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diffusion process. These equations represent three coupled, non­

linear, second order equations. Note that the nonlinearity is due 

to the fact that the electric field E is a function of p, n and c.

In the following section, a brief review is given of recent 

attempts to simplify this system of equations. Note that if the

electric field were zero, (1-16) reduces to the simple diffusion

equation (1-1).

1.2. Recent Work on Field-Aided Diffusion

It was pointed out by Zaromb [1] in 1957 and Smits [2] in 1958 

that an electric field can arise during an isothermal diffusion pro­

cess and that this field would act to enhance the motion of the 

impurity atoms. Zaromb considered the simultaneous diffusion of 

both donor and acceptor atoms and derived an approximate expression 

for the electric field in a semi-infinite material based on two major 

assumptions.

1. The material is charge neutral at every point so that 

P = p - n  + zc = 0.

2. The product pn = n®

Using (1-9) and assumption 1 it follows that J is independent of x. 

Thus since J = 0 deep inside the semiconductor, it must be zero every­

where. Now using (1-10) and the flux equations we have

-Dp -^ + D - zDr ~  (Dpp + D n + Dfc) = 0p 9x n 9x c dx VT V » c '

and solving for E yields
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D ^  D ^  + zD -̂ -F = v -I—M ___ nS Z ___ l_2x 17.
E - Vt D„p + D„n + D0c <l’17>

Now using assumptions 1 and 2, p and n are given by

a i/3 -zc + (c2 + 4nt )
p  » ----------------------------------------------------------

„ 1 /2 zc + (cs + 4n®)
n = --------- x--------

Substituting these expressions into (1-17) and noting that at the 

elevated temperatures where diffusion of impurity atoms occurs,

Dc «  Dn, Dp , the electric field becomes

E = -z VT ^  I2- (1-18)' c dx v '

where 0 = j" 1 (1-19)

An expression similar to (1-18) was derived by Kurtz and Yee 

[3] even though they neglected the effect of the electron current.
•kAn effective diffusion constant Dc can be defined when (1-18) is used 

in the flux equation for the impurity atoms (1-4) to give

f = _d * (1-20)c o dx v '

where D* = Dc (1 + 0) (1-21)

Lehovec and Slobodskoy [4] substituted (1-20) into the continuity
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equation (1-7) and assumed 100 percent ionization to obtain

ft - W  [D=(1 + ft] (1-22)
Approximate solutions were obtained for diffusion into intrinsic 

material. For strongly extrinsic material where c »  nt, 0 — 1 from 

(1-19) and the effective diffusion constant D„ — 2D„. Shaw and WellsC C
[5] considered the diffusion of singly ionized impurity atoms into a 

uniformly doped semiconductor using (1-22) as the model. Klein and 

Beal [6] considered the case of simultaneous diffusion of oppositely 

charged impurities by using an expression similar to (1-18) for the 

field. Their work was a generalization of Zaromb's work which was 

restricted to nearly intrinsic material.

All of the work on field-aided diffusion discussed thus far
ghas been based on two key assumptions, p = 0 and pn = nt . It follows

from (1-8) that if P = 0, then BE/Qx = 0 and E must be independent

of x. Thus since E is zero deep inside the semiconductor, far from

the diffusing impurity atoms, E must be zero everywhere. Obviously

the field cannot be given by (1-18) and be zero simultaneously.

Therefore the results obtained using (1-18) are open to question.

Furthermore, there is little justification for the assumption that 
2pn = nt other than it makes possible an analytical solution. The

2expression pn = nt is true only in thermal equilibrium and the error
sproduced in using pn = nt when the semiconductor is out of thermal 

equilibrium cannot be determined.

In addition to making the above assumptions, Vas'Kin [7]
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approximated the electric field by an average field arbitrarily de­

fined in terms of a weighting function equal to the electron dis­

tribution. Bordina ej: ajl, [8 ] assumed for p and n the thermal equi­

librium distributions. The only justification for such approaches 

appears to be that they permit an analytical solution.
It has been pointed out by Kennedy [9] that due to electro­

static shielding, the electric field given by (1-18) is probably 

much too large. His analysis, however, assumes the electron flux is 

zero and completely neglects the interaction of holes with electrons 

and impurity ions. His analysis is, therefore, incomplete.

