Cementitious Permeable Pavement as a Passive Unit Operation and Process for Stormwater Quality and Quantity Control

Xuheng Kuang

Louisiana State University and Agricultural and Mechanical College, xkuang1@lsu.edu

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations

Part of the Civil and Environmental Engineering Commons

Recommended Citation

https://digitalcommons.lsu.edu/gradschool_dissertations/2325

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please contact gradetd@lsu.edu.
CEMENTITIOUS PERMEABLE PAVEMENT
AS A PASSIVE UNIT OPERATION AND PROCESS
FOR STORMWATER QUALITY AND QUANTITY CONTROL

A Dissertation
Submitted to the Graduate Faculty of the
Louisiana State University and
Agriculture and Mechanical College
in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy

in

The Department of Civil and Environmental Engineering

by
Xuheng Kuang
B.S., Wuhan University of Hydraulic and Electrical Engineering, Wuhan, China, 1994
M.S., Wuhan University of Hydraulic and Electrical Engineering, Wuhan, China, 1997
December 2005
 ACKNOWLEDGEMENTS

I would like to extend my sincere appreciation to all those who made this research possible. First and foremost, I would like to thank Dr. John Sansalone who has consistently gone above and beyond the call of duty in helping me attain my goals. He has been both a friend and mentor in this great learning experience.

I appreciate the enthusiastic encouragement, patient guidance and creative advice of my committee members, Dr. Linbing Wang, Dr. Louay Mohammad, Dr. John Metcalf, Dr. Donald Adrian, Dr. Radhey Sharma, and Dr. Walter Keithly, who have taught me what it means to be a distinguished professional.

I would like to thank all my colleagues, Bo Liu, Cristian I Druta, Gaoxiang Ying, Jia Ma, Jong-yep Kim, Matt McGaugh, Natalie Magill, Sreemoyee Ganguly, Srikanth Pathapati, Tianpeng Guo, Vi Ngugen, Will Bartlett, Yongping Wang, Yuhong Sheng and Zheng Teng. Without their help, this work would not be possible.

I would like to express special thanks to all those who work in the Concrete Lab of Louisiana Transportation Research Center, Mr. Randy Young, Mr. Sadi Torres, Mr. Alvin Mix, Mr. John Eggers, Mr. Matt Tircuit, and the student worker, Mr. Christopher Duet and Ryan Estess. Thanks for their help in mix design, specimens fabrication and tests.

I would also like to thank all faculties and staffs in the Department of Civil and Environmental Engineering and the Mechanical Workshop who taught me courses or gave me help in my PhD career. Without their help, this work would not be possible either.

A special thank is due to my wife, Yanrong, my little girl, Vivian, and my family. Their love, support, encouragement and understanding have driven me throughout this long journey and experience. I cherish and enjoy the life with them together.
TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... ii

LIST OF TABLES .. vii

LIST OF FIGURES .. viii

ABSTRACT ... xii

CHAPTER 1 INTRODUCTION .. 1
 1.1 PROBLEMS AND IMPACTS CAUSED BY IMPERVIOUS PAVEMENTS 1
 1.2 PERMEABLE PAVEMENT ... 3
 1.3 CEMENTITIOUS PERMEABLE PAVEMENT (CPP) ... 5
 1.4 MECHANISTIC EVALUATION OF CPP ... 6
 1.5 CONTENTS OF THE DISSERTATION ... 9
 1.6 REFERENCES ... 11

CHAPTER 2 X-RAY TOMOGRAPHIC EXAMINATION OF PORE CHARACTERISTICS FOR CPP .. 14
 2.1 INTRODUCTION ... 14
 2.1.1 The Role of Pore Characteristic Measurements for Porous Structures 15
 2.2 OBJECTIVES ... 17
 2.3 BACKGROUND .. 17
 2.3.1 Conventional Methods of Determination of Pore Characteristics for Pavements 17
 2.3.2 Methods for Image Processing ... 18
 2.4 METHODOLOGY .. 19
 2.4.1 CPP Specimens ... 19
 2.4.2 Pore Characteristics through Gravimetric-Geometric Evaluations 20
 2.4.3 X-Ray Tomography Imaging ... 23
 2.4.4 Image Processing ... 25
 2.4.5 Pore Connectivity Determination ... 25
 2.4.6 Total Porosity ϕ_t ... 27
 2.4.7 Effective Porosity ϕ_e ... 27
 2.4.8 Pore Size Distribution (PSD_{pore}) .. 28
 2.4.9 Tortuosity (L_e/L) ... 28
 2.4.10 Specific Surface Area (SSA) ... 30
 2.5 RESULTS AND ANALYSIS .. 32
 2.5.1 Total Porosity ϕ_t and Effective Porosity ϕ_e .. 32
 2.5.2 (PSD_{pore}) and Influence of Image Resolution R_{f} ... 34
 2.5.3 SSA and Correlation with ϕ_t and Image Resolution R_{f} .. 38
 2.5.4 Tortuosity (L_e/L) ... 42
 2.5 RESULTS AND ANALYSIS .. 32
 2.6 CONCLUSIONS .. 44
 2.7 NOTATION ... 46
 2.8 REFERENCES ... 47

CHAPTER 3 HYDRAULIC CHARACTERISTICS OF CPP USING XRT ANALYSIS 53
3.1 INTRODUCTION ..53
3.2 OBJECTIVES ..55
3.3 BACKGROUND..55
3.4 EXPERIMENT AND MATERIALS ...59
3.5 METHODOLOGY...61
3.6 RESULT ANALYSIS ..68
 3.6.1 Empirical Models ..68
 3.6.2 Modified KCM Using (SSA) based on Image Analysis ...72
 3.6.3 Modified KCM Using Un-Weighted and Weighted Tortuosity ..74
 3.6.4 k-ϕt and k-ϕe Relationship ...76
3.7 SUMMARY AND CONCLUSIONS...77
3.8 NOTATION ...79
3.9 REFERENCES...80

CHAPTER 4 FILTRATION AND CLOGGING OF CPP BY PARTICLES IN RUNOFF86
4.1 INTRODUCTION ..86
4.2 OBJECTIVES ..87
4.3 BACKGROUND..88
 4.3.1 Particle Size Gradations ..88
 4.3.2 Filtration Models ...88
 4.3.3 Role of Clogging ...89
4.4 METHODOLOGY...91
 4.4.1 Experimental Configuration, Flow and Mass Measurements, Mass Balances91
 4.4.2 Particle and Turbidity Analyses ..94
 4.4.3 Particle Mass Removal Efficiency, η ..95
 4.4.4 Surficial Cleaning by Sonicating Followed by Backwash and Vacuum Suction95
 4.4.5 CPP Cleaning Schedule Decision ...96
4.5 RESULTS AND DISCUSSION ..96
 4.5.1 Temporal Hydraulic Conductivity and Flow Rate Balance ..98
 4.5.2 Particle Mass Balance and Particle Removal Efficiency for each Size Fraction100
 4.5.3 Strained Particles on CPP Surface ..104
 4.5.4 Particle Breakthrough from CPP ..106
 4.5.5 Turbidity and SSC ...107
 4.5.6 Hydraulic Backup by Surface Vacuuming and Sonicating-Backwash Cleaning109
 4.5.7 Estimation of Cleaning Schedule for CPP Maintenance ..109
4.6 SUMMARY AND CONCLUSIONS...111
4.7 NOTATION ...112
4.8 REFERENCES...114

CHAPTER 5 RUNOFF pH, ALKALINITY ELEVATION AND PHOSPHORUS REMOVAL OF CPP ...119
5.1 INTRODUCTION ..119
5.2 OBJECTIVES ...120
5.3 BACKGROUND..120
 5.3.1 Role of Alkalinity and pH Elevation ...120
 5.3.2 Role of Phosphors Removal ..121
LIST OF TABLES

Table 2-1 Geometric and gravimetric indices of CPP specimens ..21
Table 2-2 Inert gas pycnometer measurements of specific gravity (ρ_s) for CPP specimens22
Table 2-3 Specific surface area measurements (based on solid mass) for CPP using EGME23
Table 2-4 Micro-structural indices of CPP specimens by tomographic analysis35
Table 2-5 Mean (PSD)$_{pore}$ of 21 CPP specimens under different image resolutions37
Table 2-6 (SSA) (m^2/m^3) results under different image resolutions in tomography analysis43
Table 3-1 Experimental results of hydraulic conductivity for 19 CPP specimens61
Table 3-2 Comparison of hydraulic conductivity, k (10^{-3} cm/s), by experimental measurements and empirical equations ..69
Table 3-3 Comparison of hydraulic conductivity results using Kozeny –Carman equation based on EGME measured (SSA) ..71
Table 3-4 Comparison of hydraulic conductivity (10^{-3} m/s) results using Kozeny –Carman equation based on (SSA) obtained by tomography analysis ...73
Table 3-5 Calculated results using un-weighted and weighted tortuosity in modified KCM75
Table 4-1 Experimental matrix summary and experimental results ...97
Table 4-2 Particle mass balance in influent, effluent, overflow and entrained101
Table 4-3 Particle removal efficiency for different size fractions ...103
Table 5-1 Influent properties ...123
Table 6-1 Material properties and indices for CPP specimen mix design components149
Table 6-2 Target values of design parameter for the 6 mix design batches149
Table 6-3 Material proportion for CPP mix design for each batch ..152
Table 6-4 Properties of fresh CPP mix for the 6 batches of mix design ...156
Table 6-5 Strength, porosity and hydraulic conductivity test results for all specimen batches157
LIST OF FIGURES

Figure 2-1 This Figure illustrates the methodology by which pore space geometry is determined through X-ray tomography, resulting gray image, image processing, and image digitalization. Each specimen was approximately 97 mm in height, 70 mm in diameter, and an image analysis was obtained at 0.5 (mm) intervals of specimen depth. ...24

Figure 2-2 Plot (a) illustrates total porosity (ϕ_t) results of CPP specimens as determined by geometric-gravimetric measurements in comparison to image analysis measurements. Plot (b) illustrates a power law model fit of the relationship between total porosity and effective porosity. ...32

Figure 2-3 Probability density function (pdf) of the pore size area (PSA)$_{pore}$ based on the number and area distribution. Image resolution = 35 µm. The pore number distribution is modeled by an exponential model, $R^2 = 0.97$. In contrast, the pore area distribution is modeled by a gaussian distribution, $R^2 = 0.87$. A_p is the pore area ranges (mm2) as i: < 0.2857; ii: 0.2906~1.2575; iii: 1.2624~3.6035; iv: 3.6084~10.537; v: 10.5419~23.7158; vi: 23.7207~50.2164; vii: > 50.2164.......36

Figure 2-4 Power law model description of the relationship between d_{50} and image resolution (R_r) Range bars represent standard deviation of replicate image analyses for d_{50a} (µm) and d_{50n} (µm) for a given resolution, R_r. The d_{50n} and d_{50a} are the median pore diameter based on number and area distribution of all pores, respectively. ..38

Figure 2-5 Plot (a) illustrates a power law relationship between total ϕ_t (%) and (SSA)$_{a}$ (m$^{-1}$). a–i represent the modeled different resolution as table 2-5 shows. f(Rr) and R^2 under different resolution are as follows:...40

Figure 2-6 Plot (a) illustrates the probability density function of CPP specimen tortuosity (Le/L). Plot (b) illustrates the relationship between Le/L and ϕ_t with a Gaussian model.44

Figure 3-1 Experimental setup of constant head saturated hydraulic conductivity measurements for CPP. Different hydraulic head over the CPP surface could be achieved by adjusting the overflow outlet. ...60

Figure 3-2 Comparison of hydraulic conductivity obtained by empirical equation and experimental measurements. This plot shows that the calculated results by Slichter, Terzaghi, Beyer, Kruger and Fair-Hatch model agree with measured results when total porosity ϕ_t is less than 15%. For the case ϕ_t greater than 15%, none of these models is applicable for CPP hydraulic conductivity prediction. Kruger model is the best fit with but lower than experimental measurements.70

Figure 3-3 Comparison of hydraulic conductivity obtained by conventional Kozeny-Carman model to that by experimental measurements.................................72

Figure 3-4 Comparison of hydraulic conductivity obtained by Kozeny-Carman equation and experimental measurements. According to tomography analysis, median pore size of CPP is about 3000 µm. Using (SSA)$_{pc}$ based on tomographic analysis in resolution of 30 µm generates results
agreeable with measured results well. \((SSA)_{pe} \) represents specific surface area based on effective pores, and \(R_e \) is the image resolution in tomography analysis.

Figure 3-5 This plot shows the influence of tortuosity on calculated hydraulic conductivity by Kozeny-Carman equation.

Figure 3-6 Relationship between hydraulic conductivity \(k \) and effective porosity \(\phi_e \). Range bars represent standard deviation of measured hydraulic conductivity in a given \(\phi_e \).

Figure 3-7 Relationship between hydraulic conductivity \(k \) and total porosity \(\phi_t \). The relationship was modeled by a power law model as \(k = 0.0286 \times (\phi_t)^{2.0271} \) with \(R^2 = 0.91 \). In this expression, \(k \) is in \(10^{-3} \text{ cm/s} \) and \(\phi_t \) in \%. Range bars represent standard deviation of measured hydraulic conductivity for a given \(\phi_t \).

Figure 4-1 Comparison of the measured to the targeted influent particle size gradation.

Figure 4-2 Hydraulic loading balance with particle loading. Influent hydraulic loading was kept constant.

Figure 4-3 CPP hydraulic conductivity as a function of loading time. The influent hydraulic loading was held constant as 21.152 L/m2-min. The hydraulic head was maintained at approximately 1 cm above the CPP surface.

Figure 4-4 Particle size gradations for influent, effluent, overflow and particles strained by the CPP. Plot (a) compares the measured influent particle size gradation as compared to the targeted influent gradation. Plot (b), (c), and (d) are gradations for influent, effluent, overflow and surface strained particles under different particle loading concentration of 50, 100, and 200 mg/L, respectively. Gradations for influent and overflow are nearly identical.

Figure 4-5 CPP particle removal efficiency for particle size fractions across the influent particle size gradation. For a same size fraction, removal efficiency increases with increasing loading concentration for the same influent gradation.

Figure 4-6 Calculation mechanism of strained particles on CPP surface based on equation (4-7) with know particle concentration and flow rate of influent, effluent and overflow.

Figure 4-7 [TSS] removal efficiency at different time based on PSD analysis. \([N] \) and \([N_0]\) are particle number concentration in effluent and influent (count/L), respectively. \([m]_i \) is particle mass concentration in influent. \(\eta_n \) and \(\eta_m \) are removal efficiency based on mass and number, respectively, calculated based on equation (4-5) and (4-6).

Figure 4-8 Turbidity in influent and effluent for different particle loading concentration.

Figure 4-9 Relationship between effluent turbidity and SSC. The relationship between turbidity \((\tau) \) and particle mass concentration as SSC was modeled by a power law model.
Figure 4-10 these plots show the hydraulic conductivity (k) of clogged CPP materials could be recovered up to 96% by vacuum cleaning method, and 99% by sonicating-backwashing method. It was found that, for a given influent particle gradation, the loading concentration (50, 100 or 200 mg/L) had little influence on the effectiveness of vacuum or backwashing cleaning method. ...

Figure 5-1 pH elevation properties of CPP materials. Influent pH value was kept constant in each event duration as 7.6. ...127

Figure 5-2 pH value after infiltration through CPP materials ...128

Figure 5-3 Alkalinity elevation properties of CPP specimens ...130

Figure 5-4 Total dissolved phosphorus (TDP) removal properties of CPP. Influent [TDP] was kept constant as 1.0 mg/L. ...131

Figure 5-5 Alkalinity after infiltration through CPP materials. Effluent alkalinity concentrations during 6 hour filtration were modeled by an exponential decay model as \[\text{alk} = \text{alk}_0 + ce^{-dt}\] with \(R^2 > 0.96\), in this expression, \(\text{alk}_0\) was determined by influent alkalinity concentration, and equaled to 45 mg/L in this study. ...132

Figure 5-6 Effluent [TDP] after infiltration through CPP materials. Effluent [TDP] during 6 hour filtration were modeled by an power law model as \([\text{TDP}] = [\text{TDP}]_0 + p_0(e^{-\beta t})\) with \(R^2 > 0.91\), in this expression, \([\text{TDP}]_0\) is influent [TDP], and equals to 0.95-1.0 mg/L. For group I specimens exposed to rainfall-runoff for 3 years, \(p_0 = 0.3004\), and \(\beta = 0.0013\) with \(R^2 = 0.90\); for group II specimens coated with aluminum, \(p_0 = 0.8792\), and \(\beta = 0.0006\) with \(R^2 = 0.95\), while for group III specimens exposed to rain only for 3 years, \(p_0 = 0.2911\), and \(\beta = 0.0006\) with \(R^2 = 0.91\).132

Figure 5-7 Total phosphorus (TP) removal properties of CPP. Influent [TP] was kept constant as 1.45 mg/L. ...134

Figure 5-8 Removed TD, TDP and TPP by CPP coated with aluminum. Influent [TP] was kept constant as 1.4 mg/L ...135

Figure 5-9 Total particulate phosphorus concentration [TPP] after infiltration through CPP materials. ...136

Figure 5-10 Relationship between TPP removal and particle removal. \(P_m, P_n, \) and \(P_s\) are p-value based on the pair-wise T-test between, particle number removal, particle surface area removal and TPP removal, respectively. The difference between particle mass removal and TPP removal is significant \((P_{m1,2,3} = 0.0001, 0.0002, 0.0001)\); the difference between particle number removal and TPP removal is relatively significant \((P_{n1,2,3} = 0.116, 0.076, 0.105)\), and the difference between particle surface area removal and TPP removal is not significant \((P_{s1,2,3} = 0.7615, 0.7436, 0.7388)\) ...137
distributed to the No. 50 (0.30 mm); while in the coarse gradation there was 8% of the mass finer than the No.16 (1.18 mm) and this mass was evenly distributed among the size of No. 30 (0.60 mm) 50 (0.30 mm), 100 (0.15 mm) and 200 (0.075 mm). ...150

Figure 6-2 Water cement ratio (w/c) influence on CPP strength indices (f_c and f_s) and total porosity (ϕ_t). For a given aggregate to cement ratio (a/c) a given gradation, higher w/c ratios generate higher ϕ_t and lower f_c and f_s for CPP specimens with full compaction; while for CPP specimens with no compaction, higher w/c ratios generate lower ϕ_t and therefore higher f_c' and f_s. All strength results tested at 28 days. ..158

Figure 6-3 Summary of the influence of aggregate to cement ratio (a/c) on CPP strength (f_c' and f_s at 28 days) and total porosity (ϕ_t). For a given water to cement ratio (w/c) and a given gradation, lower a/c ratios generates lower ϕ_t which results in higher f_c' and f_s for CPP specimens with full compaction and CPP specimens with no compaction. All strength results tested at 28 days.........160

Figure 6-4 Aggregate gradation influence on CPP strength and total porosity. All specimen strength results tested at 28 days. It shows that the higher degree of compaction leads to lower percentage of total porosity and results in higher strength therefore..161

Figure 6-5 Influence of the degree of compaction on strength and total porosity for CPP specimens. Full compaction leads to lower total porosity and higher strength. All compressive strength (f_c'), splitting tensile strength (f_s) and total porosity (ϕ_t) were tested at 28 days...162

Figure 6-6 Relationship between compressive strength (f_c') and splitting tensile strength (f_s) for CPP materials, modeled as a power law: $f_s = 0.5478 \times (f_c')^{0.8328}$ with $R^2 = 0.96$. All compressive strength (f_c') and splitting tensile strength (f_s) were tested at 28 days...163

Figure 6-7 Relationship between compressive strength (f_c') and total porosity (ϕ_t) for CPP modeled using a first-order exponential model as $f_c' = 12909 \times (e)^{-0.0638\phi_t}$ with $R^2 = 0.91$. All compressive strength (f_c') and total porosity (ϕ_t) were tested at 28 days...164

Figure 6-8 Relationship between total porosity (ϕ_t) and hydraulic conductivity (k) for CPP modeled as a power law: $k = 1.6 \times 10^{-6} (\phi_t)^{3.714}$ with $R^2 = 0.91$...164
ABSTRACT

With respect to the problems caused by impervious pavements, cementitous permeable pavement (CPP) functions as a passive unit operation and process for stormwater quality and quantity control through infiltration, evaporation, filtration, absorption and reaction mechanisms.

CPP pore characteristics were examined through pore connectivity analysis using X-Ray Tomography (XRT). Image resolution influence on image analysis results was evaluated. Relationships between parameters of pore characteristics were evaluated.

Factors that significantly influence fluid flow in CPP media include effective porosity, pore connectivity and pore size distribution. A modified Kozeny-Carman model in which effective porosity ϕ_e, specific surface area based on effective pores $(SSA)_{pe}$, and weighted tortuosity $(L_c/L)_w$ were employed was developed and demonstrated applicable for CPP hydraulic conductivity estimation. Both the $k-\phi_i$ relationship and $k-\phi_e$ relationship were developed with a power law model.

Filtration of CPP subject to different particle loadings for a constant particle size gradation was investigated experimentally. Removal efficiencies for both total particles and for each size fraction were examined. A power law model was developed for the relationship between suspended solid concentration (SSC) and turbidity.

CPP clogging potential was evaluated by measuring the temporal hydraulic conductivity, $k(t)$ as well as the particles strained on CPP surface. Two CPP cleaning methods, vacuuming and sonicating followed by backwashing, were evaluated and found capable of recovering k_0 up to 96%. A method for scheduling of CPP maintainance was presented.

3 groups of CPP specimens were sued to evaluate the capability of pH and alkalinity elevation and phosphorus removal functions of CPP. The removal efficiencies of total phosphorus
(TP), total dissolved phosphorus (TDP) and total particulate phosphorus (TPP) were evaluated through experimental measurements.

Factors that influence CPP strength and porosity, including water to cement ratio (w/c), aggregate to cement ratio (a/c), aggregate gradation and the degree of compaction, were evaluated through 6 mix designs with different design parameters. Based on test results, an optimized mix design was recommended, and a CPP structural with $f_c' > 25$ MPa (3500 psi), $f_s > 2.76$ MPa (400 psi), $\phi_t > 20\%$, and permeability $k > 0.3$ cm/s is desirable.
CHAPTER 1 INTRODUCTION

1.1 PROBLEMS AND IMPACTS CAUSED BY IMPERVIOUS PAVEMENTS

With the significant urban growth of the 20th and 21st century combined with the widespread introduction of impervious pavement around 1900, deleterious hydrologic, climate and environmental problems associated with urban land development have grown increasingly serious due to the increased peak flow, volume and lag time of runoff, reduced underground water recharge, and degraded water quality (Bäckström 2000; Field et al. 1982; Jackson et al. 1974; Kuennen 2003; Teng and Sansalone 2004). With urban growth, forests, farms, meadows and pervious soils are being transformed into compacted soils, houses, shopping centers, roadways and parking lots, resulting in a much higher degree of imperviousness. Compared to soils covered by vegetation, the highly impervious nature of disturbed soils and impervious pavement greatly reduces the infiltration capacity and the capability to recharge aquifers and maintain stream base flow and waterway health (Malcom 1989, Field et al. 1982). As a result, this rainfall-runoff is lost as a resource for the long-term health of natural waters (Teng and Sansalone 2004). Control of rainfall-runoff has been increasingly challenging with the growth of urbanization and urban population of the world. Data from 47 small urban watersheds across the USA indicate that an approximately linear relationship exists when the volume-based runoff coefficient (“C”) is regressed against watershed imperviousness (Schueler 1987).

Further research has shown that the degree of imperviousness in the built environment is significantly correlated to hydrologic, climate and environmental problems (Bäckström 2000; Balades et al. 1995; Field et al. 1982; Jackson et al. 1974; Kuennen 2003). The most obvious impact of impervious pavement on hydrology is the alteration of the rainfall-runoff relationship. As water is conveyed downstream, along with soil, fertilizer, and other constituents, the runoff
causes flooding and increased transport of particulate and dissolved pollutants and debris. Large quantities of runoff cause significant problems in the environment. In many cities the unintentional combination of storm and sanitary sewers are common, and the combined runoff and sewage have to overflow through bypass due to the limited treatment capacity. This contaminant- and nutrient-loaded water impairs our surface waters and accelerates eutrophication (Miller 1989). Hydrologic impacts also include channel incision, bank erosion, and increased sediment transport (Andersen et al. 1999; Bäckström and Bergström 2000; Brattebo and Booth 2003; Watanabe 1995). Examples of local climate impacts include generation of higher temperature in urban areas as compared to surrounding rural areas resulting in urban heat islands (Kobayashi et al. 2002; Oke 1982). Examples of environmental impacts include significantly increased loading and delivery of anthropogenic constituents such as metal elements, nutrients, organics, and particulate matter discharged to the environment (Bäckström and Bergström 2000; Ghafoori and Dutta 1995; Sansalone 1999; Sansalone and Teng 2004).

Recognizing the effects of urbanization on the hydrological environment, many communities have passed laws encouraging municipalities and developers to practice sound stormwater management on their properties (Field et al. 1982; Diniz 1980). However, traditional stormwater management systems that collect, transport and dispose of stormwater are not able to meet the requirement of the rapid land development and the continuously increasing degree of imperviousness due to the installation of streets, parking lots and rooftops (Andersen et al. 1999; Bäckström and Bergström 2000; Brattebo and Booth 2003; Watanabe 1995; Field et al. 1982). An available and effective approach to mitigate these problems is to reduce the impervious surface in urban areas, which suggests the utilization of permeable pavement.
1.2 PERMEABLE PAVEMENT

Permeable pavement, also called pervious pavement, or porous pavement, is a structural low impact development (LID) material for rainfall-runoff control, in which cemented aggregate can produce hydraulically-conductive pore characteristics throughout the pavement structure (Berengier et al. 1997). Such pore characteristics permit gravitational drainage, capillary movement, evaporation, gaseous transport, precipitation and dissolution reactions, and filtration mechanisms.

Permeable pavement has generated increasing interest of a wide range of stakeholders over the last several decades (HMAT 2003). With respect to the problems caused by impervious pavements, permeable pavement reduces rainfall-runoff peak, volume (Bäckström and Bergström 2000; Ghafoori and Dutta 1995; Legret and Colandini 1999; Pagotto et al. 2000), improves water quality through physical and chemical mechanisms (Legret and Colandini 1999; Pagotto et al. 2000, Sansalone and Teng 2004), facilitates groundwater and interflow recharge (HAMT 2003; Ranieri 2002), and mitigates temperature increases (Kobayashi et al. 2002; Oke 1982; Asaeda and Ca 2000).

Permeable pavements have been more and more widely applied in the USA, Europe, Australia and Japan in the last two decades. In the United States, interest is once again growing in open-graded friction courses (OGFC), and more and more states are taking interest in OGFCs. Georgia, Florida and Alabama require open graded friction courses to be used on all interstate projects (Kuennen, 2003). Georgia, Florida, South Carolina, Texas, Arizona, Colorado, Utah, Michigan, New Jersey, Rhode Island, and Vermont are among those joining lead state Alabama in the study of OGFCs (Kuennen 2003).

Permeable pavements have been widely used in Europe since 1970s for stormwater
management. In Germany, for example, the use of permeable pavements has become widespread for a sustainable urban water management, because it is a highly suitable method to reduce surface runoff, and in some newly developed areas, legal regulations require the infiltration of rainwater into the groundwater or to discharge runoff into a receiving water (Fach et al. 2002). In Spain, experimentation with porous mixes started in 1980 when the Ministry’s Road Department built four test sections in Cantabria, and the good behavior of these sections and the advantages offered by these mixes for the safety and comfort of driving has led to wide and frequent application of permeable pavements in Spain (Jiménez and Pérez 1990). In Switzerland, the first permeable pavement was placed on an airport runway in 1972, and permeable pavements have been used since the later 1970s and the early 1980s (Isenring et al. 1990). In the UK, permeable highway pavements were put in place in the middle of 1980s (Pratt et al. 1995). In France, the use of porous pavements as a road surfacing materials has grown considerably since 1985 (Pagotto et al. 2000). Swedish researchers found that porous pavement removed constituents effectively in highway runoff as a type of infiltration BMP. A Swedish porous pavement system, known as the Swedish Unit Superstructure, was developed as both a water quantity and quality control BMP (Niemczynowicz 1989). Most permeable pavements constructed more than 20 years ago in Europe still function well.

In Japan, infiltration facilities including permeable pavements were introduced to Japan in the early 1970s and progressively implemented during the 1980s. When rainfall infiltration was first implemented, its primary objective was to reduce runoff volume. With the enhanced recognition of water quality benefits, as well as the Japanese desire to maintain closeness with nature in an urban setting, however, permeable pavement philosophy has shifted more towards groundwater cultivation than runoff reduction since the 1990s.
1.3 CEMENTITIOUS PERMEABLE PAVEMENT (CPP)

One common form for permeable pavement, cementitious permeable pavement (CPP) consists of Portland cement, open-graded aggregate and water (Li et al. 1999). CPP has generated increasing interest of a wide range of stakeholders over the last several decades (HMAT 2003). Compared to asphalt porous pavement, CPP has its outstanding advantages in both transportation and environment aspects. It provides a relatively rougher surface for traffic, which makes our car-moving safer under inclement weather conditions (Ghafoori and Dutta, 1995 (a), 1995(b)). From an environmental viewpoint, CPP can not only control the quantity of runoff as asphalt porous pavement does by reducing the peak flow rate and volume of runoff, it also has the capability to control the quality of runoff by removing particulate matters, metals, and anthropogenic pollutants from runoff (Teng, 2004; Stotz and Kruth 1994), and elevate alkalinity and pH values in runoff (Li et al. 1999; Park and Tia 2004; Pratt 1999). Combined with engineered adsorptive-filter media, cementitious porous pavement (CPP) functions as a primary unit operation/process and a capable infiltration-exfiltration best management practice (BMP) in removing both soluble and particulate pollutant from stormwater (Fujita 1993; Jahangir-Issa 1998; Legret et al. 1999; Pratt et al. 1989; Sansalone 1999; Teng and Sansalone 2004; Yu 1993). CPP structures are able to significantly reduce the impact of any real or perceived first flush effect commonly associated with urban runoff (Anderson et al. 1999; Aulenbach and Chan 1998; Rajapakse and Ives 1990). For example, the permeable pavement systems promote infiltration using porous pavement and granular subgrades systems for quantity storage, ground water recharge and quality control in all those countries, such as in US (Brattebo and Booth 2003; Field 1982; Jackson and Ragan 1974, Sansalone 1999; Teng and Sansalone 2004), UK (Anderson et al. 1999; Schluter and Jefferies 2002), Switzerland (Isenring et al. 1999;
Xu and Mermoud 2003), Sweden (Backstrom and Bergstrom 2000; Niemczynowicz and Hogland 1987; Teng and Sansalone 2004), German (Fach et al. 2002; Stotz and Krauth 1994), and Spain (Jimenez and Perez 1990), Singapore (FWA et al. 1999; Tan et al. 2003) and France (Balades et al. 1995; Legret and Colandini 1999; Pagotto et al. 2000). The infiltration-exfiltration BMPs exhibited a high pollutant removal capability with total solids suspension (TSS) mass removal up to 90%, total phosphorus (TP) removal up to 65% and total nitrogen (TN) up to 80% (Park and Tia 2004; Sansalone 1999; Teng and Sansalone, 2004). In-situ partial exfiltration reactor (PER) has been developed combining the advantage of CPP, infiltration trenches and engineered filtration. In such a combined unit operation and process, CPP functions as initial control preventing solids from entering the PER (Teng and Sansalone, 2004).

1.4 MECHANISTIC EVALUATION OF CPP

Related to the mechanisms of filtration, infiltration, absorption, evaporation and reaction, knowledge of CPP pore characteristics are critical. Pore characteristics determine the physical behavior of porous materials to fluid, solute and particulate loadings. However, using many conventional gravimetric-geometric and destructive techniques it has been difficult to directly measure critical pore characteristics such as effective porosity (ϕ_e), tortuosity, pore size distribution (PSD)$_{pore}$ and (SSA) based on effective pores. Although research has been done on the pore characteristics for conventional pavements and porous materials in many other fields, there has been no methodological investigation of CPP pore structure.

Hydraulic conductivity (k) is one of the most important properties for a permeable pavement. High conductivity is desirable for CPP to let water infiltrate into sub-base layer as soon as possible to reduce or even avoid runoff. Although much research has been carried out for many kinds of porous media, such as soils, rocks, and filters and many empirical models were
developed based on simplified or idealized media particle shape, little research has been carried out on CPP based on CPP’s pore structure with high porosity, irregularly shaped pores and wide range of pore size distribution. Compared to other porous media, CPP has the characteristics of high porosity and low hydraulic head under empty bed conditions. It is very important to develop methodology to predict CPP hydraulic conductivity based on these pore characteristics and pore size distribution.

A very important function of CPP is filtration. Studies have demonstrated that particles are the main vector of runoff pollution (Colandini et al. 1995; Teng and Sansalone 2004). Combined with engineered adsorptive-filter media, cementitious porous pavement (CPP) functions as a primary unit operation/process and a capable infiltration-exfiltration BMP in removing both soluble and particulate pollutant from stormwater (Fujita 1993; Jahangir-Issa 1998; Legret et al. 1999; Pratt et al. 1989; Sansalone 1999; Teng and Sansalone 2004; Yu 1993). Due to the formation of schmutzdecke which functions as a filter cake and aids particle removal, and protects deeper specific deposits, CPP can remove finer particles less than 25 µm (Sansalone 1999, Teng and Sansalone 2004).

Clogging potential is one of the most common concerns of permeable pavement, and the useful life of permeable pavement depends on maintaining a high drainage capacity (Fwa, et. al. 1999; Schlüter and Jefferies 2002, Tan et al. 2003). It is critical to correctly predict clogging based on hydraulic loading rate, particulate loading and CPP properties, as well as cleaning the surface with proper methods before the infiltration rate drops to an unacceptable level.

With the urban development, more and more pollutants and acidity from acid rain flow to watersheds and deteriorate our water environment. One of the significant contributions of CPP for water quality control is that CPP is able to elevate the pH and alkalinity after water infiltrates
through it. The elevated alkalinity functions as a buffer, and neutralizes acids. In waters with low alkalinity, pH might fluctuate from 5 or lower to as high as 9 or above; while in high alkalinity waters, pH might fluctuate from about 7.5 to 8.5. Alkalinity levels of 20-200 mg/L are typical of fresh water. A total alkalinity level of 100-200 mg/L will stabilize the pH level in a stream. Levels below 20 mg/L indicate that the system is poorly buffered, and is very susceptible to changes in pH from natural and human-caused sources. Above pH 9.5 (usually well above pH 10), OH$^-$ alkalinity can exist or CO$_3^{2-}$ and OH$^-$ alkalinities can coexist together.

The excess release of phosphorus (P) into surface water is of an increasingly environmental concern, because P is a major cause of eutrophication in most ecosystems, subsequently followed by massive algal blooms, fish suffocation and other undesired effects (Spivakov et al. 1999). The critical concentration of P above which the growth of algae and other aqueous plants accelerates is suggested as 0.01 mg/L for dissolved P and 0.02 mg/L for total P (Kim et al. 2003). Phosphorus in the elemental form is particularly toxic and is subject to bioaccumulation in much the same way as mercury (Spivakov et al. 1999). In comparison, dissolved P (as TDP) off I-10 of City Park in Baton Rouge can be as high as 1.0 mg/L and total P can be as high as 3.0 mg/L as an event mean concentration (EMC). Compared to asphalt porous pavement, one of the outstanding advantages of CPP for environmental benefits is the capability to removal phosphorus (Fach et al. 2002; Li et al. 1999; Park and Tia 2004; Pratt 1999).

CPP strength is also a main concern because it not only functions as a device for stormwater management but also provides a strong structure for traffic loading. Optimization of the mix design is critical to achieve a desirable high porosity for stormwater quality and quantity control and a high strength for traffic loading.
1.5 CONTENTS OF THE DISSERTATION

Chapter 2: Pore Characteristics of CPP by X-Ray Tomography Imaging

Pore characteristics, including total porosity ϕ_t, effective porosity ϕ_e, pore size distribution (PSD)$_{\text{pore}}$, specific surface area of based on solid volume, (SSA)$_s$, based on total pore volume, (SSA)$_{\text{pt}}$ and based on effective pores, (SSA)$_{\text{pe}}$, and tortuosity (L_e/L), critical to CPP functioning as an adsorptive, reactive, and filtration infrastructure, are examined by XRT analysis and conventional Geometric-Gravimetric methods. Relationships between pore parameters, such as ϕ_t-ϕ_e, ϕ_t-(L_e/L), and ϕ_t-(SSA) relationships were developed, so that ϕ_e, (L_e/L) and (SSA) which are otherwise very difficult to obtain by conventional measurements could be estimate based on CPP geometric-gravimetric properties.

