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ABSTRACT 

Two experiments were conducted to investigate the effects of free Met and Lys 

supplementation on ruminal fermentation in vitro and in vivo. In the in vitro study, 

supplementation of Met and Lys had effects on concentrations of total VFA and NH4
+, 

proportions of acetate, propionate, butyrate, isovalerate, valerate, and the ratio of acetate to 

propionate. Percentages of microbial N synthesis in effluent pellets were not affected by 

supplementing Lys and Met. The combination of 0.52% Met and 1.03% (90% DM) Lys resulted 

in the highest concentration of total VFA, second highest concentration of NH4
+, and lowest ratio 

of acetate to propionate with no decrease in the microbial CP production. In the in vivo study, 

supplementing 0.29% Met and 2.27% Lys (100% DM) had no impact on mean DMI, OMI, milk 

yield, milk component production or percentage, SCCS, 4% FCM and ECM production 

efficiencies, or body weight gain. Although DMI for the treatment group was numerically lower 

than the control group, milk yield, % milk fat, and % milk protein for the treatment group were 

numerically higher than the control group and resulted in numerically higher 4% FCM and ECM 

efficiencies for cows received AA supplementation. There was a statistical interaction of 

treatment and day observed on DMI, OMI, and 4% FCM and ECM production efficiencies 

indicating that the treatment group maintained a better production efficiency than the control 

group throughout the experiment. The concentration of ruminal NH4
+ and the proportion of 

butyrate were increased, but proportions of acetate and valerate were decreased while the pH, 

total VFA, proportions of propionate, isobutyrate and isovalerate, and the ratio of acetate to 

propionate were not affected by supplementing AA. 
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CHAPTER 1. INTRODUCTION 
 

Nutrient requirements of the mammary gland for synthesis of milk and milk protein include 

glucose, acetate, β-hydroxybutyrate, long-chained fatty acids, and amino acids (AA) (Schwab, 

1994). Amino acids absorbed by the mammary gland are provided by metabolizable protein 

(MP), which is the true protein digested post-ruminally (NRC, 2001). Sources of MP are: 1) 

ruminally synthesized microbial protein, 2) ruminally undegraded feed protein (RUP), and 3) 

endogenous protein (NRC, 2001). Microbial protein is produced by ruminal microorganisms, 

which include bacteria, protozoa, and fungi. Ruminal bacteria have a nitrogen (N) requirement 

for growth, and this requirement can be satisfied by supplying peptides, AA, and/or ammonia 

(NH3) to the ruminal environment (NRC, 2001). 

The basic concept of dietary protein formulation is to optimize the efficiency of dietary N 

utilization by satisfying the requirements of the ruminal microbes and the host animal. This is 

accomplished by providing an adequate amount of rumen-degradable protein (RDP) for use by 

the ruminal microorganisms to improve ruminal fermentation and obtain maximum rumen 

microbial protein production (NRC, 2001) and also providing an adequate amount of 

rumen-undegradable protein (RUP) with balanced AA that complement ruminally synthesized 

microbial protein for the host animal use (Schwab, 1995). There is a growing interest in 

optimizing the delivery of AA to the duodenum to accurately meet the AA requirements for 

maintenance and production purposes of ruminant animal. Strategies (Bateman et al., 1999; 

Vanhatalo et al., 1999) for manipulating the post-ruminal supply of AA include: 1) increasing 

production of microbial protein, 2) increasing dietary crude protein content with appropriate 

protein supplements, 3) feeding proteins resistant to ruminal degradation but also providing 

sufficient rumen-degradable crude protein for rumen microbes, and 4) using rumen-protected 

AA. 
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Feeding excess amounts of N as dietary protein has been considered inefficient and has 

caused environmental N accumulation. It has been proposed that in the US, 90% of the ammonia 

emission comes from agriculture, and 90% of this emission is produced mainly by livestock 

husbandry (Meisinger and Jokela, 2000). Based on both economical and environmental 

standpoints, the fundamental goal for dairy protein formulation is not only to optimize the 

efficiency of dietary N utilization to maximize growth and milk production per unit N consumed 

(Schwab, 1995), but also to address experimental concerns in dairy cattle diet formulation to 

reduce N excretion in manure (Vanhatalo et al., 1999). 

Methionine (Met) and lysine (Lys) have been reported as the first two limiting AA for 

maximum milk yield and milk protein production (Schwab et al., 1992). Supplying these AA 

may improve microbial protein synthesis and therefore improve milk production without adding 

excess N to the environment. Therefore, two experiments were conducted to study the effects of 

free Met and Lys supplementation on both in vitro fermentation and performance and ruminal 

fermentation of lactating Holstein cows. 
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CHAPTER 2.  REVIEW OF LITERATURE 
 

2.1 Background 

Feed cost is the major factor that influences the productivity of the livestock industry. In 

livestock diet composition, dietary protein accounts for the most expensive proportion among all 

other nutrients. Digested dietary protein supplies essential AA (EAA), non-essential AA 

(NEAA), N, and peptides for animal physiological uses. Essential AA, or indispensable AA, are 

AA that cannot be synthesized by animal tissues in the amounts sufficient for optimum 

performance especially during the early stage of growth and for high levels of production (NRC, 

2001). Non-essential AA, or dispensable AA, are AA that do not necessarily have to be provided 

in the diet but can be synthesized in adequate amounts by animal tissues. 

Dairy cattle have metabolic AA requirements but not metabolic protein requirements (NRC, 

2001; Schwab, 1996). Intestinally absorbed AA serve as building blocks for the synthesis of body 

tissues (Schwab, 1996) and are essential for maintenance, growth, reproduction, and lactation by 

dairy cattle (NRC, 2001). Metabolizable protein serves as the major source of absorbable AA to 

the small intestine of ruminants. 

Under most commercial settings, Met and Lys have been reported as the two first-limiting 

AA for maximum milk yield and milk protein production (Schwab et al, 1992). However, dietary 

protein of a conventional diet varies and differs from microbial and milk protein in AA 

composition (Schwab, 1995). Common feeds, such as alfalfa (11.1% Lys and 3.8% Met; % of 

total EAA), corn silage (7.5% Lys and 4.8% Met), yellow corn (7% Lys and 5% Met), and 

soybean meal (13.7% Lys and 3.1% Met) are often deficient in Lys and Met contents as 

compared to milk (16% Lys and 5.5% Met) and ruminal bacteria (15.8% Lys and 5.2% Met) in 

their Lys and Met profiles (Schwab, 1995). Because free AA are unstable and degrade rapidly in 

the rumen, the effects of supplementing ruminally protected Met (RPMet) and Lys (RPLys) 
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products on ruminal fermentation and milk performance for high producing dairy cows have 

been extensively studied. 

Early studies on the development of protecting AA have focused on AA derivatives and 

analogs, especially for Met (Schwab, 1995). The Ca salt of DL-2-hydroxy-4-methylthiobutanoic 

acid (HMB), also known as methionine hydroxy analog, has been studied as a supplement for 

increasing milk and milk fat production. From a metabolic standpoint, HMB acts as Met in both 

chickens and rats. Although HMB has a high ruminal degradation rate, feeding HMB often 

influences ruminal fermentation, diet digestibility and lipid metabolism (Schwab, 1995). Ca salts 

of HMB are no longer manufactured, but liquid HMB is available and has been used extensively 

in both swine and poultry diets as a substitute for Met (NRC, 2001). 

The technique of encapsulation of AA with lipids (fat and oil), often in combination with 

inorganic materials and carbohydrates as stabilizers, softening agents, and fillers, has been 

pursued, but this technique has been limited to protecting only Met from ruminal degradation 

(Schwab, 1995). Rumen-protected AA of N-Cap-M and N-Cap-L (Prince Agri Products, Inc.) 

were Met or Lys encapsulated with hydrogenated vegetable oils, but these two products are no 

longer on the market. Megalac PlusTM (Church & Dwight Co., Inc.) is a bypass fat product 

containing 6% methionine hydroxy analog, which is protected by the fatty acids from rumen 

degradation. Mepron® 85 (Degussa Corp.) is a rumen slow-release product which contains 85% 

DL-Met and small amounts of ash, starch, fat, and cellulose. This product consists of a nucleus 

of Met with several thin coats of stearic acid and ethylcellulose. Results of nylon bag studies 

have shown that the protection rates of Mepron® 85 in the rumen are approximately, 90% at 2 h, 

80% at 6 h, and 70% at 15 h (Schwab, 1995). There is an interest in protecting AA by 

encapsulating with ruminally-inert, pH-sensitive polymers that are resistant to ruminal 

degradation and deliver intact AA to the small intestine (Schwab, 1995). The result of this 
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technique is a rumen-stable rather than a slow-release product. SmartamineTM M and 

SmartamineTM ML (Rhône-Poulenc Animal Nutrition; Antony Cedex, France), rumen-stable 

forms of Met and Met plus Lys products, have been marketed but are costly (Schwab, 1995), and 

currently SmartmineTMML is not marketed. SmartamineTM M contains 70% DL-Met, and 

SmartamineTM ML contains 15% DL-Met plus 50% L-Lys-HCl. Nylon bag studies indicated the 

rumen protection rates of these two products exceed 90% at 24 h, and intestinal availability 

values were approximately 90% (Schwab, 1995). 

There is not yet an efficient commercially available RPLys product because of the 

physical-chemical properties of Lys as compared to Met (NRC, 2001). Research data regarding 

effects of supplementing free Lys as a substitute for RPLys, alone or in combination with either 

free Met or RPMet on ruminal fermentation and milk performance are limited. While the 

development of ruminally protected AA still has a long way to go, several relatively inexpensive 

commercial feed grade sources of crystalline free forms of AA include: L-Lysine-HCl, 

L-Threonine, L-Tryptophan, and DL-Methionine. These products are marketed and have been 

used extensively in both the swine and poultry industries. Since there are no direct research 

results that indicate the ideal Met and Lys profiles for maximum milk production by dairy cattle, 

it is reasonable to accept the ideal Met and Lys requirements (Met=0.26% of the diet and 

Lys=1.03% of the diet; 90% DM) for maximum milk production for lactating sows (NRC, 1998; 

Oldham, 1994). It is probable that the absolute amounts of each AA required for milk production 

by dairy cattle are greater than that for pigs because of greater milk output and larger size of 

dairy cattle (Oldham, 1994). However, when these requirements are expressed as percentage of 

the diet, they may be lower than that of swine due to greater dry matter intake (DMI). It is our 

interest to determine if the ideal amounts of Met and Lys from dietary AA requirement of 
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lactating sows (NRC, 1998) will be the ideal requirements of Met and Lys for improving ruminal 

fermentation and maximizing milk and milk component production in lactating dairy cattle. 

This review of literature will focus on protein nutrition of both the ruminant animal and 

ruminal microorganisms. Research results of rumen-protected AA and free AA supplementation 

on ruminal fermentation via both in vitro and in vivo techniques and production responses to 

improved Met and Lys nutrition will be described. Metabolism and utilization of the end 

products of ruminal fermentation will also be discussed. 

2.2 Protein Nutrition in the Rumen 

Ruminants need to absorb AA at the small intestine to meet their AA requirements for both 

maintenance and production. The requirement for absorbed AA can be met from three sources: 1) 

ruminally synthesized microbial protein, 2) RUP that escapes ruminal degradation and flows to 

the small intestine, and 3) endogenous proteins. Microbial protein usually accounts for the largest 

portion of the total AA that enters the small intestine (Stern et al., 1994). Clark et al. (1992) 

reported that about 59% of the nonammonia-N (NAN) that passed to the duodenum of dairy 

cattle was supplied by microbial protein. Since a larger amount of the absorbed AA is provided 

by microbial protein than RUP, optimizing ruminal fermentation is extremely important in diet 

formulation. The ultimate goal for optimal ruminal fermentation is to provide a diet with 

adequate, but not excessive, amounts of RDP to meet the requirements of the ruminal 

microorganisms while also providing adequate RUP, in conjunction with the microbial protein, to 

meet the host animal’s AA requirements. 

2.2.1 Microbial Nitrogen Requirements 

The ruminal population of microorganisms consists of bacteria, protozoa, and fungi. The 

bacteria contribute the major role toward ruminal fermentation. Unlike the host animal, ruminal 

bacteria do not have an AA requirement but do require N as substrate for growth (NRC, 2001). 
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Peptides, AA, and NH3 serve as N sources to meet microbial N requirements, and these three N 

sources are supplied from hydrolysis of recycled N and degradation of RDP that includes both 

dietary and endogenous proteins. 

2.2.1.1 Ammonia, Peptide, and Amino Acid 

Although ruminal bacteria do have N requirements, the exact amount of N for maximum 

microbial protein synthesis is unknown. Recommended concentration of required NH3 for 

ruminal bacteria are varied and are estimated to be between 0.35 and 29 mg/dl (Owens and Zinn, 

1993). Satter and Slyter (1974) and Schaefer et al. (1980) reported that a concentration of 

ruminal NH3 of 2 to 5 mg/dl was adequate for microbial growth. Petersen (1987) reported 1 to 2 

mg/dl of NH3 was required for optimal fiber digestion. However, Demeyer and Van Nevel (1986) 

and Hespell and Bryant (1979) reported only 0.2 mg/dl of NH3 was needed for ruminal 

microorganisms to grow. 

Salter et al. (1979) indicated that between 18 to 100% of microbial N was derived from 

NH3, and Nolan (1975) and Leng and Nolan (1984) indicated that 50% or more of the microbial 

N was derived from NH3, and the rest was from peptides and AA. These researchers used NH3 as 

the major or sole N source for the ruminal bacteria. Other researchers (Cotta and Russell, 1982; 

Griswold et al., 1996; Russell and Sniffen, 1984) have demonstrated improved microbial growth 

or efficiency when peptides or AA replaced NH3 or urea as the major or sole source of N. Maeng 

and Baldwin (1976) reported increased microbial yields and growth rates when the combination 

of 75% urea and 25% AA-N replaced 100% urea as dietary N. Argyle and Baldwin (1989) 

reported that ruminal bacterial growth was increased by AA and peptides, but the increase in 

growth rates by AA was due to many different AA being available to the bacteria in a given 

mixture rather than any specific growth limiting AA. An in vitro study by Russell and Strobel 

(1993) and an in vivo study by Rooke and Armstrong (1989) both reported that microbial protein 
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synthesis was increased when peptides and AA were substituted for NH3. Cruz Soto et al. (1994) 

reported that the stimulation of microbial protein synthesis in vitro by using AA and peptides 

varied with species of bacteria and energy source used. Reviews by Clark et al. (1992) and Stern 

et al. (1994) indicated that microbial protein flow to the duodenum may be decreased when RDP 

was replaced by RUP, possibly because the supply of peptides and AA for ruminal microbes were 

limited. 

