The Elastic-Plastic Response of Long Slender Rods Subjected to Impulsive-Type Loadings.

Massey Bertie Valentine
Louisiana State University and Agricultural & Mechanical College
This dissertation was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted.

The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction.

1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity.

2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame.

3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again – beginning below the first row and continuing on until complete.

4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation. Silver prints of "photographs" may be ordered at additional charge by writing the Order Department, giving the catalog number, title, author and specific pages you wish reproduced.

University Microfilms
300 North Zeeb Road
Ann Arbor, Michigan 48106
A Xerox Education Company
VALENTINE, Massey Bertie, 1935-

THE ELASTIC PLASTIC RESPONSE OF LONG SLENDER
RODS SUBJECTED TO IMPULSIVE TYPE LOADINGS.

The Louisiana State University and Agricultural
and Mechanical College, Ph.D., 1972
Engineering, mechanical

University Microfilms, A XEROX Company, Ann Arbor, Michigan
THE ELASTIC PLASTIC RESPONSE OF LONG SLENDER RODS SUBJECTED TO IMPULSIVE TYPE LOADINGS

A Dissertation

Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

in

The Department of Mechanical, Aerospace and Industrial Engineering

by

Massey B. Valentine
B.S. Louisiana Polytechnic University, 1957
M.S. Louisiana State University, 1965
August, 1972
PLEASE NOTE:

Some pages may have indistinct print.
Filmed as received.

University Microfilms, A Xerox Education Company
ACKNOWLEDGEMENTS

The author would like to express his sincere appreciation to Dr. Gerald D. Whitehouse for his interest, suggestions, patience and awareness of the relevance of this research topic. Also, the author wishes to thank Mr. Leo Wilson of the Air Force Armament Laboratory for supporting the experimental work described in this dissertation. Appreciation is also acknowledged to Mr. Clyde Wallace of the Air Force Armament Laboratory for his assistance in conducting the test firings.

I wish also to acknowledge the support and understanding of my wife, Modene, who provided the encouragement that I needed. In addition, I wish to acknowledge the moral support of my mother, who always had the confidence that I would succeed in completing the requirements for the Doctor of Philosophy Degree.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>i1</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>iii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>xiv</td>
</tr>
<tr>
<td>CHAPTER</td>
<td></td>
</tr>
<tr>
<td>I INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1. PRIOR WORK</td>
<td>1</td>
</tr>
<tr>
<td>2. CURRENT WORK BEING PERFORMED</td>
<td>4</td>
</tr>
<tr>
<td>3. ELASTIC AND PLASTIC WAVES IN A ROD</td>
<td>4</td>
</tr>
<tr>
<td>4. STATEMENT OF THE PROBLEM</td>
<td>7</td>
</tr>
<tr>
<td>II EXPERIMENTAL RESULTS</td>
<td>8</td>
</tr>
<tr>
<td>1. TEST PROCEDURES</td>
<td>8</td>
</tr>
<tr>
<td>2. FINAL MODE SHAPES</td>
<td>12</td>
</tr>
<tr>
<td>3. TRANSIENT MODE SHAPES</td>
<td>18</td>
</tr>
<tr>
<td>4. ROD FAILURES</td>
<td>29</td>
</tr>
<tr>
<td>5. AXIAL DEFORMATION</td>
<td>29</td>
</tr>
<tr>
<td>6. PLASTIC WAVE PROPAGATION</td>
<td>36</td>
</tr>
<tr>
<td>7. AXIAL SURFACE STRAINS</td>
<td>36</td>
</tr>
<tr>
<td>8. SUMMARY OF EXPERIMENTAL RESULTS</td>
<td>40</td>
</tr>
<tr>
<td>III DEVELOPMENT OF THE EQUATIONS OF MOTION AND MATERIAL BEHAVIOR</td>
<td>44</td>
</tr>
<tr>
<td>1. PRINCIPLE OF VIRTUAL WORK</td>
<td>44</td>
</tr>
<tr>
<td>2. RELATING THE AXIAL FORCE P TO A DEFLECTION u</td>
<td>48</td>
</tr>
</tbody>
</table>
3. RELATING THE MOMENT TO A LATERAL DEFLECTION \(y \) ..49
4. THE EQUATIONS OF MOTION ...51
5. MATERIAL BEHAVIOR ..52
6. SUMMARY ..55

IV NUMERICAL TECHNIQUES ..56
1. THE FINITE DIFFERENCE TECHNIQUE ..56
 a. Axial Motion ..60
 b. Lateral Motion ..61
2. GALERKIN'S METHOD ...64
3. FORCING FUNCTIONS ...68

V THE COMPUTER PROGRAMS ..71
1. ALGORITHM FOR THE FINITE DIFFERENCE TECHNIQUE71
2. ALGORITHM FOR GALERKIN'S METHOD ...73

VI ANALYTICAL RESULTS ..77
1. ELASTIC FLEXURE WAVES ...77
2. PLASTIC FLEXURE WAVES - COMPARISON WITH WORK OF ABRAHAMSON AND GOODIER ...79
3. STRESS AND STRAIN PROFILES ...81
4. AXIAL DEFORMATION ..89
5. LATERAL DEFORMATION PROFILES ...93
6. COMPARISON OF GALERKIN AND FINITE DIFFERENCE TECHNIQUES ...105

VII CONCLUSIONS AND RECOMMENDATIONS111
1. CONCLUSIONS ...111
2. RECOMMENDATIONS ...112
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Time Position Domain of Elastic and Plastic Wave Fronts</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>Static Stress-Strain Relation</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>Rod Section Scribed with 80 Lines Per Inch</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>Schematic of Test Setup and Apparatus</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>Final Mode Shapes for 6 Inch Aluminum Rods of 1/4 Inch Diameter</td>
<td>14</td>
</tr>
<tr>
<td>6</td>
<td>Final Mode Shapes for 12 Inch Aluminum Rods of 1/4 Inch Diameter</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>Final Mode Shapes for 18 Inch Aluminum Rods of 1/4 Inch Diameter</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>Final Mode Shape for a 6 Inch Rod having Impacted Orthogonally at 1006 fps Exhibiting a Helical Mode Shape</td>
<td>17</td>
</tr>
<tr>
<td>9</td>
<td>Final Mode Shape for a 12 Inch Rod Exhibiting Sinusoidal Mode Shape with Lateral Deformation Confined to Single Plane</td>
<td>19</td>
</tr>
<tr>
<td>10</td>
<td>Final Mode Shape for a 12 Inch Rod of 7/16 Inch Diameter Having Impacted at Approximately 4 Degrees Obliquity with Sinusoidal Mode Shape Superimposed on Bending</td>
<td>20</td>
</tr>
<tr>
<td>11</td>
<td>Spiral Mode Shape Obtained for Impact of 750 fps and 4 Degrees Obliquity</td>
<td>21</td>
</tr>
<tr>
<td>12</td>
<td>Impact of 6 Inch Rod of 7/16 Inch Diameter Some 45 μsec After Contact with Plate</td>
<td>22</td>
</tr>
<tr>
<td>13</td>
<td>Sequence of High Speed Photographs Showing Predominate Sinusoidal Mode Shape During Initial Frames, Developing Later Into More Grossly Deformed Shape. Time Between Frames is 70.5 μsec for 12 Inch Rod Impacting at 611 fps</td>
<td>24</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>14</td>
<td>Sequence of Superimposed X-Ray Shadowgraphs of 6 Inch Rod Impacting Steel Plate at 697 fps</td>
<td>25</td>
</tr>
<tr>
<td>15</td>
<td>Sequence of Photographs Showing 12 Inch Rod Impacting at 632 fps and Exhibiting a Helical Mode Shape. Time between Frames is 64 μsec</td>
<td>26</td>
</tr>
<tr>
<td>16</td>
<td>Sequence of High Speed Photographs Showing 12 Inch Rod Impacting at 750 fps at a 4 Degree Obliquity. Time Between Frames is 65 μsec</td>
<td>27</td>
</tr>
<tr>
<td>17</td>
<td>Example of Rod Breakup Caused by Combination of High Velocity Impact and Oblique Impact. Impact Occurred at 845 fps and 88 Deg</td>
<td>30</td>
</tr>
<tr>
<td>18</td>
<td>Instantaneous Rod Length for 6 Inch Rods of 1/4 Inch Diameter</td>
<td>31</td>
</tr>
<tr>
<td>19</td>
<td>Instantaneous Rod Length for 12 Inch Rods of 1/4 Inch Diameter</td>
<td>32</td>
</tr>
<tr>
<td>20</td>
<td>Instantaneous Rod Length for 18 Inch Rods of 1/4 Inch Diameter</td>
<td>33</td>
</tr>
<tr>
<td>21</td>
<td>Permanent Axial Plastic Deformation as a Function of Impact Velocity of 1/4 Inch Diameter Rods</td>
<td>35</td>
</tr>
<tr>
<td>22</td>
<td>Plastic Wave Position for 6 Inch Rods of 1/4 Inch Diameter</td>
<td>37</td>
</tr>
<tr>
<td>23</td>
<td>Plastic Wave Position for 12 Inch Rods of 1/4 Inch Diameter</td>
<td>38</td>
</tr>
<tr>
<td>24</td>
<td>Plastic Wave Position for 18 Inch Rods of 1/4 Inch Diameter</td>
<td>39</td>
</tr>
<tr>
<td>25</td>
<td>Axial Surface Strains for 6 Inch Rods of 1/4 Inch Diameter</td>
<td>41</td>
</tr>
<tr>
<td>26</td>
<td>Axial Surface Strains for 12 Inch Rods of 1/4 Inch Diameter</td>
<td>42</td>
</tr>
<tr>
<td>27</td>
<td>Differential Element of Rod Showing Displacements, Forces and Moment</td>
<td>45</td>
</tr>
<tr>
<td>28</td>
<td>Rod Cross Section Showing Stress Profile for Bending Moment Superimposed on Plastic Compression</td>
<td>50</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>29</td>
<td>The Elastic-Plastic Stress-Strain Relation</td>
<td>54</td>
</tr>
<tr>
<td>30</td>
<td>A Discrete Model of the Rod Showing Nodal Point Locations</td>
<td>57</td>
</tr>
<tr>
<td>31</td>
<td>Forcing Function Used in Analysis</td>
<td>69</td>
</tr>
<tr>
<td>32</td>
<td>Computer Program Flow for Finite Difference Technique</td>
<td>72</td>
</tr>
<tr>
<td>33</td>
<td>Phase Velocity Comparisons for Flexural Elastic Waves in a Solid Circular Cylinder of Radius R</td>
<td>78</td>
</tr>
<tr>
<td>34</td>
<td>The Distribution of Stress Along the Rod at Three Distinct Time Intervals of 20, 30, and 40 µsec for 6 Inch Rod Impacts</td>
<td>82</td>
</tr>
<tr>
<td>35</td>
<td>The Distribution of Stress Along the Rod at Time Intervals of 50, 60 and 70 µsec for 6 Inch Rod Impacts</td>
<td>83</td>
</tr>
<tr>
<td>36</td>
<td>The Distribution of Strain Along the Rod at Three Time Intervals of 20, 30 and 40 µsec for 6 Inch Rod Impacts</td>
<td>85</td>
</tr>
<tr>
<td>37</td>
<td>The Distribution of Strain Along the Rod at Three Time Intervals of 50, 60 and 70 µsec for 6 Inch Rod Impacts</td>
<td>86</td>
</tr>
<tr>
<td>38</td>
<td>A Comparison of the Distribution of Plastic Strains for 6 Inch Rod for Rectangular Forcing Functions</td>
<td>87</td>
</tr>
<tr>
<td>39</td>
<td>A Comparison of Various Forcing Functions for Impact of 1006 fps for 6 Inch Rod</td>
<td>88</td>
</tr>
<tr>
<td>40</td>
<td>A Comparison of the Instantaneous Rod Lengths for 6 Inch Rods of 1/4 Inch Diameter</td>
<td>90</td>
</tr>
<tr>
<td>41</td>
<td>A Comparison of the Instantaneous Rod Lengths for 12 Inch Rods of 1/4 Inch Diameter</td>
<td>91</td>
</tr>
<tr>
<td>42</td>
<td>A Comparison of the Instantaneous Rod Lengths for 18 Inch Rods of 1/4 Inch Diameter</td>
<td>92</td>
</tr>
<tr>
<td>Figure</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>43</td>
<td>A Sequence of Analytical Profiles for Various Time-Increments with the Last Analytical Profile being Compared to the Experimental Results for Same Conditions. Impact Velocity is 1066 gps for a 6 Inch Rod.</td>
<td>96</td>
</tr>
<tr>
<td>44</td>
<td>A Sequence of Analytical Profiles for Various Time Increments with the Last Analytical Profile Being Compared to the Experimental Results for Impact of 850 fps</td>
<td>97</td>
</tr>
<tr>
<td>45</td>
<td>A Sequence of Analytical Profiles for Various Time Increments with the Last Analytical Profile Being Compared to the Experimental Results for Impact Velocity of 497 fps for a 6 Inch Rod.</td>
<td>98</td>
</tr>
<tr>
<td>46</td>
<td>A Sequence of Analytical Profiles for Various Time Increments with the Last Analytical Profile Being Compared to the Experimental Results for an Impact Velocity of 500 fps and Obliquity of 2 Degrees for 12 Inch Rod.</td>
<td>99</td>
</tr>
<tr>
<td>47</td>
<td>A Sequence of Analytical Profiles for Various Time Increments with the Last Analytical Profile Being Compared with the Experimental Results for Impact Velocity of 374 fps and Obliquity of 2 Degrees for 12 Inch Rod.</td>
<td>100</td>
</tr>
<tr>
<td>48</td>
<td>A Sequence of Analytical Profiles for Various Time Increments with the Last Analytical Profile Being Compared with the Experimental Results for Impact Velocity of 387 fps and Obliquity of 0.5 Degrees for 12 Inch Rod.</td>
<td>101</td>
</tr>
<tr>
<td>49</td>
<td>A Sequence of Analytical Profiles for Various Time Increments with the Last Analytical Profile Being Compared with the Experimental Results for Impact Velocity of 602 and Obliquity near 2 Degrees for 18 Inch Rod.</td>
<td>102</td>
</tr>
<tr>
<td>50</td>
<td>A Sequence of Analytical Profiles for Various Time Increments with the Last Analytical Profile Being Compared with the Experimental Results for Impact Velocity of 252 fps for 18 Inch Rod at 2 Degree Obliquity.</td>
<td>103</td>
</tr>
<tr>
<td>51</td>
<td>A Comparison of the Analytical and Experimental Results on a Frame-by-Frame Basis. Impact Velocity is Near 500 fps for 7/16 Inch Rod of 12 Inches in Length.</td>
<td>104</td>
</tr>
</tbody>
</table>
Figure Page

52 A Comparison of the Final Profiles for the Galerkin and Finite Difference Techniques for a 6 Inch Rod Having Impacted at 697 fps108

53 A Comparison of the Final Profiles Near the Impacted End for the Galerkin and Finite Difference Techniques for a 6 Inch Rod Having Impacted at 388 fps109

54 A Comparison of the Final Profiles Near the Impacted End for the Galerkin and Finite Difference Techniques for a 12 Inch Rod Having Impacted at 500 fps110
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Rod Failure Conditions for 1/4 Inch Diameter Aluminum Rods</td>
<td>29</td>
</tr>
<tr>
<td>II</td>
<td>Finite Difference Output</td>
<td>74</td>
</tr>
<tr>
<td>III</td>
<td>Output from Galerkin's Method</td>
<td>76</td>
</tr>
<tr>
<td>IV</td>
<td>Wavelengths for 18 Inch 6061-T6 Aluminum Rods of 1/4 Inch Diameter</td>
<td>80</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

A cross sectional area of rod
D rod diameter
E elastic modules of elasticity, Young's Modulus
e equation residual or error used in Galerkin's method for lateral motion
F force acting on rod
Fx force acting on rod along x coordinate
Fy force acting on rod along y coordinate
h distance between nodal points for finite difference technique
I moment of inertia of rod cross section about the neutral axis
I1 moment of inertia of the rod cross section above the neutral axis
I2 moment of inertia of the rod cross section below the neutral axis
K parabola coefficient. A constant that is a function of the material
L rod length
M moment
N order of system of differential equations
m rod mass
P axial force
R equation residual used in Galerkin's method for axial motion
t time
u displacement of a particle along axial direction
u velocity of a particle along axial direction
u acceleration of a particle along axial direction
v rigid body rod velocity
w total work produced by bending moment, axial force, applied forces, and inertia forces
\(W_I \) work produced by inertia forces

\(x \) coordinate along axial direction

\(y \) displacement of a particle on rod in lateral direction

\(y_0 \) an amplitude factor

\(y_1 \) an amplitude factor

\(\dot{y} \) velocity of a particle on rod in lateral direction

\(\ddot{y} \) acceleration of a particle on rod in lateral direction

\(\bar{y}_1 \) static moment of rod cross section above neutral axis

\(\bar{y}_2 \) static moment of rod cross section below neutral axis

\(\beta \) plastic modulus or slope of stress-strain curve

\(\gamma \) assumed lateral displacement function for Galerkin's technique

\(\delta \) symbol denoting virtual as used in virtual displacement denoted by \(\delta u, \delta y, \delta \psi \)

\(\epsilon \) strain, \(\frac{\partial u}{\partial x} \)

\(\epsilon_0 \) strain at yield

\(\eta_1 \) distance from neutral axis of rod to perimeter of upper section

\(\eta_2 \) distance from neutral axis of rod to perimeter of lower section

\(\lambda \) wavelength

\(\rho \) material density

\(\sigma \) stress in rod at neutral axis

\(\sigma_0 \) yield stress

\(\tau \) time function

\(\phi \) assumed axial displacement function for Galerkin's technique

\(\psi \) rotation angle of an element of rod, \(\frac{\partial y}{\partial x} \)

\(\omega \) displacement function, used by Abrahamson

[] matrix notation

\{}\{} vector notation
ABSTRACT

Experimental and analytical results are presented for the elastic plastic deformation of a slender rod subjected to impulsive loading that occurs during the impact of a rod against a rigid plate. Particular emphasis is given to the lateral or flexure buckling mode shapes that occur during the impact.