Chapter 3 Hydraulic Characteristics of CPP

This chapter examined hydraulic conductivity for CPP by constant-head experiments. Empirical models for CPP hydraulic conductivity estimation were evaluated. A modified Kozeny-Carman Model (MKCM) applicable for CPP hydraulic conductivity prediction based on CPP pore characteristics was developed. Pore space factors that influence hydraulic characteristics of CPP were investigated. Based on measurements, k-ϕ_t and k-ϕ_e relationships for predicting hydraulic conductivity k with known total porosity ϕ_e or ϕ_t were developed.

Chapter 4 Filtration and Clogging Potential of CPP

Main task of this chapter is to evaluate the infiltration and clogging properties of CPP. Particle removal efficiency of CPP was evaluated experimentally for different particle sizes and under different particle loading concentration. The clogging process of CPP materials was evaluated by measuring the temporal hydraulic conductivity. A methodology to calculate the cumulative strained particles on CPP surface and examine the size distribution of particles
strained on CPP surface was developed. A relationship between turbidity and TSS was developed based on experimental measurements. The methods for infiltration rate recovery and maintenance schedule estimation for CPP surface were presented.

Chapter 5 Chemistry Properties of CPP

This chapter focuses on CPP functions as a reactive and absorptive material for acid neutralization and phosphorus removal from stormwater. pH and alkalinity elevation properties of CPP were investigated. Phosphorus removal properties of CPP, including total phosphorus (TP), total dissolved phosphorus (TDP) and total particulate phosphorus (TPP) removal efficiency after infiltrating through CPP were evaluated. The relationship of removed total solids suspension (TSS) and TPP was also presented based on experimental measurements.

Chapter 6 Optimization Mix Design

The main task of this chapter is to recommend a good mix design by which a CPP material could be achieved with desirable strength (f’c > 3000 psi) for traffic loading and expected porosity (ϕt > 20%) for rainfall-runoff quality and quantity control. Focusing on this task, a number of objectives related to the mix design of CPP functioning as an infiltration/evaporation interface, a conveyance/storage medium, a filtration material, and a reactive material were achieved. The influence of water to cement ratio (w/c), aggregate gradation and aggregate to cement ratio (a/c) on strength and porosity of CPP was investigated. Relationships of w/c –porosity, w/c –strength, a/c-porosity, a/c-strength were presented. The influence of compaction degree on both porosity and strength was also evaluated for CPP. A relationship between porosity and compressive strength, f’c, was developed for CPP materials. The correlation between compressive (f’c) and splitting tensile strength (f′s) for the designed CPP materials was developed. Hydraulic conductivity (k) of the designed CPP, and the relationship of k-ϕt were also presented.
1.6 REFERENCES

Hot Mix Asphalt Technology-September/October 2003, 26-40

CHAPTER 2 X-RAY TOMOGRAPHIC EXAMINATION OF PORE CHARACTERISTICS FOR CPP

2.1 INTRODUCTION

Permeable pavement, also called pervious pavement, is a pavement structure in which cemented aggregate can produce hydraulically-conductive pore characteristics throughout the pavement structure (Berengier et al. 1997). Such pore characteristics permit gravitational drainage, capillary movement, evaporation, gaseous transport, precipitation and dissolution reactions, and filtration mechanisms. One common form, cementitious permeable pavement (CPP) consists of Portland cement, graded granular aggregate and water (Li et al. 1999).

CPP has generated increasing interest of a wide range of stakeholders over the last several decades (HMAT 2003). Research has shown that the degree of imperviousness in the built environment is correlated to deleterious hydrologic, climate and environmental impacts (Bäckström 2000; Field et al. 1982; Jackson et al. 1974; Kuennnen 2003). Examples of hydrologic impacts include increased discharges, increased flooding, channel incision, bank erosion, and increased sediment transport (Andersen et al. 1999; Bäckström and Bergström 2000; Brattebo and Booth 2003; Watanabe 1995). Examples of local climate impacts include generation of higher temperature in urban areas as compared to surrounding rural areas resulting in urban heat islands (Kobayashi et al. 2002; Oke 1982). Examples of environmental impacts include significantly increased loading and delivery of anthropogenic constituents such as metal elements, nutrients, organics, and particulate matter discharged to the environment (Bäckström and Bergström 2000; Ghafoori and Dutta 1995; Sansalone and Teng 2004). With respect to these impact categories, CPP reduces rainfall-runoff peak, volume, improves water quality through
physical and chemical mechanisms, facilitates groundwater and interflow recharge (HAMT 2003; Ranieri 2002), and mitigates temperature increases (Asaeda and Ca 2000).

2.1.1 The Role of Pore Characteristic Measurements for Porous Structures

Pore characteristics determine the physical behavior of porous materials to fluid, solute and particulate loadings. Therefore, there has been a wide range of research disciplines interested in the many aspects of pore characteristics. These areas include soil and rock science (Giménez et al. 1997; Meegoda 1989), conventional pavement (Cooley and Brown 2000; Hall et al. 2001; Harvey 1994; Huang et al 1999; Masad et al 1998; Maupin 2000; Mohammad et al. 2003; Wang et al. 2003; Yue et al 1995; Zube 1962), environmental engineering (Li et al. 1999; Sansalone and Teng 2004); fluid mechanics (Dardis and McCluskey 1998; Hilpert et al. 2001; Lebron et al. 1999), and porous media (Choubane et al. 1998; Fach et al. 2002; Flint and Selker 2003; Nakashima and Watanabe 2002).

However, using many conventional gravimetric-geometric and destructive techniques has been difficult to directly measure critical pore characteristics such as effective porosity (ϕ_e), tortuosity, pore size distribution (PSD_{pore}) and (SSA) based on effective pores. For example, ϕ_e rather than total porosity (ϕ_t) has been demonstrated as a critical factor that determines the hydraulic characteristics of porous structures (Al-Omari, et al. 2002; Flint and Selker, 2003). Despite this recognition, many evaluations of porous structures still rely on measurement of ϕ_t due to simplicity and economy of measurement as compared to ϕ_e (Harvey 1994; Kanitpong et al. 2003; Krishnan et al. 2001; Masad et al. 1998; Mohammad et al. 2003; Yue et al. 1995).

The flow path of the liquid through a porous medium is commonly approximated in terms of tortuosity (Al-Omari, et al. 2002; Zhang and Knackstedt 1995). Tortuosity is difficult to measure directly (Al-Omari, et al. 2002; Dullien 1992; Saripalli et al. 2002; Scheidegger 1974).
By assuming that fluid-flow and electrical current follow equivalent flow paths in porous solids, a common approximation estimation of hydraulic tortuosity is to measure electrical conductivity on the same porous media saturated with electrolyte with known conductivity, but some research showed that this assumption was not valid (Zhang and Knackstedt 1995). Because of its difficulty of measurements, tortuosity is usually assumed as 1.414 based on equally-sized spherical granular material in the porous medium and the assumption that the fluid pathway is along the diagonal of a rhombic packing structure of these spheres (Carman 1956). However, some experiments have found values as high as 2.5~7 and dependant on porosity (Saripalli et al. 2002, Zhang and Knackstedt, 1995).

The \((\text{PSD})_{\text{pore}} \) influence hydraulic and filtration characteristics of a porous medium (Lebron et al. 1999, Nakashima and Watanabe 2002). For example, to predict filtration or clogging behavior of a porous medium such as CPP, various PSD indices have been examined. Investigations utilize \(d_{50} \) indices for the \((\text{PSD})_{\text{pore}} \) and the filtrate particle size distribution (PSD) to suggest filtration mechanisms (Li et al. 1999; McDowell et al. 1986, Sansalone and Teng 2004). Other research has shown that ratios for the size indices of the \(d_{15} \) of the filter and \(d_{85} \) of the filtrate can be used to examine filtration mechanisms (Sherard, et al. 1984, 1989).

SSA influences the hydraulic characteristics of porous media (Al-Omari et al. 2002; Masad et al. 1998; Saripalli et al. 2002). SSA is usually defined as the ratio of the surface area to the volume of the particles when porous medium function as a filter. For spheres, \(\text{SSA} = 6/D \), where \(D \) is the diameter of the sphere (Metcalf and Eddy 2003). However, in CPP, the pore volume interface to the solid structure surface is irregular. Flow characteristics are controlled by the pore space geometry rather than the solid matrix (Nakashima and Watanabe 2002; Zhang and Knackstedt 1995). SSA based on the ratio of the pore-solid interfaces to the volume of total
pores or effective pores, denoted as \((\text{SSA})_{pt}\) and \((\text{SSA})_{pe}\), respectively, are necessary to predict hydraulic conductivity and other flow characteristics (Nakashima and Watanabe 2002), but little research has been done due to the difficulty of pore connectivity determination.

Although research has been done on the pore characteristics for conventional pavements and porous materials in many other fields, there has been no methodological investigation of CPP pore structure. At the same time, it is necessary to recognize that \(\phi_t\), \((\text{PSD})_{\text{pore}}\), \((\text{SSA})_{pe}\), and \((L_e/L)\) influence the hydraulic characteristics and filtration performance of CPP as a LID material and unit operation for rainfall-runoff management.

2.2 OBJECTIVES

This study had a number of objectives related to the pore characteristics of CPP, as these pore characteristics provide inputs for modeling of CPP material as an infiltration/evaporation interface, a conveyance/storage medium, a filtration material, and a reactive material. The first objective was measurement of CPP pore characteristics, specifically, \(\phi_t\), \(\phi_e\), \((\text{PSD})_{\text{pore}}\), \((\text{SSA})_{pt}\) and \((\text{SSA})_{pe}\) and \((L_e/L)\) by x-ray tomography, gravimetrics and geometrics. The second objective was examination of the \((\phi_t-\phi_e)\) relationship. The third objective was determination of a correlation between \((\text{PSD})_{\text{pore}}\) and SSA. The fourth objective evaluated the tortuosity range and distribution for CPP. The final objective examined how image resolution influenced results when x-ray tomographic imaging was employed.

2.3 BACKGROUND

2.3.1 Conventional Methods of Determination of Pore Characteristics for Pavements

There have been many attempts, theoretical and experimental, to determine relationships between microstructure (pore structure characteristics) and transport properties of single phase or multiphase flows (Lindquist and Lee 1996). ASTM C 457 Standard (1990) introduced two
principal methods for microscopic determination of parameters of pore space in hardened concrete; the linear traverse method and the modified point-count method. These methods can only be applied to sawed and lapped plane sections of a specimen, and can not examine the internal structure in a non-destructive way. Eriksen and Wegan (1993) used microscopy to examine pore space in asphalt concrete. Their efforts focused on the methodology of microscopy more than quantifying the pore space distribution. Roberts et al (1994) analyzed factors such as sample preparation, image processing procedures and the concrete air-void system itself that influence microscopic image analysis of porosity in hardened concrete. Berryman and Blair (1986) estimated fluid permeability utilizing digitalized microscopic images.

As an effective non-destructive technique (NDT), X-ray tomography (XRT) has brought revolutionary changes to medical diagnosis and medical science since 1970s (Wang et al. 2003), and it has been increasingly used to help examine pavement internal microstructure in recent years (Braz et al. 1999; Hall et al. 2000; Landis and Denis 1999; Shashidhar 1999; Wang et al. 2001, 2003). Compared to conventional destructive methods, XRT has the advantage of imaging the internal structure in a non-destructive manner with high accuracy. For example, image analysis can correctly assess pore characteristics as defined in ASTM C 457 (Pleau et al. 2001).

2.3.2 Methods for Image Processing

There are two critical steps in image processing. The first step is to determine the threshold to transfer gray images into binary images thereby separating or segmenting pores from solid structure. Many methods have been presented for image segmentation (Jain and Dubisson 1992; Lindquist et al. 1996; Leu 1992; Roberts et al 1994). Jain and Dubisson (1992) compared 3 widely accepted algorithms to segment X ray images: (i) thresholding based on Bayes decision theory in pattern recognition. A cutoff threshold is between the peaks of the
object (pore) and background (solids), and based on Bayes theory of pattern recognition. Any pixel with an attenuation coefficient greater (less) than the cutoff is identified as grain (void). The aim of the decision is to assign an object to a binary class; (ii) adaptive thresholding is used when there is a large range of variation in array values from one part of the image to the other, a single fixed threshold cannot be used for the entire image. By dividing the image into several sub-images, adaptive thresholding assigns a different threshold value to each pixel, and (iii) iterated conditional modes, which can be used to threshold dirty images with low quality. However, if the grey images are not of high quality, the simplest way of segmentation is by observation and comparison of the original gray image and the transferred binary image, as long as only a small amount of noise (fine pores) is generated, and the area of easily identified coarse pores are unchanged before and after segmentation.

The second step is to reconstruct 3D specimen based on 2D images. Because the spacing between image slices is much larger than the resolution of image plane, interpolation is required to make a smooth boundary of the reconstructed 3D specimen (Raya and Udupa 1990; Wang et al. 2001). For regularly shaped images of similar sizes, however, it is reasonable to simply interpolate the values of the gray level between two slices (Jin et al. 1992). Recognizing that the spacing between two slices is the most important factor, Wang et al (2001) presented a linear proportional erosion method for reconstruction interpolation.

2.4 METHODOLOGY

2.4.1 CPP Specimens

Cored specimens were taken from CPP material constructed as the surface interface of a partial exfiltration reactor (PER). The PER is a linearly-extended in-situ rainfall-runoff unit operation and process whose primary components include (i) a structural CPP surface allowing
urban pavement sheet flow infiltration, particulate straining/filtration, pH/alkalinity modification while acting as a structural surface supporting wheel loads, and (ii) a reactive adsorptive-filtration medium located below the CPP surface. Details of the PER system with a CPP component and PER performance are provided elsewhere (Li et al 1999, Sansalone and Teng 2004, Teng and Sansalone 2004). After 3 years of exposure a total of 21 specimens were cored from CPP material taken from the PER surface (mean pH = 6.8, mean suspended solids ≈ 200 mg/L), from control CPP material at the site exposed to only rain (mean pH = 4, mean suspended solids < 1 mg/L), and from control CPP material not exposed to any rainfall or runoff during this period (Sansalone et al 1998). All but two cores were backwashed with tap water (pH = 7 and alkalinity ≈ 150 mg/L as CaCO₃) to remove any runoff particles from field CPP material or abraded particles generated in the coring process. Saturated hydraulic conductivity in the range of 10⁻² to 10⁻³ cm/second facilitated the backwashing process (Teng and Sansalone 2004). Geometric and gravimetric measurements of each core are shown in Table 2-1.

2.4.2 Pore Characteristics through Gravimetric-Geometric Evaluations

2.4.2.1 Experimental Measurement of Specific Gravity (ρₛ) and (SSA)ₛ

Measurements of ρₛ were made to gravimetrically determine total porosity (φₛ).

\[
φₛ = \frac{\text{volume of pores}}{\text{bulk volume of specimen}} = \frac{\text{bulk volume} \cdot \text{solid volume}}{\text{bulk volume}} = \frac{Vₐ - Vₗ}{Vₐ} = 1 - \frac{W/ρₛ}{Vₐ} \quad (2-4)
\]

In this expression W is the specimen dry weight and Vₐ the bulk volume of a specimen, and Vₗ is the solid volume. To determine CPP ρₛ, CPP material was ground into a powder. This material was taken from the proximity of where the CPP specimens were cored. After grinding, the CPP powder was dried in a hot room at 40°C until the weight stabilized. The CPP powder was then cooled and remained dry in a dessicator. This procedure follows
ASTM D-421 (1999). The measurement of specific gravity followed ASTM D 5550-4 (1994) through inert gas pycnometry. The gas utilized in this procedure was ultra-high pure He for inertness and ability to enter pore space approaching 1 angstrom (10^{-10} m) in diameter. Triplicate aliquots were analyzed for each test. Table 2-2 summarizes S_g measurements. Based on S_g, total porosity of CPP cores can be estimated by equation (2-4).

Table 2-1 Geometric and gravimetric indices of CPP specimens

<table>
<thead>
<tr>
<th>Specimen Code$[^1]$</th>
<th>Dry Weight (g)</th>
<th>Diameter (cm)</th>
<th>Height (cm)</th>
<th>Bulk Volume (cm3)</th>
<th>Solid Volume (cm3)</th>
<th>Bulk Density (kg/m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1-5</td>
<td>857.48</td>
<td>6.89</td>
<td>9.60</td>
<td>376.61</td>
<td>322.36</td>
<td>2194.40</td>
</tr>
<tr>
<td>C2-1</td>
<td>785.44</td>
<td>7.03</td>
<td>9.60</td>
<td>357.93</td>
<td>295.28</td>
<td>2147.79</td>
</tr>
<tr>
<td>C2-3</td>
<td>800.31</td>
<td>7.00</td>
<td>9.65</td>
<td>372.62</td>
<td>300.87</td>
<td>2148.58</td>
</tr>
<tr>
<td>C2-5</td>
<td>797.94</td>
<td>6.90</td>
<td>9.72</td>
<td>371.38</td>
<td>299.98</td>
<td>2215.57</td>
</tr>
<tr>
<td>C2-6</td>
<td>804.85</td>
<td>7.01</td>
<td>9.68</td>
<td>363.27</td>
<td>302.58</td>
<td>2103.00</td>
</tr>
<tr>
<td>C2-11</td>
<td>785.68</td>
<td>7.01</td>
<td>9.65</td>
<td>373.60</td>
<td>295.37</td>
<td>2002.79</td>
</tr>
<tr>
<td>C2-12</td>
<td>745.92</td>
<td>7.01</td>
<td>9.70</td>
<td>372.44</td>
<td>280.42</td>
<td>2324.06</td>
</tr>
<tr>
<td>LC2-8</td>
<td>870.06</td>
<td>6.93</td>
<td>9.60</td>
<td>374.37</td>
<td>327.09</td>
<td>2388.54</td>
</tr>
<tr>
<td>LC1-4</td>
<td>863.65</td>
<td>6.94</td>
<td>9.60</td>
<td>361.58</td>
<td>324.68</td>
<td>2340.33</td>
</tr>
<tr>
<td>LC1-5</td>
<td>848.65</td>
<td>6.92</td>
<td>9.74</td>
<td>362.62</td>
<td>319.04</td>
<td>2367.89</td>
</tr>
<tr>
<td>LC1-6</td>
<td>867.83</td>
<td>6.97</td>
<td>9.76</td>
<td>366.50</td>
<td>326.25</td>
<td>2167.78</td>
</tr>
<tr>
<td>LC2-2</td>
<td>807.67</td>
<td>6.92</td>
<td>9.60</td>
<td>372.58</td>
<td>303.64</td>
<td>2258.11</td>
</tr>
<tr>
<td>LC2-9</td>
<td>815.54</td>
<td>7.00</td>
<td>9.70</td>
<td>361.16</td>
<td>306.59</td>
<td>2095.69</td>
</tr>
<tr>
<td>LC2-10</td>
<td>782.32</td>
<td>6.99</td>
<td>9.64</td>
<td>373.30</td>
<td>294.11</td>
<td>2201.75</td>
</tr>
<tr>
<td>N1-4</td>
<td>814.56</td>
<td>7.05</td>
<td>9.62</td>
<td>369.96</td>
<td>306.23</td>
<td>2184.50</td>
</tr>
<tr>
<td>N2-10</td>
<td>820.74</td>
<td>6.96</td>
<td>9.73</td>
<td>375.71</td>
<td>308.55</td>
<td>1978.14</td>
</tr>
<tr>
<td>S1-4</td>
<td>732.05</td>
<td>7.07</td>
<td>9.75</td>
<td>370.07</td>
<td>275.21</td>
<td>1915.61</td>
</tr>
<tr>
<td>S1-5</td>
<td>732.05</td>
<td>7.10</td>
<td>9.79</td>
<td>382.15</td>
<td>275.21</td>
<td>1873.53</td>
</tr>
<tr>
<td>S1-8</td>
<td>725.00</td>
<td>6.90</td>
<td>9.65</td>
<td>386.97</td>
<td>272.56</td>
<td>2113.49</td>
</tr>
<tr>
<td>S2-2</td>
<td>762.95</td>
<td>6.90</td>
<td>9.63</td>
<td>360.99</td>
<td>286.82</td>
<td>2049.00</td>
</tr>
<tr>
<td>S2-4</td>
<td>738.48</td>
<td>6.89</td>
<td>9.60</td>
<td>360.41</td>
<td>277.62</td>
<td>2194.40</td>
</tr>
</tbody>
</table>

$[^1]$: Specimen Code:
C: field control, LC: lab control,
N and S: extracted from field site PER;
- PER: partial exfiltration reactor;
- CPP: Cemetitious Permeable Pavement;
- Specimens were taken from CPP surface for PER;
- The D_{50} of the fine aggregate (sand) in the mix design was 2.00 mm;
- The D_{50} of the coarse aggregate (gravel) in the mix design was 6.30 mm;
- The mix design water/cement ratio was 0.3 and the mass ratio of sand to gravel was 1;
- The 28-day f_c for CPP > 4000 psi (27580 kPa)
Table 2-2 Inert gas pycnometer measurements of specific gravity (\(\rho_s \)) for CPP specimens

<table>
<thead>
<tr>
<th>(V_c^{[1]})</th>
<th>(V_r^{[1]})</th>
<th>(P_1^{[2]})</th>
<th>(P_2^{[2]})</th>
<th>(V_p^{[3]}) (cm³)</th>
<th>Weight W (g)</th>
<th>(\rho_s^{[4]})</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.454</td>
<td>7.310</td>
<td>6.266</td>
<td>16.769</td>
<td>2.676</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.502</td>
<td>7.332</td>
<td>6.275</td>
<td>16.769</td>
<td>2.672</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.847</td>
<td>7.245</td>
<td>7.137</td>
<td>18.998</td>
<td>2.662</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.785</td>
<td>7.220</td>
<td>7.145</td>
<td>18.998</td>
<td>2.659</td>
<td></td>
<td></td>
</tr>
<tr>
<td>147.499</td>
<td>91.281</td>
<td>17.118</td>
<td>8.494</td>
<td>54.821</td>
<td>145.438</td>
<td>2.653</td>
</tr>
<tr>
<td>17.308</td>
<td>8.592</td>
<td>54.901</td>
<td>145.438</td>
<td>2.649</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.864</td>
<td>8.865</td>
<td>54.838</td>
<td>145.438</td>
<td>2.652</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.196</td>
<td>8.435</td>
<td>52.690</td>
<td>139.829</td>
<td>2.654</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.184</td>
<td>8.430</td>
<td>52.710</td>
<td>139.829</td>
<td>2.653</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean ((\mu))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.659</td>
<td></td>
</tr>
<tr>
<td>Standard Deviation ((\sigma))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.008</td>
<td></td>
</tr>
</tbody>
</table>

[1]: Coefficients of the inert gas (He) pycnometer, for medium cell, \(V_c=25.644, V_r=13.964 \); for the large cell, \(V_c=147.499, V_r=91.281 \);
[2]: Pressure of inert gas He, read from pycnometer before and after test;
[3]: Solid Volume, \(V_p = V_c - V_r \left(\frac{P_1}{P_2} - 1 \right) \);
[4]: Specific Gravity, \(\rho_s = \frac{\text{solid weight } W}{\text{solid volume } V_p} \times (1000 \text{ kg/m}^3) \)

2.4.2.2 Specific Surface Area (SSA)_s by EGME Measurements

(\(\text{SSA}_s \)) is denoted as the ratio of area of pore-solid interfaces to solid mass or volume. A modified EGME (ethylene glycol monoethyl ether) method (Sansalone et al. 1998) was utilized for experimental determination of SSA. Granular activated carbon (GAC) with known SSA values of 1000-1100 m²/g (Calgon 1995) was employed to serve as control for the precision and accuracy of the EGME method. CPP cores with 70 mm diameter were sawed into thin slices of 1-2 mm thickness or utilized as crushed material with diameters from 1 to 10 mm. Each measurement of SSA was carried out using triplicate samples. (\(\text{SSA}_s \)) results ranged from 0.5 to
2 m²/g, or 1.33 - 5.32 × 10⁶ m²/m³ (based on CPP specific gravity of 2.659), as Table 2-3 illustrated.

Table 2-3 Specific surface area measurements (based on solid mass) for CPP using EGME

<table>
<thead>
<tr>
<th>Sample[1]</th>
<th>Sample Description</th>
<th>Dry Sample mass Mₛ (g)</th>
<th>Absorbed EGME Mₑ (g)</th>
<th>(SSA)ₛ[2] (m²/g)</th>
<th>Average (SSA)ₛ (m²/g)</th>
<th>St. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>D₁</td>
<td>Concrete discs cut from CPP core, h =1 mm, d=70 mm</td>
<td>44.8499</td>
<td>0.0059</td>
<td>0.4600</td>
<td>0.5306</td>
<td>0.080</td>
</tr>
<tr>
<td>D₂</td>
<td>Concrete discs cut from CPP core, h =1 mm, d=70 mm</td>
<td>42.1898</td>
<td>0.0062</td>
<td>0.5138</td>
<td>0.5306</td>
<td>0.080</td>
</tr>
<tr>
<td>D₃</td>
<td>Concrete discs cut from CPP core, h =1 mm, d=70 mm</td>
<td>48.0901</td>
<td>0.0085</td>
<td>0.6180</td>
<td>0.5306</td>
<td>0.080</td>
</tr>
<tr>
<td>S₁</td>
<td>Disc fragments, h=1 mm</td>
<td>4.5588</td>
<td>0.0016</td>
<td>1.2272</td>
<td>1.2020</td>
<td>0.065</td>
</tr>
<tr>
<td>S₂</td>
<td>Disc fragments, h=1 mm</td>
<td>8.0559</td>
<td>0.0026</td>
<td>1.1285</td>
<td>1.2020</td>
<td>0.065</td>
</tr>
<tr>
<td>S₃</td>
<td>Disc fragments, h=1 mm</td>
<td>12.0237</td>
<td>0.0043</td>
<td>1.2504</td>
<td>1.2020</td>
<td>0.065</td>
</tr>
<tr>
<td>P₁</td>
<td>Crushed CPP particles, d =1 to10 mm</td>
<td>29.1008</td>
<td>0.0137</td>
<td>1.6461</td>
<td>1.7100</td>
<td>0.238</td>
</tr>
<tr>
<td>P₂</td>
<td>Crushed CPP particles, d =1 to10 mm</td>
<td>31.2428</td>
<td>0.0135</td>
<td>1.5108</td>
<td>1.7100</td>
<td>0.238</td>
</tr>
<tr>
<td>P₃</td>
<td>Crushed CPP particles, d =1 to10 mm</td>
<td>29.7690</td>
<td>0.0168</td>
<td>1.9732</td>
<td>1.7100</td>
<td>0.238</td>
</tr>
<tr>
<td>GAC₁</td>
<td>Granular activated carbon</td>
<td>1.0009</td>
<td>0.3076</td>
<td>1074.686</td>
<td>1061.669</td>
<td>32.510</td>
</tr>
<tr>
<td>GAC₂</td>
<td>Granular activated carbon</td>
<td>1.0006</td>
<td>0.3107</td>
<td>1085.652</td>
<td>1061.669</td>
<td>32.510</td>
</tr>
<tr>
<td>GAC₃</td>
<td>Granular activated carbon</td>
<td>1.0005</td>
<td>0.2932</td>
<td>1024.667</td>
<td>1061.669</td>
<td>32.510</td>
</tr>
</tbody>
</table>

[1]: Sample D, S and P are cut from a CPP core.
[2]: (SSA)ₛ: specific surface area (m²/g) based on solid mass, (SSA)ₛ = Mₑ / (0.000286 × Mₛ)
[3]: GAC: granular activated carbon, with known (SSA)ₛ = 1000~1100 m²/g

2.4.3 X-Ray Tomography Imaging

The XRT system used in this study is the ACTIS system made by BIO-Imaging Research, Inc., consisting of a 250 kV X-ray tube, a part manipulator, and an image intensifier. During operation the X-ray beam penetrates the specimen, and X-ray intensity is attenuated, depending on the density of scanned materials. The image intensifier records all attenuation information and forms gray images in which different material constituents are represented by different brightness levels. The part manipulator holding the specimen rotates automatically during scanning so that the image intensifier can collect all attenuation information from all angles. The maxima scanning range and space between two slices can be controlled by adjusting the position of the manipulator. Before scanning, great care must be taken to calibrate the XRT system. It is
necessary to do vertical, horizontal, central and wedge calibrations, to make certain that the XRT system adjusts suitable X-ray intensity depending on scanned specimens and acquires images with consistent lightness. Figure 2-1 illustrates the XRT system and schematic methodology.

Figure 2-1 This Figure illustrates the methodology by which pore space geometry is determined through X-ray tomography, resulting gray image, image processing, and image digitalization. Each specimen was approximately 97 mm in height, 70 mm in diameter, and an image analysis was obtained at 0.5 (mm) intervals of specimen depth.

Before scanning, each specimen was dried in a hot room at a temperature of 40°C until the weight difference between two weighing less than 0.5 mg, cooled and scanned immediately. In this study, the spacing interval between two slices was 0.5 mm. Each image/slice is divided by 2048*2048, namely, 4194304 pixels, yielding an image resolution of 35 µm (0.0012 mm²/pixel).
2.4.4 Image Processing

After all images are acquired by XRT, the first step is to transfer these gray images to binary images (black and white images) which include only two constituents: void pixels and solid pixels, then air voids can be easily identified in the binary images. The methodology used for transferring is based on the Bayes Decision Theory of pattern recognition introduced by Jain and Dubuisson (1992). All images acquired were clear so that it was not necessary to divide images into several sub-images when thresholding. In binary images white pixels with value of 255 are considered to be air voids while black pixels with value of 0 represent solids. After determination of the threshold of each image, bitmap of each image can be obtained by image digitalization process. In bitmaps, each pixel is identified by its position as referenced by its row (y coordinate) and column (x coordinate), and its pixel value, 0 or 255. Figure 2-1 conceptually illustrates the procedure of image processing.

Since the spacing between adjacent image sections (0.5 mm) is much larger than the image resolution (35 µm), interpolation is needed during the 3D reconstruction. Both the linear proportional erosion method developed by Wang et al. (2001) and the pixel value interpolation between two slice (Jin et al. 1992) were applied.

2.4.5 Pore Connectivity Determination

Pore connectivity analysis is critical for pore characteristics determination. \(\phi_e \), \((SSA)_{pe} \), \((SSA)_{pt} \) and tortuosity \(\tau \) are determined by pore connectivity analysis. There are 3 necessary steps for connectivity analysis.

(i) Pore identification

In each image slice, any connected pixels with values of 255 are a pore. While it is easy to conceptually visualize whether or not any two pixels belong to a phase, the computational
process is more involved in two-phase images. An identification methodology had to be designed to identify each pore automatically from the image analysis. This methodology required coding to locate and identify each pixel. Any two pixels are designated as having the same code if they are connected to each other as a same pore. Then each pore in slice \(z \) can be identified as \(N(z,k) \), where \(z \) is image/slice number, and \(k=1\sim n(z) \), representing the code of each pore, and \(n(z) \) represents the number of total pores in slice \(z \).

(ii) Boundary determination for each pore

Each pore is defined by: number of rows \(N_r \), the beginning row \(R_b \) and the end row \(R_e \), the beginning column \(C_b(i) \) and the end column \(C_e(i) \) of each row that it occupies, and the slice \(z \) where the pore exits. Then the boundary configuration of the \(k \)th pore in slice \(z \) can be defined.

\[
\Omega(z,k) = f\{N_r, R_b, R_e, C_b(i), C_e(i), z\}
\]

(2-1)

In this expression \(z = 1,2,\ldots M; k = 1,2,\ldots n(z) \); \(I = R_b \sim R_e \), and \(M \) is the number of total slices.

(iii) Connectivity analysis

To determine the pore connectivity properties from the first and second slice, if any two pores have any overlap, they are considered as connected with each other, and can be defined.

\[
\Omega(1,k_1) \cap \Omega(2,k_2) \neq 0
\]

(2-2)

In this expression \(i = 1,2,\ldots n(1); k = 1,2,\ldots n(2) \). Then pore \(k_1 \) in slice 1 is connected with pore \(k_2 \) of slice 2. All pores in slice 1 and slice 2 connected with each other were recorded, and other pores in slice 1 and slice 2 are eliminated.

The next step is to use the recorded pores in the upper slice \(z \) to determine the connectivity with the next lower slice \(z + 1 \), and can be defined.

\[
\Omega(z,k_1) \cap \Omega(z+1,k_2) \neq 0
\]

(2-3)
Pore \(k_1 \) in slice \(z \) and pore \(k_2 \) in slice \(z+1 \) then are recorded. Repeating this procedure, only those pores that have connection with the top slice and the bottom slice, defined as effective pores which form flow pathways are stored in terms of the void code in each slice \(N(z, i) \). Since the configurations \(\Omega(z, i) \) are known, configurations of all pathways are obtained.

With image processing and pore connectivity analysis, pore characteristics of \(\phi_t \), \(\phi_e \), \((\text{PSD})_{\text{pore}}\), \((\text{SSA})\) and \((L_e/L)\) were evaluated.

2.4.6 Total Porosity \(\phi_t \)

For an isotropic system, the area fraction of a phase represented in a 2-D image will directly correspond to the volume fraction in 3-D. From image processing results, porosity was obtained as follows. \(M \) slices were scanned from a CPP sample, and the number of pixels with value of 255 was determined and designated as \(A_v \), and total pixels occupied by the specimen cross section area of \(M \) slices is \(A \), then total porosity can be determined.

\[
\phi_t = \frac{A_v / M}{A / M} \times 100\% = \frac{A_v}{A} \times 100\% \tag{2-5}
\]

In this expression \(A_v \) is the area of pores in all images. It is hypothesized that total porosity obtained by image analysis should agree well with that obtained by geometric-gravimetric measurements.

2.4.7 Effective Porosity \(\phi_e \)

Effective porosity is defined as the ratio of the volume of all effective pores to the total gross volume of a specimen. Effective pores can be obtained by void connectivity analysis.

\[
\phi_e = \frac{A_e}{A} \times 100\% \tag{2-6}
\]

Total area of effective pores, \(A_e \), was determined as follows.
In this expression $A_e(z)$ represents the area of effective pores in slice z, which can be obtained by void connectivity analysis.

2.4.8 Pore Size Distribution (PSD)

The purpose of (PSD) analysis is to determine the size of pores; which is important for hydraulic and filtration performance prediction. Usually, the median size (d_{50}) is used to represent the PSD characteristics. However, most of the pore shape is irregular. It is much more convenient to use pore area rather than pore diameter to represent the distribution. Based on pore area, an equivalent diameter can be obtained. Pore area can be obtained by image analysis. Two criteria are considered here for pore area distribution: A_{50a}, median pore area based on area distribution, and A_{50n}, median pore area based on number distribution of all pores.

The A_{50n} was obtained by: (i) Sorting the area of all pores in ascending order; (ii) Determining the number of total pores N; and (iii) Determining the A_{50n} is the median area of all pores based on the number distribution. The A_{50a} was obtained by: (i) Sorting ascending pore size based on areas of all pores; (ii) calculating the total pore area in all slices of a specimen; (iii) calculating the ratio of each pore area to total pore area; (iv) summing the percentage greater or equal to each size; and (v) the A_{50a} is the area of the median pore with a cumulative percentage of 50%. Once the A_{50} is determined, the equivalent median diameter can be calculated.

$$d_{50} = \sqrt{\frac{4 \times A_{50}}{\pi}} \quad (2-8)$$

2.4.9 Tortuosity (L_e/L)

Tortuosity is defined as the ratio of the actual pathway length of fluid flow to the shortest distance from the top to the bottom of a specimen or system. Prediction of hydraulic
conductivity, and diffusion coefficients in both saturated and unsaturated zones requires knowledge of tortuosity. The methodology for tortuosity determination by tomography analysis is summarized.