Based on the results described above, although ruminal microorganisms do not have 

requirements for preformed AA, growth of microorganisms and synthesis of microbial protein 

are stimulated by the presence of pre-formed AA and peptides. More research is needed to 

determine how AA and peptides stimulate the synthesis of microbial protein (Firkins, 1996). 

2.2.1.2 Non-Protein Nitrogen and Rumen-Degradable Protein 

Ruminants can utilize non-protein nitrogen (NPN) as well as natural dietary protein. Based 

on the rate and extent of ruminal degradation, NPN in feeds and supplements, such as urea and 

ammonium salts, are considered to be completely degraded in the rumen (NRC, 2001). 

Substitution of NPN for natural protein always decreases the cost of dietary protein, but 

production responses seldom increase with the addition of NPN (Owens and Zinn, 1993). There 

are some important rules that need to be kept in mind when using NPN (Owens and Zinn, 1993). 

First, NPN only supplies NH3 for ruminal bacteria but does not supply energy and minerals as do 

plant and animal protein sources. Second, high producing dairy cattle utilize natural protein more 

efficiently than NPN because the protein requirements for dairy cattle during early lactation are 

greater than the protein requirements for the ruminal microorganisms. Third, NPN is degraded 

faster and more completely than natural protein sources in the rumen. If most of the dietary RDP 

is supplied by NPN, too much readily soluble N is presented to the ruminal microorganisms, and 

excess N may be washed out of the rumen as NH3 before it can be incorporated into microbial 
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protein. But, if most of the dietary RDP is supplied by natural proteins, excess protein may 

escape or bypass ruminal degradation and still be available to the host animal at the lower gut. 

This is especially true during early stages of lactation. Fourth, NPN is recommended to be used 

only during mid or late lactation since protein requirements of the host animal are lower during 

this time. 

2.3 Development of Limiting Amino Acid Requirements 

Dairy cattle have AA requirements for maintenance, growth, reproduction, and production 

rather than a protein requirement per se (NRC, 2001). The 10 EAA for dairy cattle are arginine 

(Arg), histidine (His), isoleucine (Ile), leucine (Leu), lysine (Lys), methionine (Met), 

phenylalanine (Phe), threonine (Thr), tryptophan (Trp), and valine (Val). Although the 

classification of AA as essential or nonessential was based on research with non-ruminant 

animals, Black et al. (1957) indicated that the classification of AA in dairy cattle and sheep was 

similar to that of non-ruminants. 

The NRC (2001) stated that the requirements for NEAA for both growth and production are 

met before the requirements for the most limiting AA. The NRC (2001) also discussed a theory 

that the efficiency of using MP for synthesis of protein will be determined by how well the 

profile of EAA in MP matches the profile required by the host animal and the amount of total 

EAA in MP. Growing interest in determination of AA requirements and development of a protein 

system, which supplies balanced absorbable AA, is based on the knowledge that (Schwab, 1996): 

1) production of milk and milk protein are influenced by the pattern of absorbed AA, 2) 

efficiency of use of RUP for milk protein production is influenced by AA composition and 

intestinal digestibility of RUP, and 3) the AA profile in digestible RUP is often not adequate for 

the optimum use of MP for milk protein synthesis. 
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Enormous amounts of research have been conducted either by direct or indirect approaches 

to determine the sequence of limiting AA for maximum milk yield and milk protein production. 

Direct approaches of abomasal or duodenal infusion studies indicate that Met and Lys are the 

first two limiting AA when lactating cows are fed conventional diets (Schwab et al., 1992). 

Schwab et al. (1992) using Holstein cows concluded that Lys seemed to be the first-limiting and 

Met to be the second-limiting AA during peak lactation; Lys was the first- limiting during early 

lactation; both Lys and Met were co-limiting during midlactation; and there seemed to be no AA 

deficiencies for Holstein cows fed conventional diets during late lactation. Methionine and Lys 

were reported as the two limiting AA for synthesis of tissue protein in growing ruminants 

(Merchen and Titgemeyer, 1992). Methionine and Lys were reported to be the first and second 

limiting AA respectively in microbial protein for N retention in growing sheep (Nimrick et al., 

1970; Storm and Ørskov, 1984) and cattle (Richardson and Hartfield, 1978).  

Most feed proteins have lower Lys and Met contents, especially Lys, compared to milk and 

ruminally synthesized microbial protein (Schwab, 1995; 1996). The contribution of Lys flow to 

the duodenum was usually lower after feeds were exposed to ruminal degradation (Schwab, 1995; 

1996). Lysine is more sensitive to processing and has a lower intestinal digestibility than other 

EAA in RUP (Schwab, 1995; 1996). Therefore, when cattle are fed conventional diets, Lys 

supplementation may improve milk and milk protein production. 

The sequence of Met and Lys limitation is influenced by dietary composition and is 

determined by their relative concentrations in RUP (NRC, 2001; Schwab, 1995). It is very 

important to know the sequence of EAA in a diet with known composition in order to select a 

protein supplements that will improve the AA profile in MP (NRC, 2001). Lys was the 

first-limiting for young post-weaned calves (Abe et al., 1997), growing cattle (Abe et al., 1997; 

Burris et al., 1976), and lactating cows (King et al., 1991; Polan et al., 1991; Schwab et al., 1992) 
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when corn and corn-byproducts provided most of the RUP. Conversely, Met was the 

first-limiting for post-weaned calves (Donahue et al., 1985; Schwab et al., 1982), growing cattle 

(Hopkins et al., 1999; Klemesrud and Klopfenstein, 1994; Lusby, 1994; Robert et al., 1999a), 

and lactating cows (Armentano et al., 1997; Rulquin and Delaby, 1997; Robert et al., 1994; 

Schingoethe et al., 1988) when small amounts of corn were fed, when high forage diets were fed, 

or when all or most of the RUP was provided by legume (soybean products), animal-derived 

proteins, or a combination of both (Merchen and Titgemeyer, 1992; Rulquin and Vérité, 1993; 

Schwab et al., 1992). Lysine and Met were identified as co-limiting when lactating cows were 

fed diets with minimal protein supplementation (Schwab et al., 1976). 

There is a need for supplementing Met and Lys to high producing dairy cows because most 

of the conventional diets fed in the U.S. are deficient in these AA. Moreover, high producing 

dairy cows have the greatest requirement for RUP, which provides a large portion of absorbed 

AA to support the high level of production (Schwab, 1995). 

2.4 Responses to Rumen-Protected Methionine and Lysine Supplementation 

Responses of both growing and lactating dairy cattle to post-ruminal supply of Met and Lys 

have been reported. A summary can be found in NRC (2001). In studies with growing cattle, 

variable increases in body weight gains and feed efficiency (Hopkins et al., 1999; Robert et al., 

1999a; Veira et al., 1991), and variable decreases in urinary N excretion (Abe et al., 1997,1998; 

Campbell et al., 1996, 1997a; Donahue et al., 1985; Schwab et al., 1982) have been reported. In 

studies with lactating cows (Chapoutot et al., 1992; Freeden et al., 1999; Garthwaite et al., 1998; 

Nichols et al., 1998; Nocek et al., 1999; Piepenbrink et al., 1999; Rode et al., 1999; Rulquin and 

Delaby, 1997; Rulquin and Vérité, 1993; Rulquin et al., 1993; Schwab, 1995; 1996; Sloan et al, 

1998; Sniffen et al., 1999a and b; Wu et al., 1999), reported production responses included: 1) 

milk protein is more sensitive than milk yield to Met and Lys supplementation, especially for 
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cows in post-peak lactation, 2) increases in milk protein percentage are independent of milk yield, 

3) casein is the milk protein fraction was most influenced, 4) increases in milk protein production 

to increased supplies of either Met or Lys in MP are the most predictable when the resulting 

predicted supply of the other AA in MP is near or at estimated requirements, 5) milk yield 

responses to Met and Lys supplementation are more common in cows in early than in mid or late 

lactation, and 6) production responses to Met and Lys supplementation are greater when CP is 

about 14 to 18 % of DM than when CP is either lower or higher. 

Milk fat percentage has also been reported to increase with Met or Lys supplementation, but 

the increases are not predictable. Socha et al. (1994a) reported increases in percentage of milk fat 

when Met was infused post-ruminally. Increased percentage of milk fat was also reported when 

Met (Samuelson et al., 2001; Yang et al., 1986) or Met and Lys (Bremmer et al., 1997; Canale et 

al., 1990; Rogers et al., 1987; Xu et al., 1998) were supplied in rumen-protected forms. However, 

Socha et al. (1994a, b, and c) reported increased percentages of milk fat and milk protein in 

post-peak lactating cows, but reported an increased percentage of milk protein and an unchanged 

percentage of milk fat in both peak- and mid-lactation cows infused with Met post-ruminally. 

The reasons why milk fat was sometimes increased by feeding increased amounts of Met and 

Lys in MP are still not clear (NRC, 2001). Possible reasons include (NRC, 2001): 1) Met 

supplementation increases post-ruminal supply of energy as acetate and propionate and 

post-ruminal supply of microbial protein and lipid for post-ruminal utilization by stimulating 

rumen fermentation (Chandler et al., 1976); 2) Synthesis of milk fat has a close relationship with 

blood concentration of acetate (Croom et al., 1981; Ray et al., 1983); 3) Met may have an impact 

on de novo synthesis of short- and medium-chain fatty acids in the mammary gland (Christensen 

et al., 1994; Pisulewski et al., 1996); and 4) Met is a methyl donor for the synthesis of choline 

(Sharma and Erdman, 1988). Choline is essential for the synthesis of phospholipids required for 
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the synthesis of chylomicrons and very low density lipoproteins (VLDL) and is also possibly a 

limiting nutrient for milk fat synthesis (Erdman, 1994; Sharma and Erdman, 1988; 1989).  

2.5 Responses to Free Methionine and Lysine Supplementation 

2.5.1 In Vitro Free Methionine and Lysine Supplementation 

While the main interest of supplementing AA to ruminants has focused on ruminally 

protected forms of Met or Lys, some researchers have reported that supplementing free forms of 

Met and Lys altered ruminal fermentation and may have the potential to increase post-ruminal 

supply of Met, Lys, and other EAA that may limit production. 

Chalupa (1976) studied degradation of AA by ruminal microbes in both in vitro and in vivo 

systems. Under in vitro conditions, Lys was degraded at a moderate rate (0.2 to 0.3 mM/hr) and 

Met was degraded at a relatively lower rate (0.1 to 0.14 mM/hr). Also, the degradation rate of 

Met was approximately twice as great when fermented alone than in conjunction with other EAA 

in both the in vitro and in vivo systems. Chalupa (1976) concluded that free AA could not 

survive ruminal degradation with the possible exception of Met, especially if large amounts were 

administered. 

Bach and Stern (1999) observed decreased true microbial digestion of Met, cysteine (Cys), 

tyrosine (Tyr), and Ile when the level of free Met supplementation was high in the diet. Bach and 

Stern (1999) concluded that dietary Met supplementation could increase the flow of Met, Cys, 

Tyr, and Ile to the duodenum. 

Robert et al. (1999b) reported that DL-Met (RhodimetTM NP99) was equally as effective at 

stimulation of ruminal digestibility of organic matter (OM) as two HMB sources when normal 

quality corn silage was used as substrate. Koenig et al. (1999) reported that neither HMB nor 

DL-Met had a stimulatory effect on in vitro ruminal fermentation when S was adequate in the 

substrate. 
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2.5.2 In Vivo Free Methionine and Lysine Supplementation 

Although Chalupa (1976) indicated about a 1.5x greater degradation rate of EAA in vivo 

than estimates derived in vitro, Cottle and Velle (1989) reported substantial amounts of intact AA 

flowed out of the rumen when the free AA mixture of Lys, Thr, and Met was administered to 

three hay-fed sheep in moderate intraruminal doses. Campbell et al. (1997b) reported an increase 

in ruminal outflow of Lys, Met, and Thr when moderate doses of Lys, Met, Thr, and Trp were 

added to steers fed dry-rolled corn. Cottle and Velle (1989) also reported that the relative rate of 

apparent ruminal degradation in the first 4 h after intraruminal infusion was highest for Lys and 

lowest for Met, but was highest for Lys and lowest for Thr after 24 h. Cottle and Velle (1989) 

concluded that rates of apparent ruminal degradation of free AA as well as outflow rates of the 

free AA were dose-dependent. Velle et al. (1997) reported the mean escape rate of AA increased 

from 9% at the lowest dosage to 21% at the highest dosage during the first 8 h after eighteen AA 

were intraruminally administrated to two non-pregnant, non-lactating cows. Velle et al. (1997) 

reported that Met caused a net increase in the concentration of eleven other AA in ruminal fluid. 

Velle et al. (1997) also reported a relatively low ruminal degradation rate and a correspondingly 

high ruminal escape rate for Met, Lys, and Thr when eighteen AA were administered 

intraruminally in a rumen-unprotected form. Velle et al. (1997) concluded that high amounts of 

some AA caused considerable increases in concentrations in ruminal fluid of other AA, which 

may contribute to improve of yield of milk and milk components. Velle et al. (1998) studied the 

apparent ruminal degradation and escape of AA by administrating nine different mixtures of 

EAA and eight different mixtures of NEAA to two cows. The researchers reported the mean 

initial ruminal degradation rate (1 h after administration) of EAA was 26% when the AA were 

administered in mixtures and 45% when the AA were administered individually, and for NEAA, 

34% when administered in mixtures and 54% when administered individually. In the same study, 
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mean ruminal escape rate during the first 8 h after administration of EAA was 22% when 

administered in mixtures and 16% when administered individually, and for NEAA, 13% when 

administered in mixtures and 11% when administered individually. Velle et al. (1998) concluded 

that ruminal escape of limiting AA could be increased when administered together with larger 

amounts of low cost, non-limiting AA. Volden et al. (1998) proposed that considerable amounts 

of free Lys, Met, and Thr escaped ruminal degradation when administered intraruminally in an 

unprotected form to six cows in both peak (DIM=106±3) and late lactation (DIM=288±3). 

