) . . ?
O5 C23 C24 125.8(7) . . ?
O4 C23 C24 110.9(7) . . ?
C29 C24 C25 120.2(7) . . ?
C29 C24 C23 119.1(8) . . ?
C25 C24 C23 120.5(8) . . ?
C26 C25 C24 118.5(8) . . ?
C26 C25 H25 120.8 . . ?
C24 C25 H25 120.8 . . ?
C27 C26 C25 119.4(10) . . ?
C27 C26 H26 120.3 . . ?
C25 C26 H26 120.3 . . ?
<table>
<thead>
<tr>
<th>Bond</th>
<th>Angle</th>
<th>Value</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>C28 - C27 - C26</td>
<td>122.2</td>
<td>(8)</td>
<td></td>
</tr>
<tr>
<td>C28 - C27 - H27</td>
<td>118.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C26 - C27 - H27</td>
<td>118.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C27 - C28 - C29</td>
<td>119.6</td>
<td>(9)</td>
<td></td>
</tr>
<tr>
<td>C27 - C28 - H28</td>
<td>120.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C29 - C28 - H28</td>
<td>120.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C28 - C29 - C24</td>
<td>120.1</td>
<td>(9)</td>
<td></td>
</tr>
<tr>
<td>C28 - C29 - H29</td>
<td>119.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C24 - C29 - H29</td>
<td>119.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O7 - C30 - O6</td>
<td>123.1</td>
<td>(7)</td>
<td></td>
</tr>
<tr>
<td>O7 - C30 - C31</td>
<td>126.4</td>
<td>(7)</td>
<td></td>
</tr>
<tr>
<td>O6 - C30 - C31</td>
<td>110.4</td>
<td>(6)</td>
<td></td>
</tr>
<tr>
<td>C32 - C31 - C36</td>
<td>120.1</td>
<td>(7)</td>
<td></td>
</tr>
<tr>
<td>C32 - C31 - C30</td>
<td>122.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C36 - C31 - C30</td>
<td>117.6</td>
<td>(6)</td>
<td></td>
</tr>
<tr>
<td>C31 - C32 - C33</td>
<td>118.1</td>
<td>(7)</td>
<td></td>
</tr>
<tr>
<td>C31 - C32 - H32</td>
<td>121.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C33 - C32 - H32</td>
<td>121.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C34 - C33 - C32</td>
<td>121.8</td>
<td>(7)</td>
<td></td>
</tr>
<tr>
<td>C34 - C33 - H33</td>
<td>119.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C32 - C33 - H33</td>
<td>119.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C33 - C34 - C35</td>
<td>119.4</td>
<td>(7)</td>
<td></td>
</tr>
<tr>
<td>C33 - C34 - H34</td>
<td>120.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C35 - C34 - H34</td>
<td>120.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C36 - C35 - C34</td>
<td>120.7</td>
<td>(8)</td>
<td></td>
</tr>
<tr>
<td>C36 - C35 - H35</td>
<td>119.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C34 - C35 - H35</td>
<td>119.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C35 - C36 - C31</td>
<td>119.9</td>
<td>(7)</td>
<td></td>
</tr>
<tr>
<td>C35 - C36 - H36</td>
<td>120.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C31 - C36 - H36</td>
<td>120.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O9 - C37 - C38</td>
<td>111.7</td>
<td>(8)</td>
<td></td>
</tr>
<tr>
<td>O9 - C37 - H37A</td>
<td>109.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C38 - C37 - H37A</td>
<td>109.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O9 - C37 - H37B</td>
<td>109.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C38 - C37 - H37B</td>
<td>109.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
O10 C39 H39B 111.0 ...
H39A C39 H39B 109.0 ...
C39 C40 H40A 109.5 ...
C39 C40 H40B 109.5 ...
H40A C40 H40B 109.5 ...
C39 C40 H40C 109.5 ...
H40A C40 H40C 109.5 ...
H40B C40 H40C 109.5 ...
C42 C41 O12 109.1(10) ...
C42 C41 H41A 109.9 ...
O12 C41 H41A 109.9 ...
C42 C41 H41B 109.9 ...
O12 C41 H41B 109.9 ...
H41A C41 H41B 108.3 ...
C41 C42 H42A 109.5 ...
C41 C42 H42B 109.5 ...
H42A C42 H42B 109.5 ...
C41 C42 H42C 109.5 ...
H42A C42 H42C 109.5 ...
H42B C42 H42C 109.5 ...
O13 C43 C44 112.8(7) ...
O13 C43 H43A 109.0 ...
C44 C43 H43A 109.0 ...
O13 C43 H43B 109.0 ...
C44 C43 H43B 109.0 ...
H43A C43 H43B 107.8 ...
C43 C44 H44A 109.5 ...
C43 C44 H44B 109.5 ...
H44A C44 H44B 109.5 ...
C43 C44 H44C 109.5 ...
H44A C44 H44C 109.5 ...
H44B C44 H44C 109.5 ...
loop_
 _geom_torsion_atom_site_label_1
 _geom_torsion_atom_site_label_2
 _geom_torsion_atom_site_label_3
 _geom_torsion_atom_site_label_4
 _geom_torsion
 _geom_torsion_site_symmetry_1
 _geom_torsion_site_symmetry_2
 _geom_torsion_site_symmetry_3
 _geom_torsion_site_symmetry_4
 _geom_torsion_publ_flag
O8 P1 O9 C37 55.6(9) ...
O10 P1 O9 C37 -67.7(10) ...
C21 P1 O9 C37 175.1(8) ...
O8 P1 O10 C39 -164.2(6) ... ?
O9 P1 O10 C39 -45.6(7) ... ?
C21 P1 O10 C39 63.7(8) ... ?
O11 P2 O12 C41 35.5(8) ... ?
O13 P2 O12 C41 -91.1(7) ... ?
C22 P2 O12 C41 162.5(7) ... ?
O11 P2 O13 C43 -38.0(8) ... ?
O12 P2 O13 C43 88.3(7) ... ?
C22 P2 O13 C43 -164.9(7) ... ?
C13 O1 C1 C6 1.4(10) ... ?
C13 O1 C1 C2 179.9(6) ... ?
C6 C1 C2 C3 -3.5(11) ... ?
O1 C1 C2 C3 178.0(6) ... ?
C6 C1 C2 C21 175.7(7) ... ?
O1 C1 C22 -2.8(10) ... ?
C1 C2 C3 C4 1.3(11) ... ?
C21 C2 C3 C4 -177.8(8) ... ?
C1 C2 C3 O4 -173.6(6) ... ?
C21 C2 C3 O4 7.2(11) ... ?
C23 O4 C3 C4 47.1(11) ... ?
C23 O4 C3 C2 -137.8(7) ... ?
C2 C3 C4 C5 0.8(12) ... ?
O4 C3 C4 C5 175.4(7) ... ?
C3 C4 C5 C6 -1.0(12) ... ?
C2 C1 C6 C5 3.4(11) ... ?
O1 C1 C6 C5 -178.3(7) ... ?
C2 C1 C6 C7 -174.2(7) ... ?
O1 C1 C6 C7 4.1(11) ... ?
C4 C5 C6 C1 -0.9(12) ... ?
C4 C5 C6 C7 176.6(7) ... ?
C20 O2 C7 C14 -3.2(6) ... ?
C20 O2 C7 C6 116.6(7) ... ?
C20 O2 C7 C8 -124.2(6) ... ?
C1 C6 C7 O2 111.5(8) ... ?
C5 C6 C7 O2 -66.0(10) ... ?
C1 C6 C7 C14 -135.1(7) ... ?
C5 C6 C7 C14 47.4(9) ... ?
C1 C6 C7 C8 -5.5(10) ... ?
C5 C6 C7 C8 177.0(7) ... ?
O2 C7 C8 C13 -115.6(7) ... ?
C14 C7 C8 C13 130.8(7) ... ?
C6 C7 C8 C13 2.1(10) ... ?
O2 C7 C8 C9 64.5(9) ... ?
C14 C7 C8 C9 -49.1(8) ... ?
C6 C7 C8 C9 -177.9(7) ... ?
C13 C8 C9 C10 -0.9(11) ... ?
C7 C8 C9 C10 179.0(7) ?
C8 C9 C10 C11 -1.3(11) ?
C9 C10 C11 C12 1.9(12) ?
C9 C10 C11 O6 -171.1(7) ?
C30 O6 C11 C12 125.7(7) ?
C30 O6 C11 C10 -60.7(10) ?
C10 C11 C12 C13 -0.2(11) ?
O6 C11 C12 C13 173.1(6) ?
C10 C11 C12 C22 -178.8(7) ?
O6 C11 C12 C22 -5.5(10) ?
C9 C8 C13 O1 -177.0(7) ?
C7 C8 C13 O1 3.1(11) ?
C9 C8 C13 C12 2.8(11) ?
C7 C8 C13 C12 -177.1(7) ?
C1 O1 C13 C8 -5.0(10) ?
C1 O1 C13 C12 175.2(6) ?
C11 C12 C13 C8 -2.2(11) ?
C22 C12 C13 C8 176.4(7) ?
C11 C12 C13 O1 177.6(6) ?
C22 C12 C13 O1 -3.8(10) ?
O2 C7 C14 C19 4.5(6) ?
C6 C7 C14 C19 -112.1(6) ?
C8 C7 C14 C19 120.4(6) ?
O2 C7 C14 C15 178.9(6) ?
C6 C7 C14 C15 62.3(9) ?
C8 C7 C14 C15 -65.2(9) ?
C19 C14 C15 C16 -0.8(9) ?
C7 C14 C15 C16 -174.6(6) ?
C14 C15 C16 C17 1.1(10) ?
C15 C16 C17 C18 -0.9(10) ?
C16 C17 C18 C19 0.3(10) ?
C15 C14 C19 C18 0.2(9) ?
C7 C14 C19 C18 175.2(6) ?
C15 C14 C19 C20 -179.2(6) ?
C7 C14 C19 C20 -4.2(7) ?
C17 C18 C19 C14 0.0(9) ?
C17 C18 C19 C20 179.2(6) ?
C7 O2 C20 O3 -178.6(5) ?
C7 O2 C20 C19 0.9(6) ?
C14 C19 C20 O3 -178.5(6) ?
C18 C19 C20 O3 2.2(12) ?
C14 C19 C20 O2 2.1(7) ?
C18 C19 C20 O2 -177.2(6) ?
C1 C2 C21 P1 89.9(8) ?
C3 C2 C21 P1 -91.0(8) ?
O8 P1 C21 C2 -34.1(7) ?
O10 P1 C21 C2 97.8(7) ?
O9 P1 C21 C2 -147.4(6) ?
C11 C12 C22 P2 -91.8(7) ?
C13 C12 C22 P2 89.7(7) ?
O11 P2 C22 C12 -54.2(5) ?
O12 P2 C22 C12 179.8(4) ?
O13 P2 C22 C12 71.7(5) ?
C3 O4 C23 O5 9.9(13) ?
C3 O4 C23 C24 -172.5(7) ?
O5 C23 C24 C29 6.5(15) ?
O4 C23 C24 C29 -171.0(8) ?
O5 C23 C24 C25 -169.3(10) ?
O4 C23 C24 C25 13.2(12) ?
C29 C24 C25 C26 -0.8(13) ?
C23 C24 C25 C26 175.0(8) ?
C24 C25 C26 C27 1.6(13) ?
C25 C26 C27 C28 -0.5(14) ?
C26 C27 C28 C29 1.4(14) ?
C27 C28 C29 C24 2.2(13) ?
C25 C24 C29 C28 -1.1(13) ?
C23 C24 C29 C28 -176.9(8) ?
C11 O6 C30 O7 -2.8(11) ?
C11 O6 C30 C31 178.1(6) ?
O7 C30 C31 C32 -177.8(8) ?
O6 C30 C31 C32 1.2(10) ?
O7 C30 C31 C36 1.2(12) ?
O6 C30 C31 C36 -179.7(7) ?
C36 C31 C32 C33 1.9(12) ?
C30 C31 C32 C33 -179.1(7) ?
C31 C32 C33 C34 0.4(12) ?
C32 C33 C34 C35 -1.9(13) ?
C33 C34 C35 C36 1.0(13) ?
C34 C35 C36 C31 1.2(13) ?
C32 C31 C36 C35 1.2(13) ?
C30 C31 C36 C35 178.2(7) ?
P1 O9 C37 C38 -116.7(10) ?
P1 O10 C39 C40 137.9(10) ?
P2 O12 C41 C42 -144.2(8) ?
P2 O13 C43 C44 -165.4(6) ?

_diffrn_measured_fraction_theta_max 0.903
_diffrn_reflns_theta_full 25.4
_diffrn_measured_fraction_theta_full 0.903
_refine_diff_density_max 0.97
_refine_diff_density_min -0.56
_refine_diff_density_rms 0.082

END OF CIF
Figure D.4. 1H NMR of compound 4.3

Figure D.5. 31P NMR of compound 4.3
Figure D.6. 1H NMR of compound 4.4

Figure D.7. 31P NMR of compound 4.4
APPENDIX E: JOB PLOTS RATIOS FOR 4.4-METAL COMPLEXES

Figure E.1. A job plot for the absorbance at 500 nm of the 4.4-Mn(II) complex. 0.1 M HEPES buffer, pH 7.5.

Table E.1. Stoichiometry ratio of 4.4-metal complexes

<table>
<thead>
<tr>
<th>Dye</th>
<th>Metal</th>
<th>Stoichiometry Dye:Metal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluorescein diphosphonate</td>
<td>Cu(II)</td>
<td>1:1</td>
</tr>
<tr>
<td></td>
<td>Ni(II)</td>
<td>1:1</td>
</tr>
<tr>
<td></td>
<td>Fe(III)</td>
<td>2:1</td>
</tr>
<tr>
<td></td>
<td>Co(II)</td>
<td>1:1</td>
</tr>
<tr>
<td></td>
<td>Bi(III)</td>
<td>1:1</td>
</tr>
<tr>
<td></td>
<td>Zn(II)</td>
<td>2:1</td>
</tr>
<tr>
<td></td>
<td>Mn(II)</td>
<td>2:1</td>
</tr>
</tbody>
</table>
APPENDIX F: MONITORING OF THIAZOLIDINIC FORMATION

Figure F.1. 1H NMR of compound 5.6

Figure F.2. 1H NMR of intermediate compounds 5.6a and 5.6c
Figure F.3. 1H NMR of intermediate compound 5.6b

Figure F.4. 1H NMR of compound 5.7
Figure F.5. Full 1H NMR of compound 5.7

Figure F.6. Full 1H NMR of compound 5.8
APPENDIX G: PHOTOXIDATION OF CYSTEINE AND HOMOCYSTEINE DERIVED THIAZOLIDINE PRODUCT IN PLASMA

Figure G.1. Plasma deproteinized by centrifugation and filtration containing 5.7×10^{-3} M irradiated with visible light with absorbance readings taken from 0 to 35 min.

Figure G.2. Plasma deproteinized by filtration containing 5.8×10^{-3} M irradiated with visible light with absorbance readings taken from 0 to 35 min.
Figure G.3. Plasma deproteinized by precipitation with acetonitrile and containing 5.8 \((1 \times 10^{-3} \text{ M}) \). Time of irradiation by visible light is from 0 to 30 min.

Figure G.4. Plasma deproteinized by precipitation with acetonitrile containing 5.7 \((1 \times 10^{-3} \text{ M}) \) irradiated with visible light with absorbance readings taken from 0 to 35 min.
APPENDIX H: CRYSTALLOGRAPHIC DATA FOR COMPOUND 5.5

Figure H.1. Crystal structure of compound 5.5

Table H.1. CIF data for compound 5.5

===
CHEMICAL DATA

_audit_creation_method SHELXL-97
_chemical_name_systematic ;
4’5’-Bis(bromomethyl)fluorescein Dibenzoate ;
_chemical_name_common ?
_chemical_melting_point ?
_chemical_compound_source 'Local laboratory'
_chemical_formula_moietys 'C36 H22 Br2 O7'
_chemical_formula_sum 'C36 H22 Br2 O7'
_chemical_formula_weight 726.36

loop_
_atom_type_symbol
_atom_type_description
_atom_type_scat_dispersion_real
_atom_type_scat_dispersion_imag
_atom_type_scat_source

128
CRYSTAL DATA

_symmetry_space_group_name_H-M 'P 21/n '
_symmetry_cell_setting 'Monoclinic'

loop_
_symmetry_equiv_pos_as_xyz
 'x, y, z'
' -x+1/2, y+1/2, -z+1/2'
' -x, -y, -z'
' x-1/2, -y-1/2, z-1/2'

_cell_length_a 10.703(3)
_cell_length_b 24.290(7)
_cell_length_c 12.108(4)
_cell_angle_alpha 90
_cell_angle_beta 108.353(12)
_cell_angle_gamma 90
_cell_volume 2987.7(16)
_cell_formula_units_Z 4
_cell_measurement_temperature 100
_cell_measurement_reflns_used 5190
_cell_measurement_theta_min 2.5
_cell_measurement_theta_max 25.0

_exptl_crystal_description prism
_exptl_crystal_colour colorless
_exptl_crystal_size_max 0.18
_exptl_crystal_size_mid 0.10
_exptl_crystal_size_min 0.07
_exptl_crystal_density_meas ?
_exptl_crystal_density_diffrn 1.615
_exptl_crystal_density_method 'not measured'
_exptl_crystal_F_000 1456
_exptl_absorpt_coefficient_mu 2.765
_exptl_absorpt_correction_type 'multi-scan'
_exptl_absorpt_correction_T_min 0.636
_exptl_absorpt_correction_T_max 0.830
_exptl_absorpt_process_details 'HKL Scalepack (Otwinowski & Minor 1997)'

_exptl_special_details
;
===

EXPERIMENTAL DATA

_diffrn_ambient_temperature 100
_diffrn_radiation_wavelength 0.71073
_diffrn_radiation_type MoKα
_diffrn_radiation_source 'fine-focus sealed tube'
_diffrn_radiation_monochromator graphite
_diffrn_measurement_device 'KappaCCD (with Oxford Cryostream)'
_diffrn_measurement_method 'w scans with k offsets'
_diffrn_detector_area_resol_mean
_diffrn_standards_number 0
_diffrn_standards_interval_count
_diffrn_standards_interval_time
_diffrn_standards_decay_% <2
_diffrn_reflns_number 10040
_diffrn_reflns_av_R_equivalents 0.088
_diffrn_reflns_av_sigmaI/netI 0.1205
_diffrn_reflns_limit_h_min -12
_diffrn_reflns_limit_h_max 12
_diffrn_reflns_limit_k_min -28
_diffrn_reflns_limit_k_max 28
_diffrn_reflns_limit_l_min -14
_diffrn_reflns_limit_l_max 14
_diffrn_reflns_theta_min 2.6
_diffrn_reflns_theta_max 25.0
_reflns_number_total 5237
_reflns_number_gt 2524
_reflns_threshold_expression I>2σ(I)

_computing_data_collection 'COLLECT (Nonius 1999)'
_computing_data_reduction 'Denzo and Scalepack (Otwinowski & Minor, 1997)'
_computing_cell_refinement 'Denzo and Scalepack (Otwinowski & Minor, 1997)'
_computing_structure_solution 'Direct_methods (SIR, Altomare, et al., 1994)'
_computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)'
_computing_molecular_graphics 'ORTEP-3 for Windows (Farrugia, 1997)'
_computing_publication_material 'SHELXL-97 (Sheldrick, 1997)'

130
REFINEMENT DATA

_refine_special_details

Refinement of F^2 against ALL reflections. The weighted R-factor wR and
goodness of fit S are based on F^2, conventional R-factors R are based
on F, with F set to zero for negative F^2. The threshold expression of
$F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is
not relevant to the choice of reflections for refinement. R-factors based
on F^2 are statistically about twice as large as those based on F, and R-
factors based on ALL data will be even larger.

_refine_ls_structure_factor_coef Fsqd
_refine_ls_matrix_type full
_refine_ls_weighting_scheme calc
_refine_ls_weighting_details
'calc w=1/[s^2*(Fo^2)+(0.2000P)^2] where P=(Fo^2+2Fc^2)/3'
_atom_sites_solution_primary direct
_atom_sites_solution_secondary difmap
_atom_sites_solution_hydrogens geom
_refine_ls_hydrogen_treatment constr
_refine_ls_extinction_method none
_refine_ls_extinction_coef ??
_refine_ls_number_reflns 5237
_refine_ls_number_parameters 402
_refine_ls_number_restraints 0
_refine_ls_R_factor_all 0.263
_refine_ls_R_factor_gt 0.163
_refine_ls_wR_factor_ref 0.474
_refine_ls_wR_factor_gt 0.422
_refine_ls_goodness_of_fit_ref 1.505
_refine_ls_restrained_S_all 1.505
_refine_ls_shift/su_max 0.01
_refine_ls_shift/su_mean 0.001

ATOMIC COORDINATES AND THERMAL PARAMETERS

loop
_atom_site_label
_atom_site_type_symbol
_atom_site_fract_x
Br1 Br 0.7922(2) 0.37050(10) 0.3954(2) 0.0713(11) Uiso 0.606(7) 1 d P
Br2 Br 0.8685(4) 0.51824(17) 0.4598(3) 0.1113(19) Uiso 0.554(8) 1 d P
O1 O 0.6515(8) 0.4586(4) 0.5579(7) 0.065(2) Uani 1 1 d .
O2 O 0.5124(7) 0.4533(4) 0.8211(7) 0.055(2) Uani 1 1 d .
O3 O 0.4395(9) 0.4417(3) 0.9746(7) 0.062(2) Uani 1 1 d .
O4 O 0.5633(8) 0.2711(4) 0.4827(7) 0.065(2) Uani 1 1 d .
O5 O 0.7368(9) 0.2203(4) 0.5847(8) 0.075(3) Uani 1 1 d .
O6 O 0.7283(8) 0.6494(4) 0.5872(8) 0.073(3) Uani 1 1 d .
O7 O 0.9351(11) 0.6537(5) 0.6971(14) 0.134(6) Uani 1 1 d .
C1 C 0.6318(11) 0.4075(5) 0.6041(10) 0.053(3) Uani 1 1 d .
C2 C 0.6139(12) 0.3642(6) 0.5221(10) 0.060(3) Uani 1 1 d .
C3 C 0.5928(12) 0.3129(6) 0.5645(10) 0.057(3) Uani 1 1 d .
C4 C 0.5893(11) 0.3034(6) 0.6742(10) 0.056(3) Uani 1 1 d .
C5 C 0.6100(11) 0.3486(5) 0.7501(10) 0.056(3) Uani 1 1 d .
H5 H 0.6104 0.3433 0.8279 0.067 Uiso 1 1 calc R .
C6 C 0.6297(11) 0.4063(5) 0.7133(11) 0.058(3) Uani 1 1 d .
C7 C 0.6390(11) 0.4503(5) 0.7960(10) 0.049(3) Uani 1 1 d .
C8 C 0.6588(10) 0.5027(5) 0.7397(10) 0.053(3) Uani 1 1 d .
C9 C 0.6759(11) 0.5527(5) 0.8031(11) 0.057(3) Uani 1 1 d .
H9 H 0.6714 0.5529 0.8802 0.068 Uiso 1 1 calc R .
C10 C 0.6996(11) 0.6025(6) 0.7514(11) 0.059(3) Uani 1 1 d .
C11 C 0.7086(12) 0.5996(5) 0.6420(14) 0.066(4) Uani 1 1 d .
C12 C 0.6930(13) 0.5531(7) 0.5760(11) 0.067(4) Uani 1 1 d .
C13 C 0.6663(12) 0.5043(5) 0.6302(11) 0.062(4) Uani 1 1 d .
C14 C 0.7372(11) 0.4423(4) 0.9145(10) 0.049(3) Uani 1 1 d .
C15 C 0.8714(11) 0.4373(5) 0.9477(11) 0.056(3) Uani 1 1 d .
H15 H 0.9164 0.4363 0.8915 0.068 Uiso 1 1 calc R .
C16 C 0.9394(14) 0.4338(6) 1.0645(13) 0.071(4) Uani 1 1 d .
H16 H 1.0324 0.4300 1.0886 0.085 Uiso 1 1 calc R .
C17 C 0.8757(15) 0.4358(6) 1.1478(14) 0.079(5) Uani 1 1 d .
H17 H 0.9255 0.4340 1.2280 0.095 Uiso 1 1 calc R .
C18 C 0.7411(14) 0.4402(5) 1.1154(11) 0.061(3) Uani 1 1 d .
H18 H 0.6958 0.4416 1.1714 0.073 Uiso 1 1 calc R .
C19 C 0.6742(11) 0.4425(5) 0.9968(10) 0.049(3) Uani 1 1 d .
C20 C 0.5518(13) 0.4451(5) 0.9360(11) 0.055(3) Uani 1 1 d .
C21 C 0.6191(13) 0.3730(6) 0.4025(11) 0.067(4) Uani 1 1 d .
<table>
<thead>
<tr>
<th>Atom</th>
<th>Cartesian Coordinates</th>
<th>Uiso</th>
<th>Calc R</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>0.5799 0.4093 0.3740</td>
<td>0.081</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>0.5656 0.3444 0.3505</td>
<td>0.081</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0.7072(15) 0.5513(7) 0.4544(12)</td>
<td>0.083(5)</td>
<td>0.3740 0.081</td>
</tr>
<tr>
<td>H</td>
<td>0.5656 0.3444 0.3505</td>
<td>0.081</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0.7072(15) 0.5513(7) 0.4544(12)</td>
<td>0.083(5)</td>
<td>0.3740 0.081</td>
</tr>
<tr>
<td>H</td>
<td>0.5656 0.3444 0.3505</td>
<td>0.081</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0.7072(15) 0.5513(7) 0.4544(12)</td>
<td>0.083(5)</td>
<td>0.3740 0.081</td>
</tr>
<tr>
<td>H</td>
<td>0.5656 0.3444 0.3505</td>
<td>0.081</td>
<td></td>
</tr>
</tbody>
</table>

atom_site_aniso

<table>
<thead>
<tr>
<th>Atom</th>
<th>aniso_label</th>
<th>U_11</th>
<th>U_22</th>
<th>U_33</th>
<th>U_12</th>
<th>U_13</th>
</tr>
</thead>
<tbody>
<tr>
<td>O1</td>
<td>0.073(5)</td>
<td>0.066(6)</td>
<td>0.045(5)</td>
<td>0.019(5)</td>
<td>0.004(4)</td>
<td>-0.002(4)</td>
</tr>
<tr>
<td>O2</td>
<td>0.054(5)</td>
<td>0.063(5)</td>
<td>0.046(5)</td>
<td>0.002(4)</td>
<td>0.015(4)</td>
<td>-0.002(4)</td>
</tr>
<tr>
<td>O3</td>
<td>0.074(6)</td>
<td>0.056(6)</td>
<td>0.064(6)</td>
<td>0.000(4)</td>
<td>0.033(5)</td>
<td>-0.014(4)</td>
</tr>
<tr>
<td>O4</td>
<td>0.066(5)</td>
<td>0.072(6)</td>
<td>0.051(5)</td>
<td>-0.008(5)</td>
<td>0.008(4)</td>
<td>0.006(5)</td>
</tr>
<tr>
<td>O5</td>
<td>0.069(6)</td>
<td>0.079(6)</td>
<td>0.069(6)</td>
<td>0.003(5)</td>
<td>0.010(5)</td>
<td>0.018(5)</td>
</tr>
<tr>
<td>O6</td>
<td>0.063(6)</td>
<td>0.068(6)</td>
<td>0.074(6)</td>
<td>0.026(5)</td>
<td>-0.001(4)</td>
<td>-0.013(5)</td>
</tr>
</tbody>
</table>