The transient response and resulting deformation were recorded with the aid of high speed photography and flash X-rays. A frame-by-frame record of the impact phenomena gives the displacement of a particle on the rod and the plastic wave propagation position. Also presented are three distinct failure modes that result, dependent primarily upon impact geometry. For a pure orthogonal impact, a helical mode shape results. For a near orthogonal impact of approximately 1 to 3 degrees off the normal, all lateral motion is confined to a single plane resulting in a sinusoidal mode shape. Impacts from 4 to 6 degrees off the orthogonal result in a spiral mode shape.

A derivation for the equations of motion is given, considering axial, lateral, and rotational inertia for the case where the lateral motion is confined to a single plane. The coupling between the differential equations of motion introduced by the nonlinear stress-strain relation is solved by allowing the axial equation to predominate. Two analytical techniques are presented for solving the differential equations of motion and material behavior. The Galerkin technique and the method of finite differences are used to obtain numerical solutions to the partial differential equations. A comparison between the analytical and experimental results is presented showing good agreement between the finite difference technique and the...
experimental results. Results from the Galerkin method compared well with the experimental results only for large plastic axial deformations.
CHAPTER I
INTRODUCTION

An investigation was conducted into the elastic plastic response of a slender rod subject to impulsive type loads, such as an impact of a rod against a rigid plate. In this chapter, the work of other investigators will first be considered, followed by a discussion of the applicable work currently in progress. Then, to provide some background of the rod impact problem, a short discussion of elastic and plastic stress waves in a rod is presented followed by a brief statement of the problem to be studied and solved.

1. PRIOR WORK

In the nineteenth century, Stokes, Poisson, Rayleigh, Kelvin, and others developed the theory of elastic wave propagation in solids, primarily as an extension of the theory of elasticity as applied to vibrating bodies. During the first quarter of the twentieth century, the subject of wave propagations was neglected; later, however, interest in the subject began to increase. During the World War II era, the problem of plastic wave propagation in solids was considered, with the first work being independently reported by Taylor, Von Karman, and Rakhmatulin. One of the first investigations was concerned with longitudinal plastic waves propagating along a rod. Von Karman and Rakhmatulin treated this problem with the aid of Lagrangian coordinates, while Taylor used Eulerian coordinates. The fundamental result of this work is that the wave velocity for longitudinal waves propagating along a bar is given by the relationship

\[C_o = \sqrt{\beta/\rho} \]

(1)

where \(\beta \) is the slope of the stress-strain relationship (elastic or plastic), and \(\rho \) is the material density.
More recently, elastic and plastic stress wave propagations, both longitudinal and flexural, have been studied by Abramson, Plass, and Ripperger (Reference 1). Also, Kolsky studied wave propagations and the analytical and experimental results are presented in Reference 2. Abramson's work was devoted to rods and beams, and the solution to an elastic plastic flexure wave propagation problem was presented for a beam assumed supported by a pin attached to a rigid base. A lateral impulsive load was applied to the beam, and the results showed that zones of plastic flow occurred only near the impact region and in a thin zone near the bending wave front. The remainder of the beam was found to behave elastically.

The most recent work dealing with flexure buckling due to impact loading was conducted by Abrahamson and Goodier (Reference 3), who obtained experimental results similar to those presented in this report. However, the results were only reported for lateral deformation confined to a single plane. Also the analytical work presented was limited to the prediction of the flexure wave wavelength.

During 1968, Grabarek and Ricchiazzi presented experimental results (Reference 4) for long rod impacts of mild steel rods impacting a finite target of like material. For some of the impacts, the impact velocity was such that penetration and perforation of the target plate occurred. At the lower striking velocities, the rod deformation of the impacted end was obtained as a function of time. Grabarek and Ricchiazzi presented the longitudinal plastic wave propagation velocities and the impact duration; however, due primarily to the length-to-diameter ratio of the rods, no flexure deformation was obtained from the experimental results.

A great deal of work has been conducted and is in progress using general purpose large scale elastic-plastic-hydrodynamic codes for solving
impact and impulsive loading problems. These large scale models employ
the governing differential equations of motion, wave mechanics, and ther­
mophysical properties of the materials, and are essentially outgrowths
of work supported by the Atomic Energy Commission (Reference 5). These
techniques have been successfully applied to predict the dynamic response
of materials as applied to problems in penetration mechanics. Sedgwick
(References 6 and 7) has also used the general purpose hydrodynamic codes
to predict the deformation for short axi-symmetric cylinders, with ogive
noses, penetrating target plates. The analytical model, CRAM, used by
Sedgwick is very similar to the code described in Reference 5. These
codes have met with little application outside of Government laboratories
because of the large scale computers and extensive running times required
for typical problem solutions.

Problems of symmetry dealing with the dynamic response of materials
can be modeled quite accurately using the hydrodynamic codes; however,
the results are no better than simple knowledge of the equation of state
or stress-strain relation of the materials. This may also be generalized
to include any theoretical technique used to predict the dynamic response
of materials. In an effort to determine the dynamic stress-strain relation
for several materials, Bell (Reference 8) used diffraction grating experi­
mental techniques which permitted the optical determination of the stress­
time detail of finite amplitude wave fronts propagating into crystalline
solids whose prior history was known. These experimental diffraction
grating studies lead to the discovery that a generalized stress-strain
function results for the 27 crystalline solids considered. This stress­
strain relation for the plastic region is parabolic and of the form
\[\sigma = K \sqrt{\varepsilon} \] (2)

where \(K \) is a constant that varies as a function of the material.

2. CURRENT WORK BEING PERFORMED

Current work is in progress to determine the dynamic response of materials subjected to impulsive loadings. Within the Air Force Armament Laboratory, analytical techniques are under development for predicting fracture and spall off the back side of target plates subjected to impact and other impulsive loads. A variation of the two-dimensional hydrodynamic code CRAM is being used for this purpose. Additional work is being performed in the area of dynamic crack propagation and stress wave propagations in ogive cylinders.

3. ELASTIC AND PLASTIC WAVES IN A ROD

Now, consider a rod of finite length that suddenly experiences an impact load. If the load is sufficient to compress the material beyond its elastic limit and the stress is maintained for a specified period, an elastic wave of compression will travel along the rod toward the other end. This elastic wave will be followed by a plastic wave which travels more slowly. When the compressive stress is removed, the resulting wave of unloading is a wave of tension and travels along the rod toward the free end. The elastic wave travels at a higher velocity than the plastic wave and when it overtakes the plastic wave, it reduces the amplitude of the plastic wave. When the elastic wave that is leading the plastic wave front reaches the free end of the rod, the elastic compression wave is reflected off the free end of the rod as an elastic wave of tension. When this reflected tensile wave interacts with the oncoming compressive plastic wave, the amplitude of the plastic wave is reduced, and unloading is accomplished. If the opposite end from the impacted end of the rod were fixed to a rigid body, the elastic compressive wave would reflect
off the fixed end as a compressive plastic wave. The fixed end situation is well represented by the driving of a spike in a hard media.

Figure 1 may be used to visualize the wave propagation. Along the front, OA, the stress is at yield. In the region OAB, the rod is in a plastic state. The region OBC is in the unloading region, and the elastic unloading relations apply. When the load is released, the tensile wave of unloading travels from the impacted end with the velocity of the elastic wave and meets the plastic wave at some region (as illustrated by 1 in Figure 1). The elastic wave bounces back and forth from the impacted end to the plastic wave, initiating a complicated unloading procedure. The time space domain in which permanent deformation occurs is the region of OAB.

Another type of wave motion is also present when a rod is impacted against a rigid surface. Flexure waves develop near the impacted end and propagate toward the free end of the rod at a velocity dependent upon the wavelength. The elastic flexure wave velocity, or phase velocity, is less than the longitudinal wave velocity and will never exceed the value $0.5764 \sqrt{E/\rho}$ regardless of a wavelength. This important property will be discussed later and applied to the rod impact problem.

When the impact velocity of the rod is sufficiently large and the elastic limit of the material is exceeded, plastic buckling will occur. The plastic buckling that occurs due to the axial compressive stress will be confined within the axial plastic compression wave. This lateral motion that results in the plastic buckling can be induced by any one of several factors such as:

a. A non-orthogonal impact.

b. A bent rod.
Figure 1. Time Position Domain of Elastic and Plastic Wave Fronts.
c. Non-isotropic material properties.
d. Stress pulses in rod induced by gun firing.

In the problem considered in this work, the lateral motion will be induced by a moment resulting from a small obliquity at impact.

4. STATEMENT OF THE PROBLEM

The objective of the work presented in this work is to predict the buckling mode shapes that occur when a slender rod impacts a rigid plate. Emphasis is placed on the lateral or flexure buckling, but in order to solve this problem, a solution of the axial deformation is necessary. Of course, analytical work is confirmed and validated only when supported by experimental work. An experimental program was conducted and is discussed in the following chapter.
A program was conducted to obtain an experimental data base for comparisons with analytical techniques for predicting the buckling mode shapes as a function of time for a slender rod impacting a rigid plate. The objectives of the experimental work were (a) to obtain the buckling mode shapes, (b) to relate the displacement of a particle on the rod as a function of time during the impact time, and (c) to obtain permanent strain profiles from the impacted rod. Hence, the major effort of the experimental work was directed toward capturing the rod motion during the impact sequence for observation of the buckling mode shapes during impact. These data were obtained with the use of high-speed photography and flash X-ray photography, the only experimental techniques available. Other techniques that could have been used to measure the displacement of a particle along a rod during impact include a split Hopkinson's Bar (Reference 2).

1. TEST PROCEDURES

One-quarter inch and 7/16 inch diameter aluminum rods (Type 6061 T-6) were purchased and tested using a tensile tester to determine if any anomalies existed and to determine if any variation existed in the yield of the material for each purchase lot. A sample test specimen was obtained from each 20 foot rod section and was pulled to failure on a tensile tester to establish a static stress-strain relation as well as the yield conditions. Type 6061 T-6 aluminum was chosen primarily for the invariance of the strain rate sensitivity property of the material.

The stress-strain relation obtained from the specimens pulled on the tensile tester is shown in Figure 2. On the figure, the stress-strain
Figure 2. Static Stress-Strain Relation.

\[\sigma_0 = 42,500 \text{ PSI} \]
\[E = 10^7 \text{ PSI} \]
\[\varepsilon \approx 180,000 \text{ PSI} \]
6061 T6 Aluminum
relation is essentially bilinear, with a linear elastic portion, a linear plastic section, and possibly some curvature near the yield point. A yield stress of 42,500 psi was established, and a slope in the plastic region of approximately 180,000 psi was determined.

Several of the aluminum rods (Figure 3) were scribed 80 lines per inch with a fine machine tool on a lathe. These reference marks were used to determine the plastic surface strain as a function of position along the rod. In addition to the scribed rods, some of the 7/16 inch diameter rods were anodized and then machined with circular rings at 1/4 inch intervals at a depth of 0.002 to 0.003 inch. These circular rings provided reference marks for tracking with high-speed cameras during the impact process.

Figure 4 shows the test setup and equipment. A powder chamber was used to fire the rods from a smooth bore Mannbarrel of caliber 0.30 for the 1/4 inch rods and of caliber 0.50 for the 7/16 inch rods. A plastic pusher plug and a Celotex gas seal were used to push the rod along the barrel. The rod velocity was controlled by adjusting the amount and type of powder used during firing. Several types of cameras were used to capture the impact phenomena: A quarter-frame Nova camera with a nominal framing rate of 15,000 frames per second and a half-frame Fastex with a nominal framing rate of 15,000 frames per second. The cameras were placed orthogonal to each other as indicated in Figure 4. The orthogonal geometry was necessary to resolve the impact geometry. A B&W 192 framing camera was also used which has a variable framing rate ranging from 96,000 to 1,200,000 frames per second. Test samples utilizing the B&W camera were limited to four shots because of the light problems. An argon candle was utilized for the light source; however, the peak light intensity necessary to illuminate the rod sufficiently for exposure on the film was
Figure 3. Rod Section Scribed with 80 Lines Per Inch.
not of sufficient duration to cover the impact duration. In addition, the film strip is limited to 72 frames. The limited film strip, coupled with the lighting problems, does not allow observation of the rod before, during, and after impact.

As shown on Figure 4, a grid was placed in the background of each camera's field of view to provide reference lines for the film reader in determining the displacement, impact angle, and velocity measurements. For those shots in which X-ray photography was desired, the grid (Figure 4) was covered with the X-ray film, and the X-ray tubes were placed in the positions occupied by the cameras.

Due to the time required for the cameras to reach the peak framing rate, a delay system was constructed using the camera signal to fire the gun. The gun was placed about 15 feet from the target plate to allow the angle of impact to vary from the orthogonal position so as to observe the effect of impact angle on rod deformation. Initially, some difficulty was experienced in stabilizing the rod during flight, but this was overcome by proper gun placement and using a pusher plug behind the rod.

2. FINAL MODE SHAPES

Figures 5, 6, and 7 show some typical final mode shapes obtained for 6, 12, and 18 inch rods that had impacted a rigid plate at various velocities at or near orthogonal impact geometries. The impact geometry and velocity control the type of mode shape obtained from the tests. Three distinct types of mode shapes were obtained: sinusoidal, helical, and spiral.

For a pure orthogonal impact of sufficient velocity, a helical mode shape results (Figure 8). The words "of sufficient velocity" are significant because some near orthogonal impacts at low velocity did not result in the helical mode shape. If the impact velocity had been higher, a
Figure 4. Schematic of Test set up and Apparatus.
Figure 5. Final Mode Shapes for 6 Inch Aluminum Rods of 1/4 Inch Diameter.
Figure 6. Final Mode Shapes for 12 Inch Aluminum Rods of 1/4 Inch Diameter.
Figure 7. Final Mode Shapes for 18 Inch Aluminum Rods of 1/4 Inch Diameter.
Figure 8. Final Mode Shape for a 6 Inch Rod having Impacted Orthogonally at 1006 fps Exhibiting a Helical Mode Shape.
helix would probably have resulted. The neighborhood of the transition from the single plane deformation to the helical mode shape in terms of impact velocity is not known; however, the helical mode shape is believed to be velocity or stress dependent as well as geometry dependent.

For a near orthogonal impact of about 1 to 3 degrees off the orthogonal, a sinusoidal mode shape (Figure 9) results with the lateral deformation confined to a single plane. The 1 to 3 degree obliquity from the normal impact seems to be sufficient to impose a moment sufficiently large to prejudice the lateral motion to a single plane. Some of the impacts of high obliquity resulted in a hook shape with considerable bending of the rod near the impacted end. However, as shown on Figure 10, sinusoidal motion can be seen superimposed on the bending.

If the proper combinations of impact geometry and velocity occur, a spiral mode shape will result (Figure 11). Two spiral mode shapes were obtained with obliquity angles of about 4 degrees. These mode shapes were obtained for the 12-inch long rods of 1/4 inch diameter for impact velocities of 750 fps and 567 fps.