Volden et al. (1998) reported that the mean ruminal escape values of Lys, Met, and Thr across 

dosages and feeding levels were 20.5%, 22.1%, and 16.7%, respectively. Sulu et al. (1989) 

reported that the mean ruminal escape values were 25% for Lys, 31% for Met, 18% for Tyr, and 

37% for Ile when a single, graded dosage of AA was administrated to nonlactating cows fed hay 

and concentrate. In a study by Cottle and Velle (1989), the mean ruminal escape rates for Lys, 

Met, and Thr were 10%, 30%, and 17%, respectively. Velle et al. (1997) suggested that moderate 

amounts of free AA might be practical as feed additives and can be a realistic alternative to the 

use of rumen-undegraded feed protein and expensive rumen-protected AA depending on the cost 

(Velle et al., 1998; Volden et al., 1998). Results above also suggest that supplementing a 

substantial amount of free AA alone or in combination with other non-limiting AA may decrease 

ruminal degradation of AA and also inhibit other AA from being digested by ruminal microbes. 

Several studies of supplementing Met, Lys, or other AA on ruminal fermentation and 

production responses have been conducted. Lundquist et al. (1985) reported increased numbers 

of ciliated protozoa and increased concentrations of butyrate, isobutyrate, and isovalerate in the 

rumen when three Holstein cows in late lactation were fed DL-Met compared to HMB or 

Na2SO4. Studies with steers by Campbell et al. (1997b) reported fatter carcasses and better 

marbling scores when steers were supplemented with a free AA mixture of DL-Met, L-Lys, 
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L-Thr, and L-Trp suggesting some improvement in energy availability although no significant 

differences in ruminal fermentation and performance were observed. Serial studies with Angora 

goats by Carneiro et al. (1998a, b, and c) have shown that supplementing DL-Met in water or 

feed (top-dressed) increased plasma Met concentrations of adult goats, but ruminal NH3 

decreased and VFA ratios, protozoa numbers, and pH were not altered by adding Met. Plasma 

Met concentrations were increased by supplementing Met in drinking water, but mohair 

production was not increased suggesting that the post-ruminal Met supply was already adequate 

for maximum growth of mohair (Carneiro et al., 1998c). In the study with growing Angora goats 

by Carneiro et al. (1998b), feed intake tended to increase when Met was provided either in 

drinking water or in the feed. 

The effects of Met supplementation and timing of supplementation on ruminal fermentation 

in beef cattle have been studied. Clark and Peterson (1988) reported an increased rate of 

fermentation of DM of low quality grass hay and improved weight gains in crossbred beef cattle 

supplemented with urea and 15 g of DL-Met compared with soybean meal. Wiley et al. (1991) 

reported increased in situ dry matter (DM) and neutral detergent fiber (NDF) disappearance rates 

for beef cattle fed low-quality, cool-season forages with supplementation of DL-Met at 1200 h 

and 1500 h compared with supplementation at 0800 h, suggesting an improvement in 

fermentation when availability of carbohydrates and N sources to ruminal microbes were 

synchronized. McCracken et al. (1993) reported greater in situ rates of DM and NDF 

disappearance in Met-supplemented steers than in un-supplemented steers. However, steers 

supplemented in A.M. exhibited faster rates of disappearance than steers supplemented in P.M. 

Disagreement of Wiley et al. (1991) and McCracken et al. (1993) may be due to differences in 

carbohydrate availability. Carbohydrates were more readily available with actively growing 

forage in the study of McCracken et al. (1993) than with the low-quality hay and straw diet in the 
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study of Wiley et al. (1991). Also in the study of McCracken et al. (1993), although Met 

supplementation did not increase rates of DM and NDF disappearance, ruminal purine 

concentration was greater in Met-supplemented heifers than in un-supplemented heifers fed 

low-quality forage, which implies an increased microbial mass. 

Uchida et al. (2001) reported that DL-Met performed as well as HMB in improving milk 

yield and contents of milk fat and crude protein when the post-ruminal supply of Met was similar 

to HMB. Whiting et al. (1971) reported no significant variation in milk yield and milk contents 

when 12 Holstein cows in mid-lactation were supplemented with DL-Met or HMB. Results of 

Whiting et al. (1971) suggested that supplementing either the free form or ruminally protected 

AA at mid-lactation was not beneficial, but implicated that DL-Met may have the same effect on 

production response as HMB. 

Although free AA are considered highly degradable in the rumen, co-supplementing 

ruminally protected AA with free AA tends to improve production responses by supplying 

readily available sources of AA for ruminal bacteria to improve microbial protein production 

while also providing AA for the host animal. Samuelson et al. (2001) reported reduced milk yield 

and milk protein production by supplementing with RPMet (Mepron®85) alone in mid-lactation 

and reduced milk protein percentage by supplementing with free DL-Met alone in Holstein cows. 

In contrast, in the same experiment, co-supplementing with RPMet and DL-Met to cows in 

mid-lactation did not influence milk fat percentage but increased yield and percentage of milk 

protein (+0.1%) in both Holstein and Brown Swiss cows. This combination also increased 

lactose percentage (+0.18%) in Holstein cows fed an alfalfa hay and corn grain-based diet. 

Harrison et al. (2000) reported that the highest production of milk, 3.5% FCM, and milk 

components were observed from ninety-eight Holstein cows fed animal-based bypass protein 

(ProlakTM) co-supplemented with RPMet (Alimet®) and free L-Lys-HCl from 3 wk prepartum 
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through 17 wk postpartum. Koudele et al. (1999) reported increased milk protein percentage but 

no significant differences on milk yield and milk fat percentage when sixty lactating Holstein 

cows were co-supplemented with RPMet (Mepron®85) and L-Lys compared to no AA 

supplementation or Lys supplementation alone. In the same study, Koudele et al. (1999) 

proposed that it was impossible to determine if the production response described above was due 

solely to Met or Met in conjunction with Lys. 

2.6 End Products of Ruminal Fermentation 

Ruminal microorganisms convert dietary carbohydrate and protein to volatile fatty acids 

(VFA), microbial protein, and gases. The VFA and microbial protein can be absorbed and utilized 

by the host animal while the gases are lost to the environment. The end products of ruminal 

fermentation include useful compounds, such as VFA, microbial protein, and water-soluble 

vitamins, useless compounds, such as CH4 and CO2, and even compounds harmful to the host 

animal, like NH3 and nitrate (Owens and Goetsch, 1993). A large proportion of the energy and 

protein requirements of the host ruminant can be satisfied via the end products of ruminal 

fermentation. Microbial protein supplies high quality protein to the host animal. About 50 to 85% 

of the requirement of the metabolizable energy for ruminants is provided by VFA when forage 

diets are fed (Owens and Goetsch, 1993).  

2.6.1 Ruminally Synthesized Microbial Protein 

Microbial protein is an end product (or by-product) of the ruminal fermentation of cellulose. 

Microbial protein that reaches the duodenum contributes the greatest amount of protein for the 

ruminant animal (Firkins, 1996). Schwab (1996) indicated that ruminally synthesized microbial 

protein supplies 50% or more of absorbed AA when rations are balanced properly. Microbial 

protein is considered to be a consistent (Schwab, 1996) and high quality protein source with a 

balanced AA profile (Clark et al., 1992) and is also relatively less expensive to produce 
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compared to other protein sources. Ruminal microorganisms do not have AA requirements but do 

have requirements for branched-chain fatty acids (BCFA) and NH3 for microbial protein 

synthesis. 

Microbial protein has the same intestinal digestibility as RUP at 80 to 90% (Schwab, 1996). 

The biological value of microbial protein ranges from 66 to 87%, and microbial protein is 

approximately 80% AA (Owens and Zinn, 1993). Microbial protein synthesis is limited by ATP 

production and depends largely on the ruminal availability of N and carbohydrates (NRC, 2001) 

that can provide carbon skeletons and energy (Stern et al., 1994). Therefore, synchronization of 

ruminally degradable carbohydrates with RDP is extremely important for optimizing microbial 

protein synthesis (Firkins, 1996; NRC, 2001; Stern et al., 1994). Factors that influence ruminal 

fermentation and microbial protein synthesis include amount and type of supplemental protein, 

carbohydrate sources and availability in the rumen, and ruminal pH (Bateman et al., 1999). 

2.6.2 Ruminally Synthesized Volatile Fatty Acids 

Ruminally synthesized VFA include the short-chain fatty acids, acetate, propionate, and 

butyrate and the BCFA, isobutyrate and isovalerate. Major VFA, acetate, propionate, and 

butyrate supply energy for the host animal after being absorbed and metabolized, and also 

influence the biosynthesis of milk, milk fat, and milk protein.  

Tissues of the adult ruminant obtain energy for maintenance and metabolism from the 

absorbed VFA by oxidative metabolism. The efficiency of energy utilization for each individual 

VFA is different. Propionate has the highest efficiency of energy utilization and is followed by 

butyrate and acetate. The rumen is the major site for absorption of VFA. After absorption across 

ruminal epithelial cells, VFA are transported into ruminal capillaries, the portal vein, and then 

into the liver.  
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Acetate is the major product of carbohydrate digestion during ruminal fermentation and is 

the only VFA that can be found in large amounts in the peripheral tissues of the host animal. The 

major site for acetate metabolism is in peripheral tissues. Leng and West (1969) reported that 1 to 

4% of acetate was converted to ketone bodies in ruminal epithelial cells. Pethick et al. (1981), 

Smith and Crouse, (1984), and Johnson et al. (1990) indicated that 70% of acetate could escape 

ruminal and hepatic metabolism and go into peripheral tissues to be metabolized. 

Acetate supplies both energy and acetyl units for the synthesis of milk and milk 

components. The majority of the energy for mammary gland synthesis of milk is obtained from 

oxidation of acetate (Schwab, 1994), and a smaller amount of energy is obtained from oxidation 

of β-hydroxybutyrate, AA, and glucose. Unlike non-ruminants, the mammary gland of ruminants 

can utilize acetate directly to synthesize milk fat. Therefore, a sufficient supply of acetate is very 

important for milk yield and milk fat synthesis. Palmquist and Jenkins (1980) reported that 

ruminal infusion of acetate or supplementing acetate bicarbonate in the diet increased milk yield 

and milk fat percentage, but this increase was limited by the proportion of acetate in the rumen. 

Propionate is the major precursor of glucose synthesis in ruminants and ruminal 

fermentation is the major source of propionate to these animals. The liver is the major site for 

propionate metabolism. Bergman and Wolff (1971) reported that more than 50% of propionate is 

metabolized in the liver and utilized for the synthesis of glucose. In ruminal fermentation, a high 

proportion of propionate may result in a low proportion of acetate. A high proportion of 

propionate in the rumen is beneficial for dairy cattle in late lactation because lipid synthesis by 

adipose tissues can be stimulated by the presence of a high proportion of propionate (McCartor 

et al., 1979). Propionate is also important for the synthesis of lactose in milk. 

Similar to propionate, ruminal fermentation is the major source of butyrate in ruminants. 

Weigand et al. (1972) reported that large amounts of butyrate, 33 to 78%, are converted to ketone 
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bodies (acetone, acetoacetate, and β-hydroxybutyrate) in ruminal epithelial cells and the liver. 

Giesecke et al. (1985) reported that β-hydroxybutyrate is transported through the blood and 

supplies energy and fatty acids for organs and peripheral tissues. In the mammary gland, 

β-hydroxybutyrate can be converted to long-chain fatty acids to become a part of milk fat.    

2.7 Fermentation Techniques 

2.7.1 In Vitro System 

An in vitro system can be defined as a system in which ruminal microbes are incubated 

with feedstuffs or test components in a batch, a continuous or discontinuous culture. Compared 

to in vivo systems, in vitro systems are generally lower in cost, faster, and more repeatable 

(Owens and Goetsch, 1993). There are two styles of in vitro systems that have been studied and 

used extensively. They include the batch incubation, and the continuous culture system. 

The batch incubation, as described by Tilley and Terry (1963), is a procedure commonly 

used in forage evaluation. The method involves two stages: 24 or 48 h digestion of test feedstuffs 

with buffered ruminal fluid followed by 48 h digestion with pepsin-HCl to solubilize proteins 

(Owens and Goetsch, 1993; Van Soest, 1994). The Tilley-Terry system only needs small amounts 

of test feedstuffs, and this system can be ran rapidly compared to in vivo evaluations. In vitro dry 

matter disappearance (IVDMD) can be measured by this system and is highly correlated with in 

vivo digestibility (Owens and Goetsch, 1993). A modified procedure has been developed to 

shorten and simplify the original procedure. It includes substitution of buffered ruminal fluid 

with a high-phosphate buffer, which acidifies directly and supplies pepsin during the second 

stage, and decreases pepsin digestion time to one day (Van Soest, 1994). In general, the 

Tilley-Terry system has been a relatively accurate procedure for appraising digestibility in the 

laboratory when applied to reasonable-quality feedstuffs without supplements (Van Soest, 1994). 
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Compared to the Tilley-Terry system, the continuous culture system has been studied more 

extensively not only for nutrient digestibility but also for ruminal microorganism metabolism. 

The operating conditions of the continuous culture system are more similar to the in vivo 

environment than closed vessel incubation. The continuous culture system described by Slyter et 

al. (1964) had been reported to maintain similar bacterial numbers as in the rumen (Slyter and 

Putnam, 1967), but protozoa numbers were decreased markedly compared to ruminal protozoa 

numbers. Other studies (Abe and Kumeno, 1973) also reported decreased protozoa numbers 

using a similar continuous culture system. The dual flow continuous culture system described by 

Hoover et al. (1976) was designed to stimulate the differential dilution rates of liquids and solids 

that occur in the rumen and has been reported to improve the maintenance of protozoa numbers 

compared to the single overflow system. Hannah et al. (1986) used a modified dual flow 

continuous culture system to evaluate the feasibility of in vitro fermentation data compared to in 

vivo data. Hannah et al. (1986) reported similar true OM digestibility and crude protein (CP) and 

AA degradability in both the in vitro and in vivo systems. This indicated that the dual flow 

continuous culture system could provide reasonable estimates of ruminal fermentation. However, 

results of in vitro fermentation should be evaluated in vivo. Concepts which are ineffective in 

vitro should be ineffective in vivo, but concepts which are effective in vitro may not be effective 

in vivo because of microbial or animal adaptations and changes in the ruminal environment 

(Owens and Goetsch, 1993). 

2.7.2 In Situ (In Sacco) Technique 

The in situ (in sacco) procedure, also called the cloth bag method, is the technique of 

suspending a polyester bag filled with test components in the rumen through a fistula for a 

specific time period (Owens and Goetsch, 1993; Van Soest, 1994). Ruminal microorganisms, 

ruminal fluid, and end products of digestion can be flushed in and out via the small pores of the 
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cloth bag. The portion of the test component that disappeared from the bag is considered to have 

been digested. The in situ system provides the advantages of: 1) rapid measuring of the 

digestibility of forages and proteins, 2) digesting test components in a real ruminal environment, 

and 3) avoiding rapid changing in microbial types, which may occur in a batch culture systems 

(Owens and Goetsch, 1993; Van Soest, 1994). The in situ system also has disadvantages that 

include: 1) accumulation of lignified materials or microbes in the bag, 2) low or even negative 

digestibility estimates, and 3) efflux of small particles without being digested (Owens and 

Goetsch, 1993). An improved method by Udén et al. (1974) and Van Hellen and Ellis (1977) 

used specific pore sizes and controlled the ratio of sample weight to surface area of the bag. 