(i) Calculation of the coordinates of the center point of each pore

For each pore, the number of rows \(N_r \), the beginning row \(R_b \) and the end row \(R_e \), the beginning column \(C_b(i) \) and the end column \(C_e(i) \) in each row that it occupies, and the slice \(z \) where the pore exits are determined. The center of each row can be determined as

\[
x_i = \frac{(C_b(i) + C_e(i))}{2}, \quad y_i = i.
\]

The area in terms of pixels in row \(i \) for that pore can be determined as \(A_i = C_e(i) - C_b(i) + 1 \) and therefore the centroid of the pore in slice \(z \) can be determined:

\[
X_c = \frac{\int x_i A_i}{A} = \sum \frac{x_i A_i}{A_i}, \quad Y_c = \frac{\int y_i A_i}{A} = \sum \frac{y_i A_i}{A_i}
\]

(ii) Distance between two centers of two connected pores

Two connected pores \(N(z, k_1) \) in slices \(z \) and \(N(z+1, k_2) \) in slice \(z+1 \) can be calculated.

\[
l_c = \sqrt{\left|X_c(z, k_1) - X_c(z + 1, k_2)\right|^2 + \left|Y_c(z, k_1) - Y_c(z + 1, k_2)\right|^2} + l^2
\]

In this expression \(l \) is spacing between the two adjacent slices.

(iii) Weighting each pathway based on cross-sectional area of all pathways

Different pathways may have different cross-sectional areas which contribute differently to fluid flow. An average tortuosity may not reflect the contribution of different pathways (Al-Omari, et al. 2002; Zhang and Knackstedt 1995). As a result it is necessary to weight each pathway by its cross-sectional area. The weighting methodology employed here is to weight the pathway length between two adjacent slices based on its cross-sectional area. Suppose there are \(n \) pores in slice \(z \) that connect with slice \(z + 1 \), the weighted length of fluid flow between these
two slices can be calculated.

\[I_c(z) = \frac{\sum_{i=1}^{n} (l_i A_i)}{\sum_{i=1}^{n} A_i} \]
\[(2-11) \]

In this expression \(A_i \) is the smaller cross-sectional area of two connected pores between the two adjacent slices.

(iv) Weighted Tortuosity calculation

Weighted tortuosity \((L_v/L)_w\) is calculated based on the following expression.

\[\frac{(L_v)}{L}_w = \frac{\sum_{z=1}^{M-1} I_c(z)}{(M-1)l} \]
\[(2-12) \]

In this expression \(L_v \) is the sum of total weighted length between each of the adjacent slices, and \(L \) is the length of specimen.

2.4.10 Specific Surface Area (SSA)

As mentioned above, SSA measured using EGME results in the ratio of total area of all solid-pore interfaces to the solid mass. In many cases, for example for hydraulic characteristic prediction, however, rather than solid mass/volume, SSA based on the pore volume or effective pore volume is needed.

\((SSA)_{pt} \), defined as the ratio of surface area of total pores \((S_{pt}) \) to total pore volume \((V_{pt}) \), can be expressed as. In order to estimate SSA from 2-D images, an assumption usually made is that the constituent fraction between two adjacent slices (spacing = 0.5 mm) is the same as that of the two slices, and a void in a 2-D slice is considered as a straight cylinder-shaped 3-D pore. This cylinder-shaped 3-D pore has x-section shape (usually irregular) as it is in the 2-D slice, and height as the spacing between two slices. Based on this assumption, the area fraction \((A_v) \) of a phase present in a 2-D image will directly correspond to its volume fraction \((V_{pt}) \) in 3-D, and in a
similar framework, the fraction of a phase total perimeter (P_t) in 2D will directly correspond to the fraction of the total surface area (S_{pt}) in 3-D, namely, \((SSA)_{pt} = S_{pt}/V_{pt} = P_t/A_v\). However, Wang and Frost (2003) found that the straight cylinder assumption was not very reasonable, and always generated smaller SSA. Considering the existing of tortuosity, it’s reasonable to involve this factor in SSA calculation through 2-D images. In this case, the un-weighted tortuosity should be employed (Berryman and Blair 1987). \((SSA)_{pt}\) could be expressed as

\[
(SSA)_{pt} = \frac{S_{pt}}{V_{pt}} = \left(\frac{L_e}{L}\right)_0 \cdot \frac{\text{total perimeter of all pores}}{\text{total x-section area of pores}} = \left(\frac{L_e}{L}\right)_0 \cdot \frac{P_t}{A_v}
\]

(2-13)

In this expression, \(P_t\) represents the total perimeter of all pores; \(A_v\) is total cross sectional area of all pores obtained by image analysis, and \((L_e/L)_0\) is un-weighted tortuosity.

In hydraulic conductivity and filtration performance prediction, effective porosity rather than total porosity is the critical factor to predict those characteristics. After obtaining all of the effective pores and their boundary by pore connectivity analysis, \((SSA)_{pe}\), defined as the ratio of total surface area of effective pores \((S_{pe})\) to effective pore volume \((V_{pe})\), can be calculated.

\[
(SSA)_{pe} = \frac{S_{pe}}{V_{pe}} = \left(\frac{L_e}{L}\right)_0 \cdot \frac{\text{total perimeter of all effective pores}}{\text{total x-section area of effective pores}} = \left(\frac{L_e}{L}\right)_0 \cdot \frac{P_e}{A_e}
\]

(2-14)

In this expression \(P_e\) represents the total perimeter of effective pores. Similarly, \((SSA)_s\), defined as the ratio of total surface area of all pores \((S_{pt})\) to total solid volume \((V_s)\), can be represented as \((SSA)_s = S_{pt}/V_s\). Since \(\phi_i = V_{pt}/(V_{pt} + V_s)\), where \(V_s\) is solid volume, \((SSA)_s\) can be represented as the following.

\[
(SSA)_s = \frac{S_{pe}}{V_s} = \frac{\phi_i}{1 - \phi_i} \cdot (SSA)_{pt}
\]

(2-15)

In this expression, \(S_{pt}\) is the surface area of all pores, and \(V_s\) is the total solid volume.
2.5 RESULTS AND ANALYSIS

Based on the methodology developed, pore characteristics of the 21 CPP specimens were analyzed. In order to measure how image resolution influences the image analysis results, nine resolutions, \(R_r\), of 35 (0.0012), 46 (0.0022), 70 (0.0049), 92 (0.0086), 140 (0.0194), 183 (0.0346) 279 (0.0778), 366 (0.1382) and 558 (0.3111) µm (mm²/pixel) were analyzed for each image. Table 2-4 summarizes pore characteristic results of image analysis based on resolution of 35 µm.

2.5.1 Total Porosity \(\phi_t\) and Effective Porosity \(\phi_e\)

Plot (a) of Figure 2-2 illustrates the total porosity based on image analysis and geometric-gravimetric measurements, respectively.

![Image Analysis vs Geo.-Grav. measured.png](image)

Figure 2-2 Plot (a) illustrates total porosity (\(\phi_t\)) results of CPP specimens as determined by geometric-gravimetric measurements in comparison to image analysis measurements. Plot (b) illustrates a power law model fit of the relationship between total porosity \(\phi_t\) and effective porosity \(\phi_e\).

Results indicate that for all specimens, image analyses agree well with gravimetric-geometric measurements, and the relative percent difference (RPD) for each specimen is less than 3%. Although the same coarse and fine gradations were used throughout the CPP as was the water/cement ratio, variability in the manufacture of the CPP was one reason that total porosities
ranged from approximately 10 to 30%. A second reason is that the CPP material from which specimens were cored, were exposed to differing leaching conditions had differing porosity. Specimens placed in the laboratory in a dry environment as control and not exposed to leaching from rainfall or runoff had the lowest porosity. Specimens with an intermediate porosity were those specimens cored from CPP of the PER and were exposed to sheet flow runoff with a mean pH of 6.8. Specimens with the highest porosity were those specimens from CPP material exposed only to rainfall (mean pH of 4.0) leaching on site. Two cores were taken from a north section of the PER that was not maintained by design to examine the role of clogging. For these two clogged cores, however, results indicate that the measured total porosity is much higher than that determined from image analysis. The reason is that some particulates clogged in the cores have a smaller specific gravity than that of CPP, and pore space occupied by clogged particulates was underestimated by geometric-gravimetric measurements, but tomographic images can help detect clogged space.

From Table2-4, it is found that the higher the total porosity, the higher the effective porosity. Since determination of pore connectivity and effective pores is a complicated process, it would be preferred to measure total porosity by gravimetric-geometrics and utilize a calibrated correlation between total porosity ϕ_t and effective porosity ϕ_e for a given mix design. The literature has shown that the relationship between total porosity and effective porosity follows a power law model (Al-Omari et al. 2002). Plot (b) of Figure 2-2 illustrates the strong relationship between ϕ_t and ϕ_e based on image analysis summarized in Table 2-4. The relationship for this mix design across a wide range of leaching conditions was determined.

$$\phi_e = 0.0642 \phi_t^{1.7929}$$

(2-17)

With this model, ϕ_e could be obtained with know ϕ_t.
The coefficient of determination between effective and total porosity was \(R^2 = 0.96 \). Results suggest that given a calibrated power law model effective porosity can be estimated when total porosity is known. Results indicate that when total porosity is as high as 30\%, effective porosity is nearly identical to total porosity since most pores have multiple connections with other pores under conditions of higher porosity. This is similar to the situation of sandy soils, but is not the case for materials such as clay materials with only 5\% or less effective porosity despite total porosity that ranges from 30 to 50 \% (Mcworter and Sunada 1977).

Error bars in Figure 2-2 represent standard deviation for replicate analyses of porosity. Results indicate that image resolution had little effect on total porosity and effective porosity analyses, because fine pores that may be neglected in low resolution images contribute little to area (volume) fraction. Therefore with respect to porosity, the XRT methodology has advantages with respect to constitutive volume (area) fraction analysis.

2.5.2 (PSD)\textsubscript{pore} and Influence of Image Resolution \(R_r \)

A main rationale for measuring (PSD)\textsubscript{pore} is to develop the required inputs to predict filtration function of CPP. Figure 2-3 illustrates the probability density function (pdf) of pore distributions from image analysis with resolution of 35 \(\mu \)m, based both on number and on area distribution of all pores in all slices for the 21 CPP cores. Range bars in Figure 2-3 represent the standard deviation of number distribution or area distribution. The pdf of the area distribution fits a Gaussian model, with \(R^2 = 0.87 \), where \(A_p \) is the pore area in mm\(^2\).

\[
pdf(a) = 0.3628(e)^{0.5(A_p-9.21)^2/2.0524^2} \tag{2-18}
\]

The pdf of the pore number distribution fits an exponential model with an \(R^2 = 0.97 \).

\[
pdf(n) = 0.948(e)^{-2.5987A_p} \tag{2-19}
\]

The mean \(A_{50a} = 9.21 \) mm\(^2\), and \(A_{50n} = 0.0413 \) mm\(^2\).
Table 2-4 Micro-structural indices of CPP specimens by tomographic analysis

<table>
<thead>
<tr>
<th>CPP Core</th>
<th>(\phi_i) (%)</th>
<th>(\phi_c) (%)</th>
<th>(PSD)_{pore} [2] (µm)</th>
<th>SSA [2] (m²/m³)</th>
<th>((L_e/L)_w)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Meas</td>
<td>Cal.</td>
<td>RDP[3]</td>
<td>d_{50a}</td>
<td>d_{50n}</td>
</tr>
<tr>
<td>N1-4 [1]</td>
<td>17.23</td>
<td>9.24</td>
<td>46.37</td>
<td>3.85</td>
<td>4012</td>
</tr>
<tr>
<td>LC1-4</td>
<td>10.20</td>
<td>10.05</td>
<td>1.51</td>
<td>4.26</td>
<td>2870</td>
</tr>
<tr>
<td>LC1-6</td>
<td>10.98</td>
<td>10.91</td>
<td>0.67</td>
<td>4.11</td>
<td>3955</td>
</tr>
<tr>
<td>LC1-5</td>
<td>12.02</td>
<td>11.40</td>
<td>2.66</td>
<td>4.56</td>
<td>2943</td>
</tr>
<tr>
<td>LC2-8</td>
<td>12.63</td>
<td>12.58</td>
<td>0.42</td>
<td>5.57</td>
<td>2987</td>
</tr>
<tr>
<td>N2-10[1]</td>
<td>17.88</td>
<td>13.52</td>
<td>24.4</td>
<td>6.26</td>
<td>3987</td>
</tr>
<tr>
<td>LC2-2</td>
<td>14.40</td>
<td>14.36</td>
<td>0.3</td>
<td>8.15</td>
<td>3014</td>
</tr>
<tr>
<td>LC2-9</td>
<td>15.11</td>
<td>14.81</td>
<td>2.01</td>
<td>6.73</td>
<td>3048</td>
</tr>
<tr>
<td>C2-6</td>
<td>16.71</td>
<td>16.25</td>
<td>2.74</td>
<td>10.99</td>
<td>3069</td>
</tr>
<tr>
<td>C2-1</td>
<td>17.50</td>
<td>16.93</td>
<td>3.26</td>
<td>10.88</td>
<td>3311</td>
</tr>
<tr>
<td>C1-5</td>
<td>18.51</td>
<td>17.90</td>
<td>3.27</td>
<td>12.80</td>
<td>3391</td>
</tr>
<tr>
<td>C2-5</td>
<td>19.23</td>
<td>19.20</td>
<td>0.14</td>
<td>13.07</td>
<td>3150</td>
</tr>
<tr>
<td>C2-3</td>
<td>19.26</td>
<td>19.22</td>
<td>0.19</td>
<td>11.64</td>
<td>3429</td>
</tr>
<tr>
<td>C2-12</td>
<td>20.55</td>
<td>19.85</td>
<td>3.39</td>
<td>12.75</td>
<td>3477</td>
</tr>
<tr>
<td>C2-11</td>
<td>20.39</td>
<td>20.76</td>
<td>0.88</td>
<td>15.75</td>
<td>3300</td>
</tr>
<tr>
<td>LC2-9</td>
<td>21.22</td>
<td>21.17</td>
<td>0.22</td>
<td>14.35</td>
<td>3597</td>
</tr>
<tr>
<td>S2-4</td>
<td>22.97</td>
<td>22.89</td>
<td>0.36</td>
<td>17.00</td>
<td>3608</td>
</tr>
<tr>
<td>S2-2</td>
<td>24.71</td>
<td>24.54</td>
<td>0.67</td>
<td>20.59</td>
<td>3542</td>
</tr>
<tr>
<td>S1-4</td>
<td>25.63</td>
<td>25.61</td>
<td>0.09</td>
<td>22.04</td>
<td>3452</td>
</tr>
<tr>
<td>S1-5</td>
<td>27.98</td>
<td>27.49</td>
<td>1.77</td>
<td>24.59</td>
<td>3158</td>
</tr>
<tr>
<td>S1-8</td>
<td>29.57</td>
<td>29.52</td>
<td>0.16</td>
<td>27.23</td>
<td>3236</td>
</tr>
</tbody>
</table>

\[1\]: specimens taken from north PER where CPP was allowed to clogged by experiment

\[2\]: results obtained with image resolution of 35 µm

\[3\] relative difference percentage, \(RDP = (|measured - calculated|/ measured| × 100\% \)
Figure 2-3 Probability density function (pdf) of the pore size area (PSA)\(p_{\text{pore}}\) based on the number and area distribution. Image resolution = 35 µm. The pore number distribution is modeled by an exponential model, \(R^2 = 0.97\). In contrast, the pore area distribution is modeled by a gaussian distribution, \(R^2 = 0.87\).\(A_p\) is the pore area ranges (mm\(^2\)) as i: \(< 0.2857\); ii: 0.2906~1.2575; iii: 1.2624~3.6035; iv: 3.6084~10.537; v: 10.5419~23.7158; vi: 23.7207~50.2164; vii: \(>50.2164\).

From Figure 2-3, it’s found that fine pores less than 286 µm count 66% of total number of pores, while they only contribute 4% to total area of pores. Fine pores’ contribution to total area, especially those pores with size less than image resolution (35 µm), can be neglected.

It’s also found that image resolution influenced the number analysis results, the higher the resolution, the smaller the \(d_{50n}\), but did not significantly influence the \(d_{50a}\) which remained nearly constant as summarized in Table 2-5. The reason is that finer pores which are neglected in lower resolution images contribute significantly to the number of pores but little to the pore area.

Figure 2-4 illustrates the correlation between \(d_{50}\) and resolution \(R_r\). The relationship could be modeled by the following expressions.

\[
d_{50n} = 5.02(R_r)^{0.945} \quad (2-20)
\]

\[
d_{50a} = 3341(R_r)^{0.0057} \quad (2-21)
\]
Table 2-5 Mean (PSD)_{pore} of 21 CPP specimens under different image resolutions

<table>
<thead>
<tr>
<th>Resolution mm²/pixel (µm/pixel)</th>
<th>Number based median size</th>
<th>Area based median size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A_{50n} mm²</td>
<td>σ of A_{50n}</td>
</tr>
<tr>
<td>0.3111 (558)</td>
<td>3.526</td>
<td>0.65</td>
</tr>
<tr>
<td>0.1383 (372)</td>
<td>2.351</td>
<td>0.50</td>
</tr>
<tr>
<td>0.0778 (279)</td>
<td>0.890</td>
<td>0.16</td>
</tr>
<tr>
<td>0.0346 (186)</td>
<td>0.555</td>
<td>0.20</td>
</tr>
<tr>
<td>0.0194 (140)</td>
<td>0.266</td>
<td>0.20</td>
</tr>
<tr>
<td>0.0086 (92)</td>
<td>0.111</td>
<td>0.08</td>
</tr>
<tr>
<td>0.0049 (69)</td>
<td>0.041</td>
<td>0.02</td>
</tr>
<tr>
<td>0.0022 (46)</td>
<td>0.028</td>
<td>0.01</td>
</tr>
<tr>
<td>0.0012 (35)</td>
<td>0.014</td>
<td>0.00</td>
</tr>
</tbody>
</table>

A_{50n}, A_{50a}: median pore area based on the number distribution and area distributions of all pores, respectively;

d_{50n}, d_{50a}: equivalent median pore diameter based on the number distribution and area distribution of all pores;

σ: standard deviation, based on image analysis for 21 CPP specimens.
Figure 2-4 Power law model description of the relationship between d$_{50}$ and image resolution (R$_r$). Range bars represent standard deviation of replicate image analyses for d$_{50a}$ (µm) and d$_{50n}$ (µm) for a given resolution, R$_r$. The d$_{50n}$ and d$_{50a}$ are the median pore diameter based on number and area distribution of all pores, respectively.

The R2 = 0.98 and 0.95, respectively. In these equations d$_{50}$ and R$_r$ are in µm. With a very small power of 0.0013 in equation (2-21), it was found that d$_{50a}$ is almost independent on the image resolution, as Figure 2-4 illustrates. The resolution-independent property of d$_{50a}$, as index for the (PSD)$_{pore}$, makes the XRT analysis an effective tool for pore characteristics analysis for CPP and other similar porous media, and these pore characteristics are very desirable to predict the infiltration, filtration, evaporation and absorption performance of the porous media.

2.5.3 SSA and Correlation with ϕ_t and Image Resolution R$_r$

SSA results utilizing XRT analysis are shown in Table 2-4 (based on image resolution of 35 µm). Results indicate that depending on the pore size distribution, (SSA)$_{s}$, fall into the range of 1,00 to 7,000 m2/m3; and (SSA)$_{pt}$ are between 10,000 to 17,000 m2/m3, with a mean, μ, of 13,000 m2/m3 and standard deviation, σ, of 1,800. The (SSA)$_{pc}$ fall into the range of 12,000 to 19,000 m2/m3 with μ=15,000 m2/m3 and $\sigma = 2,100$.

21
Comparing the results of \((SSA)_{pt}\) to \((SSA)_{pe}\) summarized in Table 2-4, results indicate that \((SSA)_{pe}\) is slightly higher than \((SSA)_{pt}\). Ratio of \((SSA)_{pe}\) to \((SSA)_{pt}\) falls into a range of 1.02 to 1.37, with a mean of 1.128 and standard deviation of 0.072.

\[(SSA)_{pe} = 1.128(SSA)_{pt}\] \hspace{1cm} (2-22)

This expression can be utilized to estimate \((SSA)_{pe}\) based on \((SSA)_{pt}\).

From Table 2-4, results also indicate that the higher the \(\phi_t\), the higher the \((SSA)_{s}\), because the higher porosity results in more pore-solid interface within a CPP core. Another consideration for SSA based on image analysis is the influence of image resolution. As previously indicated image resolution influences the analysis results of pore area distribution and therefore contributes to SSA. It was found that the higher the resolution, the smaller the \(d_{50n}\), and the higher the \((SSA)_{s}\). These results occur because many fine pores are taken into account in higher resolution images and these fine pores contribute much to both the \(d_{50n}\) and SSA. For example, all pores with cross sectional area larger than 0.0012 mm\(^2\) are taken into account when image resolution is 35 µm, while only pores with cross sectional area bigger than 0.0049 mm\(^2\) are taken into account when image resolution is 70 µm.

Since both the total porosity \(\phi_t\) and pore size distribution (PSD)\(_{pore}\) influence SSA, it is expected that there should be a correlation between these pore characteristics. Figure 2-5 illustrates the relationship between \((SSA)_{s}\), total porosity \(\phi_t\) and image resolution \(R_r\), which can be summarized in the following general form.

\[(SSA)_{s} = f(R_r)(\phi_t)^{1.76}\] \hspace{1cm} (2-23)

In this expression \(\phi_t\) is in percentage, and \(R_r\) is image resolution in µm, and relationship between parameter \(f(R_r)\) and \(R_r\) is summarized in the following expression.

\[f(R_r) = 228.38(R_r)^{-0.716}\] \hspace{1cm} (2-24)
Substituting this equation to equation (2-23), yields the following expression.

\[
(\text{SSA})_s = \frac{228.38(\phi_t)^{1.76}}{(R_r)^{0.716}}
\]

(2-25)

This equation can be used to estimate SSA under different resolution when total porosity is known. Substituting equation (2-20) to (2-25) yields the following expression.

\[
(\text{SSA})_s = 775.49(\phi_t)^{1.76}(d_{50n})^{-0.7577}
\]

(2-26)

In this equation \(\phi_t\) is a percentage, and \(d_{50n}\) in \(\mu m\). This equation indicates how total porosity and pore size distribution influence \((\text{SSA})_s\). As long as \((\text{SSA})_s\) is known using (2-26), \((\text{SSA})_{pt}\) can be calculated by (2-13), while \((\text{SSA})_{pe}\) can be approximately estimated as 1.128 \((\text{SSA})_{pt}\).

![Graph](image)

Figure 2-5 Plot (a) illustrates a power law relationship between total \(\phi_t\) (\%) and \((\text{SSA})_s\) (m\(^{-1}\)). a~i represent the modeled different resolution as table 2-5 shows. \(f(R_r)\) and \(R^2\) under different resolution are as follows:

- a: \(R_r=35 \mu m\), \(f(R_r) = 17.53\), \(R^2 = 0.93\);
- b: \(R_r=46 \mu m\), \(f(R_r) = 14.88\), \(R^2 = 0.94\);
- c: \(R_r=70 \mu m\), \(f(R_r) = 11.86\), \(R^2 = 0.93\);
- d: \(R_r=92 \mu m\), \(f(R_r) = 8.5277\), \(R^2 = 0.94\);
- e: \(R_r=140 \mu m\), \(f(R_r) = 6.40\), \(R^2 = 0.95\);
- f: \(R_r=185 \mu m\), \(f(R_r) = 5.55\), \(R^2 = 0.96\);
- g: \(R_r=279 \mu m\), \(f(R_r) = 4.00\), \(R^2 = 0.96\);
- h: \(R_r=372 \mu m\), \(f(R_r) = 3.16\), \(R^2 = 0.96\);
- i: \(R_r=558 \mu m\), \(f(R_r) = 2.20\), \(R^2 = 0.97\).

Compared to the measured value by EGME, the calculated \((\text{SSA})_s\) are lower. The main reason is that the very fine pores that contribute significantly to the SSA are eliminated in image
analysis because of the limitation of image resolution. The main purpose of measuring SSA in this study, however, was to evaluate hydraulic characteristics of CPP. From this point of view, the very fine pore contribution can be neglected. Pores on the order of 10 µm or less require a pressure head that is not available even under ponded conditions on the CPP surface (the maximum depth of ponding is 6 mm). The nanometer-sized pores are unlikely to influence flow on a macroscopic scale since much larger pores are present. Use of (SSA)s yield hydraulic conductivity results that underestimate measured values (Schaap and Lebron 2001). According to Berryman and Blair’s finding (1987), pores finer than 1/100 of the median size did not significantly influence flow. For CPP, average d50a = 3425 µm as analyzed above, pores with diameter less than 3425/100 = 34.25 µm can be reasonably neglected in terms of hydraulic property estimation. In order to take into account all those pores larger than 34.25 µm, based on the equivalent area, the resolution required during tomography should be calculated as the following.

\[R_r^2 = \frac{\pi[(d_{50a})/100]^2}{4} \] (2-27)

When d50a = 3425 µm, based on the above expression, Rr = 30 µm, however, resolution used in this study is Rr = 35 µm, resulting in neglecting all pores with equivalent diameter less than 38.7 µm. For hydraulic conductivity estimation, (SSA) should be analyzed under Rr = 30 µm.

When Rr = 35 µm, (SSA) were obtained as Table 2-4 illustrated. Using (2-25), and noticing that φi is independent on resolution, (SSA)s under Rr = 30 µm can be estimated as following.

\[(SSA)_{s-30} = \left(\frac{R_{r1}}{R_{r2}}\right)^{0.7178}(SSA)_{s-35} \] (2-28)

In this expression, (SSA)s-35 and (SSA)s-30 represent solid based (SSA) under Rr = 35 and 30,
respectively. \((SSA)_{pt-30}\) and \((SSA)_{pe-30}\) can be estimated by (2-15) and (2-22), respectively. Table 2-6 illustrates \((SSA)\) under \(R_r = 35\) and 30, respectively. This Table shows that, for the purpose of hydraulic conductivity prediction, the \((SSA)_s\) in the range of \(1.4-7.8 \times 10^3 \text{ m}^2/\text{m}^3\), \((SSA)_{pt}\) of \(1.1-1.9 \times 10^4 \text{ m}^2/\text{m}^3\), and \((SSA)_{pe}\) in the range of \(1.3\) to \(2.1 \times 10^4 \text{ m}^2/\text{m}^3\) would be utilized for hydraulic prediction. However, it is necessary to note that these conclusions are drawn based on analysis results of the given 21 CPP specimens, and they may not applicable for other porous media with quite different pore size distribution and pore size shape.

2.5.4 Tortuosity \((L_e/L)\)

Based on XRT analysis, CPP tortuosity ranges from 2.89 to 5.89. Compared to the commonly assumed value of 1.414 based on 2-D planes, these values based on 3-D analysis are much higher and much more reasonable agreement with the range for similar porous media (Saripalli et al. 2002; Zhang and Knackstedt 1995). Pdf of tortuosity follows a Gaussian distribution as shown in plot (a) of Figure 2-6, with \(R^2=0.93\).

\[
pdf(L_e/L) = 0.2955(e)^{-0.5\left(\frac{(L_e/L)-4.26}{0.6515}\right)^2}
\]
(2-29)

Results also showed that tortuosity increases with the increase of total porosity \((\phi_t)\) when \(\phi_t\) is less than 17.36%, while decreases when \(\phi_t\) is higher than 17.36%, as plot (b) of Figure 2-6 shows. The relationship can be presented as a Gaussian model

\[
(L_e/L) = 4.65(e)^{-0.5\left(\frac{\phi_t-17.36}{11.09}\right)^2}
\]
(2-30)

with \(R^2=0.77\), where \(\phi_t\) is in percentage. Error ranges in plot (b) represent the standard deviation of \((L_e/L)\) for a given \((\phi_t)\). The reason of a Gaussian relationship between \(L_e/L\) and \(\phi_t\) is due to the fact that higher total porosity usually generate more and longer flow pathways which result in the increase of tortuosity, however, when \(\phi_t\) is very high (higher than 17.36% here), most pathways
connect with each other, and pathway cross-section area becomes larger, which reduces tortuosity. These results agree well with those presented by Zhang and Knackstedt (1995).

Resolution has little influence on the measurements of tortuosity. The main reason is that the lengths of flow pathways are weighted by their cross-sectional area, so that pathways formed by coarse pores contribute most while pathways formed by fine pores contribute little to tortuosity. Similar to ϕ_t, ϕ_e and d_{s0a}, the resolution-independence property of tortuosity make XRT a very reliable tool for pore characteristics determination.

<table>
<thead>
<tr>
<th>CPP Core</th>
<th>ϕ_t</th>
<th>(SSA) with $R_{t_1} = 35 \text{ } \mu\text{m}$ [1]</th>
<th>(SSA) with $R_{t_2} = 30 \text{ } \mu\text{m}$ [2]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(SSA)$_s$</td>
<td>(SSA)$_pt$</td>
</tr>
<tr>
<td>LC1-4</td>
<td>10.2</td>
<td>1537</td>
<td>13529</td>
</tr>
<tr>
<td>LC1-6</td>
<td>10.98</td>
<td>1265</td>
<td>10256</td>
</tr>
<tr>
<td>LC1-5</td>
<td>12.02</td>
<td>1659</td>
<td>12142</td>
</tr>
<tr>
<td>LC2-8</td>
<td>12.63</td>
<td>1979</td>
<td>13689</td>
</tr>
<tr>
<td>LC2-2</td>
<td>14.4</td>
<td>1673</td>
<td>9946</td>
</tr>
<tr>
<td>LC2-9</td>
<td>15.11</td>
<td>2331</td>
<td>13095</td>
</tr>
<tr>
<td>C2-6</td>
<td>16.71</td>
<td>2251</td>
<td>11218</td>
</tr>
<tr>
<td>C2-1</td>
<td>17.5</td>
<td>2219</td>
<td>10460</td>
</tr>
<tr>
<td>C1-5</td>
<td>18.51</td>
<td>2728</td>
<td>12010</td>
</tr>
<tr>
<td>C2-5</td>
<td>19.23</td>
<td>3149</td>
<td>13228</td>
</tr>
<tr>
<td>C2-3</td>
<td>19.26</td>
<td>2962</td>
<td>12418</td>
</tr>
<tr>
<td>C2-12</td>
<td>20.55</td>
<td>3489</td>
<td>13490</td>
</tr>
<tr>
<td>C2-11</td>
<td>20.94</td>
<td>3402</td>
<td>12846</td>
</tr>
<tr>
<td>LC2-10</td>
<td>21.22</td>
<td>3398</td>
<td>12615</td>
</tr>
<tr>
<td>S2-4</td>
<td>22.97</td>
<td>4035</td>
<td>13531</td>
</tr>
<tr>
<td>S2-2</td>
<td>24.71</td>
<td>4946</td>
<td>15069</td>
</tr>
<tr>
<td>S1-4</td>
<td>25.63</td>
<td>5326</td>
<td>15455</td>
</tr>
<tr>
<td>S1-5</td>
<td>27.98</td>
<td>6221</td>
<td>16011</td>
</tr>
<tr>
<td>S1-8</td>
<td>29.57</td>
<td>6982</td>
<td>16629</td>
</tr>
<tr>
<td>S1-8</td>
<td>29.57</td>
<td>6982</td>
<td>16629</td>
</tr>
</tbody>
</table>

[1]: obtained by tomography analysis;
[2]: (SSA)$_s$ estimated by equation (2-28):

$$(SSA)_{s-30} = \left(\frac{R_{t_1}}{R_{t_2}}\right)^{0.7178} \cdot (SSA)_{s-35} \quad (2-28)$$

(SSA)$_{pt-30}$ and (SSA)$_{pe-30}$ were calculated using (2-15):

$$(SSA)_{s} = \frac{S_{pt}}{V_{s}} = \frac{\phi_t}{1-\phi_t} \cdot (SSA)_{pt} \quad (2-15)$$

and (2-22):

$$(SSA)_{pe} = 1.128 \cdot (SSA)_{pt} \quad (2-22)$$
Total porosity (ϕ_t) (%)

Tortuosity (L_e/L) (m/m)

$Le/L = \alpha (e)^{-0.5(\phi_t - \mu)^2/\sigma^2}$

$\alpha = 4.65$

$\mu = 17.36$

$\sigma = 11.09$

$R^2 = 0.77$

Plot (b)

Tortuosity (L_e/L)

pdf = $\alpha (e)^{-[L_e/L - \mu]/2\sigma^2}$

$\alpha = 0.30$

$\mu = 4.25$

$\sigma = 0.65$

$R^2 = 0.93$

2.6 CONCLUSIONS

21 cementitious permeable pavement (CPP) specimens taken from a prototype partial exfiltration reactor loaded by rainfall or rainfall-runoff were utilized to present a methodology and pore characteristics results for this low impact development (LID) material that functions to provide passive quantity and quality control of urban runoff. Based on the methodology developed in this study to determine pore characteristics using XRT, total porosity ϕ_t, effective porosity ϕ_e, pore size distribution (PSD)$_{pore}$, specific surface area of (SSA)$_s$, (SSA)$_{pt}$, and (SSA)$_{pe}$, and tortuosity (L_e/L) of CPP specimens were evaluated. Conventional gravimetrics-geometrics were also utilized to determine ϕ_t, specific gravity S_g and (SSA)$_s$.

Results indicate that XRT analysis of ϕ_t, ϕ_e, d_{50a} (or A_{50a}), and (L_e/L) were nearly independent on the image resolution R_r, making XRT a useful tool to predict hydraulic and filtration constitutive properties of CPP. In the presence of coarse pores, fine pores do not significantly contribute to these hydraulic and filtration behavior of CPP. In contrast, (SSA), d_{50n} (or A_{50n}) were dependent on R_r, because fine pores significantly contribute to these results.
Relationships between (SSA), ϕ_t, d$_{50n}$, and R$_t$ were established.

ϕ_t results obtained by XRT analysis agree well with those of gravimetric analyses. Results indicated that across a range of total porosity from 10% to 30% the corresponding effective porosity ranged from 4% to 27%. A power law of ϕ_t-ϕ_e relationship was utilized to establish a calibration between the effective and total porosity, allowing effective porosity to be determined from simpler and more economical measurements from geometrics and gravimetrics. Pore area distributions followed a Gaussian model while pore number distributions followed an exponential decay model. The mean number-based d$_{50n}$ was 229 µm based on image resolution of 35 µm, and the area-based d$_{50a}$ was 3425 µm which is independent on image resolution. According to XRT analysis with a image resolution of 35 µm, (SSA)$_{pt}$ ranged from 10,000 to 17,000 m2/m3, and (SSA)$_{pe}$ ranged from 12,000 to 19,000, while 1/100 of the median pore size (d$_{50a}$) requires a resolution of 30 µm by which most of pores that contribute to fluid flow could be taken into account, and (SSA)$_{pe}$ ranged from 13,000 to 21,000 m2/m3. These (SSA) results are applicable for hydraulic properties and filtration performance prediction. Correlation between (SSA)$_s$-d$_{50n}$-ϕ_t was modeled with a power law model illustrating that (SSA) is determined by (PSD)$_{pore}$ and total porosity. Correlations between (SSA)$_s$, (SSA)$_{pe}$ and (SSA)$_{pt}$ were presented, making it possible to estimate (SSA)$_{pe}$ from (SSA)$_s$ or (SSA)$_{pt}$. Weighted tortuosity (L$_c$/L) ranged from 2.89 to 5.91, depending on ϕ_t. Both the pdf of (L$_c$/L) and the (L$_c$/L)-ϕ_t relationship followed a Gaussian distribution.

These results and relationships provide an essential foundation to predict CPP’s hydraulic, hydrologic, filtration, reactive and load-deformation characteristics as a LID material. The XRT methodology also allows pore characteristics of ϕ_e, d$_{50}$, (SSA)$_{pe}$, and (L$_c$/L) to be
obtained or calculated from a calibrated relationship, that would otherwise be very difficult to
determine from conventional methods.