loop

<table>
<thead>
<tr>
<th>atom_site_aniso_label</th>
<th>atom_site_aniso_U_11</th>
<th>atom_site_aniso_U_22</th>
<th>atom_site_aniso_U_33</th>
<th>atom_site_aniso_U_12</th>
<th>atom_site_aniso_U_13</th>
</tr>
</thead>
<tbody>
<tr>
<td>O1</td>
<td>0.073(5)</td>
<td>0.066(6)</td>
<td>0.045(5)</td>
<td>0.019(5)</td>
<td>0.004(4)</td>
</tr>
<tr>
<td>O2</td>
<td>0.054(5)</td>
<td>0.063(5)</td>
<td>0.046(5)</td>
<td>0.002(4)</td>
<td>0.015(4)</td>
</tr>
<tr>
<td>O3</td>
<td>0.074(6)</td>
<td>0.056(6)</td>
<td>0.064(6)</td>
<td>0.000(4)</td>
<td>0.033(5)</td>
</tr>
<tr>
<td>O4</td>
<td>0.066(5)</td>
<td>0.072(6)</td>
<td>0.051(5)</td>
<td>-0.008(5)</td>
<td>0.008(4)</td>
</tr>
<tr>
<td>O5</td>
<td>0.069(6)</td>
<td>0.079(6)</td>
<td>0.069(6)</td>
<td>0.003(5)</td>
<td>0.010(5)</td>
</tr>
<tr>
<td>O6</td>
<td>0.063(6)</td>
<td>0.068(6)</td>
<td>0.074(6)</td>
<td>0.026(5)</td>
<td>-0.001(4)</td>
</tr>
</tbody>
</table>
O7 0.071(7) 0.094(9) 0.197(15) 0.071(10) -0.014(8) -0.011(6)
C1 0.057(7) 0.056(8) 0.036(7) 0.013(6) -0.001(5) -0.012(6)
C2 0.060(7) 0.076(9) 0.037(7) 0.004(6) 0.005(5) 0.015(7)
C3 0.057(7) 0.066(9) 0.046(8) -0.009(7) 0.012(6) 0.000(7)
C4 0.051(7) 0.071(7) 0.045(7) 0.001(7) 0.011(5) 0.001(6)
C5 0.058(7) 0.068(9) 0.035(6) 0.001(6) 0.006(5) -0.006(6)
C6 0.057(7) 0.053(8) 0.063(9) 0.003(7) 0.017(6) -0.006(6)
C7 0.047(6) 0.048(7) 0.051(7) 0.003(6) 0.014(5) -0.010(5)
C8 0.039(6) 0.073(9) 0.039(7) 0.011(6) 0.001(5) 0.001(6)
C9 0.056(7) 0.049(8) 0.064(8) 0.008(7) 0.017(6) -0.004(6)
C10 0.053(7) 0.068(9) 0.042(8) 0.018(6) -0.006(5) -0.003(6)
C11 0.051(7) 0.047(8) 0.087(11) 0.020(8) 0.002(6) -0.008(6)
C12 0.066(8) 0.081(11) 0.049(8) 0.031(8) 0.014(6) 0.000(7)
C13 0.068(8) 0.054(8) 0.047(8) 0.000(7) -0.008(6) 0.005(6)
C14 0.057(7) 0.037(6) 0.046(7) 0.010(5) 0.008(5) -0.003(5)
C15 0.055(7) 0.051(8) 0.064(9) 0.010(6) 0.020(6) -0.002(6)
C16 0.057(8) 0.060(9) 0.078(11) 0.000(8) -0.004(8) -0.007(7)
C17 0.069(10) 0.079(11) 0.065(10) 0.016(8) -0.014(8) -0.010(8)
C18 0.087(10) 0.053(7) 0.040(7) -0.001(6) 0.014(6) -0.007(7)
C19 0.058(7) 0.044(7) 0.037(7) 0.005(5) 0.007(5) 0.002(5)
C20 0.072(8) 0.044(7) 0.048(8) 0.000(6) 0.016(6) -0.015(6)
C21 0.080(9) 0.073(9) 0.044(8) -0.004(7) 0.013(6) -0.007(7)
C22 0.100(11) 0.087(11) 0.053(9) 0.034(8) 0.012(7) -0.008(9)
C23 0.033(6) 0.082(10) 0.055(8) -0.010(7) 0.004(6) 0.012(6)
C24 0.061(7) 0.055(8) 0.054(8) -0.003(6) 0.016(6) 0.005(6)
C25 0.047(7) 0.079(10) 0.075(9) -0.019(8) 0.003(7) 0.009(7)
C26 0.063(9) 0.113(14) 0.065(10) -0.020(10) -0.023(7) 0.024(9)
C27 0.081(10) 0.092(12) 0.062(9) -0.040(8) 0.003(8) -0.005(9)
C28 0.075(9) 0.095(11) 0.071(10) -0.010(9) 0.013(8) 0.024(9)
C29 0.067(8) 0.067(9) 0.043(7) -0.010(6) 0.005(6) 0.007(7)
C30 0.050(8) 0.063(9) 0.111(12) 0.035(9) -0.006(8) -0.002(7)
C31 0.070(9) 0.063(9) 0.085(11) 0.016(8) 0.025(8) -0.001(7)
C32 0.117(14) 0.134(18) 0.096(14) 0.069(13) -0.011(11) -0.058(13)
C33 0.138(18) 0.137(19) 0.133(19) 0.076(16) -0.038(14) -0.071(16)
C34 0.17(2) 0.053(10) 0.098(14) 0.016(9) 0.055(14) -0.006(13)
C35 0.17(2) 0.044(10) 0.33(4) 0.018(16) 0.19(3) -0.013(12)
C36 0.078(11) 0.080(12) 0.23(2) 0.026(14) 0.082(13) 0.018(9)

==

MOLECULAR GEOMETRY

_geom_special_details

; All esds (except the esd in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell esds are taken
into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

<table>
<thead>
<tr>
<th>Loop</th>
<th>Bond Distance</th>
<th>Esd (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Br1 C21</td>
<td>1.883(14)</td>
<td></td>
</tr>
<tr>
<td>Br2 C22</td>
<td>1.887(17)</td>
<td></td>
</tr>
<tr>
<td>O1 C13</td>
<td>1.392(16)</td>
<td></td>
</tr>
<tr>
<td>O1 C1</td>
<td>1.404(14)</td>
<td></td>
</tr>
<tr>
<td>O2 C20</td>
<td>1.355(14)</td>
<td></td>
</tr>
<tr>
<td>O2 C7</td>
<td>1.481(13)</td>
<td></td>
</tr>
<tr>
<td>O3 C20</td>
<td>1.221(14)</td>
<td></td>
</tr>
<tr>
<td>O4 C23</td>
<td>1.363(15)</td>
<td></td>
</tr>
<tr>
<td>O4 C3</td>
<td>1.383(15)</td>
<td></td>
</tr>
<tr>
<td>O5 C23</td>
<td>1.211(14)</td>
<td></td>
</tr>
<tr>
<td>O5 Br3</td>
<td>1.950(16)</td>
<td>2.646</td>
</tr>
<tr>
<td>O6 C30</td>
<td>1.328(16)</td>
<td></td>
</tr>
<tr>
<td>O6 C11</td>
<td>1.427(16)</td>
<td></td>
</tr>
<tr>
<td>O7 C30</td>
<td>1.202(17)</td>
<td></td>
</tr>
<tr>
<td>O7 Br4</td>
<td>2.23(2)</td>
<td>2.656</td>
</tr>
<tr>
<td>C1 C6</td>
<td>1.340(17)</td>
<td></td>
</tr>
<tr>
<td>C1 C2</td>
<td>1.417(18)</td>
<td></td>
</tr>
<tr>
<td>C2 C3</td>
<td>1.393(19)</td>
<td></td>
</tr>
<tr>
<td>C2 C21</td>
<td>1.482(17)</td>
<td></td>
</tr>
<tr>
<td>C3 C4</td>
<td>1.360(17)</td>
<td></td>
</tr>
<tr>
<td>C4 C5</td>
<td>1.404(17)</td>
<td></td>
</tr>
<tr>
<td>C4 Br4</td>
<td>1.903(18)</td>
<td></td>
</tr>
<tr>
<td>C5 C6</td>
<td>1.377(18)</td>
<td></td>
</tr>
<tr>
<td>C5 H5</td>
<td>0.9500</td>
<td></td>
</tr>
<tr>
<td>C6 C7</td>
<td>1.551(17)</td>
<td></td>
</tr>
<tr>
<td>C7 C8</td>
<td>1.490(16)</td>
<td></td>
</tr>
<tr>
<td>C7 C14</td>
<td>1.500(16)</td>
<td></td>
</tr>
<tr>
<td>C8 C13</td>
<td>1.353(18)</td>
<td></td>
</tr>
<tr>
<td>C8 C9</td>
<td>1.418(17)</td>
<td></td>
</tr>
<tr>
<td>C9 C10</td>
<td>1.421(17)</td>
<td></td>
</tr>
<tr>
<td>C9 H9</td>
<td>0.9500</td>
<td></td>
</tr>
<tr>
<td>C10 C11</td>
<td>1.359(19)</td>
<td></td>
</tr>
<tr>
<td>C10 Br3</td>
<td>1.517(19)</td>
<td></td>
</tr>
<tr>
<td>C11 C12</td>
<td>1.36(2)</td>
<td></td>
</tr>
</tbody>
</table>
C13 O1 C1 117.1(10) . . ?
C20 O2 C7 110.4(9) . . ?
C23 O4 C3 119.9(9) . . ?
C23 O5 Br3 130.8(10) . 2_646 ?
C30 O6 C11 119.4(10) . ?
C30 O7 Br4 93.8(12) . 2_656 ?
C6 C1 C2 124.0(12) . . ?
C6 C1 O1 123.6(12) . . ?
C2 C1 O1 112.4(11) . . ?
C3 C2 C1 114.1(11) . . ?
C3 C2 C21 123.4(12) . . ?
C1 C2 C21 122.6(13) . . ?
C4 C3 C2 124.6(12) . . ?
C4 C3 O4 120.4(12) . . ?
C2 C3 O4 114.8(11) . . ?
C3 C4 C5 117.4(12) . . ?
C3 C4 Br4 118.5(11) . . ?
C5 C4 Br4 123.3(10) . . ?
C4 C5 C6 121.0(11) . . ?
C4 C5 H5 119.6 . . ?
C6 C5 H5 119.5 . . ?
C1 C6 C5 119.0(12) . . ?
C1 C6 C7 121.6(11) . . ?
C5 C6 C7 119.3(11) . . ?
O2 C7 C8 108.9(9) . . ?
O2 C7 C14 102.8(9) . . ?
C8 C7 C14 113.0(9) . . ?
O2 C7 C6 107.1(8) . . ?
C8 C7 C6 110.9(10) . . ?
C14 C7 C6 113.6(10) . . ?
C13 C8 C9 117.9(12) . . ?
C13 C8 C7 122.3(12) . . ?
C9 C8 C7 119.7(11) . . ?
C8 C9 C10 120.1(12) . . ?
C8 C9 H9 120.1 . . ?
C10 C9 H9 119.8 . . ?
C11 C10 C9 117.6(13) . . ?
C11 C10 Br3 116.4(11) . . ?
C9 C10 Br3 126.0(12) . . ?
C12 C11 C10 125.5(12) . . ?
C12 C11 O6 116.0(13) . . ?
C10 C11 O6 118.4(13) . . ?
C11 C12 C13 115.1(12) . . ?
C11 C12 C22 123.9(13) . . ?
C13 C12 C22 120.9(14) . . ?
C8 C13 O1 124.3(12) . . ?
C8 C13 C12 123.8(13) . . ?
O1 C13 C12 111.9(12) . . ?
C19 C14 C15 119.9(11) . . ?
C19 C14 C7 109.8(10) . . ?
C15 C14 C7 130.3(11) . . ?
C14 C15 C16 118.3(12) . . ?
C14 C15 H15 120.8 . . ?
C16 C15 H15 120.9 . . ?
C17 C16 C15 121.7(13) . . ?
C17 C16 H16 119.3 . . ?
C15 C16 H16 119.1 . . ?
C16 C17 C18 120.5(13) . . ?
C16 C17 H17 119.5 . . ?
C18 C17 H17 120.0 . . ?
C17 C18 C19 116.8(13) . . ?
C17 C18 H18 121.4 . . ?
C19 C18 H18 121.7 . . ?
C14 C19 C18 122.8(12) . . ?
C14 C19 C20 107.8(10) . . ?
C18 C19 C20 129.4(12) . . ?
O3 C20 O2 121.4(11) . . ?
O3 C20 C19 129.9(11) . . ?
O2 C20 C19 108.7(11) . . ?
C2 C21 Br1 112.3(9) . . ?
C2 C21 H21A 109.4 . . ?
Br1 C21 H21A 109.1 . . ?
C2 C21 H21B 108.9 . . ?
Br1 C21 H21B 109.2 . . ?
H21A C21 H21B 107.8 . . ?
C12 C22 Br2 110.3(9) . . ?
C12 C22 H22A 109.3 . . ?
Br2 C22 H22A 109.3 . . ?
C12 C22 H22B 109.7 . . ?
Br2 C22 H22B 110.1 . . ?
H22A C22 H22B 108.2 . . ?
O5 C23 O4 121.6(12) . . ?
O5 C23 C24 126.6(12) . . ?
O4 C23 C24 111.8(10) . . ?
C29 C24 C25 118.4(12) . . ?
C29 C24 C23 119.7(11) . . ?
C25 C24 C23 122.0(12) . . ?
C26 C25 C24 119.8(13) . . ?
C26 C25 H25 120.0 . . ?
C24 C25 H25 120.3 . . ?
C25 C26 C27 120.3(12) . . ?
C25 C26 H26 119.8 . . ?
C27 C26 H26 119.9 . . ?
C26 C27 C28 122.9(13) . . ?
C26 C27 H27 118.5 . . ?
C28 C27 H27 118.5 . . ?
C29 C28 C27 114.6(14) . . ?
C29 C28 H28 122.8 . . ?
C27 C28 H28 122.7 . . ?
C28 C29 C24 124.0(12) . . ?
C28 C29 H29 117.9 . . ?
C24 C29 H29 118.1 . . ?
O7 C30 O6 120.5(13) . . ?
O7 C30 C31 125.9(14) . . ?
O6 C30 C31 113.6(12) . . ?
C32 C31 C36 119.4(13) . . ?
C32 C31 C30 122.2(13) . . ?
C36 C31 C30 117.5(13) . . ?
C31 C32 C33 122.3(19) . . ?
C31 C32 H32 119.0 . . ?
C33 C32 H32 118.7 . . ?
C34 C33 C32 119.7(19) . . ?
C34 C33 H33 119.6 . . ?
C32 C33 H33 120.7 . . ?
C33 C34 C35 118.7(16) . . ?
C33 C34 H34 121.1 . . ?
C35 C34 H34 120.2 . . ?
C34 C35 C36 123.6(17) . . ?
C34 C35 H35 118.6 . . ?
C36 C35 H35 117.8 . . ?
C35 C36 C31 114.7(16) . . ?
C35 C36 H36 123.0 . . ?
C31 C36 H36 122.2 . . ?
C10 Br3 O5 162.4(10) . 2_656 ?
C4 Br4 O7 151.0(8) . 2_646 ?

loop_
 _geom_torsion_atom_site_label_1
 _geom_torsion_atom_site_label_2
 _geom_torsion_atom_site_label_3
 _geom_torsion_atom_site_label_4
 _geom_torsion
C8 C9 C10 C11 -1.8(17) ?
C8 C9 C10 Br3 176.2(10) ?
C9 C10 C11 C12 2.0(19) ?
Br3 C10 C11 C12 -176.1(12) ?
C9 C10 C11 O6 178.1(10) ?
Br3 C10 C11 O6 -0.1(16) ?
C30 O6 C11 C12 -105.3(15) ?
C30 O6 C11 C10 78.3(17) ?
C10 C11 C12 C13 -1(2) ?
O6 C11 C12 C13 -176.7(10) ?
C10 C11 C12 C22 -178.5(12) ?
O6 C11 C12 C22 5.4(19) ?
C9 C8 C13 O1 -180.0(10) ?
C7 C8 C13 O1 2.5(18) ?
C9 C8 C13 C12 1.4(18) ?
C7 C8 C13 C12 -176.1(11) ?
C1 O1 C13 C8 -2.1(17) ?
C1 O1 C13 C12 176.7(10) ?
C11 C12 C13 C8 -1.2(19) ?
C22 C12 C13 C8 176.8(12) ?
C11 C12 C13 O1 -180.0(11) ?
C22 C12 C13 O1 -2.0(17) ?
O2 C7 C14 C19 -1.6(12) ?
C8 C7 C14 C19 115.5(11) ?
C6 C7 C14 C19 -179.2(11) ?
O2 C7 C14 C15 -179.2(11) ?
C8 C7 C14 C15 -62.0(16) ?
C6 C7 C14 C15 65.4(16) ?
C19 C14 C15 C16 -1.5(18) ?
C7 C14 C15 C16 175.9(12) ?
C14 C15 C16 C17 -1(2) ?
C15 C16 C17 C18 1(2) ?
C16 C17 C18 C19 0(2) ?
C15 C14 C19 C18 2.9(18) ?
C7 C14 C19 C18 -174.9(10) ?
C15 C14 C19 C20 -176.7(10) ?
C7 C14 C19 C20 5.4(13) ?
C17 C18 C19 C14 -2.1(18) ?
C17 C18 C19 C20 177.4(13) ?
C7 O2 C20 O3 -174.5(10) ?
C7 O2 C20 C19 6.5(12) ?
C14 C19 C20 O3 173.6(12) ?
C18 C19 C20 O3 -6(2) ?
C14 C19 C20 O2 -7.5(13) ?
C18 C19 C20 O2 172.9(11) ?
C3 C2 C21 Br1 -94.1(14) ?
C1 C2 C21 Br1 85.2(14) . . . ?
C11 C12 C22 Br2 104.6(14) . . . ?
C13 C12 C22 Br2 -73.1(15) . . . ?
Br3 O5 C23 O4 127.7(13) 2_646 . . . ?
Br3 O5 C23 C24 -53.1(19) 2_646 . . . ?
C3 O4 C23 O5 2.1(19) ?
C3 O4 C23 C24 -177.2(11) ?
O5 C23 C24 C29 -1(2) ?
O4 C23 C24 C29 56(2) 2_656 . . . ?
O7 C30 C31 C32 -163(2) ?
O6 C30 C31 C32 15(3) ?
O7 C30 C31 C36 6(3) ?
O6 C30 C31 C36 -176.4(14) . . . ?
C30 C31 C32 C33 -14(2) . . . ?
C30 C31 C32 C33 176.9(16) . . . ?
C11 C10 Br3 O5 -134(3) . . 2.656 . ?
C9 C10 Br3 O5 48(4) . . 2.656 . ?
C3 C4 Br4 O7 114.9(18) . . 2.646 . ?
C5 C4 Br4 O7 -76(2) . . 2.646 . ?
_diffrn_measured_fraction_theta_max 0.996
_diffrn_reflns_theta_full 25.00
_diffrn_measured_fraction_theta_full 0.996
_refine_diff_density_max 2.64
_refine_diff_density_min -2.07
_refine_diff_density_rms 0.140
END OF NADIA6 CIF
APPENDIX I: CHARACTERIZATION DATA OF COMPOUND 6.4

Figure I.1. 1H NMR of compound 6.4

Figure I.2. MALDI MS of compound 6.4
Figure I.3. Crystal structure of compound 6.4

Table I.1. CIF data for compound 6.4

CHEMICAL DATA

_audit_creation_method SHELXL-97
_chemical_name_systematic :
_chemical_name_common ?
_chemical_melting_point ?
_chemical_compound_source 'Local laboratory'
_chemical_formula_moiety 'C43 H64 O4, C4 H8 O'
_chemical_formula_sum 'C47 H72 O6'
_chemical_formula_weight 733.05

loop
_atom_type_symbol
_atom_type_description
_atom_type_scat_dispersion_real
_atom_type_scat_dispersion_imag
_atom_type_scat_source
'C' 'C' 0.0033 0.0016
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
'H' 'H' 0.0000 0.0000
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
'O' 'O' 0.0106 0.0060
CRYSTAL DATA

_symmetry_space_group_name_H-M 'P 21/n '
_symmetry_cell_setting 'Monoclinic'

loop_
_symmetry_equiv_pos_as_xyz
'x, y, z'
'-x+1/2, y+1/2, -z+1/2'
'-x, -y, -z'
'x-1/2, -y-1/2, z-1/2'

_cell_length_a 11.3360(10)
_cell_length_b 17.342(3)
_cell_length_c 44.669(7)
_cell_angle_alpha 90
_cell_angle_beta 94.740(6)
_cell_angle_gamma 90
_cell_volume 8751(2)
_cell_formula_units_Z 8
_cell_measurement_temperature 100
_cell_measurement_reflns_used 10163
_cell_measurement_theta_min 2.5
_cell_measurement_theta_max 25.0

_exptl_crystal_description fragment
_exptl_crystal_colour yellow
_exptl_crystal_size_max 0.45
_exptl_crystal_size_mid 0.25
_exptl_crystal_size_min 0.15
_exptl_crystal_density_meas ?
_exptl_crystal_density_diffrn 1.113
_exptl_crystal_density_method 'not measured'
_exptl_crystal_F_000 3216
_exptl_absorpt_coefficient_mu 0.071
_exptl_absorpt_correction_type none
_exptl_absorpt_correction_T_min ?
_exptl_absorpt_correction_T_max ?
_exptl_absorpt_process_details ?

_exptl_special_details
;

===
EXPERIMENTAL DATA

_diffrn_ambient_temperature 100
_diffrn_radiation_wavelength 0.71073
_diffrn_radiation_type MoKα
_diffrn_radiation_source 'fine-focus sealed tube'
_diffrn_radiation_monochromator graphite
_diffrn_measurement_device 'KappaCCD (with Oxford Cryostream)'
_diffrn_measurement_method 'w scans with k offsets'
_diffrn_detector_area_resol_mean ?
_diffrn_standards_number 0
_diffrn_standards_interval_count ?
_diffrn_standards_interval_time ?
_diffrn_standards_decay_% <2
_diffrn_reflns_number 28475
_diffrn_reflns_av_R_equivalents 0.041
_diffrn_reflns_av_sigmaI/netI 0.0833
_diffrn_reflns_limit_h_min -13
_diffrn_reflns_limit_h_max 13
_diffrn_reflns_limit_k_min -20
_diffrn_reflns_limit_k_max 8
_diffrn_reflns_limit_l_min -52
_diffrn_reflns_limit_l_max 52
_diffrn_reflns_theta_min 2.5
_diffrn_reflns_theta_max 25.0
_reflns_number_total 13884
_reflns_number_gt 8399
_reflns_threshold_expression I>2σ(I)

_computing_data_collection 'COLLECT (Nonius 1999)'
_computing_data_reduction 'Denzo and Scalepack (Otwinowski & Minor, 1997)'
_computing_cell_refinement 'Denzo and Scalepack (Otwinowski & Minor, 1997)'
_computing_structure_solution 'Direct_methods (SIR, Altomare, et al., 1994)'
_computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)'
_computing_molecular_graphics 'ORTEP-3 for Windows (Farrugia, 1997)'
_computing_publication_material 'SHELXL-97 (Sheldrick, 1997)'

REFINEMENT DATA

_refine_special_details

Refinement of F^2^ against ALL reflections. The weighted R-factor wR and
goodness of fit S are based on F^2^, conventional R-factors R are based
on F, with F set to zero for negative F^2^.

146
F^2 > 2\sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

;

_refine_ls_structure_factor_coef Fsqd
_refine_ls_matrix_type full
_refine_ls_weighting_scheme calc
_refine_ls_weighting_details 'calc w=1/[s^2^*(Fo^2^)+(0.0839P)^2^+1.3321P] where P=(Fo^2^+2Fc^2^)/3'
_atom_sites_solution_primary direct
_atom_sites_solution_secondary difmap
_atom_sites_solution_hydrogens geom
_refine_ls_hydrogen_treatment constr
_refine_ls_extinction_method none
_refine_ls_extinction_coef ?
_refine_ls_number_reflns 13884
_refine_ls_number_parameters 966
_refine_ls_number_restraints 0
_refine_ls_R_factor_all 0.117
_refine_ls_R_factor_gt 0.060
_refine_ls_wR_factor_ref 0.173
_refine_ls_wR_factor_gt 0.146
_refine_ls_goodness_of_fit_ref 1.038
_refine_ls_restrained_S_all 1.038
_refine_ls_shift/su_max 0.003
_refine_ls_shift/su_mean 0.000

ATOMIC COORDINATES AND THERMAL PARAMETERS

loop_
_atom_site_label
_atom_site_type_symbol
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
_atom_site_U_iso_or_equiv
_atom_site_adp_type
_atom_site_occupancy
_atom_site_symmetry_multiplicity
_atom_site_calc_flag
_atom_site_refinement_flags
_atom_site_disorder_assembly
_atom_site_disorder_group
O1A O 0.97458(15) 0.18260(11) 0.73624(4) 0.0330(5) Uani 1 1 d . . .
H1OA H 0.9616 0.2236 0.7454 0.049 Uiso 1 1 calc R . .
O2A O 0.61918(14) 0.26055(10) 0.67820(4) 0.0313(5) Uani 1 1 d . . .
H2OA H 0.6195 0.2926 0.6923 0.047 Uiso 1 1 calc R . .
O3A O 1.28022(15) 0.11552(12) 0.72347(4) 0.0402(5) Uani 1 1 d . . .
H3OA H 1.2176 0.1085 0.7319 0.060 Uiso 1 1 calc R . .
O4A O 1.40694(14) 0.25698(10) 0.64123(4) 0.0302(5) Uani 1 1 d . . .
H4OA H 1.4682 0.2593 0.6531 0.045 Uiso 1 1 calc R . .
C1A C 1.0442(2) 0.08395(13) 0.69156(6) 0.0231(6) Uani 1 1 d . . .
H1A H 1.0665 0.0828 0.7137 0.028 Uiso 1 1 calc R . .
C2A C 1.0317(2) -0.00041(14) 0.68204(6) 0.0259(6) Uani 1 1 d . . .
C3A C 0.9250(2) -0.03961(15) 0.68316(6) 0.0336(7) Uani 1 1 d . . .
H3A H 0.8569 -0.0121 0.6882 0.040 Uiso 1 1 calc R . .
C4A C 0.9158(3) -0.11786(16) 0.67709(7) 0.0398(8) Uani 1 1 d . . .
H4A H 0.8417 -0.1431 0.6777 0.048 Uiso 1 1 calc R . .
C5A C 1.0134(3) -0.15887(17) 0.67027(7) 0.0437(8) Uani 1 1 d . . .
H5A H 1.0072 -0.2125 0.6661 0.052 Uiso 1 1 calc R . .
C6A C 1.1204(3) -0.12171(16) 0.66947(7) 0.0458(8) Uani 1 1 d . . .
H6A H 1.1886 -0.1501 0.6651 0.055 Uiso 1 1 calc R . .
C7A C 1.1297(2) -0.04255(15) 0.67501(7) 0.0367(7) Uani 1 1 d . . .
H7A H 1.2037 -0.0174 0.6740 0.044 Uiso 1 1 calc R . .
C8A C 0.9296(2) 0.12969(14) 0.68796(9) 0.0219(6) Uani 1 1 d . . .
C9A C 0.8997(2) 0.17862(15) 0.71018(6) 0.0241(6) Uani 1 1 d . . .
C10A C 0.7960(2) 0.22216(14) 0.70379(6) 0.0238(6) Uani 1 1 d . . .
H10A H 0.7762 0.2547 0.7233 0.029 Uiso 1 1 calc R . .
C11A C 0.7224(2) 0.21746(14) 0.68121(6) 0.0245(6) Uani 1 1 d . . .
C12A C 0.7473(2) 0.16952(14) 0.65768(6) 0.0234(6) Uani 1 1 d . . .
C13A C 0.8515(2) 0.12636(14) 0.66170(6) 0.0245(6) Uani 1 1 d . . .
H13A H 0.8705 0.0929 0.6460 0.029 Uiso 1 1 calc R . .
C14A C 0.6669(2) 0.16455(15) 0.62928(6) 0.0283(7) Uani 1 1 d . . .
C15A C 0.5673(2) 0.30304(16) 0.56272(6) 0.0309(7) Uani 1 1 d . . .
H15A H 0.5621 0.2824 0.6205 0.034 Uiso 1 1 calc R . .
C16A C 0.5725(2) 0.23297(15) 0.58312(6) 0.0296(7) Uani 1 1 d . . .
H16A H 0.5833 0.1865 0.5708 0.036 Uiso 1 1 calc R . .
H16B H 0.4955 0.2278 0.5919 0.036 Uiso 1 1 calc R . .
C17A C 0.5673(2) 0.30304(16) 0.56272(6) 0.0309(7) Uani 1 1 d . . .
H17A H 0.6365 0.3023 0.5506 0.037 Uiso 1 1 calc R . .
H17B H 0.5726 0.3502 0.5752 0.037 Uiso 1 1 calc R . .
C18A C 0.4546(2) 0.30612(16) 0.54180(6) 0.0314(7) Uani 1 1 d . . .
H18A H 0.4473 0.2572 0.5304 0.038 Uiso 1 1 calc R . .
H18B H 0.3862 0.3095 0.5541 0.038 Uiso 1 1 calc R . .
C19A C 0.4474(2) 0.37247(16) 0.51960(6) 0.0318(7) Uani 1 1 d . . .
H19A H 0.5139 0.3683 0.5066 0.038 Uiso 1 1 calc R . .