There are other mechanisms which could effect the motion of 

impurity atoms. Thai [10] has discussed a process whereby dislocations 

in the semiconductor crystal can enhance the diffusion of impurities.

1.3. Problem Statement

The objective of this research is to ascertain the behavior 

of singly ionized impurity atoms diffusing into an initially intrinsic 

semiconductor under the influence of an internal electric field. The 

resulting profile c(x,t) will be compared with that obtained by 

solving the crude diffusion equation given by (1-22). It can then be 

determined under what conditions, if any, the simplified approach 

using (1-22) is valid.

The transport equations given by (1-14), (1-15), (1-16) and 

(1-12) constitute a system of three nonlinear, coupled equations in 

the three unknowns p, n and c. Since this system is intractable 

from an analytical viewpoint, the equations must be solved numerically.
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The method used in an implicit iterative scheme and is described in 

detail in Chapter 2.



CHA.PTER 2

METHOD OF SOLUTION

In Chapter 1 the partial differential equations which form the 

model for the diffusion of a singly ionized impurity species into a 

semiconductor material were presented. The purpose of this chapter 

is to describe an iterative method for numerically solving these equa­

tions for the case of a gaseous diffusion process in which the surface 

concentration of impurity atoms is maintained constant. The semicon­

ductor is treated as semi-infinite in the x direction and is initially 

intrinsic.

The equations defining the model for the diffusion process are 

given by

(2- 2)

(2-3)

(2-4)

13
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BE _ 
Bt - f-D -^ + De 1 p 3x n Bx " ZD T“ +Bx

(2-5)

Before these equations can be solved, the boundary conditions 

and initial values must be specified. The surface concentration C0 

of impurity atoms is constant and thus the boundary conditions at 

x = 0 are given in general by

c(o,t) = C0 , 0 <; t <; T
P(0,t) = f(t) 
n(0 ,t) = f(t)

where T is the maximum diffusion time and f(t) and g(t) are appropriate 

functions chosen in accordance with a model used to represent the dy­

namic processes occurring at the gas-solid interface defined by x = 0 . 

There is no known way to determine f(t) and g(t) in general. The 

difficulty in finding appropriate boundary values to use at x = 0 is 

discussed in Appendix A; it is shown that the boundary conditions for 

holes and electrons at x = 0 can be approximated by

P(0,t) = - f c0 + (C® + 4nj)V2
2 (2-6) 

n(0 ,t) = nt /p(0»t)

where nt is the intrinsic electron concentration evaluated at the 

diffusion temperature.

The semiconductor material is initially intrinsic and is 

assumed to be semi-infinite in the x direction. The hole and electron
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concentrations at x = oo will not be affected by the injection of 

impurities at x = 0 ; thus the material at x = oo is in thermal equi­

librium. Let L represent a numerical approximation to co . The 

boundary conditions at x = L are

c(L,t) =0, 0 £ t ^ T
p(L,t) = nt (2-7)
n(L,t) = n4

The material is assumed to be initially intrinsic; thus the 

initial conditions at t = 0 , prior to the diffusion of the impurity 

ions, are

p(x,0) = nt , 0 < x < L
n(x,o) = n, (2-8)
c(x,0) = 0

The corresponding initial condition for the electric field is given 

by

E(x,0) = 0

This condition can be derived easily by integrating (2-4). Note that 

since the material is in thermal equilibrium at x = L, E(L,t) = 0, and 

by (2-8) the right-hand side of (2-4) is zero.

When these initial conditions are used in the numerical scheme 

described below, difficulties in the numerical accuracy arise due to 

the initially large time rate of change of c early in the diffusion 

process. These difficulties are discussed in Appendix B where it is 

shown that in order to avoid these problems, it is necessary to use
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a set of starting conditions at some time t > 0. To start the iterative 

scheme, the following set of starting conditions is derived in Appendix 

B

where for convenience, t0 = 120 seconds.