Errors can be minimized by using bags with larger ratio of surface area to sample size, and the 

optimal pore size is about 30 µm (Van Soest, 1994). 

2.8 Objectives 

Two experiments were conducted to study effects of free Met and Lys supplementation on 

ruminal fermentation and milk production response using both in vitro and in vivo techniques. 

The objectives of in vitro experiment were 1) to study the effects of free Met and Lys on in vitro 

fermentation and 2) to determine an optimal level of free Met and Lys in combination for 

improving ruminal fermentation. The objective of the in vivo experiment was to determine if the 

optimal concentrations of free Met and Lys from the in vitro experiment would impact in vivo 

ruminal fermentation and the milk production response of Holstein cows. 
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CHAPTER 3.  EFFECTS OF FREE METHIONINE AND LYSINE ON IN VITRO 
FERMENTATION 

 

3.1 Objectives 

This experiment was conducted to study the effects of free Met and Lys supplementation on 

ruminal fermentation in vitro. The objectives were 1) to study the effects of free Met and Lys on 

in vitro fermentation and 2) to determine an optimal combination of free Met and Lys for 

improving ruminal fermentation. 

3.2 Materials and Methods 

3.2.1 Continuous Culture System and Operation 

Two single-effluent continuous culture fermentors (maximum capacity, 3 L; Biovessel with 

microbial package; Applikon Inc.; Foster City, CA) were used to investigate the effects of AA 

supplementation on in vitro fermentation. Twenty-four hours prior to inoculation, 25 g of 

treatment diets were added to 2 L of buffer (Goering and Van Soest, 1970), and allowed to 

hydrate. Trypticase was removed from the original recipe of Goering and Van Soest (1970) to 

maximize any impact of supplemental AA in this study. The buffer and the assigned treatment 

were allowed to stand at 39 oC under aerobic conditions and were constantly stirred at 90 RPM 

during the hydration period. Immediately prior to inoculation, 100 ml of reducing solution 

(Goering and Van Soest, 1970) was added to the buffer solution of each fermentor, and then each 

fermentor was inoculated with 500 ml of the strained ruminal fluid mixture. Approximately 45 

ml of the remainder of the ruminal fluid mixture was sampled and stored frozen (-20 oC) until 

further analysis. 

During each experimental period, each fermentor was fed 20 g of its assigned treatment diet 

twice daily at 0800 h and 1600 h. The fluid was constantly stirred at 200 RPM throughout the 

fermentation period. Fermentation was maintained at 39 oC under anaerobic conditions by 
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bubbling CO2 through the fermentor fluid for 5 minutes to force out any O2 every time the 

system was opened to the atmosphere. Fermentor fluid pH was maintained at 6.5 or higher by 

infusing 0.5 M phosphate (pH=8) and 0.5 M bicarbonate (pH=10) buffers at 1:1 ratio. Phosphate 

and bicarbonate buffers were infused automatically using peristaltic pumps. Excess amounts of 

fermentor fluid were removed and recorded daily during the stabilization period in order to 

maintain a working volume of 2 L. 

3.2.2 Inoculant Donor and Animal Care 

Inoculant was obtained from three ruminally-cannulated, non-lactating Holstein cows 

maintained on bermudagrass pasture at the Louisiana State University (LSU) Dairy Science 

Research and Teaching Farm in Baton Rouge, Louisiana, between January and September of 

2002. Ruminal fluid was collected via the rumen cannula by hand from each donor cow. Ruminal 

contents were strained through four layers of cheesecloth in order to separate fluid from large 

feed particles, and the fluid from all three cows was combined. Strained ruminal fluid mixture 

(total volume equal 1500 ml) was immediately transported to the laboratory and mixed well 

before inoculation. All donor cows were handled and housed under protocols approved by the 

Institutional Animal Care and Use Committee of the LSU Agricultural Center. 

3.2.3 Dietary Treatments and Arrangement 

One basal diet, which consisted of 50% (as-fed basis) commercial chopped alfalfa hay 

(90% DM) (Bert & Wetta Larned, Inc.; Larned, KS) and 50% (as-fed basis) concentrate pellet 

(90% DM), was used as the base for formulating experimental treatments. Composition of the 

concentrate is listed in Table 3-1. Concentrate and hay were ground to pass a 2 mm screen. The 

AA were mixed with the basal diet. Methionine was provided as DL-Met, which was 89% pure 

AA, and Lysine was provided as L-Lys-Hydrochloride, which was 78.8% pure AA. Three levels 

of Met, 0%, 0.26%, and 0.52% of the diet (as-fed basis; 90% DM) and three levels of Lys, 0%, 
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Table 3-1. Composition of concentrate used in formulation of the basal diet. 
 
Ingredient % of DM 
Ground corn 61.46 
Soybean meal 34.40 
Molasses 3.00 
Rock phosphate 0.40 
Salt 0.38 
Trace mineral pack1 0.04 
Vitamin pack2 0.03 
Limestone 0.29 
1 Contained 8.44% Ca, 6.65% P, 4.33% Mg, 2.64% S, 
0.34% I, 12.59% Mn, 0.85% Zn, 1.62% Fe, 0.064% Co, 
and 2.44% Cu. 
2 Contained 11,137 kIU vitamin A/kg, 2,784 kIU vitamin 
D/kg, 30,928 IU vitamin E/kg, and 680 ppm Se. 
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1.03%, and 2.06% of the diet (as-fed basis; 90% DM) were added to the basal diet in a replicated 

3 × 3 factorial arrangement to formulate nine dietary treatments. Arrangement of treatments is 

shown in Table 3-2. In this study, three concentrations of Met and three concentrations of Lys 

were chosen to evaluate the effects of free Met and Lys supplementation on in vitro ruminal 

fermentation. The intermediate concentrations of Met (0.26%) and Lys (1.03%) were chosen 

based on the ideal dietary requirements of Met and Lys for lactating sows consuming a 

corn-soybean based diet with 90% DM (NRC, 1998). Because of the loss of AA during ruminal 

fermentation, 0 and 2x the “ideal” concentrations were also evaluated to allow for defining the 

optimal concentrations for ruminants. Crystalline DL-Met and L-Lys-HCl were added to the 

basal diet and mixed well by hand. The AA treatments were randomly assigned to each fermentor, 

and each fermentor was used twice with each of the nine treatments. Therefore, there were four 

observations per treatment. 

3.2.4 Experimental Period and Sample Collection 

Experimental period length for each fermentation run in the first replicate was 5 d, which 

included 4 d of stabilization followed by 1 d of sampling. Experimental period length for each 

fermentation run in the second replicate was 6 d, which included 4 d of stabilization followed by 

1 d of sampling and 1 day of microbial isolation.  

3.2.4.1 Volatile Fatty Acid, Ammonia-Nitrogen, and Fermentor Fluid Collection 

On the day of sampling for each replicate, two samples of fermentor fluid (approximately 

45 ml each) were collected immediately prior to the morning feeding at 0800 h (corresponding to 

0 hr post feeding). Fermentor fluid then was collected again at 0830, 0900, 0930, 1000, 1030, 

1100, 1130, 1200, 0100, 0200, 0300, 0400 h, which corresponded to 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 

5, 6, 7, and 8 hrs post feeding, respectively. Fermentor pH was recorded at each sampling time. 

One of the samples of fermentor fluid was sub-sampled (4 ml) and prepared for VFA analysis. 
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Table 3-2. Dietary arrangement of concentrations of Met and Lys supplemented in experimental diets. (90% DM). 
 
              Methionine 
Lysine 

None 
(0 %) 

Low 
(0.26 %) 

High 
(0.52 %) 

None 
(0 %) 

Diet 1 
(Lys 0 %; Met 0 %) 

Diet 4 
(Lys 0 %; Met 0.26 %) 

Diet 7 
(Lys 0 %; Met 0.52 %) 

Low 
(1.03 %) 

Diet 2 
(Lys 1.03 %; Met 0 %) 

Diet 5 
(Lys 1.03 %; Met 0.26 %) 

Diet 8 
(Lys 1.03 %; Met 0.52 %) 

High 
(2.06 %) 

Diet 3 
(Lys 2.06 %; Met 0 %) 

Diet 6 
(Lys 2.06 %; Met 0.26 %) 

Diet 9 
(Lys 2.06 %; Met 0.52 %) 
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The remainder of the fermentor fluid sample was then acidified by adding 1 ml of 20% (vol/vol) 

H3PO4 and stored frozen (-20 oC) for NH4
+ analysis. The second sample of fermentor fluid was 

stored frozen (-20 oC) immediately without any reagent addition for later analyses of purine and 

total N content. 

3.2.4.2 Fermentor Bacteria Harvesting 

A modified isolation procedure adapted from Zinn and Owens (1980) and Steinhour et al. 

(1982) was used to isolate bacteria from the fermentor on the second day of sampling. The entire 

fermentor contents were blended in a Waring commercial blender at low speed for 5 min. to 

separate the bacteria from the feed particles. Sufficient quantities of 0.9% saline solution were 

added as needed to reduce the viscosity of the blended fluid. The blended fluid was strained 

through four layers of cheesecloth and solids were discarded. Strained fluid was centrifuged at 

500x g for 5 min to remove the remaining feed particles and protozoa. The supernatant was 

decanted, and the pellet was discarded. The supernatant was re-centrifuged at 20,000x g for 20 

min. The supernatant from this second centrifugation step was decanted and discarded. The pellet 

was re-suspended in 0.9% saline solution and re-centrifuged at 20,000x g for 20 min. Again, the 

supernatant was decanted and discarded. This step was repeated once more prior to harvesting 

the bacterial pellet, which was stored frozen (-20 oC) until later analysis. 

3.2.5 Analytical Procedures 

3.2.5.1 Chemical Analysis of Ingredients and Experimental Diets 

Both the concentrate pellet and alfalfa hay along with the nine experimental diets were 

analyzed for total N, acid detergent insoluble nitrogen (ADIN), ash, DM (AOAC, 1980), and 

acid detergent fiber (ADF) (Van Soest et al., 1991). Total N was tested in order to calculate the 

CP content. The CP content was calculated as: N × 6.25. Acid detergent insoluble nitrogen was 
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tested in order to separate the available CP from the bound CP. Bound CP was calculated as: 

ADIN × 6.25. The content of available CP was calculated as: CP – bound CP. 

3.2.5.2 Total Volatile Fatty Acids 

A 4 ml sample of fermentor fluid was mixed with 1 ml of 25% (wt/wt) meta-phosphoric 

acid containing 10 g/L 2-ethylbutyric acid, which was used as an internal standard for VFA 

quantification. The mixture of fermentor fluid and meta-phosphoric acid was then centrifuged at 

30,000×g for 25 min. Concentrations of individual VFA were measured by GLC using a 

Shimadzu GC17-A equipped with a 15-m EC-1000 column that had an internal diameter of 0.53 

mm and a film thickness of 1.2 µm (Alltech Associates, Inc.; Deerfield, IL). The reagent 

preparation procedure and temperature gradient program for VFA analysis was adapted from 

Grigsby et al. (1992) and Bateman et al. (2002), respectively (Appendix A.). 

3.2.5.3 Ammonia-Nitrogen  

Before NH4
+ analysis, acidified fermentor fluid was thawed at room temperature and 

clarified by centrifuging at 30,000× g for 20 min. The clarified supernatants were then decanted 

and analyzed for NH4
+ using a modified phenol-hypochlorite reaction adapted from Broderick 

and Kang (1980) and Bateman et al. (1996, 2002) (Appendix B.). 

3.2.5.4 Purine and Nitrogen 

Non-acidified fermentor effluents from each time point were thawed at room temperature 

and composited. Composited effluents were then centrifuged at 20,000× g for 25 min. to remove 

any large solids. Effluent pellets and isolated bacteria were dried at 55 oC overnight, and dry 

weight was recorded. Oven dried effluent pellets and bacteria were ground by hand. Effluent 

pellets and bacteria were then dried at 105 oC and analyzed for their contents of ash, purine, and 

N. Ash was analyzed according to an AOAC procedure (1980). Purines were measured according 

to the procedure of Zinn and Owens (1986) (Appendix C.). Concentrations of purines in bacteria 
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and fermentor effluent were measured in order to separate N into microbial and dietary fractions 

(Zinn and Owens, 1986). Contents of N in effluent and bacterial pellets were analyzed using a N 

auto-analyzer (Quickchem 8000; Lachat Instruments; Loveland, Colo.) equipped with 

Quickchem® Method (TKN 13-107-06-2-D). 

3.2.6 Experimental Design and Statistical Analysis 

Data for NH4
+, total and individual VFA, and bacterial N synthesis were analyzed as a 

replicated 3 × 3 factorial arrangement of treatment by ANOVA. The statistical model included 

terms of Lys, Met, time of sampling, and all of the interactions of Lys, Met, and time of sampling. 

Chemical analyses of experimental diets were also analyzed using ANOVA. All data are 

presented as least squares means. All calculations were completed using SAS (SAS Institute Inc., 

1990). Significance was declared at P < 0.05. 

3.3 Results and Discussion 

3.3.1 Chemical Analyses of Ingredients and Experimental Diets 

Chemical analyses of alfalfa hay and concentrate are presented in Table 3-3. Both the 

alfalfa hay and concentrate used in this study had 90% of DM. Chemical analyses of the nine 

dietary treatments are presented in Table 3-4. All experimental diets had similar (P > 0.05) 

nutrient contents.    

3.3.2 Total and Individual VFA Production 

In a closed fermentation system, total VFA concentration can be related to carbohydrate 

fermentation (Owens and Goetsch, 1993). Least squares means for concentrations of total VFA 

and proportions of individual VFA are presented in Table 3-5. No effect of time of sampling (P = 

0.88) on concentrations of total VFA or proportions of individual VFA was observed. Mean 

concentrations of total VFA were significantly affected by the interaction of Lys and Met 

supplementation (P < 0.01) (Figure 3-1) or the addition of Lys (P < 0.05) or Met (P < 0.01) 
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Table 3-3. Chemical analysis of alfalfa hay and concentrate mixture fed to fermentors. 
 