148
<p>| Atom | Symbol | x | y | z | Uiso | Site Sym | Calc R |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C38A</td>
<td>C</td>
<td>0.8346(2)</td>
<td>0.41563(15)</td>
<td>0.47319(6)</td>
</tr>
<tr>
<td>H38A</td>
<td>H</td>
<td>0.9006</td>
<td>0.4033</td>
<td>0.4608</td>
</tr>
<tr>
<td>C38B</td>
<td>H</td>
<td>0.8000</td>
<td>0.4674</td>
<td>0.4820</td>
</tr>
<tr>
<td>C39A</td>
<td>H</td>
<td>0.7200(2)</td>
<td>0.41845(16)</td>
<td>0.45286(6)</td>
</tr>
<tr>
<td>H39A</td>
<td>H</td>
<td>0.7066</td>
<td>0.3673</td>
<td>0.4433</td>
</tr>
<tr>
<td>C39B</td>
<td>H</td>
<td>0.6535</td>
<td>0.4284</td>
<td>0.4654</td>
</tr>
<tr>
<td>C40A</td>
<td>H</td>
<td>0.7182(2)</td>
<td>0.47926(16)</td>
<td>0.42842(6)</td>
</tr>
<tr>
<td>H40A</td>
<td>H</td>
<td>0.7264</td>
<td>0.5306</td>
<td>0.4380</td>
</tr>
<tr>
<td>H40B</td>
<td>H</td>
<td>0.7879</td>
<td>0.4714</td>
<td>0.4168</td>
</tr>
<tr>
<td>C41A</td>
<td>H</td>
<td>0.6080(2)</td>
<td>0.54444(19)</td>
<td>0.38402(7)</td>
</tr>
<tr>
<td>H41A</td>
<td>H</td>
<td>0.5378</td>
<td>0.4834</td>
<td>0.4185</td>
</tr>
<tr>
<td>C41B</td>
<td>H</td>
<td>0.6047(2)</td>
<td>0.54444(19)</td>
<td>0.38402(7)</td>
</tr>
<tr>
<td>O1B</td>
<td>O</td>
<td>1.03336(16)</td>
<td>0.69620(10)</td>
<td>0.74779(4)</td>
</tr>
<tr>
<td>H1OB</td>
<td>H</td>
<td>1.0861</td>
<td>0.6624</td>
<td>0.7509</td>
</tr>
<tr>
<td>O2B</td>
<td>O</td>
<td>0.5789(14)</td>
<td>0.74904(10)</td>
<td>0.68756(4)</td>
</tr>
<tr>
<td>H2OB</td>
<td>H</td>
<td>0.6634</td>
<td>0.7700</td>
<td>0.7037</td>
</tr>
<tr>
<td>C1B</td>
<td>C</td>
<td>1.1102(2)</td>
<td>0.57913(14)</td>
<td>0.70461(6)</td>
</tr>
<tr>
<td>H1B</td>
<td>H</td>
<td>1.1345</td>
<td>0.5782</td>
<td>0.7266</td>
</tr>
<tr>
<td>C2B</td>
<td>C</td>
<td>1.0961(2)</td>
<td>0.49469(14)</td>
<td>0.69476(6)</td>
</tr>
<tr>
<td>C3B</td>
<td>C</td>
<td>0.9990(2)</td>
<td>0.45232(15)</td>
<td>0.70239(7)</td>
</tr>
<tr>
<td>C4B</td>
<td>C</td>
<td>0.9857(3)</td>
<td>0.4764(4)</td>
<td>0.7133</td>
</tr>
<tr>
<td>C5B</td>
<td>C</td>
<td>1.0702(3)</td>
<td>0.3398(17)</td>
<td>0.67906(7)</td>
</tr>
<tr>
<td>H5B</td>
<td>H</td>
<td>1.0611</td>
<td>0.2872</td>
<td>0.6736</td>
</tr>
<tr>
<td>C6B</td>
<td>C</td>
<td>1.1681(3)</td>
<td>0.38014(16)</td>
<td>0.67154(7)</td>
</tr>
<tr>
<td>H6B</td>
<td>H</td>
<td>1.2270</td>
<td>0.3551</td>
<td>0.6612</td>
</tr>
<tr>
<td>C7B</td>
<td>C</td>
<td>1.1804(2)</td>
<td>0.45767(15)</td>
<td>0.67921(6)</td>
</tr>
<tr>
<td>H7B</td>
<td>H</td>
<td>1.2474</td>
<td>0.4855</td>
<td>0.6737</td>
</tr>
<tr>
<td>C8B</td>
<td>C</td>
<td>0.9935(2)</td>
<td>0.62407(14)</td>
<td>0.70088(6)</td>
</tr>
<tr>
<td>C9B</td>
<td>C</td>
<td>0.9643(2)</td>
<td>0.67871(14)</td>
<td>0.72195(6)</td>
</tr>
<tr>
<td>C10B</td>
<td>C</td>
<td>0.8592(2)</td>
<td>0.72017(14)</td>
<td>0.71760(6)</td>
</tr>
<tr>
<td>H10B</td>
<td>H</td>
<td>0.8391</td>
<td>0.7569</td>
<td>0.7321</td>
</tr>
<tr>
<td>C11B</td>
<td>C</td>
<td>0.7843(2)</td>
<td>0.70771(14)</td>
<td>0.69217(6)</td>
</tr>
<tr>
<td>C12B</td>
<td>C</td>
<td>0.8091(2)</td>
<td>0.65487(14)</td>
<td>0.67033(6)</td>
</tr>
<tr>
<td>Atom</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td>Uiso</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>C13B</td>
<td>0.9147</td>
<td>0.6139</td>
<td>0.6754</td>
<td>0.0235</td>
</tr>
<tr>
<td>H13B</td>
<td>0.9341</td>
<td>0.5772</td>
<td>0.6609</td>
<td>0.028</td>
</tr>
<tr>
<td>C14B</td>
<td>0.7275</td>
<td>0.6428</td>
<td>0.6423</td>
<td>0.0275</td>
</tr>
<tr>
<td>H14B</td>
<td>0.6456</td>
<td>0.6374</td>
<td>0.6482</td>
<td>0.037</td>
</tr>
<tr>
<td>C15B</td>
<td>0.7307</td>
<td>0.7078</td>
<td>0.6194</td>
<td>0.0312</td>
</tr>
<tr>
<td>H15B</td>
<td>0.7242</td>
<td>0.7579</td>
<td>0.6298</td>
<td>0.037</td>
</tr>
<tr>
<td>C16B</td>
<td>0.6318</td>
<td>0.7018</td>
<td>0.5943</td>
<td>0.0312</td>
</tr>
<tr>
<td>H16B</td>
<td>0.6419</td>
<td>0.6532</td>
<td>0.5831</td>
<td>0.037</td>
</tr>
<tr>
<td>C17B</td>
<td>0.6273</td>
<td>0.7685</td>
<td>0.5723</td>
<td>0.0358</td>
</tr>
<tr>
<td>H17B</td>
<td>0.6954</td>
<td>0.7645</td>
<td>0.5598</td>
<td>0.044</td>
</tr>
<tr>
<td>C18B</td>
<td>0.5132</td>
<td>0.8373</td>
<td>0.5294</td>
<td>0.0358</td>
</tr>
<tr>
<td>H18B</td>
<td>0.5693</td>
<td>0.8320</td>
<td>0.5158</td>
<td>0.043</td>
</tr>
<tr>
<td>C19B</td>
<td>0.5051</td>
<td>0.8373</td>
<td>0.5294</td>
<td>0.0358</td>
</tr>
<tr>
<td>H19B</td>
<td>0.5055</td>
<td>0.7918</td>
<td>0.5404</td>
<td>0.041</td>
</tr>
<tr>
<td>C20B</td>
<td>0.3872</td>
<td>0.9737</td>
<td>0.4256</td>
<td>0.0426</td>
</tr>
<tr>
<td>H20C</td>
<td>0.2469</td>
<td>0.9232</td>
<td>0.4155</td>
<td>0.051</td>
</tr>
<tr>
<td>C21B</td>
<td>0.1366</td>
<td>1.0368</td>
<td>0.4021</td>
<td>0.079</td>
</tr>
<tr>
<td>H21C</td>
<td>0.1304</td>
<td>1.0368</td>
<td>0.3910</td>
<td>0.079</td>
</tr>
<tr>
<td>H21D</td>
<td>0.1441</td>
<td>1.0870</td>
<td>0.4118</td>
<td>0.079</td>
</tr>
<tr>
<td>C22B</td>
<td>0.2538</td>
<td>0.9719</td>
<td>0.4319</td>
<td>0.044</td>
</tr>
<tr>
<td>H22C</td>
<td>0.2469</td>
<td>0.9232</td>
<td>0.4155</td>
<td>0.051</td>
</tr>
<tr>
<td>C23B</td>
<td>0.3189</td>
<td>0.9644</td>
<td>0.4319</td>
<td>0.044</td>
</tr>
<tr>
<td>H23D</td>
<td>0.2660</td>
<td>1.0226</td>
<td>0.4550</td>
<td>0.044</td>
</tr>
<tr>
<td>C24B</td>
<td>0.1366</td>
<td>0.9737</td>
<td>0.4256</td>
<td>0.0426</td>
</tr>
<tr>
<td>H24C</td>
<td>0.1245</td>
<td>0.9232</td>
<td>0.4155</td>
<td>0.051</td>
</tr>
<tr>
<td>C25B</td>
<td>0.1304</td>
<td>1.0368</td>
<td>0.4319</td>
<td>0.044</td>
</tr>
<tr>
<td>C26B</td>
<td>1.2079</td>
<td>0.6139</td>
<td>0.6754</td>
<td>0.0235</td>
</tr>
<tr>
<td>C27B</td>
<td>1.3227</td>
<td>0.6428</td>
<td>0.6423</td>
<td>0.0275</td>
</tr>
<tr>
<td>C28B</td>
<td>1.4118</td>
<td>0.6632</td>
<td>0.6983</td>
<td>0.0277</td>
</tr>
<tr>
<td>H28B</td>
<td>1.4896</td>
<td>0.6639</td>
<td>0.7095</td>
<td>0.033</td>
</tr>
<tr>
<td>C29B</td>
<td>1.3865</td>
<td>0.7032</td>
<td>0.6642</td>
<td>0.0264</td>
</tr>
<tr>
<td>C30B</td>
<td>1.2747</td>
<td>0.6997</td>
<td>0.6486</td>
<td>0.0255</td>
</tr>
<tr>
<td>C31B</td>
<td>1.1880</td>
<td>0.6596</td>
<td>0.6624</td>
<td>0.0245</td>
</tr>
<tr>
<td>Atom</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td>Uiso</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>H31B</td>
<td>1.1106</td>
<td>0.6578</td>
<td>0.6525</td>
<td>0.029</td>
</tr>
<tr>
<td>C32B</td>
<td>1.2547</td>
<td>0.7395</td>
<td>0.6188</td>
<td>0.030</td>
</tr>
<tr>
<td>H32C</td>
<td>1.3131</td>
<td>0.7197</td>
<td>0.6055</td>
<td>0.036</td>
</tr>
<tr>
<td>H32D</td>
<td>1.2723</td>
<td>0.7954</td>
<td>0.6221</td>
<td>0.036</td>
</tr>
<tr>
<td>C33B</td>
<td>1.1320</td>
<td>0.7334</td>
<td>0.6188</td>
<td>0.030</td>
</tr>
<tr>
<td>H33C</td>
<td>1.1163</td>
<td>0.6790</td>
<td>0.5964</td>
<td>0.037</td>
</tr>
<tr>
<td>H33D</td>
<td>1.0714</td>
<td>0.7498</td>
<td>0.5802</td>
<td>0.039</td>
</tr>
<tr>
<td>C34B</td>
<td>1.1230</td>
<td>0.7833</td>
<td>0.5741</td>
<td>0.032</td>
</tr>
<tr>
<td>H34C</td>
<td>1.1851</td>
<td>0.7670</td>
<td>0.5611</td>
<td>0.039</td>
</tr>
<tr>
<td>H34D</td>
<td>1.1399</td>
<td>0.8375</td>
<td>0.5802</td>
<td>0.039</td>
</tr>
<tr>
<td>C35B</td>
<td>1.0038</td>
<td>0.7809</td>
<td>0.5557</td>
<td>0.032</td>
</tr>
<tr>
<td>H35C</td>
<td>0.9896</td>
<td>0.7280</td>
<td>0.5479</td>
<td>0.037</td>
</tr>
<tr>
<td>H35D</td>
<td>0.9404</td>
<td>0.7934</td>
<td>0.5689</td>
<td>0.037</td>
</tr>
<tr>
<td>C36B</td>
<td>0.9972</td>
<td>0.8367</td>
<td>0.5296</td>
<td>0.033</td>
</tr>
<tr>
<td>H36C</td>
<td>1.0585</td>
<td>0.8223</td>
<td>0.5161</td>
<td>0.040</td>
</tr>
<tr>
<td>H36D</td>
<td>1.0168</td>
<td>0.8890</td>
<td>0.5375</td>
<td>0.040</td>
</tr>
<tr>
<td>C37B</td>
<td>0.8790</td>
<td>0.8404</td>
<td>0.5113</td>
<td>0.031</td>
</tr>
<tr>
<td>H37C</td>
<td>0.8170</td>
<td>0.8540</td>
<td>0.5248</td>
<td>0.038</td>
</tr>
<tr>
<td>H37D</td>
<td>0.8600</td>
<td>0.7888</td>
<td>0.5028</td>
<td>0.038</td>
</tr>
<tr>
<td>C38B</td>
<td>0.8753</td>
<td>0.8986</td>
<td>0.4857</td>
<td>0.034</td>
</tr>
<tr>
<td>H38C</td>
<td>0.8981</td>
<td>0.9498</td>
<td>0.4943</td>
<td>0.041</td>
</tr>
<tr>
<td>H38D</td>
<td>0.9352</td>
<td>0.8838</td>
<td>0.4719</td>
<td>0.041</td>
</tr>
<tr>
<td>C39B</td>
<td>0.7566</td>
<td>0.9061</td>
<td>0.4679</td>
<td>0.035</td>
</tr>
<tr>
<td>H39C</td>
<td>0.6962</td>
<td>0.9195</td>
<td>0.4818</td>
<td>0.043</td>
</tr>
<tr>
<td>H39D</td>
<td>0.7348</td>
<td>0.8554</td>
<td>0.4589</td>
<td>0.043</td>
</tr>
<tr>
<td>C40B</td>
<td>0.7525</td>
<td>0.9658</td>
<td>0.4431</td>
<td>0.040</td>
</tr>
<tr>
<td>H40C</td>
<td>0.8111</td>
<td>0.9516</td>
<td>0.4288</td>
<td>0.049</td>
</tr>
<tr>
<td>H40D</td>
<td>0.7767</td>
<td>1.0163</td>
<td>0.4520</td>
<td>0.049</td>
</tr>
<tr>
<td>C41B</td>
<td>0.6322</td>
<td>0.9749</td>
<td>0.4257</td>
<td>0.059</td>
</tr>
<tr>
<td>H41C</td>
<td>0.5719</td>
<td>0.9835</td>
<td>0.4403</td>
<td>0.059</td>
</tr>
<tr>
<td>H41D</td>
<td>0.6120</td>
<td>0.9264</td>
<td>0.4149</td>
<td>0.059</td>
</tr>
<tr>
<td>C42B</td>
<td>0.6262</td>
<td>1.0414</td>
<td>0.4032</td>
<td>0.065</td>
</tr>
<tr>
<td>C43B</td>
<td>0.5123</td>
<td>0.3867</td>
<td>0.3857</td>
<td>0.058</td>
</tr>
<tr>
<td>C44B</td>
<td>0.6891</td>
<td>1.0275</td>
<td>0.3806</td>
<td>0.058</td>
</tr>
<tr>
<td>O1S</td>
<td>0.8693</td>
<td>0.8774</td>
<td>0.7795</td>
<td>0.057</td>
</tr>
<tr>
<td>O2S</td>
<td>0.9398</td>
<td>0.9940</td>
<td>0.7705</td>
<td>0.072</td>
</tr>
<tr>
<td>O3S</td>
<td>0.5482</td>
<td>0.8132</td>
<td>0.7299</td>
<td>0.037</td>
</tr>
<tr>
<td>O4S</td>
<td>0.4501</td>
<td>0.9127</td>
<td>0.7080</td>
<td>0.071</td>
</tr>
<tr>
<td>C1S</td>
<td>0.9500</td>
<td>0.9184</td>
<td>0.7713</td>
<td>0.047</td>
</tr>
<tr>
<td>C2S</td>
<td>1.0627</td>
<td>0.8899</td>
<td>0.7614</td>
<td>0.049</td>
</tr>
<tr>
<td>H2S1</td>
<td>1.0643</td>
<td>0.8335</td>
<td>0.7626</td>
<td>0.074</td>
</tr>
<tr>
<td>H2S2</td>
<td>1.1285</td>
<td>0.9110</td>
<td>0.7745</td>
<td>0.074</td>
</tr>
<tr>
<td>H2S3</td>
<td>1.0704</td>
<td>0.9063</td>
<td>0.7407</td>
<td>0.074</td>
</tr>
<tr>
<td>C3S</td>
<td>0.8280</td>
<td>1.0288</td>
<td>0.7787</td>
<td>0.079</td>
</tr>
<tr>
<td>H3S1</td>
<td>0.7954</td>
<td>0.9976</td>
<td>0.7947</td>
<td>0.096</td>
</tr>
<tr>
<td>H3S2</td>
<td>0.8434</td>
<td>1.0814</td>
<td>0.7867</td>
<td>0.096</td>
</tr>
</tbody>
</table>
C4S C 0.7422(4) 1.0322(2) 0.75261(11) 0.0947(17) Uani 1 l d . .
H4S1 H 0.6688 1.0559 0.7583 0.142 Uiso 1 l calc R . .
H4S2 H 0.7257 0.9800 0.7451 0.142 Uiso 1 l calc R . .
H4S3 H 0.7746 1.0633 0.7369 0.142 Uiso 1 l calc R . .
C5S C 0.4570(3) 0.85085(19) 0.72517(7) 0.0442(8) Uani 1 l d . .
C6S C 0.3423(3) 0.8315(2) 0.73709(8) 0.0636(11) Uani 1 l d . .
H6S1 H 0.3532 0.7880 0.7511 0.095 Uiso 1 l d R . .
H6S2 H 0.2846 0.8174 0.7204 0.095 Uiso 1 l d R . .
H6S3 H 0.3132 0.8763 0.7477 0.095 Uiso 1 l d R . .
C7S C 0.5544(4) 0.9358(2) 0.69393(13) 0.1007(18) Uani 1 l d . .
H7S1 H 0.5602 0.9076 0.6784 0.121 Uiso 1 l calc R . .
H7S2 H 0.6267 0.9257 0.7073 0.121 Uiso 1 l calc R . .
C8S C 0.5385(4) 1.0220(2) 0.68818(15) 0.136(2) Uani 1 l d . .
H8S1 H 0.6065 1.0419 0.6784 0.204 Uiso 1 l calc R . .
H8S2 H 0.5326 1.0488 0.7073 0.204 Uiso 1 l calc R . .
H8S3 H 0.4659 1.0307 0.6751 0.204 Uiso 1 l calc R . .