3. TRANSIENT MODE SHAPES

Figure 12 shows a single frame approximately 45 microseconds after impact taken from an impact sequence with the B&W 192 framing camera using a framing rate of 292,000 frames per second. The test specimen is a 7/16 inch diameter rod, 6 inches long, with machined rings on an anodized surface. One feature to observe from the impact (Figure 12) is the radial expansion of the rod near the impacted end; the longitudinal plastic wave (shown by the arrow) has advanced approximately 1.25 inches. Immediately behind the compression wave is the development of the plastic flexure wave that can be seen in the initial stages. The observed fact that the
Figure 9. Final Mode Shape for a 12 Inch Rod Exhibiting Sinusoidal Mode Shape with Lateral Deformation Confined to Single Plane.
Figure 10. Final Mode Shape for a 12 Inch Rod of 7/16 Inch Diameter having Impacted at Approximately 4 Degrees Obliquity with Sinusoidal Mode Shape Superimposed on Bending.
Figure 11. Spiral Mode Shape Obtained for Impact of 750 fps and 4 Degrees Obliquity.
Figure 12. Impact of 6 Inch Rod of 7/16 Inch Diameter Some 45 µsec After Contact with Plate.
plastic flexure wave is contained within the plastic compression wave allows a coupled system of differential equations of motion to be solved by letting the axial equation of motion control the material flow. Since the plastic compression wave dominates, the axial equation of motion is first solved to determine the state of strain at the neutral axis. Using the computed strain, the position on the stress-strain relation is then determined, and subsequently, the slope of the stress-strain relation is used in the lateral equation of motion for each time interval during the solution.

Figure 13 shows a high speed film sequence of a 12 inch long rod (1/4 inch diameter) impacting a rigid target plate at an impact velocity of 611 fps. The vertical lines on the film sequence are the reference marks placed in the background grid for the test setup shown in Figure 2. A white card was placed in the lower right portion of the grid to record the shot number, type rod, length, and other test conditions. The large cross or "x" on the left side of the film sequence is the desired impact point on the rigid target plate. For this particular sequence, the time between frames is 70.5 microseconds. The earlier frames show a sinusoidal mode shape developing, and after about 210 microseconds, the deformation becomes more gross due to the inertia of the rod and no longer resembles the familiar sinusoidal type observed earlier.

Figure 14 shows a flash X-ray photograph of the sinusoidal mode shape obtained during the impact. Superimposed shadows exhibiting transient mode shapes and deformations can be seen for three distinct time intervals during the impact.

Figure 15 shows a sequence of high-speed photographs exhibiting a helical mode shape for the orthogonal or near orthogonal impacts. This
Figure 13. Sequence of High Speed Photographs Showing Predominant Sinusoidal Mode Shape During Initial Frames, Developing Later into More Grossly Deformed Shape. Time Between Frames is 70.5 μsec for 12 Inch Rod Impacting at 611 fps.
Figure 14. Sequence of Superimposed X-Ray Shadowgraphs of 6 Inch Rod Impacting Steel Plate at 697 fps.
Figure 15. Sequence of Photographs Showing 12 Inch Rod Impacting at 632 fps and Exhibiting a Helical Mode Shape. Time Between Frames is 64 μsec.
Figure 16. Sequence of High Speed Photographs Showing 12 Inch Rod Impacting at 750 fps at a 4 Degree Obliquity. Time Between Frames is 65 µsec.
Figure 16. (Concluded.)
particular 12 inch long rod impacted at 632 fps and near the orthogonal position.

A spiral mode shape occurs when the rod impacts at a obliquity angle of about 4 degrees as shown by the sequence of photographs on Figure 16. The impact velocity for this rod was 750 fps, and the time between frames is 65 microseconds.

4. ROD FAILURES

Rod breakup as typified by Figure 17 was experienced when the rod impact velocity was high (on the order of 850 fps and greater) and the angle of obliquity was greater than 2 degrees. A shear failure caused by the excessive axial inertial load is experienced immediately behind the first flexural wave. Table I gives the failure conditions obtained.

<table>
<thead>
<tr>
<th>Shot No.</th>
<th>Rod Length (Inches)</th>
<th>Impact Velocity (fps)</th>
<th>Obliquity Angle (Deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>12</td>
<td>1008</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>895</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>18</td>
<td>1051</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>12</td>
<td>845</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>1050</td>
<td>3</td>
</tr>
<tr>
<td>16</td>
<td>6</td>
<td>1030</td>
<td>10</td>
</tr>
</tbody>
</table>

5. AXIAL DEFORMATION

The length of the rod has been obtained as a function of time by tracking the free end of the rod during the impact process with the aid of a film reader. These transient axial deformation data are shown in Figures 18, 19, and 20 for 6, 12, and 18 inch long rods (1/4 inch diameter). The instantaneous rod length L is normalized with the original
Figure 17. Example of Rod Breakup Caused by Combination of High Velocity Impact and Oblique Impact. Impact Occurred at 845 fps and 88 Degrees.
Figure 18. Instantaneous Rod Length for 6 Inch Rods of 1/4 Inch Diameter.
Figure 19. Instantaneous Rod Length for 12 Inch Rods of 1/4 Inch Diameter.
Figure 20. Instantaneous Rod Length for 18 Inch Rods of 1/4 Inch Diameter.
rod length L_0 and is plotted as a function of time. On Figure 18, the point of zero slope represents the time at which plastic deformation is arrested; note that the plastic deformation ceases after 75 to 100 microseconds, depending upon impact velocity. The theoretical plastic loading time is not easily computed, but if the loading time is assumed to be the time required for the elastic wave to reach the free end of the rod and return to the impacted end, this time is 61.5 microseconds. This compares to a loading time of 75 microseconds for a 388 fps impact velocity as determined by observing the film. Figure 18 also shows a slight increase in the rod length at the latter times, indicating the rod is bouncing back from the plate. Figures 19 and 20 show the length of the rod as a function of time for 12 and 18 inch rods, respectively. The plastic loading time is more difficult to obtain from Figures 19 and 20, but for the 12 inch rods, this time ranges from 110 microseconds to 155 microseconds, depending upon impact velocity.

In most instances, the exact time at which impact occurred is difficult to obtain. Most frequently, the impact occurred between frames, and in order to establish the impact time, the terminal velocity and framing rates must be known. Hence, some error is introduced in establishing the time at which impact occurs, as well as errors introduced by the position of the particle from the film reader. Indications are that the accuracy of the film reader is approximately 0.02 inch; however, due to the motion of the particular particle under consideration, the resolution of the particle on the film introduces another error.

The permanent axial deformation for all the 1/4 inch diameter aluminum rods fired is given in Figure 21. Note that beyond an impact velocity of approximately 670 fps the curve should be restricted to the 6 inch rod impacts.
Figure 21. Permanent Axial Plastic Deformation as a Function of Impact Velocity of 1/4 Inch Diameter Rods.
6. PLASTIC WAVE PROPAGATION

Figures 22, 23, and 24 show the longitudinal plastic wave position as a function of time for the 1/4 inch diameter aluminum rods. From the film, frame-by-frame measurements were made of the longitudinal wave front as it propagates toward the free end. With the aid of a film reader, a radial plastic deformation is evident during the initial stage of the impact. The flexure buckling occurs later in the impact and appears to be contained within the axial or longitudinal plastic front. This deformation was previously seen in Figure 12 where the plastic wave propagates up the rod. The plastic wave velocity may be obtained as the slopes of the curves presented in Figures 22, 23 and 24. Figure 22 shows that the wave velocity is higher for the lower impact velocities, particularly during the initial phases of the impact. This phenomenon can be due to one of two factors; (1) the material could be strain rate sensitive or other than bilinear (perhaps parabolic as suggested by Bell in Reference 8), thus denoting a change in the stress-strain slope as a function of strain rate or (2) the rod material could merely be stacking at the impacted end for the higher impact velocities. The latter factor seems to be more plausible since the plastic wave front was measured from the plate. Another important observation indicates the plastic wave front velocity appears to be independent of the rod length during the initial impact times, but is a function of the rod impact velocity.

7. AXIAL SURFACE STRAINS

Figures 25 and 26 show the permanent plastic strain measured axially on 6 and 12 inch aluminum rods, respectively. Prior to firing the rod, lines were scribed at 80 lines per inch along the rod. With the aid of an optical comparator using a magnification of 20 power, the surface strain
Figure 22. Plastic Wave Position for 6 Inch Rods of 1/4 Inch Diameter.
Figure 23. Plastic Wave Position for 12 Inch Rods of 1/4 Inch Diameter.
Figure 24. Plastic Wave Position for 18 Inch Rods of 1/4 Inch Diameter.
was measured along each rod. Using 20-line increments, corresponding to 0.25 inches for the undeformed rod, the rod length per 20-line increment was measured and the deformation was determined per each 20-line increment.

Initially, the most impressive feature is the gross variations of strain along the rod. However, it should be realized that the surface strain in a single axial direction has been measured. If the rod were rotated about its neutral axis and the strains were recorded by several axial readings and averaged, a smoother curve would result; this will be shown later when the average strain at the neutral axis is compared to the analytical results. Actually, the curves shown in Figures 25 and 26 show a large amount of quantitative information about the rod. The peaks, or points of relative maximum strain, occur where the axial compressive strain due to the axial inertia load is reinforced by the bending moment produced by the flexural wave. The points of relative minimum strain represent the peak of the mode shape where the compression due to the axial inertia is relieved by the tensile bending moment produced by the flexural wave. The intersection of the strain curves with the axis gives the arrest position of the plastic wave.

8. SUMMARY OF EXPERIMENTAL RESULTS

The experimental work conducted provided the following conclusions:

(1) High-speed photography is the most effective method of obtaining dynamic data concerning the transient mode shapes, plastic wave propagation velocities, and displacements.

(2) The associated flash X-ray technique provides an excellent technique for observing the deformation at a maximum of three discrete time intervals. But the technique does not provide continuous observation over the entire impact duration.
Figure 25. Axial Surface Strains for 6 Inch Rods of 1/4 Inch Diameter.
Figure 26. Axial Surface Strains for 12 Inch Rods of 1/4 Inch Diameter
(3) Impact geometry plays an important role in determining the deformation mode shapes. An orthogonal impact with impact velocities greater than approximately 750 fps yields a helical mode shape. If there is a slight obliquity of 1 to 3 degrees at impact, the lateral deformation is confined to a single plane with a sinusoidal type mode shape resulting. For oblique impacts on the order of 3 to 6 degrees, a spiral mode shape can occur for a rod having a high length-to-diameter ratio and for impact velocities greater than approximately 500 fps.
In this Chapter, the principle of virtual work will be used to develop the equations of motion to include axial, lateral, and rotary inertia for a material whose stress-strain relation is nonlinear. Acting on the rod is an axial force P and a bending moment M. Figure 27 illustrates the forces and moments acting on a differential element of the rod along with the displacements and the rotation of the element.

1. THE PRINCIPLE OF VIRTUAL WORK

Consider a system which has been reduced to a finite number of degrees of freedom. Further assume the applied forces vary continuously with system displacements and that all differential equations describing the system constraints can be integrated. For such a system, the principle of virtual work states that a necessary and sufficient condition for equilibrium is:

$$\delta W = 0$$

(3)

The principle of virtual work ($\delta W = 0$) yields the conclusion that, for a mechanical system to be in equilibrium, the components of the generalized force must vanish.

Referring to Figure 27, consider a displacement u in the axial direction, a displacement y in the lateral direction, and a rotation of the differential element through an angle ψ. For a differential element dx, the differential work produced by the bending moment M and the axial force P is:

$$dW = M \, d\psi + P \, du$$

(4)
Figure 27. Differential Element of Rod Showing Displacements, Forces and Moment.
The work produced by the inertia forces is:

\[dW_I = \rho A \left(\frac{\partial^2 u}{\partial t^2} u + \frac{\partial^2 y}{\partial t^2} y \right) + \rho I \frac{\partial^2 \psi}{\partial t^2} \psi \]

(5)

The work produced by the external forces that are assumed to act on the impacted end of the rod is:

\[W_F = -F_y y(0) - F_x u(0) \]

(6)

Integrating over the total length of the rod, the energy expression becomes:

\[
W = \int_0^L \left(M \delta y' + P \delta u' + \rho A \left(\frac{\partial^2 y}{\partial t^2} \delta y + \frac{\partial^2 u}{\partial t^2} \delta u \right) \right) \, dx + \\
\int_0^L \rho I \frac{\partial^2 \psi}{\partial t^2} \delta \psi \, dx - F_y y(0) - F_x u(0)
\]

(7)

Now, denoting the derivatives with respect to \(x \) as primes and considering virtual displacements, the following expression results:

\[
\delta W = \int_0^L \left[\frac{\partial M}{\partial x} \delta y' + P \delta u' + \rho A \left(\frac{\partial^3 y}{\partial t^2 \partial x} \delta y + \frac{\partial^3 u}{\partial t^2 \partial x} \delta u \right) \right] \, dx + \\
\int_0^L \rho \frac{\partial^2 \psi}{\partial t^2} \delta \psi \right) \, dx - F_y \delta y(0) - F_x \delta u(0)
\]

(8)

Integrating Equation (8) and applying the principle \(\delta W = 0 \), the following expression for the virtual work results:

\[
\delta W = M \delta y'(L) - M \delta y'(0) + \left(\frac{\partial M}{\partial x} - \rho I \frac{\partial^3 y}{\partial t^2 \partial x} + F_y \right) \delta y(0) + \\
\left(- \frac{\partial M}{\partial x} + \rho I \frac{\partial^3 y}{\partial t^2 \partial x} \right) \delta y(L) + (P - F_x) \delta u(0) + P \delta u(L) + \\
\left[\int_0^L \left(\frac{\partial^3 M}{\partial x^2} - \rho I \frac{\partial^3 y}{\partial t^2 \partial x^2} + \rho A \frac{\partial^3 y}{\partial t^2} \right) \, dx \right] \delta y +
\]
\[
L \int_0^L \left(\rho A \frac{\partial^2 y}{\partial t^2} - \frac{\partial P}{\partial x} \right) \, dx \, \delta u = 0
\] (9)

For the expression in Equation (9), the components of the generalized forces must vanish independently, resulting in the equations of motion and the boundary conditions.

In the interior of the rod, the following equations of motion hold:

\[
\frac{\partial^2 M}{\partial x^2} - \rho I \frac{\partial^3 y}{\partial t^2 \partial x} + \rho A \frac{\partial^2 y}{\partial t^2} = 0
\] (10)

\[
\rho A \frac{\partial^2 u}{\partial t^2} - \frac{\partial P}{\partial x} = 0
\] (11)

At the boundary \(x = 0 \), the impacted end, the boundary conditions are:

\[M = 0 \] (12)

\[P - F_x = 0 \] (13)

\[
\frac{\partial M}{\partial x} - \rho I \frac{\partial^3 y}{\partial t^2 \partial x} + F_y = 0
\] (14)

At the boundary \(x = L \), the free end, the boundary conditions are:

\[M = 0 \] (15)

\[P = 0 \] (16)

\[
\frac{\partial M}{\partial x} - \rho I \frac{\partial^3 y}{\partial t^2 \partial x} = 0
\] (17)

Note that in Equations (10) through (17), the equations of motion and boundary conditions for the rod, that the bending moment \(M \) and the axial force \(P \) appear. The boundary conditions are those of a free rod and allow deflections and rotations at both the impacted end and
the free end. The moment vanishes at both boundaries. At the impacted end, the axial force in the rod is balanced by the axial forcing function, and the rotational forces are balanced by the lateral forcing function. At the free end both the axial and rotational forces vanish.

2. RELATING THE AXIAL FORCE P TO A DEFLECTION u

The relating of the axial force in the rod to an axial deflection is quite straightforward. Since a bilinear stress-strain relation was obtained from the tensile tests, the relation shown in Figure 2 will be utilized. However, the theory developed herein is easily applied to any stress-strain relation. Consider the equations for the stress-strain relation as follows:

\[\sigma = E\varepsilon \quad \text{for } \varepsilon < \varepsilon_0 \quad (18) \]

\[\sigma = E\varepsilon_0 + \beta (\varepsilon - \varepsilon_0) \quad \text{for } \varepsilon > \varepsilon_0 \quad (19) \]

By definition \(\varepsilon = \frac{\partial u}{\partial x} \) and since \(\sigma = P/A \) the following relations result:

\[P = AE \frac{\partial u}{\partial x} \quad \text{for } \varepsilon < \varepsilon_0 \quad (20) \]

\[P = [E\varepsilon_0 + \beta \left(\frac{\partial u}{\partial x} - \varepsilon_0\right)] \quad \text{for } \varepsilon > \varepsilon_0 \quad (21) \]

Also, the following derivatives hold:

\[\frac{\partial P}{\partial x} = AE \frac{\partial^2 u}{\partial x^2} \quad \text{for } \varepsilon < \varepsilon_0 \quad (22) \]

\[\frac{\partial P}{\partial x} = AB \frac{\partial^2 u}{\partial x^2} \quad \text{for } \varepsilon > \varepsilon_0 \quad (23) \]

Equations (22) and (23) differ only by the relations \(E \) and \(\beta \), the slopes of the elastic and plastic portions of the stress-strain
relation. Equation (23) can be taken as the general expression relating the axial force to an axial deflection; in which case, \(\beta \) merely becomes the slope of the stress-strain relation for both elastic or plastic deformation and for any general stress-strain relation.