 Alfalfa hay Concentrate mixture 
DM, % 89.51 89.92 
  
 % of DM 
N 2.80 2.72 
CP1 17.50 17.00 
ADIN2 0.35 0.19 
Bound CP3 2.19 1.19 
Available CP4 15.31 15.81 
ADF 34.41 3.38 
Ash 12.24 5.77 
1 CP = N × 6.25. 
2 ADIN = acid detergent insoluble nitrogen. 
3 Bound CP = ADIN × 6.25. 
4 Available CP = CP – Bound CP. 
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Table 3-4. Least squares means for chemical analysis of the experimental diets fed to fermentors. 
 
 Experimental diets 
 Diet1 Diet2 Diet3 Diet4 Diet5 Diet6 Diet7 Diet8 Diet9 

 

Lys 0 1.03 2.06 0 1.03 2.06 0 1.03 2.06  P-value 
Item    Met 0 0 0 0.26 0.26 0.26 0.52 0.52 0.52 SEM Lys Met Lys*Met
DM, % 89.89 90.83 90.33 90.49 90.17 90.51 90.88 91.08 90.24 0.58 0.7640 0.6860 0.7212
 % of DM     
N 3.10 3.27 3.52 3.19 3.30 3.38 3.22 3.35 3.38 0.04 0.0002 0.7978 0.0843
CP1 19.40 20.45 22.00 19.95 20.60 21.15 20.10 20.95 21.10 0.27 0.0002 0.7978 0.0843
ADIN2 0.34 0.33 0.35 0.42 0.33 0.29 0.33 0.38 0.38 0.04 0.8093 0.8284 0.2544
Bound CP3 2.12 2.08 2.22 2.63 2.05 1.84 2.05 2.36 2.37 0.24 0.8093 0.8284 0.2544
Available CP4 17.28 18.37 19.78 17.32 18.55 19.31 18.05 18.59 18.73 0.37 0.0011 0.9614 0.2325
ADF 19.82 17.71 17.53 16.85 17.25 17.07 18.19 17.09 16.35 0.69 0.1113 0.0921 0.3674
Ash 8.69 8.86 8.62 8.78 8.65 8.49 8.83 8.73 8.49 0.13 0.1024 0.7314 0.7191
1 CP = N × 6.25. 
2 ADIN = acid detergent insoluble nitrogen. 
3 Bound CP = ADIN × 6.25. 
4 Available CP = CP – Bound CP. 
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Table 3-5. Least squares means for ruminal performances of the continuous culture system fed diets with or without supplemental Met 
and Lys.  
 

 Experimental diets 

 Diet1 Diet2 Diet3 Diet4 Diet5 Diet6 Diet7 Diet8 Diet9 

 

Lys 0 1.03 2.06 0 1.03 2.06 0 1.03 2.06  P-value 

Item    Met 0 0 0 0.26 0.26 0.26 0.52 0.52 0.52 SEM Lys Met Lys*Met

Total VFA, mM 269.01c 274.06c 339.02b 316.06b 321.77b 333.71b 333.53b 371.97a 320.20b 10.69 0.0162 < 0.0001 < 0.0001
Acetate, % 60.67ab 59.68c 60.97a 60.96a 59.56c 59.81bc 59.96bc 59.97bc 60.37abc 0.33 0.0076 0.3624 0.0437
Propionate, % 16.92c 17.43bc 15.94d 17.95ab 17.33c 17.01c 17.95ab 18.14a 16.96c 0.20 < 0.0001 < 0.0001 0.0218
Isobutyrate, % 1.62 1.54 1.43 1.48 1.52 1.64 1.52 1.41 1.38 0.07 0.5678 0.1025 0.0905
Butyrate, % 14.58ef 15.37cd 16.39a 14.22f 15.68bcd 15.80bc 15.04de 15.24cd 16.06ab 0.23 < 0.0001 0.4235 0.0481
Isovalerate, % 3.24a 3.19a 2.73c 2.75c 3.03ab 3.09a 2.83bc 2.66c 2.62c 0.08 0.0517 < 0.0001 < 0.0001
Valerate, % 2.98a 2.79bc 2.54e 2.64de 2.88ab 2.65cde 2.70cd 2.58de 2.61de 0.05 < 0.0001 0.0023 < 0.0001
Ratio1 3.60b 3.43cde 3.86a 3.41de 3.53bcd 3.53bcd 3.36e 3.32e 3.57bc 0.05 < 0.0001 < 0.0001 0.0027
NH4

+, mg/dl 4.74e 5.13d 5.65bc 4.60e 5.55c 6.06a 5.24d 5.95ab 5.41cd 0.11 < 0.0001 0.0003 < 0.0001
1 Ratio of the acetate to propionate in fermentor effluent. 
a, b, c, d, e, f: means in the same row with different superscripts are significantly different (P < 0.05). 
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Figure 3-1. Least squares means for concentration of total VFA of diets with or without supplemental lysine and methionine (SEM=10.6885).
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(Figure 3-2). Supplementing either Lys or Met increased the production of total VFA. The 

highest mean concentration of total VFA was observed in diet 8 with 1.03% Lys and 0.52% Met 

supplementation and the numerically lowest mean concentration of total VFA was observed in 

the control diet with no AA supplementation. However, the hypothesized ideal combination of 

Lys and Met (1.03% and 0.26%, respectively; diet 5) did not result in the highest concentration 

of total VFA as expected. 

Least squares means for concentrations of total VFA from replicate 1 and 2 are presented in 

Table 3-6 and Table 3-7, respectively. There was only the effect of Lys supplementation (P < 

0.01) observed on the concentrations of total VFA in replicate 1. However, in contrast to replicate 

1, effects of the interaction of Lys and Met (P < 0.01) or Met (P< 0.01) supplementation were 

observed on the concentrations of total VFA in replicate 2. The diet with the numerically highest 

total VFA production shifted from diet 6 (2.06% Lys and 0.26% Met) in replicate 1 to diet 8 

(1.03% Lys and 0.52% Met) in replicate 2. Because donor cows were maintained on 

bermudagrass pasture from February to September 2002, collections of inoculant were conducted 

during different seasons, and the degree of maturity for the bermudagrass pasture that the donor 

cows consumed may have contributed to the change in VFA. Therefore, VFA from inoculants for 

replicate 1 and 2 were analyzed (Table 3-8) in order to determine if there was an effect of 

replicate. There was no effect of replicate (P > 0.05) on the concentration of total VFA, and only 

minor shifts in the proportions of individual VFA were observed between inoculants indicating 

that the shift of the numerically highest concentration of total VFA was probably not associated 

with the inoculant used in the replicates. One possible reason for the shift may be changes within 

the microbial species, but the real reason to cause this shift is still unknown. 

The proportion of acetate was affected by both the interaction of Lys and Met (Figure 3-3) 

and Lys supplementation (P< 0.01) but was not affected by Met supplementation (Figure 3-4). 
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Figure 3-2. Comparison of least squares means for total VFA concentration of diets with or without supplemental lysine 
or methionine. 
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Table 3-6. Least squares means for ruminal performances of the continuous culture system fed diets with or without supplemental Met 
and Lys from replicate 1. 
 

 Experimental diets 

 Diet1 Diet2 Diet3 Diet4 Diet5 Diet6 Diet7 Diet8 Diet9 

 

Lys 0 1.03 2.06 0 1.03 2.06 0 1.03 2.06  P-value 

Item Met 0 0 0 0.26 0.26 0.26 0.52 0.52 0.52 SEM Lys Met Lys*Met

Total VFA, mM 292.67 310.34 362.13 295.03 342.34 388.50 303.10 352.93 343.07 14.96 < 0.0001 0.2557 0.1693
Acetate, % 60.75 59.81 60.43 60.14 60.89 58.99 59.37 58.96 59.58 0.55 0.6445 0.0704 0.1277
Propionate, % 15.97e 16.96bc 16.19de 17.63a 15.21f 17.39ab 17.41ab 17.72a 16.67cd 0.22 0.1192 < 0.0001 < 0.0001
Isobutyrate, % 1.47 1.38 1.21 1.36 1.73 1.61 1.35 1.23 1.32 0.12 0.7372 0.0145 0.1028
Butyrate, % 15.27 15.92 16.88 15.12 16.20 16.24 16.06 16.85 17.06 0.36 0.0002 0.0195 0.7471
Isovalerate, % 3.39 3.24 2.76 2.98 3.20 3.09 3.00 2.70 2.69 0.15 0.0653 0.0106 0.0801
Valerate, % 3.14a 2.68bcd 2.52d 2.78b 2.76bc 2.69bcd 2.80b 2.53cd 2.68bcd 0.08 < 0.0001 0.2645 0.0040
Ratio1 3.81b 3.54de 3.76bc 3.42de 4.04a 3.42de 3.42de 3.34e 3.58cd 0.07 0.3195 0.0001 < 0.0001
NH4

+, mg/dl 4.65c 5.93ab 5.95ab 4.55c 5.71b 6.28a 5.66b 5.81b 5.64b 0.16 < 0.0001 0.2469 < 0.0001
1 Ratio of the acetate to propionate in fermentor effluent. 
a, b, c, d, e, f: means in the same row with different superscripts are significantly different (P < 0.05). 
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Table 3-7. Least squares means for ruminal performances of the continuous culture system fed diets with or without supplemental Met 
and Lys from replicate 2. 
 

 Experimental diets 

 Diet1 Diet2 Diet3 Diet4 Diet5 Diet6 Diet7 Diet8 Diet9

 

Lys 0 1.03 2.06 0 1.03 2.06 0 1.03 2.06  P-value 

Item Met 0 0 0 0.26 0.26 0.26 0.52 0.52 0.52 SEM Lys Met Lys*Met

Total VFA, mM 245.35ef 237.78f 315.92cd 337.10bc 301.20cd 278.93de 363.96ab 391.01a 297.33cd 14.68 0.3058 < 0.0001 < 0.0001
Acetate, % 60.58bc 59.55c 61.50ab 61.77a 58.22d 60.63bc 60.55bc 60.98ab 61.17ab 0.40 < 0.0001 0.1107 < 0.0001
Propionate, % 17.87bc 17.91bc 15.68e 18.27b 19.46a 16.63d 18.48b 18.56b 17.26c 0.27 < 0.0001 < 0.0001 0.0235
Isobutyrate, % 1.77a 1.69a 1.64a 1.60ab 1.31c 1.68a 1.69a 1.59ab 1.43bc 0.07 0.0441 0.0160 0.0076
Butyrate, % 13.89cd 14.82b 15.91a 13.33d 15.15b 15.36ab 14.02c 13.63cd 15.05b 0.22 < 0.0001 0.0024 < 0.0001
Isovalerate, % 3.08ab 3.14a 2.71cd 2.52d 2.85bc 3.09a 2.66cd 2.62cd 2.54d 0.08 0.1918 < 0.0001 < 0.0001
Valerate, % 2.81b 2.89ab 2.56c 2.51c 3.00a 2.62c 2.60c 2.62c 2.55c 0.06 < 0.0001 0.0047 0.0005
Ratio2 3.40cd 3.33d 3.97a 3.40cd 3.02e 3.65b 3.30d 3.29d 3.55bc 0.07 < 0.0001 0.0006 0.0050
NH4

+, mg/dl 4.83c 4.32e 5.35b 4.64de 5.40b 5.84a 4.82cd 6.09a 5.19bc 0.15 < 0.0001 < 0.0001 < 0.0001 
1 Ratio of the acetate to propionate in fermentor effluent. 
a, b, c, d, e, f: means in the same row with different superscripts are significantly different (P < 0.05). 
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Table 3-8. Least squares means for concentrations of NH4
+ and VFA of inoculants used in replicate 1 and 2. 

 
 Inoculants   
Item  Replicate 1 Replicate 2 SEM P-value 
NH4

+, mg/dl 1.18 0.87 0.13 0.1156 
     
Total VFA, mM 89.25 84.91 5.73 0.5995 
Acetate, % 65.52 68.86 1.09 0.0458 
Propionate, % 17.52 16.11 0.49 0.0571 
Isobutyrate, % 1.15 1.43 0.10 0.0725 
Butyrate, % 11.89 10.50 0.86 0.2721 
Isovalerate, % 2.46 2.02 0.15 0.0603 
Valerate, % 1.46 1.07 0.14 0.0677 
Ratio1 3.79 4.28 0.13 0.0194 
1 Ratio of the acetate to propionate. 
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Figure 3-3. Least squares means for proportion of acetate of diets with or without supplemental lysine and methionine (SEM=0.3279).
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Figure 3-4. Comparison of least squares means for proportion of acetate of diets with or without supplemental lysine 
or methionine.  
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The lowest proportion of acetate was observed when 1.03% Lys was added to the diet (P < 0.05). 

The proportion of propionate was influenced by the interaction of Lys and Met (P < 0.05) 

(Figure 3-5) and Lys (P < 0.01) and Met (P < 0.01) supplementation (Figure 3-6). The proportion 

of propionate was numerically highest when 1.03% Lys was added to the diet but kept increasing 

as the amount of Met supplementation increased (P < 0.01).  

The ratio of acetate to propionate was altered by the interaction of Lys and Met (P < 0.01) 

(Figure 3-7) and Lys (P < 0.01) and Met (P < 0.01) supplementation (Figure 3-8). The ratio of 

acetate to propionate was numerically lowest when1.03% Lys added to the diet. The ratio of 

acetate to propionate decreased as the amount of Met supplementation increased (P < 0.01). This 

is in agreement with other studies that reported a lower ratio of acetate to propionate when 

rapidly degradable Met (Bach and Stern, 1999) or HMB (Vázquez-Añón et al., 2001) was added 

to continuous culture systems. Diet 8 resulted in the numerically lowest ratio of acetate to 

propionate and the highest proportion of propionate suggesting that more dietary energy was 

captured in the VFA and available to the cow (Bateman et al, 2002).  

There were no effects of the interaction of Lys and Met (P = 0.09) nor Lys (P = 0.57) nor 

Met (P = 0.10) supplementation observed in the proportion of isobutyrate. The proportion of 

butyrate was affected by both the interaction of Lys and Met (P < 0.05) (Figure 3-9) and Lys 

supplementation (P < 0.01) (Figure 3-10) but was not influenced by Met (P = 0.42) (Figure 3-10). 