MOLECULAR GEOMETRY

loop_
_atom_site_aniso_label
_atom_site_aniso_U_11
_atom_site_aniso_U_22
_atom_site_aniso_U_33
_atom_site_aniso_U_12
O1A 0.0305(10) 0.0440(13) 0.0234(12) -0.0069(10) -0.0043(9) 0.0070(9)
O2A 0.0228(10) 0.0368(12) 0.0337(13) -0.0018(9) -0.0019(8) 0.0047(8)
O3A 0.0279(11) 0.0624(14) 0.0291(13) 0.0186(11) -0.0051(9) -0.0115(10)
O4A 0.0200(10) 0.0418(11) 0.0283(12) 0.0090(10) -0.0013(8) -0.0038(8)
C1A 0.0212(14) 0.0240(15) 0.0236(16) 0.0039(13) -0.0007(11) 0.0016(11)
C2A 0.0301(15) 0.0229(15) 0.0241(17) 0.0047(13) -0.0021(12) -0.0010(12)
C3A 0.0348(16) 0.0254(16) 0.040(2) 0.0076(14) 0.0015(14) -0.0013(12)
C4A 0.0429(18) 0.0309(18) 0.045(2) 0.0074(16) -0.0026(15) -0.0068(14)
C5A 0.058(2) 0.0248(16) 0.048(2) 0.0022(16) 0.0011(17) -0.0055(15)
C6A 0.053(2) 0.0311(18) 0.054(2) -0.0045(17) 0.0096(17) 0.0085(15)
C7A 0.0381(17) 0.0299(17) 0.042(2) -0.0021(15) 0.0031(14) 0.0004(13)
C8A 0.0198(13) 0.0235(15) 0.0222(16) 0.0038(13) 0.0002(12) -0.0038(10)
C9A 0.0224(14) 0.0284(15) 0.0209(17) 0.0041(13) -0.0028(12) -0.0035(11)
C10A 0.0205(14) 0.0266(15) 0.0247(17) -0.0020(13) 0.0032(12) -0.0007(11)
C11A 0.0146(13) 0.0270(15) 0.0312(18) 0.0058(14) -0.0018(12) -0.0001(11)
C12A 0.0233(14) 0.0237(15) 0.0227(16) 0.0026(13) -0.0010(12) -0.0034(11)
C13A 0.0263(14) 0.0227(15) 0.0243(17) 0.0006(13) 0.0009(12) -0.0041(11)
C14A 0.0271(15) 0.0287(16) 0.0282(17) -0.0023(14) -0.0034(12) 0.0017(11)
<table>
<thead>
<tr>
<th>Atom</th>
<th>U1</th>
<th>U2</th>
<th>U3</th>
<th>U4</th>
<th>U5</th>
<th>U6</th>
</tr>
</thead>
<tbody>
<tr>
<td>C15A</td>
<td>0.0252(15)</td>
<td>0.0336(16)</td>
<td>0.0261(17)</td>
<td>0.0005(14)</td>
<td>-0.0010(12)</td>
<td>0.0017(12)</td>
</tr>
<tr>
<td>C16A</td>
<td>0.0263(15)</td>
<td>0.0353(17)</td>
<td>0.0267(17)</td>
<td>0.0012(14)</td>
<td>-0.0012(12)</td>
<td>-0.0010(12)</td>
</tr>
<tr>
<td>C17A</td>
<td>0.0271(15)</td>
<td>0.0412(17)</td>
<td>0.0239(17)</td>
<td>0.0048(14)</td>
<td>-0.0012(12)</td>
<td>0.0002(12)</td>
</tr>
<tr>
<td>C18A</td>
<td>0.0285(15)</td>
<td>0.0403(17)</td>
<td>0.0253(17)</td>
<td>0.0067(14)</td>
<td>0.0018(12)</td>
<td>0.0000(12)</td>
</tr>
<tr>
<td>C19A</td>
<td>0.0271(15)</td>
<td>0.0391(17)</td>
<td>0.0286(18)</td>
<td>0.0030(14)</td>
<td>-0.0014(13)</td>
<td>-0.0007(12)</td>
</tr>
<tr>
<td>C20A</td>
<td>0.0263(15)</td>
<td>0.0391(17)</td>
<td>0.0286(18)</td>
<td>0.0047(14)</td>
<td>-0.0023(13)</td>
<td>0.0043(12)</td>
</tr>
<tr>
<td>C21A</td>
<td>0.0271(15)</td>
<td>0.0345(17)</td>
<td>0.0290(18)</td>
<td>0.0027(14)</td>
<td>-0.0025(13)</td>
<td>0.0046(13)</td>
</tr>
<tr>
<td>C22A</td>
<td>0.0443(18)</td>
<td>0.047(2)</td>
<td>0.0308(19)</td>
<td>-0.0012(16)</td>
<td>-0.0090(15)</td>
<td>0.0122(14)</td>
</tr>
<tr>
<td>C23A</td>
<td>0.077(2)</td>
<td>0.044(2)</td>
<td>0.036(2)</td>
<td>-0.0005(18)</td>
<td>-0.0189(18)</td>
<td>0.0173(17)</td>
</tr>
<tr>
<td>C24A</td>
<td>0.0211(14)</td>
<td>0.0210(14)</td>
<td>0.0242(17)</td>
<td>-0.0002(13)</td>
<td>-0.0012(12)</td>
<td>0.0027(10)</td>
</tr>
<tr>
<td>C25A</td>
<td>0.0182(14)</td>
<td>0.0344(16)</td>
<td>0.0241(17)</td>
<td>0.0042(14)</td>
<td>-0.0065(12)</td>
<td>-0.0024(11)</td>
</tr>
<tr>
<td>C26A</td>
<td>0.0184(14)</td>
<td>0.0246(15)</td>
<td>0.0293(18)</td>
<td>-0.0001(13)</td>
<td>0.0035(12)</td>
<td>0.0022(11)</td>
</tr>
<tr>
<td>C27A</td>
<td>0.0271(15)</td>
<td>0.0391(17)</td>
<td>0.0252(17)</td>
<td>-0.0001(13)</td>
<td>0.0001(12)</td>
<td>0.0042(11)</td>
</tr>
<tr>
<td>C28A</td>
<td>0.0316(16)</td>
<td>0.0362(17)</td>
<td>0.0288(18)</td>
<td>0.0061(14)</td>
<td>-0.0002(13)</td>
<td>-0.0004(13)</td>
</tr>
<tr>
<td>C29A</td>
<td>0.0306(16)</td>
<td>0.0353(17)</td>
<td>0.0280(18)</td>
<td>0.0069(14)</td>
<td>-0.0007(13)</td>
<td>-0.0031(13)</td>
</tr>
<tr>
<td>C30A</td>
<td>0.0337(16)</td>
<td>0.0378(17)</td>
<td>0.0309(18)</td>
<td>0.0089(15)</td>
<td>0.0006(13)</td>
<td>0.0024(13)</td>
</tr>
<tr>
<td>C31A</td>
<td>0.0356(16)</td>
<td>0.0360(17)</td>
<td>0.0314(18)</td>
<td>0.0060(15)</td>
<td>-0.0066(14)</td>
<td>-0.0010(13)</td>
</tr>
<tr>
<td>C32A</td>
<td>0.0403(17)</td>
<td>0.0393(18)</td>
<td>0.0324(19)</td>
<td>0.0045(15)</td>
<td>-0.0027(14)</td>
<td>0.0004(13)</td>
</tr>
<tr>
<td>O1A</td>
<td>0.0344(11)</td>
<td>0.0354(12)</td>
<td>0.0298(12)</td>
<td>-0.0096(10)</td>
<td>-0.0104(9)</td>
<td>0.0105(9)</td>
</tr>
<tr>
<td>O2A</td>
<td>0.0214(10)</td>
<td>0.0341(11)</td>
<td>0.0313(12)</td>
<td>-0.0024(10)</td>
<td>0.0006(8)</td>
<td>0.0060(8)</td>
</tr>
<tr>
<td>O3B</td>
<td>0.0241(10)</td>
<td>0.0518(13)</td>
<td>0.0287(12)</td>
<td>0.0127(10)</td>
<td>-0.0004(9)</td>
<td>0.0054(9)</td>
</tr>
<tr>
<td>O4B</td>
<td>0.0209(10)</td>
<td>0.0429(12)</td>
<td>0.0349(13)</td>
<td>0.0081(10)</td>
<td>-0.0004(9)</td>
<td>-0.0036(9)</td>
</tr>
<tr>
<td>O5B</td>
<td>0.0302(15)</td>
<td>0.0220(15)</td>
<td>0.0248(17)</td>
<td>0.0011(13)</td>
<td>-0.0029(12)</td>
<td>0.0040(11)</td>
</tr>
<tr>
<td>O6B</td>
<td>0.0347(18)</td>
<td>0.0289(17)</td>
<td>0.042(2)</td>
<td>-0.0001(15)</td>
<td>0.0119(15)</td>
<td>0.0001(13)</td>
</tr>
<tr>
<td>O7B</td>
<td>0.054(2)</td>
<td>0.0275(17)</td>
<td>0.051(2)</td>
<td>0.0055(16)</td>
<td>0.0135(17)</td>
<td>-0.0064(14)</td>
</tr>
<tr>
<td>C5B</td>
<td>0.066(2)</td>
<td>0.0215(16)</td>
<td>0.042(2)</td>
<td>0.0009(15)</td>
<td>0.0095(17)</td>
<td>0.0014(15)</td>
</tr>
<tr>
<td>C6B</td>
<td>0.052(2)</td>
<td>0.0287(17)</td>
<td>0.044(2)</td>
<td>-0.0085(16)</td>
<td>0.0092(16)</td>
<td>0.0067(14)</td>
</tr>
<tr>
<td>C7B</td>
<td>0.0380(17)</td>
<td>0.0305(17)</td>
<td>0.0345(19)</td>
<td>0.0002(15)</td>
<td>0.0071(14)</td>
<td>0.0056(13)</td>
</tr>
<tr>
<td>C8B</td>
<td>0.0202(13)</td>
<td>0.0200(14)</td>
<td>0.0246(16)</td>
<td>0.0004(13)</td>
<td>0.0024(12)</td>
<td>-0.0012(10)</td>
</tr>
<tr>
<td>C9B</td>
<td>0.0252(14)</td>
<td>0.0233(15)</td>
<td>0.0203(16)</td>
<td>0.0008(13)</td>
<td>-0.0003(13)</td>
<td>-0.0023(11)</td>
</tr>
<tr>
<td>C10B</td>
<td>0.0262(14)</td>
<td>0.0226(14)</td>
<td>0.0254(17)</td>
<td>-0.0045(13)</td>
<td>0.0039(12)</td>
<td>0.0027(11)</td>
</tr>
<tr>
<td>C11B</td>
<td>0.0178(13)</td>
<td>0.0245(15)</td>
<td>0.0281(17)</td>
<td>0.0050(13)</td>
<td>0.0023(12)</td>
<td>0.0008(11)</td>
</tr>
<tr>
<td>C12B</td>
<td>0.0253(14)</td>
<td>0.0231(14)</td>
<td>0.0222(16)</td>
<td>-0.0023(13)</td>
<td>0.0017(12)</td>
<td>-0.0009(11)</td>
</tr>
<tr>
<td>Atom</td>
<td>U1</td>
<td>U2</td>
<td>U3</td>
<td>U4</td>
<td>U5</td>
<td>U6</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>C14B</td>
<td>0.0211</td>
<td>0.0303</td>
<td>0.0305</td>
<td>-0.0021</td>
<td>-0.0023</td>
<td>-0.0005</td>
</tr>
<tr>
<td>C15B</td>
<td>0.0260</td>
<td>0.0413</td>
<td>0.0259</td>
<td>0.0008</td>
<td>-0.0007</td>
<td>-0.0030</td>
</tr>
<tr>
<td>C16B</td>
<td>0.0265</td>
<td>0.0369</td>
<td>0.0294</td>
<td>-0.0008</td>
<td>-0.0019</td>
<td>0.0026</td>
</tr>
<tr>
<td>C17B</td>
<td>0.0334</td>
<td>0.0458</td>
<td>0.0308</td>
<td>0.0037</td>
<td>-0.0014</td>
<td>-0.0035</td>
</tr>
<tr>
<td>C18B</td>
<td>0.0285</td>
<td>0.0420</td>
<td>0.0279</td>
<td>0.0027</td>
<td>-0.0014</td>
<td>-0.0005</td>
</tr>
<tr>
<td>C19B</td>
<td>0.0348</td>
<td>0.0426</td>
<td>0.0290</td>
<td>0.0041</td>
<td>-0.0030</td>
<td>-0.0022</td>
</tr>
<tr>
<td>C20B</td>
<td>0.0306</td>
<td>0.0399</td>
<td>0.0313</td>
<td>0.0038</td>
<td>0.0010</td>
<td>0.0006</td>
</tr>
<tr>
<td>C21B</td>
<td>0.0335</td>
<td>0.0380</td>
<td>0.0307</td>
<td>0.0014</td>
<td>-0.0005</td>
<td>-0.0037</td>
</tr>
<tr>
<td>C22B</td>
<td>0.0317</td>
<td>0.0369</td>
<td>0.0326</td>
<td>0.0082</td>
<td>0.0013</td>
<td>0.0011</td>
</tr>
<tr>
<td>C23B</td>
<td>0.0403</td>
<td>0.0329</td>
<td>0.0357</td>
<td>0.0061</td>
<td>-0.0006</td>
<td>0.0022</td>
</tr>
<tr>
<td>C24B</td>
<td>0.0422</td>
<td>0.048</td>
<td>0.0369</td>
<td>0.0062</td>
<td>0.0011</td>
<td>0.0011</td>
</tr>
<tr>
<td>C25B</td>
<td>0.067</td>
<td>0.048</td>
<td>0.041</td>
<td>-0.0047</td>
<td>-0.0010</td>
<td>0.0032</td>
</tr>
<tr>
<td>C26B</td>
<td>0.0191</td>
<td>0.0220</td>
<td>0.0265</td>
<td>-0.0047</td>
<td>-0.0010</td>
<td>0.0032</td>
</tr>
<tr>
<td>C27B</td>
<td>0.0282</td>
<td>0.0295</td>
<td>0.0223</td>
<td>0.0025</td>
<td>0.0013</td>
<td>0.0072</td>
</tr>
<tr>
<td>C28B</td>
<td>0.0197</td>
<td>0.0359</td>
<td>0.0273</td>
<td>0.0012</td>
<td>0.0008</td>
<td>0.0013</td>
</tr>
<tr>
<td>C29B</td>
<td>0.0226</td>
<td>0.0290</td>
<td>0.0281</td>
<td>-0.0023</td>
<td>0.0061</td>
<td>-0.0006</td>
</tr>
<tr>
<td>C30B</td>
<td>0.0239</td>
<td>0.0262</td>
<td>0.0259</td>
<td>0.0010</td>
<td>-0.0005</td>
<td>0.0022</td>
</tr>
<tr>
<td>C31B</td>
<td>0.0214</td>
<td>0.0253</td>
<td>0.0262</td>
<td>-0.0009</td>
<td>-0.0026</td>
<td>0.0011</td>
</tr>
<tr>
<td>C32B</td>
<td>0.0244</td>
<td>0.0373</td>
<td>0.0286</td>
<td>0.0055</td>
<td>-0.0005</td>
<td>-0.0010</td>
</tr>
<tr>
<td>C33B</td>
<td>0.0276</td>
<td>0.0374</td>
<td>0.0269</td>
<td>0.0050</td>
<td>-0.0027</td>
<td>0.0009</td>
</tr>
<tr>
<td>C34B</td>
<td>0.0257</td>
<td>0.0421</td>
<td>0.0281</td>
<td>0.0043</td>
<td>-0.0011</td>
<td>-0.0019</td>
</tr>
<tr>
<td>C35B</td>
<td>0.0292</td>
<td>0.0351</td>
<td>0.0263</td>
<td>0.0045</td>
<td>-0.0027</td>
<td>0.0010</td>
</tr>
<tr>
<td>C36B</td>
<td>0.0300</td>
<td>0.0403</td>
<td>0.0289</td>
<td>0.0073</td>
<td>-0.0015</td>
<td>-0.0005</td>
</tr>
<tr>
<td>C37B</td>
<td>0.0312</td>
<td>0.0329</td>
<td>0.0303</td>
<td>0.0049</td>
<td>-0.0019</td>
<td>0.0004</td>
</tr>
<tr>
<td>C38B</td>
<td>0.0297</td>
<td>0.0377</td>
<td>0.0346</td>
<td>0.0088</td>
<td>-0.0024</td>
<td>-0.0002</td>
</tr>
<tr>
<td>C39B</td>
<td>0.0348</td>
<td>0.0342</td>
<td>0.0378</td>
<td>0.0054</td>
<td>-0.0023</td>
<td>0.0008</td>
</tr>
<tr>
<td>C40B</td>
<td>0.0400</td>
<td>0.0407</td>
<td>0.0340</td>
<td>0.0128</td>
<td>-0.0079</td>
<td>-0.0016</td>
</tr>
<tr>
<td>C41B</td>
<td>0.0512</td>
<td>0.0462</td>
<td>0.0482</td>
<td>0.0103</td>
<td>-0.0134</td>
<td>-0.0003</td>
</tr>
<tr>
<td>C42B</td>
<td>0.0702</td>
<td>0.0673</td>
<td>0.0563</td>
<td>0.0312</td>
<td>-0.0172</td>
<td>0.0132</td>
</tr>
<tr>
<td>O1S</td>
<td>0.0469</td>
<td>0.0655</td>
<td>0.0603</td>
<td>0.0164</td>
<td>0.0006</td>
<td>-0.0225</td>
</tr>
<tr>
<td>O2S</td>
<td>0.0506</td>
<td>0.0503</td>
<td>0.1223</td>
<td>-0.0229</td>
<td>0.0363</td>
<td>-0.0163</td>
</tr>
<tr>
<td>O3S</td>
<td>0.0347</td>
<td>0.0395</td>
<td>0.0365</td>
<td>-0.0015</td>
<td>0.0014</td>
<td>0.0091</td>
</tr>
<tr>
<td>O4S</td>
<td>0.0587</td>
<td>0.0514</td>
<td>0.1052</td>
<td>0.0231</td>
<td>0.0112</td>
<td>0.0216</td>
</tr>
<tr>
<td>C1S</td>
<td>0.0442</td>
<td>0.0492</td>
<td>0.0472</td>
<td>-0.0101</td>
<td>-0.0039</td>
<td>-0.0110</td>
</tr>
<tr>
<td>C2S</td>
<td>0.0460</td>
<td>0.0418</td>
<td>0.0612</td>
<td>-0.0062</td>
<td>0.0060</td>
<td>-0.0029</td>
</tr>
<tr>
<td>C3S</td>
<td>0.0402</td>
<td>0.0623</td>
<td>0.1435</td>
<td>-0.0493</td>
<td>0.0413</td>
<td>-0.0104</td>
</tr>
<tr>
<td>C4S</td>
<td>0.0973</td>
<td>0.0633</td>
<td>0.1365</td>
<td>0.0373</td>
<td>0.0783</td>
<td>0.0283</td>
</tr>
<tr>
<td>C5S</td>
<td>0.0442</td>
<td>0.0452</td>
<td>0.0422</td>
<td>-0.0087</td>
<td>-0.0031</td>
<td>0.0109</td>
</tr>
<tr>
<td>C6S</td>
<td>0.0392</td>
<td>0.0893</td>
<td>0.0643</td>
<td>-0.0012</td>
<td>0.0109</td>
<td>0.0176</td>
</tr>
<tr>
<td>C7S</td>
<td>0.0733</td>
<td>0.0553</td>
<td>0.1775</td>
<td>0.0593</td>
<td>0.0293</td>
<td>0.0092</td>
</tr>
<tr>
<td>C8S</td>
<td>0.1204</td>
<td>0.0563</td>
<td>0.2337</td>
<td>0.0654</td>
<td>0.0184</td>
<td>0.0123</td>
</tr>
</tbody>
</table>

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken...
into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

<table>
<thead>
<tr>
<th>loop_</th>
<th>_geom_bond_atom_site_label_1</th>
<th>_geom_bond_atom_site_label_2</th>
<th>_geom_bond_distance</th>
<th>_geom_bond_site_symmetry_2</th>
<th>_geom_bond_publ_flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>O1A</td>
<td>C9A 1.385(3)</td>
<td>?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O1A</td>
<td>H1OA 0.8400</td>
<td>?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2A</td>
<td>C11A 1.385(3)</td>
<td>?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2A</td>
<td>H2OA 0.8400</td>
<td>?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O3A</td>
<td>C27A 1.382(3)</td>
<td>?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O3A</td>
<td>H3OA 0.8400</td>
<td>?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O4A</td>
<td>C29A 1.376(3)</td>
<td>?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O4A</td>
<td>H4OA 0.8400</td>
<td>?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1A</td>
<td>C8A 1.520(3)</td>
<td>?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1A</td>
<td>C2A 1.527(3)</td>
<td>?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1A</td>
<td>C26A 1.527(3)</td>
<td>?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1A</td>
<td>H1A 1.0000</td>
<td>?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2A</td>
<td>C7A 1.387(4)</td>
<td>?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2A</td>
<td>C3A 1.392(3)</td>
<td>?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3A</td>
<td>C4A 1.386(4)</td>
<td>?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3A</td>
<td>H3A 0.9500</td>
<td>?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4A</td>
<td>C5A 1.370(4)</td>
<td>?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4A</td>
<td>H4A 0.9500</td>
<td>?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5A</td>
<td>C6A 1.377(4)</td>
<td>?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5A</td>
<td>H5A 0.9500</td>
<td>?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C6A</td>
<td>C7A 1.397(4)</td>
<td>?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C6A</td>
<td>H6A 0.9500</td>
<td>?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C7A</td>
<td>H7A 0.9500</td>
<td>?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C8A</td>
<td>C9A 1.378(4)</td>
<td>?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C8A</td>
<td>C13A 1.402(3)</td>
<td>?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C9A</td>
<td>C10A 1.394(3)</td>
<td>?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C10A</td>
<td>C11A 1.382(4)</td>
<td>?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C10A</td>
<td>H10A 0.9500</td>
<td>?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C11A</td>
<td>C12A 1.387(4)</td>
<td>?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C12A</td>
<td>C13A 1.398(3)</td>
<td>?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C12A</td>
<td>C14A 1.502(4)</td>
<td>?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C13A</td>
<td>H13A 0.9500</td>
<td>?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C14A</td>
<td>C15A 1.534(4)</td>
<td>?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C14A</td>
<td>H14A 0.9900</td>
<td>?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
C33A C34A 1.522(4) .?
C33A H33A 0.9900 .?
C33A H33B 0.9900 .?
C34A C35A 1.524(3) .?
C34A H34A 0.9900 .?
C34A H34B 0.9900 .?
C35A C36A 1.526(4) .?
C35A H35A 0.9900 .?
C35A H35B 0.9900 .?
C36A C37A 1.523(3) .?
C36A H36A 0.9900 .?
C36A H36B 0.9900 .?
C37A C38A 1.518(4) .?
C37A H37A 0.9900 .?
C37A H37B 0.9900 .?
C38A C39A 1.524(4) .?
C38A H38A 0.9900 .?
C38A H38B 0.9900 .?
C39A C40A 1.517(4) .?
C39A H39A 0.9900 .?
C39A H39B 0.9900 .?
C40A C41A 1.513(4) .?
C40A H40A 0.9900 .?
C40A H40B 0.9900 .?
C41A C42A 1.521(4) .?
C41A H41A 0.9900 .?
C41A H41B 0.9900 .?
C42A C43A 1.515(4) .?
C42A H42A 0.9900 .?
C42A H42B 0.9900 .?
C43A H43A 0.9800 .?
C43A H43B 0.9800 .?
C43A H43C 0.9800 .?
O1B C9B 1.374(3) .?
O1B H1OB 0.8400 .?
O2B C11B 1.394(3) .?
O2B H2OB 0.8400 .?
O3B C27B 1.394(3) .?
O3B H3OB 0.8400 .?
O4B C29B 1.369(3) .?
O4B H4OB 0.8400 .?
C1B C26B 1.522(3) .?
C1B C8B 1.533(3) .?
C1B C2B 1.534(3) .?
C1B H1B 1.0000 .?
C2B C7B 1.384(4) .?
C2B C3B 1.389(4) . ?
C3B C4B 1.381(4) . ?
C3B H3B 0.9500 . ?
C4B C5B 1.369(4) . ?
C4B H4B 0.9500 . ?
C5B C6B 1.375(4) . ?
C5B H5B 0.9500 . ?
C6B C7B 1.392(4) . ?
C6B H6B 0.9500 . ?
C7B H7B 0.9500 . ?
C8B C9B 1.395(3) . ?
C8B C13B 1.396(3) . ?
C9B C10B 1.391(3) . ?
C10B C11B 1.378(4) . ?
C10B H10B 0.9500 . ?
C11B C12B 1.384(4) . ?
C12B C13B 1.394(3) . ?
C12B C14B 1.505(3) . ?
C13B H13B 0.9500 . ?
C14B C15B 1.527(4) . ?
C14B H14C 0.9900 . ?
C14B H14D 0.9900 . ?
C15B C16B 1.522(3) . ?
C15B H15C 0.9900 . ?
C15B H15D 0.9900 . ?
C16B C17B 1.517(4) . ?
C16B H16C 0.9900 . ?
C16B H16D 0.9900 . ?
C17B C18B 1.524(4) . ?
C17B H17C 0.9900 . ?
C17B H17D 0.9900 . ?
C18B C19B 1.519(4) . ?
C18B H18C 0.9900 . ?
C18B H18D 0.9900 . ?
C19B C20B 1.520(4) . ?
C19B H19C 0.9900 . ?
C19B H19D 0.9900 . ?
C20B C21B 1.511(4) . ?
C20B H20C 0.9900 . ?
C20B H20D 0.9900 . ?
C21B C22B 1.519(4) . ?
C21B H21C 0.9900 . ?
C21B H21D 0.9900 . ?
C22B C23B 1.514(4) . ?
C22B H22C 0.9900 . ?
C22B H22D 0.9900 . ?
C41B H41C 0.9900 .
C41B H41D 0.9900 .
C42B C43C 1.308(9) .
C42B C43B 1.453(6) .
O1S C1S 1.238(4) .
O2S C1S 1.316(4) .
O2S C3S 1.479(4) .
O3S C5S 1.227(3) .
O4S C5S 1.316(4) .
O4S C7S 1.441(4) .
C1S C2S 1.470(4) .
C2S H2S1 0.9800 .
C2S H2S2 0.9800 .
C2S H2S3 0.9800 .
C3S C4S 1.458(6) .
C3S H3S1 0.9900 .
C3S H3S2 0.9900 .
C4S H4S1 0.9800 .
C4S H4S2 0.9800 .
C4S H4S3 0.9800 .
C5S C6S 1.484(4) .
C6S H6S1 0.9800 .
C6S H6S2 0.9800 .
C6S H6S3 0.9800 .
C7S C8S 1.525(5) .
C7S H7S1 0.9900 .
C7S H7S2 0.9900 .
C8S H8S1 0.9800 .
C8S H8S2 0.9800 .
C8S H8S3 0.9800 .