3. RELATING THE MOMENT TO A LATERAL DEFLECTION \(y \)

To relate the bending moment \(M \) to a lateral deflection \(y \), a bilinear stress-strain relation is employed. In addition to the stress-strain relation, the assumption is made that the plastic buckling occurs within the axial plastic compression waves. Assuming the rod has failed due to the axial plastic compression, now consider the superimposition of a bending moment. Figure 28 shows a cross-section and a stress profile of the rod. Also shown is the compressive stress \(\sigma_c \) at the neutral axis which is the excess stress beyond the yield stress \(\sigma_0 \). The rod section is considered in two sections; above and below the neutral axis \(X-X \).

When a positive moment is applied, an additional plastic stress is experienced in the upper section of the rod and increases with slope \(\beta \). The lower section of the rod unloads elastically with slope \(\beta \). The problem becomes one of finding the neutral axis \(X-X \) that satisfies the condition of equilibrium as follows:

\[
\int \sigma \, dA = 0 \quad (24)
\]

Now

\[
\sigma = \frac{\sigma_1}{\eta_1} \eta \quad \text{and} \quad \sigma = \frac{\sigma_2}{\eta_2} \eta \quad (25)
\]

From the equation of equilibrium (Equation 24),

\[
\frac{\sigma_1}{\eta_2} \int_0^{\eta_1} \eta \, dA = \frac{\sigma_2}{\eta_2} \int_0^{\eta_2} \eta \, dA \quad (26)
\]
Figure 28. Rod Cross Section Showing Stress Profile for Bending Moment Superimposed on Plastic Compression.
\(\hat{E}y_2 = \beta \hat{y}_1 \) \hspace{1cm} (27)

Equation (27) is essentially a statement of static equilibrium, which states that there is an axis X-X, in which the stresses do not change. Also, the moment of inertia about X-X is as follows:

\[I = I_1 + I_2 \] \hspace{1cm} (28)

The bending moment becomes

\[M = \int \sigma \eta \, d\eta = \frac{\sigma_1 I_1}{\eta_1} + \frac{\sigma_2 I_2}{\eta_2} \] \hspace{1cm} (29)

The radius of curvature \(\frac{1}{\frac{d^2 y}{dx^2}} \), is introduced:

\[M = \frac{d^2 y}{dx^2} (\beta I_1 + EI_2) \] \hspace{1cm} (30)

Equation (30) holds for the elastic as well as the plastic moment. For the elastic motion, \(\beta \) becomes the elastic modulus \(E \) and \(I_1 + I_2 \) equals \(I \), where \(I \) is the moment of inertia about the gravity axis.

4. THE EQUATIONS OF MOTION

Substituting the expressions for the axial load \(P \) and the moment \(M \) into Equations (10) through (17), the following equations of motion and boundary conditions result:

(a) In the interior of the rod,

\[(EI_2 + \beta I_1) \frac{\partial^4 y}{\partial x^4} - \rho I \frac{\partial^4 y}{\partial x^2 \partial t^2} + \rho A \frac{\partial^2 y}{\partial t^2} = 0 \] \hspace{1cm} (31)

\[\beta \frac{\partial^2 u}{\partial x^2} - \rho \frac{\partial^2 u}{\partial t^2} = 0 \] \hspace{1cm} (32)
(b) At the boundary \(x = 0 \),
\[
\frac{\partial u}{\partial x} = -\frac{F_x}{A}\quad \text{(STRAIN)}
\] (33)
\[
\frac{\partial^2 y}{\partial x^2} = 0 \quad \text{(MOMENT)}
\] (34)
\[
(EI_2 + \beta I_1) \frac{\partial^3 y}{\partial x^3} - \rho I \frac{\partial^3 y}{\partial t^2 \partial x} - F_y = 0
\] (35)

(c) At the boundary \(x = L \),
\[
\frac{\partial u}{\partial x} = 0 \quad \text{(36)}
\]
\[
\frac{\partial^2 y}{\partial x^2} = 0 \quad \text{(37)}
\]
\[
(EI_2 + \beta I_1) \frac{\partial^3 y}{\partial x^3} - \rho I \frac{\partial^3 y}{\partial t^2 \partial x} = 0
\] (38)

The axial and lateral equations of motion are coupled through the dynamic stress-strain relationship which involves the variable \(\beta \), which is the slope of the stress-strain relationship for both the elastic and plastic wave propagations. Equations (31) and (38) must be solved as a system, along with the equations of material behavior. Since the state of stress is a uni-axial state and the plastic buckling is contained within the plastic compression wave, the axial equation of motion will be used to determine the axial strain, stress, and hence the slope of the stress-strain relation \(\beta \).

5. MATERIAL BEHAVIOR

Transverse shear was not included in the equations of motion, and though it could have been easily introduced the inclusion would cause the plasticity theory to be more complicated. Therefore, in the interest of obtaining a solution within a specified time, this shear
has been omitted; however, the work could be extended to include the addition of transverse shear.

Figure (29) illustrates the flow theory that was utilized. Consider a uni-axial state of stress. The stress-strain relation may be expressed as

\[\varepsilon = \sigma / E + \varepsilon_p + \Delta \varepsilon_p \]

Where \(\varepsilon \) is the total strain, \(\varepsilon_p \) is the plastic strain, and \(\Delta \varepsilon_p \) is the plastic strain increments due to the current increment of loading for a specified small increment of time \(\Delta t \). The plastic strain increments are related to the stresses through the yield criterion and the associated flow rule. For the uni-axial state of stress, the Prandtl-Ruess flow rule can be avoided, and the partial differential equations of motion with the boundary conditions along with the stress-strain relation and the yield criterion form the necessary relations. In addition, the constant volume theory for plastic strain holds, which implies the material flows radially.

The problem solutions are carried out in increments of time as small as \(10^{-7} \) second. First, the differential equations of motion are solved with the appropriate boundary condition having an assumed stress-strain slope \(\beta \). Of course, to start the problem, the elastic slope is used for each position evaluated along the rod. From Equation (32) and the boundary conditions, an axial displacement \(u \) is computed for each particle along the rod. Then, a strain and a stress are computed. A test is made to determine whether the yield stress is exceeded for each particle along the rod, and if not, the elastic modulus \(E \) is used for the next increment of time \(\Delta t \). If the yield stress is exceeded, the slope of the stress-
Figure 29. The Elastic-Plastic Stress-Strain Relation
strain relation is then determined and used in the equations of motion for the next increment of time.

6. SUMMARY

The elastic-plastic problem for buckling of long slender rods has been formulated. The material characteristics will be utilized by the stress-strain curve and applied by utilizing both elastic and plastic regions subject to the plasticity flow rule and constant volume cited previously. The following chapter will illustrate the technique used for solution of this problem.
CHAPTER IV

NUMERICAL TECHNIQUES

Two numerical techniques were utilized to solve the equations of motion and material behavior. The finite difference method and Galerkin's method were used to provide solutions to the system of Equations (31) and (39). Galerkin's method provides a somewhat "continuous" solution along the spatial coordinate. In contrast, the finite difference technique offers a discrete solution in which the rod is treated as a system of discrete nodal points with the solutions being determined for each nodal point.

1. THE FINITE DIFFERENCE TECHNIQUE

The rod continuum is represented by a discrete number of nodal points (Figure 30) and solutions are sought for each nodal point for each time interval. The deflections at each nodal point must be considered as well as other parameters normally assumed to be constant for a pure elastic problem but which are also changing. Also the strain, stress, slope of the stress-strain relation, rod cross sectional area, and moment of inertia must be determined for each nodal point and at each time interval. Thus, another degree of nonlinearity is introduced into the problem; however, these changes in the geometric and mechanical properties of the rod can be handled effectively by a finite difference technique. It should be noted that the solutions for the deflections at the nodal points are interpreted to be deflections at the neutral axis of the rod.

In preparation for replacing the differential equations with finite difference approximations, forward, backward, and central difference relations were investigated for each discrete nodal point. Due to the boundary conditions, the most direct approach for obtaining a solution
Figure 30. A Discrete Model of the Rod Showing Nodal Point Locations.
results when a mixture of forward, backward, and central differences are used, depending upon the nodal point under consideration. At the boundary point \(x = 0 \), forward differences were used to approximate each derivative with the exception of the second partial of the lateral deflection \(y \) with respect to \(x \). At the interior nodes, central differences are used exclusively to obtain accuracy on the order of \(h^2 \). For the remaining boundary point \(x = L \), the partial derivatives are approximated with backward differences with the only exception being the second partial derivative of the lateral deflection \(y \) with respect to \(x \). Consideration was given to the possibility of using central differences only at all nodal points in order to maintain accuracy of the order \(h^2 \), but after the resulting expressions were examined, it was discovered that the resulting underconstrained system of differential equations gave more unknowns than equations. Solution of the underconstrained system could be obtained by "shooting methods;" that is, make an assumption of the value of the variables that lie outside the domain and the boundary of the rod and iterate until the assumed values satisfy the finite difference expressions. In essence, a boundary value problem is avoided by the proper selection of an approximating expression for the partial derivatives at the boundary points.

Now, consider approximations to the partial derivatives in Equations (31) through (39) at each nodal point in Figure 30. Defining the distances between the nodal points as \(h \), we have the forward difference expressions:

\[
\frac{\partial y}{\partial x} \approx \frac{y_{i+1} - y_i}{h} + O(h) \tag{40}
\]

\[
\frac{\partial^2 y}{\partial x^2} \approx \frac{y_{i+2} - 2y_{i+1} + y_i}{h^2} \tag{41}
\]
\[
\frac{\partial^3 y}{\partial x^3} \approx \frac{y_{i+3} - 3y_{i+2} + 3y_{i+1} - y_i}{h^3} \quad (42)
\]
\[
\frac{\partial^4 y}{\partial x^4} \approx \frac{y_{i+4} - 4y_{i+3} + 6y_{i+2} - 4y_{i+1} + y_i}{h^4} \quad (43)
\]

Using central differences results in the following approximations:

\[
\frac{\partial y}{\partial x} \approx \frac{y_{i+1} - y_{i-1}}{2h} + O(h^2) \quad (44)
\]
\[
\frac{\partial^2 y}{\partial x^2} \approx \frac{y_{i-1} - 2y_i + y_{i+1}}{h^2} \quad (45)
\]
\[
\frac{\partial^3 y}{\partial x^3} \approx \frac{-y_{i-2} + 2y_{i-1} - 2y_{i+1} + y_{i+2}}{2h^3} \quad (46)
\]
\[
\frac{\partial^4 y}{\partial x^4} \approx \frac{y_{i-2} - 4y_{i-1} + 6y_i - 4y_{i+1} + y_{i+2}}{h^4} \quad (47)
\]

The backward difference expressions are given as follows:

\[
\frac{\partial y}{\partial x} \approx \frac{y_1 - y_{i-1}}{h} + O(h) \quad (48)
\]
\[
\frac{\partial^2 y}{\partial x^2} \approx \frac{y_i - 2y_{i-1} + y_{i-2}}{h^2} \quad (49)
\]
\[
\frac{\partial^3 y}{\partial x^3} \approx \frac{y_i - 3y_{i-1} + 3y_{i-2} - y_{i-3}}{h^3} \quad (50)
\]
\[
\frac{\partial^4 y}{\partial x^4} \approx \frac{y_1 - 4y_{i-1} + 6y_{i-2} - 4y_{i-3} + y_{i-4}}{h^4} \quad (51)
\]
Similar expressions may be obtained for the derivatives involving the deflection u. Now consider the equations describing the motion at the boundary and interior. Finite difference expressions for these equations are obtained with the aid of forward, central, and backward difference expressions.

a. Axial Motion

Now to express finite difference relations for the axial equation of motion, the following is repeated.

At the boundary $x = 0$, or nodal point 1, the equation is

$$\frac{\partial u}{\partial x} = - \frac{F_x}{A \beta} \tag{52}$$

When forward differences are used, Equation (52) becomes:

$$\frac{u_2 - u_1}{h} = - \frac{F_x}{A \beta} \tag{53}$$

At interior point 2, the expression is

$$- \beta \frac{\partial^2 u}{\partial x^2} + \rho \frac{\partial^2 u}{\partial t^2} = 0 \tag{54}$$

Using central differences, Equation (54) becomes:

$$- \beta \frac{(u_1 - 2u_2 + u_3)}{h^2} + \rho \ddot{u}_2 = 0 \tag{55}$$

Rearranging Equation (55) and eliminating u_ϕ with Equation (53), gives

$$\ddot{u}_2 = \frac{\beta_2}{\rho h^2} \left(\frac{F_x h}{A_1 \beta_1} - u_2 + u_3 \right) \tag{56}$$
At all other interior points, except \(L-1 \), the value for \(u_i \) is

\[
\ddot{u}_i = \frac{\beta_i}{\rho h^2} (u_{i-1} - 2u_i + u_{i+1}) \quad (57)
\]

At the boundary point \(x = L \), the strain vanishes, so

\[
\frac{\partial u}{\partial x} = 0 \quad (58)
\]

Using backward differences, the result is

\[
u_L = u_{L-1} \quad (59)
\]

Now at the interior point \(L-1 \), the following holds:

\[
\ddot{u}_{L-1} = \frac{\beta_{L-1}}{\rho h^2} (u_{L-2} - u_{L-1}) \quad (60)
\]

Where \(u_L \) has been eliminated with the aid of Equation (59).

The result is \(L-2 \) differential equations with \(L-2 \) unknowns which can be evaluated by numerical methods. The deflections at the boundary points \(x = 0 \) and \(x = L \) may be determined from the algebraic expressions at \(x = 0 \) and \(x = L \), respectively.

b. Lateral Motion

Applying the same procedure for the lateral motion as for the axial, at the boundary \(x = 0 \) or at node 1 the following partial differential equations apply:
\[
\frac{\partial^2 y}{\partial x^2} = 0 \quad (61)
\]

\[
(EI_2 + \beta I_1) \frac{\partial^3 y}{\partial x^3} - \rho I \frac{\partial^3 y}{\partial t^2 x} - F_y = 0 \quad (62)
\]

Applying central differences to the moment equation:

\[
y_0 - 2y_1 + y_2 = 0 \quad (63)
\]

Now applying forward differences to the derivative \(\frac{\partial^3 y}{\partial x^3}\) and central differences to \(\frac{\partial y}{\partial x}\) in the force balance Equation (62), the following expression holds:

\[
(EI_2 + \beta I_1) (y_4 - 3y_3 + 3y_2 - y_1) - \rho I_1 \frac{\partial^2}{\partial t^2} \left(\frac{y_2 - y_1}{2h} \right) - F_y = 0 \quad (64)
\]

Eliminating \(y_0\) from Equation (64) with the use of Equation (63), the following expression holds:

\[
\ddot{y}_2 - \ddot{y}_1 = - \frac{Fy}{\rho I_1} + \frac{(EI_2 + \beta I_1)}{h^2 \rho I_1} (y_4 - 3y_3 + 3y_2 - y_1) \quad (65)
\]

At the node 2, the following holds:

\[
\frac{\rho I_2}{h^2} (\dot{y}_1 - 2\dot{y}_2 + \dot{y}_3) + \rho A_2 \ddot{y}_2 =
\]

\[
\frac{(EI_2 + \beta I_1)}{h^4} 2 (y_0 - 4y_1 + 6y_2 - 4y_3 + y_4) \quad (66)
\]
Eliminating y_0 with the aid of Equation (63), the following
differential equation of motion results for node 2.

$$- \frac{pI_2}{h^2}(\ddot{y}_1 - 2\ddot{y}_2 + \ddot{y}_3) + \ddot{y}_2 =$$

$$- \left(\frac{E_2 + \beta I_1}{\rho A_2 h^4}\right)2(- 2y_1 + 5y_2 - 4y_3 + y_4) \quad (67)$$

Now, at all other nodal points, except node L-1, the following
finite difference expression holds:

$$\frac{I_i}{A_i h^2} (\ddot{y}_{i-1} - 2\ddot{y}_i + \ddot{y}_{i+1}) - \ddot{y}_i =$$

$$\left(\frac{E_2 + \beta I_1}{\rho A_i h^8}\right) (y_{i-2} - 4y_{i-1} + 6y_i - 4y_{i+1} + y_{i+2}) \quad (68)$$

At the nodal point L-1, the following holds:

$$\frac{I_{L-1}}{A_{L-1} h^2} (\ddot{y}_{L-2} - 2\ddot{y}_{L-1} + \ddot{y}_L) - \ddot{y}_{L-1} =$$

$$\left(\frac{E_2 + \beta I_1}{\rho A_{L-1} h^8}\right) (y_{L-3} - 4y_{L-2} + 5y_{L-1} - 2y_L) \quad (69)$$

At the boundary $x = L$, the moment equation $y_{L-1} - 2y_L +$
$y_{L+1} = 0$ is used to eliminate y_{L+1} in the force balance equation giving:

$$\ddot{y}_L - \ddot{y}_{L-1} = \frac{(E_2 + \beta I_1)_L}{pI_L h^2} (y_L - 3y_{L-1} + 3y_{L-2} + y_{L-3}) \quad (70)$$
Now L second-order coupled differential equations result with L unknowns, and with the use of numerical techniques, the lateral deflections at each nodal point may be determined. In matrix notation the system may be represented by the following:

$$[A] \{\ddot{y}\} = [B] \{y\} + \{F_y(t)\} \quad (71)$$

In Equation (71) the $[A]$ matrix is a tri-diagonal matrix, with the $[B]$ matrix containing four non-zero elements in each row and four non-zero elements in each column, except the first and last column.