2.7 NOTATION

\[A = \text{total cross section area in all images of a specimen (} L^2 \text{);} \]

\[A_{50a} = \text{area of the median pore based on area distribution (} L^2 \text{);} \]

\[A_{50n} = \text{area of the median pore based on number distribution (} L^2 \text{);} \]

\[A_e = \text{area of effective pores (} L^2 \text{);} \]

\[A_s = \text{area of solids (} L^2 \text{);} \]

\[A_v = \text{area of total pores (} L^2 \text{);} \]

\[C_b(j), C_e(j) = \text{beginning and end column of a pore in the } j\text{th row in image bitmap;} \]

\[L = \text{length of a specimen in z direction (} L \text{);} \]

\[L_e = \text{weighted length of all fluid pathways formed by effective pores (} L \text{);} \]

\[M = \text{the number of total slices of a specimen;} \]

\[M_e = \text{EGME mass absorbed by sample (} M \text{);} \]

\[M_s = \text{mass of sample (} M \text{);} \]

\[N_r = \text{the number of total rows occupied by a pore in a image;} \]

\[P_1, P_2 = \text{recorded pressure of the inert gas during test (} P \text{);} \]

\[P_e, P_t = \text{perimeter of effective pores and total pores of a specimen (} L \text{);} \]

\[R_r = \text{resolution (} L \text{);} \]

\[S_g = \text{specific gravity} \]

\[SSA = \text{specific surface area (} L^2/ L^3 \text{);} \]

\[V_c, V_r = \text{coefficient of the Multi-Pycnometer (} L^3 \text{);} \]

\[V_b = \text{bulk volume of specimen (} L^3 \text{);} \]
Vs = solid volume (L^3);
V_p = sample volume (L^3);
W = weight of sample in specific gravity test (M);
X_c, Y_c = central coordinator
d_{50a}, d_{50n} = median pore diameter based on area and number distribution, respectively (L);
l = spacing between two image slices (L);
l_c = length of two connected pores between two adjacent slices (L);
Ω(z,k) = boundary configuration of the kth pore in slice z
φ_e, φ_t = effective porosity and total porosity (L^3/L^3)
μ = mean
σ = standard deviation

2.8 REFERENCES

CHAPTER 3 HYDRAULIC CHARACTERISTICS OF CPP USING XRT ANALYSIS

3.1 INTRODUCTION

With subjective urban growth, deleterious hydrologic, climate and environmental problems associated with urban land development have grown resulting in reduced underground water recharge and degraded water quality (Bäckström 2000; Field et al. 1982; Jackson et al. 1974; Kuennfen 2003; Teng and Sansalone 2004). Research has shown that the degree of imperviousness in the built environment is significantly correlated to those impacts and problems due to the increased peak flow, volume and lag time of runoff (Bäckström 2000; Field et al. 1982; Jackson et al. 1974; Kuennfen 2003). Permeable pavement is an available and effective approach to mitigate these problems through gravitational drainage, capillary movement, infiltration and filtration mechanisms (Isenring et al. 1995; Imenez and Peren 1990; Fach 2002; Jackson and Ragan 1974; Teng and Sansalone 2004).

Hydraulic Conductivity is one of the most important indexes for porous media. There has been considerable research on hydraulic conductivity in porous media, such as soil and rock science (Carmen 1937; Ahuja et al. 1989; Paydar and Ringrose-Voase 2003; Rawls et al. 1993; Minasny and Mcbratney 2000; Regalado and Muñoz-Carpeta 2004; Dixon et al. 1999; Meegoda et al. 1989; Giménez 1997; Flind and Selker 2003; Timlin, 1999), and in regular asphalt pavements (impermeable) (Al-Omari et al. 2002; Choubane et al. 1989; Cooley and Brown 2000; Hainin et al. 2003; Krishnan and Rao 2001; Mallick 2001; Masad et al. 2002; Maupin 2000; Mohammad et al. 2003; Xi and Bažant 1999; Zube 1962). Based on lab and field test, a simple relationship for predicting saturated hydraulic conductivity \(k_{\text{sat}} \) based on the Kozen-Carman
model was used widely in soil science (Ahuja et al. 1984) and pavement (Krishnan, 2000, Kanitpong et al.2001; Masad et al. 2003) expressed as the following form.

\[k_{sat} = B(\phi_t)^n \]

(3-1)

In this expression \(k_{sat} \) is saturated hydraulic conductivity in cm/s, B and n are constants obtained by experimental measurements, and \(\phi_t \) is porosity. It is found that hydraulic conductivity is the only engineering property that can vary by more than ten orders of magnitude (Meegoda et al. 1989). For example, hydraulic conductivity for clay is in the range of \(10^{-13} \) to \(10^{-8} \) cm/s (Dixon et al. 1999), for conventional asphalt pavement, it is in the range of \(8.5 \times 10^{-7} \) to \(10^{-4} \) cm/s depending on porosity from 4%-8%. (Kanitpong et al. 2003). According to laboratory and field tests, the typical value of hydraulic conductivity of regular hot mixture asphalt (HMA) pavements is in the magnitude of \(10^{-5} \) cm/s (Huang et al. 1999; Masad et al. 2002; Mohammad et al. 2003). In regular pavements, it demands permeability as small as possible to prevent water from entering pavement systems, because infiltration of water into the pavement can affect the durability of pavements. However, very higher hydraulic conductivity is desirable for porous pavement since one of the main purposes of porous pavement is to control runoff and reduce percolation during rainfall.

Some research on hydraulic conductivity also has been done for HMA porous pavements (Wada et al 1997, Isenring and Scazziga 1990, Pratt et al. 1995, Backstrom and Bergstrom 2000, Fwa et al. 1999). Most of their work was based on laboratory or field tests. Some assessment procedures for permeable pavement including hydraulic conductivity were also developed by field test (Fach et al. 2002; Jackson and Ragan 1974).

Although much research has been carried out for many kinds of porous media and many empirical models were developed based on simplified or idealized media particle shape, little
was done on CPP based on its special pore structure with high porosity, irregularly shaped pores and wide range of pore size distribution. Compared to other porous media, CPP has the special characteristics of high porosity and low hydraulic head loaded. It is very important to develop methodology to predict CPP hydraulic conductivity based on its specially pore characteristics and pore size distribution.

3.2 OBJECTIVES

This study has four main objectives related to the hydraulic characteristics of CPP. The first objective is to evaluate saturated hydraulic conductivity for CPP by constant-head experiments. The second objective is to compare some empirical models for hydraulic conductivity estimation and, based on these empirical models, to establish a modified model for CPP hydraulic conductivity prediction. The third objective is to evaluate pore space factors that influence hydraulic characteristics of CPP. The last objective is to develop k-\(\phi_t\) and k-\(\phi_e\) relationships for predicting hydraulic conductivity \(k\) when total porosity \(\phi_e\) or \(\phi_t\) is known.

3.3 BACKGROUND

Relationships between porosity and hydraulic properties have been identified by previous authors, and many empirical models were developed for hydraulic conductivity estimation for porous media (Flint and Selker 2003; Vuković et al. 1992). These relationships with hydraulic properties include dependence on particle or pore sizes for both mean values and the entire distribution of values. Those based on particle size are typically empirical or phenomenological, while the models based on pore sizes more often include assumptions regarding pore structure, shape, connectivity or tortuosity (Flint and Selker 2003). The real pore size distribution with irregular and non-uniform shape pores was seldom evaluated for hydraulic conductivity estimation. In most of these models, however, only total porosity and an “effective aggregate
diameter”, usually d_{10}, were utilized to estimate hydraulic conductivity due to the difficulty and complexity of microstructure and pore characteristics examination. The widely used models are introduced below.

Beyer’s model only consider the effective aggregate diameter d_e

$$k = C \cdot d_e^2$$ \hspace{1cm} (3-2a)

The empirical coefficient C depends on the coefficient of uniformity of aggregates.

A group of US authors recommended a so called USBR model for materials comprising medium-aggregate sands with the coefficient of uniformity < 5,

$$k = 0.36 \cdot d_{20}^{0.3}$$ \hspace{1cm} (3-2b)

In this expression d_{20} was used to represent d_e.

The typical form of Hazen model is as the following.

$$k = A \cdot C \cdot \tau \cdot d_e^2$$ \hspace{1cm} (3-3a)

In this expression A is constant and equals to 0.00116 if k in cm/s; $\tau = 0.7 + 0.03t$, and t is the water temperature in °C; d_e is the effective aggregate diameter, and is usually taken as d_{10}, and the empirical coefficient C was presented as a function of porosity.

$$C = 400 + 40 \times (\phi - 26)$$

So (3a) can be presented as

$$k = 0.0016 \cdot [400 + 40(\phi_t - 26)] \cdot (0.7 + 0.03t) \cdot d_{10}^2$$ \hspace{1cm} (3-3b)

In this expression, ϕ_t represents total porosity. This model was recommended for conditions under effective aggregate diameter $d_e = 0.1$--3 mm (Vuković et al. 1992).

Krüger model is recommended to apply at water temperature $t = 0$°C:

$$k = 240 \cdot \frac{\phi}{(1 - \phi)^2} \cdot d_e^2$$ \hspace{1cm} (3-4)
The Krüger model empirical formula yields best results in the case of medium aggregate-size sands with the coefficient of uniformity >5 (Vuković et al. 1992).

Fair-Hatch (1933) presented a model for k estimation.

$$k = \frac{\phi^3}{\kappa_0 C_0 (1 - \phi)^2} \cdot \frac{d_e^2 \cdot \gamma}{\mu}$$ \hspace{1cm} (3-5)

In this expression C_0 is a filtration constant, 5 based on sieve opening and 6 based on size of separation, and κ_0 is a shape factor, for spherical particles, $\kappa_0 = 6.0$, and for crushed materials, $\kappa_0 = 8.5$ (Vuković et al. 1992); λ is the unit weight of water. $\lambda = 9790$ N/m3 and μ is the dynamic viscosity (10^{-3} N.s/m2) at 20 °C.

In Slichter formula (1898), d_e is required to fall into the range of 0.01~5 mm.

$$k = 10.0219 \cdot \phi^{3.287} \cdot d_e^2 \cdot \frac{\gamma}{\mu}$$ \hspace{1cm} (3-6)

Terzaghi (1925) developed a formula to estimate k for coarse sand.

$$k = C \frac{\mu_{10}}{\mu_t} \left(\frac{\phi - 0.13}{\sqrt[3]{1 - \phi}} \right)^2 \cdot d_{10}^2$$ \hspace{1cm} (3-7)

In this expression μ_t and μ_{10} are coefficient of absolute liquid viscosity at temperature t°C and 10°, respectively, and C is the empirical coefficient depending on the nature of the aggregate surface.

Kozeny-Carman model (KCM) is one of the most accepted for k estimation based on filter pore characteristics.

$$k = \frac{\phi_t^3}{C_0 T^2 (1 - \phi) (SSA)_s^2} \cdot \frac{\gamma}{\mu}$$ \hspace{1cm} (3-8)

In this expression T is tortuosity, $(SSA)_s$ is specific surface area based on solid volume (m2/m3). KCM is widely used to estimate hydraulic conductivity for soil, rocks, filters,
pavements and other porous media (Ahuja et al. 1997; Flint and Selker 2003, Giménez et al. 1997; Zhuang et al. 2000; Seki and Miyazaki 2001; Berryman and Blair 1987; Nakashima and Yamaguchi 2004; Schaap and Lebron 2001; Paydar and Ringrose-Voase 2003; Regalado and Munoz-Carpenta 2004; Dixon et al. 1999; Davies and Dollimore 1980; Al-Omari, 2002; Nakashima and Watanabe), but how to determine the parameters in this model is still a problem by conventional methods. The empirical coefficients predicted based on uniformly regular shaped particles (usually sphere) lead to unreasonable results of hydraulic conductivity (Flint and Selker 2003). For example, effective porosity ϕ_e rather than total porosity (ϕ_t) has been demonstrated as a critical factor that determines the hydraulic characteristics of porous structures (Ahuja et al 1984; Regimand 1998; Huang and Mohammad 1999; Cooley et al. 2002; Al-Omari, et al. 2002; Flint and Selker 2003; Kostek et al. 1992). The second parameter, tortuosity (L_e/L), is difficult to measure directly, and usually assumed 1.414 based on equally-sized spherical granular material in the porous medium (Carman 1956), but some research showed that it was too lower (Flint and Selker 2003). Another important parameter, specific surface area (SSA), is defined as $SSA = 6/D$ for filters formed by uniformly spherical particles (Metcalf and Eddy 2003). However, in CPP, the pore volume interface to the solid structure surface is irregular. Flow characteristics are controlled by the pore space geometry rather than the solid matrix (Nakashima and Watanabe 2002; Zhang and Knackstedt 1995). Little research has been done due to the difficulty of pore connectivity determination. Another problem for SSA used in Kozeny-Carman model is that the (SSA) by EGME measurements are obviously too high and may yield hydraulic radii and permeability far too small (Schaap and Lebron 2001; Schlueter 1995) because fine pores contributing little to flow are significant for SSA. Dullien (1992) stated that
the KCM was more valid for porous media with broad particle size distribution than those with narrow gradation.

3.4 EXPERIMENT AND MATERIALS

Cored specimens were taken from CPP material constructed as the surface interface of a partial exfiltration reactor (PER). The PER is a linearly-extended in-situ rainfall-runoff unit operation and process. The primary components of the PER were introduced in Chapter 2. Totally 19 CPP specimens were utilized to measure hydraulic conductivity. Each core is about 96 mm in height and 70 mm in diameter. All cores were backwashed with tap water (pH = 7 and alkalinity ≈ 150 mg/L as CaCO₃) to remove any runoff particles from field CPP material or abraded particles generated in the coring process. The pore characteristics, including total porosity φₜ, effective porosity φₑ, pore size distribution (PSD)ₚₒᵣₑ, specific surface area of (SSA)ₛ, (SSA)ₚᵗ, and(SSA)ₚₑ, and tortuosity (Lₑ/L) were evaluated using X-ray tomography. Details of the examination and results of pore characteristics are provided in Chapter 2.

An experimental setup was designed to measure the saturated hydraulic conductivity in constant head, as Figure 3-1 illustrated. CPP specimens were dip into DI water for 48 hours before test to make sure a saturated condition. Specimen’s sidewall was packed by water-proof gray tape to avoid boundary effects. During test, DI water was pumped from the tank to specimen column by a peristaltic pump (Masterflux 7520-40). A series of constant head (5, 10, 20, 30, 40, 50, 60 mm over the surface of CPP specimen) were achieved by adjust the outlet level of overflow. Influent flow rates were controlled by regulating the speed of the peristaltic pump to make it keep overflowing during all test time, so that a certain constant head is maintained. After the system was steady, effluent volume was collected for 30 minutes, and then measured. At
least 5 samples were measured for each hydraulic head. Based on effluent volume, vol (mL),
collected in 30 mins, flow rate, Q (mL/s), can be calculated as

\[Q = \frac{\text{vol}}{t} \]

In this expression t is the elapsed time in second.

Seepage velocity \(V = \frac{Q}{A} \). \(V \) is in cm/s and A is the cross section area of the CPP
specimen. According to Darcy’s Law,

\[V = k_{\text{sat}} \times \frac{\Delta h}{L} = k_{\text{sat}} \times i \]

From this expression, \(k_{\text{sat}} \) could be presented as

\[k_{\text{sat}} = \frac{V}{i} \] \hspace{1cm} (3-9)

In this expression \(\Delta h \) is head loss (cm), \(L \) is the length of specimen (cm), \(i = \Delta h/L \) representing
hydraulic gradient, and \(k_{\text{sat}} \) is saturated hydraulic conductivity in cm/s. Experimental
measurements of hydraulic conductivity for the 19 specimens are listed in Table 3-1.

Figure 3-1 Experimental setup of constant head saturated hydraulic conductivity measurements
for CPP. Different hydraulic head over the CPP surface could be achieved by adjusting the
overflow outlet.
Table 3-1 Experimental results of hydraulic conductivity for 19 CPP specimens

<table>
<thead>
<tr>
<th>CPP Specimen</th>
<th>ϕ_t (%)</th>
<th>ϕ_e (%)</th>
<th>k (10^{-3} cm/s)</th>
<th>σ (10^{-3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC1-4</td>
<td>10.05</td>
<td>4.26</td>
<td>5.68</td>
<td>2.05</td>
</tr>
<tr>
<td>LC1-6</td>
<td>10.91</td>
<td>4.11</td>
<td>7.82</td>
<td>1.86</td>
</tr>
<tr>
<td>LC1-5</td>
<td>11.40</td>
<td>4.56</td>
<td>5.04</td>
<td>2.03</td>
</tr>
<tr>
<td>LC2-8</td>
<td>12.58</td>
<td>5.57</td>
<td>4.45</td>
<td>1.77</td>
</tr>
<tr>
<td>LC2-2</td>
<td>14.36</td>
<td>8.15</td>
<td>11.95</td>
<td>1.91</td>
</tr>
<tr>
<td>LC2-9</td>
<td>14.81</td>
<td>6.73</td>
<td>5.02</td>
<td>2.21</td>
</tr>
<tr>
<td>C2-6</td>
<td>16.25</td>
<td>10.99</td>
<td>10.96</td>
<td>2.42</td>
</tr>
<tr>
<td>C2-1</td>
<td>16.93</td>
<td>10.88</td>
<td>12.85</td>
<td>2.56</td>
</tr>
<tr>
<td>C1-5</td>
<td>17.90</td>
<td>12.80</td>
<td>7.88</td>
<td>2.87</td>
</tr>
<tr>
<td>C2-5</td>
<td>19.20</td>
<td>13.07</td>
<td>9.02</td>
<td>2.48</td>
</tr>
<tr>
<td>C2-3</td>
<td>19.22</td>
<td>11.64</td>
<td>10.84</td>
<td>2.25</td>
</tr>
<tr>
<td>C2-12</td>
<td>19.85</td>
<td>12.75</td>
<td>11.96</td>
<td>2.65</td>
</tr>
<tr>
<td>C2-11</td>
<td>20.76</td>
<td>15.75</td>
<td>14.54</td>
<td>2.02</td>
</tr>
<tr>
<td>LC2-10</td>
<td>21.17</td>
<td>14.35</td>
<td>16.87</td>
<td>1.85</td>
</tr>
<tr>
<td>S2-4</td>
<td>22.89</td>
<td>17.00</td>
<td>21.77</td>
<td>2.41</td>
</tr>
<tr>
<td>S2-2</td>
<td>24.54</td>
<td>20.59</td>
<td>20.66</td>
<td>2.23</td>
</tr>
<tr>
<td>S1-4</td>
<td>25.61</td>
<td>22.04</td>
<td>22.41</td>
<td>1.88</td>
</tr>
<tr>
<td>S1-5</td>
<td>27.49</td>
<td>24.59</td>
<td>28.76</td>
<td>3.51</td>
</tr>
<tr>
<td>S1-8</td>
<td>29.52</td>
<td>27.23</td>
<td>32.86</td>
<td>3.41</td>
</tr>
</tbody>
</table>

ϕ_t: total porosity;
ϕ_e: effective porosity;
k: hydraulic conductivity (10^{-3} cm/s);
s: standard deviation

3.5 METHODOLOGY

On a microscopic scale the steady-state flow of incompressible fluids in an incompressible porous medium is governed by the equation of continuity and the steady-state Navier-Stokes equation (Meegoda et al. 1989; Flint and Selker 2003; reference from a book).

The steady-state Navier-Stokes equation can be expressed as follows.

$$\rho V \cdot \nabla V = -\nabla p + \mu \nabla^2 V$$ \hspace{1cm} (3-10)

Equation of continuity for fluid motion of an incompressible fluid can be presented as

$$\nabla \cdot V = 0$$ \hspace{1cm} (3-11)
In these expressions, p is the pressure; ρ and μ represent the mass density and dynamic viscosity, and \mathbf{V} is velocity vector. Owing to the mathematical difficulties in solving the above equations, the Darcy’s Law for macroscopic flow is being widely used as (3-9) shows.

$$k = \frac{V}{i}$$

Hydraulic conductivity, k, can be derived based on Darcy-Weissbach equation (Vuković 1992). For the flow in tubes, the head loss is expressed as

$$\Delta h = \frac{\lambda l V_0^2}{d^2 g} \quad (3-12)$$

In this expression λ is the friction coefficient (dimensionless quantity); d is the diameter of tube, Δh is head loss (m); l is the length of the porous media along the flow direction, and V_0 is the fluid velocity in the tube.

Under the condition of laminar flow, the friction coefficient λ is a function of the Reynolds number

$$\lambda = \frac{64}{R_e} \quad (3-13)$$

and Reynolds number, R_e, can be presented as

$$R_e = \frac{V_0 d}{\nu} \quad (3-14)$$

In this expression ν is the Kinematic coefficient of viscosity (m2/s).

Substituting (3-13) and (3-14) to (3-12), yields

$$\Delta h = \frac{32 \nu l V_0}{g d^2} \quad (3-15)$$

For porous media,

$$V_0 = \frac{V}{\phi} \quad (3-16)$$
In this expression \(V \) is seepage (Darcy) velocity. \(d \) is determined by both the porosity and pore size distribution of porous medium, which can be represented by “effective aggregate size” \(d_e \).

Letting \(i = \Delta h / l \), and substituting (3-16) and (3-14) to (3-15), seepage velocity can be expressed as

\[
V = C \cdot \varphi(\phi) \cdot d_e^2 \cdot \frac{g}{v} \cdot i = C \cdot \varphi(\phi) \cdot d_e^2 \cdot \frac{\gamma}{\mu} \cdot i
\]

(3-17)

In this expression \(\varphi \) is porosity of porous medium; \(\varphi(\phi) \) is the function determined by porosity in porous media; \(\gamma \) is unit weight of fluid; \(\mu \) is the dynamic viscosity of fluid.

By comparing (3-17) to (3-9), it is easy to find that hydraulic conductivity

\[
k = C \cdot \varphi(\phi) \cdot d_e^2 \cdot \frac{\gamma}{\mu}
\]

(3-18)

From this expression, it is easy to see that hydraulic conductivity is determined by both the pore characteristics of porous medium and the properties of fluid. Most of empirical models mentioned above were derived from (3-18) by assuming a simple function of \(\varphi(\phi) \) and an effective aggregate size \(d_e \).

From Hagen-Poiseuille law for viscous flow in uniform circular capillary, Kozeny-Carman model (KCM) could be derived.

\[
V_0 = \frac{\gamma \cdot \Delta h}{2 \mu \cdot l} R_w^2
\]

(3-19)

In this expression \(R_w \) is the hydraulic radius (m\(^{-1}\)), by definition,

\[
R_w = \frac{V_p}{A_g} = \frac{\text{pore volume}}{\text{grain surface area}}
\]

(3-20)

In this expression

\[
V_p = \varphi \cdot V_i
\]

(3-21)
and

\[V_g = (1 - \phi) \cdot V_t \] \hspace{1cm} (3-22)

In this expression, \(V_t \) is the bulk volume.

\((SSA)_s \), the ratio of pore-solid interface area to aggregate volume, defined as

\[(SSA)_s = \frac{A_g}{V_g} \] \hspace{1cm} (3-23)

Substituting (3-20) ~ (3-22) to (3-23), yields

\[(SSA)_s = \frac{A_g}{V_g} = \frac{A_g}{(1 - \phi) \cdot V_t} = \frac{\phi \cdot A_g}{(1 - \phi) \cdot V_p} = \frac{\phi}{1 - \phi} \cdot \frac{1}{R_w} \]

From this expression, \(R_w \) could be expressed as

\[R_w = \frac{\phi}{1 - \phi} \cdot \frac{1}{(SSA)_s} \] \hspace{1cm} (3-24)

Substituting (3-16), (3-24) into (3-19), yields

\[V = C \frac{\phi^3}{(1 - \phi)^2 (SSA)_s^2} \cdot \frac{\gamma \cdot i}{\mu} \] \hspace{1cm} (3-25)

This expression leads to the Carmen (1934) equation of hydraulic conductivity

\[k = \frac{\phi_i^3}{C_0 (1 - \phi)^2 (SSA)_s^2} \cdot \frac{\gamma}{\mu} \] \hspace{1cm} (3-26)

In this expression \(\phi_i \) is total porosity; \(C_0 \) is shape constant, \(C_0 = 2.0 \sim 3.0 \), dependent on particle shape, and \((SSA)_s \) is specific surface area \((m^{-1}) \) based on solid volume.

Since equation (3-25) and (3-26) were derived by uniform circular capillary based on Hagen-Poiseuille law, recognizing the effect of irregular shape of pores and flow pathways, Kozeney (1927) added a tortuosity factor \((L_e/L)\) to Carman’s shape factor which resulted in the Kozeny-Carman model as
Here \((L_e/L)\) represent the ratio of real length of flow pathway to the shortest length of a medium.

This model have been widely used for filters with uniformly-shaped particles, for porous media with irregularly-shaped solid-pore interfaces and wide range of pore size or particle size distribution, however, it is not applicable for CPP the following reasons.

(a) Effective porosity rather than total porosity determines the hydraulic characteristics;

(b) \((\text{SSA})_s\), specific surface area based on solid volume, can not represent the pore space geometry effectively (Nakashima and Watanabe 2002), however, flow characteristics are controlled by the pore space geometry rather than the solid matrix (Nakashima and Watanabe 2002; Zhang and Knackstedt 1995).

(c) Tortuosity \((L_e/L)\) in (27) only considered the flow length, but actually, it is the throats that limit the flow transport in each pathway (Kostek et al. 1992, Al-Omari, et al. 2002; Zhang and Knackstedt 1995). Not only the length, but also the cross-section area of each pathway needs to take into account (Al-Omari et al. 2002; Flint and selker 2003).

(d) Nanometer-sized pores are unlikely to affect flow on a microscopic scale as long as continuous micron-sized or larger pores are present (Schaap and Lebron 2001), but these nanometer-sized pores contribute a lot to \((\text{SSA})\). It is necessary to determine what scale of pores need to be neglected in \((\text{SSA})\) measurements.

Based on the above recognitions, \((\text{SSA})_{pt}\) and \((\text{SSA})_{pe}\), as defined in Chapter 2, were employed. Based on (2-15)

\[
(\text{SSA})_s = \frac{\phi_t}{1 - \phi_t} (\text{SSA})_{pt}
\]

Equation (3-27) could be written as

\[
k = \frac{\phi_t^3}{C_0 (L_e / L)^2 (1 - \phi_t)^2 (\text{SSA})_s} \frac{\gamma}{\mu}
\]
Since effective porosity rather than total porosity determines the hydraulic characteristics, it is desirable to use effective porosity ϕ_e and $(SSA)_{pe}$ replace total porosity ϕ_t and $(SSA)_{pt}$ in (3-28),

$$k = \frac{\phi_e}{C_0(L_e/L)^2(SSA)_{pe}^2} \frac{\gamma}{\mu}$$

(3-29)

In order to take into account the effect of cross-section area of each pathway on flow, a weighted tortuosity $(L_e/L)_w$ is used. The weighting methodology can be found elsewhere in this expression (Kuang and Sansalone 2005). The modified Kozeny-Carman model can be presented as the following form.

$$k = \frac{\phi_e}{C_0(L_e/L)^2(SSA)_{pe}^2} \frac{\gamma}{\mu}$$

(3-30)

This modified model takes into account the following factors that were rarely considered previously: effective porosity, pore connectivity and pore size distribution. All these factors affect flow characteristics significantly in porous media.

After ϕ_e and $(L_e/L)_w$ are employed, another problem as mentioned above is to determine the scale of $(SSA)_{pe}$. Specific surface area measured by experiments, such as EGME (ethylene glycol monoethyl ether) or nitrogen adsorption, almost always overestimates the relevant length scale for fluid flow (Garboczi 1990). This is because cementitious materials usually have an extremely high surface area, due to the complicated structure of C-S-H gel on a very fine scale, but pore sizes, relevant to fluid flow, are not significantly affected by such fine scale pores (Xi and Bažant, 1999). Pores on the order of 10 μm or less require a pressure head that is not available even under ponded conditions on the CPP surface (the maximum depth of ponding is 6...
According to Berryman and Blair’s finding (1987), pores finer than 1/100 of the median size did not significantly influence flow. Using (SSA) measured by EGME method, yields too much underestimation of hydraulic conductivity results (Schaap and Lebron 2001). So it is very important to determine what scale of pores should take into account for (SSA) calculation and to obtain the pore size distribution (PSD)_{pore} of CPP. CPP pore size distribution was examined using XRT as illustrated in Chapter 2. The area based median pore size d_{50a} of CPP is around 3425 µm which is independent on image resolution Rr. pores with diameter less than 34.25 µm may be reasonably neglected in terms of hydraulic property estimation.

The relationship between (SSA) and resolution R_r (µm) was developed in Chapter 2 as (2-25) shows.

\[(SSA)_s = \frac{228.38(\phi_s)}{R_r^{0.716}} \]

From this equation, (SSA) under a certain resolution could be derived by the (SSA) under 35 µm, as illustrated in (2-28)

\[(SSA)_{s-0} = \left(\frac{R_{r0}}{R_{r1}}\right)^{0.716} \cdot (SSA)_{s-35} \]

In this expression, R_{r1}=35 µm. (SSA) based on resolution of R_r = 35 µm are shown in Table 2-4. When pores finer than d_0 (µm) can be eliminated, R_{r0} in the above equation can be obtained based on the equivalent area between a circle with diameter of 34.25 µm and a square with side length of R_{r0}.

\[R_{r0}^2 = \pi \cdot d_0^2 / 4 \]

(3-31)

When d_0 = 34.25 µm, R_{r0} = 30 µm. Substituting R_{r0} = 30 µm to (2-28), (SSA) based on resolution of 30 µm could be obtained, in which pores finer than 34.25 µm are neglected.
According to Berryman and Blair’s finding (1987), although the measured image specific surface was considerably smaller in magnitude than the true specific surface area of the material due to resolution constraints, these smaller values were nevertheless the required input to the Kozeny-Carman relation.

3.6 RESULT ANALYSIS

3.6.1 Empirical Models

Based on aggregate and pore characteristics of the 19 CPP specimens, using the above empirical models, hydraulic conductivity for each specimen could be estimated as Table 3-2 shows. Figure 3-2 shows the comparison of hydraulic conductivity results by experimental measurements and empirical model calculations in which total porosity ϕ_t were used.

From Figure 3-2, it is found that Krüger model agreed with experimental measurements best, and the relative different percentages (RDP) were less than 50%. Fair-Hatch and Terzaghi model agree with experimental measurements in some degree (RDP<80%) when total porosity is less than 15%. Bayer and Slichter model agree with experimental measurements in some degree (RDP<50%) when total porosity is less than 14%. Hazan model generated unreasonably negative values when total porosity ϕ_t is less than 15% and generates higher RDP with the increase of ϕ_t, so it is not applicable for CPP hydraulic conductivity analysis. USBR model is also not applicable for CPP hydraulic conductivity analysis since it does not take into account the porosity. The reason of the invalidity of those empirical models for CPP hydraulic conductivity analysis is that most of these empirical methods were developed for soil and sand materials which have quite different aggregate and pore properties from that of CPP. None of these empirical models consider the pore size distribution which, however, is one of the most important factors determining hydraulic properties of CPP materials.
Table 3-2 Comparison of hydraulic conductivity, k (10^{-3} \text{ cm/s}), by experimental measurements and empirical equations

<table>
<thead>
<tr>
<th>CPP Core</th>
<th>Measure d k</th>
<th>Krüger</th>
<th>Hazen</th>
<th>Slichter</th>
<th>Terzaghi</th>
<th>Beyer</th>
<th>Fair-Hatch</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>k</td>
<td>(RDP) (%)</td>
<td>K</td>
<td>(RDP) %</td>
<td>k</td>
<td>(RDP) %</td>
<td>k</td>
</tr>
<tr>
<td>LC1-4</td>
<td>5.68</td>
<td>3.9</td>
<td>31.27</td>
<td>-257.93</td>
<td>4.12</td>
<td>27.53</td>
<td>3.58</td>
</tr>
<tr>
<td>LC1-6</td>
<td>7.82</td>
<td>4.32</td>
<td>44.76</td>
<td>-220.69</td>
<td>4.97</td>
<td>36.49</td>
<td>2.08</td>
</tr>
<tr>
<td>LC1-5</td>
<td>5.04</td>
<td>4.57</td>
<td>9.41</td>
<td>-199.28</td>
<td>5.74</td>
<td>13.98</td>
<td>1.22</td>
</tr>
<tr>
<td>LC2-8</td>
<td>4.45</td>
<td>5.17</td>
<td>16.20</td>
<td>-148.47</td>
<td>7.92</td>
<td>78.06</td>
<td>0.09</td>
</tr>
<tr>
<td>LC2-2</td>
<td>11.95</td>
<td>6.15</td>
<td>48.50</td>
<td>-71.05</td>
<td>12.26</td>
<td>2.60</td>
<td>0.91</td>
</tr>
<tr>
<td>LC2-9</td>
<td>5.02</td>
<td>6.41</td>
<td>27.72</td>
<td>-51.76</td>
<td>13.55</td>
<td>170.00</td>
<td>1.60</td>
</tr>
<tr>
<td>C2-6</td>
<td>10.96</td>
<td>7.28</td>
<td>33.56</td>
<td>10.88</td>
<td>18.41</td>
<td>67.95</td>
<td>5.24</td>
</tr>
<tr>
<td>C2-1</td>
<td>12.85</td>
<td>7.71</td>
<td>39.97</td>
<td>40.49</td>
<td>21.08</td>
<td>64.01</td>
<td>7.72</td>
</tr>
<tr>
<td>C1-5</td>
<td>7.88</td>
<td>8.35</td>
<td>5.92</td>
<td>82.36</td>
<td>25.29</td>
<td>220.95</td>
<td>12.07</td>
</tr>
<tr>
<td>C2-3</td>
<td>10.84</td>
<td>9.26</td>
<td>14.60</td>
<td>139.63</td>
<td>31.96</td>
<td>194.84</td>
<td>19.66</td>
</tr>
<tr>
<td>C2-12</td>
<td>11.96</td>
<td>9.71</td>
<td>18.80</td>
<td>166.90</td>
<td>35.53</td>
<td>197.06</td>
<td>23.97</td>
</tr>
<tr>
<td>C2-11</td>
<td>14.54</td>
<td>10.39</td>
<td>28.56</td>
<td>206.13</td>
<td>41.14</td>
<td>182.91</td>
<td>30.95</td>
</tr>
<tr>
<td>LC2-1</td>
<td>16.87</td>
<td>10.71</td>
<td>36.54</td>
<td>224.08</td>
<td>43.89</td>
<td>160.20</td>
<td>34.46</td>
</tr>
<tr>
<td>S2-4</td>
<td>21.77</td>
<td>12.10</td>
<td>44.43</td>
<td>298.55</td>
<td>56.73</td>
<td>160.58</td>
<td>51.23</td>
</tr>
<tr>
<td>S2-2</td>
<td>20.66</td>
<td>13.54</td>
<td>34.44</td>
<td>370.21</td>
<td>71.34</td>
<td>245.32</td>
<td>70.81</td>
</tr>
<tr>
<td>S1-4</td>
<td>22.41</td>
<td>14.55</td>
<td>35.09</td>
<td>416.64</td>
<td>82.10</td>
<td>266.35</td>
<td>85.37</td>
</tr>
<tr>
<td>S1-5</td>
<td>28.76</td>
<td>16.43</td>
<td>42.87</td>
<td>498.05</td>
<td>103.60</td>
<td>260.22</td>
<td>114.63</td>
</tr>
<tr>
<td>S1-8</td>
<td>32.86</td>
<td>18.68</td>
<td>43.16</td>
<td>586.05</td>
<td>130.94</td>
<td>298.47</td>
<td>151.85</td>
</tr>
</tbody>
</table>

k: hydraulic conductivity (10^{-3} \text{ cm/s});
(RDP): relative different percentage;
\[
(RDP) = \left(\frac{\text{measured } k - \text{ calculated } k}{\text{measured } k}\right) \times 100\%
\]

USBR equation: since it is only the function of d_{20}, the calculated k for all the specimens are the same as 457.16 \times 10^{-3} \text{ cm/s};

Hazan equation: it generates unreasonably negative values, obviously not be applicable for CPP hydraulic conductivity analysis.
Figure 3-2 Comparison of hydraulic conductivity obtained by empirical equation and experimental measurements. This plot shows that the calculated results by Slichter, Terzaghi, Beyer, Kruger and Fair-Hatch model agree with measured results when total porosity ϕ_t is less than 15%. For the case ϕ_t greater than 15%, none of these models is applicable for CPP hydraulic conductivity prediction. Kruger model is the best fit with but lower than experimental measurements.