loop_
 _geom_angle_atom_site_label_1
 _geom_angle_atom_site_label_2
 _geom_angle_atom_site_label_3
 _geom_angle
 _geom_angle_site_symmetry_1
 _geom_angle_site_symmetry_3
 _geom_angle_publ_flag
C9A O1A H1OA 109.5 . . ?
C11A O2A H2OA 109.5 . . ?
C27A O3A H3OA 109.5 . . ?
C29A O4A H4OA 109.5 . . ?
C8A C1A C2A 114.2(2) . . ?
C8A C1A C26A 111.35(19) . . ?
C2A C1A C26A 114.0(2) . . ?
C8A C1A H1A 105.4 . . ?
C2A C1A H1A 105.4 . . ?
C26A C1A H1A 105.4 . . ?
C7A C2A C3A 117.7(2) . . ?
C7A C2A C1A 120.7(2) . . ?
C3A C2A C1A 121.3(2) . . ?
C4A C3A C2A 121.5(3) . . ?
C4A C3A H3A 119.3 . . ?
C2A C3A H3A 119.3 . . ?
C5A C4A C3A 120.2(3) . . ?
C5A C4A H4A 119.9 . . ?
C3A C4A H4A 119.9 . . ?
C4A C5A C6A 119.5(3) . . ?
C4A C5A H5A 120.3 . . ?
C6A C5A H5A 120.3 . . ?
C5A C6A C7A 120.6(3) . . ?
C5A C6A H6A 119.7 . . ?
C7A C6A H6A 119.7 . . ?
C2A C7A C6A 120.5(3) . . ?
C2A C7A H7A 119.7 . . ?
C6A C7A H7A 119.7 . . ?
C9A C8A C13A 116.9(2) . . ?
C9A C8A C1A 119.9(2) . . ?
C13A C8A C1A 123.2(2) . . ?
C8A C9A O1A 118.2(2) . . ?
C8A C9A C10A 121.6(2) . . ?
O1A C9A C10A 120.1(2) . . ?
C11A C10A C9A 119.3(2) . . ?
C11A C10A H10A 120.3 . . ?
C9A C10A H10A 120.3 . . ?
C10A C11A O2A 119.8(2) . . ?
C10A C11A C12A 122.0(2) . . ?
O2A C11A C12A 118.2(2) . . ?
C11A C12A C13A 116.5(2) . . ?
C11A C12A C14A 121.8(2) . . ?
C13A C12A C14A 121.7(2) . . ?
C12A C13A C8A 123.6(3) . . ?
C12A C13A H13A 118.2 . . ?
C8A C13A H13A 118.2 . . ?
C12A C14A C15A 114.9(2) . . ?
C12A C14A H14A 108.5 . . ?
C15A C14A H14A 108.5 . . ?
C12A C14A H14B 108.5 . . ?
C15A C14A H14B 108.5 . . ?
H14A C14A H14B 107.5 . . ?
C16A C15A C14A 112.4(2) . . ?
<table>
<thead>
<tr>
<th>Bond</th>
<th>Distance (Å)</th>
<th>Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C16A C15A H15A</td>
<td>109.1</td>
<td></td>
</tr>
<tr>
<td>C14A C15A H15A</td>
<td>109.1</td>
<td></td>
</tr>
<tr>
<td>C16A C15A H15B</td>
<td>109.1</td>
<td></td>
</tr>
<tr>
<td>C14A C15A H15B</td>
<td>109.1</td>
<td></td>
</tr>
<tr>
<td>H15A C15A H15B</td>
<td>107.9</td>
<td></td>
</tr>
<tr>
<td>C17A C16A C15A</td>
<td>114.9(2)</td>
<td></td>
</tr>
<tr>
<td>C17A C16A H16A</td>
<td>108.5(2)</td>
<td></td>
</tr>
<tr>
<td>C15A C16A H16A</td>
<td>108.5(2)</td>
<td></td>
</tr>
<tr>
<td>C17A C16A H16B</td>
<td>108.5(2)</td>
<td></td>
</tr>
<tr>
<td>C15A C16A H16B</td>
<td>108.5(2)</td>
<td></td>
</tr>
<tr>
<td>H16A C16A H16B</td>
<td>107.5(2)</td>
<td></td>
</tr>
<tr>
<td>C16A C17A C18A</td>
<td>112.7(2)</td>
<td></td>
</tr>
<tr>
<td>C16A C17A H17A</td>
<td>109.0</td>
<td></td>
</tr>
<tr>
<td>C18A C17A H17A</td>
<td>109.0</td>
<td></td>
</tr>
<tr>
<td>C16A C17A H17B</td>
<td>109.0</td>
<td></td>
</tr>
<tr>
<td>C18A C17A H17B</td>
<td>109.0</td>
<td></td>
</tr>
<tr>
<td>H17A C17A H17B</td>
<td>107.8</td>
<td></td>
</tr>
<tr>
<td>C19A C18A C17A</td>
<td>115.2(2)</td>
<td></td>
</tr>
<tr>
<td>C19A C18A H18A</td>
<td>108.5</td>
<td></td>
</tr>
<tr>
<td>C17A C18A H18A</td>
<td>108.5</td>
<td></td>
</tr>
<tr>
<td>C19A C18A H18B</td>
<td>108.5</td>
<td></td>
</tr>
<tr>
<td>C17A C18A H18B</td>
<td>108.5</td>
<td></td>
</tr>
<tr>
<td>H18A C18A H18B</td>
<td>107.5</td>
<td></td>
</tr>
<tr>
<td>C18A C19A C20A</td>
<td>113.4(2)</td>
<td></td>
</tr>
<tr>
<td>C18A C19A H19A</td>
<td>108.9</td>
<td></td>
</tr>
<tr>
<td>C20A C19A H19A</td>
<td>108.9</td>
<td></td>
</tr>
<tr>
<td>C18A C19A H19B</td>
<td>108.9</td>
<td></td>
</tr>
<tr>
<td>C20A C19A H19B</td>
<td>108.9</td>
<td></td>
</tr>
<tr>
<td>H19A C19A H19B</td>
<td>107.7</td>
<td></td>
</tr>
<tr>
<td>C19A C20A C21A</td>
<td>114.2(2)</td>
<td></td>
</tr>
<tr>
<td>C19A C20A H20A</td>
<td>108.7</td>
<td></td>
</tr>
<tr>
<td>C21A C20A H20A</td>
<td>108.7</td>
<td></td>
</tr>
<tr>
<td>C19A C20A H20B</td>
<td>108.7</td>
<td></td>
</tr>
<tr>
<td>C21A C20A H20B</td>
<td>108.7</td>
<td></td>
</tr>
<tr>
<td>H20A C20A H20B</td>
<td>107.6</td>
<td></td>
</tr>
<tr>
<td>C22A C21A C20A</td>
<td>114.2(2)</td>
<td></td>
</tr>
<tr>
<td>C22A C21A H21A</td>
<td>108.7</td>
<td></td>
</tr>
<tr>
<td>C20A C21A H21A</td>
<td>108.7</td>
<td></td>
</tr>
<tr>
<td>C22A C21A H21B</td>
<td>108.7</td>
<td></td>
</tr>
<tr>
<td>C20A C21A H21B</td>
<td>108.7</td>
<td></td>
</tr>
<tr>
<td>H21A C21A H21B</td>
<td>107.6</td>
<td></td>
</tr>
<tr>
<td>C23A C22A C21A</td>
<td>114.2(2)</td>
<td></td>
</tr>
<tr>
<td>C23A C22A H22A</td>
<td>108.7</td>
<td></td>
</tr>
<tr>
<td>C21A C22A H22A</td>
<td>108.7</td>
<td></td>
</tr>
<tr>
<td>C23A C22A H22B</td>
<td>108.7</td>
<td></td>
</tr>
<tr>
<td>C21A C22A H22B</td>
<td>108.7</td>
<td></td>
</tr>
<tr>
<td>Bond</td>
<td>Distance (Å)</td>
<td>Error (Å)</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------</td>
<td>-----------</td>
</tr>
<tr>
<td>H22A C22A H22B</td>
<td>107.6</td>
<td>?</td>
</tr>
<tr>
<td>C22A C23A C24A</td>
<td>114.4(2)</td>
<td>?</td>
</tr>
<tr>
<td>C22A C23A H23A</td>
<td>108.7</td>
<td>?</td>
</tr>
<tr>
<td>C24A C23A H23A</td>
<td>108.7</td>
<td>?</td>
</tr>
<tr>
<td>C22A C23A H23B</td>
<td>108.7</td>
<td>?</td>
</tr>
<tr>
<td>C24A C23A H23B</td>
<td>108.7</td>
<td>?</td>
</tr>
<tr>
<td>H23A C23A H23B</td>
<td>107.6</td>
<td>?</td>
</tr>
<tr>
<td>C23A C24A C25A</td>
<td>113.6(3)</td>
<td>?</td>
</tr>
<tr>
<td>C23A C24A H24A</td>
<td>108.9</td>
<td>?</td>
</tr>
<tr>
<td>C25A C24A H24A</td>
<td>108.9</td>
<td>?</td>
</tr>
<tr>
<td>C23A C24A H24B</td>
<td>108.9</td>
<td>?</td>
</tr>
<tr>
<td>C25A C24A H24B</td>
<td>108.9</td>
<td>?</td>
</tr>
<tr>
<td>H24A C24A H24B</td>
<td>107.7</td>
<td>?</td>
</tr>
<tr>
<td>C24A C25A H25A</td>
<td>109.5</td>
<td>?</td>
</tr>
<tr>
<td>C24A C25A H25B</td>
<td>109.5</td>
<td>?</td>
</tr>
<tr>
<td>H25A C25A H25B</td>
<td>109.5</td>
<td>?</td>
</tr>
<tr>
<td>C24A C25A H25C</td>
<td>109.5</td>
<td>?</td>
</tr>
<tr>
<td>H25A C25A H25C</td>
<td>109.5</td>
<td>?</td>
</tr>
<tr>
<td>C27A C26A C31A</td>
<td>116.4(2)</td>
<td>?</td>
</tr>
<tr>
<td>C27A C26A C31A</td>
<td>116.4(2)</td>
<td>?</td>
</tr>
<tr>
<td>O3A C27A C28A</td>
<td>114.8(2)</td>
<td>?</td>
</tr>
<tr>
<td>O3A C27A C28A</td>
<td>123.9(2)</td>
<td>?</td>
</tr>
<tr>
<td>C28A C29A C26A</td>
<td>121.4(2)</td>
<td>?</td>
</tr>
<tr>
<td>C29A C28A C27A</td>
<td>119.9(2)</td>
<td>?</td>
</tr>
<tr>
<td>C29A C28A H28A</td>
<td>120.0</td>
<td>?</td>
</tr>
<tr>
<td>C27A C28A H28A</td>
<td>120.0</td>
<td>?</td>
</tr>
<tr>
<td>O4A C29A C28A</td>
<td>121.8(2)</td>
<td>?</td>
</tr>
<tr>
<td>O4A C29A C30A</td>
<td>116.6(2)</td>
<td>?</td>
</tr>
<tr>
<td>C28A C29A C30A</td>
<td>121.6(2)</td>
<td>?</td>
</tr>
<tr>
<td>C31A C30A C29A</td>
<td>116.1(2)</td>
<td>?</td>
</tr>
<tr>
<td>C31A C30A C32A</td>
<td>124.8(2)</td>
<td>?</td>
</tr>
<tr>
<td>C29A C30A C32A</td>
<td>118.9(2)</td>
<td>?</td>
</tr>
<tr>
<td>C30A C31A C26A</td>
<td>124.5(2)</td>
<td>?</td>
</tr>
<tr>
<td>C30A C31A H31A</td>
<td>117.8</td>
<td>?</td>
</tr>
<tr>
<td>C26A C31A H31A</td>
<td>117.8</td>
<td>?</td>
</tr>
<tr>
<td>C30A C32A C33A</td>
<td>118.1(2)</td>
<td>?</td>
</tr>
<tr>
<td>C30A C32A H32A</td>
<td>107.8</td>
<td>?</td>
</tr>
<tr>
<td>C33A C32A H32A</td>
<td>107.8</td>
<td>?</td>
</tr>
<tr>
<td>C30A C32A H32B</td>
<td>107.8</td>
<td>?</td>
</tr>
<tr>
<td>C33A C32A H32B</td>
<td>107.8</td>
<td>?</td>
</tr>
<tr>
<td>H32A C32A H32B</td>
<td>107.1</td>
<td>?</td>
</tr>
<tr>
<td>C32A C33A C34A</td>
<td>111.2(2)</td>
<td>?</td>
</tr>
<tr>
<td>C32A C33A H33A</td>
<td>109.4</td>
<td>?</td>
</tr>
<tr>
<td>C34A C33A H33A</td>
<td>109.4</td>
<td>?</td>
</tr>
<tr>
<td>Bond</td>
<td>Angle</td>
<td>Distance</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
<td>----------</td>
</tr>
<tr>
<td>C40A C41A H41A</td>
<td>108.8°</td>
<td></td>
</tr>
<tr>
<td>C42A C41A H41A</td>
<td>108.8°</td>
<td></td>
</tr>
<tr>
<td>C40A C41A H41B</td>
<td>108.8°</td>
<td></td>
</tr>
<tr>
<td>C42A C41A H41B</td>
<td>108.8°</td>
<td></td>
</tr>
<tr>
<td>H41A C41A H41B</td>
<td>107.7°</td>
<td></td>
</tr>
<tr>
<td>C43A C42A C41A</td>
<td>114.3(2)°</td>
<td></td>
</tr>
<tr>
<td>C43A C42A H42A</td>
<td>108.7°</td>
<td></td>
</tr>
<tr>
<td>C41A C42A H42A</td>
<td>108.7°</td>
<td></td>
</tr>
<tr>
<td>C43A C42A H42B</td>
<td>108.7°</td>
<td></td>
</tr>
<tr>
<td>C41A C42A H42B</td>
<td>108.7°</td>
<td></td>
</tr>
<tr>
<td>H42A C42A H42B</td>
<td>107.6°</td>
<td></td>
</tr>
<tr>
<td>C42A C43A H43A</td>
<td>109.5°</td>
<td></td>
</tr>
<tr>
<td>C42A C43A H43B</td>
<td>109.5°</td>
<td></td>
</tr>
<tr>
<td>H43A C43A H43B</td>
<td>109.5°</td>
<td></td>
</tr>
<tr>
<td>C42A C43A H43C</td>
<td>109.5°</td>
<td></td>
</tr>
<tr>
<td>H43A C43A H43C</td>
<td>109.5°</td>
<td></td>
</tr>
<tr>
<td>H43B C43A H43C</td>
<td>109.5°</td>
<td></td>
</tr>
<tr>
<td>C9B O1B H1OB</td>
<td>109.5°</td>
<td></td>
</tr>
<tr>
<td>C11B O2B H2OB</td>
<td>109.5°</td>
<td></td>
</tr>
<tr>
<td>C27B O3B H3OB</td>
<td>109.5°</td>
<td></td>
</tr>
<tr>
<td>C29B O4B H4OB</td>
<td>109.5°</td>
<td></td>
</tr>
<tr>
<td>C26B C1B C8B</td>
<td>111.0(2)°</td>
<td></td>
</tr>
<tr>
<td>C26B C1B C2B</td>
<td>113.7(2)°</td>
<td></td>
</tr>
<tr>
<td>C8B C1B C2B</td>
<td>112.7(2)°</td>
<td></td>
</tr>
<tr>
<td>C26B C1B H1B</td>
<td>106.3°</td>
<td></td>
</tr>
<tr>
<td>C8B C1B H1B</td>
<td>106.3°</td>
<td></td>
</tr>
<tr>
<td>C2B C1B H1B</td>
<td>106.3°</td>
<td></td>
</tr>
<tr>
<td>C7B C2B C3B</td>
<td>118.1(2)°</td>
<td></td>
</tr>
<tr>
<td>C7B C2B C1B</td>
<td>121.8(2)°</td>
<td></td>
</tr>
<tr>
<td>C3B C2B C1B</td>
<td>120.0(2)°</td>
<td></td>
</tr>
<tr>
<td>C4B C3B C2B</td>
<td>121.1(3)°</td>
<td></td>
</tr>
<tr>
<td>C4B C3B H3B</td>
<td>119.5°</td>
<td></td>
</tr>
<tr>
<td>C2B C3B H3B</td>
<td>119.5°</td>
<td></td>
</tr>
<tr>
<td>C5B C4B C3B</td>
<td>120.0(3)°</td>
<td></td>
</tr>
<tr>
<td>C5B C4B H4B</td>
<td>120.0°</td>
<td></td>
</tr>
<tr>
<td>C3B C4B H4B</td>
<td>120.0°</td>
<td></td>
</tr>
<tr>
<td>C4B C5B C6B</td>
<td>120.3(3)°</td>
<td></td>
</tr>
<tr>
<td>C4B C5B H5B</td>
<td>119.9°</td>
<td></td>
</tr>
<tr>
<td>C6B C5B H5B</td>
<td>119.9°</td>
<td></td>
</tr>
<tr>
<td>C5B C6B C7B</td>
<td>119.7(3)°</td>
<td></td>
</tr>
<tr>
<td>C5B C6B H6B</td>
<td>120.1°</td>
<td></td>
</tr>
<tr>
<td>C7B C6B H6B</td>
<td>120.1°</td>
<td></td>
</tr>
<tr>
<td>C2B C7B C6B</td>
<td>120.8(3)°</td>
<td></td>
</tr>
<tr>
<td>C2B C7B H7B</td>
<td>119.6°</td>
<td></td>
</tr>
<tr>
<td>C6B C7B H7B</td>
<td>119.6°</td>
<td></td>
</tr>
<tr>
<td>C9B C8B C13B</td>
<td>117.5(2)°</td>
<td></td>
</tr>
</tbody>
</table>
H18C C18B H18D 107.5 . . ?
C18B C19B C20B 113.6(2) . . ?
C18B C19B H19C 108.8 . . ?
C20B C19B H19C 108.8 . . ?
C18B C19B H19D 108.8 . . ?
C20B C19B H19D 108.8 . . ?
H19C C19B H19D 107.7 . . ?
C21B C20B C19B 114.4(2) . . ?
C21B C20B H20C 108.7 . . ?
C19B C20B H20C 108.7 . . ?
C21B C20B H20D 108.7 . . ?
C19B C20B H20D 108.7 . . ?
H20C C20B H20D 107.6 . . ?
C20B C21B C22B 114.4(2) . . ?
C20B C21B H21C 108.7 . . ?
C22B C21B H21C 108.7 . . ?
C20B C21B H21D 108.7 . . ?
C22B C21B H21D 108.7 . . ?
H21C C21B H21D 107.6 . . ?
C23B C22B C21B 114.5(2) . . ?
C23B C22B H22C 108.6 . . ?
C21B C22B H22C 108.6 . . ?
C23B C22B H22D 108.6 . . ?
C21B C22B H22D 108.6 . . ?
H22C C22B H22D 107.6 . . ?
C22B C23B C24B 114.0(2) . . ?
C22B C23B H23C 108.8 . . ?
C24B C23B H23C 108.8 . . ?
C22B C23B H23D 108.8 . . ?
C24B C23B H23D 108.8 . . ?
H23C C23B H23D 107.6 . . ?
C25B C24B C23B 113.4(2) . . ?
C25B C24B H24C 108.9 . . ?
C23B C24B H24C 108.9 . . ?
C25B C24B H24D 108.9 . . ?
C23B C24B H24D 108.9 . . ?
H24C C24B H24D 107.7 . . ?
C24B C25B H25D 109.5 . . ?
C24B C25B H25E 109.5 . . ?
H25D C25B H25E 109.5 . . ?
C24B C25B H25F 109.5 . . ?
H25D C25B H25F 109.5 . . ?
H25E C25B H25F 109.5 . . ?
C27B C26B C31B 116.7(2) . . ?
C27B C26B C1B 120.8(2) . . ?
C31B C26B C1B 122.4(2) . . ?
C26B C27B C28B 121.6(2) . . ?
C26B C27B C29B 117.8(2) . . ?
C28B C27B C29B 120.6(2) . . ?
C29B C28B C27B 119.5(2) . . ?
C29B C28B C27B 120.3 . . ?
C27B C28B H28B 120.3 . . ?
C27B C28B H28B 120.3 . . ?
O4B C29B C28B 122.3(2) . . ?
O4B C29B C28B 116.3(2) . . ?
C28B C29B C30B 121.5(2) . . ?
C31B C30B C29B 116.4(2) . . ?
C31B C30B C32B 124.4(2) . . ?
C29B C30B C32B 119.1(2) . . ?
C30B C31B C26B 123.9(2) . . ?
C30B C31B H31B 118.0 . . ?
C26B C31B H31B 118.0 . . ?
C30B C31B C33B 117.6(2) . . ?
C30B C32B H32C 107.9 . . ?
C33B C32B H32C 107.9 . . ?
C30B C32B H32D 107.9 . . ?
C33B C32B H32D 107.9 . . ?
H32C C32B H32D 107.2 . . ?
C34B C33B C32B 110.9(2) . . ?
C34B C33B H33C 109.5 . . ?
C32B C33B H33C 109.5 . . ?
C34B C33B H33D 109.5 . . ?
C32B C33B H33D 109.5 . . ?
H33C C33B H33D 108.0 . . ?
C33B C34B C35B 115.2(2) . . ?
C33B C34B H34C 108.5 . . ?
C35B C34B H34C 108.5 . . ?
C33B C34B H34D 108.5 . . ?
C35B C34B H34D 108.5 . . ?
H34C C34B H34D 107.5 . . ?
C36B C35B C34B 112.6(2) . . ?
C36B C35B H35C 109.1 . . ?
C34B C35B H35C 109.1 . . ?
C36B C35B H35D 109.1 . . ?
C34B C35B H35D 109.1 . . ?
H35C C35B H35D 107.8 . . ?
C35B C36B C37B 115.4(2) . . ?
C35B C36B H36C 108.4 . . ?
C37B C36B H36C 108.4 . . ?
C35B C36B H36D 108.4 . . ?
C37B C36B H36D 108.4 . . ?
H36C C36B H36D 107.5 . . ?
C36B C37B C38B 113.7(2) . . ?
<table>
<thead>
<tr>
<th>Bond</th>
<th>Angle</th>
<th>Distance</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>C36B C37B</td>
<td>H37C</td>
<td>108.8</td>
<td>. . .</td>
</tr>
<tr>
<td>C38B C37B</td>
<td>H37C</td>
<td>108.8</td>
<td>. . .</td>
</tr>
<tr>
<td>C36B C37B</td>
<td>H37D</td>
<td>108.8</td>
<td>. . .</td>
</tr>
<tr>
<td>C38B C37B</td>
<td>H37D</td>
<td>108.8</td>
<td>. . .</td>
</tr>
<tr>
<td>H37C C37B</td>
<td>H37D</td>
<td>107.7</td>
<td>. . .</td>
</tr>
<tr>
<td>C39B C38B</td>
<td>C37B</td>
<td>114.9</td>
<td>(2) . .</td>
</tr>
<tr>
<td>C39B C38B</td>
<td>H38C</td>
<td>108.5</td>
<td>. . .</td>
</tr>
<tr>
<td>C37B C38B</td>
<td>H38C</td>
<td>108.5</td>
<td>. . .</td>
</tr>
<tr>
<td>C39B C38B</td>
<td>H38D</td>
<td>108.5</td>
<td>. . .</td>
</tr>
<tr>
<td>C37B C38B</td>
<td>H38D</td>
<td>108.5</td>
<td>. . .</td>
</tr>
<tr>
<td>H38C C38B</td>
<td>H38D</td>
<td>107.5</td>
<td>. . .</td>
</tr>
<tr>
<td>C38B C39B</td>
<td>C40B</td>
<td>114.6</td>
<td>(2) . .</td>
</tr>
<tr>
<td>C38B C39B</td>
<td>H39C</td>
<td>108.6</td>
<td>. . .</td>
</tr>
<tr>
<td>C40B C39B</td>
<td>H39C</td>
<td>108.6</td>
<td>. . .</td>
</tr>
<tr>
<td>C38B C39B</td>
<td>H39D</td>
<td>108.6</td>
<td>. . .</td>
</tr>
<tr>
<td>C40B C39B</td>
<td>H39D</td>
<td>108.6</td>
<td>. . .</td>
</tr>
<tr>
<td>C39B C40B</td>
<td>C41B</td>
<td>114.5</td>
<td>(2) . .</td>
</tr>
<tr>
<td>C39B C40B</td>
<td>H40C</td>
<td>108.6</td>
<td>. . .</td>
</tr>
<tr>
<td>C41B C40B</td>
<td>H40C</td>
<td>108.6</td>
<td>. . .</td>
</tr>
<tr>
<td>C39B C40B</td>
<td>H40D</td>
<td>108.6</td>
<td>. . .</td>
</tr>
<tr>
<td>C41B C40B</td>
<td>H40D</td>
<td>108.6</td>
<td>. . .</td>
</tr>
<tr>
<td>H40C C40B</td>
<td>H40D</td>
<td>107.6</td>
<td>. . .</td>
</tr>
<tr>
<td>C40B C41B</td>
<td>C42B</td>
<td>113.8</td>
<td>(3) . .</td>
</tr>
<tr>
<td>C40B C41B</td>
<td>H41C</td>
<td>108.8</td>
<td>. . .</td>
</tr>
<tr>
<td>C42B C41B</td>
<td>H41C</td>
<td>108.8</td>
<td>. . .</td>
</tr>
<tr>
<td>C40B C41B</td>
<td>H41D</td>
<td>108.8</td>
<td>. . .</td>
</tr>
<tr>
<td>C42B C41B</td>
<td>H41D</td>
<td>108.8</td>
<td>. . .</td>
</tr>
<tr>
<td>H41C C41B</td>
<td>H41D</td>
<td>107.7</td>
<td>. . .</td>
</tr>
<tr>
<td>C43C C42B</td>
<td>C43B</td>
<td>98.8</td>
<td>(5) . .</td>
</tr>
<tr>
<td>C43C C42B</td>
<td>C41B</td>
<td>112.0</td>
<td>(5) . .</td>
</tr>
<tr>
<td>C43B C42B</td>
<td>C41B</td>
<td>116.4</td>
<td>(4) . .</td>
</tr>
<tr>
<td>C1S O2S C3S</td>
<td>118.3</td>
<td>(3) . .</td>
<td></td>
</tr>
<tr>
<td>C5S O4S C7S</td>
<td>118.0</td>
<td>(3) . .</td>
<td></td>
</tr>
<tr>
<td>O1S C1S O2S</td>
<td>120.9</td>
<td>(3) . .</td>
<td></td>
</tr>
<tr>
<td>O1S C1S C2S</td>
<td>125.3</td>
<td>(3) . .</td>
<td></td>
</tr>
<tr>
<td>O2S C1S C2S</td>
<td>113.8</td>
<td>(3) . .</td>
<td></td>
</tr>
<tr>
<td>C1S C2S H2S1</td>
<td>109.5</td>
<td>. . .</td>
<td></td>
</tr>
<tr>
<td>C1S C2S H2S2</td>
<td>109.5</td>
<td>. . .</td>
<td></td>
</tr>
<tr>
<td>H2S1 C2S H2S2</td>
<td>109.5</td>
<td>. . .</td>
<td></td>
</tr>
<tr>
<td>C1S C2S H2S3</td>
<td>109.5</td>
<td>. . .</td>
<td></td>
</tr>
<tr>
<td>H2S1 C2S H2S3</td>
<td>109.5</td>
<td>. . .</td>
<td></td>
</tr>
<tr>
<td>H2S2 C2S H2S3</td>
<td>109.5</td>
<td>. . .</td>
<td></td>
</tr>
<tr>
<td>C4S C3S O2S</td>
<td>110.2</td>
<td>(4) . .</td>
<td></td>
</tr>
<tr>
<td>C4S C3S H3S1</td>
<td>109.6</td>
<td>. . .</td>
<td></td>
</tr>
<tr>
<td>O2S C3S H3S1</td>
<td>109.6</td>
<td>. . .</td>
<td></td>
</tr>
</tbody>
</table>
C4S C3S H3S2 109.6 . . ?
O2S C3S H3S2 109.6 . . ?
H3S1 C3S H3S2 108.1 . . ?
C3S C4S H4S1 109.5 . . ?
C3S C4S H4S2 109.5 . . ?
H4S1 C4S H4S2 109.5 . . ?
C3S C4S H4S3 109.5 . . ?
H4S1 C4S H4S3 109.5 . . ?
H4S2 C4S H4S3 109.5 . . ?
O3S C5S O4S 122.9(3) . . ?
O3S C5S C6S 124.6(3) . . ?
O4S C5S C6S 112.4(3) . . ?
C5S C6S H6S1 109.5 . . ?
C5S C6S H6S2 109.4 . . ?
H6S1 C6S H6S2 109.5 . . ?
C5S C6S H6S3 109.5 . . ?
H6S1 C6S H6S3 109.5 . . ?
H6S2 C6S H6S3 109.5 . . ?
04S C7S C8S 104.8(3) . . ?
04S C7S H7S1 110.8 . . ?
C8S C7S H7S1 110.8 . . ?
04S C7S H7S2 110.8 . . ?
C8S C7S H7S2 110.8 . . ?
H7S1 C7S H7S2 108.9 . . ?
C7S C8S H8S1 109.5 . . ?
C7S C8S H8S2 109.5 . . ?
H8S1 C8S H8S2 109.5 . . ?
C7S C8S H8S3 109.5 . . ?
H8S1 C8S H8S3 109.5 . . ?
H8S2 C8S H8S3 109.5 . . ?

loop_
 _geom_torsion_atom_site_label_1
 _geom_torsion_atom_site_label_2
 _geom_torsion_atom_site_label_3
 _geom_torsion_atom_site_label_4
 _geom_torsion
 _geom_torsion_site_symmetry_1
 _geom_torsion_site_symmetry_2
 _geom_torsion_site_symmetry_3
 _geom_torsion_site_symmetry_4
 _geom_torsion_publ_flag
C8A C1A C2A C7A 159.2(2) ?
C26A C1A C2A C7A 29.6(3) ?
C8A C1A C2A C3A -27.6(4) ?
C26A C1A C2A C3A -157.2(2) ?
C7A C2A C3A C4A -0.8(4) ?
C1A C2A C3A C4A -174.2(3) ?
C2A C3A C4A C5A 1.1(5) ?
C3A C4A C5A C6A -0.1(5) ?
C4A C5A C6A C7A -1.1(5) ?
C3A C2A C7A C6A -0.4(4) ?
C1A C2A C7A C6A 173.1(3) ?
C5A C6A C7A C2A 1.4(5) ?
C2A C1A C8A C9A 135.7(2) ?
C26A C1A C8A C9A -93.4(3) ?
C2A C1A C8A C13A -45.8(3) ?
C26A C1A C8A C13A 85.1(3) ?
C13A C8A C9A O1A 179.4(2) ?
C1A C8A C9A O1A -2.0(3) ?
C13A C8A C9A C10A 0.7(4) ?
C1A C8A C9A C10A 179.3(2) ?
C8A C9A C10A C11A -1.3(4) ?
O1A C9A C10A C11A 180.0(2) ?
C9A C10A C11A O2A -180.0(2) ?
C9A C10A C11A C12A 1.2(4) ?
C10A C11A C12A C13A -0.4(4) ?
O2A C11A C12A C13A -179.3(2) ?
C10A C11A C12A C14A 179.9(2) ?
O2A C11A C12A C14A 1.0(4) ?
C11A C12A C13A C8A -0.2(4) ?
C14A C12A C13A C8A 179.4(2) ?
C9A C8A C13A C12A 0.1(4) ?
C1A C8A C13A C12A -178.5(2) ?
C11A C12A C14A C15A 73.1(3) ?
C13A C12A C14A C15A -106.6(3) ?
C12A C14A C15A C16A -170.0(2) ?
C14A C15A C16A C17A 177.1(2) ?
C15A C16A C17A C18A -168.4(2) ?
C16A C17A C18A C19A -176.6(2) ?
C17A C18A C19A C20A -178.1(2) ?
C18A C19A C20A C21A -175.8(2) ?
C19A C20A C21A C22A 179.3(2) ?
C20A C21A C22A C23A -176.3(2) ?
C21A C22A C23A C24A 179.0(2) ?
C22A C23A C24A C25A -178.9(2) ?
C8A C1A C26A C27A 126.6(3) ?
C2A C1A C26A C27A -102.4(3) ?
C8A C1A C26A C31A -50.0(3) ?
C2A C1A C26A C31A 80.9(3) ?
C31A C26A C27A O3A -179.1(2) ?
C1A C26A C27A O3A 4.1(4) ?