2. GALERKIN'S METHOD

Galerkin's method is based on the idea of minimization of errors by orthogonalizing with respect to a selected set of trial functions. The first step is to choose a trial solution which contains undetermined parameters or functions. For the rod impact problem, trial solutions of the following form are selected:

$$u(x,t) = \sum_{k=1}^{N} f_k(t) \phi_k(x) \quad (72)$$

$$y(x,t) = \sum_{k=1}^{N} g_k(t) \gamma_k(x) \quad (73)$$

Where $\phi_k(x)$ and $\gamma_k(x)$ are known functions and $f_k(t)$ and $g_k(t)$ are functions to be determined. The trial functions must satisfy the forced boundary conditions at $x = 0$ and $x = L$. If some of the end conditions are natural or free, as is the case for the impact problem, the boundary terms must be added to the minimization. Defining an equation residual as $R(x,t)$ and applying Galerkin's technique give

$$\int_{0}^{L} R_k(x,t) \phi_k(x) dx + B_o = 0 \quad (74)$$
Where $R(x,t)$ is obtained by substituting the trial solutions into the equation of motion (Equation 32) and equating the result to $R(x,t)$:

$$R(x,t) = (\frac{\partial^2}{\partial x^2} \alpha - \frac{\partial^2}{\partial t^2} \beta) u(x,t)$$

B_x represents the boundary terms. An equation residual is likewise obtained for the lateral equation of motion and may be expressed:

$$e(x,t) = [(a^2 + \beta I_1) \frac{\partial^2}{\partial x^2} - \rho I \frac{\partial^2}{\partial x^2} \frac{\partial^2}{\partial t^2} + \rho A \frac{\partial^2}{\partial t^2}] y(x,t)$$

Now, consider the boundary terms. For the axial equation, the minimization leads to the following expression:

$$\int_0^L R(x,t)\phi_k(x)dx + AB\phi_k(x)\frac{\partial}{\partial x}u(x,t)|_0^L - F_x\phi_k(0) = 0 \quad (75)$$

Adding the boundary terms to the lateral equation gives

$$\int_0^L e(x,t)\gamma_k(x)dx + (E^2 + \beta I_1) \left[\frac{\partial^2}{\partial x^2} \frac{\partial^2}{\partial x^2} - \frac{\partial^2}{\partial x^2} \gamma_k(x)\right] |_0^L + \rho I \frac{\partial^2}{\partial t^2} \frac{\partial^2}{\partial x^2} \gamma_k(x)|_0^L - F_y\gamma_k(0) = 0 \quad (76)$$

Performing the indicated integrations and other operations for Equations (75) and (76), a coupled system of second order ordinary differential equations result and can be expressed in matrix form as

$$[C] \{\ddot{f}\} = [D] \{f\} + \{F_x(t)\} \quad (77)$$
\[
[F] \{\dot{g}\} = [G] \{g\} + \{F_y(t)\}
\]
(78)

Where the matrixes \([C]\), \([D]\), \([F]\) and \([G]\) are \(N\) by \(N\), with \(N\) being the number of terms in the finite series approximations for \(u(x,t)\) and \(y(x,t)\). The two systems given by Equations (77) and (78) appear to be independent at first notice, but they are coupled through the stress-strain relation, and the numerical technique used to solve for the solution components for \(f^k(t)\) and \(g^k(t)\) must consider the coupling effects. Once the \(f^k(t)\) and \(g^k(t)\) are determined, the deflections are obtained from Equations (72) and (73). One might note that the strain at a point of interest may be obtained by merely taking the partial derivative of \(u\) with respect to \(x\). Also the velocity components of the particles are obtained from the solutions for \(g^k(t)\) and \(f^k(t)\) by using \(\dot{f}^k(t)\) and \(\dot{g}^k(t)\).

The selection of the appropriate trial functions for \(\phi^k(x)\) and \(\gamma^k(x)\) present problems for the rod impact problem because of the boundary conditions. Observing the experimental results obtained, the first choice for a trial function would obviously involve a sine or cosine function. Several trial functions were investigated with varying degrees of success. The most successful trial function for the axial motion was determined to be

\[
\phi^k(x) = 1 + (-1)^k \sin \left[\frac{(2k - 1) \pi x}{2L}\right]
\]
(79)

Equation (79) satisfies all of the free boundary conditions. The properties of \(\phi^k(x)\) are such that \(\frac{3\phi}{3x}\) vanishes at \(x = L\), implying the strain vanishes at the free end, and \(\frac{3\phi}{3x}\) does not vanish at \(x = 0\) where the strain is a maximum. Also, \(\phi^k(x)\) does not vanish at \(x = 0\) and \(x = L\), thus implying
the rod is free to move axially at the impacted end as well as the free end, hence satisfying the free boundary conditions.

The proper choice of a trial function for the lateral deflections proved to be troublesome, with the free boundary conditions being the most difficult to satisfy. Finally, the trial function as given by the following equation offers a limited degree of acceptability:

\[\gamma_k(x) = 1 - y_0 x/L + y_1 \sin(k\pi x/L) \]

(80)

Where \(y_0 \) and \(y_1 \) are amplitude constants. Note that \(\gamma_k(x) \) vanishes at the boundary \(x = L \) for \(y_0 = 1 \), implying the lateral deflection is zero, therefore, a violation of the free boundary condition occurs at this point. However, this violation is minor, considering the fact that the only deflection at the free end is elastic. Another trial function used with some success, but again a violation of the free condition at \(x = 0 \), the impacted end, is

\[\gamma_k(x) = y_0 \sin\left(\frac{(2k - 1) \pi x}{2L}\right) \]

(81)

Where \(y_0 \) is still an amplitude constant. The function given in Equation (81) performed nicely about two diameters from the impacted end. For the orthogonal impact, the function given by Equation (81) would be preferred since no lateral deflections are possible at the impacted end.

In addition to the conditions on \(\phi_k(x) \) and \(\gamma_k(x) \), there are conditions on \(f_k(t) \) and \(g_k(t) \) that must be satisfied. So far, no restrictions have been placed on \(f_k(t) \) and \(g_k(t) \); that is, \(u(x,t) \) and \(y(x,t) \) satisfy the boundary conditions through \(\phi_k(x) \) and \(\gamma_k(x) \) for all \(t \). Since the following initial conditions hold:
\begin{align*}
 u(x,0) = \dot{u}(x,0) &= 0 \quad (82) \\
 y(x,0) = \dot{y}(x,0) &= 0 \quad (83)
\end{align*}

The implications are,

\begin{align*}
 f(0) = \dot{f}(0) &= 0 \quad (84) \\
 g(0) = \dot{g}(0) &= 0 \quad (85)
\end{align*}

Equations (84) and (85) state that the deflections and the velocities of a particle along the rod are zero initially when the forcing function is applied. When the problem is considered as a pure impact problem, the forcing function is not applied, but each particle in the rod is given an initial velocity equal to the impact velocity. Thus, the initial conditions become,

\begin{align*}
 \dot{u}(x,0) &= v_0 \quad (86) \\
 \dot{y}(x,0) &= v_0 \sin \theta \quad (87)
\end{align*}

Where \(\theta \) is the obliquity angle at impact.

C. FORCING FUNCTIONS

By application of Newton's Law for a force acting on a particle, the forcing functions can be determined for any desired shape. Newton's Law simply reduces to the statement that the time rate of change of linear momentum is equal to the impulse, thus

\begin{equation}
 \int_{0}^{T} F(t) dt = \int_{0}^{v_0} \frac{dv}{dt} dt = mv_{o} \quad (88)
\end{equation}

Where \(T \) is the impact duration, and \(v_0 \) is the impact velocity. The
Figure 31. Forcing Function used in Analysis.
assumption is made that the velocity component resulting from the elastic bounce-back from the plate may be ignored.

Four types of forcing functions were considered as illustrated in Figure 31. The trapezoid, rectangular, and parabolic forcing functions were used with the finite difference technique, and the sinusoidal forcing function was used with Galerkin's technique along with the other three forcing functions. Since the area under each of the curves in Figure 31 is the change in momentum, or simply the product $m v_0$, the forcing functions may be determined by application of Equation (88).

The best overall results for predicting the displacement of a particle as a function of time was obtained by using the trapezoidal forcing function. However, during the initial times after impact, the rectangular forcing function gave the better results. A comparison between the forcing functions is presented later in this report, when the comparisons between the analytical and experimental results are discussed.
CHAPTER V
THE COMPUTER PROGRAMS

Two computer programs were written, one for the Galerkin's technique and one for the finite difference method. An algorithm was first written for Galerkin's method, but the results using the method did not meet with the desired expectations, so the finite difference technique was employed with better results. Basically, the two algorithms are similar with each having an integration, a derivative, and a linear system subprogram in common.

1. ALGORITHM FOR FINITE DIFFERENCE TECHNIQUE

Figure 32 shows the program flow for the finite difference technique. The computer program contains a main program; a Runge-Kutta, or predictor corrector, integration algorithm; a derivative subroutine; a linear simultaneous equation subprogram to solve for \(u \) and \(y \) using gaussian elimination; and an output subroutine.

The main program is divided into two parts (Figure 32). The first part of the program reads the input data, such as rod length, diameter, impact velocity, angle, etc., and initializes all variables. Then the Runge-Kutta integration subprogram (RUNKUT) is called to integrate the equations of motion. RUNKUT in turn, calls a program (DERIVY) to obtain derivatives for the algorithm, but since a coupled system of differential equations is involved, the values of \(y \) for each nodal point must be determined. So DERIVY develops a linear system of the form

\[
[A] \{x\} = \{C\} \tag{89}
\]

where the \(\{x\} \) values are the \(\{y\} \) values, and then DERIVY calls a program
Figure 32. Computer Program Flow for Finite Difference Technique.
(SIMEQ) which solves a linear system of equations for the \(\{\dot{y}\} \) vector and passes the solution components back to DERIVY. DERIVY then determines the remaining derivatives and passes the derivative vector to RUNKUT. RUNKUT, in turn, passes the displacement and velocity vectors for each nodal point back to the main program.

The second part of the main program receives the displacement and velocity vectors for the discrete time interval \(t + \Delta t \) and computes strains, stresses, slopes of the stress-strain curve, areas, and moments of inertia for each nodal point. If desired, an output subroutine is called and the required information is printed for the time interval. A typical output is shown in Table II for a 6-inch rod for two discrete time intervals of 5 and 15 microseconds. If output is not desired, another increment of time is added, and the program cycles through the process until the impact duration time is reached.

2. ALGORITHM FOR GALERKIN'S METHOD

The algorithm for the Galerkin method is similar to the finite difference algorithm as previously described. Here, RUNKUT is called upon to provide the values of the undetermined functions \(f_k(t), g_k(t), \dot{f}_k(t), \) and \(\dot{g}_k(t) \) at discrete times. Once these values are determined, the displacements, strains, and strain rates may be determined. A typical output for the Galerkin method is given in Table IIII for one discrete time during the impact. Note the propagation of the wave motion for the Galerkin method is not as well defined as for the finite difference method. The propagation of the elastic waves are masked by the "noise" of the technique and hence would not be suitable for elastic wave propagation problems.
TABLE II

FINITE DIFFERENCE OUTPUT

<table>
<thead>
<tr>
<th>TIME</th>
<th>NODE NO.</th>
<th>AXIAL DISP</th>
<th>LATERAL JISP</th>
<th>STRAIN</th>
<th>STRESS</th>
<th>AXIAL VEL</th>
<th>LATERAL VEL</th>
<th>RADIUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00005</td>
<td>1</td>
<td>1.37727</td>
<td>0.86324</td>
<td>-0.56949</td>
<td>-195229</td>
<td>19000.0</td>
<td>2000.0</td>
<td>1.125906</td>
</tr>
<tr>
<td>0.00005</td>
<td>2</td>
<td>0.17965</td>
<td>0.00000</td>
<td>-0.116410</td>
<td>-144.53</td>
<td>143060.0</td>
<td>2000.0</td>
<td>1.125906</td>
</tr>
<tr>
<td>0.00005</td>
<td>3</td>
<td>0.00143</td>
<td>-0.00015</td>
<td>-0.14753</td>
<td>-68765.0</td>
<td>2362.0</td>
<td>-10.0</td>
<td>1.125906</td>
</tr>
<tr>
<td>0.00005</td>
<td>4</td>
<td>0.00007</td>
<td>-0.00071</td>
<td>-0.00022</td>
<td>-69702.0</td>
<td>124.0</td>
<td>-10.0</td>
<td>1.125906</td>
</tr>
<tr>
<td>0.00005</td>
<td>5</td>
<td>0.00038</td>
<td>-0.00032</td>
<td>-0.05122</td>
<td>-4403.0</td>
<td>106.0</td>
<td>-10.0</td>
<td>1.125906</td>
</tr>
<tr>
<td>0.00005</td>
<td>6</td>
<td>0.00094</td>
<td>-0.00103</td>
<td>-1.10301</td>
<td>-2960.0</td>
<td>326.0</td>
<td>-1.0</td>
<td>1.125906</td>
</tr>
<tr>
<td>0.00005</td>
<td>7</td>
<td>0.80346</td>
<td>0.09881</td>
<td>-0.01481</td>
<td>-1066.0</td>
<td>306.0</td>
<td>1.0</td>
<td>1.125906</td>
</tr>
<tr>
<td>0.00005</td>
<td>8</td>
<td>0.00067</td>
<td>0.00303</td>
<td>-0.00599</td>
<td>-5997.0</td>
<td>95.0</td>
<td>1.0</td>
<td>1.125906</td>
</tr>
<tr>
<td>0.00005</td>
<td>9</td>
<td>0.00045</td>
<td>0.00000</td>
<td>-0.00137</td>
<td>-109.0</td>
<td>16.0</td>
<td>1.0</td>
<td>1.125906</td>
</tr>
<tr>
<td>0.00005</td>
<td>10</td>
<td>0.00001</td>
<td>-0.00100</td>
<td>-0.00005</td>
<td>-15.0</td>
<td>2.0</td>
<td>1.0</td>
<td>1.125906</td>
</tr>
<tr>
<td>0.00005</td>
<td>11</td>
<td>0.00000</td>
<td>-0.00100</td>
<td>-0.00001</td>
<td>-14.0</td>
<td>0.0</td>
<td>-0.0</td>
<td>1.125906</td>
</tr>
<tr>
<td>0.00005</td>
<td>12</td>
<td>0.00000</td>
<td>-0.00100</td>
<td>-0.00000</td>
<td>0.0</td>
<td>-0.0</td>
<td>-0.0</td>
<td>1.125906</td>
</tr>
<tr>
<td>0.00005</td>
<td>13</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.0</td>
<td>-0.0</td>
<td>-0.0</td>
<td>1.125906</td>
</tr>
<tr>
<td>0.00005</td>
<td>14</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.125906</td>
</tr>
<tr>
<td>0.00005</td>
<td>15</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.125906</td>
</tr>
<tr>
<td>0.00005</td>
<td>16</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.125906</td>
</tr>
<tr>
<td>0.00005</td>
<td>17</td>
<td>0.00000</td>
<td>-0.00005</td>
<td>-0.00000</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.125906</td>
</tr>
<tr>
<td>0.00005</td>
<td>18</td>
<td>0.00000</td>
<td>-0.00103</td>
<td>-0.00000</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.125906</td>
</tr>
<tr>
<td>0.00005</td>
<td>19</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.125906</td>
</tr>
<tr>
<td>0.00005</td>
<td>20</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.125906</td>
</tr>
<tr>
<td>0.00005</td>
<td>21</td>
<td>0.00000</td>
<td>-0.00000</td>
<td>-0.00000</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.125906</td>
</tr>
<tr>
<td>0.00005</td>
<td>22</td>
<td>0.00000</td>
<td>-0.00000</td>
<td>-0.00000</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.125906</td>
</tr>
<tr>
<td>0.00005</td>
<td>23</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.125906</td>
</tr>
<tr>
<td>0.00005</td>
<td>24</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.125906</td>
</tr>
<tr>
<td>0.00005</td>
<td>25</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.125906</td>
</tr>
<tr>
<td>0.00005</td>
<td>26</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.125906</td>
</tr>
<tr>
<td>0.00005</td>
<td>27</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.125906</td>
</tr>
<tr>
<td>0.00005</td>
<td>28</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.125906</td>
</tr>
<tr>
<td>0.00005</td>
<td>29</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.125906</td>
</tr>
<tr>
<td>0.00005</td>
<td>30</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.125906</td>
</tr>
</tbody>
</table>
TABLE II (CONTINUED)