2.1. Outline of the Iteration Scheme

The above equations completely define the diffusion process.

The differential equations are nonlinear and coupled and have no 

known analytical solution. Thus it is necessary to use an approxi­

mation scheme in order to solve the diffusion problem. An implicit, 

iterative, numerical scheme was employed to solve this system of 

equations. This basic technique was successfully used by DeMari [11] 

to obtain the distributions of holes and electrons inside diodes 

operating at room temperature under transient conditions.

The iteration scheme is begun by calculating an approximate 

electric field at time tj = t0 + At by using approximate distributions 

for p, n and c. This approximate field is then used to calculate

p(x,t0) = - | cp + j  (cps + 4nf) /

(2-9)
n(x,t0) = nf/p(x,tD)
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improved approximate distributions for p, n and c, from which an 

improved electric field is computed. This procedure is repeated until 

p, n and c satisfy an accuracy check; the program then proceeds to 

the next time step. The accuracy check used in the iterative procedure 

is discussed at the end of this section.

To illustrate how an approximate electric field is obtained 

consider (2-5) with dE/dt represented by a forward difference formula

at time tx = t0 + At

E(x,ti ) - E(x,tn) _  _ e 3p(x,tx) + d 5n(x,ti) _ ^  3c(x,ti) “1
At e L p dx n 3x c dx j

e  T  1  E ( x . t i )

" 7  |3 p(x,tl) + + DoCCx,^)] — ■̂ ---

Solving for E(x,tj) gives

- £ [ . d  | £  + d  | h  _ zDoAt e L p dx n dx 0 dxj
E(x,t!) - --------------------------------------- (2-10)

7T-  P  +  D ^ n  +  D . c l  +  7 TVTe L pF n C J At

where p, n, c and their derivatives are all evaluated at time tx.

Note that E(x,t0) is specified by the starting conditions. Now let 

p1(x,t1), n1(x,t1) and c1(x,t1) be first approximations for p, n and 

c at time tx respectively. These first approximations could be based 

on an intuitive guess or simply set equal to the starting distrir 

butions at t = t0 . Once these approximate distributions have been 

specified, their partial derivatives are computed using finite
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difference methods and (2-10) is used to obtain a first approximation 

to the electric field denoted by E1(x,t1).

Now to show how these approximate distributions are used to 

calculate improved distributions, consider the hole distribution 

p1(x,t1). Let the second approximation pa (x, tj) be defined by

p8 (x,t1) = p1 (x,t1) + Apa (x,tj,)

In general, the j + 1 approximation is given by

pJ + 1(x,t1) = pJ(x,tj) + ApJ + 1(x,t1) , j = 1, 2, 3, (2-11)

where ApJ+1(x,t1) is found using (2-1). Applying a forward difference 

formula to the left-hand side of (2-1) yields

2*2 I ~  ~ P(x,fco)at I — At

When p(x,tx) is approximated using (2-11), the above equation 

becomes

*£ I _  p (x,ti) + Ap (x.^) - p(x,t0)at ! — At K ~L J
ci

Now using (2-12) for the left-hand side of (2-1) and substituting 

(2-11) for p in all terms on the right-hand side of (2-1) except the 

last term G, the following differential equation is obtained
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where

£- ■ rb+! i (2pJ -n) + zcl)p T

f- = - If1+fr + H (pl -nI + zcOp) 
+ F aS [pJ ' >’<x'to>] ' G<PD’nI)P P

and E^Xjtj) is the approximate electric field computed from (2-10) 

using pJ , nJ and c i . If (2-11) were used in the G term of (2-1) the 

resulting differential equation for Ap +̂1 would not have the simple 

form of (2-13), and would be considerably more difficult to solve.

The slight inconsistency in evaluating G using p 1 instead of pJ+1 is 

not significant, however, since assuming the system converges, AP -* o 

and thus G will not be a strong function of Ap.