172
C31A C26A C27A C28A -0.3(4) ?
C1A C26A C27A C28A -177.1(2) ?
O3A C27A C28A C29A -179.7(2) ?
C26A C27A C28A C29A 1.5(4) ?
C27A C28A C29A O4A 176.5(2) ?
C27A C28A C29A C30A -1.8(4) ?
O4A C29A C30A C31A -177.4(2) ?
C28A C29A C30A C31A 1.0(4) ?
O4A C29A C30A C32A -1.9(3) ?
C28A C29A C30A C32A 176.5(2) ?
C29A C30A C31A C26A 0.3(4) ?
C32A C30A C31A C26A -175.0(2) ?
C27A C26A C31A C30A -0.6(4) ?
C1A C26A C31A C30A 176.3(2) ?
C31A C30A C32A C33A 11.4(4) ?
C29A C30A C32A C33A -163.8(2) ?
C30A C32A C33A C34A 168.9(2) ?
C32A C33A C34A C35A 176.7(2) ?
C33A C34A C35A C36A 176.5(2) ?
C34A C35A C36A C37A 177.9(2) ?
C35A C36A C37A C38A 178.9(2) ?
C36A C37A C38A C39A 178.2(2) ?
C37A C38A C39A C40A 177.3(2) ?
C38A C39A C40A C41A 176.3(2) ?
C39A C40A C41A C42A 175.8(3) ?
C40A C41A C42A C43A 173.4(3) ?
C26B C1B C2B C7B 12.8(4) ?
C8B C1B C2B C7B 140.3(3) ?
C26B C1B C2B C3B -169.6(2) ?
C8B C1B C2B C3B -42.2(3) ?
C7B C2B C3B C4B -1.0(4) ?
C1B C2B C3B C4B -178.6(3) ?
C2B C3B C4B C5B 1.2(5) ?
C3B C4B C5B C6B -0.3(5) ?
C4B C5B C6B C7B -0.8(5) ?
C3B C2B C7B C6B -0.2(4) ?
C1B C2B C7B C6B 177.4(3) ?
C5B C6B C7B C2B 1.0(4) ?
C26B C1B C8B C9B -89.6(3) ?
C2B C1B C8B C9B 141.5(2) ?
C26B C1B C8B C13B 87.6(3) ?
C2B C1B C8B C13B -41.2(3) ?
C13B C8B C9B O1B -178.9(2) ?
C1B C8B C9B O1B -1.5(4) ?
C13B C8B C9B C10B 0.9(4) ?
C1B C8B C9B C10B 178.3(2) ?
O1B C9B C10B C11B 179.1(2) ?
C8B C9B C10B C11B -0.7(4) ?
C9B C10B C11B C12B 0.0(4) ?
C9B C10B C11B O2B -179.9(2) ?
C10B C11B C12B C13B 0.3(4) ?
O2B C11B C12B C13B -179.7(2) ?
C10B C11B C12B C14B -178.9(2) ?
O2B C11B C12B C14B 1.0(4) ?
C11B C12B C13B C8B -0.1(4) ?
C14B C12B C13B C8B 179.1(2) ?
C9B C8B C13B C12B -0.5(4) ?
C1B C8B C13B C12B -177.9(2) ?
C11B C12B C14B C15B 74.0(3) ?
C13B C12B C14B C15B -105.2(3) ?
C12B C14B C15B C16B -169.2(2) ?
C14B C15B C16B C17B 175.9(2) ?
C15B C16B C17B C18B -167.1(2) ?
C16B C17B C18B C19B 179.7(2) ?
C17B C18B C19B C20B -176.3(2) ?
C18B C19B C20B C21B -178.9(3) ?
C19B C20B C21B C22B 179.3(2) ?
C20B C21B C22B C23B -177.3(3) ?
C21B C22B C23B C24B 178.8(2) ?
C22B C23B C24B C25B 179.7(3) ?
C8B C1B C26B C27B 142.1(2) ?
C2B C1B C26B C27B -89.6(3) ?
C8B C1B C26B C31B -40.1(3) ?
C2B C1B C26B C31B 88.2(3) ?
C31B C26B C27B C28B 4.8(4) ?
C1B C26B C27B C28B -177.3(2) ?
C31B C26B C27B O3B -174.8(2) ?
C1B C26B C27B O3B 3.1(4) ?
C26B C27B C28B C29B -1.7(4) ?
O3B C27B C28B C29B 177.9(2) ?
C27B C28B C29B O4B 176.9(2) ?
C27B C28B C29B C30B -3.6(4) ?
O4B C29B C30B C31B -175.2(2) ?
C28B C29B C30B C31B 5.4(4) ?
O4B C29B C30B C32B 3.6(4) ?
C28B C29B C30B C32B -175.9(2) ?
C29B C30B C31B C26B -2.0(4) ?
C32B C30B C31B C26B 179.3(2) ?
C27B C26B C31B C30B -2.9(4) ?
C1B C26B C31B C30B 179.2(2) ?
C31B C30B C32B C33B -2.6(4) ?
C29B C30B C32B C33B 178.8(2) ?
C30B C32B C33B C34B 174.5(2) ?
C32B C33B C34B C35B 179.8(2) ?
C33B C34B C35B C36B 175.2(2) ?
C34B C35B C36B C37B -176.8(2) ?
C35B C36B C37B C38B 178.6(2) ?
C36B C37B C38B C39B -177.5(2) ?
C37B C38B C39B C40B 178.3(3) ?
C38B C39B C40B C41B -178.2(3) ?
C39B C40B C41B C42B 173.6(3) ?
C40B C41B C42B C43C 69.3(6) ?
C40B C41B C42B C43B -178.0(4) ?
C3S O2S C1S O1S -2.0(5) ?
C3S O2S C1S C2S 177.6(3) ?
C1S O2S C3S C4S -86.5(5) ?
C7S O4S C5S O3S 1.3(5) ?
C7S O4S C5S C6S -177.3(3) ?
C5S O4S C7S C8S -155.5(4) ?

loop_
_geom_hbond_atom_site_label_D
_geom_hbond_atom_site_label_H
_geom_hbond_atom_site_label_A
_geom_hbond_distance_DH
_geom_hbond_distance_HA
_geom_hbond_distance_DA
_geom_hbond_angle_DHA
_geom_hbond_site_symmetry_A
O1A H1OA O3S 0.84 1.91 2.746(3) 171.8 2_646
O2A H2OA O1S 0.84 1.93 2.766(3) 171.1 2_646
O3A H3OA O3B 0.84 2.00 2.721(3) 144.0 2_746
O4A H4OA O2A 0.84 1.97 2.804(2) 174.9 1_655
O1B H1OB O3A 0.84 2.00 2.761(2) 151.0 2_756
O2B H2OB O3S 0.84 1.97 2.737(3) 150.6 .
O3B H3OB O2S 0.84 2.09 2.836(3) 147.1 2_746
O4B H4OB O2B 0.84 1.92 2.755(2) 170.5 1_655

_diffrrn_measured_fraction_theta_max 0.90
_diffrrn_reflns_theta_full 25.0
_diffrrn_measured_fraction_theta_full 0.90
_refine_diff_density_max 0.67
_refine_diff_density_min -0.31
_refine_diff_density_rms 0.048
END OF NADIA7 CIF
END OF FILE
APPENDIX J: CHARACTERIZATION DATA FOR COMPOUND 6.5

Figure J.1. 1H NMR of compound 6.5

Figure J.2. FAB-MS of compound 6.5
Figure J.3. Crystal structure of compound 6.5

Table J.1. CIF datat for compound 6.5

==
CHEMICAL DATA

_audit_creation_method SHELXL-97
_chemical_name_systematic ;
?;

_chemical_name_common ;

_chemical_melting_point ;

_chemical_compound_source 'local laboratory'

_chemical_formula_moiety 'C19 H14 Br2 O4, 2(C4 H8 O2)'

_chemical_formula_sum 'C27 H30 Br2 O8'

_chemical_formula_weight 642.33

loop_

_atom_type_symbol

_atom_type_description

_atom_type_scat_dispersion_real

_atom_type_scat_dispersion_imag

_atom_type_scat_source

'C' 'C' 0.0033 0.0016

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

==

177
CRYSTAL DATA

_symmetry_space_group_name_H-M 'P 21/n '
_symmetry_cell_setting 'Monoclinic'

loop_
_symmetry_equiv_pos_as_xyz
'x, y, z'
'-x+1/2, y+1/2, -z+1/2'
'-x, -y, -z'
'x-1/2, -y-1/2, z-1/2'

_cell_length_a 11.5585(10)
_cell_length_b 22.321(2)
_cell_length_c 20.787(2)
_cell_angle_alpha 90
_cell_angle_beta 101.381(4)
_cell_angle_gamma 90
_cell_volume 5257.6(8)
_cell_formula_units_Z 8
_cell_measurement_temperature 120
_cell_measurement_reflns_used 14321
_cell_measurement_theta_min 2.5
_cell_measurement_theta_max 30.0
_exptl_crystal_description fragment
_exptl_crystal_colour colorless
_exptl_crystal_size_max 0.37
_exptl_crystal_size_mid 0.25
_exptl_crystal_size_min 0.17
_exptl_crystal_density_meas ?
_exptl_crystal_density_diffrn 1.623
_exptl_crystal_density_method 'not measured'
_exptl_crystal_F_000 2608
_exptl_absorp_coefficient_mu 3.133
_exptl_absorp_correction_type 'multi-scan'
_exptl_absorp_correction_T_min 0.390
_exptl_absorp_correction_T_max 0.618
EXPERIMENT DATA

_diffrn_ambient_temperature 120
_diffrn_radiation_wavelength 0.71073
_diffrn_radiation_type MoKα
_diffrn_radiation_source 'fine-focus sealed tube'
_diffrn_radiation_monochromator graphite
_diffrn_measurement_device 'KappaCCD (with Oxford Cryostream)'
_diffrn_measurement_method "\w scans with \k offsets"
_diffrn_detector_area_resol_mean ?
_diffrn_standards_number 0
_diffrn_standards_interval_count ?
_diffrn_standards_interval_time ?
_diffrn_standards_decay_% <2
_diffrn_reflns_number 79141
_diffrn_reflns_av_R_equivalents 0.057
_diffrn_reflns_av_sigmaI/netI 0.0497
_diffrn_reflns_limit_h_min 0
_diffrn_reflns_limit_h_max 16
_diffrn_reflns_limit_k_min 0
_diffrn_reflns_limit_k_max 31
_diffrn_reflns_limit_l_min -29
_diffrn_reflns_limit_l_max 28
_diffrn_reflns_theta_min 2.5
_diffrn_reflns_theta_max 30.0
_reflns_number_total 15325
_reflns_number_gt 10754
_reflns_threshold_expression I>2σ(I)

_computing_data_collection 'COLLECT (Nonius, 2000)'
_computing_data_reduction 'Denzo and Scalepack (Otwinowski & Minor, 1997)'
_computing_cell_refinement 'Denzo and Scalepack (Otwinowski & Minor, 1997)'
_computing_structure_solution 'SIR97 (Altomare, et al., 1999)'
_computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)'
_computing_molecular_graphics 'ORTEP-3 (Farrugia, 1997)'
_computing_publication_material 'SHELXL-97 (Sheldrick, 1997)'

==

179
REFINEMENT DATA

-refine_special_details

; Refinement of F^2 against ALL reflections. The weighted R-factor wR and
goodness of fit S are based on F^2, conventional R-factors R are based
on F, with F set to zero for negative F^2. The threshold expression of
F^2 > 2sigma(F^2) is used only for calculating R-factors(gt) etc. and is
not relevant to the choice of reflections for refinement. R-factors based
on F^2 are statistically about twice as large as those based on F, and R-
factors based on ALL data will be even larger.

-refine_ls_structure_factor_coef Fsqd
-refine_ls_matrix_type full
-refine_ls_weighting_scheme calc
-refine_ls_weighting_details 'calc w=1/[s^2(Fo^2)+(0.1000P)^2] where P=(Fo^2+2Fc^2)/3'
-atom_sites_solution_primary direct
-atom_sites_solution_secondary difmap
-atom_sites_solution_hydrogens geom
-refine_ls_hydrogen_treatment none
-refine_ls_extinction_method none
-refine_ls_extinction_coef ?
-refine_ls_number_reflns 15325
-refine_ls_number_parameters 601
-refine_ls_number_restraints 0
-refine_ls_R_factor_all 0.120
-refine_ls_R_factor_gt 0.078
-refine_ls_wR_factor_ref 0.241
-refine_ls_wR_factor_gt 0.222
-refine_ls_goodness_of_fit_ref 1.598
-refine_ls_restrained_S_all 1.598
-refine_ls_shift/su_max 0.01
-refine_ls_shift/su_mean 0.001

===

ATOMIC COORDINATES AND THERMAL PARAMETERS

loop_
_atom_site_label
_atom_site_type_symbol
_atom_site_fract_x
_atom_site_fract_y
<table>
<thead>
<tr>
<th>Atom</th>
<th>Symbol</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
<th>Site Symmetry</th>
<th>Multiplicity</th>
<th>Calc. Flag</th>
<th>Refinement Flags</th>
<th>Disorder Assembly</th>
<th>Disorder Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Br1</td>
<td>Br</td>
<td>0.61647(4)</td>
<td>0.06612(2)</td>
<td>0.43703(3)</td>
<td>0.03903(16)</td>
<td>U ani 1 1</td>
<td>d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Br2</td>
<td>Br</td>
<td>0.04604(4)</td>
<td>0.39391(3)</td>
<td>0.72820(2)</td>
<td>0.03984(16)</td>
<td>U ani 1 1</td>
<td>d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Br3</td>
<td>Br</td>
<td>0.01154(5)</td>
<td>0.07905(3)</td>
<td>0.26481(2)</td>
<td>0.04334(17)</td>
<td>U ani 1 1</td>
<td>d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Br4</td>
<td>Br</td>
<td>-0.56184(5)</td>
<td>0.42114(2)</td>
<td>0.56725(3)</td>
<td>0.04827(18)</td>
<td>U ani 1 1</td>
<td>d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O5</td>
<td>O</td>
<td>0.0420(3)</td>
<td>0.30670(14)</td>
<td>0.45374(14)</td>
<td>0.0270(6)</td>
<td>U ani 1 1</td>
<td>d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O6</td>
<td>O</td>
<td>0.2731(3)</td>
<td>0.26925(15)</td>
<td>0.44123(16)</td>
<td>0.0330(7)</td>
<td>U ani 1 1</td>
<td>d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O7</td>
<td>O</td>
<td>0.2213(3)</td>
<td>0.22379(13)</td>
<td>0.53511(16)</td>
<td>0.0296(7)</td>
<td>U ani 1 1</td>
<td>d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O12</td>
<td>O</td>
<td>-0.2002(3)</td>
<td>0.12339(18)</td>
<td>0.31751(16)</td>
<td>0.0387(8)</td>
<td>U ani 1 1</td>
<td>d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O14</td>
<td>O</td>
<td>0.2573(3)</td>
<td>0.3706(2)</td>
<td>0.4409(9)</td>
<td>U ani 1 1</td>
<td>d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C10</td>
<td>C</td>
<td>0.1141(3)</td>
<td>0.15100(18)</td>
<td>0.45253(19)</td>
<td>0.0207(8)</td>
<td>U ani 1 1</td>
<td>d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C16</td>
<td>C</td>
<td>0.0470(4)</td>
<td>0.36415(19)</td>
<td>0.64329(19)</td>
<td>0.0232(8)</td>
<td>U ani 1 1</td>
<td>d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C17</td>
<td>C</td>
<td>0.5261(3)</td>
<td>0.1838(2)</td>
<td>0.4079(2)</td>
<td>0.0273(9)</td>
<td>U ani 1 1</td>
<td>d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C18</td>
<td>C</td>
<td>-0.0588(3)</td>
<td>0.36037(19)</td>
<td>0.5980(2)</td>
<td>0.0230(8)</td>
<td>U ani 1 1</td>
<td>d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C19</td>
<td>C</td>
<td>0.4161(4)</td>
<td>0.1236(2)</td>
<td>0.4712(2)</td>
<td>0.0271(9)</td>
<td>U ani 1 1</td>
<td>d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C20</td>
<td>C</td>
<td>0.3530(3)</td>
<td>0.2233(2)</td>
<td>0.4407(2)</td>
<td>0.0242(8)</td>
<td>U ani 1 1</td>
<td>d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C22</td>
<td>C</td>
<td>0.2276(3)</td>
<td>0.16305(19)</td>
<td>0.50370(19)</td>
<td>0.0210(8)</td>
<td>U ani 1 1</td>
<td>d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C23</td>
<td>C</td>
<td>0.1154(4)</td>
<td>0.1244(2)</td>
<td>0.3920(2)</td>
<td>0.0274(9)</td>
<td>U ani 1 1</td>
<td>d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C25</td>
<td>C</td>
<td>0.2455(3)</td>
<td>0.11678(19)</td>
<td>0.5595(2)</td>
<td>0.0234(8)</td>
<td>U ani 1 1</td>
<td>d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C26</td>
<td>C</td>
<td>-0.4550(4)</td>
<td>0.3587(2)</td>
<td>0.5574(2)</td>
<td>0.0287(9)</td>
<td>U ani 1 1</td>
<td>d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C27</td>
<td>C</td>
<td>-0.4705(4)</td>
<td>0.3030(2)</td>
<td>0.5828(2)</td>
<td>0.0259(9)</td>
<td>U ani 1 1</td>
<td>d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C28</td>
<td>C</td>
<td>-0.2831(3)</td>
<td>0.32560(18)</td>
<td>0.5165(2)</td>
<td>0.0218(8)</td>
<td>U ani 1 1</td>
<td>d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C29</td>
<td>C</td>
<td>-0.0624(3)</td>
<td>0.34044(18)</td>
<td>0.5348(2)</td>
<td>0.0206(8)</td>
<td>U ani 1 1</td>
<td>d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C30</td>
<td>C</td>
<td>-0.3922(4)</td>
<td>0.2572(2)</td>
<td>0.5739(2)</td>
<td>0.0259(9)</td>
<td>U ani 1 1</td>
<td>d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C31</td>
<td>C</td>
<td>-0.1949(4)</td>
<td>0.3917(2)</td>
<td>0.4391(2)</td>
<td>0.0265(9)</td>
<td>U ani 1 1</td>
<td>d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C32</td>
<td>C</td>
<td>0.1516(3)</td>
<td>0.34701(19)</td>
<td>0.6260(2)</td>
<td>0.0237(8)</td>
<td>U ani 1 1</td>
<td>d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C33</td>
<td>C</td>
<td>0.0066(3)</td>
<td>0.16752(18)</td>
<td>0.46759(19)</td>
<td>0.0200(8)</td>
<td>U ani 1 1</td>
<td>d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C34</td>
<td>C</td>
<td>0.0449(3)</td>
<td>0.32479(18)</td>
<td>0.5169(2)</td>
<td>0.0212(8)</td>
<td>U ani 1 1</td>
<td>d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C36</td>
<td>C</td>
<td>0.3358(3)</td>
<td>0.16933(19)</td>
<td>0.4721(2)</td>
<td>0.0219(8)</td>
<td>U ani 1 1</td>
<td>d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C37</td>
<td>C</td>
<td>0.1519(4)</td>
<td>0.32771(19)</td>
<td>0.5625(2)</td>
<td>0.0248(9)</td>
<td>U ani 1 1</td>
<td>d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C38</td>
<td>C</td>
<td>-0.3639(4)</td>
<td>0.3707(2)</td>
<td>0.5242(2)</td>
<td>0.0254(9)</td>
<td>U ani 1 1</td>
<td>d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C39</td>
<td>C</td>
<td>0.4485(4)</td>
<td>0.2306(2)</td>
<td>0.4095(2)</td>
<td>0.0274(9)</td>
<td>U ani 1 1</td>
<td>d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C40</td>
<td>C</td>
<td>-0.0992(4)</td>
<td>0.1583(2)</td>
<td>0.4230(2)</td>
<td>0.0253(9)</td>
<td>U ani 1 1</td>
<td>d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C42</td>
<td>C</td>
<td>0.1826(4)</td>
<td>0.0644(2)</td>
<td>0.5562(3)</td>
<td>0.0340(11)</td>
<td>U ani 1 1</td>
<td>d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C45</td>
<td>C</td>
<td>0.2175(5)</td>
<td>0.3982(3)</td>
<td>0.0370(11)</td>
<td>U ani 1 1</td>
<td>d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C47</td>
<td>C</td>
<td>0.0097(4)</td>
<td>0.1140(2)</td>
<td>0.3473(2)</td>
<td>0.0282(9)</td>
<td>U ani 1 1</td>
<td>d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C48</td>
<td>C</td>
<td>0.1961(4)</td>
<td>0.0255(2)</td>
<td>0.6101(3)</td>
<td>0.0384(12)</td>
<td>U ani 1 1</td>
<td>d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C49</td>
<td>C</td>
<td>-0.2383(5)</td>
<td>0.4920(3)</td>
<td>0.3559(3)</td>
<td>0.0462(14)</td>
<td>U ani 1 1</td>
<td>d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atom</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td>Temperature Anisotropy (U)</td>
<td>Uiso</td>
<td>Site</td>
<td>Site Symmetry</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>---------------------------</td>
<td>------</td>
<td>------</td>
<td>---------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C51</td>
<td>-0.1781(3)</td>
<td>0.33648(19)</td>
<td>0.4841(2)</td>
<td>0.0235(8)</td>
<td>Uani 1 1</td>
<td>d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C59</td>
<td>0.1061(5)</td>
<td>-0.0634(3)</td>
<td>0.3473(3)</td>
<td>0.0500(14)</td>
<td>Uani 1 1</td>
<td>d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C66</td>
<td>0.3664(5)</td>
<td>-0.0396(3)</td>
<td>0.3473(3)</td>
<td>0.0505(15)</td>
<td>Uani 1 1</td>
<td>d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C67</td>
<td>0.2778(5)</td>
<td>0.0384(3)</td>
<td>0.6667(3)</td>
<td>0.0432(13)</td>
<td>Uani 1 1</td>
<td>d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C70</td>
<td>-0.2649(6)</td>
<td>0.3868(3)</td>
<td>0.3772(3)</td>
<td>0.0607(19)</td>
<td>Uani 1 1</td>
<td>d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O8</td>
<td>0.0072(2)</td>
<td>0.19223(14)</td>
<td>0.52710(14)</td>
<td>0.0247(6)</td>
<td>Uani 1 1</td>
<td>d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O9</td>
<td>0.2593(2)</td>
<td>0.34811(15)</td>
<td>0.66895(15)</td>
<td>0.0317(7)</td>
<td>Uani 1 1</td>
<td>d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O11</td>
<td>0.6200(3)</td>
<td>0.18921(17)</td>
<td>0.37631(15)</td>
<td>0.0361(8)</td>
<td>Uani 1 1</td>
<td>d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O15</td>
<td>-0.5576(3)</td>
<td>0.28819(15)</td>
<td>0.61594(16)</td>
<td>0.0330(7)</td>
<td>Uani 1 1</td>
<td>d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O21</td>
<td>0.2670(3)</td>
<td>-0.12531(16)</td>
<td>0.4035(2)</td>
<td>0.0463(9)</td>
<td>Uani 1 1</td>
<td>d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C13</td>
<td>0.5106(4)</td>
<td>0.1307(2)</td>
<td>0.4395(2)</td>
<td>0.0266(9)</td>
<td>Uani 1 1</td>
<td>d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C24</td>
<td>-0.2995(4)</td>
<td>0.26851(18)</td>
<td>0.5422(2)</td>
<td>0.0228(8)</td>
<td>Uani 1 1</td>
<td>d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C35</td>
<td>-0.0967(4)</td>
<td>0.1316(2)</td>
<td>0.3627(2)</td>
<td>0.0282(9)</td>
<td>Uani 1 1</td>
<td>d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C46</td>
<td>-0.1712(5)</td>
<td>0.4986(2)</td>
<td>0.4195(3)</td>
<td>0.0467(13)</td>
<td>Uani 1 1</td>
<td>d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C52</td>
<td>-0.1501(5)</td>
<td>0.4474(2)</td>
<td>0.4606(2)</td>
<td>0.0361(11)</td>
<td>Uani 1 1</td>
<td>d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C55</td>
<td>0.3267(4)</td>
<td>0.1296(2)</td>
<td>0.6166(2)</td>
<td>0.0370(11)</td>
<td>Uani 1 1</td>
<td>d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C71</td>
<td>0.3793(6)</td>
<td>0.0142(3)</td>
<td>0.3054(3)</td>
<td>0.0557(16)</td>
<td>Uani 1 1</td>
<td>d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C73</td>
<td>0.3446(6)</td>
<td>0.0906(3)</td>
<td>0.6702(3)</td>
<td>0.0465(13)</td>
<td>Uani 1 1</td>
<td>d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C72</td>
<td>-0.2838(6)</td>
<td>0.4372(3)</td>
<td>0.3352(3)</td>
<td>0.067(2)</td>
<td>Uani 1 1</td>
<td>d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O74</td>
<td>0.8243(5)</td>
<td>0.1310(3)</td>
<td>0.8806(3)</td>
<td>0.0796(15)</td>
<td>Uiso 1 1</td>
<td>d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C75</td>
<td>0.2632(7)</td>
<td>0.2154(4)</td>
<td>0.7403(4)</td>
<td>0.0684(19)</td>
<td>Uiso 1 1</td>
<td>d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C76</td>
<td>0.0933(7)</td>
<td>0.1987(4)</td>
<td>0.6825(4)</td>
<td>0.0674(18)</td>
<td>Uiso 1 1</td>
<td>d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C77</td>
<td>0.0698(19)</td>
<td>0.2232(12)</td>
<td>0.7900(12)</td>
<td>0.218(11)</td>
<td>Uiso 1 1</td>
<td>d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C78</td>
<td>0.4541(7)</td>
<td>0.2314(4)</td>
<td>0.7826(4)</td>
<td>0.0684(19)</td>
<td>Uiso 1 1</td>
<td>d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C79</td>
<td>0.6283(7)</td>
<td>0.2577(4)</td>
<td>0.7649(4)</td>
<td>0.071(2)</td>
<td>Uiso 1 1</td>
<td>d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C80</td>
<td>0.7389(8)</td>
<td>0.0351(4)</td>
<td>0.8803(5)</td>
<td>0.085(2)</td>
<td>Uiso 1 1</td>
<td>d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C81</td>
<td>0.7923(9)</td>
<td>0.0417(5)</td>
<td>0.8477(5)</td>
<td>0.088(3)</td>
<td>Uiso 1 1</td>
<td>d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C82</td>
<td>-0.0920(7)</td>
<td>0.2074(4)</td>
<td>0.6936(4)</td>
<td>0.073(2)</td>
<td>Uiso 1 1</td>
<td>d . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C83</td>
<td>0.1478(9)</td>
<td>0.2154(5)</td>
<td>0.7399(5)</td>
<td>0.037(2)</td>
<td>Uiso 0.50 1 d</td>
<td>P . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C84</td>
<td>0.5996(9)</td>
<td>0.1594(5)</td>
<td>0.7583(5)</td>
<td>0.036(2)</td>
<td>Uiso 0.50 1 d</td>
<td>P . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C85</td>
<td>0.6253(9)</td>
<td>0.0535(5)</td>
<td>0.8896(5)</td>
<td>0.038(2)</td>
<td>Uiso 0.50 1 d</td>
<td>P . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C86</td>
<td>0.7893(11)</td>
<td>0.2945(6)</td>
<td>0.7380(6)</td>
<td>0.049(3)</td>
<td>Uiso 0.50 1 d</td>
<td>P . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C87</td>
<td>0.3497(10)</td>
<td>0.2286(5)</td>
<td>0.8002(6)</td>
<td>0.044(2)</td>
<td>Uiso 0.50 1 d</td>
<td>P . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C88</td>
<td>0.3338(10)</td>
<td>0.0877(5)</td>
<td>0.8538(5)</td>
<td>0.041(2)</td>
<td>Uiso 0.50 1 d</td>
<td>P . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C89</td>
<td>0.0175(9)</td>
<td>0.2104(5)</td>
<td>0.7274(5)</td>
<td>0.035(2)</td>
<td>Uiso 0.50 1 d</td>
<td>P . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C90</td>
<td>0.5626(10)</td>
<td>0.2075(5)</td>
<td>0.7690(5)</td>
<td>0.042(2)</td>
<td>Uiso 0.50 1 d</td>
<td>P . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C91</td>
<td>0.7498(11)</td>
<td>0.2528(6)</td>
<td>0.7477(6)</td>
<td>0.049(3)</td>
<td>Uiso 0.50 1 d</td>
<td>P . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C92</td>
<td>0.1109(10)</td>
<td>0.2256(5)</td>
<td>0.7899(5)</td>
<td>0.028(2)</td>
<td>Uiso 0.50 1 d</td>
<td>P . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C93</td>
<td>0.5487(14)</td>
<td>0.0788(7)</td>
<td>0.8423(8)</td>
<td>0.071(4)</td>
<td>Uiso 0.50 1 d</td>
<td>P . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C94</td>
<td>0.9287(13)</td>
<td>0.0564(7)</td>
<td>0.8415(7)</td>
<td>0.062(3)</td>
<td>Uiso 0.50 1 d</td>
<td>P . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C95</td>
<td>0.8921(13)</td>
<td>0.0975(7)</td>
<td>0.7767(7)</td>
<td>0.063(3)</td>
<td>Uiso 0.50 1 d</td>
<td>P . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C96</td>
<td>0.0388(9)</td>
<td>0.2184(4)</td>
<td>0.7865(5)</td>
<td>0.0217(19)</td>
<td>Uiso 0.50 1 d</td>
<td>P . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C97</td>
<td>-0.1948(12)</td>
<td>0.2173(6)</td>
<td>0.7303(7)</td>
<td>0.060(3)</td>
<td>Uiso 0.50 1 d</td>
<td>P . . .</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atom</td>
<td>Anisotropic Thermal Parameters</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-------------------------------</td>
<td></td>
</tr>
<tr>
<td>Br1</td>
<td>0.0242(2) 0.0481(3) 0.0472(3) -0.0003(2) 0.0129(2) 0.0129(2)</td>
<td></td>
</tr>
<tr>
<td>Br2</td>
<td>0.0278(3) 0.0673(4) 0.0232(2) -0.0097(2) 0.00211(18) 0.0112(2)</td>
<td></td>
</tr>
<tr>
<td>Br3</td>
<td>0.0345(3) 0.0642(4) 0.0308(3) -0.0219(2) 0.0052(2) 0.0008(2)</td>
<td></td>
</tr>
<tr>
<td>Br4</td>
<td>0.0359(3) 0.0396(3) 0.0775(4) 0.0125(3) 0.0312(3) 0.0166(2)</td>
<td></td>
</tr>
<tr>
<td>O5</td>
<td>0.0244(15) 0.0316(16) 0.0264(15) -0.0029(13) 0.0081(12) 0.0001(12)</td>
<td></td>
</tr>
<tr>
<td>O6</td>
<td>0.0314(17) 0.0326(17) 0.0359(18) 0.0020(14) 0.0090(14) 0.0066(13)</td>
<td></td>
</tr>
<tr>
<td>O7</td>
<td>0.0271(16) 0.0248(15) 0.0416(18) -0.0006(14) 0.0183(14) 0.0037(12)</td>
<td></td>
</tr>
<tr>
<td>O12</td>
<td>0.0222(16) 0.066(2) 0.0264(16) -0.0097(16) 0.0004(13) -0.0090(16)</td>
<td></td>
</tr>
<tr>
<td>O14</td>
<td>0.040(2) 0.0353(19) 0.064(2) 0.0162(18) 0.0222(18) 0.0018(16)</td>
<td></td>
</tr>
<tr>
<td>C10</td>
<td>0.0142(18) 0.025(2) 0.0220(19) -0.0044(16) 0.0008(15) 0.0002(15)</td>
<td></td>
</tr>
<tr>
<td>C16</td>
<td>0.026(2) 0.026(2) 0.0179(18) -0.0013(16) 0.0052(16) -0.0001(16)</td>
<td></td>
</tr>
<tr>
<td>C17</td>
<td>0.0138(18) 0.046(3) 0.021(2) -0.0046(19) 0.0017(16) -0.0022(17)</td>
<td></td>
</tr>
<tr>
<td>C18</td>
<td>0.0197(19) 0.024(2) 0.027(2) 0.0032(17) 0.0072(16) 0.0025(15)</td>
<td></td>
</tr>
<tr>
<td>C19</td>
<td>0.0166(19) 0.035(2) 0.029(2) -0.0040(18) 0.0012(17) 0.0015(17)</td>
<td></td>
</tr>
<tr>
<td>C20</td>
<td>0.0155(18) 0.032(2) 0.024(2) 0.0001(17) 0.0047(16) 0.0013(16)</td>
<td></td>
</tr>
<tr>
<td>C22</td>
<td>0.0097(16) 0.033(2) 0.0209(19) -0.0003(16) 0.0034(14) 0.0032(15)</td>
<td></td>
</tr>
<tr>
<td>C23</td>
<td>0.028(2) 0.029(2) 0.026(2) -0.0035(18) 0.0085(18) 0.0003(18)</td>
<td></td>
</tr>
<tr>
<td>C25</td>
<td>0.0170(19) 0.030(2) 0.025(2) -0.0007(17) 0.0076(16) 0.0044(16)</td>
<td></td>
</tr>
<tr>
<td>C26</td>
<td>0.017(2) 0.034(2) 0.035(2) -0.0025(19) 0.0065(18) 0.0064(17)</td>
<td></td>
</tr>
<tr>
<td>C27</td>
<td>0.0170(19) 0.035(2) 0.027(2) -0.0034(18) 0.0056(17) -0.0016(16)</td>
<td></td>
</tr>
<tr>
<td>C28</td>
<td>0.0190(19) 0.023(2) 0.0227(19) -0.0026(16) 0.0032(16) -0.0006(15)</td>
<td></td>
</tr>
<tr>
<td>C29</td>
<td>0.0162(18) 0.0210(19) 0.024(2) 0.0006(16) 0.00031(15) 0.0015(15)</td>
<td></td>
</tr>
<tr>
<td>C30</td>
<td>0.021(2) 0.029(2) 0.029(2) 0.0000(18) 0.0078(17) 0.0014(17)</td>
<td></td>
</tr>
<tr>
<td>C31</td>
<td>0.0174(19) 0.037(2) 0.025(2) 0.0077(18) 0.0058(16) 0.0048(17)</td>
<td></td>
</tr>
<tr>
<td>C32</td>
<td>0.0155(18) 0.030(2) 0.024(2) 0.0010(17) 0.0002(16) 0.0031(16)</td>
<td></td>
</tr>
<tr>
<td>C33</td>
<td>0.0193(18) 0.0209(19) 0.0207(19) -0.0014(15) 0.0056(15) 0.0016(15)</td>
<td></td>
</tr>
<tr>
<td>C34</td>
<td>0.0185(19) 0.0222(19) 0.0229(19) -0.0007(16) 0.0041(16) 0.0006(15)</td>
<td></td>
</tr>
<tr>
<td>C36</td>
<td>0.0129(17) 0.031(2) 0.0217(19) -0.0039(16) 0.0025(15) 0.0002(15)</td>
<td></td>
</tr>
<tr>
<td>C37</td>
<td>0.0198(19) 0.027(2) 0.028(2) 0.0005(17) 0.0075(17) 0.0018(16)</td>
<td></td>
</tr>
<tr>
<td>C38</td>
<td>0.0184(19) 0.028(2) 0.030(2) 0.0026(17) 0.0033(17) 0.0050(16)</td>
<td></td>
</tr>
<tr>
<td>C39</td>
<td>0.020(2) 0.040(2) 0.022(2) 0.0025(18) 0.0030(16) 0.0000(18)</td>
<td></td>
</tr>
<tr>
<td>C40</td>
<td>0.0192(19) 0.032(2) 0.025(2) 0.0027(18) 0.0055(16) -0.0020(17)</td>
<td></td>
</tr>
<tr>
<td>C42</td>
<td>0.027(2) 0.034(2) 0.043(3) 0.004(2) 0.010(2) 0.0060(18)</td>
<td></td>
</tr>
<tr>
<td>C45</td>
<td>0.033(3) 0.041(3) 0.038(3) 0.009(2) 0.011(2) 0.003(2)</td>
<td></td>
</tr>
<tr>
<td>C47</td>
<td>0.023(2) 0.037(2) 0.026(2) -0.0088(18) 0.0056(17) -0.0002(18)</td>
<td></td>
</tr>
<tr>
<td>C48</td>
<td>0.030(2) 0.038(3) 0.051(3) 0.012(2) 0.018(2) 0.014(2)</td>
<td></td>
</tr>
<tr>
<td>C49</td>
<td>0.039(3) 0.054(3) 0.047(3) 0.026(3) 0.011(2) 0.007(3)</td>
<td></td>
</tr>
<tr>
<td>C51</td>
<td>0.0158(18) 0.028(2) 0.026(2) 0.0009(17) 0.0038(16) -0.0013(16)</td>
<td></td>
</tr>
<tr>
<td>C59</td>
<td>0.040(3) 0.052(3) 0.062(4) 0.008(3) 0.022(3) 0.002(2)</td>
<td></td>
</tr>
<tr>
<td>C66</td>
<td>0.042(3) 0.045(3) 0.074(4) 0.019(3) 0.033(3) 0.005(2)</td>
<td></td>
</tr>
</tbody>
</table>
MOLECULAR GEOMETRY