FINITE DIFFERENCE OUTPUT

<table>
<thead>
<tr>
<th>TIME NO</th>
<th>MODE NO</th>
<th>AXIAL DISP</th>
<th>LATERAL DISP</th>
<th>STRAIN</th>
<th>STRESS</th>
<th>AXIAL VEL</th>
<th>LATERAL VEL</th>
<th>RADIUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00015</td>
<td>1</td>
<td>0.292857</td>
<td>0.30515</td>
<td>-0.0672</td>
<td>-0.17907</td>
<td>1.6475</td>
<td>3771</td>
<td>1.6821</td>
</tr>
<tr>
<td>0.00015</td>
<td>2</td>
<td>0.292857</td>
<td>0.30515</td>
<td>-0.0672</td>
<td>-0.17907</td>
<td>1.6475</td>
<td>3771</td>
<td>1.6821</td>
</tr>
<tr>
<td>0.00015</td>
<td>3</td>
<td>0.292857</td>
<td>0.30515</td>
<td>-0.0672</td>
<td>-0.17907</td>
<td>1.6475</td>
<td>3771</td>
<td>1.6821</td>
</tr>
<tr>
<td>0.00015</td>
<td>4</td>
<td>0.292857</td>
<td>0.30515</td>
<td>-0.0672</td>
<td>-0.17907</td>
<td>1.6475</td>
<td>3771</td>
<td>1.6821</td>
</tr>
<tr>
<td>0.00015</td>
<td>5</td>
<td>0.292857</td>
<td>0.30515</td>
<td>-0.0672</td>
<td>-0.17907</td>
<td>1.6475</td>
<td>3771</td>
<td>1.6821</td>
</tr>
<tr>
<td>0.00015</td>
<td>6</td>
<td>0.292857</td>
<td>0.30515</td>
<td>-0.0672</td>
<td>-0.17907</td>
<td>1.6475</td>
<td>3771</td>
<td>1.6821</td>
</tr>
<tr>
<td>0.00015</td>
<td>7</td>
<td>0.292857</td>
<td>0.30515</td>
<td>-0.0672</td>
<td>-0.17907</td>
<td>1.6475</td>
<td>3771</td>
<td>1.6821</td>
</tr>
<tr>
<td>0.00015</td>
<td>8</td>
<td>0.292857</td>
<td>0.30515</td>
<td>-0.0672</td>
<td>-0.17907</td>
<td>1.6475</td>
<td>3771</td>
<td>1.6821</td>
</tr>
<tr>
<td>0.00015</td>
<td>9</td>
<td>0.292857</td>
<td>0.30515</td>
<td>-0.0672</td>
<td>-0.17907</td>
<td>1.6475</td>
<td>3771</td>
<td>1.6821</td>
</tr>
<tr>
<td>0.00015</td>
<td>10</td>
<td>0.292857</td>
<td>0.30515</td>
<td>-0.0672</td>
<td>-0.17907</td>
<td>1.6475</td>
<td>3771</td>
<td>1.6821</td>
</tr>
<tr>
<td>0.00015</td>
<td>11</td>
<td>0.292857</td>
<td>0.30515</td>
<td>-0.0672</td>
<td>-0.17907</td>
<td>1.6475</td>
<td>3771</td>
<td>1.6821</td>
</tr>
<tr>
<td>0.00015</td>
<td>12</td>
<td>0.292857</td>
<td>0.30515</td>
<td>-0.0672</td>
<td>-0.17907</td>
<td>1.6475</td>
<td>3771</td>
<td>1.6821</td>
</tr>
<tr>
<td>0.00015</td>
<td>13</td>
<td>0.292857</td>
<td>0.30515</td>
<td>-0.0672</td>
<td>-0.17907</td>
<td>1.6475</td>
<td>3771</td>
<td>1.6821</td>
</tr>
<tr>
<td>0.00015</td>
<td>14</td>
<td>0.292857</td>
<td>0.30515</td>
<td>-0.0672</td>
<td>-0.17907</td>
<td>1.6475</td>
<td>3771</td>
<td>1.6821</td>
</tr>
<tr>
<td>0.00015</td>
<td>15</td>
<td>0.292857</td>
<td>0.30515</td>
<td>-0.0672</td>
<td>-0.17907</td>
<td>1.6475</td>
<td>3771</td>
<td>1.6821</td>
</tr>
<tr>
<td>0.00015</td>
<td>16</td>
<td>0.292857</td>
<td>0.30515</td>
<td>-0.0672</td>
<td>-0.17907</td>
<td>1.6475</td>
<td>3771</td>
<td>1.6821</td>
</tr>
<tr>
<td>0.00015</td>
<td>17</td>
<td>0.292857</td>
<td>0.30515</td>
<td>-0.0672</td>
<td>-0.17907</td>
<td>1.6475</td>
<td>3771</td>
<td>1.6821</td>
</tr>
<tr>
<td>0.00015</td>
<td>18</td>
<td>0.292857</td>
<td>0.30515</td>
<td>-0.0672</td>
<td>-0.17907</td>
<td>1.6475</td>
<td>3771</td>
<td>1.6821</td>
</tr>
<tr>
<td>0.00015</td>
<td>19</td>
<td>0.292857</td>
<td>0.30515</td>
<td>-0.0672</td>
<td>-0.17907</td>
<td>1.6475</td>
<td>3771</td>
<td>1.6821</td>
</tr>
<tr>
<td>0.00015</td>
<td>20</td>
<td>0.292857</td>
<td>0.30515</td>
<td>-0.0672</td>
<td>-0.17907</td>
<td>1.6475</td>
<td>3771</td>
<td>1.6821</td>
</tr>
<tr>
<td>0.00015</td>
<td>21</td>
<td>0.292857</td>
<td>0.30515</td>
<td>-0.0672</td>
<td>-0.17907</td>
<td>1.6475</td>
<td>3771</td>
<td>1.6821</td>
</tr>
<tr>
<td>0.00015</td>
<td>22</td>
<td>0.292857</td>
<td>0.30515</td>
<td>-0.0672</td>
<td>-0.17907</td>
<td>1.6475</td>
<td>3771</td>
<td>1.6821</td>
</tr>
<tr>
<td>0.00015</td>
<td>23</td>
<td>0.292857</td>
<td>0.30515</td>
<td>-0.0672</td>
<td>-0.17907</td>
<td>1.6475</td>
<td>3771</td>
<td>1.6821</td>
</tr>
<tr>
<td>0.00015</td>
<td>24</td>
<td>0.292857</td>
<td>0.30515</td>
<td>-0.0672</td>
<td>-0.17907</td>
<td>1.6475</td>
<td>3771</td>
<td>1.6821</td>
</tr>
<tr>
<td>0.00015</td>
<td>25</td>
<td>0.292857</td>
<td>0.30515</td>
<td>-0.0672</td>
<td>-0.17907</td>
<td>1.6475</td>
<td>3771</td>
<td>1.6821</td>
</tr>
<tr>
<td>0.00015</td>
<td>26</td>
<td>0.292857</td>
<td>0.30515</td>
<td>-0.0672</td>
<td>-0.17907</td>
<td>1.6475</td>
<td>3771</td>
<td>1.6821</td>
</tr>
<tr>
<td>0.00015</td>
<td>27</td>
<td>0.292857</td>
<td>0.30515</td>
<td>-0.0672</td>
<td>-0.17907</td>
<td>1.6475</td>
<td>3771</td>
<td>1.6821</td>
</tr>
<tr>
<td>0.00015</td>
<td>28</td>
<td>0.292857</td>
<td>0.30515</td>
<td>-0.0672</td>
<td>-0.17907</td>
<td>1.6475</td>
<td>3771</td>
<td>1.6821</td>
</tr>
<tr>
<td>0.00015</td>
<td>29</td>
<td>0.292857</td>
<td>0.30515</td>
<td>-0.0672</td>
<td>-0.17907</td>
<td>1.6475</td>
<td>3771</td>
<td>1.6821</td>
</tr>
<tr>
<td>0.00015</td>
<td>30</td>
<td>0.292857</td>
<td>0.30515</td>
<td>-0.0672</td>
<td>-0.17907</td>
<td>1.6475</td>
<td>3771</td>
<td>1.6821</td>
</tr>
<tr>
<td>TIME</td>
<td>X</td>
<td>AXIAL DISP</td>
<td>LATERAL DISP</td>
<td>STRAIN</td>
<td>AXIAL VEL</td>
<td>STRAIN RATE</td>
<td>LATERAL VEL</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-----</td>
<td>------------</td>
<td>--------------</td>
<td>--------</td>
<td>-----------</td>
<td>-------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>0.000100</td>
<td>0.0000000</td>
<td>-1.363280</td>
<td>-0.080350</td>
<td>2.155471</td>
<td>-10.317.9568159</td>
<td>-6.5820.855614</td>
<td>-14.84.965368</td>
<td></td>
</tr>
<tr>
<td>0.000100</td>
<td>0.1250000</td>
<td>-0.3461269</td>
<td>-0.072472</td>
<td>3.280790</td>
<td>-16.477.95986</td>
<td>-2.6381.493564</td>
<td>-3.039.965399</td>
<td></td>
</tr>
<tr>
<td>0.000100</td>
<td>0.2500000</td>
<td>-0.1852896</td>
<td>-0.165314</td>
<td>4.384342</td>
<td>-15.957.9089102</td>
<td>4.6537.474525</td>
<td>-3.171.534632</td>
<td></td>
</tr>
<tr>
<td>0.000100</td>
<td>-0.3750000</td>
<td>-0.099334</td>
<td>-0.099654</td>
<td>2.715406</td>
<td>-7.521.373375</td>
<td>7.349.476625</td>
<td>-2.137.475582</td>
<td></td>
</tr>
<tr>
<td>0.000100</td>
<td>-0.5000000</td>
<td>-0.055822</td>
<td>-0.043067</td>
<td>-0.114069</td>
<td>-3.45.333217</td>
<td>3.6386.839213</td>
<td>-1.109.452563</td>
<td></td>
</tr>
<tr>
<td>0.000100</td>
<td>-0.6250000</td>
<td>-0.040436</td>
<td>-0.042733</td>
<td>8.085305</td>
<td>161.3985362</td>
<td>-4.742.964659</td>
<td>-7.94.716177</td>
<td></td>
</tr>
<tr>
<td>0.000100</td>
<td>-0.7500000</td>
<td>-0.043937</td>
<td>-0.043249</td>
<td>0.209495</td>
<td>-1.3278021</td>
<td>-1.861.844029</td>
<td>-7.65.475639</td>
<td></td>
</tr>
<tr>
<td>0.000100</td>
<td>-0.8750000</td>
<td>-0.012295</td>
<td>-0.026382</td>
<td>-0.528272</td>
<td>-56.2634688</td>
<td>1.636.848661</td>
<td>-6.64.240062</td>
<td></td>
</tr>
</tbody>
</table>

TABLE III
OUTPUT FROM GALERKIN'S METHOD

<table>
<thead>
<tr>
<th>IMPACT VELOCITY</th>
<th>050.</th>
<th>IMPACT DURATION</th>
<th>0.000075</th>
<th>IMPACT ANGLE</th>
<th>.52</th>
<th>ROD LENGTH</th>
<th>6.</th>
<th>ROD RAD</th>
<th>.125000</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTEGRATION STEP SIZE</td>
<td>.0000010</td>
<td>NO. TERMS IN GALERKINS SOLUTION</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER VI
ANALYTICAL RESULTS

Analytical results have been obtained for the approximate solutions to the equations of motion and material behavior using the two numerical techniques discussed previously. In this chapter, the analytical results are presented for both the elastic and plastic response of the rod, along with the comparisons with the experimental work where appropriate. In addition, the analytical work of this effort is compared with the work of others when possible.

1. ELASTIC FLEXURAL WAVES

The problem of the elastic flexural wave propagation along a rod has been solved by a number of investigators. The best surveys on the subject are given by Kolsky in Reference 2 and by Abramson, Plass, and Ripperger in Reference 1, which gives the phase velocity for flexural elastic waves in a solid circular cylinder of radius \(r \) as a function of the wavelength \(\lambda \). These results are given for three theories and are repeated in Figure 33 with the results of this analysis (Valentine) being presented as a comparison. The elementary theory presented shows that the phase velocity increases without bound as the flexure wave length \(\lambda \) approaches zero. Basically, the phase velocity is given by the following relation:

\[
C = C_0 \ 2\pi \left(\sqrt{\frac{I}{A}} \ \lambda \right) \tag{90}
\]

Where \(C_0 \) is the bar velocity and \(I \) and \(A \) are the moments of inertia and areas of the cross section, respectively. A somewhat disconcerting fact is that the phase velocity tends to infinity for the very short wave lengths; however, if a term is added for rotary inertia, as was done in this work, the condition of infinite flexure wave speed is avoided.
Figure 33. Phase Velocity Comparisons for Flexural Elastic Waves in a Solid Circular Cylinder of Radius r.

- Elementary Theory
- Valentine
- Exact Theory
- Timoshenko's Theory
Timoshenko (Reference 9) further added a term for transverse shear which agrees with the exact three-dimensional solution of Pochhammer and Love for the first mode, but a wide discrepancy occurs in the second mode. Referring to Figure 33, the comparison of this work for the flexure wave velocity C is given for the several theories with the exact theory being shown for a Poisson's ratio of 0.29 and for the first mode only. The effects of rotary inertia and shear are unimportant if the wavelength of the vibration mode is large compared with the cross-sectional dimensions of the rod. But the effects of rotary inertia and shear become more important with a decrease in wavelength. The results obtained from Timoshenko's theory show the advantage of including the transverse shear in the equations of motion for elastic flexural waves for the short wavelengths. The results of this analysis include rotary inertia but not transverse shear and are shown in Figure 33 for an impulsively applied load for the aluminum rods.

2. PLASTIC FLEXURE WAVES--COMPARISON WITH WORK OF ABRAHAMSON AND GOODIER

Although Abrahamson and Goodier made no attempt to predict the buckling mode shapes, considerable work is reported in Reference 3 for the prediction of the plastic wavelength of the flexure wave arising primarily from initial transverse perturbational velocity, such as an oblique impact. A Fourier integral transform was used to solve the lateral equation of motion:

$$\frac{3\omega^4}{4\pi^4} + \frac{3\omega^2}{\pi^2} + \frac{3\omega^2}{\pi^2} = -\frac{3\omega^2}{\pi^2}$$

Where τ is the dimensionless variable containing time and ω is the dimensionless variable y/k, with y being the lateral deflection and k the radius of gyration of the rod. Abrahamson and Goodier reported their results in
terms of half wavelength but these terms have been converted to wavelengths to simplify the comparison with the results of this work. The results of Abrahamson and Goodier yield the following relation for the wavelength:

\[\lambda = 2\pi \frac{\sqrt{\frac{E}{\mu}}}{\sqrt{\frac{1}{\mu} + \frac{1}{2} \frac{E}{\sigma}}} \]

(92)

Where \(\lambda \) is the wavelength, \(\beta \) is the plastic modulus, and \(\sigma \) is the stress in the rod. Abrahamson and Goodier assumed the stress in the rod was constant, thus yielding:

\[\lambda = 17.7 \frac{\sqrt{E}}{\sqrt{\mu}} \]

(93)

Now, it is possible to compare the results of Abrahamson and Goodier with the results of this work (Valentine). In addition, both analytical results may be compared to the experimental results of this work. Since Equation (93) was derived for 18 inch rods, the results of the firings for the 1/4 inch diameter rods of 18 inches in length (Table IV) are used as a basis for comparison.