Consider the case where j = 1; f1P and f2P can be calculated 

since p1, n1 and c1 has been specified and E1 can be determined from 

(2-10). Thus (2-13) can be solved by any conventional means for the 

values Aps (x,t1). The technique used to solve (2-13) is discussed in 

detail in section 2.3. Once the values of APs (x,t1) are known, (2-11) 

is used to obtain an improved approximation pa (x,t1) to the hole dis­

tribution. An analagous scheme is used to compute ns (x,tx) and cs (x,t1) 

where
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n J + 1 (x,t1) = n\x,tx) + AnJ (x,tT) (2-14)

j+i j j+ic (x,tx) = c (x,tj) + AC (x.tj) (2-15)

These improved distributions for p, n and c are now used in (2-10) to up­

grade the electric field distribution. The iteration cycle is repeated 

and in the limit as j increases, ApJ+1(x,t1), AnJ+1(x,t1) and AcJ+1 (x,t1) 

approach 0 for all x. Thus the approximate distributions pJ(x,t1), 

n^Xjtj) and c^Xjtj) approach the exact distributions p(x,t1), n(x,t1) 

and c(x,t1) which satisfy the diffusion model defined by (2-1)-(2-5) 

at time ta. These final distributions now form the starting conditions 

for the next time t3 = tj + At. The program proceeds in this manner 

from the starting time tQ through as many time steps as desired.

The number of iterations, and thus the amount of computer time

required to complete one time step, is related to the desired accuracy 

of p, n and c. Therefore it is necessary to have a practical test for 

accuracy to ensure that pJ converges to p. The criterion used was that 

ApJ + 1 (Xj ,tk ) , AnJ + 1 (Xj , ) and AcJ + 1 (x1,tk) be less than 0.01% of

p^Xjjt^), n^Xjjtjj) and c^Xj,^), respectively, for all i at any tfc .

The details of the numerical scheme are given in sections 2.2,

2.3 and 2.4. Figure 2.1 shows a block diagram which summarizes the 

iterative procedure.

2.2. Normalization of the Transport Equations
The equations which form the mathematical model of the diffusion 

process can be handled most conveniently in a computer program when
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START

specify boundary conditions 
and maximum diffusion time T

specify starting distributions 
p(x,t0 ), n(x,t0 ), c(x,tQ ), E(x,t0 )

guess approximate distributions at tk : 
J J 3P (x,tk), n (x,tk) and c (x,tk)
(for example, those at t = tk . t)

use (2-5) to calculate an approximate 
electric field E (x,tk)

calculate correction terms using 
(2-1)-(2-3) and obtain improved 
approximation for p, n and c

are
the concentrations 

accurate 
enough ?

f k = k + 1

STOP

FIGURE 2.1. Block Diagram of the Iterative Procedure
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they are written in dimensionless form. Table 2-1 gives the normaliza­

tion factor for each quantity of interest; for example, the normalized 

hole concentration p is defined by p = p/nT- In order to keep the

notation as simple as possible, no special symbols will be used to de­

note normalized quantities; all equations using normalized quantities

will be explicitly identified. In terms of the normalized variables,

the transport equations are

If “ Dp ' ‘V <■> • ” + zc>e - d p e  If + G <2"16>
H  = D” $  + D» ( p - n + zc)n + D»E l f  + G (2‘ 17)

*  " D" 0  ‘ Z°c <P ' " + 2C)C ‘ ZD°E »  (2‘18)

H  = d p If - D" »  • zD° f  + (dp p + D»n + zD<=c)E (2-i9>

where

(pn - nj/n®)
G = ---------------------- :-------

Tn<P +-a1/n1) + T p (n + n* /nx )

2.3. Selection of At, Ax and L

The solution of the transport equations involves approximating 

partial derivatives with respect to x and t by finite differences.