loop_
 _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag
Br1 C13 1.898(4) . ?
Br2 C16 1.888(4) . ?
Br3 C47 1.888(4) . ?
Br4 C26 1.899(4) . ?
O5 C34 1.367(5) . ?
O6 C20 1.382(5) . ?
O7 C24 1.374(5) . ?
O12 C35 1.380(5) . ?
O14 C45 1.313(6) . ?
O14 C66 1.452(6) . ?

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
C10 C23 1.395(6)°
C10 C33 1.390(5)°
C10 C22 1.541(5)°
C16 C18 1.391(6)°
C16 C32 1.381(6)°
C17 C39 1.383(6)°
C17 O11 1.380(5)°
C17 C13 1.384(7)°
C18 C29 1.380(6)°
C19 C36 1.382(6)°
C19 C13 1.391(6)°
C20 C39 1.397(6)°
C20 C36 1.402(6)°
C22 C36 1.529(5)°
C22 C25 1.536(6)°
C23 C47 1.400(6)°
C25 C42 1.372(7)°
C25 C55 1.389(6)°
C26 C27 1.378(7)°
C26 C38 1.394(6)°
C27 O15 1.368(5)°
C27 C30 1.401(6)°
C28 C38 1.403(6)°
C28 C24 1.409(6)°
C28 C51 1.519(6)°
C29 C34 1.408(5)°
C29 C51 1.532(5)°
C30 C24 1.387(6)°
C31 C52 1.386(7)°
C31 C70 1.384(7)°
C31 C51 1.536(6)°
C32 C37 1.390(6)°
C32 O9 1.381(5)°
C33 O8 1.353(5)°
C33 C40 1.397(6)°
C34 C37 1.403(6)°
C40 C35 1.394(6)°
C42 C48 1.400(7)°
C45 O21 1.214(6)°
C45 C59 1.502(8)°
C47 C35 1.387(6)°
C48 C67 1.387(8)°
C49 C72 1.366(9)°
C49 C46 1.402(8)°
C66 C71 1.509(8)°
C67 C73 1.393(9)°
C70 C72 1.413(8) . ?
C46 C52 1.421(7) . ?
C55 C73 1.397(7) . ?
O74 C88 1.131(12) . ?
C75 C83 1.332(13) . ?
C75 C87 1.465(13) . ?
C76 C83 1.289(12) . ?
C76 C89 1.423(12) . ?
C77 C96 0.37(3) . ?
C77 C92 0.48(3) . ?
C77 C89 1.35(2) . ?
C77 C83 1.52(2) . ?
C78 C87 1.330(13) . ?
C78 C90 1.441(13) . ?
C79 C90 1.365(13) . ?
C79 C91 1.520(14) . ?
C80 C81 1.015(11) . ?
C80 C85 1.425(14) . ?
C80 C88 1.768(15) . ?
C81 C88 1.131(14) . ?
C81 C94 1.640(18) . ?
C82 C89 1.322(12) . ?
C82 C97 1.550(16) . ?
C83 C92 1.219(15) . ?
C83 C89 1.481(14) . ?
C83 C96 1.736(15) . ?
C84 C90 1.194(15) . ?
C85 C93 1.313(18) . ?
C86 C91 1.074(17) . ?
C86 C97 1.744(19) _1_655 ?
C88 C94 1.367(19) . ?
C88 C95 1.869(18) . ?
C89 C96 1.219(14) . ?
C89 C92 1.554(15) . ?
C91 C97 1.123(18) _1_655 ?
C92 C96 0.838(15) . ?
C94 C95 1.62(2) . ?
C97 C91 1.123(18) _1_455 ?
C97 C86 1.744(19) _1_455 ?

loop_
__geom_angle_atom_site_label_1
__geom_angle_atom_site_label_2
__geom_angle_atom_site_label_3
__geom_angle
__geom_angle_site_symmetry_1
<table>
<thead>
<tr>
<th>Atom</th>
<th>Atom</th>
<th>Atom</th>
<th>Bond Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C45</td>
<td>O14</td>
<td>C66</td>
<td>116.0(4)</td>
</tr>
<tr>
<td>C23</td>
<td>C10</td>
<td>C33</td>
<td>119.0(4)</td>
</tr>
<tr>
<td>C23</td>
<td>C10</td>
<td>C22</td>
<td>122.6(4)</td>
</tr>
<tr>
<td>C33</td>
<td>C10</td>
<td>C22</td>
<td>118.4(3)</td>
</tr>
<tr>
<td>C18</td>
<td>C16</td>
<td>C32</td>
<td>120.3(4)</td>
</tr>
<tr>
<td>C18</td>
<td>C16</td>
<td>Br2</td>
<td>119.2(3)</td>
</tr>
<tr>
<td>C32</td>
<td>C16</td>
<td>Br2</td>
<td>120.5(3)</td>
</tr>
<tr>
<td>C39</td>
<td>C17</td>
<td>O11</td>
<td>121.3(4)</td>
</tr>
<tr>
<td>C39</td>
<td>C17</td>
<td>C13</td>
<td>119.4(4)</td>
</tr>
<tr>
<td>O11</td>
<td>C17</td>
<td>C13</td>
<td>119.3(4)</td>
</tr>
<tr>
<td>C29</td>
<td>C18</td>
<td>C16</td>
<td>121.4(4)</td>
</tr>
<tr>
<td>C36</td>
<td>C19</td>
<td>C13</td>
<td>121.0(4)</td>
</tr>
<tr>
<td>O6</td>
<td>C20</td>
<td>C39</td>
<td>120.5(4)</td>
</tr>
<tr>
<td>O6</td>
<td>C20</td>
<td>C36</td>
<td>118.6(4)</td>
</tr>
<tr>
<td>C39</td>
<td>C20</td>
<td>C36</td>
<td>121.0(4)</td>
</tr>
<tr>
<td>C36</td>
<td>C22</td>
<td>C25</td>
<td>112.7(3)</td>
</tr>
<tr>
<td>C36</td>
<td>C22</td>
<td>C10</td>
<td>112.1(3)</td>
</tr>
<tr>
<td>C25</td>
<td>C22</td>
<td>C10</td>
<td>111.9(3)</td>
</tr>
<tr>
<td>C10</td>
<td>C23</td>
<td>C47</td>
<td>120.4(4)</td>
</tr>
<tr>
<td>C42</td>
<td>C25</td>
<td>C55</td>
<td>118.7(4)</td>
</tr>
<tr>
<td>C42</td>
<td>C25</td>
<td>C22</td>
<td>123.0(4)</td>
</tr>
<tr>
<td>C55</td>
<td>C25</td>
<td>C22</td>
<td>118.3(4)</td>
</tr>
<tr>
<td>C27</td>
<td>C26</td>
<td>C38</td>
<td>122.0(4)</td>
</tr>
<tr>
<td>C27</td>
<td>C26</td>
<td>Br4</td>
<td>119.0(3)</td>
</tr>
<tr>
<td>C38</td>
<td>C26</td>
<td>Br4</td>
<td>119.0(3)</td>
</tr>
<tr>
<td>C26</td>
<td>C27</td>
<td>O15</td>
<td>125.1(4)</td>
</tr>
<tr>
<td>C26</td>
<td>C27</td>
<td>C30</td>
<td>118.2(4)</td>
</tr>
<tr>
<td>O15</td>
<td>C27</td>
<td>C30</td>
<td>116.7(4)</td>
</tr>
<tr>
<td>C38</td>
<td>C28</td>
<td>C24</td>
<td>117.6(4)</td>
</tr>
<tr>
<td>C38</td>
<td>C28</td>
<td>C51</td>
<td>122.9(4)</td>
</tr>
<tr>
<td>C24</td>
<td>C28</td>
<td>C51</td>
<td>119.5(4)</td>
</tr>
<tr>
<td>C18</td>
<td>C29</td>
<td>C34</td>
<td>118.0(4)</td>
</tr>
<tr>
<td>C18</td>
<td>C29</td>
<td>C51</td>
<td>122.1(4)</td>
</tr>
<tr>
<td>C34</td>
<td>C29</td>
<td>C51</td>
<td>120.0(4)</td>
</tr>
<tr>
<td>C24</td>
<td>C30</td>
<td>C27</td>
<td>120.6(4)</td>
</tr>
<tr>
<td>C52</td>
<td>C31</td>
<td>C70</td>
<td>118.9(5)</td>
</tr>
<tr>
<td>C52</td>
<td>C31</td>
<td>C51</td>
<td>121.9(4)</td>
</tr>
<tr>
<td>C70</td>
<td>C31</td>
<td>C51</td>
<td>119.0(4)</td>
</tr>
<tr>
<td>C37</td>
<td>C32</td>
<td>O9</td>
<td>116.6(4)</td>
</tr>
<tr>
<td>C37</td>
<td>C32</td>
<td>C16</td>
<td>120.0(4)</td>
</tr>
<tr>
<td>O9</td>
<td>C32</td>
<td>C16</td>
<td>123.4(4)</td>
</tr>
<tr>
<td>O8</td>
<td>C33</td>
<td>C40</td>
<td>120.8(4)</td>
</tr>
<tr>
<td>O8</td>
<td>C33</td>
<td>C10</td>
<td>118.1(3)</td>
</tr>
<tr>
<td>C40</td>
<td>C33</td>
<td>C10</td>
<td>121.1(4)</td>
</tr>
</tbody>
</table>
O5 C34 C29 118.1(3) . . ?
O5 C34 C37 120.9(4) . . ?
C29 C34 C37 121.0(4) . . ?
C19 C36 C20 118.1(4) . . ?
C19 C36 C22 123.1(4) . . ?
C20 C36 C22 118.8(4) . . ?
C32 C37 C34 119.3(4) . . ?
C26 C38 C28 120.3(4) . . ?
C17 C39 C20 119.9(4) . . ?
C33 C40 C35 119.3(4) . . ?
C25 C42 C48 121.0(5) . . ?
O21 C45 O14 122.7(5) . . ?
O21 C45 C59 124.8(5) . . ?
O14 C45 C59 112.4(4) . . ?
C35 C47 C23 119.8(4) . . ?
C35 C47 Br3 119.7(3) . . ?
C23 C47 Br3 120.4(3) . . ?
C67 C48 C42 120.0(5) . . ?
C72 C49 C46 119.8(5) . . ?
C28 C51 C29 111.7(3) . . ?
C28 C51 C31 112.4(3) . . ?
C29 C51 C31 111.1(3) . . ?
O14 C66 C71 105.8(5) . . ?
C48 C67 C73 119.6(5) . . ?
C31 C70 C72 120.1(6) . . ?
C17 C13 C19 120.6(4) . . ?
C17 C13 Brl 119.5(3) . . ?
C19 C13 Brl 119.9(3) . . ?
C30 C24 O7 120.3(4) . . ?
C30 C24 C28 121.3(4) . . ?
O7 C24 C28 118.4(4) . . ?
O12 C35 C47 119.7(4) . . ?
O12 C35 C40 120.0(4) . . ?
C47 C35 C40 120.3(4) . . ?
C49 C46 C52 118.7(5) . . ?
C31 C52 C46 121.3(5) . . ?
C73 C55 C25 121.4(5) . . ?
C55 C73 C67 119.2(5) . . ?
C49 C72 C70 121.1(6) . . ?
C83 C75 C87 121.3(9) . . ?
C83 C76 C89 66.0(7) . . ?
C96 C77 C92 164(9) . . ?
C96 C77 C89 61(4) . . ?
C92 C77 C89 106(4) . . ?
C96 C77 C83 121(5) . . ?
C92 C77 C83 44(3) . . ?
<table>
<thead>
<tr>
<th>C89</th>
<th>C77</th>
<th>C83</th>
<th>61.9(12)</th>
<th>. . ?</th>
</tr>
</thead>
<tbody>
<tr>
<td>C87</td>
<td>C78</td>
<td>C90</td>
<td>155.3(9)</td>
<td>. . ?</td>
</tr>
<tr>
<td>C90</td>
<td>C79</td>
<td>C91</td>
<td>120.5(9)</td>
<td>. . ?</td>
</tr>
<tr>
<td>C81</td>
<td>C80</td>
<td>C85</td>
<td>138.4(12)</td>
<td>. . ?</td>
</tr>
<tr>
<td>C81</td>
<td>C80</td>
<td>C88</td>
<td>36.7(8)</td>
<td>. . ?</td>
</tr>
<tr>
<td>C85</td>
<td>C80</td>
<td>C88</td>
<td>119.7(8)</td>
<td>. . ?</td>
</tr>
<tr>
<td>C80</td>
<td>C81</td>
<td>C88</td>
<td>110.9(12)</td>
<td>. . ?</td>
</tr>
<tr>
<td>C80</td>
<td>C81</td>
<td>C94</td>
<td>143.4(12)</td>
<td>. . ?</td>
</tr>
<tr>
<td>C88</td>
<td>C81</td>
<td>C94</td>
<td>55.5(9)</td>
<td>. . ?</td>
</tr>
<tr>
<td>C89</td>
<td>C82</td>
<td>C97</td>
<td>118.6(9)</td>
<td>. . ?</td>
</tr>
<tr>
<td>C92</td>
<td>C83</td>
<td>C75</td>
<td>120.9(10)</td>
<td>. . ?</td>
</tr>
<tr>
<td>C92</td>
<td>C83</td>
<td>C76</td>
<td>130.7(11)</td>
<td>. . ?</td>
</tr>
<tr>
<td>C75</td>
<td>C83</td>
<td>C76</td>
<td>108.2(9)</td>
<td>. . ?</td>
</tr>
<tr>
<td>C92</td>
<td>C83</td>
<td>C77</td>
<td>15.9(11)</td>
<td>. . ?</td>
</tr>
<tr>
<td>C75</td>
<td>C83</td>
<td>C77</td>
<td>136.6(12)</td>
<td>. . ?</td>
</tr>
<tr>
<td>C76</td>
<td>C83</td>
<td>C77</td>
<td>114.8(12)</td>
<td>. . ?</td>
</tr>
<tr>
<td>C92</td>
<td>C83</td>
<td>C89</td>
<td>69.5(8)</td>
<td>. . ?</td>
</tr>
<tr>
<td>C75</td>
<td>C83</td>
<td>C89</td>
<td>169.5(10)</td>
<td>. . ?</td>
</tr>
<tr>
<td>C76</td>
<td>C83</td>
<td>C89</td>
<td>61.4(7)</td>
<td>. . ?</td>
</tr>
<tr>
<td>C77</td>
<td>C83</td>
<td>C89</td>
<td>53.7(10)</td>
<td>. . ?</td>
</tr>
<tr>
<td>C92</td>
<td>C83</td>
<td>C96</td>
<td>26.2(6)</td>
<td>. . ?</td>
</tr>
<tr>
<td>C75</td>
<td>C83</td>
<td>C96</td>
<td>146.4(9)</td>
<td>. . ?</td>
</tr>
<tr>
<td>C76</td>
<td>C83</td>
<td>C96</td>
<td>104.5(8)</td>
<td>. . ?</td>
</tr>
<tr>
<td>C77</td>
<td>C83</td>
<td>C96</td>
<td>10.4(11)</td>
<td>. . ?</td>
</tr>
<tr>
<td>C89</td>
<td>C83</td>
<td>C96</td>
<td>43.6(6)</td>
<td>. . ?</td>
</tr>
<tr>
<td>C93</td>
<td>C85</td>
<td>C80</td>
<td>121.7(11)</td>
<td>. . ?</td>
</tr>
<tr>
<td>C91</td>
<td>C86</td>
<td>C97</td>
<td>38.4(9)</td>
<td>. . ?</td>
</tr>
<tr>
<td>C78</td>
<td>C87</td>
<td>C75</td>
<td>106.2(9)</td>
<td>. . ?</td>
</tr>
<tr>
<td>O74</td>
<td>C88</td>
<td>C81</td>
<td>138.7(13)</td>
<td>. . ?</td>
</tr>
<tr>
<td>O74</td>
<td>C88</td>
<td>C94</td>
<td>133.5(12)</td>
<td>. . ?</td>
</tr>
<tr>
<td>C81</td>
<td>C88</td>
<td>C94</td>
<td>81.5(11)</td>
<td>. . ?</td>
</tr>
<tr>
<td>O74</td>
<td>C88</td>
<td>C95</td>
<td>114.2(10)</td>
<td>. . ?</td>
</tr>
<tr>
<td>C81</td>
<td>C88</td>
<td>C95</td>
<td>103.1(10)</td>
<td>. . ?</td>
</tr>
<tr>
<td>C94</td>
<td>C88</td>
<td>C95</td>
<td>57.4(9)</td>
<td>. . ?</td>
</tr>
<tr>
<td>O74</td>
<td>C88</td>
<td>C80</td>
<td>106.6(9)</td>
<td>. . ?</td>
</tr>
<tr>
<td>C81</td>
<td>C88</td>
<td>C80</td>
<td>32.4(6)</td>
<td>. . ?</td>
</tr>
<tr>
<td>C94</td>
<td>C88</td>
<td>C80</td>
<td>106.8(10)</td>
<td>. . ?</td>
</tr>
<tr>
<td>C95</td>
<td>C88</td>
<td>C80</td>
<td>134.1(9)</td>
<td>. . ?</td>
</tr>
<tr>
<td>C96</td>
<td>C89</td>
<td>C77</td>
<td>15.3(12)</td>
<td>. . ?</td>
</tr>
<tr>
<td>C96</td>
<td>C89</td>
<td>C82</td>
<td>121.6(10)</td>
<td>. . ?</td>
</tr>
<tr>
<td>C77</td>
<td>C89</td>
<td>C82</td>
<td>136.1(13)</td>
<td>. . ?</td>
</tr>
<tr>
<td>C96</td>
<td>C89</td>
<td>C76</td>
<td>131.3(10)</td>
<td>. . ?</td>
</tr>
<tr>
<td>C77</td>
<td>C89</td>
<td>C76</td>
<td>116.9(12)</td>
<td>. . ?</td>
</tr>
<tr>
<td>C82</td>
<td>C89</td>
<td>C76</td>
<td>106.9(8)</td>
<td>. . ?</td>
</tr>
<tr>
<td>C96</td>
<td>C89</td>
<td>C83</td>
<td>79.4(9)</td>
<td>. . ?</td>
</tr>
<tr>
<td>C77</td>
<td>C89</td>
<td>C83</td>
<td>64.5(11)</td>
<td>. . ?</td>
</tr>
</tbody>
</table>
C82 C89 C83 158.6(10) . . ?
C76 C89 C83 52.7(6) . . ?
C96 C89 C92 32.4(7) . . ?
C77 C89 C92 17.2(11) . . ?
C82 C89 C92 152.8(10) . . ?
C76 C89 C92 99.9(8) . . ?
C83 C89 C92 47.3(6) . . ?
C84 C90 C79 120.2(11) . . ?
C84 C90 C78 136.7(11) . . ?
C79 C90 C78 103.0(9) . . ?
C86 C91 C97 105.1(15) . 1_655 ?
C86 C91 C79 115.5(13) . . ?
C97 C91 C79 137.6(14) 1_655 . ?
C77 C92 C83 120(4) . . ?
C77 C92 C96 7(4) . . ?
C83 C92 C96 113.8(12) . . ?
C77 C92 C89 57(4) . . ?
C83 C92 C89 63.2(8) . . ?
C96 C92 C89 51.2(9) . . ?
C88 C94 C95 77.1(10) . . ?
C88 C94 C81 43.0(7) . . ?
C95 C94 C81 94.6(10) . . ?
C94 C95 C88 45.5(7) . . ?
C77 C96 C92 9(5) . . ?
C77 C96 C89 104(5) . . ?
C92 C96 C89 96.4(11) . . ?
C77 C96 C83 48(5) . . ?
C92 C96 C83 40.0(8) . . ?
C89 C96 C83 57.0(7) . . ?
C91 C97 C82 143.2(14) 1_455 . ?
C91 C97 C86 36.5(9) 1_455 1_455 ?
C82 C97 C86 106.9(10) 1_455 ?