Conventional Kozeny-Carman model is the most successful method for permeability analyzing (Berryman and Blair 1987), but it was found that the original form, as equation (3-26) shows, was not applicable for CPP hydraulic conductivity estimation. EGME measurement results showed that $(SSA)_s$ of CPP is in the range of $1.3\sim4.5\times10^6 \text{ m}^{-1}$. $(SSA)_{pt}$ and $(SSA)_{pe}$ could be estimated using (2-15) and (2-22). Using (SSA) measured by EGME method yields unreasonably smaller hydraulic conductivity results. Table 3-3 shows the hydraulic conductivity results based on (3-28) and (3-30) for the 19 specimens when EGME measured (SSA) were used.
Table 3-3 Comparison of hydraulic conductivity results using Kozeny –Carman equation based on EGME measured (SSA)

<table>
<thead>
<tr>
<th>CPP Specimens</th>
<th>Measured k (10^{-3} cm/s)</th>
<th>Calculated k (10^{-3} cm/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Using equation (28) k by equation (30)</td>
</tr>
<tr>
<td>LC1-4</td>
<td>5.68</td>
<td>5.94E-06</td>
</tr>
<tr>
<td>LC1-6</td>
<td>7.82</td>
<td>6.34E-06</td>
</tr>
<tr>
<td>LC1-5</td>
<td>5.04</td>
<td>6.16E-06</td>
</tr>
<tr>
<td>LC2-8</td>
<td>4.45</td>
<td>7.51E-06</td>
</tr>
<tr>
<td>LC2-2</td>
<td>11.95</td>
<td>1.23E-05</td>
</tr>
<tr>
<td>LC2-9</td>
<td>5.02</td>
<td>1.06E-05</td>
</tr>
<tr>
<td>C2-6</td>
<td>10.96</td>
<td>1.51E-05</td>
</tr>
<tr>
<td>C2-1</td>
<td>12.85</td>
<td>1.82E-05</td>
</tr>
<tr>
<td>C1-5</td>
<td>7.88</td>
<td>1.59E-05</td>
</tr>
<tr>
<td>C2-5</td>
<td>9.02</td>
<td>2.52E-05</td>
</tr>
<tr>
<td>C2-3</td>
<td>10.84</td>
<td>3.10E-05</td>
</tr>
<tr>
<td>C2-12</td>
<td>11.96</td>
<td>3.70E-05</td>
</tr>
<tr>
<td>C2-11</td>
<td>14.54</td>
<td>4.11E-05</td>
</tr>
<tr>
<td>LC2-10</td>
<td>16.87</td>
<td>5.23E-05</td>
</tr>
<tr>
<td>S2-4</td>
<td>21.77</td>
<td>8.75E-05</td>
</tr>
<tr>
<td>S2-2</td>
<td>20.66</td>
<td>1.06E-04</td>
</tr>
<tr>
<td>S1-4</td>
<td>22.41</td>
<td>1.36E-04</td>
</tr>
<tr>
<td>S1-5</td>
<td>28.76</td>
<td>2.12E-04</td>
</tr>
<tr>
<td>S1-8</td>
<td>32.86</td>
<td>3.43E-04</td>
</tr>
</tbody>
</table>

(SSA), were measured by EGME directly.
(RDP): relative different percentage.

In equation (3-28), total porosity and (SSA)$_{pt}$ were employed, while in (3-30), effective porosity, (SSA)$_{pe}$ based on effective pore volume, and weighted tortuosity (L_e/L) were used. Figure 3-3 shows the comparison of measured k_{sat} with calculated k_{sat} by conventional KCM. Compared to experimental measurements, it is found that hydraulic conductivity was underestimated by magnitude of 4-5 orders. The main reason is that fine pores contribute significantly to the value of (SSA), but little to hydraulic conductivity (Flint and Selker 2003). When applying (SSA) from EGME measurements to Kozeny-Carman model, fine pores’ contribution to flow was significantly overestimated.
3.6.2 Modified KCM Using (SSA) based on Image Analysis

Based on X-ray tomographic analysis results, the area based median size of pores, \(d_{50a} \), in CPP is 3425 µm. (SSA) based on resolution of 35 µm was shown in Table 2-4. Using equation (2-28), (SSA) based on image resolution of 30 µm was shown in Table 3-4. Based on (3-30), hydraulic conductivity of each specimen was calculated as Table 3-4 illustrates also.

Weighted tortuosity \((L_e/L)w\) were also used in this procedure. It is found that the (SSA) from image analysis were much smaller in magnitude than the true specific surface area of the material, but these smaller values are reasonable for hydraulic conductivity calculation, which agree well with Berryman and Blair’s finding (1987). Figure 3-4 shows that calculated results of hydraulic conductivity using (SSA) based on image resolution of 30 µm agree better with experimental results than that using (SSA) based on image resolution of 35 µm. It demonstrates that pore size distribution is a key factor for fluid flow in porous media, and pores with size smaller than 1/100 of \(d_{50a} \) could be reasonably neglected.

![Comparison of hydraulic conductivity obtained by conventional Kozeny-Carman model to that by experimental measurements.](image-url)
Table 3-4 Comparison of hydraulic conductivity (10⁻³ m/s) results using Kozeny –Carman equation based on (SSA) obtained by tomography analysis

<table>
<thead>
<tr>
<th>CPP Spec.</th>
<th>Measured k (10⁻³ m/s)</th>
<th>(SSA)ₚₑ by tomography Analysis (m²/m³)</th>
<th>Calculated k(10⁻³ cm/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Using (SSA)ₚₑ with resolution of 35 µm</td>
</tr>
<tr>
<td>Rₑ=35 µm</td>
<td>k</td>
<td>RDP (%)</td>
<td>k</td>
</tr>
<tr>
<td>LC1-4</td>
<td>5.68</td>
<td>15261 17046</td>
<td>6.96</td>
</tr>
<tr>
<td>LC1-6</td>
<td>7.82</td>
<td>11569 12922</td>
<td>9.56</td>
</tr>
<tr>
<td>LC1-5</td>
<td>5.04</td>
<td>13696 15298</td>
<td>6.37</td>
</tr>
<tr>
<td>LC2-8</td>
<td>4.45</td>
<td>15442 17248</td>
<td>5.42</td>
</tr>
<tr>
<td>LC2-2</td>
<td>11.95</td>
<td>11219 12531</td>
<td>15.88</td>
</tr>
<tr>
<td>LC2-9</td>
<td>5.02</td>
<td>14772 16500</td>
<td>5.88</td>
</tr>
<tr>
<td>C2-6</td>
<td>10.96</td>
<td>12654 14134</td>
<td>13.65</td>
</tr>
<tr>
<td>C2-1</td>
<td>12.85</td>
<td>11798 13179</td>
<td>16.30</td>
</tr>
<tr>
<td>C1-5</td>
<td>7.88</td>
<td>13547 15132</td>
<td>10.45</td>
</tr>
<tr>
<td>C2-5</td>
<td>9.02</td>
<td>14921 16667</td>
<td>10.97</td>
</tr>
<tr>
<td>C2-3</td>
<td>10.84</td>
<td>14008 15647</td>
<td>13.57</td>
</tr>
<tr>
<td>C2-12</td>
<td>11.96</td>
<td>15217 16997</td>
<td>13.44</td>
</tr>
<tr>
<td>C2-11</td>
<td>14.54</td>
<td>14490 16185</td>
<td>17.40</td>
</tr>
<tr>
<td>LC2-10</td>
<td>16.87</td>
<td>14230 15894</td>
<td>19.51</td>
</tr>
<tr>
<td>S2-4</td>
<td>21.77</td>
<td>15263 17048</td>
<td>25.48</td>
</tr>
<tr>
<td>S2-2</td>
<td>20.66</td>
<td>16998 18987</td>
<td>23.42</td>
</tr>
<tr>
<td>S1-4</td>
<td>22.41</td>
<td>17433 19473</td>
<td>26.05</td>
</tr>
<tr>
<td>S1-5</td>
<td>28.76</td>
<td>18061 20174</td>
<td>32.56</td>
</tr>
<tr>
<td>S1-8</td>
<td>32.86</td>
<td>18758 20952</td>
<td>41.23</td>
</tr>
</tbody>
</table>

Calculated k based on Kozeny-Carman Equation (3-30);
(SSA)ₚₑ under image resolution, Rₑ, of 30 µm were calculated by the Equation (2-28);
(SSA)ₚₑ of 35 µm were known by tomography analysis;
(RDP): relative different percentage
Rₑ: image resolution

Weighted tortuosity (Lₑ/Lₖ)ₑ were also used in this procedure. It is found that the (SSA) from image analysis were much smaller in magnitude than the true specific surface area of the material, but these smaller values are reasonable for hydraulic conductivity calculation, which agree well with Berryman and Blair’s finding (1987). Using the tomographically analyzed (SSA) yields small relative different percentage (<10%). Figure 3-4 shows that calculated results of hydraulic conductivity using (SSA) based on image resolution of 30 µm agree better with experimental results than that using (SSA) based on image resolution of 35 µm. It shows clearly
that pore size distribution is a key factor for fluid flow, and pores with size smaller than 1/100 of d_{50a} is reasonably to be neglected, while pores larger than 1/100 of d_{50a} should take into account.

![Figure 3-4](image)

Figure 3-4 Comparison of hydraulic conductivity obtained by Kozeny-Carman equation and experimental measurements. According to tomography analysis, median pore size of CPP is about 3000 µm. Using $(SSA)_{pe}$ based on tomographic analysis in resolution of 30 µm generates results agreeable with measured results well. $(SSA)_{pe}$ represents specific surface area based on effective pores, and R_r is the image resolution in tomography analysis.

3.6.3 Modified KCM Using Un-Weighted and Weighted Tortuosity

Another task of this study is to measure the effect of flow pathway characteristics on flow transport. According to the findings of Flint and Selker (2003), if pores of different sizes are operating serially, the sequential variation in the effective cross section of flow channels tends to result in a k associated with the smaller cross section. Calculation k based on un-weighted tortuosity (L_e/L) and weighted tortuosity $(L_e/L)_w$ was compared in Table 3-5 using (3-29) and (3-30), respectively. Figure 3-5 shows that weighted tortuosity $(L_e/L)_w$ were more reasonable and generated the results agreeable with experimental measurements results. Un-weighted tortuosity generates unreasonable results when porosity is more than 18%.
Table 3-5 Calculated results using un-weighted and weighted tortuosity in modified KCM

<table>
<thead>
<tr>
<th>CPP Spec.</th>
<th>Measured k (10^-3 m/s)</th>
<th>Un-weighted $(L_e/L)_0$</th>
<th>Weighted tortuosity $(L_e/L)_w$</th>
<th>Calculated k (10^{-3} cm/s) [^{[1]}]</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC1-4</td>
<td>5.68</td>
<td>4.57</td>
<td>3.42</td>
<td>2.75</td>
</tr>
<tr>
<td>LC1-6</td>
<td>7.82</td>
<td>4.23</td>
<td>3.78</td>
<td>5.39</td>
</tr>
<tr>
<td>LC1-5</td>
<td>5.04</td>
<td>5.18</td>
<td>4.12</td>
<td>2.84</td>
</tr>
<tr>
<td>LC2-8</td>
<td>4.45</td>
<td>5.91</td>
<td>4.38</td>
<td>2.10</td>
</tr>
<tr>
<td>LC2-2</td>
<td>11.95</td>
<td>3.87</td>
<td>4.26</td>
<td>13.57</td>
</tr>
<tr>
<td>LC2-9</td>
<td>5.02</td>
<td>3.97</td>
<td>4.83</td>
<td>6.14</td>
</tr>
<tr>
<td>C2-6</td>
<td>10.96</td>
<td>4.12</td>
<td>4.73</td>
<td>12.69</td>
</tr>
<tr>
<td>C2-1</td>
<td>12.85</td>
<td>4.26</td>
<td>4.62</td>
<td>13.52</td>
</tr>
<tr>
<td>C1-5</td>
<td>7.88</td>
<td>4.87</td>
<td>5.45</td>
<td>9.23</td>
</tr>
<tr>
<td>C2-5</td>
<td>9.02</td>
<td>3.68</td>
<td>4.88</td>
<td>13.61</td>
</tr>
<tr>
<td>C2-3</td>
<td>10.84</td>
<td>3.59</td>
<td>4.41</td>
<td>14.45</td>
</tr>
<tr>
<td>C2-12</td>
<td>11.96</td>
<td>4.25</td>
<td>4.27</td>
<td>9.57</td>
</tr>
<tr>
<td>C2-11</td>
<td>14.54</td>
<td>5.46</td>
<td>4.38</td>
<td>7.90</td>
</tr>
<tr>
<td>LC2-10</td>
<td>16.87</td>
<td>3.36</td>
<td>4.02</td>
<td>19.70</td>
</tr>
<tr>
<td>S2-4</td>
<td>21.77</td>
<td>4.52</td>
<td>3.57</td>
<td>11.21</td>
</tr>
<tr>
<td>S2-2</td>
<td>20.66</td>
<td>4.19</td>
<td>3.68</td>
<td>12.74</td>
</tr>
<tr>
<td>S1-4</td>
<td>22.41</td>
<td>4.29</td>
<td>3.52</td>
<td>12.37</td>
</tr>
<tr>
<td>S1-5</td>
<td>28.76</td>
<td>4.36</td>
<td>3.21</td>
<td>12.45</td>
</tr>
<tr>
<td>S1-8</td>
<td>32.86</td>
<td>4.67</td>
<td>2.89</td>
<td>11.14</td>
</tr>
</tbody>
</table>

Figure 3-5 This plot shows the influence of tortuosity on calculated hydraulic conductivity by Kozeny-Carman equation.
3.6.4 k-φᵣ and k-φₑ Relationship

Based on experimental measurements of hydraulic conductivity k and specimen effective porosity φₑ, as illustrated in Table 2-4, kₛₐₜ-φₑ relationship was presented in Figure 3-6. It can be modeled by the following expression.

\[k_{sat} = 0.7024(\phi_e)^{1.1452} \] \hspace{1cm} (3-32)

Figure 3-7 illustrated the relationship between kₛₐₜ and φₙ, which could be modeled by the following expression.

\[k_{sat} = 0.0286(\phi_n)^{2.0721} \] \hspace{1cm} (3-33)

These models make it possible to estimate CPP hydraulic conductivity based on its total porosity which can be obtained by geometric and gravimetric properties. It has to point out, however, that this model may not be applicable for porous media with similar pore size distribution as CPP.

![Figure 3-6 Relationship between hydraulic conductivity k and effective porosity φₑ. Range bars represent standard deviation of measured hydraulic conductivity in a given φₑ.](image-url)
Figure 3-7 Relationship between hydraulic conductivity k and total porosity ϕ_t. The relationship was modeled by a power law model as $k = 0.0286 \times (\phi_t)^{2.0721}$ with $R^2 = 0.91$. In this expression, k is in 10^{-3} cm/s and ϕ_t in %. Range bars represent standard deviation of measured hydraulic conductivity for a given ϕ_t.

3.7 SUMMARY AND CONCLUSIONS

Hydraulic characteristics are one of the most important concerns for permeable pavement. In this study, 19 cementitious permeable pavement (CPP) specimens taken from a prototype partial exfiltration reactor loaded by rainfall or rainfall-runoff were utilized to present hydraulic characteristics results. An experiment was designed to measure saturated hydraulic conductivity with constant head. Calculation results based on some empirical models, such as Kozeny-Carman model (KCM), Krüger model, Fair-Hatch model, Hagan model, USBR model, Beyer model and Terzaghi model, were compared to the experimental measurements. It was found that Hazen and USBR model were not applicable for CPP hydraulic conductivity analysis at all. Compared to these models, Krüger model agreed with experimental measurements best, but it generates underestimated results with relative different percentage about 50%, and with the increase of total porosity, it generates increased errors. Fair-Hatch, Terzaghi, Bayer and Slichter
model agree with experimental measurements with RDP<80% when total porosity is less than 15%. Since the typical porosity in CPP is more than 20%, all of these empirical models are not desirable for CPP hydraulic conductivity analysis.

Kozeny-Carman model is the most successful method for permeability analysis, but the conventional form of KCM is found not applicable for CPP hydraulic conductivity estimation. Recognizing the significant contribution of pore size distribution, a modified Kozeny-Carman model was presented, in which effective porosity ϕ_e, specific surface area based on effective pores (SSA)$_{p_{E}}$, and weighted tortuosity (L_e/L)$_w$ were employed, generating results agree with measured ones well. This model can be used to accurately analyze hydraulic conductivity for CPP with known pore characteristics.

Factors that significantly influence fluid flow in porous media include porosity, pore connectivity and pore size distribution. These pore characteristics were represented by effective porosity, area based median pore size d_{50a}, weighted tortuosity (L_e/L)$_w$, and specific surface area based on effective pores with size larger than 1/100 of d_{50a}. It is found necessary to weight flow pathways based on their cross-section areas formed by different size of pores. Weighted tortuosity generates much more reasonable and accurate results of hydraulic conductivity for CPP using the KCM. Un-weighted tortuosity generates unreasonable result trends when porosity is more than 10%.

How to determine the pore scale for (SSA) is very important in KCM. (SSA) obtained by EGME method generates underestimated hydraulic conductivity in 3-5 order of magnitude. It is found necessary to neglect the pores that have little contribution to fluid flow but significant contribution to (SSA). For CPP, pores with size smaller than 1/100 of d_{50a} may be neglected,
which generate much smaller (SSA) than EGME test, but this (SSA) generates hydraulic conductivity results agree well with measured results by using KCM.

Both the $K_{\text{sat}} - \phi_t$ relationship and $k_{\text{sat}} - \phi_e$ relationship were modeled by a power law model. These relationships make it possible to predict CPP hydraulic conductivity knowing total porosity which can be obtained conventionally by CPP’s geometrics and gravimetrics.

As a whole, this study discussed important factors that influence fluid flow in CPP, and provided methods to predict hydraulic conductivity for porous media with similar pore size distribution to CPP.

3.8 NOTATION

- d_{50a} = area based median pore size (L);
- d_e = effective aggregate size (L);
- i = hydraulic gradient (L/L);
- k = hydraulic conductivity (L/T);
- K = Permeability (L^2);
- L = length of a specimen in z direction (L);
- L_e = weighted length of all fluid pathways formed by effective pores (L);
- $(L_e/L)_0$, $(L_e/L)_w$ = un-weighted and weighted tortuosity (L/L);
- Re = Reynolds number;
- R_r = resolution (L);
- R_w: = hydraulic radii (L);
- SSA = specific surface area ($L^2 L^{-3}$);
- V = seepage velocity (L/T);
- d_{50a} = median pore diameter based on area distribution (L);
ϕ_e, ϕ_t = effective porosity and total porosity (L3L$^{-2}$);

Δh = head loss (L)

η = coefficient of uniformity of aggregate

μ = dynamic viscosity (MTL$^{-2}$);

ν = kinematic viscosity (L2T$^{-1}$)

3.9 REFERENCES

Hot Mix Asphalt Technology-September/October 2003, 26-40

CHAPTER 4 FILTRATION AND CLOGGING OF CPP BY PARTICLES IN RUNOFF

4.1 INTRODUCTION

A variety of in situ structural best management practices (BMPs) or unit operations and processes (UOPs) have been developed for stormwater quality and quantity control through infiltration/filtration and some degree of exfiltration (Colandini et al. 1995; Hogland et al. 1987; Teng and Sansalone 2004). Combined with engineered cementitious permeable pavement (CPP) functions as a combined unit operation and process capable of infiltration-exfiltration and treatment of soluble and particulate constituents from stormwater (Fujita 1993; Jahangir-Issa 1998; Legret et al. 1999; Pratt et al. 1989; Sansalone 1999; Teng and Sansalone 2004; Yu 1993). Permeable pavements and engineered permeable subgrades have been able to significantly reduce the impact of a concentration-based first flush effect from mass-limited runoff events (Anderson et al. 1999; Aulenbach and Chan 1998; Rajapakse and Ives 1990). For example, such systems promote infiltration using permeable pavement and granular subgrades for quantity storage, ground water recharge and quality control in many countries; for example, the USA (Brattebo and Booth 2003; Field 1982; Jackson and Ragan 1974, Sansalone 1999; Teng and Sansalone 2004, Sansalone and Teng 2004, Sansalone and Teng 2005), the UK (Anderson et al. 1999; Schluter and Jefferies 2002), Switzerland (Isenring et al. 1990; Xu and Mermoud 2003), Sweden (Backstrom and Bergstrom 2000; Niemczynowicz and Hogland 1987; Teng and Sansalone 2004), Germany (Fach et al. 2002; Stotz and Krauth 1994), Spain (Jimenez and perez 1990), Singapore (Fwa et al. 1999; Tan et al. 2003) and France (Balades et al. 1995; Legret and Colandini 1999; Pagotto et al. 2000). Infiltration-exfiltration systems that include permeable pavement exhibit a high constituent removal capability; for example, the suspended particulate
matter measured as total suspension solids (TSS) can have a mass removal efficiency up to 90%, total phosphorus (TP) up to 65% and total nitrogen (TN) up to 80% (Park and Tia 2004; Sansalone 1999; Teng and Sansalone 2004).

Studies have demonstrated that depending on runoff chemistry, watershed conditions and hydrodynamics, particulate matter can be a primary vector for constituents transported in runoff (Colandini et al. 1995; Teng and Sansalone 2004, Sansalone and Buchberger 1997, Sansalone et al 1998). Constituents such as metal species, hydrocarbons, organics, pesticides and phosphorus can partition to particles (Colandini et al. 1995; Fach et al. 2002; Park and Tia 2004; Sansalone and Cristina 2004, Stotz and Krauth 1994). Therefore it is important to assess the filtration behavior of permeable pavement such as CPP.

4.2 OBJECTIVES

Permeable pavement such as CPP functions as a filtration unit operation and a medium subject to clogging. There are four main tasks of this study evaluating CPP for filtration and clogging. Results are based on application of a constant particle size gradation, classified as sandy silt, and constant head conditions applied to CPP specimens of known pore properties recovered from a partial exfiltration reactor subject to pavement runoff in Cincinnati, OH. All objectives are examined as a function of three levels of constant influent particle concentration (50, 100 and 200 mg/L), within the range of typical of rainfall-runoff event mean values. The first objective of this study examines the particle removal efficiency of these CPP specimens as a function of particle size. The second objective examines the particle size gradation of cumulative strained particles on CPP surface. The third objective is to evaluate the clogging process of CPP specimens through measurement of the CPP hydraulic conductivity. The fourth objective is to
evaluate CPP cleaning methods that can restore the original hydraulic conductivity of the CPP and a methodology to estimate the maintenance period for CPP cleaning.

4.3 BACKGROUND

4.3.1 Particle Size Gradations

Particles in urban runoff encompass wide size gradation ranging in size from less than 1-μm to greater than 10,000-μm. (Sansalone et al. 1998). When particles transported in runoff are strained at the infiltrating surface of permeable pavement, a filter cake or surface mat (“schmutzdecke”) of particulate matter can eventually form. The particulate matter is relatively coarse, and is primary sediment and settleable size material (Teng and Sansalone 2004). The schmutzdecke functions as a filter cake and aids particle removal, and protecting deeper specific deposits within the CPP. Due to the formation of schmutzdecke, finer suspended particles less than 25 μm will also be strained on the CPP surface (Sansalone 1999, Teng and Sansalone 2004). Machie (1989) illustrated that coarser particles have a beneficial effect on the capture of fine particles (Stevenson 1997). Initial formation of a schmutzdecke on the CPP surface is observed as a result of accumulations from multiple runoff events loading the CPP of a passive partial exfiltration reactor (PER) infiltrating lateral pavement sheet flow (Teng and Sansalone 2004). However, this schmutzdecke will also result in reduced hydraulic conductivity or increased head loss if the water surface is able to build up on the CPP surface.

4.3.2 Filtration Models

McDowell-Boyer et al. (1986) presented three mechanisms for particle separation during filtration, namely surficial straining, deep-bed filtration and physical chemical diffusion, depending on the ratio of the media diameter d_m (a surrogate for pore diameter) to suspended particles size d_p. Because of the CPP irregular pore-solid interface shape and wide range of pore
size distributions, filtration mechanisms are more reasonably presented by CPP’s pore space geometry and pore size distribution rather than CPP solid (aggregate) size (d_m) (Moghadasi et al. 2004). When $d_m/d_p < 10$, particles will not penetrate into the filter and will be separated by surficial straining; when d_m/d_p is between 10 to 20, the main removal mechanism would be deep-bed filtration, and particles would penetrate into the bed and eventually fill the pore space resulting in clogging, and when $d_m/d_p > 20$, the main mechanism is physical-chemical, which does not significantly impact pore space. These mechanisms have been identified for CPP (Teng and Sansalone 2004). Yao et al. (1971) and Flagen and Seinfeld (1988) examined an first-order exponential model for mono-sized filtration systems.

In contrast to drinking water or wastewater filters, CPP is usually loaded by very low hydraulic head, generally less than several centimeters. Most pavement systems carry vehicular traffic and therefore water surface buildup is generally minimized and may be only be several centimeters maximum at the outside of the traveled lane. Parking areas can usually tolerate higher water surface buildup because of slower vehicular speeds and because of their use for surface detention followed by either infiltration or controlled surface water discharge.

4.3.3 Role of Clogging

As the CPP pore space and surface accumulates particulate matter, clogging occurs eventually, resulting in a reduced infiltration rate (Balades et al. 1995; Fach et al. 2002; Stotz and Krauth 1994; Tan et al. 2003). Clogging is a significant concern for permeable pavement since a primary function of permeable pavement depends on maintaining a high drainage capacity (Fwa, et. al. 1999; Schlüter and Jefferies 2002, Tan et al. 2003). These particulates may be sand, silt or clay-sized particles, such as abraded pavement or tire debris caused by pavement-tire abrasion. CPP pores become obstructed by particles when particulates are not be able to move through the
CPP structure due to filtration, while accumulation on the CPP surface is also occurring (Balades et al. 1995, Kuang and Sansalone, 2005; Teng and Sansalone 2004). As with any filter, cleaning of the CPP material is required before the infiltration rate drops to unacceptable low level.

Temporal measurements of hydraulic conductivity is the most convenient and appropriate tool to evaluate clogging properties of CPP (Fwa et al. 1999; Isenring et al. 1990; Jiménez and Perez 1990). Jiménez (1990) used the Laboratorio Caminos de Santander (LCS) permeameter to estimate the permeability of the permeable pavement in terms the time a given amount of water takes to penetrate the surface, and developed an equation for hydraulic conductivity k of asphalt pavement as a function of time t measured:

$$
\ln k = 7.626 - 1.348 \ln t
$$

In this expression k is hydraulic conductivity in cm/s and t is time in seconds.

Tan et al. (2003) considered clogging materials retained in pavement sub-base as a factor decreasing the media hydraulic conductivity, and developed a deposit model to predict the infiltration rate of the porous media.

$$
k = k_0 \frac{(1 - \phi_t)^2}{(\phi_t)^3} \frac{(\phi_t - \alpha \sigma)^3}{[1 - (\phi_t - \alpha \sigma)]^2}
$$

In this expression, k = hydraulic conductivity (mm/s); k_0 = average initial hydraulic conductivity; ϕ_t = total porosity; α = empirical constant, and σ is specific deposit.

$$
\sigma = V_d / V_T
$$

In this expression V_d is the volume of deposited materials and V_T is the total volume of the specimen. This model is more applicable for deep-bed filtration in which the filter porosity is reduced by clogging materials (Ojha and Graham 1991; Seki and Miyazaki 2001; Tobiason and Vigneswaran 1994).
Balades et al. (1995) suggested that the clogged depth was limited to the first several centimeters of the permeable pavement, and compared four types of cleaning methods, moistening followed by sweeping, sweeping followed by suction, suction alone, and high pressure water jet and suction together. It was found that suction as well as high pressure water jet could clean the permeable pavement and recover the infiltration rate to 100% of the initial infiltration value before any clogging occurred.

Since particles strained on the CPP surface form a schmutzdecke which plays an important role in particle removal and clogging, it is desired to develop a methodology to predict the particles strained on the CPP surface at any time period. It would be also advantageous to demonstrate that CPP material could be cleaned and hydraulic conductivity restored.

4.4 METHODOLOGY

4.4.1 Experimental Configuration, Flow and Mass Measurements, Mass Balances

6 CPP specimens with similar pore characteristics were utilized in this study. These specimens were cored from CPP slabs loaded by three years of pavement runoff in urban Cincinnati, OH (Sansalone and Teng 2004, Teng and Sansalone 2004, Sansalone and Teng 2005). Total porosity (ϕ_t) more than 27%, effective porosity (ϕ_e) more than 24 %, area-based pore diameter (d_{50a}) = 200 µm. All the 6 specimens were backwashed and in an empty bed condition before experimentation. Empty bed, initial hydraulic conductivity of these CPP specimens had a mean of 3.0×10^{-2} cm/s and a standard deviation of 6×10^{-3} cm/s. The experimental setup was a constant head setup where influent, effluent and bypass quantity and quality were measured.
A constant particle gradation of known dry mass of particles, M_i, was mixed with a de-ionized water influent in a well-mixed influent tank that was pumped to the constant head permeameter with a constant flow rate of q_i and mass concentration of $[m_i]$. Particle gradation followed a sandy silt, a relatively fine gradation for source area runoff (Sansalone et al 1998) and is illustrated in Figure 4-1. Experiment was undertaken with 3 different concentrations, namely 50, 100, and 200 mg/L (Sansalone and Teng 2004, Sansalone et al 1998).

![Figure 4-1 Comparison of the measured to the targeted influent particle size gradation](image)

Influent hydraulic loading was kept constant as 22.2 L/m2-min. Under this loading, hydraulic head was maintained approximately 1 cm above the CPP surface. As hydraulic conductivity decreased due to clogging, bypass overflow was initiated. This bypass was monitored and analyzed for flow rate (influent, q_i, effluent, q_e and overflow, q_o) particle concentration, particle size gradation. Each CPP loading experiment was conducted for a duration that allowed the hydraulic conductivity to decrease from an original range of 10^{-2} cm/s to 10^{-5} cm/s. Samples were taken every three hours for the duration of each loading experiment.
Influent, overflow and effluent were collected into clean polypropylene (PP) containers for the purpose of particle analyses, as determination for M_i, M_o and M_c and overall mass balance determination. When an experiment was ended, the total volume of effluent and overflow were each separately dried at 60°C until a constant mass was achieved. The particle mass from each volume was measured, the particles disaggregated and their size gradation analyzed. Particles strained and filtered by the CPP cores were recovered, dried, weighed, disaggregated and their size gradation determined. Total particle mass, M_i, during the duration of the loading, t_c, was checked through calculation.

$$M_i = [m_i] \cdot q_i \cdot t_c \quad (4-4)$$

In order to recover strained particles and mass, M_s after each loading, CPP specimens were removed from the permeameter, placed into a plastic bag, the permeameter washed into the bag with de-ionized water and the bag then subsequently filled with de-ionized water. The bag was sealed and placed into an ultrasonic cell and sonicated for 30 minutes to recover filtered and strained particles. The CPP specimen was placed in a second clean bag of deionized water and the process repeated to ensure complete removal of all filtered particles. This water and particles were dried in clean open containers at 60°C until a constant mass, M_s was achieved.

Based on measured M_i, M_e, M_o, and M_s, total particle removal efficiency for the duration of CPP specimen loading can be calculated by the following expression.

$$\eta_T = \left(\frac{M_s}{M_i - M_o} \right) \times 100\% = \left(\frac{M_i}{M_s + M_c} \right) \times 100\% \quad (4-5)$$

Particle mass balance error can be estimated with based on M_i, M_e, M_o, and M_s and the measured amount of original influent mass.

$$E_m = (1 - \frac{M_o + M_s + M_c}{M_i}) \times 100\% \quad (4-6)$$
With known flow rate q and particle concentration $[m]$ in influent, overflow and effluent, total removed particle mass, $M_s(t)$ (mg) during a period of time t can be calculated (and compared to measured values).

$$M_s(t) = [m]_i \cdot q_i \cdot t - [m]_o \int_0^t q_o(t) \cdot t \cdot dt - \int_0^t q_e(t) \cdot t \cdot [m]_e(t) dt$$ \hspace{1cm} (4-7)

In this expression, $[m]$ represents particle concentration (mg/L), and q represents flow rate (L/s). $[m]_o$ and $[m]_e$ were kept constant, while q_o, q_e, and $[m]_e$ change with time.

4.4.2 Particle and Turbidity Analyses

Particle gradations were determined according to American Society of Testing and Materials (ASTM) D421 for the sample preparation and ASTM D422 for sieve analysis (ASTM 2002) except for the use of additional sieves and a lower drying temperature. The set of sieves was expanded from the ASTM protocol to include the 2-mm through the 25-µm (#500) sieves. Across each gradation, strained particulates were separated into 10 size classes. Dry solids separated on each of the stainless steel sieves were weighted and stored separately. Mass balances were within 2% of the initial total dry mass for each sieve analysis.

PSD for particles in the influent, effluent and overflow samples was analyzed by laser diffraction using a LISST-potable particle analyzer (Sequoia Technology) to determine particle total volume concentration (TVC) distribution for each sample. Each sample was tested no later than 4 hours after sampling and was well-mixed when analyzed for PSDs using laser diffraction. Through PSD analysis, TSS concentration in influent, effluent, and overflow at different time can be obtained for both mass based $[m]$ (mg/L) and number based $[N]$ (count/L). Turbidity for both influent and effluent was measured every 3 hours based on the ASTM D1889-00 (ASTM 2000) using turbidimeter (HACH 2100AN)
4.4.3 Particle Mass Removal Efficiency, η

From PSD analysis results, number concentration of each particle size fraction, d_j could be obtained in both influent, $[N_j]_i$, and effluent, $[N_j]_e$. Number based particle removal efficiency η_n at any time t can be calculated by the following expression.

$$\eta_n(t) = (1 - \frac{[N]_e(t)}{[N]_i(t)}) \times 100\% = (1 - \frac{\sum [N_j]_e}{\sum [N_j]_i}) \times 100\%$$ \hspace{1cm} (4-8)

In this expression, $[N]_i$ and $[N]_e$ are the number of total particles for influent and effluent, respectively, and $[N_j]$ is the number of the jth size fraction.

Mass based particle removal efficiency η_m at any time also could be estimated based on PDS analysis results.

$$\eta_m(t) = (1 - \frac{m_e(t)}{m_i(t)}) \times 100\% = (1 - \frac{\sum [N_j]_e \cdot d_j^3}{\sum [N_j]_i \cdot d_j^3}) \times 100\%$$ \hspace{1cm} (4-9)

In these equations, $[m]_i(t)$ and $[m]_e(t)$ are mass based particle concentration (mg/L) in influent and effluent at time t, respectively. Two assumptions made for η_m calculation here are that all particles are spherical, and all particles have the same specific gravity.

4.4.4 Surficial Cleaning by Sonicating Followed by Backwash and Vacuum Suction

As filtration progresses, particles will begin to fill the upper pore space and create a schmutzdecke, resulting in progressive clogging of the CPP. Clogging and concern regarding inability to restore hydraulic conductivity of permeable pavement, once clogged, are two weaknesses that are commonly cited when permeable pavement applications are considered. In order to examine the ability to restore clogged CPP hydraulic conductivity and to provide a suitable schedule for CPP cleaning, the clogging specimens were cleaned by two methods. The first method was to sonicate the CPP and then backwash the CPP. All particles strained on the
CPP surface were washed from the surface; the specimen was sonicated for 30 minutes, and then backwashed by DI water. The second method was to wash the surface, removing the schmutzdecke, and then to vacuum the surface with a suction of one atmosphere pressure (100 kPa). After the specimens were clean by one of the two methods, hydraulic conductivity was tested with tap water for each specimen to examine to what degree the original hydraulic conductivity was recovered. Based on these results and loading data, a cleaning schedule can be developed.