Thus it is necessary to select values of Ax and At which minimize the 

error introduced by these approximations. In order to determine approx­

imate values of Ax and At, suitable for use in solving the transport



Quantity
Normalized
Quantity

Normalization
Factor

Particle Concentrations p, n, c nx

Diffusion Constants D_ , D , D„ D = lcm3/secp ' n ' ^

Position Coordinate* x = (eVT /en.̂ )1

Time Coordinate t L®/D

Lifetimes t „  , t  kp/D
2Current Densities Jp , Jn , Jc enj/I^

Electric Field E VT /L(

*If the position coordinate is specified 
in microns, the normalization factor must 
be multiplied by 104 .

TABLE 2-1: Normalization Factors for Quantities of Interest

23
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equations, a computer program was written to solve the simple diffusion 

equation given by (1-1). Note that (2-3) reduces to (1-1) when the 

electric field is zero. The numerical solutions obtained using various 

combinations of Ax and At were then compared to the analytical solu­

tions, given by the complementary error function, to determine the 

effects of Ax and At on the accuracy of the numerical solutions.

It was found that the accuracy was relatively independent of 

Ax for values of Ax between O.Olp, and O.OOlp,. A nonuniform Ax was not 

found to have any advantage over a uniform Ax. It had the distinct 

disadvantage of requiring more computer time due to the increased 

number of calculations; therefore, a uniform Ax was selected.

The accuracy was found to decrease rapidly when values of 

At > 0.5 seconds were used. A At = 0.1 seconds provided only a slight 

improvement in accuracy over that obtained for At = 0.5 sec. Since 

the amount of computer time required to obtain a solution increased 

as At decreased, a compromise between accuracy and computer time must 

be made. Acceptable values of At were found to be in the range 0.1 

to 0.5 seconds.

Using a Ax = 0.004(j, or 0.005(j, and At = 0.5 seconds, errors at 

the end of 60 seconds ranged typically from 0.01% close to the surface 

to 10% at a point where c(x,t) = 10"7Co . Larger errors occurred for 

smaller concentrations; however, because of the iterative nature of 

the technique, the errors were not cumulative. In fact the errors 

were found to decrease as t increased.

The method used to solve the above simple diffusion equation 

was exactly the same as outlined in section 2.1. The starting time
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tQ and final time T were chosen to be 2 minutes and 30 minutes, respec­

tively, the same as those used in the solution of the transport equa­

tions. The starting distribution c(x,t0 ) was given by the complementary 
error function at 2 minutes.

Using the procedure discussed in conjunction with (2-7) the 

boundary condition at x = o is given by

c(L, t) = 0

where x = L is the numerical approximation to x = co. The value of L 

must be chosen large enough so that as x-*L, c(x,t) -* 0 for all t ^ T. 

Note that the selection of L depends on the maximum diffusion time.

A test to determine the proper value of L is to vary L and examine the 

effect on the distribution. The values of c(x,t) must not be signifi­

cantly influenced by changing L. A value of L = 2p, was found to be 

adequate for T = 30 minutes.

The above values of Ax, L and At were then used to obtain solu­

tions of the transport equations as described in section 2.1. Choosing 

values of Ax and At based on the analysis of the solution to the 

simplified diffusion equation does not guarantee that these are the 

optimum choices for the solution to the system of nonlinear equations.

It was found, however, that the solution to the system of nonlinear 

equations was not strongly dependent on Ax. It was also found that 

there was no significant difference between solutions obtained using 

a At of 0.5 seconds and those obtained using At = 0.1 seconds. This 

indicated that the solution was not a strong function of the choice of 

Ax and At, within the range of the values tested.
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A check was made to determine the accuracy with which the itera­

tive technique could solve the system of nonlinear equations. Consider 

the case where the surface concentration of impurity ions Cq = O.lnj. 

Since the number of particles introduced by the ionization of the 

impurities is at least one order of magnitude below the intrinsic 

values, it is reasonable to assume that the hole and electron concen­

trations would not be very different from nt. Thus the assumptions of 

thermal equilibrium and charge neutrality are more nearly correct than 

for the case of higher impurity concentrations. Therefore the electric

field should be small. An approximate diffusion equation was derived

in Chapter 1 based on the above assumptions and is given by (1-22).