loop_
_geom_torsion_atom_site_label_1
_geom_torsion_atom_site_label_2
_geom_torsion_atom_site_label_3
_geom_torsion_atom_site_label_4
_geom_torsion
_geom_torsion_site_symmetry_1
_geom_torsion_site_symmetry_2
_geom_torsion_site_symmetry_3
_geom_torsion_site_symmetry_4
_geom_torsion_publ_flag
C32 C16 C18 C29 -1.0(7) ?
Br2 C16 C18 C29 178.3(3) ?
C23 C10 C22 C36 25.2(6) ?
C33 C10 C22 C36 -154.7(4) ?
C23 C10 C22 C25 -102.6(5) ?
C33 C10 C22 C25 77.5(5) ?
C33 C10 C23 C47 -0.5(7) ?
C22 C10 C23 C47 179.6(4) ?
C36 C22 C25 C55 -114.2(4) ?
C10 C22 C25 C55 -164.7(4) ?
C38 C26 C27 O15 179.9(4) ?
Br4 C26 C27 O15 -0.7(6) ?
C38 C26 C27 C30 -0.6(7) ?
Br4 C26 C27 C30 178.8(3) ?
C16 C18 C29 C34 -1.0(6) ?
C16 C18 C29 C51 -179.5(4) ?
C26 C27 C30 C24 2.0(7) ?
O15 C27 C30 C24 -178.5(4) ?
C18 C16 C32 C37 2.1(6) ?
Br2 C16 C32 C37 -177.1(3) ?
C18 C16 C32 O9 -178.3(4) ?
Br2 C16 C32 O9 2.5(6) ?
C23 C10 C33 O8 178.8(4) ?
C22 C10 C33 O8 -1.3(6) ?
C23 C10 C33 C40 -0.5(6) ?
C22 C10 C33 C40 179.3(4) ?
C18 C29 C34 O5 -178.1(4) ?
C51 C29 C34 O5 0.4(6) ?
C18 C29 C34 C37 1.8(6) ?
C51 C29 C34 C37 -179.6(4) ?
C13 C19 C36 C20 -0.6(6) ?
C13 C19 C36 C22 177.4(4) ?
O6 C20 C36 C19 179.9(4) ?
C39 C20 C36 C19 -0.1(6) ?
O6 C20 C36 C22 1.8(6) ?
C39 C20 C36 C22 -178.1(4) ?
C25 C22 C36 C19 27.1(5) ?
C10 C22 C36 C19 -100.3(5) ?
C25 C22 C36 C20 -154.9(4) ?
C10 C22 C36 C20 77.7(5) ?
O9 C32 C37 C34 179.1(4) ?
C16 C32 C37 C34 -1.2(6) ?
O5 C34 C37 C32 179.2(4) ?
C29 C34 C37 C32 -0.7(6) ?
C27 C26 C38 C28 -1.1(7) ?
Br4 C26 C38 C28 179.5(3) ?
<table>
<thead>
<tr>
<th>Bond</th>
<th>Distance (Å)</th>
<th>Standard Deviation (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Br3 - C47</td>
<td>1.790(4)</td>
<td></td>
</tr>
<tr>
<td>C33 - C40</td>
<td>1.786(4)</td>
<td></td>
</tr>
<tr>
<td>C33 - C47</td>
<td>0.4(7)</td>
<td></td>
</tr>
<tr>
<td>C72 - C49</td>
<td>1.3(9)</td>
<td></td>
</tr>
<tr>
<td>C70 - C31</td>
<td>-2.2(8)</td>
<td></td>
</tr>
<tr>
<td>C51 - C32</td>
<td>1.769(4)</td>
<td></td>
</tr>
<tr>
<td>C49 - C52</td>
<td>-0.4(7)</td>
<td></td>
</tr>
<tr>
<td>C25 - C55</td>
<td>-0.3(7)</td>
<td></td>
</tr>
<tr>
<td>C22 - C55</td>
<td>1.777(5)</td>
<td></td>
</tr>
<tr>
<td>C25 - C57</td>
<td>-1.3(8)</td>
<td></td>
</tr>
<tr>
<td>C48 - C67</td>
<td>0.9(8)</td>
<td></td>
</tr>
<tr>
<td>C46 - C49</td>
<td>0.4(11)</td>
<td></td>
</tr>
<tr>
<td>C31 - C72</td>
<td>-3.0(12)</td>
<td></td>
</tr>
<tr>
<td>C85 - C80</td>
<td>7.5(2)</td>
<td></td>
</tr>
<tr>
<td>C85 - C81</td>
<td>13.46(17)</td>
<td></td>
</tr>
<tr>
<td>C88 - C80</td>
<td>59.9(18)</td>
<td></td>
</tr>
<tr>
<td>C87 - C75</td>
<td>-1.0(16)</td>
<td></td>
</tr>
<tr>
<td>C87 - C76</td>
<td>175.9(9)</td>
<td></td>
</tr>
<tr>
<td>C87 - C77</td>
<td>4.8(13)</td>
<td></td>
</tr>
<tr>
<td>C87 - C96</td>
<td>4.5(12)</td>
<td></td>
</tr>
<tr>
<td>C87 - C92</td>
<td>178.7(10)</td>
<td></td>
</tr>
<tr>
<td>C89 - C83</td>
<td>4.6(7)</td>
<td></td>
</tr>
<tr>
<td>C96 - C77</td>
<td>-172(11)</td>
<td></td>
</tr>
<tr>
<td>C89 - C77</td>
<td>174(5)</td>
<td></td>
</tr>
<tr>
<td>C92 - C77</td>
<td>9.6(6)</td>
<td></td>
</tr>
<tr>
<td>C89 - C78</td>
<td>-176.8(15)</td>
<td></td>
</tr>
<tr>
<td>C96 - C78</td>
<td>9.7(7)</td>
<td></td>
</tr>
<tr>
<td>C92 - C78</td>
<td>-179(4)</td>
<td></td>
</tr>
<tr>
<td>C89 - C76</td>
<td>-5.2(14)</td>
<td></td>
</tr>
<tr>
<td>C96 - C77</td>
<td>14(6)</td>
<td></td>
</tr>
<tr>
<td>C89 - C93</td>
<td>15.2(2)</td>
<td></td>
</tr>
<tr>
<td>C88 - C80</td>
<td>56.2(15)</td>
<td></td>
</tr>
<tr>
<td>C90 - C78</td>
<td>-87(2)</td>
<td></td>
</tr>
<tr>
<td>C83 - C75</td>
<td>-173.4(9)</td>
<td></td>
</tr>
<tr>
<td>C81 - C88</td>
<td>-173.4(9)</td>
<td></td>
</tr>
<tr>
<td>C84 - C88</td>
<td>-152(2)</td>
<td></td>
</tr>
<tr>
<td>C80 - C81</td>
<td>141.3(13)</td>
<td></td>
</tr>
<tr>
<td>C81 - C85</td>
<td>-165.2(11)</td>
<td></td>
</tr>
<tr>
<td>C94 - C81</td>
<td>53.6(9)</td>
<td></td>
</tr>
<tr>
<td>C94 C81 C88 C80</td>
<td>-141.3(13) ?</td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------------</td>
<td></td>
</tr>
<tr>
<td>C81 C80 C88 O74</td>
<td>172.6(17) ?</td>
<td></td>
</tr>
<tr>
<td>C85 C80 C88 O74</td>
<td>40.1(12) ?</td>
<td></td>
</tr>
<tr>
<td>C85 C80 C88 C81</td>
<td>-132.5(16) ?</td>
<td></td>
</tr>
<tr>
<td>C81 C80 C88 C94</td>
<td>-40.2(14) ?</td>
<td></td>
</tr>
<tr>
<td>C85 C80 C88 C94</td>
<td>-172.8(10) ?</td>
<td></td>
</tr>
<tr>
<td>C81 C80 C88 C95</td>
<td>20.3(15) ?</td>
<td></td>
</tr>
<tr>
<td>C85 C80 C88 C95</td>
<td>-112.2(13) ?</td>
<td></td>
</tr>
<tr>
<td>C92 C77 C89 C96</td>
<td>170(9) ?</td>
<td></td>
</tr>
<tr>
<td>C83 C77 C89 C96</td>
<td>166(6) ?</td>
<td></td>
</tr>
<tr>
<td>C96 C77 C89 C82</td>
<td>21(6) ?</td>
<td></td>
</tr>
<tr>
<td>C92 C77 C89 C82</td>
<td>-168(3) ?</td>
<td></td>
</tr>
<tr>
<td>C83 C77 C89 C82</td>
<td>-172.5(16) ?</td>
<td></td>
</tr>
<tr>
<td>C96 C77 C89 C76</td>
<td>-161(5) ?</td>
<td></td>
</tr>
<tr>
<td>C92 C77 C89 C76</td>
<td>9(5) ?</td>
<td></td>
</tr>
<tr>
<td>C83 C77 C89 C76</td>
<td>4.8(13) ?</td>
<td></td>
</tr>
<tr>
<td>C96 C77 C89 C83</td>
<td>-166(6) ?</td>
<td></td>
</tr>
<tr>
<td>C92 C77 C89 C83</td>
<td>4(4) ?</td>
<td></td>
</tr>
<tr>
<td>C96 C77 C89 C92</td>
<td>-170(9) ?</td>
<td></td>
</tr>
<tr>
<td>C83 C77 C89 C92</td>
<td>-4(4) ?</td>
<td></td>
</tr>
<tr>
<td>C97 C82 C89 C96</td>
<td>2.9(15) ?</td>
<td></td>
</tr>
<tr>
<td>C97 C82 C89 C77</td>
<td>-4(2) ?</td>
<td></td>
</tr>
<tr>
<td>C97 C82 C89 C76</td>
<td>179.0(9) ?</td>
<td></td>
</tr>
<tr>
<td>C97 C82 C89 C83</td>
<td>-165(2) ?</td>
<td></td>
</tr>
<tr>
<td>C97 C82 C89 C92</td>
<td>-11(2) ?</td>
<td></td>
</tr>
<tr>
<td>C83 C76 C89 C96</td>
<td>-11.9(12) ?</td>
<td></td>
</tr>
<tr>
<td>C83 C76 C89 C77</td>
<td>-5.4(15) ?</td>
<td></td>
</tr>
<tr>
<td>C83 C76 C89 C82</td>
<td>172.6(10) ?</td>
<td></td>
</tr>
<tr>
<td>C83 C76 C89 C92</td>
<td>-2.7(8) ?</td>
<td></td>
</tr>
<tr>
<td>C92 C83 C89 C96</td>
<td>-5.4(7) ?</td>
<td></td>
</tr>
<tr>
<td>C75 C83 C89 C96</td>
<td>164(5) ?</td>
<td></td>
</tr>
<tr>
<td>C76 C83 C89 C96</td>
<td>171.0(10) ?</td>
<td></td>
</tr>
<tr>
<td>C77 C83 C89 C96</td>
<td>-3.7(15) ?</td>
<td></td>
</tr>
<tr>
<td>C92 C83 C89 C77</td>
<td>-1.7(15) ?</td>
<td></td>
</tr>
<tr>
<td>C75 C83 C89 C77</td>
<td>168(6) ?</td>
<td></td>
</tr>
<tr>
<td>C76 C83 C89 C77</td>
<td>174.6(15) ?</td>
<td></td>
</tr>
<tr>
<td>C96 C83 C89 C77</td>
<td>3.7(15) ?</td>
<td></td>
</tr>
<tr>
<td>C92 C83 C89 C82</td>
<td>164(3) ?</td>
<td></td>
</tr>
<tr>
<td>C75 C83 C89 C82</td>
<td>-27(7) ?</td>
<td></td>
</tr>
<tr>
<td>C76 C83 C89 C82</td>
<td>-20(3) ?</td>
<td></td>
</tr>
<tr>
<td>C77 C83 C89 C82</td>
<td>166(3) ?</td>
<td></td>
</tr>
<tr>
<td>C96 C83 C89 C82</td>
<td>169(3) ?</td>
<td></td>
</tr>
<tr>
<td>C92 C83 C89 C76</td>
<td>-176.3(10) ?</td>
<td></td>
</tr>
<tr>
<td>C75 C83 C89 C76</td>
<td>-7(5) ?</td>
<td></td>
</tr>
<tr>
<td>C77 C83 C89 C76</td>
<td>-174.6(15) ?</td>
<td></td>
</tr>
<tr>
<td>C96 C83 C89 C76</td>
<td>-171.0(10) ?</td>
<td></td>
</tr>
</tbody>
</table>
C75 C83 C89 C92 170(6) ?
C76 C83 C89 C92 176.3(10) ?
C77 C83 C89 C92 1.7(15) ?
C96 C83 C89 C92 5.4(7) ?
C91 C79 C84 -1.0(16) ?
C91 C79 C80 -177.1(8) ?
C87 C78 C84 17(3) ?
C87 C86 C79 C79 -167.7(19) ?
C97 C86 C91 C79 -167.4(19) 1_655 ?
C90 C79 C86 170.7(12) ?
C90 C79 C91 C79 9(2) 1_655 ?
C96 C77 C92 C83 27(34) ?
C89 C77 C92 C83 -5(5) ?
C89 C77 C92 C96 -32(30) ?
C83 C77 C92 C96 -27(34) ?
C96 C77 C92 C89 32(30) ?
C83 C77 C92 C89 5(5) ?
C75 C83 C92 C77 -173(4) ?
C76 C83 C92 C77 1(5) ?
C89 C83 C92 C77 5(5) ?
C96 C83 C92 C77 -3(4) ?
C75 C83 C92 C96 -169.4(11) ?
C76 C83 C92 C96 4.2(19) ?
C77 C83 C92 C96 3(4) ?
C89 C83 C92 C96 8.4(11) ?
C75 C83 C92 C89 -177.8(12) ?
C76 C83 C92 C89 -4.2(12) ?
C77 C83 C92 C89 -5(5) ?
C96 C83 C92 C89 -8.4(11) ?
C96 C89 C92 C77 -5(5) ?
C82 C89 C92 C77 18(5) ?
C76 C89 C92 C77 -172(4) ?
C83 C89 C92 C77 -175(5) ?
C96 C89 C92 C83 170.1(13) ?
C77 C89 C92 C83 175(5) ?
C82 C89 C92 C83 -167(2) ?
C76 C89 C92 C83 3.0(8) ?
C77 C89 C92 C96 5(5) ?
C82 C89 C92 C96 23(2) ?
C76 C89 C92 C96 -167.1(12) ?
C83 C89 C92 C96 -170.1(13) ?
O74 C88 C94 C95 -93.7(16) ?
C81 C88 C94 C95 111.6(10) ?
C80 C88 C94 C95 132.1(9) ?
O74 C88 C94 C81 154.7(19) ?
C95 C88 C94 C81 -111.6(10) ?
<table>
<thead>
<tr>
<th>C80 C88 C94 C81</th>
<th>20.5(7)</th>
<th>. . . .</th>
<th>?</th>
</tr>
</thead>
<tbody>
<tr>
<td>C80 C81 C94 C88</td>
<td>-79(2)</td>
<td>. . .</td>
<td>?</td>
</tr>
<tr>
<td>C80 C81 C94 C95</td>
<td>-144.0(19)</td>
<td>. . .</td>
<td>?</td>
</tr>
<tr>
<td>C88 C81 C94 C95</td>
<td>-65.4(11)</td>
<td>. . .</td>
<td>?</td>
</tr>
<tr>
<td>C81 C94 C95 C88</td>
<td>39.5(7)</td>
<td>. . .</td>
<td>?</td>
</tr>
<tr>
<td>O74 C88 C94 C95</td>
<td>127.4(13)</td>
<td>. . .</td>
<td>?</td>
</tr>
<tr>
<td>C81 C88 C95 C94</td>
<td>-70.8(12)</td>
<td>. . .</td>
<td>?</td>
</tr>
<tr>
<td>C80 C88 C95 C94</td>
<td>-81.8(13)</td>
<td>. . .</td>
<td>?</td>
</tr>
<tr>
<td>C89 C77 C96 C92</td>
<td>36(33)</td>
<td>. . .</td>
<td>?</td>
</tr>
<tr>
<td>C83 C77 C96 C92</td>
<td>22(28)</td>
<td>. . .</td>
<td>?</td>
</tr>
<tr>
<td>C92 C77 C96 C89</td>
<td>-36(33)</td>
<td>. . .</td>
<td>?</td>
</tr>
<tr>
<td>C83 C77 C96 C89</td>
<td>-14(6)</td>
<td>. . .</td>
<td>?</td>
</tr>
<tr>
<td>C92 C77 C96 C83</td>
<td>-22(28)</td>
<td>. . .</td>
<td>?</td>
</tr>
<tr>
<td>C89 C77 C96 C83</td>
<td>14(6)</td>
<td>. . .</td>
<td>?</td>
</tr>
<tr>
<td>C83 C92 C96 C77</td>
<td>-155(33)</td>
<td>. . .</td>
<td>?</td>
</tr>
<tr>
<td>C89 C92 C96 C77</td>
<td>-145(33)</td>
<td>. . .</td>
<td>?</td>
</tr>
<tr>
<td>C77 C92 C96 C89</td>
<td>145(33)</td>
<td>. . .</td>
<td>?</td>
</tr>
<tr>
<td>C83 C92 C96 C89</td>
<td>-9.7(13)</td>
<td>. . .</td>
<td>?</td>
</tr>
<tr>
<td>C77 C92 C96 C83</td>
<td>155(33)</td>
<td>. . .</td>
<td>?</td>
</tr>
<tr>
<td>C89 C92 C96 C83</td>
<td>9.7(13)</td>
<td>. . .</td>
<td>?</td>
</tr>
<tr>
<td>C82 C89 C96 C77</td>
<td>-163(5)</td>
<td>. . .</td>
<td>?</td>
</tr>
<tr>
<td>C76 C89 C96 C77</td>
<td>22(6)</td>
<td>. . .</td>
<td>?</td>
</tr>
<tr>
<td>C83 C89 C96 C77</td>
<td>13(5)</td>
<td>. . .</td>
<td>?</td>
</tr>
<tr>
<td>C92 C89 C96 C77</td>
<td>5(5)</td>
<td>. . .</td>
<td>?</td>
</tr>
<tr>
<td>C77 C89 C96 C92</td>
<td>2(5)</td>
<td>. . .</td>
<td>?</td>
</tr>
<tr>
<td>C82 C89 C96 C92</td>
<td>-168.1(11)</td>
<td>. . .</td>
<td>?</td>
</tr>
<tr>
<td>C76 C89 C96 C92</td>
<td>17.0(16)</td>
<td>. . .</td>
<td>?</td>
</tr>
<tr>
<td>C83 C89 C96 C92</td>
<td>7.4(10)</td>
<td>. . .</td>
<td>?</td>
</tr>
<tr>
<td>C77 C89 C96 C83</td>
<td>-13(5)</td>
<td>. . .</td>
<td>?</td>
</tr>
<tr>
<td>C82 C89 C96 C83</td>
<td>-175.4(13)</td>
<td>. . .</td>
<td>?</td>
</tr>
<tr>
<td>C76 C89 C96 C83</td>
<td>9.6(10)</td>
<td>. . .</td>
<td>?</td>
</tr>
<tr>
<td>C92 C89 C96 C83</td>
<td>-7.4(10)</td>
<td>. . .</td>
<td>?</td>
</tr>
<tr>
<td>C92 C83 C96 C77</td>
<td>5(7)</td>
<td>. . .</td>
<td>?</td>
</tr>
<tr>
<td>C75 C83 C96 C77</td>
<td>22(7)</td>
<td>. . .</td>
<td>?</td>
</tr>
<tr>
<td>C76 C83 C96 C77</td>
<td>-172(6)</td>
<td>. . .</td>
<td>?</td>
</tr>
<tr>
<td>C89 C83 C96 C77</td>
<td>-163(7)</td>
<td>. . .</td>
<td>?</td>
</tr>
<tr>
<td>C75 C83 C96 C92</td>
<td>16.6(18)</td>
<td>. . .</td>
<td>?</td>
</tr>
<tr>
<td>C76 C83 C96 C92</td>
<td>-176.7(15)</td>
<td>. . .</td>
<td>?</td>
</tr>
<tr>
<td>C77 C83 C96 C92</td>
<td>-5(7)</td>
<td>. . .</td>
<td>?</td>
</tr>
<tr>
<td>C89 C83 C96 C92</td>
<td>-168.5(16)</td>
<td>. . .</td>
<td>?</td>
</tr>
<tr>
<td>C92 C83 C96 C89</td>
<td>168.5(16)</td>
<td>. . .</td>
<td>?</td>
</tr>
<tr>
<td>C75 C83 C96 C89</td>
<td>-174.8(17)</td>
<td>. . .</td>
<td>?</td>
</tr>
<tr>
<td>C76 C83 C96 C89</td>
<td>-8.2(9)</td>
<td>. . .</td>
<td>?</td>
</tr>
<tr>
<td>C77 C83 C96 C89</td>
<td>163(7)</td>
<td>. . .</td>
<td>?</td>
</tr>
<tr>
<td>C89 C82 C97 C91</td>
<td>85(2)</td>
<td>. . .</td>
<td>1_455 ?</td>
</tr>
<tr>
<td>C89 C82 C97 C86</td>
<td>81.0(11)</td>
<td>. . .</td>
<td>1_455 ?</td>
</tr>
</tbody>
</table>
_diffrn_measured_fraction_theta_max 0.997
_diffrn_reflns_theta_full 30.0
_diffrn_measured_fraction_theta_full 0.997
_refine_diff_density_max 1.75
_refine_diff_density_min -1.47
_refine_diff_density_rms 0.146
END OF BECK2 CIF
#
APPENDIX K: CHARACTERIZATION DATA AND JOB PLOT RATIOS FOR COMPOUND 6.6

Figure K.1. 1H NMR of compound 6.6

Figure K.1. MS of compound 6.6
Table K.1. Stoichiometry ratio of 6.6-metal complexes

<table>
<thead>
<tr>
<th>Dye</th>
<th>Metal</th>
<th>Stoichiometry Dye:Metal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tetraamino Fluoresceine</td>
<td>Cu(II)</td>
<td>2:1</td>
</tr>
<tr>
<td></td>
<td>Co(II)</td>
<td>1:1</td>
</tr>
<tr>
<td></td>
<td>Zn(II)</td>
<td>1:1</td>
</tr>
<tr>
<td></td>
<td>La(I)</td>
<td>2:1</td>
</tr>
<tr>
<td></td>
<td>Mn(II)</td>
<td>1:2</td>
</tr>
</tbody>
</table>
APPENDIX L: LETTERS OF PERMISSION

October 29, 2003

American Chemical Society
Copyright Office, Publications Division
1155 16th St., N.W.
Washington, DC 20036

To Whom It May Concern:

I am writing to obtain permission for the use of my contributions to an article published in the Journal of the American Chemical Society. I am a graduate student in the Department of Chemistry of Louisiana State University. I am the sixth author on the article and would like to include my contributions to the article in my doctoral dissertation. The article is "Chromophore Formation in Resorcinolene Solutions and the Visual Detection of Mono- and Oligosaccharides", 2002, Vol. 124, pp. 5000-5009.

Thank you for your consideration of this request.

Sincerely,

[Signature]

Nadia N. St. Luce
Phone: (225) 578-9096
Fax: (225) 578-3458
E-mail: nadia1@lsu.edu
American Chemical Society

Copyright Office
1155 Sixteenth Street, NW
Washington DC 20036
Phone: (1) 202-872-4368 or 4367
Fax: (1) 202-776-8112 E-mail: copyright@acs.org

TO: Nadia N. St. Laoe, Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804

FROM: C. Arline Courtney, Copyright Associate

Thank you for your request for permission to include your paper(s) or portions of text from your paper(s) in your thesis. Permission is now automatically granted; please pay special attention to the implications paragraph below. The Copyright Subcommittee of the Joint Board/Council Committees on Publications approved the following:

Copyright permission for published and submitted material from theses and dissertations
ACS extends blanket permission to students to include in their theses and dissertations their own articles, or portions thereof, that have been published in ACS journals or submitted to ACS journals for publication, provided that the ACS copyright credit line is noted on the appropriate page(s).

Publishing implications of electronic publication of theses and dissertation material
Students and their mentors should be aware that posting of theses and dissertation material on the Web prior to submission of material from that thesis or dissertation to an ACS journal may affect publication in that journal. Whether Web posting is considered prior publication may be evaluated on a case-by-case basis by the journal’s editor. If an ACS journal editor considers Web posting to be “prior publication”, the paper will not be accepted for publication in that journal. If you intend to submit your unpublished paper to ACS for publication, check with the appropriate editor prior to posting your manuscript electronically.

If your paper has not yet been published by ACS, we have no objection to your including the text or portions of the text in your thesis/dissertation in print and microfilm formats; please note, however, that electronic distribution or Web posting of the unpublished paper as part of your thesis in electronic formats might jeopardize publication of your paper by ACS. Please print the following credit line on the first page of your article: "Reproduced (or Reproduced in part) with permission from [JOURNAL NAME], in press (or 'submitted for publication'). Unpublished work copyright [CURRENT YEAR] American Chemical Society." Include appropriate information.

If your paper has already been published by ACS and you want to include the text or portions of the text in your thesis/dissertation in print or microfilm formats, please print the ACS copyright credit line on the first page of your article: "Reproduced (or Reproduced in part) with permission from [FULL REFERENCE CITATION] Copyright [YEAR] American Chemical Society." Include appropriate information.

Note: If you plan to submit your thesis to UMI or to another dissertation distributor, you should not include the unpublished ACS paper in your thesis if the thesis will be disseminated electronically, until ACS has published your paper. After publication of the paper by ACS, you may release the entire thesis (the individual ACS article by itself) for electronic dissemination; ACS’s copyright credit line should be printed on the first page of the ACS paper.

SUMMARY: The inclusion of your ACS unpublished or published manuscript is permitted in your thesis in print and microfilm formats. If ACS has published your paper you may include the manuscript in your thesis on an intranet that is not publicly available. Your ACS article cannot be posted electronically on a publicly available medium, such as but not limited to, electronic archives, Internet, intranet, library server, etc. The only material from your paper that can be posted on a public electronic medium is the article abstract, figures, and tables and you may link to the article’s DOI.

Thank you for writing. Questions? Please call me at 202/872-4368 or send e-mail to copyright@acs.org.
Nadia Nadette Alexander was born in Roseau, Commonwealth of Dominica, on October 17, 1976. She grew up on Dominica with her mother Lucinthia St. Luce, father Pius St. Luce and brother Janah St. Luce. Her younger brother Kimo St. Luce was born in 1996.

In 1988 she moved to St. Thomas, United State Virgin Islands, where she attended Catholic High School from 1990-1994. In high school she was an active member of the National Honor Society, Close-Up Club, Spanish Club, and Assistant Editor of the School Yearbook. She graduated high school with honors. In the summer of 1994, following graduation, she attended the Summer Science Enrichment program where she was exposed to the many different fields of science and became interested in chemistry.

In the fall of 1994, she entered the University of the Virgin Islands on St. Thomas, USVI. While attending college she was a member of the Pre-Professional Science Club. In the fall of 1997 she was chosen to become a MARC Scholar. During the last two years of her college career, Nadia worked on synthesizing new ferrocene-bipyridine derivatives under the direction of Dr. Ralph Isovitsch. She completed her bachelor’s degree in chemistry in May of 1999 and graduated with honors. That summer she was selected to supervise the Summer Science Enrichment program for the second time, having done so previously in the summer of 1998.

On August 10th 1999, she entered the graduate program in the Department of Chemistry at Louisiana State University. While at LSU Nadia synthesized and studied...
novel chromophoric reagents for the detection of saccharides and amino acids under the
direction of Dr. Robert M. Strongin. She was the treasurer of the Student Graduate
Council from the fall of 2001 to spring 2002. She was the historian of the National
Organization for the Professional Enhancement of Black Chemist Chemical Engineers,
and a member of the American Chemical Society. Nadia is presently a candidate for the
degree of Doctor of Philosophy in organic chemistry.