TABLE IV

WAVELENGTHS FOR 18 INCH 6061-T6 ALUMINUM RODS (1/4 INCH DIAMETER)

<table>
<thead>
<tr>
<th>Shot No.</th>
<th>Impact Velocity (fps)</th>
<th>Average Wavelength, Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Observed from Experiments</td>
</tr>
<tr>
<td>9</td>
<td>649</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>602</td>
<td>1.15</td>
</tr>
<tr>
<td>11</td>
<td>540</td>
<td>1.06</td>
</tr>
<tr>
<td></td>
<td>412</td>
<td>1.15</td>
</tr>
<tr>
<td></td>
<td>252</td>
<td>1.50</td>
</tr>
<tr>
<td>21</td>
<td>228</td>
<td>1.675</td>
</tr>
<tr>
<td>11</td>
<td>222</td>
<td>1.875</td>
</tr>
</tbody>
</table>
While the analytical work of Abrahamson and Goodier predicts a constant wavelength, it may be observed from Table IV that the analytical work reported herein predicts a wavelength as a function of the impact velocity. The constant wavelength theory of Abrahamson is attributed to the assumption of a constant compressive force P in the rod, whereas the wavelengths determined by this analysis use the actual state of stress and strain experienced at each nodal point. Hence, the slope of the stress-strain curve is easily determined. In addition, the axial displacements contribute toward decreasing the wavelengths. When the flexure wave initially forms, the wavelength is longer than the final wavelength. The axial displacements, due to the axial force, tend to compress the wavelengths, thus accounting for the shorter wavelengths at the higher impact velocities.

An indication of the accuracy of this analysis may be obtained by referring to the predicted and observed wavelengths of Table IV. Note that the theory of Abrahamson and Goodier is in good agreement with experimental results at the higher impact velocities, but does not predict the wavelengths as accurately as the theory developed in this work for the lower impact velocities.

3. STRESS AND STRAIN PROFILES

Stress and strain profiles have been determined for several impact conditions for the 6, 12, and 18 inch rods for the forcing functions considered in this work. Typically, the stress profiles are represented by those of Figures 34 and 35 where a bilinear stress-strain relationship is used. Note that the elastic wave front builds to the yield stress as it propagates toward the free end. The stress remains at yield for some distance along the rod until the plastic wave front builds near the
Figure 34. The Distribution of Stress Along the Rod at Three Distinct Time Intervals of 20, 30, and 40 μsec. for 6 Inch Rod Impacts.
Figure 35. The Distribution of Stress Along the Rod at Time Intervals of 50, 60 and 70 μsec. for 6 Inch Rod Impacts.
impacted end. The region between the elastic wave front and the plastic wave front is extremely steep as would be expected from a bilinear stress-strain relation. As may be seen from Figure 34, the plastic wave front moves much slower than the elastic wave front. During the first time interval of 20 μsec after impact, the elastic wave front is 4 inches down the rod, and at 33 μsec, the elastic wave front reaches the free end and reflects back as a tensile wave. The later time sequences show that the compressive stress vanishes near the free end as the tensile wave travels toward the impacted end. Also, the effect of impact velocity on the stress profile essentially changes the magnitude of the stresses.

Strain profiles are similar to the stress profiles and are presented to show the magnitude of the strains that may be expected for various impact velocities. Since the stresses and strains are determined at a point, they are presented at the neutral axis. Figures 36 and 37 show the distribution of strain along the rod at distinct time intervals of 20, 30, 40, 50, 60, and 70 microseconds. The plastic strains are shown; however, there is also an elastic strain similar to the previously illustrated elastic stress, but the magnitude is such that it cannot be illustrated on the same scale of Figures 36 and 37.

Figure 38 shows the final axial plastic strain distribution along the rod obtained from the analytical results computed using a rectangular forcing function and compared to the experimental results. As shown, the results for the strain profiles are not in good agreement with the experimental results. Other forcing functions were investigated to provide better agreement between the analytical and experimental strain profiles. Figure 39 illustrates the dependence of the strain
Figure 36. The Distribution of Strain Along the Rod at Three Time Intervals of 20, 30, and 40 μsec. for 6 Inch Rod Impacts.
Figure 37. The Distribution of Strain Along the Rod at Three Time Intervals of 50, 60, and 70 μsec. for 6 Inch Rod Impacts.
Figure 38. A comparison of the Distribution of Plastic Strains for 6 Inch Rod for Rectangular Forcing Functions.
Figure 39. A Comparison of Various Forcing Functions for Impact of 1006 fps for 6 Inch Rod.
distributions on the type of forcing function used, thus a pure impact solution is desirable with a two-body problem being formulated.

4. AXIAL DEFORMATION

In determining the amount of axial deformation, the length of the rod was obtained as a function of time by tracking the free end of the rod during the impact process. Comparisons with the experimental results for several impact velocities are presented in Figures 40 through 42 for 6, 12, and 18 inch long rods of 1/4 inch diameter. Good agreement is obtained when comparing the analytical and experimental results for the instantaneous rod lengths. These results were obtained using a trapezoid forcing function and using the finite difference technique. Figures 40 through 42 show that the analytical model tends to overpredict the axial deformation. This fact was observed in all of the analytical results obtained except for the one impact velocity that occurred at 1217 fps, where the method underpredicts the axial deformation. For the high impact velocity of 1217 fps, considerable material loss occurred near the impacted end due to fracture at high stresses and high loading rates. The theory developed herein does not consider fracture, internal friction, or the energy absorbed by the rod in elevating its temperature during the impact.
Figure 40. A Comparison of the Instantaneous Rod Lengths for 6 Inch Rods of 1/4 Inch.
Figure 41. A Comparison of the Instantaneous Rod Lengths for 12 Inch Rods of 1/4 Inch Diameter.
EXPERIMENTAL RESULTS
ANALYTICAL RESULTS

237 FPS

895 FPS*

*EXPERIMENTAL ROD FAILED AT 100 μsec

Figure 42. A Comparison of the Instantaneous Rod Lengths for 18 Inch Rods of 1/4 Inch Diameter.
5. LATERAL DEFORMATION PROFILES

A Lagrangian formulation of the problem has been developed, and a particle on the rod can now be followed through the time response. Thus, the axial and lateral displacements, \(u \) and \(y \), of any nodal point can be followed at any time. Since it is assumed that the material flow occurs radially, the displacement of the neutral axis is also the displacement of the gravity axis. Also the radial material flow allows the determination of the area profile at any nodal point by the application of a fundamental law of plasticity stating there is no change in plastic volume.

Figures 43 through 49 show the essential analytical results of this work, using the method of finite differences for several times during the impact process. The last view on each figure is the final mode shape obtained and is compared directly with the experimental rod under the same conditions of impact geometry and velocity.

In general, the agreement between the experimental and analytical results is good. Most of the deviation between the experimental and analytical results occurs for the near orthogonal impacts. Note from Figure 43 that the analytical and experimental results are not in good agreement near the impacted end. The experimental results on Figure 43 are for an orthogonal impact with no lateral deformation at the impacted end. The analytical profiles shown in Figure 43 were determined with a forcing function being applied at the impacted end. In order to initiate lateral motion, a component of the forcing function was applied in the lateral direction as follows:

\[
F_y(t) = F_x(t) \sin \theta
\]

(95)

Where \(\theta \) is the obliquity angle and \(F_x(t) \) is the forcing function in the
axial direction. A small obliquity angle of 1 degree was used to initiate the lateral motion for analytical profiles (Figure 43). Except for the variance near the impacted end, agreement with the experimental results is good.

During impact, the mode shape assumed by the rod is attributed to the transverse perturbing conditions. Once a force is applied in the lateral direction, the rod is committed to failure with the magnitude of the lateral deflection being proportional to the lateral forcing function.

Figures 44 through 49 show analytical profiles for various impact conditions. These figures show that agreement with the experimental results is better near the impacted end than as shown previously in Figure 43. The agreement is attributed to the slightly oblique impact angles experienced by the rods. Some of the profiles shown do not match the experimental plastic wavelengths exactly. For the 6 inch rod impacts, the experimental wavelengths tend to be shorter than those predicted by the analysis. For example, from Figure 44 the average predicted wavelengths are about 20 percent longer than those shown by the experimental result. An attempt was made to present as many types of mode shapes as possible giving some of the profiles in good agreement as well as profiles not in good agreement. For instance, Figure 49 shows a profile where the analytical solution deviates from the experimental results near the impacted end.

Figure 51 illustrates an excellent example of the analytical and experimental results compared frame-by-frame at increments of 25 microseconds for a 7/16 inch rod impacting at 500 fps and at an obliquity angle of approximately 1 degree. The upper frame on Figure 51 shows the rod approximately 3 microseconds after impact. Directly below this first frame is the analytical result corresponding to the next increment of time
some 25 microseconds later. The corresponding experimental profiles are shown directly below each appropriate analytical profile to provide a frame-by-frame comparison. Notice that the agreement between the experimental and analytical results is excellent. In the analytical profiles, cells are shown corresponding to the finite difference cells at increments of 1/4 inch. The plastic deformation of the cell is also shown in the analytical solutions, but the finite difference cells that are ahead of the plastic deformation are not shown. It is interesting to observe the plastic wave propagations for both the analytical and experimental results.

Figure 51 also shows the longitudinal plastic wave leading the flexural wave. Note the radial expansion of the rod prior to any bending. Since the camera was positioned normal to one of the axial marks scribed on the rod, the lateral displacement may be easily seen from the motion picture frames.

The analytical results are drawn to the same scale as the frames, and the following procedure was utilized in presenting the results shown on Figure 51. First the impact frames from a 16mm movie film were enlarged to the maximum extent but not to exceed an 8 by 10 inch print. Since the rod had rings machined at specified intervals, a scale could be established from the print. Thus it was determined that the print was 62% of the actual size. The analytical results were then drawn to actual size and reduced by a photo reduction process to 62% of actual size and compared to the analytical results.
Figure 43. A Sequence of Analytical Profiles for Various Time-Increments with the Last Analytical Profile being Compared to the Experimental Results for Same Conditions. Impact Velocity is 1006 gps for a 6 Inch Rod.
Figure 44. A Sequence of Analytical Profiles for Various Time Increments with the Last Analytical Profile being Compared to the Experimental Results for Impact of 850 fps.
Figure 45. A Sequence of Analytical Profiles for Various Time Increments with the Last Analytical Profile Being Compared to the Experimental Results for Impact Velocity of 497 fps for a 6 Inch Rod.
Figure 46. A Sequence of Analytical Profiles for Various Time Increments with the Last Analytical Profile Being Compared to the Experimental Results for an Impact Velocity of 500 fps and Obliquity of 2 Degrees for 12 Inch Rod.
Figure 47. A Sequence of Analytical Profiles for Various Time Increments with the Last Analytical Profile being Compared with the Experimental Results for Impact Velocity of 374 fps and Obliquity of 2 Degrees for 12 Inch Rod.
TIME = 25 μsec

50 μsec

75 μsec

100 μsec

FINAL PROFILE 125 μsec

EXPERIMENTAL RESULTS 387 fps

Figure 48. A Sequence of Analytical Profiles for Various Time Incre­ments with the Last Analytical Profile being Compared with the Experimental Results for Impact Velocity of 387 fps and Obliquity of 0.5 Degrees for 12 Inch Rod.
Figure 49. A Sequence of Analytical Profiles for Various Time Incre-ments with the Last Analytical Profile being Compared with the Experimental Results for Impact Velocity of 602 and Obliquity Near 2 Degrees for 18 Inch Rod.
Figure 50. A Sequence of Analytical Profiles for Various Time Increments with the Last Analytical Profile being Compared with the Experimental Results for Impact Velocity of 252 fps for 18 Inch Rod at 2 Degree Obliquity.
Figure 51. A Comparison of the Analytical and Experimental Results on a Frame-by-Frame Basis. Impact Velocity is Near 500 fps for 7/16 Inch Rod of 12 Inches in Length.
6. COMPARISON OF GALERKIN AND FINITE DIFFERENCE TECHNIQUES

Comparisons will be made between the finite difference technique and the Galerkin method for final profiles with both of the techniques also being compared to the experimental results. Figures 52 through 54 show the final profiles obtained for the Galerkin and finite difference techniques along with a final profile obtained from the experimental results. One of the obvious features to observe from the Galerkin technique is the single wavelength obtained from the solution, with the single wavelength also being small in amplitude. Solutions from the finite difference technique are in better agreement with the experimental results as illustrated in Figures 52 through 54.

The single wavelength for the Galerkin technique is attributed to the assumed solution of the displacement function given as follows:

\[\gamma_k(x) = 1 - y_1 \left(\frac{x}{L} \right) + y_o \sin \left(\frac{k \pi x}{L} \right) \quad (95) \]

Other displacement functions were used with varying degrees of success but were found to predict some unacceptable displacements at the free end. As mentioned previously, the displacement function

\[\gamma_k(x) = y_o \sin \left(\frac{2k-1}{2L} \right) \sin \pi x \quad (96) \]

gave results that were acceptable about two diameters from the free end, but the function is a violation of the free boundary condition at the free end. The function as given by Equation (96) gives a number of wavelengths per rod and perhaps would be an acceptable displacement function for an orthogonal impact where the impacted end does not move laterally.

The Galerkin technique, as used in this work, also overpredicts the axial displacement. This fact was also observed with the finite difference
technique, but to a lesser extent. The excessive displacement for the Galerkin technique can be attributed to the fact that the nonlinearity in geometry was not considered, i.e., the change in area along the rod due to material flow was not introduced between each discrete time interval during the solutions. While the displacements for the neutral axis was determined for small intervals of time, the rod profile was not determined until after the final displacements were computed. The "continuous" nature of the Galerkin solution in the displacement domain posed a difficult situation with regard to determining a continuous area function along the rod during the impact process. However, the discrete nodal point method of the finite difference technique allows the nonlinearity of the material properties and geometry to be determined easily. In addition, the Galerkin technique, as used in this work, applies only to a linear strain hardened material and not for an elastic-plastic material as used in the finite difference technique.

Mentioned was the fact that the finite difference technique overpredicts the axial deformation. This is true for impact velocities less than about 850 fps. But for impact velocities around 1000 fps, the method is in better agreement with the experimental results. As the impact velocity increases to greater than 1000 fps, the method tends to underpredict the axial deformation slightly. However, it should be restated that displacement and strain profiles may be predicted quite accurately by choosing the proper combinations of impact duration, forcing function, and material properties. As an example, a change in the plastic modulus β for the material gives a final length of 5.30 inches for $\beta = 120,000$ psi and a final length of 5.51 inches for $\beta = 200,000$ for a 6 inch rod of 1/4 inch diameter impacting at 388 fps.
This sensitivity to the changes in the properties of the stress-strain relation leads to interesting speculations as to the influence of a rate sensitive material. While type 6061 T-6 aluminum is insensitive, for rates up to 10^3, some of the strain rates achieved were higher. The other two variables of the problem, the impact duration and forcing function type, could be eliminated by solving the problem as a pure impact problem. Hence, a recommendation is made to this effect, thus establishing the material properties as the only controls for the sensitivity of solution.
Figure 52. A Comparison of the Final Profiles for the Galerkin and Finite Difference Techniques for a 6 Inch Rod Having Impacted at 697 fps.
Figure 53. A Comparison of the Final Profiles Near the Impacted End for the Galerkin and Finite Difference Techniques for a 6 Inch Rod Having Impacted at 388 fps.
Figures 54. A Comparison of the Final Profiles Near the Impacted End for the Galerkin and Finite Difference Techniques for a 12 Inch Rod Having Impacted at 500 fps.
1. CONCLUSIONS

The results of the experimental work have yielded the following observations:

a. The deformation mode shapes are sensitive to the impact geometry. An orthogonal impact with impact velocity greater than approximately 600 fps yields a helical mode shape. If there is a slight obliquity of 1 to 3 degrees at impact, the lateral deformation is confined to a single plane resulting in a sinusoidal mode shape. For oblique impacts on the order of 3 to 6 degrees, a spiral mode shape can occur for high length-to-diameter ratio rods and velocities greater than approximately 500 fps.

b. Ultra high speed photographs are a valuable aid in studying the transient mode shapes of the impacting rods.

The analytical results achieved by using the finite difference technique have been shown to be in good agreement with the experimental results obtained in this work. The finite difference technique yielded better results than did the Galerkin technique. The Galerkin technique provided acceptable results only for the large plastic axial deformations.

It has been determined that the deflections, stresses, and strains within the impacting rod are sensitive to the forcing functions types used. In general, the trapezoid forcing function was found to give the best results for determining the deflection profiles. The parabolic forcing function yielded good results when determining the strains for high impact velocities on the order of 1000 fps.
As well as being sensitive to the forcing functions, the analytical solutions are sensitive to the material properties and impact durations. By a proper combination of forcing functions, impact durations, and slope of the stress-strain curve in the plastic region, results may be obtained that agree quite well with the experimental results. However, it has been found that these three combinations of parameters do not remain consistent over the entire impact velocity spectrum. This condition poses a problem in the combination.

In summary, this study has made a significant contribution for predicting the dynamic response of slender rods subjected to impulsive type loading as may occur during impact. The analytical technique developed is simple and easy to apply. A complicated coupling problem between two differential equations of motion and the material behavior has been solved by merely observing experimentally the wave propagations and then allowing the dominate equation of motion to determine the slope of the stress-strain relation. In addition, the solution presented herein greatly simplifies the nonlinearity of the problem and reduces a complicated plasticity problem to an easily determined state of stress and strain.