The proportion of butyrate increased as the amount of Lys addition increased. Proportions of 

both butyrate and isobutyrate were not affected by DL-Met supplementation in this study. This is 

in contrast to Noftsger et al. (2002) who reported lower proportions of butyrate and isobutyrate 

when Met was provided as DL-Met. The proportion of isovalerate was not affected by Lys (P = 

0.05) but was influenced by both the interaction of Lys and Met (P < 0.01) (Figure 3-11) and Met 

(P < 0.01) supplementation (Figure 3-12). The proportion of isovalerate decreased as the amount 
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Figure 3-5. Least squares means for proportion of propionate of diets with or without supplemental lysine and methionine (SEM=0.2007).
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Figure 3-6. Comparison of least squares means for proportion of propionate of diets with or without supplemental 
lysine or methionine.
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Figure 3-7. Least squares means for ratio of acetate to propionate of diets with or without supplemental lysine and methionine (SEM=0.0535).
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Figure 3-8. Comparison of least squares means for ratio of acetate to propionate of diets with or without supplemental 
lysine or methionine.
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Figure 3-9. Least squares means for proportion of butyrate of diets with or without supplemental lysine and methionine (SEM=0.2325).
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Figure 3-10. Comparison of least squares means of proportion of butyrate of diets with or without supplemental lysine 
or methionine.

ruby1
49



Figure 3-11. Least squares means for proportion of isovalerate of diets with or without supplemental lysine and methionine (SEM=0.0786).
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Figure 3-12. Comparison of least squares means for proportion of isovalerate of diets with or without supplemental lysine or 
methionine.
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of Met addition increased. The proportion of valerate was affected by the interaction of Lys and 

Met (P < 0.01) (Figure 3-13) and Lys (P < 0.01) and Met (P < 0.01) supplementation (Figure 

3-14). The proportion of valerate decreased as the amount of Lys or Met or both increased. 

3.3.3 Ammonia-Nitrogen Production 

The interaction of Lys and Met was significant (P < 0.01) (Figure 3-15) for the least squares 

means of NH4
+ concentration from the continuous culture system. Diet 6 resulted in the 

numerically highest concentration of NH4
+ among treatments studied in this experiment (Table 

3-5). There were no effects of time of sampling (P = 0.90) observed on the concentrations of 

NH4
+. Mean concentration of NH4

+ increased as both the amount of Lys (P < 0.01) and Met (P < 

0.01) supplementation increased (Figure 3-16). This is in agreement with Windschitl and Stern 

(1988) who reported a numerically greater ruminal NH4
+ when DL-Met was supplemented to the 

continuous culture system.  

Diet 6 from replicate 1 and diet 8 from replicate 2 which resulted in the numerically highest 

concentration of total VFA and also resulted in the numerically highest concentration of NH4
+. 

However, overall, diet 8, which had the highest mean concentration of total VFA, did not also 

have the highest mean concentration of NH4
+. This is because diet 6 in replicate 2 still had the 

second highest concentration of NH4
+ even though the concentration of total VFA for diet 6 in 

replicate 2 dropped drastically compared to replicate 1. The reason why the concentration of total 

VFA of diet 6 in replicate 2 dropped while the concentration of NH4
+ was still high is unclear. 

More research is needed to determine if there is a positive correlation between concentrations of 

total VFA and NH4
+ in the continuous culture system.  

Based on the results discussed above, supplementing either Lys or Met or both increased 

productions of total VFA and NH4
+ in the continuous culture system. However, the higher 

concentration of Lys (2.06%) supplementation increased the ratio of acetate to propionate 
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Figure 3-13. Least squares means for proportion of valerate of diets with or without supplemental lysine and methionine (SEM=0.0490). 
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Figure 3-14. Comparison of least squares means for proportion of valerate of diets with or without supplemental lysine 
or methionine.
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Figure 3-15. Least squares means for concentration of NH4
+ of diets with or without supplemental lysine and methionine (SEM=0.1102).
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suggesting that less energy was captured from fermentation (Bateman et al., 2002). Therefore, 

ruminal fermentation in the continuous system was limited at higher concentration of Lys 

addition but was not limited with those concentrations of Met in the present study. 

3.3.4 Microbial Nitrogen Synthesis 

Microbial N synthesis was calculated from the proportion of bacterial pellet N to fermentor 

effluent pellet N (Table 3-9). The formula for calculating percentage of bacterial N synthesis is: 

[{% purine in effluent pellet ÷ (% purine in bacterial pellet ÷ N in bacterial pellet)} ÷ N in 

effluent pellet] × 100. There were no effects of the interaction of Lys and Met (P > 0.05) (Figure 

3-17) nor Lys (P > 0.05) or Met (P > 0.05) supplementation (Figure 3-18) observed in the 

synthesis of microbial N. However, there was a high standard error observed for the percentages 

of bacterial N in effluent pellet among treatments. This was because bacterial and effluent pellets 

were harvested from replicate 2 only. Therefore, the synthesis of microbial N was calculated 

from one replicate only which resulted in high standard errors. If data of bacterial N synthesis 

from two replicates were both included, more observations would have been available to 

decrease the standard error and therefore, power to detect treatment differences would have been 

increased. 

As compared to the control diet, diet 2 and 8 had a similar percentage of the total N that 

was of bacterial origin. It is unclear why the other diets appear to have a reduction in bacterial N 

capture. However, it is possible that the other combinations of AA used were toxic to the ruminal 

microbes. It is also possible that the other combinations of AA tested resulted in a lower 

degradability of feed proteins, which was observed as a decrease in bacterial N.    

3.4 Summary and Conclusions 

Time of sampling had no effect on mean concentrations of total VFA and NH4
+ and 

proportions of individual VFA. Supplementation of Met and Lys had impacts on mean 
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Table 3-9. Least squares means for bacterial N synthesis of the continuous culture system fed diets with or without supplemental Met 
and Lys from replicate 2. 
  

 Experimental diets 

 Diet1 Diet2 Diet3 Diet4 Diet5 Diet6 Diet7 Diet8 Diet9 

 

Lys 0 1.03 2.06 0 1.03 2.06 0 1.03 2.06  P-value 

Item Met 0 0 0 0.26 0.26 0.26 0.52 0.52 0.52 SEM Lys Met Lys*Met

Bacterial pellet,              
DM, % 8.21 6.59 10.20 9.20 9.12 10.84 8.58 8.04 9.57 1.46 0.2042 0.5147 0.9471
Ash, % DM 10.48 7.63 12.83 13.97 9.85 13.15 10.47 10.34 13.22 2.00 0.1180 0.4975 0.8069
Purine, % 7.14 6.94 9.50 9.84 8.62 9.20 7.64 7.58 9.92 1.48 0.3373 0.5457 0.8416
N, % DM 10.2 10.4 9.9 9.9 10.3 9.5 10.2 10.5 10.0 0.32 0.1265 0.4119 0.9950

              
Effluent pellet,              

DM, % 13.77 13.65 14.08 13.54 13.55 14.61 14.06 13.41 13.35 0.73 0.7328 0.8790 0.8121
Ash, % DM 21.79 21.68 20.74 21.36 20.59 22.05 20.34 23.07 21.65 1.25 0.8354 0.9351 0.5622
Purine, % 1.10 1.22 1.04 1.04 1.30 1.26 1.08 1.06 1.26 0.13 0.4562 0.7163 0.5373
N, % DM 4.27b 4.27b 4.49ab 4.40ab 4.42ab 4.80a 4.55ab 4.42ab 4.14b 0.16 0.7180 0.2931 0.1598

              
Bacterial N, % of 
total N in effluent1 42.16 42.90 24.14 23.28 35.13 28.05 32.40 39.66 30.58 8.27

 
0.2755

 
0.5369

 
0.7332

1 % Bacterial N synthesis = [{% purine in effluent pellet ÷ (% purine in bacterial pellet ÷ N in bacterial pellet)} ÷ N in effluent pellet] × 100. 
a, b: means in the same row with different superscripts are significantly different (P < 0.05). 
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Figure 3-17. Least squares means for percentage of bacterial N in effluent pellet of diets with or without supplemental lysine and methionine
(SEM=8.2749).
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Figure 3-18. Comparison of least squares means for percentage of  bacterial N in effluent pellet of diets with or without 
supplemental lysine or methionine.
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concentrations of total VFA and NH4
+, proportions of acetate, propionate, butyrate, isovalerate, 

valerate, and the ratio of acetate to propionate. Percentages of microbial N in effluent pellets 

were not affected by supplementing Lys and Met.  

The hypothesized ideal concentrations of Lys and Met (diet 5) did not result in the greatest 

concentration of total VFA. The combination of 0.52% Met and 1.03% Lys (diet 8) resulted in 

the highest mean concentration of total VFA, second high mean concentration of NH4
+, and the 

lowest ratio of acetate to propionate among treatments with no decrease in the microbial CP 

production.  

In conclusion, supplementing 0.52% Met and 1.03% Lys to an alfalfa hay-concentrate based 

diet (1:1 ratio) may supply the ruminal microorganisms an optimal level of Met and Lys to 

improve ruminal fermentation in the continuous culture system. 

ruby1
61



 

 

CHAPTER 4.  EFECTS OF FREE METHIONINE AND LYSINE ON PERFORMANCE 
AND RUMINAL FERMENTATION OF LATE LACTATION HOLSTEIN COWS 
 

4.1 Objective 

This experiment was conducted to study the effects of free Met and Lys supplementation on 

ruminal fermentation and milk production response of lactating dairy cows. The objective was to 

determine if the optimal concentrations of free Met and Lys obtained from the previous in vitro 

experiment would have a similar impact on in vivo ruminal fermentation and the milk production 

responses of Holstein cows. 

4.2 Materials and Methods 

4.2.1 Dietary Treatments and Animal Care 

Sixteen Holstein cows in late lactation (mean DIM=223) were paired by their current milk 

production (average 20.4 kg/d), parity, and days in milk (DIM). Details of the DHI records for 

the control and treatment groups are shown in Table 4-1. Cows from each pair were randomly 

assigned to either the control or treatment diet. The control diet had a 60:40 forage to concentrate 

ratio (DM basis), and was based on corn silage and alfalfa hay with a commercial protein pellet, 

whole cottonseed, and ground corn as concentrates. The treatment diet was the control diet 

supplemented with Met and Lys at 0.29% and 2.27% (%DM), respectively. Therefore, diets were 

not isonitrogenous. Proportions of each ingredient for the control and treatment diets are listed in 

Table 4-2. Methionine was provided as DL-Met (RhodimetTM NP99; Rhône-Poulenc Animal 

Nutrition; Antony Cedex, France), and Lys was provided as L-Lys-HCl (L-Lys-HCl; Biokyowa 

Inc; Cape Girardeau, MO.). Treatment diets were offered as total mixed rations (TMR). Prior to 

the start of data collection, all cows were trained to use the Calan gate feeding system (America 

Calan; Northwood, NH) and were allowed to adapt to the control diet for 8 d. After all cows were 

consuming their diet and had ample time for adaptation to the feeding system, the treatment 
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Table 4-1. Mean DHI records for the control and treatment groups prior to the 
experiment. 
 

 Control Treatment 
Number of cows 8 8 
Number of first lactation 3 3 
Average lactation number  2.4 2.1 
Average DIM 223 222 
Average milk, kg/d 21.6 19.2 
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Table 4-2. Composition of the control and treatment diets. 
 

 Experimental diets 
Ingredient Control Treatment 
  
 % of DM 
Corn silage 48.59 47.35 
Protein concentrate1 15.39 15.00 
Alfalfa hay 12.41 12.09 
Cottonseed 11.07 10.78 
Corn 10.82 10.54 
Sodium bicarbonate 0.74 0.72 
Limestone 0.49 0.48 
Trace mineral salt2 0.49 0.48 
Lysine 0 2.27 
Methionine 0 0.29 
1 22.16% corn, 56.16% soybean meal, 10.85% dolomitic limestone, 5.42% 
mono-calcium phosphate, 5.42% trace mineral salt. 
2 99% DM, 60.60% Cl, 39.34% Na, 70 mg/kg Co, 400 mg/kg Cu, 70 mg/kg I, 1750 
mg/kg Fe, 2800 mg/kg Mn, 0 mg/kg Se, 3500 mg/kg Zn.  

ruby1
64



 

 

group was supplemented with DL-Met and L-Lys-HCl. The AA in the treatment group were 

mixed with the TMR. Cows were milked twice daily at 0600 h and 1530 h. Cows were fed twice 

daily at 0700 h and 1500 h and were allowed access to feed except while being milked. All cows 

were handled and housed under protocols approved by the Institutional Animal Care and Use 

Committee of the LSU Agricultural Center. 

4.2.2 Sample Collection and Analytical Procedures 

The entire experiment was a 36 d trial that included 8 d of adaptation (pre-experimental 

period) followed by a 28 d experimental period. During the experimental period, as-fed intake 

and milk production were recorded daily and milk was sampled at each milking and sent to the 

Louisiana DHIA lab (Baton Rouge, LA) for analyses of percentage of milk fat and protein, and 

somatic cell counts (SCC). Milk yield was corrected by 4% milk fat and energy. The formula for 

4% fat corrected milk (4% FCM) is: 0.4 x milk yield + 15 x fat yield, and the formula for energy 

corrected milk (ECM) is: 0.3246 x milk yield + 12.86 x fat yield + 7.04 x protein yield. Milk 

production efficiency was calculated as the kg of milk produced per kg dry matter intake (DMI), 

4% FCM efficiency was calculated as the kg of 4% FCM produced per kg DMI, and ECM 

efficiency was calculated as the kg of ECM produced per kg DMI. Somatic cell count score 

(SCCS) was calculated as: 3 + (LN (SCC ÷ 100) ÷ 0.693147). The TMR of the control and 

treatment groups were sampled daily at each feeding, and feed ingredients were sampled weekly 

to analyze for total N, ADIN, ash, DM (AOAC, 1980), and ADF (Van Soest et al., 1991). Total N 

was tested in order to calculate the CP content. The CP content was calculated as: N × 6.25. Acid 

detergent insoluble nitrogen was tested in order to separate the available CP from the bound CP. 

Bound CP was calculated as: ADIN × 6.25. The content of available CP was calculated as: CP – 

bound CP. Ruminal fluid from each cow was collected via stomach tube prior to (d –2), at the 

midpoint (d 15), and at the end (d 28) of the experiment. Ruminal fluid was transported to the 
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laboratory immediately after collection and pH was measured. A 4 ml sub-sample was then 

pipetted and prepared for VFA analysis. The remainder of the sub-sample was then acidified by 

adding 1 ml of 20 % (vol/vol) H3PO4 and stored frozen (-20 oC) for subsequent NH4
+ analysis. 

Procedures for analyses of VFA and NH4
+ were discussed in the previous chapter. Body weight 

for each cow was recorded prior to (d –2) and at the end (d 28) of the experiment. 