The solution to (1-22) for Cq = O.lnj is almost identical to the comple­

mentary error function. When the system of nonlinear equations was 

solved with C0 = O.lnj, the solution was also found to be almost iden­

tical to the complementary error function. Therefore it was concluded 

that the numerical technique for solving the system of nonlinear equa­

tions gives accurate results for the case of C0 = O.lnj. The results 

for this and higher values of C0 are presented in Chapter 3. In view 

of the high degree of accuracy observed in this special case, the 

results obtained for larger values of CQ can be viewed with confidence.

2.4. Determination of the Correction Terms

The equation which must be solved at each iteration in order 

to determine the correction terms is given by (2.13), and is repeated 

here in normalized form for convenience
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- ej flp Ap3+1 - [apJ+1]S = fSp (2-20)

where EJ, f- and f0 are known functions as described in section 2.1.9 Ip 2p

The corresponding normalized functions at time tk are

flP = " [d ^ I + (2pJ ‘ nJ + zcJ)]

f = - d + eJ + (pJ - nJ + zcJ)PJ 
3 Sx? Sx ( 2- 21)

+ [pl ' p<x’t“ ‘ &t)] '

and the boundary conditions are

ApJ(0,tk ) = ApJ(L,tk ) = 0 , all j and k ( 2- 22)

The solution to (2-20) can be found by solving a system of algebraic 

equations obtained by approximating the derivatives in (2-20) by the 

following finite difference formulas [12]

5y(*,tk)
dx x.

5 y(*,tk) 
9xs x,

-  7 " T 7  C 71-1 “ 2y‘ + y i+ 0(Ax) v  y

where yt = y(x4, tk). When these formulas are used in (2-20), the
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following system of algebraic equations is obtained

3+1 3+1 3+1Ap j APj_i + Bp i APi + Cp i Ap1+i - Fp j (2-23)

where 3 + 1 3 + 1AP, = AP., = 0, all j and k
X N

r ,  3 3 3 x 3 1 1 ̂i = "2 [(Pi - nj + zct ) + Pl + J Ax - _4_
Ax

■'p l
2 3

E‘

Fp t = 2Axf,2P x.

i = 2, 3, 4, •••, N-l

Note that Xj = o, xN = L and that normalized quantities are used. In 

order to evaluate f2P given in (2-21), the following difference formulas 

[12] should be used for improved accuracy.

X . -  i ^ C yi-s ■ 8y-1 + S y t t i ' y,* 0

d y(x,tk ) 
ax® 12(Ax)3“ TjC-yi-s + 16yi-i - 3°yi + 16yi+i - yi+2)

It is not necessary to use these higher order formulas for the derivatives
j+ 1 3 + 1 3 + 1of Ap since AP is being reduced to zero as p becomes more

accurate.
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Equation (2-23) can be written in the form

[ T ] [Ap] -  [Fp ]

where

and

Ca p ! =

[T] =

P 3

2

AP 
0 

0

* _

J+l
A p 2 FP2

3 + 1
a p 3 FP 3

3+1
a p 4

, [F ] =
FrP 4

3 + 1
APN-i FP (N-l )

* —

2 0  0 •

C P3 0 •

Ap4 ®P 4 P̂ 4 ®

0
•

• •

•

•

•

• • 

•

•

• •

•
•

•

0
•

Ap(n-i

0

*̂ p (n—2 ) 

( n - i )

A simple direct method [11] can be employed to solve this system of 

algebraic equations. Basically, the method consists of finding 

quantities gn and hn which satisfy the recursion relation

AP b = 8m " hm APn+1 in = N-l, N-2, •••,2 (2-24)

J +  iwhere gx = hx = 0 since APi = 0> all j» Substitution of (2-24) with
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with m = i-1 into (2-23) yields