4.4.5 CPP Cleaning Schedule Decision

Based on hydrologic and loading data for a location, utilizing representative runoff particle concentration \([\text{mg/L}]\), the average dry days between hydrologic events is \(x\), and the average runoff duration of a rainfall events is \(t_c\) hours; the total runoff load can be determined on an annual basis. Based on the experimental measurements, the elapsed time, \(t_e\) for the hydraulic conductivity of CPP to drop below \(10^{-3}\) cm/s can be determined. The cleaning period \((p, \text{yr})\) would be

\[
p \leq \frac{t_e}{365 \cdot t_c / x} \quad (4-10)
\]

In this expression, \(t_c\) is the average runoff concentration time of rainfall events in a given location; \(t_e\) is the elapsed time for CPP to drop below an hydraulic conductivity of \(10^{-3}\) cm/s as determined by experiment, \(x\) is the average dry days in the interested location.

4.5 RESULTS AND DISCUSSION

A basic summary of the general experimental conditions and results are presented in Table 4-1. In this Table, the elapsed time to let the hydraulic conductivity drop down from initially of \(10^{-2}\) cm/s to \(10^{-5}\) cm/s, and surface strained particles under different particle loading concentrations were illustrated.
Table 4-1: Experimental matrix summary and experimental results

<table>
<thead>
<tr>
<th>Particle load.</th>
<th>Parameter</th>
<th>Experimental Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>[m]i = 50 mg/L</td>
<td>Hydraulic loading rate, Q</td>
<td>22.28 L/m²-min</td>
</tr>
<tr>
<td></td>
<td>Elapsed time t_e</td>
<td>252 hours</td>
</tr>
<tr>
<td></td>
<td>Initial hydraulic conductivity, k_i</td>
<td>3.23×10^{-2} cm/s</td>
</tr>
<tr>
<td></td>
<td>Final hydraulic conductivity, k_f</td>
<td>6.97×10^{-3} cm/s</td>
</tr>
<tr>
<td></td>
<td>Strained particle mass</td>
<td>14.0531 grams</td>
</tr>
<tr>
<td></td>
<td>Surface straining rate</td>
<td>1922.42 g/m²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Influent</td>
<td>Effluent</td>
</tr>
<tr>
<td></td>
<td>Total Volume V (L)</td>
<td>1289.46</td>
</tr>
<tr>
<td></td>
<td>Particle $[m]$ (mg/L)</td>
<td>47.25</td>
</tr>
<tr>
<td></td>
<td>Total particle mass (g)</td>
<td>60.9269</td>
</tr>
</tbody>
</table>

[m]i = 100 mg/L	Hydraulic loading	22.17 L/m²-min		
	Elapsed time t_e	197 hours		
	Initial hydraulic conductivity, k_i	3.04×10^{-2} cm/s		
	Final hydraulic conductivity, k_f	7.92×10^{-3} cm/s		
	Strained particle mass	15.2368 g		
	Surface straining rate	2084.34 g/m²		
	Influent	Effluent	Overflow	
	Total Volume V (L)	990.42	187.14	803.28
	Particle $[m]$ (mg/L)	93.58	$[m]_e = f(t)$	92.46
	Total particle mass (g)	92.68	1.97	74.28

[m]i = 200 mg/L	Hydraulic loading	22.35 L/m²-min		
	Elapsed time t_e	136 hours		
	Initial hydraulic conductivity, k_i	3.24×10^{-2} cm/s		
	Final hydraulic conductivity, k_f	5.58×10^{-3} cm/s		
	Strained particles	16.8598 g		
	Surface straining rate	2306.37 g/m²		
	Influent	Effluent	Overflow	
	Total Volume V (L)	689.71	102.24	587.47
	Particle $[m]$ (mg/L)	190.76	$[m]_e = f(t)$	189.87
	Total particle mass (g)	131.5686	1.5155	111.5860

q_0: initial infiltration rate (mL/s);
$[m]$: influent particle loading concentration;
$[m]_e$: effluent particle concentration, which declined with time during filtration;
b: first-order exponential rate constant for effluent particle concentration profile.
Mass balance errors associated with each of these experimental run were less than 10%.
Temporal profiles for influent, effluent and overflow are illustrated in Figure 4-2. The influent loading was kept constant within a range of 21 to 22 L/m²-min, the effluent flow rate declined with time while the overflow rate correspondingly increased. The hydraulic volumetric balance error was less than 1% for all experimental runs.

$$Q_i(t) = 20.152(e)^{-0.0218t} \quad R^2 = 0.91$$

$$Q_i(t) = 20.152(e)^{-0.0245t} \quad R^2 = 0.96$$

$$Q_i(t) = 20.152(e)^{-0.0356t} \quad R^2 = 0.98$$

Figure 4-2 Hydraulic loading balance with particle loading. Influent hydraulic loading was kept constant. Effluent was modeled by exponential decay models as $Q_e(t) = Q_{e0} \cdot (e)^{-bt}$ with $R^2 > 0.91$. In this expression, Q_{e0} is the original infiltrate rate of a specimen, and equals to 21.152 L/m²-min; b is the regression coefficient, equals to 0.0218, 0.0245 and 0.0356 with $[m]_i = 50$, 100 and 200 mg/L, correspondingly.

4.5.1 Temporal Hydraulic Conductivity and Flow Rate Balance

Figure 4-3 illustrates the temporal hydraulic conductivity mean profiles with measured standard deviations, $k(t)$, during the filtration period with different particle concentration loading $[m]$. Results indicate that for higher particle loadings that hydraulic conductivity decreased more...
rapidly. Results indicate that when $[m]_i = 50 \text{ mg/L}$, approximately 250 hours of loading were required for k to drop off from 3×10^{-2} to lower than 10^{-4}, while when $[m]_i = 200 \text{ mg/L}$, approximately 136 hours were required for k to drop to lower than 10^{-4}. When combined with hydrology, granulometry and mass loadings for a given location such results could be employed to predict hydraulic conductivity profiles and maintenance schedules to provide an acceptable infiltration rate.

A first-order exponential model simulated profiles of $k(t)$ for all experiments.

$$k(t) = k_0 \cdot (e)^{-bt} \quad (4-11)$$

In this expression, k_0 is the original hydraulic conductivity, and the parameter b is a first-order rate constant (1/hour) determined from linear regression.

Figure 4-3 shows that the lower the loading concentration, the smaller the rate constant. The coefficient of determination, R^2 between measured and modeled hydraulic conductivity profiles exceeded 0.91 for all experimental runs. With a constant hydraulic gradient, i, and since $k(t) = q_e(t)/(A \cdot i)$, it was hypothesized that the effluent flow rate $q_e(t)$ should also follow the exponential decay model.

$$q_e(t) = A \cdot i \cdot k_0 \cdot (e)^{-bt} = q_0 \cdot (e)^{-bt} \quad (4-12)$$

In this expression, A is specimen cross-sectional area (L^2); q_0 is the original volumetric infiltration rate (L^3/T), and equals to 1.38 mL/s in this study. From (4-12), it is possible to estimate the total infiltration volume, V_w (m^3/m^2) during any period of t_e.

$$V_w = \frac{1}{A} \int_0^{t_e} q(t) dt \quad (4-13)$$

When k declines from 3.15×10^{-2} cm/s to less than 10^{-4} cm/s, the total infiltration volume (V_w) is 74, 50, and 27 m^3/m^2 with $[m]_i = 50, 100$ and 200 mg/L, respectively.
Figure 4-3 CPP hydraulic conductivity as a function of loading time. The influent hydraulic loading was held constant as 21.152 L/m²-min. The hydraulic head was maintained at approximately 1 cm above the CPP surface. The measured temporal hydraulic conductivity profile was modeled by a first-order exponential model of the form \(k(t) = k_0 (e)^{-bt} \) with \(R^2 > 0.91 \). In this expression, \(k_0 \) is the initial hydraulic conductivity of the specimen, and equals to 3.150 × 10⁻² cm/s. \(b \) is the first-order rate constant of 0.0218, 0.0245 and 0.0356 for \([m]_i = 50, 100 \text{ and } 200 \text{ [mg/L]}, \text{ respectively.}

4.5.2 Particle Mass Balance and Particle Removal Efficiency for each Size Fraction

Particles in influent, overflow, effluent and strained on CPP surface were measured and sieved, as illustrated in Table 4-2. Mass balance error for all experimental runs was less than 10%. Figure 4-4 illustrates the measured mean particle gradations and standard deviations for influent, overflow and effluent under different loading of 50, 100, and 200 mg/L, respectively.

Results from Figure 4-4 demonstrate that particles in effluent were relatively fine, more than 94% of them are finer than 100 µm, while filtered/strained particles are coarser, with only 60% of particles finer than 100 µm. Overflow gradation was very similar to the influent gradation. Measurement results also showed that overflow concentration, \([m]_o\), was constant and very close to influent concentration \([m]_i\).
Table 4-2 Particle mass balance in influent, effluent, overflow and entrained

<table>
<thead>
<tr>
<th>Loading Particles</th>
<th>Particle Size (µm)</th>
<th>Particle mass (g)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>50 mg/L</td>
<td>influent</td>
<td>Effluent</td>
<td>Overflow</td>
<td>Meas.</td>
<td>Cal.</td>
</tr>
<tr>
<td>1000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>600</td>
<td>1.8705</td>
<td>0.0000</td>
<td>1.1652</td>
<td>0.6674</td>
<td>0.7052</td>
</tr>
<tr>
<td>300</td>
<td>3.1926</td>
<td>0.0316</td>
<td>2.3201</td>
<td>0.7862</td>
<td>0.8408</td>
</tr>
<tr>
<td>150</td>
<td>11.7041</td>
<td>0.1073</td>
<td>8.1048</td>
<td>3.1978</td>
<td>3.4920</td>
</tr>
<tr>
<td>106</td>
<td>9.6508</td>
<td>0.1970</td>
<td>7.0043</td>
<td>2.2628</td>
<td>2.4495</td>
</tr>
<tr>
<td>75</td>
<td>9.3462</td>
<td>0.2875</td>
<td>6.7581</td>
<td>2.2265</td>
<td>2.3006</td>
</tr>
<tr>
<td>53</td>
<td>8.2130</td>
<td>0.3413</td>
<td>5.9911</td>
<td>1.7438</td>
<td>1.8805</td>
</tr>
<tr>
<td>38</td>
<td>7.2869</td>
<td>0.4134</td>
<td>5.3161</td>
<td>1.4623</td>
<td>1.5574</td>
</tr>
<tr>
<td>25</td>
<td>6.5070</td>
<td>0.4329</td>
<td>4.7393</td>
<td>1.1995</td>
<td>1.3348</td>
</tr>
<tr>
<td><25</td>
<td>3.1560</td>
<td>0.3379</td>
<td>2.2904</td>
<td>0.5068</td>
<td>0.5277</td>
</tr>
<tr>
<td>Sum</td>
<td>60.9269</td>
<td>2.1489</td>
<td>43.6894</td>
<td>14.0531</td>
<td>15.0886</td>
</tr>
<tr>
<td>100 mg/L</td>
<td>influent</td>
<td>Effluent</td>
<td>Overflow</td>
<td>Meas.</td>
<td>Cal.</td>
</tr>
<tr>
<td>1000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>600</td>
<td>3.0678</td>
<td>0.0000</td>
<td>2.0658</td>
<td>0.8546</td>
<td>1.0020</td>
</tr>
<tr>
<td>300</td>
<td>4.9771</td>
<td>0.0168</td>
<td>3.3867</td>
<td>1.4027</td>
<td>1.5736</td>
</tr>
<tr>
<td>150</td>
<td>17.8323</td>
<td>0.0896</td>
<td>14.4488</td>
<td>3.1830</td>
<td>3.2939</td>
</tr>
<tr>
<td>106</td>
<td>14.5328</td>
<td>0.1342</td>
<td>11.8300</td>
<td>2.3068</td>
<td>2.5686</td>
</tr>
<tr>
<td>75</td>
<td>14.5791</td>
<td>0.2364</td>
<td>11.7686</td>
<td>2.1670</td>
<td>2.5741</td>
</tr>
<tr>
<td>53</td>
<td>12.7347</td>
<td>0.3347</td>
<td>10.3092</td>
<td>1.9462</td>
<td>2.0908</td>
</tr>
<tr>
<td>38</td>
<td>9.7503</td>
<td>0.3350</td>
<td>8.8864</td>
<td>1.5662</td>
<td>0.5289</td>
</tr>
<tr>
<td>25</td>
<td>9.8893</td>
<td>0.4222</td>
<td>7.7242</td>
<td>1.3664</td>
<td>1.7429</td>
</tr>
<tr>
<td><25</td>
<td>5.3200</td>
<td>0.4014</td>
<td>3.8644</td>
<td>0.4439</td>
<td>1.0542</td>
</tr>
<tr>
<td>Sum</td>
<td>92.6836</td>
<td>1.9703</td>
<td>74.2841</td>
<td>15.2368</td>
<td>16.4292</td>
</tr>
<tr>
<td>200 mg/L</td>
<td>influent</td>
<td>Effluent</td>
<td>Overflow</td>
<td>Meas.</td>
<td>Cal.</td>
</tr>
<tr>
<td>1000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>600</td>
<td>4.2628</td>
<td>0.0000</td>
<td>3.3984</td>
<td>0.8836</td>
<td>0.8644</td>
</tr>
<tr>
<td>300</td>
<td>6.1179</td>
<td>0.0014</td>
<td>5.1617</td>
<td>0.8642</td>
<td>0.9548</td>
</tr>
<tr>
<td>150</td>
<td>25.0243</td>
<td>0.0251</td>
<td>21.1447</td>
<td>3.4565</td>
<td>3.8545</td>
</tr>
<tr>
<td>106</td>
<td>20.3010</td>
<td>0.1876</td>
<td>17.3678</td>
<td>2.5182</td>
<td>2.7456</td>
</tr>
<tr>
<td>75</td>
<td>21.0773</td>
<td>0.2268</td>
<td>17.9472</td>
<td>2.7648</td>
<td>2.9033</td>
</tr>
<tr>
<td>53</td>
<td>18.2617</td>
<td>0.2315</td>
<td>15.6047</td>
<td>2.1761</td>
<td>2.4255</td>
</tr>
<tr>
<td>38</td>
<td>15.3146</td>
<td>0.2765</td>
<td>13.0126</td>
<td>1.7795</td>
<td>2.0255</td>
</tr>
<tr>
<td>25</td>
<td>14.0515</td>
<td>0.3125</td>
<td>11.8946</td>
<td>1.6423</td>
<td>1.8444</td>
</tr>
<tr>
<td><25</td>
<td>7.1573</td>
<td>0.2541</td>
<td>6.0543</td>
<td>0.7746</td>
<td>0.8489</td>
</tr>
<tr>
<td>Sum</td>
<td>131.5686</td>
<td>1.5155</td>
<td>111.5860</td>
<td>16.8598</td>
<td>18.4671</td>
</tr>
<tr>
<td>Balance error ε (%)</td>
<td>6.86</td>
<td>7.26</td>
<td>8.70</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 4-4 Particle size gradations for influent, effluent, overflow and particles strained by the CPP. Plot (a) compares the measured influent particle size gradation as compared to the targeted influent gradation. Plot (b), (c), and (d) are gradations for influent, effluent, overflow and surface strained particles under different particle loading concentration of 50, 100, and 200 mg/L, respectively. Gradations for influent and overflow are nearly identical.

Since both $[m]_i$ and $[m]_o$ were nearly constant during filtration, effective influent particle loading $[m]_{ie}$, can be calculated.

$$[m]_{ie} = \frac{([m]_i \cdot V_e - [m]_o V_o)}{V_e}$$ (4-14)

In this expression, V_e is total effluent volume. Effective particle mass loading (M_{ie}) on the CPP surface within elapsed time, t_e is $M_{ie} = [m]_{ie} \times V_e$.

Based on sieve analysis results, particle removal efficiency of each size fraction under different particle loading concentration of 50, 100 and 200 mg/L determined, was illustrated in Table 4-3 and Figure 4-5. Results from the table and figure illustrate that removal efficiency of coarser particles is higher than that of finer particles under a fixed concentration loading. With
$[m]_i = 50 \text{ mg/L}$, particle remove efficiency (η) for those finer than 25 μm is 50%, while for those coarser than 100 μm, η is as high as 90%. For those particles coarser than 300 μm, removal efficiency was nearly 100%, namely no particles coarser than 300 μm infiltrated through CPP specimens.

For each particle size fraction, removal efficiency increased with the higher loading concentration, resulting a total removal efficiency of 92.21% when $[m]_i = 200$ mg/L, compared to 88.74% and 83.76% with $[m]_{i0} = 100$ and 50 mg/L, respectively. Another finding is that more fine particles were strained on the CPP surface with higher particle concentration loading. The thicker inorganic schmutzdecke formed at higher concentration loading, resulted in more particles strained on CPP surface forming a progressively thicker schmutzdecke helping to prevent finer particles infiltrating into the CPP specimens. However, this increased efficiency came at the expense of more rapid reductions in hydraulic conductivity.

Table 4-3 Particle removal efficiency for different size fractions

<table>
<thead>
<tr>
<th>Sieve Size ((\mu)m)</th>
<th>50</th>
<th>100</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M_{ie} (g)</td>
<td>M_e (g)</td>
<td>η (%)</td>
</tr>
<tr>
<td>1000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>100.00</td>
</tr>
<tr>
<td>600</td>
<td>0.4062</td>
<td>0.0000</td>
<td>100.00</td>
</tr>
<tr>
<td>300</td>
<td>0.6933</td>
<td>0.0286</td>
<td>95.87</td>
</tr>
<tr>
<td>150</td>
<td>2.5415</td>
<td>0.1113</td>
<td>95.55</td>
</tr>
<tr>
<td>106</td>
<td>2.0956</td>
<td>0.1970</td>
<td>90.60</td>
</tr>
<tr>
<td>75</td>
<td>2.0295</td>
<td>0.2875</td>
<td>85.83</td>
</tr>
<tr>
<td>53</td>
<td>1.7834</td>
<td>0.3413</td>
<td>80.86</td>
</tr>
<tr>
<td>38</td>
<td>1.5823</td>
<td>0.4134</td>
<td>73.87</td>
</tr>
<tr>
<td>25</td>
<td>1.4130</td>
<td>0.4329</td>
<td>69.37</td>
</tr>
<tr>
<td><25</td>
<td>0.6853</td>
<td>0.3379</td>
<td>50.69</td>
</tr>
<tr>
<td>Total</td>
<td>13.2300</td>
<td>2.1489</td>
<td>83.76</td>
</tr>
</tbody>
</table>

M_{ie}: effective influent particles, g;
M_e: effluent particles, g;
η: removal efficiency, $\eta = (1 - M_e / M_{ie}) \times 100\%$
4.5.3 Strained Particles on CPP Surface

A schmutzdecke was formed on each tested CPP specimen, even at 50 mg/L. It was found that the thickness of the schmutzdecke on all CPP surface was about 1.5-1.8 mm at a point in time when the hydraulic conductivity dropped down to less than 10^{-4} cm/s, indicating that the schmutzdecke itself was a significant factor in clogging. Strained particle mass and gradation were illustrated in Table 4-2 and Figure 4-4. With known particle concentration of $[m]_i$, $[m]_o$, and $[m]_e(t)$, as illustrated in the plot a of Figure 4-6, and known flow rate of q_i, $q_o(t)$ and $q_e(t)$, as illustrated in Figure 4-2, strained particles during any period could be determined through application of equation (4-7). Plot b of Figure 4-6 illustrates results of cumulative strained particles for each concentration. Effluent concentrations in the plot a were modeled by a first-order exponential model.

$$[m]_e = [m]_o + a \cdot (e)^{-bt}$$ (4-15)
In this expression, the parameter \([m]_0\), \(a\), and \(b\) depend on influent particle gradation and concentration. When influent loading \([m]_i = 50\ mg/L\), \([m]_0 = 4.07\ mg/L\), \(a = 13.58\ mg/L\) and \(b = -0.0365\ hour^{-1}\); when \([m]_i = 100\ mg/L\), \([m]_0 = 3.69\ mg/L\), \(a = 35.28\ mg/L\) and \(b = -0.071\ hour^{-1}\); when \([m]_i = 200\ mg/L\), \([m]_0 = 3.47\ mg/L\), \(a = 49.59\ mg/L\) and \(b = -0.0861\ hour^{-1}\).

Figure 4-6 Calculation mechanism of strained particles on CPP surface based on equation (4-7) with know particle concentration and flow rate of influent, effluent and overflow.
Based on results from (4-7), strained particle mass during the filtration period illustrated in the plot b of Figure 4-6 were modeled through a power law function.

\[M_s = \alpha (1 - e^{-\beta t}) \]

(4-16)

In this expression, \(\alpha \) and \(\beta \) were determined by loading particle concentration. \(\alpha = 16.38, 16.71 \) and 17.69 (mg), respectively, with \([m]_i = 50, 100 \) and 200 mg/L, while \(\beta = -0.013, -0.0143 \) and -0.0273 (hour\(^{-1}\)), respectively, with the corresponding loading concentration.

4.5.4 Particle Breakthrough from CPP

Figure 4-7 illustrates the ratio of the number of particles in effluent \([N]_e\) to that in influent \([N]_i\).

\[\frac{[m]}{[n]} = \frac{[N]_e}{[N]_i} \]

Figure 4-7 [TSS] removal efficiency at different time based on PSD analysis. \([N]\) and \([N_0]\) are particle number concentration in effluent and influent (count/L), respectively. \([m]_i\) is particle mass concentration in influent. \(\eta_n\) and \(\eta_m\) are removal efficiency based on mass and number, respectively, calculated based on equation (4-5) and (4-6).
It was found that particle removal efficiency increased with higher loading particle concentration. When \([m]_i = 50\ \text{mg/L}, \ \beta_m = 46.67\%\) and 87.95\% after 10 minutes and 200 hours of filtration, respectively. When \([m]_i = 100\ \text{mg/L}, \ \beta_m = 51.48\%\) and 94.16\% after 10 minutes and 200 hours of filtration, respectively. When \([m]_i = 200\ \text{mg/L}, \ \beta_m = 57.56\%\) and 98.29\% after 10 minutes and 130 hours of filtration, respectively. Based on PSD analysis for influent and effluent samples, particle mass concentration removal efficiencies based on mass and number are also illustrated in Figure 4-7.

After 3 hours of filtration, no particles coarser than 100 \(\mu\text{m}\) were measured in the effluent; after 6 hours, no particles coarser than 75 \(\mu\text{m}\) measured in the effluent; after 80 hours, no particles coarser than 50 \(\mu\text{m}\) measured in the effluent, while at the end of each filtration test when \(k\) dropped off lower than \(10^{-4}\ \text{cm/s}\), no particle coarser than 25 \(\mu\text{m}\) were measured in the effluent.

4.5.5 Turbidity and SSC

Since influent concentration was kept constant, influent turbidity remained nearly constant. For effluent, however, with more and more particles strained, particulate mass concentration in effluent decreased with time, resulting in a decrease of effluent turbidity. Turbidities for influent and effluent are illustrated in Figure 4-8. Results indicate that the turbidity at the end of each experimental run decreased to approximately 4 NTU for all influent particle loadings of 50, 100 and 200 mg/L.

Comparing the results of turbidity and suspended solid concentration (SSC) from PSD analysis, a correlation between those two parameters for effluent was found, as illustrated in Figure 4-9. A power law was employed hereby to model the relationship.

\[
SSC [\text{mg} / \text{L}] = 0.3678 \times [\tau]^{1.4051}
\]

(4-17)
In the above expression, τ is turbidity (NTU), and SSC is in mg/L. Through this model, for the given gradation, particle mass concentration can be obtained from measured turbidity.

Figure 4-8 Turbidity in influent and effluent for different particle loading concentration

Figure 4-9 Relationship between effluent turbidity and SSC. The relationship between turbidity (τ) and particle mass concentration as SSC was modeled by a power law model.
4.5.6 Hydraulic Backup by Surface Vacuuming and Sonicating-Backwash Cleaning

With a schmutzdecke formed on each CPP surface and hydraulic conductivity reduced to less than 10^{-4} cm/s two cleaning methods were examined. Three of the clogged specimens were cleaned by a sonicating/backwash method as described, while the other 3 specimens were cleaned by a vacuuming method. Hydraulic conductivity then was measured for each cleaned specimens. It was found that the sonicating/backwash method and the vacuum method recovered the hydraulic conductivity to more than 96% of k_0. Figure 4-10 illustrates these results for recovered hydraulic conductivity after cleaning. It was found that, for a given influent particle gradation, the loading concentration (50, 100 or 200 mg/L) had little influence on the effectiveness of vacuum or backwashing cleaning method. However, it should be identified that at present, a sonicating/backwash method is not yet a well-developed methodology in practice. In reality, it is very hard to backwash the pavement. The vacuum method provides an effective and practical method for permeable pavement cleaning.

4.5.7 Estimation of Cleaning Schedule for CPP Maintenance

The evaluation of surface cleaning and the measurement of temporal hydraulic conductivity established a foundation for surface cleaning schedule estimation. An example of a typical cleaning schedule for a location is illustrated. Assume this location has a typical runoff particle concentration of 100 mg/L of the particle size gradation specified in this study and CPP characteristics. This location has an average dry period of 4 days and a runoff duration that is 3 hours for each runoff event. This results in a total annual loading time of 274 hours. Based on the experimental measurements, it will take 156 hours for CPP to drop its k to lower than 10^{-3} cm/s under the particle loading concentration of 100 mg/L. Using equation (4-10), the maintenance period would be $156/274 \approx 0.57$ year.
Figure 4-10 these plots show the hydraulic conductivity (k) of clogged CPP materials could be recovered up to 96% by vacuum cleaning method, and 99% by sonicating-backwashing method. It was found that, for a given influent particle gradation, the loading concentration (50, 100 or 200 mg/L) had little influence on the effectiveness of vacuum or backwashing cleaning method.
4.6 SUMMARY AND CONCLUSIONS

Based on the experimental measurements and modeling, the filtration and clogging behavior of permeable pavement (cementitious permeable pavement, CPP) were examined. This behavior was examined for 6 specimens recovered from an in-situ CPP slabs that served as the infiltrating and filtration interface during a period of 3 years for a partial exfiltration reactor (PER) in Cincinnati, OH.

CPP particle removal efficiency illustrated a dependence on loading concentration. For the given loading gradation, designated a sandy silt on a textural basis, when \[m_{i0} = 200 \text{ mg/L}, \eta_m = 92.21\%; \text{ when } m_{i0} = 100 \text{ mg/L}, \eta_m = 88.74\% \text{ and } \eta_m = 83.76\% \text{ for } m_{i0} = 50 \text{ mg/L}, \] respectively. For particles coarser than 300 \(\mu \)m, removal efficiency, \(\eta \) was 100% and there was no particle breakthrough, while for those particles finer than 25 \(\mu \)m, \(\eta \) was approximately 50%.

Particle mass concentration in effluent was measured and predicted by a first-order exponential model for each particle loading concentration. Based on this model, the particle mass concentration in the effluent after infiltrating through CPP could be estimated. The first-order rate constant, whether for CPP effluent mass concentration or CPP hydraulic conductivity was a function of particle gradation (held constant), CPP pore properties (held constant and uniform for all specimens), loaded particle properties including gradation (held constant) and influent concentration, and CPP pore characteristics, such as effective porosity, pore size distribution, and specific surface area. From experimental measurements, when schumutzdecke thickness was more than 1.5 mm on the CPP surface, the infiltration rate of CPP dropped to less than \(10^{-4} \) cm/s for the given gradation and hydraulic loading.

A methodology was developed to determine the particle mass strained on the CPP surface during any filtration and clogging period. The methodology for strained particle estimation as
well as the temporal hydraulic conductivity model provides a foundation for prediction of the
CPP clogging potential and for determination of a CPP cleaning schedule.

The sonicating/ backwash cleaning method recovered up to 99% of the CPP hydraulic
conductivity, while the vacuuming method recovered 96%. At an event mean loading of 100
mg/L particle mass loading for the tested gradation, the CPP surface could be cleaned once every
6 months by vacuuming to restore infiltration capacity.

Turbidity was measured before and after runoff infiltrating through CPP. It was found
that the effluent turbidity was significantly reduced. The CPP produced an effluent turbidity of
less than 10 NTU after 20 hours of filtration with a final turbidity of 4 NTUs at the end of each
run. A turbidity-TSS relationship was developed based on experimental measurements. A power
law model was employed to describe this correlation.

4.7 NOTATION

The following symbols are used in this Chapter.

\[[M_{\text{iss}}] \] = mass concentration of total solids suspension (M/L^3);
\[[N_j]_i \] = particle number concentration for each particle size fraction in influent (/L^3);
\[[N_j]_e \] = particle number concentration for each particle size fraction in effluent (/L^3);
\[[N]_i \] = total number concentration in influent (/L^3);
\[[N]_e \] = total number concentration in effluent (/L^3);
\[[m]_{i0} \] = designed influent particle concentration (mg/L);
\[[m]_i \] = influent particle concentration (M/L^3);
\[[m]_e \] = effluent particle concentration (M/L^3);
\[[m]_o \] = particle concentration in overflow (M/L^3);
A = specimen cross-sectional area (L^2);
\(M_e\) = total particles in effluent (M);
\(M_i\) = total particle loaded on the CPP surface (M);
\(M_o\) = total particles in overflow (M);
\(M_s\) = total particles strained on CPP surface (M);
\(T_{ur}\) = turbidity (NTU);
TSS = total solid suspension;
\(V_d\) = the volume of deposited materials (L^3);
\(V_e\) = total effluent volume (L^3);
\(V_i\) = volume of the influent samples (L^3);
\(V_T\) = the total volume of the specimen (L^3);
a, b = coefficient of the model predicting the effluent mass concentration;
d_g = diameter of the spherical collector (L);
d_j = diameter of each particle size fraction (M);
d_m = media diameter to
d_p = suspended particles size
\(k\) = hydraulic conductivity (cm/s);
\(k_0\) = average initial permeability;
\(m_i\) = the mass obtained from influent samples (mg)
\(m_e\) = the mass obtained from effluent samples (mg)
p = the cleaning period (T);
\(q_e\) = effluent flow rate (L^3/T);
\(q_i\) = influent flow rate (L^3/T);
\(q_0\) = original infiltration rate (L^3/T);
\(q_o \) = overflow flow rate (L\(^3\)/T);
\(t_c \) = average runoff concentration time (T);
\(t_e \) = test period of filtration (T);
\(x \) = average drying days (T)
\(\alpha \) and \(\beta \) = coefficient of the model predicting the strained particles on the CPP surface;
\(\eta \) = particle removal efficiency (%)
\(\phi_t \) = total porosity (%);
\(\sigma \) = specific deposit.

4.8 REFERENCES

CHAPTER 5 RUNOFF pH, ALKALINITY ELEVATION AND PHOSPHORUS REMOVAL OF CPP

5.1 INTRODUCTION

There has been a significant shift from interest solely in water quantity issues, such as flood defense and water supply, towards a more balanced concern for both quantity and quality aspects with the water environment (Pratt 1999). Compared to asphalt porous pavement, CPP has its outstanding advantages for environmental benefits (Fach et al. 2002). CPP can not only control the quantity of runoff as asphalt porous pavement does by reducing the peak flow rate and volume of runoff, it also has the capability to control the quality of runoff by removing particulate matters, metals, mineral oils, soluble and anthropogenic pollutants from runoff (Balades et al. 1995; Field 1982; Stotz and Kruth 1994; Teng and Sansalone 2004), and neutralize watershed acid by elevation of alkalinity and pH values in runoff (Fach et al. 2002; Li et al. 1999; Park and Tia 2004; Pratt 1999). For example, Fach et al. (2002) presented that CPP was a suitable method to ensure the retention of heavy metals, the acid neutralization, and phosphorus (P) and nitrogen (N) removal. Regarding the risk that heavy metals are available for infiltration into groundwater because of acidic conditions, the final-pH-value of CPP is above the critical-pH value of 6.5 (Fach et al 2002). The retention capacity of CPP for copper is up to 90%, and the retention capacity for mineral oil type hydrocarbons (MOH) is higher than 99% (Fach et al 2002; Balades et al. 1995; Stotz and Krauth 1994). Park and Tia (2004) presented that total phosphorus (TP) removal efficiency is up to 66% (14 days) to 96% (7 days) for fresh made CPP.

Many particles with a diameter less than 60 µm absorb several pollutants, such as mineral oil type hydrocarbons (MOH), polycyclic aromatic hydrocarbons (PAH), phosphorus, nitrogen or heavy metals (Colandini et al. 1995; Fach et al. 2002). In-situ partial exfiltration reactor (PER) has been developed combining the advantage of cementitious porous pavement, infiltration
trenches and engineered filtration. In which CPP functions as initial control preventing solids from entering the PER (Teng and Sansalone, 2004).

5.2 OBJECTIVES

This chapter focuses on CPP functions as a reactive and absorptive material for acid neutralization and phosphorus removal from stormwater. The first objective is to measure the pH elevation characteristics of CPP. The second objective is to measure the alkalinity elevation properties of CPP. The third objective is to evaluate the phosphorus removal properties of CPP, including TP, TDP and TPP removal efficiency. The last objective is to investigate the relationship of removed total solids suspension (TSS) and total particulate phosphorus (TPP).

5.3 BACKGROUND

5.3.1 Role of Alkalinity and pH Elevation

Alkalinity is the concentration of bases dissolved in water and expressed as parts per million (ppm) or milligrams per litre (mg/L) as calcium carbonate (CaCO₃). These bases are usually bicarbonates (HCO₃⁻) and carbonates (CO₃²⁻), and, of high pH, hydroxide (OH⁻) ions. The following chemical equilibrium equations show the relationships among the three kinds of alkalinity. Total alkalinity is the sum of all three kinds of alkalinity.

\[
CO_2 + H_2O \rightleftharpoons H_2CO_3 \rightleftharpoons H^+ + HCO_3^- \rightleftharpoons CO_3^{2-}
\] (5-1)

With the urban development, more and more acidic pollutants flow to watersheds and deteriorate our water environment. The main acidic source comes from industry process and urban activity (Zivica and Bajza 2001). The presence of alkalinity neutralizes acids and alkalinity is added to water as a buffer. For example, in waters with low alkalinity, pH might fluctuate from 5 or lower to as high as 9 or above; while in high alkalinity waters, pH might fluctuate from about 7.5 to 8.5. Alkalinity levels of 20-200 mg/L are typical of fresh water. A total alkalinity
level of 100-200 mg/L will stabilize the pH level in a stream. Levels below 20 mg/L indicate that
the system is poorly buffered, and is very susceptible to changes in pH from natural and human-
caused sources. Above pH 9.5 (usually well above pH 10), OH$^-$ alkalinity can exist or CO$_3^{2-}$ and
OH- alkalinities can coexist together.

5.3.2 Role of Phosphors Removal

The excess release of phosphorus into surface water is of an increasingly environmental
concern. Extended phosphorus (P) have been input to rivers, lakes and oceans and other small
size water bodies from over-fertilization of urban and right-of-way areas, industrial and
municipal sources (such as detergents) (Spivakov et al. 1999; Teng et al. 2004). Because it is an
essential nutrient for growth of organisms, phosphorus is a major cause of eutrophication in most
ecosystems, subsequently followed by massive algal blooms, fish suffocation and other
undesired effects (Spivakov et al. 1999). The critical concentration of P above which the growth
of algae and other aqueous plants accelerates, is suggested as 0.01 mg/L for dissolved P and 0.02
mg/L for total P (Kim et al. 2003). Phosphorus in the elemental form is particularly toxic and is
subject to bioaccumulation in much the same way as mercury (Spivakov et al. 1999). In
comparison, dissolved P off I-10 of City Park in Baton Rouge can be as high as 1.0 mg/L and
total P can be as high as 3.0 mg/L as an event mean concentration (EMC).

Phosphorus in natural waters is divided into two component parts: dissolved phosphorus
(DP) and particulate phosphorus (PP) (Rigler 1973), and the sum of DP and PP is termed total
phosphorus (TP). Dissolved and particulate phosphorus are differentiated by whether or not they
pass through a 0.45 micron membrane filter (Carlson and Simpson 1996). It was found 60-80% of
phosphorus in road runoff to be associated with particulates (Hvitved-Jacobsen et al. 1994).
Phosphorus removal from wastewater has been widely investigated (Teng and Sansalone 2004). Phosphorus removal from stormwater is either adsorption or precipitation.

One of the important advantages of CPP over asphalt permeable pavement (APP) is the capability to elevate rainfall-runoff alkalinity, which neutralizes acids in rainfall-runoff, allows metal elements to precipitate in the PER, because partitioning varies as a result of runoff pH and alkalinity (Teng and Sansalone 2004), and reduces metal toxicity.