4.2.3 Experimental Design and Statistical Analysis 

Because production response data were in a time series, the effects of supplementing Met 

and Lys to the diet on DMI, organic matter intake (OMI), milk yield, milk production efficiency, 

4% FCM efficiency, ECM efficiency, yield and percentages of milk components, and SCCS were 

analyzed as repeated measurements using a mixed model that included terms of treatment, day, 

and the interaction of treatment and day. Cow was included as a random term that was used to 

test the main effect of treatment. Day was modeled as a repeated term that was assumed to be 

correlated within cow nested within the main effect of treatment (Littell et al., 1998). Data of 

production responses collected in the pre-experimental period were used as a covariate for 

statistical analysis. 

The effects of supplementing Met and Lys to the diet on pH, concentrations of total VFA 

and NH4
+, and proportions of individual VFA were also analyzed as repeated measurements 

using a mixed model that included terms of treatment, period, and the interaction of treatment 

and period. Cow was included as a random term that was used to test the main effect of treatment. 

Period was modeled as a repeated term that was assumed to be correlated within cow nested 

within the main effect of treatment. Data of ruminal performance collected in the 

pre-experimental period were used as a covariate for statistical analysis. 

Chemical analyses of experimental diets including the control and treatment diets, and body 

weight changes of the control and treatment groups were analyzed using ANOVA. All data are 
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presented as least squares means. All calculations were completed using SAS (SAS Institute Inc., 

1990). Significance was declared at P < 0.05. 

4.3 Results and Discussion 

In this study, experimental diets for the control and treatment groups were formulated based 

on NRC (2001) for a 545-kg, 30 month-old cow at 280 days in milk, producing 28 kg of 3.7% fat 

milk per day. The predicted CP profile of the control diet was 14.9% CP with 10% RDP and 

4.9% RUP. The predicted CP profile of the treatment diet was 17% CP with 12.2% RDP and 

4.8% RUP. The predicted NEl for the control diet (0.73 Mcal/lbs DM) was similar to the 

treatment diet (0.72 Mcal/lbs DM).  

The concentrations of Met and Lys evaluated in this experiment were chosen based on the 

results from replicate 1 of the in vitro study reported previously. Treatment concentrations for 

Met and Lys used in this study were converted to 100% DM basis from diet 6 in the previous in 

vitro study. The average DMI for each cow of the treatment group in this study was 13.18 kg/d. 

Therefore, daily supplementation of DL-Met was 38.22 g/cow/d and L-Lys-HCl was 299.19 

g/cow/d. 

4.3.1 Chemical Analyses of Ingredients and Experimental Diets 

Chemical analyses of the control and treatment diets are presented in Table 4-3. The 

treatment diet had greater total N content (P < 0.01) and ADF (P < 0.01) than the control diet as 

expected when AA were added to the diet. The actual CP contents of the control (13.38% and 

14.9%, for the actual and predicted CP content, respectively) and treatment (15.59% and 17%, 

for the actual and predicted CP content, respectively) diets were both lower than the predicted 

contents. The treatment diet supplied more available CP (P < 0.01) than the control diet but there 

were no differences (P > 0.05) in the contents of DM, OM, ADIN, or ash between the treatment 

and control diets.   
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Table 4-3. Least squares means for chemical analysis of the experimental diets with or 
without supplemental Met and Lys. 
 
 Experimental diets  
Item Control Treatment SEM P-value 
DM, % 44.30 44.69 0.34 0.4105 
OM, % 40.40 40.78 0.35 0.4707 
     
 % of DM   
N 2.14 2.49 0.04 < 0.0001 
CP1 13.38 15.59 0.26 < 0.0001 
ADIN2 0.39 0.38 0.01 0.5259 
Bound CP3 2.46 2.39 0.08 0.5259 
Available CP4 10.92 13.20 0.28 < 0.0001 
ADF 32.84 30.30 0.59 0.0029 
Ash 8.81 8.74 0.32 0.8807 
1 CP = N × 6.25. 
2 ADIN = acid detergent insoluble nitrogen.  
3 Bound CP = ADIN × 6.25. 
4 Available CP = CP – Bound CP. 
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4.3.2 Lactational Performances 

Least squares means for lactational performances of cows fed diets with or without AA 

supplementation are presented in Table 4-4. There were no treatment effects (P > 0.05) observed 

for any production measure. These results are in agreement with Harrison et al. (2000), who 

reported no significant differences of DMI or components of milk from cows fed diets with or 

without supplemental L-Lys and RP-Met. These data also agree with Koudele et al. (1999), who 

reported no effect of Lys supplementation on milk production or milk components from 

high-producing cows fed diets supplemented with 50 g L-Lys/cow/d plus 15 g RP-Met/cow/d.  

Both the control and treatment groups had numerically lower DMI (mean DMI=13.92 kg/d) 

and milk yield (mean=18.73 kg/d) compared to the DMI (21 kg/d) and milk yield (28 kg/d) 

predicted from NRC (2001). Two possible reasons to cause depressions of the DMI and milk 

yield included weather conditions and lack of adaptation to Calan gates. The Louisiana Office of 

State Climatology reported that the average temperature in Baton Rouge was 27.2 o C and the 

relative humidity (RH) was 80.5% during the time that this study was conducted from August to 

September 2002. The calculated mean temperature-humidity index (THI; West, 1994) was 78.53 

indicating that both the control and treatment groups were experiencing mild (THI=72 to 79) to 

moderate (THI=80 to 89) heat stress (Armstrong, 1994) during the experimental period. Reduced 

milk yield was reported by Johnson (1987) when the mean daily THI was above 72, and reduced 

milk yield and intake of total digestible nutrients (TDN) were reported by Johnson et al. (1963) 

when the mean daily THI was in the range of 71 to 81. Therefore, depressed DMI and milk yield 

should have been expected in this study under hot weather condition. Failure in using Calan 

gates should be also considered as one of the possible reasons that may have caused depression 

of voluntary DMI. All experimental cows were allowed to adapt to the Calan gates for 8 days; 
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Table 4-4. Least squares means for lactational performances and body weight gains of 
cows fed diets with or without supplemental Met and Lys. 
 
 Experimental diets  
Parameter  Control Treatment SEM P-value 
DMI, kg/d 14.66 13.18 0.73 0.1760 
OMI, kg/d 13.29 11.97 0.63 0.1809 
     
Milk yield, kg/d 18.41 19.05 0.61 0.4702 
4% FCM1, kg/d 18.31 19.26 0.63 0.3085 
ECM2, kg/d 19.23 20.20 0.67 0.3318 
     
4% FCM efficiency3 1.33 1.41 0.10 0.5444 
ECM efficiency4 1.40 1.48 0.10 0.5576 
Milk efficiency5 1.27 1.33 0.09 0.6590 
     
Body weight gain6, kg 9.20 21.42 5.95 0.1687 
     
Fat,     

% 3.96 4.05 0.05 0.2523 
kg/d 0.73 0.78 0.03 0.2305 

     
Protein,     

% 3.01 3.02 0.03 0.7442 
kg/d 0.55 0.57 0.02 0.4499 

     
SCCS7 3.54 3.69 0.12 0.4000 
1 4% FCM = 0.4 x milk yield + 15 x fat yield. 
2 ECM = 0.3246 x milk yield + 12.86 x fat yield + 7.04 x protein yield. 
3 4% FCM efficiency = kg 4% FCM production ÷ kg DMI. 
4 ECM efficiency = kg ECM production ÷ kg DMI. 
5 Efficiency = kg milk production ÷ kg DMI. 
6 Total gain or loss of body weight over the 28 d experimental period. 
7 SCCS = 3 + (LN (SCC ÷ 100) ÷ 0.693147). 
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however, 50% of the cows in this study could not achieve their maximal DMI without human 

assistance for opening the Calan gates.   

Although there was no impact of AA supplementation on DMI and milk yield (P > 0.05), 

the treatment group had numerically lower DMI and greater milk yield and, therefore, resulted in 

numerically higher milk production efficiencies. There was an interaction of AA treatment and 

day observed in the DMI (P < 0.0001), OMI (P < 0.0001), 4% FCM efficiency (P = 0.0018), and 

ECM efficiency (P = 0.0015) indicating that the treatment group maintained lower DMI and 

OMI, and greater 4% FCM (Figure 4-1) and ECM (Figure 4-2) efficiencies than the control 

group at the conclusion of the experiment even though there were no differences observed at the 

beginning of the study. 

Least squares means for body weight of the control and treatment groups were numerically 

increased after the experiment as expected. Although, there was no AA treatment effect (P = 

0.1687) observed on body weight gain between the control and treatment groups in this study, 

the numerically greater weight gain found in the treatment group (21.42 kg vs. 9.2 kg) suggests 

that AA supplementation may have favored energy partition to body tissue rather than production 

of milk and milk contents for cow in late lactation (Samuelson et al., 2001). 

Compared to the general curves of the average DMI, milk production, and body weight 

change for dairy cattle at various feeding periods (Figure 4-3), the trends of the actual DMI for 

the control and treatment groups in the present study (Figure 4-4) were both increasing while the 

average DMI should be declining at week 32 to 36. This increase in the DMI of both groups 

suggests that DMI for both groups were improved during the experiment even though the actual 

DMI for both groups were lower than the predicted DMI. Actual milk yield for the control and 

treatment groups were both declining (Figure 4-5), and these were in agreement with the general 

curve of the average milk production (Figure 4-3). The AA treatment had no effect (P > 0.05) on 
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Figure 4-1. Least squares means for 4% FCM efficiency of cows fed diets with (●)
or without (△) supplemental lysine and methionine. 
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Figure 4-2. Least squares means for ECM efficiency of cows fed diets with (●)
or without (△) supplemental lysine and methionine. 
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Figure 4-3. Representative curves of milk yield, DMI, and body weight change for cows at various feeding periods. 
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Figure 4-4. Least squares means for DMI of cows fed diets with (●) or 
without (△) supplemental lysine and methionine. 
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Figure 4-5. Least squares means for milk yield of cows fed diets with (●)
or without (△) supplemental lysine and methionine. 
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productions and percentages of milk fat and protein for cows fed diets with or without AA 

supplementation. Although there were no differences in percentages of milk fat and milk protein 

between the control and treatment groups, the treatment group had numerically greater 

percentages of milk fat and milk protein. There was a tendency for increasing the percentage of 

milk fat for both the control and treatment groups (Figure 4-6) and this tendency agrees with the 

general curve of the change in milk fat percentage. The trend line of milk protein percent for the 

treatment group (Figure 4-7) showed a tendency for increasing the percentage of milk protein 

during the experimental period and resulted in a numerically higher milk protein percent than the 

control group. At about day 8 to day 11 during the experimental period, the milk protein % for 

the treatment group passed over the control group and kept increasing throughout the reminder of 

the experimental period. The SCCS for both groups was not affected by AA supplementation (P 

> 0.1), and indicated that all cows were experiencing a slight to moderate degree of mastitis 

during the experiment.  

In this study, there were no AA treatment effects observed on lactational performance and 

body weight changes. Although the treatment group had numerically lower DMI, the yield of 

milk and production of milk fat and milk protein of the treatment group were numerically greater 

than the control group. This is in agreement with the study by Harrison et al. (2000) who 

reported numerically lower DMI but numerically greater yield of milk and production of milk fat 

and protein when cows were fed diets supplemented with Met and Lys. However, Carnerio et al. 

(1998c) reported that feed intake tended to increase when Met was provided either in drinking 

water or in the feed. Koudele et al. (1999) reported that the percentage of milk protein for cows 

receiving Met and Lys supplementation tended to be greater than cows receiving no AA 

supplementation, and numerically greater yield of milk and percentage of milk fat were also 

observed for cows supplemented with AA. Because there was no significant improvement 
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Figure 4-6. Least squares means for milk fat percentage of cows fed diets with (●) or 
without (△) supplemental lysine and methionine. 
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Figure 4-7. Least squares means for milk protein percentage of cows fed diets with (●) or 
without (△) supplemental lysine and methionine. 

ruby1
79



 

 

observed in lactational performances of cows supplemented with Met and Lys in this study, there 

appeared to be no Met or Lys deficiencies for milk production by cows in late lactation. This is in 

agreement with the study by Schwab et al. (1992). Although there were no significant 

improvements on production responses observed when supplementing Met and Lys to cows 

during late lactation in this study, changes in 4% FCM efficiency, ECM efficiency, and body 

weight gain in the AA treatment group after the 28 d study suggest that supplemental Met and 

Lys maybe improve the post-ruminal supply of metabolizable AA to cows in late lactation with 

positive energy balance. These cows apparently used this improvement for depositing body 

weight or fetal growth rather than production of milk and milk components.        

4.3.3 Ruminal Fermentation Performance 

Ruminal fluid from all experimental cows was collected via stomach tube at three times in 

the experimental period. The three times represented prior to (d –2), at the midpoint (d 15), and 

at the end (d 28) of the experiment. Least squares means for ruminal fermentation of cows fed 

diets with or without AA supplementation are the average values from the three sampling times 

and are presented in Table 4-5. Because of the contamination of ruminal fluid with salvia during 

the collection process, data of total VFA concentrations and ruminal pH may be erroneous.  

There were significant differences in the concentration of NH4
+ and the proportions of 

acetate, butyrate, and valerate in ruminal fluid. The concentration of NH4
+ for the treatment 

group was greater (P < 0.01) than the control group as expected, and this is in agreement with 

studies from the previous in vitro experiment and by Cruz Soto et al. (1994) who reported 

increased NH4
+ in ruminal fluid from sheep receiving AA infusion. Demeyer and Van Nevel 

(1986) speculated that only 0.2 mg/dl of ruminal ammonia was needed by ruminal 

microorganisms to allow microbial growth. The lowest concentration of NH4
+ in this study was 
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Table 4-5. Least squares means for ruminal performances of cows fed diets with or 
without supplemental Met and Lys. 
 
  Experimental diets   
Parameter Control Treatment SEM P-value 
pH    6.32 6.18 0.07 0.1659 
NH4

+, mg/dl 0.95 1.31 0.06 0.0008 
     
Total VFA, mM 83.46 89.63 3.16 0.1968 
Acetate, % 66.95 64.54 0.60 0.0130 
Propionate, % 18.35 18.70 0.44 0.5760 
Isobutyrate, % 1.22 1.30 0.07 0.4563 
Butyrate, % 9.72 11.64 0.22 < 0.0001 
Isovalerate, % 2.21 2.47 0.10 0.0776 
Valerate, % 1.54 1.35 0.06 0.0263 
Ratio1 3.67 3.48 0.10 0.2199 
1 Ratio of acetate to propionate in ruminal fluid. 
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0.95 mg/dl from the control group suggesting that ruminal fermentation for both of the control 

and treatment groups should not have been limited by the NH4
+ concentration in the rumen.  