F p 1 ~  A p l  g i - i

Bp j - A? j hi _1

and

h = i______
1 Bp t - Ap i ht _i

where i = 2,3, N-l
J+iAfter the correction terms APi have been calculated, a better 

approximation to the hole distribution is obtained by using a discrete 

version of (2-11); thus

j +1 j j +1
Pi = Pt + APi

J +1The procedure for obtaining An is entirely analagous to

that used to find Ap^+1. The improved hole distribution is now used

to calculate the correction terms for the electron distribution.
j+iThe normalized equations required to determine An at time tk , are

J + i J+i J+iAnlAn1_i + B^An* + CnlAn1+1 = Fnl (2-25)

where

J+l j+ 1
Anx = AnN = °> all 3 and k
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KJ + i 3 i 1 I 4Pi - n t + zct)  - nt- —  J Ax - -

2 iCn in 1 Ax 1

/" 3 + 1 3 3 x  3-1
“ - ni + zci)  niJ

+ ^  [n‘ ' n<x‘ ■ tl ‘ At>] "
2AX r J si ZAxGtCp^1, n3)
Dni t L ‘‘ ^  Dn

i = 2, 3, 4, • • • N-l

The method of solution of (2-25) is the same as that used to 

solve (2-23). The improved electron distribution is then computed 

using

3+1 3 3+1ni = nt + Ant

3 + 1This new electron distribution, along with pt , is now used in the
3+ 1calculations to determine Act . The appropriate normalized equations

at time tk are given by

3+1 3+1 3+1
^•ci^ci-i + BciAci + CciAci+i = F01 (2-26)

3+1 3+1where Acx = a<=n = O j all j and k
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c i
_2_
A x

+ z E,

0 1 =  - 2 C pi
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i = 2, 3, 4, N-l

The solution to (2-26) is analogous to the solution to (2-23) 

and (2-25). The improved impurity ion distribution can now be found 

using

j +  i  j  J + ict = Ci + Act

After the approximate distributions for p, n and c have been 

upgraded, an improved electric field is computed from (2-10) and the 

cycle is repeated until the particle distributions have satisfied the 

accuracy check. Then t is incremented by At and the iteration procedure 

is begun again.

This numerical procedure was used to obtain the impurity ion
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distributions for the case of boron diffusing in silicon at 1100°C.

The results are presented in Chapter 3. Also presented are the distri­

butions obtained using (1-22) which was derived based on several 

assumptions. These simplifying assumptions allowed an approximate 

electric field to be found analytically.



CHAPTER 3

NUMERICAL RESULTS

The purpose of this chapter is to describe the behavior of 

singly ionized atoms diffusing in initially intrinsic material. The 

surface concentration of impurity atoms was maintained constant using a 
gaseous diffusion process. The numerical computation was executed 

on an IBM S/360 computer; the program listing and user's guide are 

given in Appendix C. The program determined the impurity ion distri­

butions c(x,t) for 0 < x < 2(j, and 2 £ t ^ 30 minutes using the 

method described in Chapter 2 with Ax = 0.005^ and At = 0.5 seconds. 

Presented here are the impurity profiles for t = 2, 10 and 30 minutes. 

The effect of the electric field on the motion of the impurity ions 

can be determined by comparing the numerical results to the comple­

mentary error function. The impurity distributions are then compared 

to those obtained by solving the approximate diffusion equation (1-22). 

It can then be determined under what conditions, if any, the use of 

(1-22) can be justified.

For convenience, boron is assumed to be diffusing in silicon at 

1100°C. The intrinsic concentration of electrons at 1100°C is approx-
19 ■ nimately 10 cm [13]. The diffusion constants for holes and electrons 

at the diffusion temperature are given by [14]
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The diffusion constant for boron ions [15] is

D0 -  1.6 x 10“13 cm2 /sec

and since these ions are acceptors, z = -1.

Before the results are presented, it is necessary to discuss

briefly the values used for the hole and electron lifetimes t and t . J p n

No data on the exact values of t and t applicable to the presentn p
study could be found. In order to determine the effect of t and tn p
on c(x,t), the lifetimes were arbitrarily set equal and varied over

-6 —11 the range 10 sec. to 5 x 10 sec.; c(x,t) was not found to be

strongly dependent on the lifetimes. The values of Tp = Tn = 10-9

sec. were used in the results presented below.