A contribution has also been made in the experimental work presented herein. The fact that a helical mode shape was obtained for the orthogonal impact leads to interesting speculations as to why this mode shape is obtained. No previous mention of this phenomenon has been found in the literature investigated.

2. Recommendations

Two recommendations involving additional work are worthy of mentioning. The first involves determining the effect of adding transverse
shear. While the addition of transverse shear presents no particular
problem in the equations of motion, the plasticity problem will be
complicated. Since the total accumulated plastic strain involves
a uni-axial strain and a shear strain, an equivalent plastic strain
must be determined from the plastic strain increments through use of
the Prandtl-Reuss relations.

The second recommendation, the one most easily solved, involves
considering the problem as pure impact without using forcing functions.
The plate would be included in the problem, thus giving a two-body
problem with the contact boundary of the plate and rod deserving special
attention. The plate could be modeled as a thin plate by using the
plate equations or as a thick plate by using the equilibrium equations.
To start the problem, the initial velocity of the plate would remain at
zero, but at each nodal point of the rod, as shown in Figure 30,
the initial velocity would equal the impact velocity.

APPENDIX A

The listing of computer program utilized in solving the problem in this study is given in this appendix. The computer listing as given is compatible with the CDC 6600 computer. Listed first is the main program followed by the subprograms.
PROGRAM INTG (INPUT, OUTPUT, TAPE5=INPUT, TAPE6=OUTPUT)

FINITE DIFFERENCE METHOD FOR COMPUTING LATERAL AND AXIAL DEFORMATIONS

COMMON /ACON/ B(4,4), THETA(4)
COMMON /NAME/L
COMMON /OUT/ PI, AL, TMAX, OMEGA, DX, RHO, FX, FY
DIMENSION Y(240), F(240)
DIMENSION UX(60), S(60)
COMMON AREA(60), AMI(60), BETA(60), R(60)

DEFINE CONSTANTS

PI = 3.1415926536
G = 32.1725*12.
RHO = 0.975/G
EPSI = 0.0045

INITIALIZE VARIABLES

DO 9 I = 1, 4
9 READ(5,10) (B(I,J), J = 1, 4)
READ(5,10) (THETA(J), J = 1, 4)
2 READ(5,103) VI, TMAX, OMEGA, AL, DX, D, H, IFORCE
DMV = PI*(D**2)*AL*VI*RHO*3.0
H = H*1.E-06
30 IF (TMAX .LT. 1.0) GO TO 8
L=IFIX(AL/DX)+1

C

DO 1 J=1,L
R(J)=D/2.
AMI(J)=PI*(R(J)**4)/4.
AREA(J)=PI*(R(J)**2)
BETA(J)=1.E07
UX(J)=0.0
1 S(J)=0.0

C

LL=4*L
DO 3 J=1,LL
F(J) = 0.0

3 Y(J)=0.0
WRITE(6,100)VI,TMAX,OMEGA,AL,DX
WRITE(6,101)D,H,IFORCE
OMEGA=OMEGA*PI/180.
TMAX=TMAX*1.0E-06
50 T=0.0
XMAX = H
C1 = PI*(D**2)/4.
ICOUNT=0
IPRINT = 5
IF(IFORCE .NE. 0) GO TO 12

16 MM=10
 L = MM+L
 DO 17 J=1,MM

60 R(J) = 20.
 AMI(J) = PI*40000.
 AREA(J) = PI*(R(J)**2)
 BETA(J) = 4.E07
 DO 18 J= MM,L

65 Y(J) = -VI*12.0
 Y(L+L+J) = Y(J)*SIN(OMEGA)
 Y(L+L+L+J) = 0.0
 Y(L+J) = 0.0
 AMI(J) = PI*(D**4)/64.
 AREA(J) = PI*(D**2)/4.
 BETA(J) = 1.E07
 UX(J) = 0.0
 R(J) = D/2.

18 S(J) = 0.0

75 FX = 0.0
 FY = 0.0
 LL = 4*L
 DO 21 J= 1,LL

21 F(J) = 0.0

80 GO TO 19

12 IF (IFORCE .EQ. 3) GO TO 13
 IF (IFORCE .EQ. 1) FX=OMV/TMAX
 IF (IFORCE .EQ. 2) FX = 3.0*OMV*(T**2)/(TMAX**3)
GO TO 14

13 T2=TMAX/10.
IF(T .LT. T2) GO TO 15
FX = DMV/(0.95*TMAX)
GO TO 14

15 FX = DMV*T/(0.095*TMAX**2)
FY = FX*SIN(OMEGA)

C 19 CALL RUNKUT(LL,H,T,Y,F,XMAX,IPRINT)

C
LM1=L-1

C
Y(1) = Y(2)
Y(L+1) = Y(L+2) + DX*FX/(AREA(1)*BETA(1))
Y(L+L) = Y(L+LM1)
Y(L) = Y(L-1)
ICOUNT=ICOUNT+1
XMAX=XMAX+H
IF(XMAX.GT.TMAX)GO TO 20
UX(1)=(Y(L+2)-Y(L+1))/DX
UX(L)=(Y(L+L)-Y(L+LM1))/DX

105 DO 4 J=2,LM1
4 UX(J) = (Y(L+J+1) - Y(LM1+J))/(2.*DX)
DO 6 J=1,L
6 S(J)=BETA(J)*UX(J)

110 IF (ABS(UX(J)) .LT. EPSI + 0.0005) GO TO 5


```
BETA(J) = 2.0 E 05
IF (ABS(UX(J)) .GT. EPSI .AND. ABS(UX(J)) .LT. 0.01) BETA(J)=6.E05
AREA(J) = C1/(1.+UX(J))
IF (IFORCE .EQ. 0 .AND. J .LE. MM) AREA(J)=PI*(R(J)**2)/(1.+UX(J))
AREA(J)=ABS(AREA(J))
R(J)=SQRT(AREA(J)/PI)
AMI(J)=PI*(R(J)**4)/4.+ AREA(J) *(R(J)**2)
S(J) = BETA(J)*UX(J) - 42500.
5 CONTINUE
115 IF (ICOUNT.EQ.IPRINT) CALL OUTPUT(T,Y,UX,S,ICOUNT)
GO TO 12
120 IF (ICOUNT.EQ.IPRINT) CALL OUTPUT(T,Y,UX,S,ICOUNT)
10 GO TO 12
10 FORMAT (4F20.0)
100 FORMAT (1H1,5X,*IMPACT VELOCITY*,F10.0,
15X,*IMPACT DURATION*,F10.0,5X,*IMPACT ANGLE*,
2F10.2,5X,*ROD LENGTH*,F10.0,5X,*DX*,F10.6)
101 FORMAT (15X,*ROD DIAMETER*,F10.6,
110X,*INTEGRATION STEP SIZE*,F10.7,10X,*FORCING FUNCTION*,I3//)
103 FORMAT (7F10.0,I5)
20 CALL OUTPUT (T,Y,UX,S,ICOUNT)
130 GO TO 2
8 CONTINUE
STOP
END
```
SUBROUTINE DERIVY(T,Y,F)
COMMON/NAME/L
COMMON/OUT/PI,AL,TMAX,OMEGA,DY,RHO,FX,FY
DIMENSION A(60,60),C(60),KP(60),Y(240),F(240),Z(60)
COMMON AREA(60),AMI(60),BETA(60),R(60)
 DO 10 I=1,L
 DO 10 J=1,L
10 A(I,J) = 0.0
 DO 11 I=1,L
11 C(I) = 0.0
 LM1=L-1
 LM2=L-2
 M=L+L+L
 LP1 =L+1
 C1=(DX*FX)/(AREA(1)*BETAC1)> C2=RHO*(DX*2)
 F(1) =0.0
 F(I+L) = Y(I)
 F(2)= (C1-Y(2+L)+Y(3+L))*(BETA(2)/C2)
 F(2+L)=Y(2)
 DO 1 I=3,LM2
 F(I)=(Y(I-1+L)-2.*Y(I+L)+Y(I+1+L))*(BETA(I)/C2)
 25 1 F(I+L)=Y(I)
 F(LM1)=(BETA(LM1)/C2)*(Y(L+LM2)-Y(L+LM1))
 F(LM1+L)=Y(LM1)
 F(L) = 0.0
 F(L+L) = Y(L)
A(1, 1) = -C2
A(1, 2) = C2
C(1) = -FY*(DX**3)/AMI(1) + 5*BETA(1)*(Y(1+M)-2*Y(2+M)+Y(3+M))
C3 = -AMI(2)/(AREA(2)*(DX**2))
A(2, 1) = C3
A(2, 2) = -2*C3 + 1.
A(2, 3) = C3
C4 = -(BETA(2)*AMI(2))/(RHO*AREA(2)*(DX**4))
C(2) = C4*-(2*Y(1+M)+5*Y(2+M)-4*Y(3+M)+Y(4+M))
DO 2 I = 3, L+2
C5 = AMI(I)/(AREA(I)*(DX**2))
IP1 = I + 1
IM1 = I - 1
A(I, IM1) = C5
A(I, I) = -2*C5 - 1.
A(I, IP1) = C5
C6 = BETA(I)*AMI(I)/(RHO*AREA(I)*(DX**4))
2 C(I) = C6*(Y(I-3+M)-4*Y(IM1+M)+6*Y(I+M)-4*Y(IP1+M)+Y(I+2+M))
C7 = AMI(LM1)/(AREA(LM1)*(DX**2))
A(LM1, LM2) = C7
A(LM1, LM1) = -C7**2 - 1.
A(LM1, L) = C7
C8 = BETA(LM1)*AMI(LM1)/(RHO*AREA(LM1)*(DX**4))
C(LM1) = C8*(Y(L-3+M)-4*Y(LM2+M)+5*Y(LM1+M))
55 A(L, LM1) = -C2
A(L, L) = C2
C(L) = (3*Y(LM1+M) + 3*Y(LM2+M) - Y(L-3+M))*BETA(L)
DO 4 I = 1, L
F(I+L+L) = Z(I)
4 F(I+M) = Y(I+L+L)
RETURN
END
SUBROUTINE RUNGUT(N, H, T, Y, F, XMAX, IPRINT)
COMMON/ACON/B(4,4), THETA(4)
DIMENSION YKEEP(240), Y(240), F(240)
DIMENSION AK(240,4)

DO 16 J=1,N
16 YKEEP(J) = Y(J)
 X1 = T
 DO 15 K=1,4
 CALL DERIVY(T, Y, AK(1,K))
 DO 25 I=1,N
 SUM = 0.0
 DO 25 J=1,K
 SUM = SUM + H*B(K,J)*AK(I,J)
25 Y(I) = YKEEP(I) + SUM
 25 T = X1 + THETA(K)*H
 IF (T .LT. XMAX) GO TO 10
RETURN
END
SUBROUTINE OUTPUT(T,Y,UX,S,ICOUNT)
COMMON/NAME/L
COMMON AREA(60),AMI(60),BETA(60),R(60)
DIMENSION Y(240),UX(60),S(60)

ICOUNT=0
M=L+L+L
WRITE (6,102)
DO 4 I=1,L
 4 WRITE(6,101)T,I,Y(I+L),Y(I+M),UX(I),S(I),Y(I),Y(I+L+L),R(I)
101 FORMAT (F15.6,8X,I2,5X,3F15.6,3F12.0,4X,F10.6)
102 FORMAT(1H0,8X,*TIME*,9X,*NODE NO.*,6X,
 1*AXIAL DISP*,5X,*LATERAL DISP*,6X,*STRAIN*,
 26X,*STRESS*,4X,*AXIAL VEL *,3X,
 3*LATERAL VEL*,2X,*RADIUS*/)
RETURN
END
SUBROUTINE REDSOL (A,X,C,NER,KP,N,DT)
DIMENSION A(60,60),X(60),C(60),KP(60)
LOGICAL RED,SOL,DET
RED=.TRUE.
SOL=.TRUE.
DET=.FALSE.
IF (N .EQ. 1) GO TO 90
GO TO 5
ENTRY REDUCE
RED=.TRUE.
SOL=.FALSE.
DET=.FALSE.
GO TO 5
ENTRY SOLVE
RED=.FALSE.
SOL=.TRUE.
DET=.FALSE.
GO TO 5
ENTRY DETERM
RED=.FALSE.
SOL=.FALSE.
DET=.TRUE.
5 IF (RED. OR. DET) GO TO 6
GO TO 60
25 6 NMI=N-1
IF (.NOT. DET) GO TO 10
NER = 0
DT=1.
GO TO 15

30
C
SET KEEPER VECTOR

C
10 DO 12 I=1,N
12 K(I)=I

35
C
START DO LOOP ON L, THE REDUCTION PRO3ESS

C
15 DO 50 L=1,NMI
 LP1=L+1
 IMX=L

40
C
FIND ABSOLUTE VALUE OF LARGEST COEFFICIENT

C
20 DO 21 I=LP1,N
 IF(ABS(A(IMX,L)).LT.ABS(A(I,L))) IMX=I
21 CONTINUE

C
25 IF (IMX.EQ. L) GO TO 35
 J1=1
 IF(DET) J1=L

50
C
NOW TO INTERCHANGE ROWS

C
DO 30 J=J1,N
 DUM=A(IMX,J)

55
A(IMX,J)=A(L,J)

30 A(L,J) = DUM

C IF (.NOT. DET) GO TO 31

60 DT=-DT
GO TO 35

31 IDUM=KP(IMX)
KP(IMX)=KP(L)
KP(L) = IDUM

65 C TEST TO SEE IF A(I,I) =0

C 35 IF(ABS(A(L,L)) .LT. 1.0E-25) GO TO 32
GO TO 40

32 DO 33 I=L,N

70 33 A(I,L) = 1.0E-7

C 40 DO 50 I=LP1,N
PI = A(I,L)/A(L,L)
IF(.NOT. DET) A(I,L) = PI

75 DO 50 J=LP1,N
50 A(I,J) = A(I,J) - PI*A(L,J)
CONTINUE.

C IF (.NOT. (DET .OR. SOL)) GO TO 901

80 IF (.NOT. DET) GO TO 60

DO 55 I=1,N
DT = DT * A(I,I)
IF (ABS(DT) .LT. 1.0E-20) GO TO 51
GO TO 55

85 51 DT= SIGN(1.0E-20,DT)
NER=1
55 CONTINUE
IF(NER .EQ. 1) RETURN
GO TO 901
C SORT AND STORE C
C 60 DO 65 I=1,N
 K=KP(I)
 65 X(I)= C(K)
 CONTINUE
C REDUCE THE VECTOR X
C 100 DO 75 L=1,NMI
 LP1=L+1
 DO 75 J=LP1,N
 X(J)=X(J)-A(J,L)*X(L)
 CONTINUE
C THE BACK SUBSTITUTION PROCESSS
C IF (A(N,N) .EQ. 0.) A(N,N) = 1.0E-08
 110 DO 85 K=1,NMI
 L=N-K
 LP1=L+1
 DO 84 J=LP1,N
 X(L)=X(L)-A(L,J)*X(J)
 X(L)=X(L)/A(L,L)
 GO TO 901
 84 X(L)=X(L)/A(L,L)
 85 GO TO 901
 901 NER=0
 RETURN
C 120 X(1) = C(1)/A(1,1)
 RETURN
 END
VITA

Massey B. Valentine was born near Mangham, Louisiana, on May 1, 1935. His elementary and secondary education was obtained in the public schools of Mangham and Winnsboro, Louisiana, respectively. In June, 1953, he enrolled in the School of Engineering of Louisiana Polytechnic University and received a Bachelor of Science Degree in Mechanical Engineering in June, 1957. After receiving his Mechanical Engineering Degree, he worked for the General Dynamics Corporation at Dangerfield, Texas, until entering the Air Force as a Second Lieutenant in February, 1958. After separating from the Air Force in July, 1960, he obtained employment with the Department of the Air Force as a mechanical engineer. In September, 1965, he entered Louisiana State University and obtained a Master of Science Degree in Mechanical Engineering in August, 1965. He returned to Eglin AFB, Florida, and was employed as a Senior Mechanical Engineer in the Analysis Division of the Air Force Armament Laboratory through September, 1969. In September of 1969, he entered Louisiana State University under the Air Force Graduate Training Program and is now a candidate for the degree of Doctor of Philosophy in Mechanical Engineering.

The author is married to the former Miss Virgie Modene Folds of Winnsboro, Louisiana. They have three sons, Mark, Miles and Michael and one daughter, Mary Ann.
EXAMINATION AND THESIS REPORT

Candidate: Massey B. Valentine

Major Field: Mechanical Engineering

Title of Thesis: The Elastic Plastic Response of Long Slender Rods Subjected to Impulsive Type Loadings

Approved:

[Signature]
Major Professor and Chairman

[Signature]
Dean of the Graduate School

EXAMINING COMMITTEE:

[Signature]

[Signature]

[Signature]

[Signature]

Date of Examination:

July 17, 1972