 The proportion of butyrate was increased (P < 0.01), but the proportions of acetate (P < 

0.05) and valerate (P < 0.05) were decreased while the pH, total VFA production, proportions of 

propionate, isobutyrate, and isovalerate, and the ratio of acetate to propionate were not affected 

by supplementing Met and Lys. Although there was no difference in the mean concentration of 

total VFA, the treatment group had numerically greater total VFA production than the control 

group, but this may have been confounded by salvia contamination.  

Increased concentrations of ruminal NH4
+, lower proportions of acetate and valerate, higher 

proportions of butyrate, numerically greater production of total VFA, and the numerically lower 

ratio of acetate to propionate for cows fed Met and Lys are in accordance with results obtained 

from the previous in vitro study (Table 3-6). These results also agree with the study by Cruz Soto 

et al. (1994) who reported greater production of total VFA, greater proportions of BCFA, and 

numerically lower proportion of acetate and greater proportion of propionate when sheep 

received a ruminal infusion of AA mixture. Even with possible contamination of saliva during 

the collecting process, results of the ruminal performances from this in vivo study confirmed 

results obtained from the previous in vitro study. 

4.4 Summary 

Supplementing Met and Lys to Holstein cows in late lactation had no impact on mean DMI, 

OMI, milk yield, production and percentages of milk components, SCCS, 4% FCM and ECM 

efficiencies, and body weight gain. Although DMI for the treatment group was numerically lower 

than the control group (13.18 kg/d vs. 14.66 kg/d, respectively), milk yield (19.05 kg/d vs.18.41 

kg/d), % milk fat (4.05% vs.3.96%), and % milk protein (3.02% vs. 3.01%) for the treatment 

group were numerically greater than the control group and resulted in numerically greater 4% 
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FCM and ECM efficiencies. There was no AA effect observed on the mean body weight gain for 

both the control and treatment groups, but the mean body weight gain for the treatment group 

was numerically greater than the control group (21.42 kg vs. 9.20 kg, respectively). Ruminal 

concentration of NH4
+, proportions of acetate, butyrate, and valerate were affected by 

supplementing Met and Lys. The concentration of ruminal NH4
+ was increased by AA 

supplementation. The proportion of butyrate was increased, but proportions of acetate and 

valerate were decreased while the pH, total VFA, proportions of propionate, isobutyrate and 

isovalerate, and the ratio of acetate to propionate were not affected by supplementing Met and 

Lys. 

4.5 Conclusions 

Results of this in vivo study confirmed the results obtained from the previous in vitro study 

and indicate that positive responses of Met and Lys in vivo should be expected and profitable if 

correctly timed and supplemented at the proper concentrations. Data obtained from this study 

suggest that supplementing free Met and Lys to Holstein cows in late lactation altered ruminal 

fermentation, but these impacts may have favored energy partitioning to body tissue rather than 

eliciting significant responses of milk production and milk components. Possible reasons 

included: 1) cows were in late lactation, 2) a short experimental period was utilized, 3) a change 

in forage base from alfalfa hay to corn silage, and 4) a less than optimal combination of Met and 

Lys was used in this study. Based on numerically greater milk efficiency and body weight gain 

observed in the treatment group when cows were in late lactation with positive energy balance, 

improvements in lactation responses should be expected when the ideal concentrations of Met 

and Lys are supplemented to cows in peak lactation.   
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CHAPTER 5.  SUMMARY AND CONCLUSIONS 
 

5.1 Summary 

In the in vitro study, time of sampling had no effect on mean concentrations of total VFA 

and NH4
+ and proportions of individual VFA. Supplementation of Met and Lys had impacts on 

mean concentrations of total VFA and NH4
+, proportions of acetate, propionate, butyrate, 

isovalerate, valerate, and the ratio of acetate to propionate. Percentages of microbial N in effluent 

pellets were not affected by supplementing Lys and Met. The hypothesized ideal concentrations 

of 1.03% Lys and 0.26% Met did not result in the greatest concentration of total VFA. The 

combination of 0.52% Met and 1.03% Lys resulted in the highest mean concentration of total 

VFA, second highest mean concentration of NH4
+, and the lowest ratio of acetate to propionate 

among treatments with no decrease in bacterial CP production.  

In the in vivo study, supplementing Met and Lys to Holstein cows in late lactation had no 

impact on mean DMI, OMI, milk yield, productions and percentages of milk components, SCCS, 

4% FCM and ECM efficiencies, and body weight gains. Although DMI for the treatment group 

was numerically lower than the control group (13.18 kg/d vs. 14.66 kg/d, respectively), milk 

yield (19.05 kg/d vs.18.41 kg/d), % milk fat (4.05% vs.3.96%), and % milk protein (3.02% vs. 

3.01%) for the treatment group were numerically greater than the control group and resulted in 

numerically greater 4% FCM and ECM efficiencies. There was no AA effect observed on the 

mean body weight gain for both the control and treatment groups, but the mean body weight gain 

for the treatment group was numerically greater than the control group (21.42 kg vs. 9.20 kg, 

respectively). Ruminal concentration of NH4
+, and proportions of acetate, butyrate, and valerate 

were affected by supplementing Met and Lys. The concentration of ruminal NH4
+ was increased 

by AA supplementation. The proportion of butyrate was increased, but proportions of acetate and 

valerate were decreased while the pH, total VFA, proportions of propionate, isobutyrate and 
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isovalerate, and the ratio of acetate to propionate were not affected by supplementing Met and 

Lys. 

5.2 Conclusions 

In conclusion, supplementing 0.52% Met and 1.03% Lys to an alfalfa hay-concentrate based 

diet (1:1 ratio) may supply the ruminal microorganisms an optimal level of Met and Lys to 

improve ruminal fermentation in the continuous culture system. 

Results of the in vivo study confirmed the results obtained from the in vitro study and 

indicate that positive responses of Met and Lys in vivo should be expected and profitable if 

correctly timed and supplemented at the proper concentrations. Data from the in vivo study 

suggest that supplementing free Met and Lys to Holstein cows in late lactation altered ruminal 

fermentation, but these impacts may have favored energy partitioning to body tissue rather than 

eliciting significant responses of milk production and milk components. Possible reasons 

included: 1) cows were in late lactation, 2) a short experimental period was utilized, 3) a change 

in forage base from alfalfa hay to corn silage, and 4) a less than optimal combination of Met and 

Lys was used in this study. Based on numerically greater milk efficiency and body weight gain 

observed in the treatment group when cows were in late lactation with positive energy balance, 

improvements in lactation responses should be expected when the ideal concentrations of Met 

and Lys are supplemented to cows in peak lactation.   
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APPENDIX A. ANALYSIS OF VOLATILE FATTY ACIDS IN RUMINAL FLUID 

Based on preparation produceres described in Grigsby et al., 1992. J. Anim. Sci. 70:1941-1949, 
and temperature gradient program described in Bateman et al., 2002. Prof. Anim. Sci. 

18:363-367. 
 
Reagents 
1) 25% (wt/vol) metaphosphoric acid (fluka #79615) acid solution containing 2 g/l of 2-ethyl 

butyric acid (216.5 µl 2-EB to 100 ml m-phos acid solution; Aldrich #10,995-9). 
2) VFA standard 

a) Add the following volumes of acids to a 100-ml volumetric flask and fill to volume with 
dH2O. Store in refrigerator when not in use. 

 
MW Acid Volume (µl) Conc (g/l) Conc (mM) 

60.06 Acetic 330 3.46 57.62 
74.08 Propionic 400 3.97 53.59 
88.10 Isobutyric 30 0.29 3.29 
88.10 Butyric 160 1.53 17.37 

102.13 Isovaleric 40 0.375 3.67 
102.13 n-Valeric 50 0.471 4.61 

 
Sample and Standard Preparation 
 
1) Centrifuge strained ruminal fluid at 30,000 x g for 20 min (this step may be skipped). 
2) Mix 4 ml of rumen fluid supernatant with 1 ml of m-phosphoric acid solution containing 2 - 

EB. 
3) Allow to stand in ice bath for 30 min (this step may be skipped) 
4) Centrifuge at 30,000 x g for 20 min. 
5) Remove supernatant for GC analysis 
6) To insure that standard is prepared in the same manner as the samples, treat the mixed   

sample from step A-2 above as a sample. 
 
Remember to correct for the dilution factor from the m-phos solution when calculating the final 
VFA concentrations (4 ml fluid mixed wth 1 ml acid provides a correction factor of 1.25). 
 
For use on Shimadzu GC, samples should be in 2 ml autosampler vials.  The optimal vials that 
we have used are ordered from ColeParmer.  They are Target autosampler vials (#A98810-00). 
These are a screw cap vial so you also need caps and the septa color is important.  The 
autosampler recognizes white as the color of the septa.  The caps for these vials are 
#A98801-23 
 

Temperature Gradient Program 

1) The column temperature at the beginning of the program is 115 oC and is held there for 0.1 
min. 

2) It is then increased at a rate of 10 oC / min to 150 oC and held there for 0.1 min. 

ruby1
97



 

 

3) It is then further increased at a rate of 11 oC / min to 170 oC and held there for 1 min. 
4) The injector of the chromatograph is held at 250 oC and the detector is held at 275 oC. 
5) Peak detection is by a flame ionization detector that uses a H2/ air flame. 
6) Helium is used as the carrier gas with a split less injection at a flow rate of 60 ml/min. 
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APPENDIX B. PHENOL-HYPOCHLORITE ASSAY FOR AMMONIA 

Adapted from Broderick and Kang. J. Dairy Sci. (1980) 63:64. 
 

CAUTION: wear gloves and protective clothing when mixing these reagents or running this 
assay. Phenol is a cancer-causing agent and will burn the skin. WEAR GLOVES. This procedure 
allows for the use of repipets or pipetors. After reading, all waste material should be treated as 
hazardous waste and contained in bottles. All tubes and or cuvettes must be rinsed before 
discarding. 
 
Phenol reagent 
Dissolve 0.15 g of sodium nitroferricyanide (sodium nitropursside) in 1.5 l of distilled H2O 
(dH2O. Add 33 ml (90% w/v) phenol (measured in graduated cylinder) and mix throughly. Bring 
solution to final volume of 3 l by addition of dH2O and store in brown glass bottle. 
Phenol needed is 29.7 g. Use goggles when measuring phenol and be careful. Phenol can cause 
burns when it comes into contact with skin. 
 
Hypochlorite reagent 
Dissolve 15 g of sodium hydorxide in approximately 2 l of d H2O. Add 113.6 g of disodium 
phosphate heptahydrate (Na2HPO4•7H2O) to this solution using mild heating and mixing. After 
the disodium phosphate has mixed allow the solution to cool. After cooling, add 150 ml of 
commercial bleach (5.25% sodium hypochlorite, you only need 131.25 ml if using 6% bleach) 
and mix throughly. Bring solution to 3 l by adding dH2O.  Filter solution through #1 filter paper 
and store in polyethylene bottle protected from light. 
 
Ammonia standard solution 
A stock solution of 100 mM (170 mg / dl) ammonia can be prepared by dilution 0.6607 g of 
ammonium sulfate (dry overnight before use) to 100 ml with 0.1N HCl. 
 
Working standards can then be made from the stock solution. Dilute 1 ml of stock solution per 
mM concentration desired in working standard to 100 ml total using dH2O. 
 
Procedure 

1) Samples of ruminal fluid will need to be diluted with dH2O prior to analysis to bring the 
concentration of NH3 into the working range of this assay. Therefore, mix 0.5 ml of 
clarified ruminal fluid with 4.5 ml of dH2O and use these "samples" for the reaction. 

2) Add 0.05 ml (50 µl) of sample or standard into test tube (use dH2O for blanks). 
3) Mix sample with 2.5 ml phenol reagent. Add phenol to all tubes then mix on vortex. 
4) Add 2.0 ml hypochlorite reagent to all tubes and mix on vortex. Place in 95°C water bath 

for 5 min. Place marbles on top of each tube before inserting in water bath to prevent 
condensation from falling into the tubes. 

5) After cooling, samples can be read on a spectrophotometer at 630 nm wave -length. 
6) Dispose of all waste material in accordance with the hazardous waste regulations of your 

institution. This means that the PHENOL can not be discarded in the municipal 
sewer without proper authorization. 
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APPENDIX C. PURINE ASSAY 

Adapted from Zinn and Owens, Can. Anim. Sci. 66: 157-166 (Mar. 1986). 
 
Reagents: - amount per sample 
1) HClO4 (70%) -2.5ml 
2) 0.2 M NH4H2PO4 (23g/L) -9ml 
3) 0.0285 M NH4H2PO4 (143ml of 0.2 M NH4H2PO4/L) –17.5ml 
4) 0.5 N HCl (41.85ml reagent grade HCl/L) –10ml 
5) pH 2 water (add H2SO4 to dH2O) 
6) 0.4 M AgNO3 (6.9g /100ml) -0.5ml 
 
Procedures: 
1) Weigh 0.5g dried, ground sample into 25-ml screw-cap culture tube. (Hydrolysis may be 

incomplete if sample is wet.) 
2) Add 2.5 ml HClO4 (70%), tightly cap tube and incubate in 90-95oC water bath for 1 hour 

(sample will appear charred). Break pellet for more complete extraction prior to step 3. 
3) Add 17.5ml buffer (0.0285 M NH4H2PO4). Mix. Re-insert tubes into 90-95oC water bath for 

10-15 minutes. Filter through Whatman no. 4 filter paper. Filtrate should have pH near 2 if the 
buffer has enough buffering capacity for the sample. 

4) Transfer 0.5ml filtrate to 15-ml centrifuge tube, add 0.5ml AgNO3 (0.4M), 9ml buffer (0.2 M 
NH4H2PO4), and allow to stand in the dark a minimum of 30 minutes. Precision may be 
increased by allowing samples to stand overnight at 5 oC. 

5) Centrifuge and decant supernatant liquid (being careful to not disturb the pellet). 
6) Wash pellet with pH 2 dH2O (adjusted to pH 2 with H2SO4). 
7) Repeat step 5. 
8) Add 10ml of 0.5 N HCl; vortex until thoroughly mixed. 
9) Cover tube with marble and incubate in 90-95oC water bath for 30 minutes. 
10) Read absorbance of supernatant fluid at 260nm. 
 
Standards: 
Yeast RNA (0.5g) carried through total procedure diluted 1:20 after step 7. 
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