In order to illustrate the effect of the surface concentration

CQ of impurity ion on the diffusion process, results were obtained

for Cq /h ! = p = 0.1, 1, 10, 100 and 200. These values cover the

typical range of values of CQ for boron.

The impurity profiles for the above values of 0 were obtained

by solving the transport equations as described in Chapter 2; they

are shown in Figures 3.1 through 3.5. Each figure shows the impurity

profile for t = 2, 10 and 30 minutes. The curve at t = tQ = 2 minutes

is obtained from

c(x,t) = CQ erfc |^x(4Dct)  ̂ ~\ (3-1)

Recall that tQ is the starting time. Also plotted are profiles corre­

sponding to (3-1) evaluated at t = 10 and 30 minutes. These profiles

correspond to the solutions when the electric field is zero. Note



36

that the quantity plotted along the vertical axis is c/nt and that 

at x = 0, c/nt = C0/nt = p.

From Figure 3.1 it can be seen that for (3=0.1, the impurity 

ion distributions at t = 10 and 30 minutes obtained by solving the 

transport equations are essentially the same as those given by 

(3-1). Thus it can be concluded that with a low surface concentration 

corresponding to (3:2 0.1, the electric field which arises during the 

diffusion process does not have a significant effect on the motion of 

the ions.

Figures 3.2 and 3.3 show that as the surface concentration is 

increased, the deviation between the numerical results obtained by 

solving the transport equations and the erfc increases. When 3 = 1  

the impurity profile for t = 30 minutes is larger than the erfc by 

an average of approximately 307. over the region shown in Figure 3.2.

When p = 10, the values of c(x,t) at t = 30 minutes are approximately

5 times larger than the erfc for 0.5 < x < 0.75^.

It can be seen from Figures 3.4 and 3.5 that when C0/nj a 100,

the impurity profiles differ significantly from the complementary

error function. Consider the case where 3 = 100. At t = 30 minutes,

in the range x £ 0.75p,, the profile is linear when plotted on semilog

paper; thus the impurity ion concentration is exponentially decreasing 

with x in this range. Figure 3.6 shows this profile in greater detail. 

The electric field is acting to greatly enhance the motion of the im­

purity ions. A close comparison of the curves of t = 30 minutes reveals

that if the erfc curve were used to approximate the impurity profile, 

then for x > 0.8p,, the values of c would be in error by more than one
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order of magnitude.

The maximum value of the charge density e(p - n + zc) was found

to be on the order of 10"*3 coul/cm3 . The ratio | p - n + zc| /(p + n + c)

gives a relative measure of charge neutrality. For 3 = 10, the
— 4maximum value of this ratio was approximately 10 . Since p, n and c

can be expected to be accurate out to at least 3 decimal places, the 

charge density is approximately zero within the accuracy of the numerical 

technique.

It must not be inferred from the above discussion that because

p ~  0 the electric field is approximately zero. The electric field

is determined by using (2-5); thus the calculation of the field does 

not depend directly on the value of the net charge density.

For p 2 1, the maximum value of the electric field occurred in 

the region where c(x,t) was greater than or comparable to nt. The 

maximum value of the field was found to be on the order of 104 v/cm 

and occured early in the diffusion process. In all cases, the maxi­

mum value of the field was found to decrease with time.

In order to illustrate the relationship between surface con­

centration and the effect of the electric field, consider the case of 

B = 100. At t = 30 minutes, the drift component of the impurity ion 

current density was ^ 107. of the diffusion component for 0 £ x £ 0.9p,. 

When p = 10, the above condition was satisfied only for 0 £ x £ 0.7y,.

When p = 1, the range was 0 £ x £ 0.35p,. The diffusion component 

was larger than the drift component in all cases. Thus it can be 

seen that the effect of the electric field on the motion of the 

impurity ions increases as the surface concentration is increased.