5.4 METHODOLOGY

5.4.1 Tested Specimens

Cored specimens were taken from CPP material constructed as the surface interface of a partial exfiltration reactor (PER) in Cincinnati, OH. The PER is a linearly-extended in-situ rainfall-runoff unit operation and process, as illustrated in Chapter 2. The pore characteristics, including total porosity ϕ_t, effective porosity ϕ_e, pore size distribution (PSD)$_{pore}$, specific surface area of (SSA)$_{s}$, (SSA)$_{pt}$, and(SSA)$_{pe}$, and tortuosity (L_e/L) were evaluated using X-ray tomography. Details of the examination and results of pore characteristics are also illustrated in Chapter 2.

Totally 3 groups of specimens were employed in this chapter.

Group I: 3 specimens taken from the PER surface, and exposed to rainfall-runoff for 3 years, (mean suspended solids ≈ 200 mg/L, total porosity $\approx 25\%$);

Group II: 3 specimens taken from the PER surface, and exposed to rainfall-runoff for 3 years, coated with aluminum, (total porosity $\approx 25\%$), and

Group III: 3 specimens taken from control CPP material at the site (urban Cincinnati, Ohio) exposed to only rain for 3 years (mean suspended solids < 1 mg/L, total porosity $\approx 21\%$).
5.4.2 Aluminum Coating

The 3 specimens of the Group II were coated with aluminum. Specimens were dip into aluminum nitrate (ALNO₃) solution with concentration of 2 [mol], and were sonicated for 30 minutes and then were dried in hot room with 40°C.

5.4.3 Influent Profile

Influent runoff was collected from the site off I-10 at the Lake Park in Baton Rouge, LA. The initial alkalinity concentration is about 40 mg/L (in CaCO₃), [P] is about 0.01 mg/L, and particle concentration about 60 mg/L. In order to simulate the typical condition of runoff happening in Baton Rouge, KH₂PO₃ was added so that [TDP] concentration of 1.0 mg/L, and [TP] of 1.45 mg/L were achieved. Influent runoff properties were listed in Table 5-1.

Table 5-1 Influent properties

<table>
<thead>
<tr>
<th>pH₀</th>
<th>[Alk]₀ (mg/L)</th>
<th>[TP]₀ (mg/L)</th>
<th>[TDP]₀ (mg/L)</th>
<th>[TPP]₀ (mg/L)</th>
<th>[m]₀ (mg/L)</th>
<th>[N]₀ (count/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5-7.6</td>
<td>41.5-44.8</td>
<td>1.44-1.49</td>
<td>0.94-1.00</td>
<td>0.47-0.50</td>
<td>80</td>
<td>10 × 10⁹</td>
</tr>
</tbody>
</table>

[Alk]₀: influent alkalinity concentration; [m]₀: influent particle mass concentration; [N]₀: influent particle number concentration.

5.4.4 Experimental Process

The same setup for hydraulic conductivity was used for soluble test, as illustrated in Chapter 3. Specimen sidewall was packed by waterproof gray tape to avoid boundary effects. During testing, influent water was pumped from the tank to infiltrate through the CPP specimen cylinder by a peristaltic pump (Masterflux 7520-40). Influent flow rates were controlled by regulating the speed of the peristaltic pump to keep an overflow during the whole test period, so that a certain constant head is maintained. In this study, hydraulic loading rate, Q, was
maintained constant of 31 L/m²-min for group I specimens, for group II, Q = 30.2 L/m²-min, and for group III, Q = 25.4 L/m²-min.

Influent and effluent samples were collected in 45-minute interval, and a total of 9 groups of samples (influent and effluent) were collected for each specimen in each 6 hour duration event. 7 events were conducted for each specimen. Each 6 hour duration event was followed by 4 days of room temperature drying.

pH, alkalinity, total phosphorus (TP), total dissolved phosphorus (TDP) and particle size distribution (PSD) were measured for both influent and effluent samples.

5.4.5 pH Value Measurements

pH for both influent and effluent samples were measured according to ASTM D1293-99(2005) Standard Test Methods for pH of Water (2005). An Orion 190-A meter with a Silver/Silver Chloride (Ag/AgCl) combination electrode was used to measure pH. To ensure quality of data measurements, the probes were calibrated daily with fresh buffer. The pH of the buffer was measured before measuring the pH of the samples.

5.4.6 Alkalinity Measurement

Alkalinity in both influent and effluent were measured according to Test Method B-Color change titration of ASTM D1067-02 Standard Test Methods for Acidity or Alkalinity of Water (ASTM 2005). Influent and effluent samples were titrated to an end point of pH 4.5, using 0.02N sulfuric acid in a Class-A buret to determine alkalinity.

\[
\text{Alkalinity, mg CaCO}_3/L = \frac{A \cdot N \cdot 50,000}{\text{mL sample}}
\]

In this expression, A is standard acid used in mL, and N = 0.02, normality of standard acid.

One blank of DI water was titrated per set of 20 replicate samples as quality control of the test procedure.
5.4.7 TP, TDP and TPP Measurement

To measured total dissolved phosphorus (TDP) in influent and effluent, the following 3 steps were followed. (1). Filtrate of samples through 0.45 µm membrane filter to removal particulate phosphorus bounded on the particles coarser than 0.45 µm; (2). Conduct acid digestion of samples using persulfate digestion method (PDM) described in Standard Methods (SMEWW, 1992), and (3). Measure TDP in samples using a colorimetric method, which means the color of treated sample reflects the concentration of the parameter.

The process of PDM is summarized as follows.

1) Fill 60 mL of thoroughly mixed sample to hot plate with volume mark lines;
2) Add 0.05 mL (1 drop) Phenolphthalein indicator aqueous solution;
3) Add 1 mL H2SO4 solution and 0.4 g solid (NH4)2S2O8;
4) Boil gently on a preheated hot plate until a final volume of 10 mL is reached.
5) Cool, dilute to 30 mL with distilled water;
6) Add 0.05 mL (1 drop) Phenolphthalein indicator aqueous solution, and neutralize to a faint pink color with NaOH.
7) Make up to 60 mL with distilled water.
8) Determine phosphorus by colorimetric method. In this method, PhosVer 3 phosphate reagents made by Hach Company were utilized to indicate phosphorus concentration, and the Spectrophotometer (Hach DR/2000) was used to measure the phosphorus concentration.

The procedure of TP measurement follows the same steps as TDP except that no filtration step needed. As long as TP and TDP were measured, total particulate phosphorus (TPP) could be calculated as the follows.
\[[TPP] = [TP] - [TDP] \] \hspace{1cm} (5-3)

5.4.8 Particle Size Distribution (PSD)

The purpose of measuring PSD was to examine the P removal efficiency and PSD correlation. PSD was analyzed using LISST-potable particle analyzer (Sequoia Tech.) for suspended particles in both influent and effluent to determine particle volume concentration distribution, as illustrated in Chapter 4. All samples were sonicated before testing. Tests were duplicated to the validation of the instrument measurements.

PSD measures the volume of particles for each size fraction. Based on the volume, particle number and particle mass could be obtained through assuming specific gravity, as illustrated in Chapter 4. Total surface area (M²) could be calculated as the follows.

\[SA = \sum_i 4\pi(D_i/2)^2 \cdot n_i \] \hspace{1cm} (5-4)

In this expression, \(n_i \) is the particle number of each size fraction, and \(D_i \) is the particle diameter for each size fraction.

5.5 RESULTS AND DISCUSSION

5.5.1 pH Elevation after Infiltrating through CPP

Figure 5-1 illustrates pH elevation after infiltrating through CPP materials for all 7 events. With influent pH of 7.5, the first effluent flush of pH elevated to 8.62, 10.25, and 8.40 after infiltrating through specimens of Group I, II and III, respectively. During each 6 hour event, effluent pH decrease eventually with time. The effluent pH follows a similar decay trend for all 7 events, which could be modeled by an exponential decay model.

\[pH = pH_0 + a \cdot (e)^{-bt} \] \hspace{1cm} (5-5)

In this expression, \(pH_0 \) is determined by the influent \(pH_0 = 7.5 \) in this study. Coefficient \(a \) and \(b \) are determined by CPP chemical properties.
Figure 5-1 pH elevation properties of CPP materials. Influent pH value was kept constant in each event duration as 7.6.
As illustrated in Figure 5-2, for the three groups of specimens, \(a = 0.78, b = 0.0041 \) for Group I specimens; \(a = 2.64, b = 0.0280 \) for Group II specimens, and \(a = 0.73, b = 0.0036 \) for Group III specimens, respectively.

Figure 5-2 pH value after infiltration through CPP materials. Effluent pH values during 6 hour filtration were modeled by an exponential decay model as
\[
\text{pH} = \text{pH}_0 + a(e^{-bt})
\]
with \(R^2 > 0.95 \), in this expression, \(\text{pH}_0 \) was determined by influent pH value, and equaled to 7.68 in this study. For group I specimens exposed to rainfall-runoff for 3 years, parameters in the model \(a = 0.78 \), and \(b = 0.0041 \), for group II specimens coated with aluminum, \(a = 2.64 \), and \(b = 0.0028 \), while for group III specimens exposed to rain only for 3 years, \(a = 0.73 \), and \(b = 0.0036 \).

5.5.2 Alkalinity Elevation Properties of CPP

Alkalinities were elevated after infiltrating through CPP, showing the similar trend as pH value did. When influent alkalinity was about 44 mg/L, Group I specimens elevated alkalinity of 4.45-4.98 mg/L; Group II specimens elevated 25.87 mg/L, and Group III specimens elevated 10.22 mg/L. The average elevation rate for Group I was 11.6%, for group II 42.2% and Group III 14.5%. Figure 5-3 illustrates alkalinity elevation after infiltrating through CPP materials of all 7 events. During each 6-hour event, effluent alkalinity concentration decreased eventually with
time. The effluent alkalinity concentration follows a similar decay trend for all 7 events, which could be modeled by an exponential decay model.

\[\text{[alk]} = [\text{alk}]_0 + c \cdot (e)^{-d \cdot t} \quad (5-6) \]

In this expression, [alk] and [alk]_0 represent alkalinity concentration in effluent and influent. [alk]_0 was kept constant during each event, and equals to 41.2-44.5 mg/L in this study. Coefficient \(c \) and \(d \) are determined by CPP chemical properties. For the three groups of specimens, \(c = 8.91, \quad d = 0.0189 \) for Group I specimens; \(c = 31.38, \quad d = 0.005 \) for Group II specimens, and \(c = 15.91, \quad d = 0.0076 \) for Group III specimens, respectively, as illustrated in Figure 5-5.

5.5.3 TDP Removal Efficiency of CPP

With influent [TDP]_0 = 1.0 mg/L, the average TDP removal efficiency of Group I was 24.2%. The [TDP] of the first flush effluent for Group I is about 0.6 mg/L, and the end [TDP] was about 0.8 mg/L after 6 hour running. For Group II coated with aluminum, the average [TDP] removal efficiency was as high as 82.3%; [TDP] of the first flush effluent of that group is only 0.06 mg/L, and the end [TDP] after 6 hour running was about 0.25 mg/L. For Group III exposed to rainfall only, the average [TDP] removal efficiency was about 28.6%; [TDP] of the first flush effluent of that group is about 0.6 mg/L, and the end [TDP] after 6 hour running was about 0.72 mg/L. Figure 5-4 shows [TDP] in both influent and effluent for all 7 events with 6 hour duration for each. It was found that the aluminum coated specimens had very high capacity to remove TDP. [TDP] in effluent could be modeled by an exponential model, as illustrated in Figure 5-7.

\[[\text{TDP}] = [\text{TDP}]_0 + p_0 (e)^{-\beta \cdot t} \quad (5-7) \]

In this expression, \([\text{TDP}]_0 = 0.95-1.0 \) mg/L. For group I \(p_0 = 0.3004, \quad \beta = 0.0013 \); for group II, \(p_0 = 0.8792, \quad \beta = 0.0006 \), while for group III, \(p_0 = 0.2911, \quad \beta = 0.0006 \).
Figure 5-3 Alkalinity elevation properties of CPP specimens.
Figure 5-4 Total dissolved phosphorus (TDP) removal properties of CPP. Influent [TDP] was kept constant as 1.0 mg/L.
Figure 5-5 Alkalinity after infiltration through CPP materials. Effluent alkalinity concentrations during 6 hour filtration were modeled by an exponential decay model as \([\text{alk}] = [\text{alk}]_0 + c(e)^{-d.t}\) with \(R^2 > 0.96\), in this expression, \([\text{alk}]_0\) was determined by influent alkalinity concentration, and equaled to 45 mg/L in this study.

Figure 5-6 Effluent [TDP] after infiltration through CPP materials. Effluent [TDP] during 6 hour filtration were modeled by an power law model as \([\text{TDP}] = [\text{TDP}]_0 - p_0 x (e)^{-\beta.t}\) with \(R^2 > 0.91\), in this expression, \([\text{TDP}]_0\) is influent [TDP], and equals to 0.95-1.0 mg/L. For group I specimens exposed to rainfall-runoff for 3 years, \(p_0 = 0.3004, \beta = 0.0013\) with \(R^2 = 0.90\); for group II specimens coated with aluminum, \(p_0 = 0.8792, \beta = 0.0006\) with \(R^2 = 0.95\), while for group III specimens exposed to rain only for 3 years, \(p_0 = 0.2911, \beta = 0.0006\) with \(R^2 = 0.91\).
5.5.4 TP Removal Efficiency of CPP

TP removal procedure was illustrated in Figure 5-7. With influent [TP] ≈ 1.45 mg/L, the average TP removal efficiency was 46%, 84% and 49% for Group I, II and III, respectively. For Group I and III specimens without coating, the effluent [TP] changed in a very narrow range of 0.78-0.82 mg/L. The reason is that [TDP] removal efficiency decreased eventually, while the [TPP] removal efficiency increased with time, leading to a relatively constant removal during each testing, as illustrated in Figure 5-8. Removed [TP] was the combination of [TDP] and [TPP].

For Group III, [TP] was as low as 0.1-0.28 mg/L, demonstrating that aluminum coated CPP has a very high capability for phosphorus removal. Figure 5-8 illustrates the removed [TP], [TDP] and [TPP]. Effluent [TPP] during 6 hour filtration were modeled by an exponential model, as Figure 5-9 illustrated.

\[
[TPP] = [TPP]_0 - q_0 (e^\alpha t)
\]

(5-8)

In this expression, \([TPP]_0\) is the TPP concentration of influent, equals to 0.48 mg/L. Coefficient \(q_0\) and \(\alpha\) are determined by CPP chemical properties. For group I specimens exposed to rainfall-runoff for 3 years, \(q_0 = 0.3913\), and \(\alpha = 0.0005\) with \(R^2 = 0.94\); for group II specimens coated with aluminum, \(q_0 = 0.3911\), and \(\alpha = 0.0005\) with \(R^2 = 0.94\), while for group III specimens exposed to rain only for 3 years, \(q_0 = 0.4019\), and \(\alpha = 0.0005\), with \(R^2 = 0.95\). It was found that the coefficient of \(q_0\) and \(\alpha\) for the 3 groups of specimens are almost the same. The reason is that the TPP removal is mainly associated with the particle removal which is determined by the CPP pore characteristics. Since all three groups of specimens have the similar pore space geometry, the TPP removal efficiency demonstrates the same trend.
Figure 5-7 Total phosphorus (TP) removal properties of CPP. Influent [TP] was kept constant as 1.45 mg/L.
Figure 5-8 Removed TD, TDP and TPP by CPP coated with aluminum. Influent [TP] was kept constant as 1.4 mg/L.
In order to investigate the correlation of [TPP] and particle removal, p-value based on the pair-wise T-test between particle number, mass and particle surface area removal and TPP removal were calculated respectively. P_m, P_n, and P_{sa} were denoted as the p-value based on the pair-wise T-test between particle mass removal and [TPP] removal, between particle number removal and [TPP] removal, and between particle surface area removal and [TPP] removal, respectively. The difference between particle mass removal and TPP removal is significant ($P_{m1,2,3} = 0.0001, 0.0002, 0.0001$); the difference between particle number removal and TPP removal is relatively significant ($P_{n1,2,3} = 0.116, 0.076, 0.105$), while the difference between particle surface area removal and TPP removal is not significant ($P_{sa1,2,3} = 0.7615, 0.7436,$
0.7388) with 95% confidence. Figure 5-10 shows the relationship of [TPP] removal and particle removal. It demonstrates that the removed TPP is mainly determined by the surface area of removed particles, rather than the particle mass or number. This results show that the main mechanism of phosphorus associated with particulates is surface absorption.

![Graph showing the relationship between TPP removal and particle removal.](image)

Figure 5-10 Relationship between TPP removal and particle removal. P_m, P_n, and P_sa are p-value based on the pair-wise T-test between, particle number removal, particle surface area removal and TPP removal, respectively. The difference between particle mass removal and TPP removal is significant (P_{m1,2,3} = 0.0001, 0.0002, 0.0001); the difference between particle number removal and TPP removal is relatively significant (P_{n1,2,3} = 0.116, 0.076, 0.105), and the difference between particle surface area removal and TPP removal is not significant (P_{sa1,2,3} = 0.7615, 0.7436, 0.7388)

5.6 SUMMARY AND CONCLUSIONS

Three groups of specimens with different exposure condition were utilized to test the soluble infiltration, absorption properties of CPP as an absorptive and reactive material. pH, alkalinity, total phosphorus, total dissolved phosphorus and particle size distribution were
measured before and after runoff infiltrated through CPP specimens. The influent pH, alkalinity, TP and TDP were under good control.

Runoff pH was elevated after infiltrating though CPP. For specimens Group I and III, exposed to runoff or rainfall for 3 years, effluent pH was in the range of 7.8-8.5, always higher than the critical pH value of 6.5 for the retention of heavy metals (Fach 2002). For those aluminum coated specimens, the effluent pH was in the range of 8.5-10.6. Effluent pH was modeled by an exponential decay model.

Runoff alkalinity was elevated after infiltrating through CPP. The average elevation capacity for Group I and Group III specimens is 11.5% and 14.7%, respectively. The effluent alkalinity was in the range of 47-63 mg/L for Group I specimens and 47-81 mg/L for Group III specimens. The average elevation capacity for Group II coated with aluminum is up to 42%, and the effluent alkalinity was in the range of 55-95 mg/L. The effluent alkalinity concentration was modeled by an exponential decay model.

CPP could be used as an absorptive material for phosphorus removal. When influent \([\text{TDP}] \approx 1.0 \text{ mg/L}\), TDP removal efficiency was about 24.2 %, and the effluent [TDP] ranged from 0.55-0.82 mg/L for the uncoated specimens Group I. For the uncoated Group III, the TDP removal efficiency was about 28.5%, and the effluent [TDP] ranged from 0.38-0.76 mg/L. For the aluminum coated specimens, however, the average TDP removal efficiency is up to 82%, and the effluent [TDP] was below 0.2 mg/L. The effluent [TDP] was modeled by an exponential model.

For TP removal, when influent [TP] \(\approx 1.45 \text{ mg/L}\), TP removal efficiency was about 46 %, and the effluent [TP] ranged from 0.7-0.8 mg/L for the uncoated specimens Group I. For the uncoated Group III, the TP removal efficiency was about 50%, and the effluent [TP] ranged from
0.6-0.8 mg/L. For the aluminum coated specimens, however, the average TP removal efficiency is up to 85%, and the effluent [TP] was below 0.23 mg/L.

With known TP and TDP removal efficiency, TPP removal efficiency were calculated. The effluent [TPP] was also modeled by an exponential model.

It was found that the TPP removal efficiency was related to removed particles. Instead of mass or number of particles, particle surface area determines the removal efficiency of TPP.

It is worth mentioning that all those tested specimens were exposed to rainfall or runoff for 3 years, the acid neutralization and phosphorus removal capacity were much lower than that of the fresh made CPP materials.

5.7 NOTATION

Symbols used in this chapter.

\[\text{[alk]} = \text{alkalinity concentration, (M/L}^3\text{)}; \]
\[\text{[m]} = \text{particle mass concentration, (M/L}^3\text{)}; \]
\[\text{[N]} = \text{particle number concentration, (M/L}^3\text{)}; \]
\[\text{[P]} = \text{phosphorus concentration, (M/L}^3\text{)}; \]
\[\text{[TP]} = \text{total phosphorus concentration, (M/L}^3\text{)}; \]
\[\text{[TDP]} = \text{total dissolved phosphorus concentration, (M/L}^3\text{)}; \]
\[\text{[TPP]} = \text{total particulate phosphorus concentration, (M/L}^3\text{)}; \]
\[\text{[TSS]} = \text{total suspended solids concentration (M/L}^3\text{)} \]
\[D = \text{particle diameter (L)}; \]
\[n = \text{the number of particles in each size fraction}; \]
\[\text{SA} = \text{surface area of particles (L}^2\text{)}; \]
5.8 REFERENCES

CHAPTER 6 EVALUATION OF MIX DESIGN PARAMETERS FOR CEMENTITIOUS PERMEABLE PAVEMENT

6.1 INTRODUCTION

Cementitious permeable pavement (CPP) not only provides a smooth structural interface for traffic loading, it also functions as a passive unit operation and process for rainfall-runoff quality and quantity control (Park and Tia 2004, Sansalone et al. 2005; Teng and Sansalone 2004). The primary functions of CPP mix design is to achieve a desired strength and porosity by optimizing water-cement ratio (w/c), cement-aggregate ratio (a/c), aggregate gradation and maximum aggregate size (MAS).

The factors that dominate 28 day unconfined compressive strength \((f_c') \) of CPP more than any other factors are the water/cement ratio \((w/c) \) and the degree of compaction (Neville 1996, Popovics 1985). Over the narrow range of \(w/c \) values typical of conventional impervious pavement, 0.4-0.6; the \((w/c-f_c') \) relationship is almost linear for test specimens cured in a standard warm, humid conditions and tested at 28 days (Neville 1996). However, this conclusion was based on concrete that was fully compacted. The degree of compaction influences the porosity and the whole internal structure of concrete, and thus influences strength of concrete in a significant way (Kobayasha et al. 2002, Tatro and Hinds 1992).

In addition to w/c, the factors of aggregate to cement \((a/c) \) ratio, aggregate gradation, and aggregate maximum size (AMS) also influence concrete strength (Neville 1996, Gilkey 1961). For example, Erntroy and Shacklock (1954) concluded that for a constant w/c, a high a/c resulted in a leaner mix and resulted in a higher strength for the resulting concrete. The higher strength resulted from a lower total water content per unit volume of concrete in the leaner mix as
compared to a richer mix, with the lower total water content leading to a smaller void fraction (Neville 1996). The influence of a/c on porous concrete has not been well-established.

The type and texture of aggregate and aggregate gradations have important influences on concrete strength (Desai 2004; Knab 1983; Mohammad 2005; Mohammad et al. 2000; Perry and Gillott 1973, Sehgal 1984) and porosity (Abdullah et al. 1998, Kumart and Bhattacharjee 2003, Winslow and Liu 1990). For example, with a w/c = 0.4, the use of crushed aggregates generates compressive strength up to 38% higher for concrete as compared to gravel of the same gradation (Franklin and King 1971). Aggregate shape and texture also have important impact on concrete strength. For example, previous research has demonstrated that roughened coarse aggregate leads to a 10% higher compressive strength as compared to smooth aggregates (Neville 1996; Perry and Gillott 1977). Previous research findings indicate that for the same paste composition and the same degree of hydration, the presence of coarse aggregate results in an increased porosity (Abdullah et al. 1998, Kayyali 1987, Kumart and Bhattacharjee 2003, Neville 1996, Winslow and Liu 1990).

Absorption and moisture condition of aggregates must be considered in mix design. Previous research findings indicate that absorption and moisture influence the free water that is available for hydration, thus affect the concrete strength (Neville 1996). The maximum aggregate size will affect workability of fresh concrete and the strength of hardened concrete (Abdel-Jawad and Abdullah 2002).

To facilitate the infiltration of rainfall-runoff through CPP, with a desired hydraulic conductivity, the ability to modify CPP pore characteristics is desirable through parameter modifications of the mix design. Porosity parameters determine the hydraulic conductivity and filtration/infiltration function of CPP (Goto and Roy 1981, Yaman et al. 2002a, b). In addition,
previous research has indicated that porosity can be an effective factor for estimating concrete durability Kolias (1994).

The w/c ratio also influences porosity of concrete. For full-compacted and well-graded aggregate used with conventional concrete, the higher the w/c ratio, the higher the porosity, and the higher the hydraulic conductivity (Neville 1996). Powers et al. (1954) found that when the w/c ratio was lowered from 0.7 to 0.3, the hydraulic conductivity was reduced by three orders of magnitude, from 10^{-10} to 10^{-13} cm/s. Findings by Whiting (1998) found that over a w/c ratio range of 0.75 to 0.26, the hydraulic conductivity decreased by up to 4 orders of magnitude, from 10^{-10} to 10^{-14} cm/s.

Since w/c, a/c, aggregate texture, aggregate size gradation, and the degree of compaction have influence on both the strength and the porosity of conventional concrete, and to date are relatively undocumented for permeable concrete, this study investigates the influence of these factors on CPP. It should be recognized that none of those factors independently influence strength and porosity of permeable concrete. In mix design, all these factors combine to determine the structural and pore characteristics of CPP.

6.2 OBJECTIVES

The main goal of this study was to evaluate mix design parameters on the basic structural and hydraulic indices of CPP material so that a mix design would provide a specified strength ($f_{c'} > 3000$ psi) and effective porosity ($\phi_e > 20\%$) using total porosity, ϕ_t as a surrogate parameter. Therefore, this study had a number of objectives. The first objective was to evaluate the influence of water to cement ratio (w/c) on strength and porosity of CPP, and to develop a relationships for w/c-to total porosity and also to strength. The second objective was to evaluate the influence of aggregate gradation and maximum aggregate size on strength and porosity of
CPP. The third objective was to examine the relationship between aggregate to cement ratio (a/c) and CPP strength and porosity. The fourth objective was to evaluate the influence of porosity on CPP strength. The fifth objective was to examine the compressive ($f_{c'}$) and splitting tensile strength (f_s) for the designed CPP materials in order to develop the $f_{c'}$-f_s relationship. The sixth objective is to evaluate the hydraulic conductivity (k) of the CPP mix designs and to investigate the ϕ-k relationship.

6.3 BACKGROUND

6.3.1 Unconfined Compressive Strength ($f_{c'}$)

Since high porosity reduces concrete strength, strength, as measured by compressive strength, is one of the most concerns regarding cementitious permeable pavement (Kobayashi et al. 2002). ASTM C39/C39M-04a (2004) specifies the standard method for concrete compressive test. Many factors influence the test results, such as specimen height/diameter ratio, specimen size, maximum aggregate size and loading rate (Neville, 1996). The standard cylinder specimen is 6 in. in diameter and 12 in. in length. Loading rate should be between 28-42 psi/s (ASTM 2004). The ASTM standard method (2004) specified that the standard specimen height/diameter ratio for compressive test is 2. ASTM C 42-90 (1990) gives the correction factors for specimens with height/diameter different from 2.

For a given height to diameter ratio, usually, a small size of specimen leads to larger tested compressive strength (Blanks and McNamara, 1935). Blanks and McNamara (1935) found that the tested compressive strength of specimens with size of 4 in. in diameter is 105% of that of specimens with size of 6 in. in diameter, while that of specimens with size of 8 in. in diameter is only 96% of that for 6 in. specimens (Neville, 1996).
There are 6 types of fracture patterns that are typically identified after a compression test of a concrete specimen. A Type I pattern results in reasonably well formed cones on both ends, and less than 1 in cracking through caps; Type II pattern results in a well-formed cone on one end, vertical cracks running through caps, and no well defined cone on other end; Type III is the columnar vertical cracking through both ends, with no well-formed cones; Type IV is a diagonal fracture with no cracking through the ends; Type V is side fractures at top or bottom, and Type VI is similar to Type V but the end of cylinder is pointed (ASTM C39/C39M-04a 2004)).

6.3.2 Relationship between Total Porosity (φt) and Strength (f'c)

The strength of concrete is a function of porosity (Neville 1996). Although high porosity is desirable in CPP, high porosity will reduce concrete strength. The relationship between concrete compressive strength and porosity was presented as by Gudemo (1975)

\[f'_{c} = f'_{c0} (1 - \phi_t)^n \]

(6-1)

In this expression, \(f'_{c} \) = strength of concrete with total porosity \(\phi_t \) (%); \(f'_{c0} \) = strength of concrete with zero porosity, and \(n \) is a coefficient determined by experimental measurements of \(f'_{c} \) and \(f_t \).

In addition to total porosity, the effect of pore size distribution on strength must be considered also. Generally, at a given porosity, smaller pores lead to a higher strength of the cement paste (Neville 1996).

6.3.3 Tensile Strength (f_t) Test

Although pavement is not normally designed to resist direct tension, tensile strength of concrete mitigates cracking development, and is often used to resist shear in un-reinforced sections and resist shrinkage and temperature stresses (Neville 1996, Oluokun 1991). There are three types of test for strength in tension: direct tension test, flexure test (also know as the third point loading test) and splitting tensile test (Lin and Wood 2003).
Direct tension test is seldom conducted due to the difficulty of application of a pure tension force. European Standard Eurocode ENV1992-1 (1992) gives an estimation of direct tensile strength from f'_c when $f'_c < 7252$ (psi) at 28 days (Desai 2004).

$$f_{dt} = 1.55 	imes (f'_c)^{0.67} \text{ (psi)}$$ \hfill (6-2)

6.3.4 Flexure Tensile Strength (f_r) and Correlation with f'_c

Flexure test and splitting test are usually used to measure the strength in tension. The theoretical maximum tensile stress of flexure test for the tested beam is known as the modulus of rupture (f_r) (Neville 1996). Much research has been conducted to examine the relationship between f'_c and f_r. Kaplan (1959) reported that the elastic modulus of the aggregates was the most important influencing factor on the modulus of rupture. ACI 435 (1968) presented an expression to estimate f_r based on known f'_c for concrete (Khan, et al. 1996).

$$f_r = (4.75 \sim 12) 	imes (f'_c)^{1/2} \text{ (psi)}$$ \hfill (6-3)

Jerome (1984) and Raphael (1984) presented the relationship between the rupture of modulus (f_r) and compressive strength (f'_c) as

$$f_r = 2.3 \times (f'_c)^{2/3} \text{ (psi)}$$ \hfill (6-4)

Bakhsh et al. (1990) gave the following expression for f_r - f'_c correlation.

$$f_r = 9.6 \times (f'_c)^{1/2} \text{ (psi)}$$ \hfill (6-5)

6.3.5 Splitting Tensile Strength (f_s) and Correlation with f'_c

The splitting tensile test is a simple to perform and provides repeatable results as compared to the flexure test and direct tensile test (Wright 1955). Many relationships between splitting tensile strength and compressive tensile strength have been developed. ACI318-99 (1999) presents the following relationship (Desai 2003).

$$f_s = 6.7 \times (f'_c)^{1/2}$$ \hfill (6-6)
However, results from Oluokun (1991) indicated that this relationship was not accurate enough to predict tensile strength from compressive strength. After studying on tensile and compressive strength tested from 168 laboratories, Oluikun (1991) developed the f_s-f_c' correlation as

$$f_s = 1.38 \times (f'_c)^{0.69} \text{ (psi)}$$

(6-7)

Noville (1996) provided another f_s-f_c' relationship different from that of ACI.

$$f_s = 1.58 \times (f'_c)^{2/3} \text{ (psi)}$$

(6-8)

Malhotra (1969) provided a similar relationship.

$$f_s = 3.67 \times (f'_c)^{0.565} \text{ (psi)}$$

(6-9)

Akazawa (1953) also provided an expression to estimate f_s from f'_c.

$$f_s = 0.369 \times (f'_c)^{0.73} \text{ (psi)}$$

(6-10)

The differing results indicate that although all tests followed the same standard test method, the variability of the test results is large, and as such resulted in quite different relationships, as illustrated from the literature.

6.4 METHODOLOGY

6.4.1 Materials for Mix Design

Materials for CPP specimen mix design components include type I Portland cement, coarse aggregate (crushed limestone), fine aggregate (silica sand), and potable water. Materials properties including specific gravity (ρ_s), water absorption onto aggregate and water used for mix design. These mix design were list in Table 6-1. In this table, moisture and absorption of fine aggregate were tested according to ASTM C 70-94(2001) and ASTM C 128-01 (ASTM 2004). Absorption of coarse aggregate was tested according to ASTM C 127-01 (ASTM 2004). Aggregates were sieved according to ASTM C136-01 (ASTM 2004).
Table 6-1 Material properties and indices for CPP specimen mix design components.

<table>
<thead>
<tr>
<th>Property</th>
<th>Cement</th>
<th>CA</th>
<th>FA</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ_s</td>
<td>3.15</td>
<td>2.68</td>
<td>2.62</td>
</tr>
<tr>
<td>(σ)</td>
<td>(0.01)</td>
<td>(0.02)</td>
<td>(0.02)</td>
</tr>
<tr>
<td>Moisture</td>
<td>/</td>
<td>1.04%</td>
<td>0.5%</td>
</tr>
<tr>
<td>(σ)</td>
<td></td>
<td>(0.02%)</td>
<td>(0.004%)</td>
</tr>
<tr>
<td>Absorption</td>
<td>/</td>
<td>0.05%</td>
<td>0.05%</td>
</tr>
<tr>
<td>(σ)</td>
<td></td>
<td>(0.004%)</td>
<td>(0.004%)</td>
</tr>
</tbody>
</table>

ρ_s: specific gravity
σ: standard deviation
CA: coarse aggregate-crushed limestone, coarser than No.16, (1.18 mm);
FA: fine aggregate portion, silica sand, finer than No. 16 (1.18 mm);
Cement is Type I Portland cement;

6.4.2 Mix Design Parameter Evaluation

In order to investigate the influence of w/c, a/c and gradation (through maximum aggregate size, MAS) on CPP strength and porosity characteristics, 6 mix design batches were designed with different w/c, a/c and MAS, as illustrated in Table 6-2.

Table 6-2 Target values of design parameter for the 6 mix design batches

<table>
<thead>
<tr>
<th>Batch #</th>
<th>Design parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Entire gradation</td>
</tr>
<tr>
<td>B1</td>
<td>Finer (I)</td>
</tr>
<tr>
<td>B2</td>
<td>Finer (I)</td>
</tr>
<tr>
<td>B3</td>
<td>Finer (I)</td>
</tr>
<tr>
<td>B4</td>
<td>Coarser (II)</td>
</tr>
<tr>
<td>B5</td>
<td>Coarser (II)</td>
</tr>
<tr>
<td>B6</td>
<td>Coarser (II)</td>
</tr>
</tbody>
</table>

w/c: water to cement ratio;
a/c: aggregate to cement ratio;
MAS: maximum aggregate size;
Finer (I) and coarser (II) gradations are illustrated in Figure 6-1;
Finer gradation (I): d_{50}: 4.75 mm, d_{15}: 9.5 mm, d_{85}: 1.18 mm;
Coarser gradation (II): d_{50}: 4.75 mm, d_{15}: 9.50 mm, d_{85}: 2.36 mm.

Two aggregate gradations (with differing MAS) were utilized as illustrated in Figure 6-1. The maximum size of Gradation I is 3/8 inch (9.5 mm), and the maximum size of Gradation II is
½ inch (12.7 mm). An additional difference between Gradation I and II is that, in Gradation I, only 5% of aggregates are finer than ASTM No.16 (1.18 mm), and this mass was distributed to the ASTM No. 50 (0.3 mm) sieve, while in Gradation II, there was 8% finer than No.16 and this mass was evenly distributed between the ASTM No. 30 (0.6 mm), 50 (0.3 mm), 100 (0.15 mm) and 200 (0.075 mm).

![Figure 6-1 Illustration of the fine and coarse aggregate gradation for the CPP mix design. The maximum size of the fine gradation is 3/8 inch (9.50 mm), and the coarse gradation is ½ inch (12.7 mm). In the fine gradation only 5% of aggregates were finer than No.16 (1.18 mm), and was only distributed to the No. 50 (0.30 mm); while in the coarse gradation there was 8% of the mass finer than the No.16 (1.18 mm) and this mass was evenly distributed among the size of No. 30 (0.60 mm) 50 (0.30 mm), 100 (0.15 mm) and 200 (0.075 mm).](image)

For the finer gradation (I) of aggregate, 3 different w/c ratios of 0.3, 0.4 and 0.5 were employed with the same a/c of 5.5, and denoted as Batch 1, 2 and 3, respectively. From these 3 batches, the influence of w/c on CPP behavior was obtained. For the coarser gradation (II) of aggregate, 3 different a/c ratios, namely 4.0, 5.5 and 7.0, were utilized with the same w/c of 0.3, denoted as Batch 4, 5 and 6, respectively. From these 3 batches, the influence of a/c on CPP behavior was obtained. Noting that Batch 1 and Batch 4 have the same w/c of 0.3 and the same a/c of 5.5, but with a different gradation, the influence of a finer and coarser gradation on CPP behavior could be compared.
6.4.3 Material Proportion Calculation

Material constituent proportions were determined by the absolute volume method. In this method, material proportions were determined by combining materials to 1.0 yd3 (27 ft3) of volume (Neville 1996).

$$\frac{W_w}{62.4} + \frac{W_c}{62.4 \cdot \rho_c} + \frac{W_{CA}}{62.4 \cdot \rho_{CA}} + \frac{W_{FA}}{62.4 \cdot \rho_{FA}} = 27 \text{ (ft}^3)$$ \hspace{1cm} (6-11)

With known specific gravity (ρ) of each constituent, and given w/c and a/c and ratio of the coarse aggregate (CA) portion of a gradation and the fine aggregate (FA) portion of a gradation, designated C/F, the weight of water (W_w) for 1.0 yd3 of volume could be obtained by the following expression.

$$\frac{W_w}{62.4} \left\{1 + \frac{1}{(w/c) \cdot \rho_c} + \frac{(C/F) \cdot (a/c)}{[1+(C/F) \cdot (w/c) \cdot \rho_{CA}]} + \frac{(a/c)}{[1+(C/F) \cdot (w/c) \cdot \rho_{FA}} \right\} = 27 \text{ (ft}^3$$ \hspace{1cm} (6-12)

The weight of cement (W_c), coarse aggregate (W_{CA}) and fine aggregate (W_{FA}) could be calculated by the following equations.

$$W_c = \frac{1}{(w/c)} W_w$$ \hspace{1cm} (6-13)

$$W_{CA} = \frac{(C/F) \cdot (a/c)}{[1+(C/F) \cdot (w/c) \cdot \rho_{CA}]} W_w$$ \hspace{1cm} (6-14)

$$W_{FA} = \frac{(a/c)}{[1+(C/F) \cdot (w/c) \cdot \rho_{FA}} W_w$$ \hspace{1cm} (6-15)

In these expressions, C/F represents the mass ratio of the coarse aggregate (CA) portion of the gradation to the fine aggregate (FA) portion of the gradation. W_w, W_c, W_{CA} and W_{FA} are weight (lb) of water, cement, coarse aggregate and fine aggregate to yield 27 ft3 volume. For lab trial batch volume (V_b, ft3) different from 27 ft3, material weight could be adjusted by multiplying by the reduction factor ($V_b/27$). Weight of water, cement, coarse aggregate and fine
aggregate for a trail batch is denoted as \(w_w \), \(w_c \), \((w_{CA})_{SSD} \) and \((w_{FA})_{SSD} \), respectively. The subscript of SSD represents the condition of saturated surface dry.

6.4.4 Moisture Correction

Noticing that the weights of water and aggregate for the above calculation are estimated under the saturated surface dry (SSD) condition for aggregates, moisture correction is needed during mix design when the aggregate moisture condition is different from SSD (Neville 1996). In this case, the aggregate may bring some free water to or absorb some free water from the mix.

Free moisture \((p_m, \%) \) can be calculated as

\[
p_m = \text{Moisture Content} - \text{Absorption}.
\]

(6-16)

Aggregate weight after moisture correction, \((w)_{moist} \) (lb), can be determined as

\[
(w_{CA})_{moist} = [1 + (p_m)_{CA}] \cdot (w_{CA})_{SSD}
\]

(6-17)

\[
(w_{FA})_{moist} = [1 + (p_m)_{FA}] \cdot (w_{FA})_{SSD}
\]

(6-18)

Water weight should be adjusted by the following equation.

\[
(w_w)_{correct} = w_w - (w_{CA})_{SSD} \cdot (p_m)_{CA} - (w_{FA})_{SSD} \cdot (p_m)_{FA}
\]

(6-19)

Table 6-3 shows the trial batch yield and all material weight for each mix.

<table>
<thead>
<tr>
<th>Batch #</th>
<th>Water (kg)</th>
<th>Cement (kg)</th>
<th>CA kg</th>
<th>FA kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>3.89</td>
<td>10.51</td>
<td>54.41</td>
<td>2.88</td>
</tr>
<tr>
<td>B2</td>
<td>5.42</td>
<td>9.85</td>
<td>51.00</td>
<td>2.70</td>
</tr>
<tr>
<td>B3</td>
<td>4.95</td>
<td>10.21</td>
<td>52.81</td>
<td>2.80</td>
</tr>
<tr>
<td>B4</td>
<td>3.18</td>
<td>10.59</td>
<td>55.34</td>
<td>2.91</td>
</tr>
<tr>
<td>B5</td>
<td>4.53</td>
<td>13.40</td>
<td>49.88</td>
<td>3.20</td>
</tr>
<tr>
<td>B6</td>
<td>3.21</td>
<td>8.75</td>
<td>57.02</td>
<td>3.66</td>
</tr>
</tbody>
</table>

CA: Coarse aggregate, crushed limestone, coarser than No.16 sieve size (1.18 mm);
FA: Fine aggregate, silica sand, finer than No. 16 (1.18 mm);
Cement type: Type I Portland cement.
6.4.5 Specimen Fabrication and Curing

The method of making test cylinders is prescribed by ASTM C192-90a and the fabrication process followed the standard method of ASTM 192/c 192M-02 and ASTM685/C685M-01 (ASTM 2004). Cylinder molds are specified by ASTM C470-94. For each batch of mix design, 3 groups of specimens were made with different levels of compaction: full compaction, half compaction and no compaction. In full compaction, both vibration using a vibrating tables and compaction using a rod manually were applied on cylinder specimens. For half compaction, only vibration was applied. For no compaction specimens, neither vibration nor rod compaction was applied during fabrication. With this strategy, the influence of compaction on specimen strength properties could be obtained.

Specimens were covered with plastic bags and stayed in air for 24 hours, and then were moved to 100% moisture room for curing.

6.4.6 Slump, Unit Weight and Air Content Tests for CPP Mixes

Slump tests of fresh CPP mix were conducted within 5 minutes after the CPP mix was made following the standard method of ASTM 143/C 143M-3 (ASTM 2004).

Unit weight (density) of fresh CPP for each batch of mix was tested in accordance with Test Method of ASTM C138/C 138M-01a (ASTM 2004). A 0.25 ft³ air meter container was utilized to test the density. By weighting the mass contained in the measure (M, lb), with the known measure volume of 0.25 ft³, density of the fresh CPP could be calculated as \(\rho_f = \frac{M}{0.25} \) (lb/ft³). The same amount of fresh mix in the meter container was then used to determine the air content of the fresh CPP following the guideline of the ASTM 138/C 138M-01a: Test Method for Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete (ASTM 2004).
6.4.7 Compressive Test and Splitting Tensile Test

Compressive and splitting tensile strengths for all 6 batches of specimens were tested after 28 days of curing in the 100% moisture room. Compressive strengths were tested following the Standard Method of ASTM C 39/C 39M-04a. The loading rate was 30,000 lbs/min. The coefficients of variation of tested $f_{c'}$ for every batch are lower than 9%. Splitting tensile strengths were tested according to the Standard Method of ASTM C496-96. The loading rate was 7,500 lbs/min. The within batch coefficient of variation is lower than 5% for each mix.

6.4.8 Total Porosity

Total porosity can be estimated with known specific gravity (ρ_s).

$$\phi = (1 - \frac{W}{\rho_s}) \times 100\%$$

(6-20)

In this expression W is the dry weight (g) and V_b the bulk volume (cm3) of a specimen, and V_s is the solid volume (cm3). The measurement of specific gravity ρ_s followed ASTM D 5550-4 (1994) through inert gas pycnometry. The gas utilized in this procedure was ultra-high pure He for inertness and ability to enter pore space approaching 1 angstrom (10^{-10} m) in diameter. Triplicate aliquots were analyzed for each test. Based on ρ_s, total porosity of CPP cores can be estimated by equation (6-20).

6.4.9 Hydraulic Conductivity k_{sat} Test

Hydraulic conductivity for all batches of specimens with different degree of compaction was tested. An experimental setup was designed to measure the saturated hydraulic conductivity in constant head, as Figure 3-1 illustrated. CPP specimens were dip into DI water for 48 hours before test to make sure a saturated condition. During test, tap water was pumped from the tank to specimen column by a peristaltic pump (Masterflux 7520-40). A series of constant head (5, 10, 20, 30, 40, 50, 60 mm over the surface of CPP specimen) were achieved by adjust the outlet level.
of overflow. Influent flow rates were controlled by regulating the speed of the peristaltic pump to make it keep overflowing during all test time, so that a certain constant head is maintained. After the system was steady, effluent volume was collected for 5 minutes, and then measured. At least 5 samples were measured for each hydraulic head. According to Darcy’s Law, \(k_{sat} \) could be presented as

\[
k_{sat} = \frac{Q}{A \cdot t \cdot i}
\]

In this expression, \(k_{sat} \) is saturated hydraulic conductivity in cm/s; \(Q \) is the effluent volume (mL) collected in time \(t \) (s); \(A \) is the cross section area of the CPP specimen. \(i = \Delta h/L \) representing hydraulic gradient; \(\Delta h \) is head loss (cm) and \(L \) is the length of specimen (cm).

6.5 RESULTS AND ANALYSIS

6.5.1 Properties of Fresh CPP Mixes

Immediately after the CPP mix was made, slump, density and air content tests were conducted. Table 6-4 summarizes the test results of these properties for each batch. Results indicate that the slump of Batch 5 is 0, indicating that the workability was not good. Compared to other batches, Batch 3 has the lowest air content of 6.1% and yield of 1.09 ft³, and highest density of 144.2 lb/ft³. Slump of all other batches of design is from 5.0 to 7.0 in. The slump type for all batches was collapse, demonstrating a high workability. Air contents of all other batches ranged from 6.52 to 11.56%; unit weight ranged from 92.7 to 136.4 lb/ft³.

6.5.2 Properties of CPP Specimens

6.5.2.1 Specific gravity (\(\rho_s \)) and total porosity (\(\phi_t \))

Specific gravity \(\rho_s \) was measured for each batch of specimens, resulting in \(\rho_s = 2.744, 2.736, 2.740, 2.734, 2.760 \) and 2.728 for batch B1-B6, respectively. From these results, it was found that \(\rho_s \) was mainly determined by the factor of \(a/c \), the higher the \(a/c \), the lower the \(\rho_s \). The
reason is that the aggregate is lower than the cement ρ_s. With the highest a/c of 7.0, the ρ_s of B6 is the lowest as 2.728; the lowest a/c of 4.0 generated a highest ρ_s of 2.76 for B5, and for B1, B2, B3, B4 with a median a/c of 5.5, the ρ_s is almost the same with a mean of 2.739 and a standard deviation of 0.004.

Table 6-4 Properties of fresh CPP mix for the 6 batches of mix design

<table>
<thead>
<tr>
<th>Batch #</th>
<th>Total Material kg {lb}</th>
<th>Slump cm (σ)</th>
<th>Air Content %</th>
<th>Unit Weight kg/m3 (lb/ft3)</th>
<th>Yield m3 (ft3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>71.69 {158.08}</td>
<td>12.71 (2.60)</td>
<td>10.04</td>
<td>1641.61 {102.52}</td>
<td>0.044 {1.54}</td>
</tr>
<tr>
<td>B2</td>
<td>68.97 {152.08}</td>
<td>14.05 (3.88)</td>
<td>6.52</td>
<td>2184.50 {136.41}</td>
<td>0.031 {1.11}</td>
</tr>
<tr>
<td>B3</td>
<td>70.77 {156.04}</td>
<td>17.82 (5.08)</td>
<td>7.68</td>
<td>1945.93 {121.52}</td>
<td>0.036 {1.28}</td>
</tr>
<tr>
<td>B4</td>
<td>72.02 {158.80}</td>
<td>17.36 (4.27)</td>
<td>10.78</td>
<td>1574.36 {98.41}</td>
<td>0.046 {1.62}</td>
</tr>
<tr>
<td>B5</td>
<td>71.01 {156.58}</td>
<td>0.00 (0.00)</td>
<td>6.12</td>
<td>2309.52 {144.21}</td>
<td>0.031 {1.09}</td>
</tr>
<tr>
<td>B6</td>
<td>72.65 {160.19}</td>
<td>17.32 (3.51)</td>
<td>11.56</td>
<td>1484.70 {92.71}</td>
<td>0.049 {1.73}</td>
</tr>
</tbody>
</table>

Total material proportions for each batch were obtained from Table 6-3; Yield = (Total mass of all materials for each batch)/(Unit weight)

Based on the geometric-gravimetric properties and known ρ_s, ϕ_t could be obtained for each CPP specimens using (6-20). Table 6-5 summarizes the results of ϕ_t of for each batch of specimens with different degree of compaction. Results indicate that for fully compacted specimens, the Batch B2 design (w/c-a/c-gradation: 0.5, 5.5, finer) generated the highest ϕ_t of 28.42%, while the Batch B5 (0.3, 4.0, coarser) led to the lowest ϕ_t of 18.27%. The ϕ_t of B1 (0.3, 5.5, finer), B3 (0.4, 5.5, finer), B4 (0.3, 5.5, coarser) and B6 (0.3, 7.0, coarser) range from 23.53 to 27.53%. For those specimens with half compaction, the ϕ_t ranges from 20.47 to 36.42%, and for those specimens without compaction, the ϕ_t ranges from 30.46 to 41.58%.
Table 6-5 Strength, porosity and hydraulic conductivity test results for all specimen batches

<table>
<thead>
<tr>
<th>Batch #</th>
<th>Entire Gradation</th>
<th>Design parameters</th>
<th>Properties of hardened concrete</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>w/c</td>
<td>a/c</td>
</tr>
<tr>
<td>B1</td>
<td>Finer (I)</td>
<td>0.3</td>
<td>5.5</td>
</tr>
<tr>
<td>B2</td>
<td>Finer (I)</td>
<td>0.5</td>
<td>5.5</td>
</tr>
<tr>
<td>B3</td>
<td>Finer (I)</td>
<td>0.4</td>
<td>5.5</td>
</tr>
<tr>
<td>B4</td>
<td>Coarser (II)</td>
<td>0.3</td>
<td>5.5</td>
</tr>
<tr>
<td>B5</td>
<td>Coarser (II)</td>
<td>0.3</td>
<td>4.0</td>
</tr>
<tr>
<td>B6</td>
<td>Coarser (II)</td>
<td>0.3</td>
<td>7.0</td>
</tr>
</tbody>
</table>

Half Compaction

<table>
<thead>
<tr>
<th>Batch #</th>
<th>Entire Gradation</th>
<th>Design parameters</th>
<th>Properties of hardened concrete</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>w/c</td>
<td>a/c</td>
</tr>
<tr>
<td>B1</td>
<td>Finer (I)</td>
<td>0.3</td>
<td>5.5</td>
</tr>
<tr>
<td>B4</td>
<td>Coarser (II)</td>
<td>0.3</td>
<td>5.5</td>
</tr>
<tr>
<td>B5</td>
<td>Coarser (II)</td>
<td>0.3</td>
<td>4.0</td>
</tr>
<tr>
<td>B6</td>
<td>Coarser (II)</td>
<td>0.3</td>
<td>7.0</td>
</tr>
</tbody>
</table>

No Compaction

<table>
<thead>
<tr>
<th>Batch #</th>
<th>Entire Gradation</th>
<th>Design parameters</th>
<th>Properties of hardened concrete</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>w/c</td>
<td>a/c</td>
</tr>
<tr>
<td>B1</td>
<td>Finer (I)</td>
<td>0.3</td>
<td>5.5</td>
</tr>
<tr>
<td>B2</td>
<td>Finer (I)</td>
<td>0.5</td>
<td>5.5</td>
</tr>
<tr>
<td>B3</td>
<td>Finer (I)</td>
<td>0.4</td>
<td>5.5</td>
</tr>
<tr>
<td>B4</td>
<td>Coarser (II)</td>
<td>0.3</td>
<td>5.5</td>
</tr>
<tr>
<td>B5</td>
<td>Coarser (II)</td>
<td>0.3</td>
<td>4.0</td>
</tr>
<tr>
<td>B6</td>
<td>Coarser (II)</td>
<td>0.3</td>
<td>7.0</td>
</tr>
</tbody>
</table>

Finer (I) and Coarser Gradation (II) are illustrated in Figure 6-1.

w/c: water to cement ratio in weight;
a/c: aggregate to cement ratio in weight;
f'_c: compressive strength (psi);
f_s: splitting tensile strength (psi);
ϕ_t: total porosity (%), calculated using (6-20) with known specific gravity (ρ_s);
k: hydraulic conductivity;

Superscripts of f'_c represent fracture type during compressive test, as described in “BACKGROUND” session defined by ASTM C39/C39M-04a (2004)

6.5.2.2 Compressive strength (f'_c) and splitting strength (f_s)

Table 6-5 summarizes results of compressive strength (f'_c) and splitting tensile strength (f_s). Results indicate that f'_c of all specimens with half or none compaction was less than 3000 psi, and f_s was less than 400 psi. For the specimens with full compaction, B1, B4 and B5 have an f'_c higher than 3000 psi and f_s higher than 400 psi. Most of the fracture types during compressive
tests were Type 5 or 6, namely side fracture at top or bottom. The results also demonstrate that the degree of compaction significantly influences specimen strength.

6.5.2.3 Hydraulic Conductivity (k)

Table 6-5 summarizes hydraulic conductivity results. A very high hydraulic conductivity was measured for CPP. For those specimens without compaction k ranges from 40 to 184×10^{-2} cm/s; for those with half compaction, k ranges from 9 to 110×10^{-2} cm/s, and for the specimens with full compaction, k ranges from 8 to 60×10^{-2} cm/s. With such a high hydraulic conductivity, for the full compacted specimens, the hydraulic drainage capacity ranges from 50 to 360 L/m²-min even at very low hydraulic head, which will be very beneficial for rainfall-runoff peak flow and volume control.

6.5.2.4 Influence of w/c on Strength and \(\phi_t \)

Figure 6-2 illustrates the influence of w/c on CPP compressive strength (\(f_c' \)), splitting tensile strength (\(f_s \)) and total porosity (\(\phi_t \)).

![Graph showing the influence of w/c on CPP strength indices and total porosity](image)

Figure 6-2 Water cement ratio (w/c) influence on CPP strength indices (\(f_c' \) and \(f_s \)) and total porosity (\(\phi_t \)). For a given aggregate to cement ratio (a/c) a given gradation, higher w/c ratios generate higher \(\phi_t \) and lower \(f_c' \) and \(f_s \) for CPP specimens with full compaction; while for CPP specimens with no compaction, higher w/c ratios generate lower \(\phi_t \) and therefore higher \(f_c' \) and \(f_s \). All strength results tested at 28 days.
With the same finer gradation and the same a/c of 5.5, for the specimens with full compaction, ϕ_t increase from 22.16 to 26%, $f_{c^{'}}$ decrease from 3957 to 2104 psi, and f_s decrease from 439 to 225 psi when w/c increase from 0.3 to 0.5.

For those CPP specimens without compaction, however, $f_{c^{'}}$ and f_s increase from 983 to 1785 psi and from 157 to 286, respectively, with the increase of w/c from 0.3 to 0.5. For those specimens without compaction, the increase of w/c decreases porosity and results in the increase of strength. When w/c changes from 0.3 to 0.5, ϕ_t decreases from 35.12 to 31.55%. These results illustrates that concrete strength is not only determined by w/c, but also by degree of compaction.

6.5.2.5 Influence of a/c on Strength and ϕ_t

Figure 6-3 summarizes the influence of a/c on CPP compressive strength ($f_{c^{'}}$), splitting tensile strength (f_s) and total porosity (ϕ_t). With the same coarser gradation and the same w/c of 0.3, for both specimens with or without compaction, ϕ_t increases with the increase of a/c, resulting in the decrease of $f_{c^{'}}$ and f_s. For full compacted specimens, when a/c = 4.0, 5.5 and 7.0, respectively, results indicate a corresponding $f_{c^{'}} = 5040, 4725, 2629$ psi; $f_s = 386, 571, 614$ psi, and $\phi_t = 16.58, 19.47, 26.75\%$, respectively. For those without compaction, when a/c = 4.0, 5.5 and 7.0, respectively, corresponding $f_{c^{'}} = 1427, 1276$ and 658 psi; $f_s = 221, 201$ and 120 psi, and $\phi_t = 31.84, 32.73$ and 40.26%, respectively. This result is different from that drawn for conventional impervious concrete. For impervious concrete with very low porosity, higher a/c leads to a leaner mix which results in a higher strength (Erntroy and Shacklock 1954). For CPP, however, the high a/c will increase the total porosity which is a dominant factor that determines strength. This result for porous concrete was verified by Park and Tia (2004). Park and Tia (2004) also found that the higher the a/c, the lower the compressive strength and the higher the total porosity.
Figure 6-3 Summary of the influence of aggregate to cement ratio (a/c) on CPP strength (f'_c and f_s at 28 days) and total porosity (ϕ_t). For a given water to cement ratio (w/c) and a given gradation, lower a/c ratios generates lower ϕ_t which results in higher f'_c and f_s for CPP specimens with full compaction and CPP specimens with no compaction. All strength results tested at 28 days.

6.5.2.6 Influence of Gradation on Strength and ϕ_t

With the same w/c of 0.3, and a/c of 5.5, test results of f'_c, f_s, and ϕ_t for the finer gradation and coarser gradation were compared in Figure 6-4. Results indicate that for a given w/c of 0.3, and a given a/c of 5.5, the coarser gradation generated higher f'_c and f_s and lower ϕ_t as compared to the finer gradation. For fully compacted specimens, $f'_c = 4725$ psi, $f_s = 571$ psi, and $\phi_t = 19.47\%$ for the coarser gradation, while the finer gradation yielded an $f'_c = 2875$ psi, $f_s = 305$ psi, and $\phi_t = 23.70\%$.

6.5.2.7 Influence of the Degree of Compaction on CPP Strength and Porosity

Figure 6-5 summarizes the influence of the degree of compaction on CPP strength and porosity. Results indicate that the degree of compaction has a significant influence on CPP total porosity. For the same gradation (for example the coarser gradation) and a given w/c of 0.3, no compaction leads to a high total porosity ranging from 32 to 40% for a/c = 4.0, 5.5 and 7.0,
respectively; the 50% compaction leads to a total porosity ranging from 20-33%, while the 100% compaction results in total porosity from 18 to 25% for different a/c employed in the mix design. The significant differences of total porosity caused by different degrees of compaction resulted in significantly variability of CPP strength. Figure 6-5 illustrates that the full compacted specimens have an f_c' as high as 5000 psi and f_s of 600 psi when a/c = 4.0, and $f_c' = 4700$ psi, and $f_s = 570$ psi when a/c = 5.5. For those specimens with 50% compaction, $f_c' = 2800$ psi and $f_s = 400$ psi when a/c = 4.0, and $f_c' = 2400$ psi and $f_s = 300$ psi when a/c = 5.5. Results indicate that the degree of compaction is one of the critical factors by which CPP strength and porosity properties are determined.

Figure 6-4 Aggregate gradation influence on CPP strength and total porosity. All specimen strength results tested at 28 days. It shows that the higher degree of compaction leads to lower percentage of total porosity and results in higher strength therefore.
Figure 6-5 Influent of the degree of compaction on strength and total porosity for CPP specimens. Full compaction leads to lower total porosity and higher strength. All compressive strength \(f_c' \), splitting tensile strength \(f_s \) and total porosity \(\phi_t \) were tested at 28 days.

6.5.2.8 \(f_c' - f_s \) Relationship

Based on test results on all batches of specimens, \(f_c' \) and \(f_s \) results are illustrated in Figure 6-6. A power law model was employed to describe the \(f_c' - f_s \) relationship.

\[
f_s = 0.5478(f_c')^{0.8328}
\]

The model fit of the data yielded an \(R^2 = 0.96 \). Comparing the results predicted by other models previously developed by other researchers (ACI318-99 1999; Oluikun 1991; Akazawa 1953), it was found that this CPP mix design achieved a higher splitting tensile strength \(f_s \) for a given compressive strength \(f_c' \).
6.5.2.9 f_c' - ϕ_t Relationship

Based on test results on all batches of specimens, the f_c' - ϕ_t relationship were illustrated in Figure 6-7. A exponential model was employed to describe the f_c' - ϕ_t relationship; the higher the total porosity, the lower the compressive strength.

\[
 f'_c = 12909(e^{-0.0683\phi_t})
\]

(6-23)

The model fit of the data yielded an $R^2 = 0.96$.

6.5.2.10 ϕ_t - k relationship

Based on the test results of total porosity and hydraulic conductivity, a relationship between ϕ_t and k could be developed, as illustrated in Figure 6-8. The relationship was modeled as a power law.

\[
 k = 1.6 \times 10^{-6} (\phi_t)^{3.714}
\]

(6-24)

In this expression, k is in cm/s, and ϕ_t is in %. Model fit of the data yielded an $R^2 = 0.91$.

Figure 6-6 Relationship between compressive strength (f_c') and splitting tensile strength (f_s) for CPP materials, modeled as a power law: $f_s = 0.5478 \times (f'_c)^{0.8328}$ with $R^2 = 0.96$. All compressive strength (f_c') and splitting tensile strength (f_s) were tested at 28 days.
Figure 6-7 Relationship between compressive strength (f'_c) and total porosity (ϕ_t) for CPP modeled using a first-order exponential model as $f'_c = 12909(e^{-0.0638\phi_t} with $R^2 = 0.91$. All compressive strength (f'_c) and total porosity (ϕ_t) were tested at 28 days.

Figure 6-8 Relationship between total porosity (ϕ_t) and hydraulic conductivity (k) for CPP modeled as a power law: $k = 1.6 \times 10^{-6} (\phi_t)^{3.714}$ with $R^2 = 0.91$.

164
6.5.3 Suggested Mix Design

Based on the above analysis it was found that for CPP material, full compaction, lower a/c, lower w/c, and coarser well-gradated aggregates result in high strength and lower porosity. To reach a medium strength and high porosity for both traffic loading and stormwater management, it is necessary to find a balance among all of these factors. From the result analysis, a desirable mix design variables could be recommended as follows. Aggregate: coarser and open-graded aggregates with maximum aggregate size around 10 mm. At least 85% of crushed aggregate should be coarser than the No.8, and 5% of sand finer than No. 30 sieve are desirable. The w/c should be approximately 0.3 with an a/c of approximately 5 and a full degree of compaction. With this mix design, the expected results of the CPP would be as follows: Slump for fresh concrete: > 12.7 cm (5 in); Specific gravity: about 2.7; Strength: $f'_c > 25$ MPa (3500 psi), and $f_s > 2.76$ MPa (400 psi); Total porosity: > 20%; and hydraulic conductivity, $k > 0.5$ cm/s.

6.6 SUMMARY AND CONCLUSIONS

To design CPP with both desirable porosity and strength, 6 batches of mixes were designed with 3 different w/c of 0.3, 0.4 and 0.5, 3 different a/c of 4.0, 5.5 and 7.0, 2 aggregate gradations and 2 different maximum aggregate size of 3/8 and ½ in. The influence of design variables of w/c, a/c, gradation and the degree of compaction on CPP strength, porosity and permeability was investigated. Based on test results and analysis, the following conclusion could be drawn.

1) The factors of w/c, a/c, aggregate gradation and the degree of compaction have significant influence on CPP strength and porosity.

2) To achieve a CPP with desirable strength, full compaction is necessary.
3) For CPP materials with full compaction, under the same gradation and the same a/c, a lower w/c leads to a lower total porosity and a higher strength.

4) With an open-graded gradation and the same w/c, a lower a/c leads to a higher compressive and splitting tensile strength. This conclusion is in contrast with that for conventional impervious concrete. The reason is that for porous concrete, the high a/c will increase the total porosity which is a dominant factor that determines the properties of porous concrete strength.

5) With the same w/c and a/c, a higher percentage of fine aggregates lead to a lower total porosity, resulting a higher strength.

6) Based on test results on all batches of specimens, both the $f_c' - f_s$ and $k-\phi_t$ relationship were expressed by a power law model.

7) A first-order exponential model $f_c' - \phi_t$ relationship was developed for CPP and provides a tool for prediction of CPP strength based on known total porosity.

6.7 NOTATIONS

Symbols used in this Chapter

CA: = coarse aggregate;

FA: = fine aggregate;

SSD: = saturated surface Dry condition of aggregates;

W: = weight of materials for CPP design before moisture correction, (lb);

f_{c0}': = compressive of concrete with no porosity;

f_c': = compressive strength, (psi);

f_s: = splitting tensile strength, (psi);

f_{dt}: = direct tensile strength, (psi);
f_r: = modulus of rupture, (psi);

k: = hydraulic conductivity, (cm/s);

p_m: = free moisture of aggregate;

w: = weight of materials for CPP after moisture correction, (lb);

ϕ_t: = total porosity (%);

ρ_s: = specific gravity;

a/c: = aggregate to cement ratio;

w/c: = water to cement ratio.

6.8 REFERENCES

Kobayashi, T., M. Kagata, T. Kodama and M. Ito, 2002, Development of the environment-friendly hybrid permeable concrete pavement”. *Transportation of the Japan Concrete Institute*, vol. 23, pp65-76

CHAPTER 7 GLOBAL CONCLUSIONS

The degree of imperviousness in the built environment is significantly correlated to deleterious hydrologic, climate and environmental problems associated with urban land development and the increasing spatial extent of impervious pavement. Consequences that include increased peak flow, increased volume, increased temperature, decreased lag time of runoff, reduced underground water recharge, and degraded water quality have resulted in increasing deleterious effects to the built and natural environments.

In contrast, permeable pavement reduces rainfall-runoff peak, volume, improves water quality through physical and chemical mechanisms, facilitates groundwater and interflow recharge and mitigates temperature increases. A critical aspect of permeable pavements is characterization of their hydraulic and reactive behavior, in large part controlled by their pore characteristics. These pore characteristics were examined using XRT/image analysis and conventional techniques for cementitious permeable pavement (CPP) taken from the surface of a partial exfiltration reactor (PER) along I-75 in Cincinnati, OH.

XRT analysis results of ϕ_t, ϕ_e, d_{50a} (or A_{50a}), and (L_e/L) are nearly independent on the image resolution R_r, making XRT a useful tool to predict hydraulic and filtration constitutive properties of CPP. In contrast, (SSA), d_{50n} (or A_{50n}) results were dependent on R_r.

$\phi_t-\phi_e$ relationship follows a power law correlation. Pore area distributions followed a Gaussian model while pore number distributions followed an exponential decay model. Correlation between $(SSA)_c-d_{50n}-\phi_t$ follows a power law relationship. Both the pdf of (L_e/L) and the $(L_e/L)-\phi_t$ relationship followed a Gaussian distribution.
Empirical hydraulic conductivity models, such as Hazen, Krüger, Fair-Hatch, Terzaghi, Bayer, USBR, Slichter model and the conventional Kozeny-Carman model, are not applicable for hydraulic conductivity estimation for CPP with typical porosity higher than 20%.

Factors that significantly influence fluid flow in porous media include effective porosity, pore connectivity and pore size distribution. A modified Kozeny-Carman model in which effective porosity ϕ_e, specific surface area based on effective pores $(SSA)_{pe}$, and weighted tortuosity $(L_e/L)_w$ were employed was developed applicable for prediction of CPP hydraulic conductivity.

(SSA) obtained by EGME method generate underestimated values in 3-5 order of magnitude when used for hydraulic conductivity estimation. For CPP, pores smaller than 1/100 of d_{50a} may be neglected. Both the K_{sat}-ϕ_t relationship and k_{sat}-ϕ_e relationship follows a power law model correlation.

CPP particle removal efficiency vary with different loading concentration. For a given stormwater particulate gradation, when $[m]_{i0} = 200$ mg/L, $\eta = 92.21\%$; when $[m]_{i0} = 100$ mg/L, $\eta = 88.74\%$ and $\eta = 83.76\%$ for $[m]_{i0} = 50$ mg/L, respectively. For different particle size fraction, particles coarser than 300 μm, removal efficiency was 100%, while for those finer than 25 μm, η is about 50%.

When the “schmutzdecke” thickness is more than 1.5 mm on the CPP surface, the infiltration rate of CPP drops to less than 10^{-4} cm/s. The decrease of infiltration rate caused by particle clogging is determined by both CPP material and the particle properties such as gradation and concentration.
The sonicating and backwash method can recover the CPP original infiltration rate up to 99%, while the vacuum suction method can recover it more than 96%. Under 100 mg/L particle loading, the CPP surface could be cleaned once every year by vacuum suction.

Runoff water quality can be significantly improved after infiltrating through CPP. The effluent turbidity is less than 10 NTU after 10 hours of filtration. The final turbidity is about 4 NTU. The turbidity-TSS relationship follows a power law model.

Both runoff pH value and alkalinity were elevated after infiltrating though CPP. For specimens exposed to runoff or rainfall for 3 years, the effluent pH was in the range of 7.8-8.5, and the alkalinity elevation rate was in the range of 11.5%-14.7%. When influent [TDP] ≈ 1.0 mg/L, TDP removal efficiency was in the range of 24.2 %–28.5%. For TP removal, when influent [TP] ≈ 1.45 mg/L, TP removal efficiency was in the range of 46-50%.

For the aluminum coated CPP specimens, the effluent pH was in the range of 8.5 or higher, and the alkalinity elevation rate was in about 42%. TDP removal efficiency is up to 82%, the average TP removal efficiency is up to 85%. Total particulate phosphorus (TPP) removal efficiency was related to removed particles. Instead of mass or number of particles, particle surface area determines the removal efficiency of TPP.

All factors including w/c, a/c, aggregate gradation and the degree of compaction have significant influence on CPP strength and porosity properties. To achieve a CPP structural with desirable strength, full compaction is necessary. For CPP materials with full compaction, under the same gradation and the same a/c, a lower w/c leads to a lower total porosity and a higher strength. With the open graded gradation and the same w/c, a lower a/c leads to a higher compressive and splitting tensile strength. This conclusion is on the contrast with that drawn for standard impervious concrete.
With the same w/c and a/c, a higher percentage of fine aggregates leads to a lower total porosity, resulting a higher strength. Both the f_c' - f_s relationship and f_c' and $-\phi_t$ relationship could be expressed by a power law model.

A recommended mix design for CPP materials is as follows:

Aggregate: coarser and open grade aggregates with max aggregate size around 10 mm. At least 85% of crushed lime stone coarser than No.8, and 5% of sand finer than No. 30 are desirable;

w/c: less than 0.4, 0.3 is preferred;

a/c: around 4-5.5, and

Degree of compaction: full compaction.

With this design, the expected mix and CPP properties are:

Slump for fresh concrete: > 12.7 cm (5 in);

Specific gravity: about 2.7;

Strength: $f_c' > 25$ MPa (3500 psi), and $f_s > 2.76$ MPa (400 psi);

Total porosity: > 20%, and

Permeability: $k > 0.5$ cm/s.

CPP not only has the capability to control the quantity of runoff by reducing runoff peak flow rate, volume and concentration time through infiltration function, it also has the capability to control the quality of runoff by removing particles, particulate associated heavy metals and anthropogenic pollutants, phosphorus, and elevating alkalinity and pH values in runoff through filtration, absorption and reaction.
VITA

Xuheng Kuang is a native of Hunan Province, China. He received a Bachelor of Science degree in hydraulic engineering from Wuhan University of Hydraulic and Electrical Engineering in June 1994, and a Master of Science degree under the guidance of Professor Guanlin Liu in the fluid machinery and dynamic engineering in the same institute in June 1997. He began his doctoral career in Fall 2002, in the Department of Civil and Environmental Engineering of Louisiana State University under the guidance of Dr. John Sansalone. Xuheng will receive a doctorate in civil engineering from Louisiana State University in December 2005.