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ABSTRACT 

Pectin metabolism was analyzed in tabasco pepper (Capsicum frutescens L.) to determine

the metabolic process associated with the ease of fruit detachment from the calyx. Two

genotypes that differ in the fruit detachment force (FDF) were used: ‘Easy Pick’ (EZ)which

requires a low force and ‘Hard Pick’ (HP) which requires higher force. Pectin dissolution in

fresh ripe fruit tissue and in extracted fruit cell wall was higher in the EZ genotype than the HP

genotype and inversely correlated to the FDF. Size-exclusion chromatography of EDTA-soluble

polyuronides indicated that pectin was degraded in ripe tissue from both genotypes, but the

degree of depolymerization was more extensive in the EZ genotype. The ease of fruit detachment

was, therefore, attributed to pectin ultra-degradation. Polygalacturonase activity, however, was

the same in protein extracts from both genotypes. In contrast, pectin methyl-esterase (PME)

activity in vivo assessed by methanol production was detected in ripe fruit of the EZ genotype

only and it was associated with the FDF decline. The decrease in degree of pectin esterification

and pH at the fruit junction area detected in EZ ripe fruit was attributed to PME activity in vivo.

PME activity in vitro, however, was detected in protein extracts and disrupted tissue from both

genotypes at all ripening stages. This suggests that a PME regulatory mechanism may be

blocking PME activity in vivo. Two PME isoforms were detected in protein extracts from ripe

fruit. The PME-1 form was detected in EZ genotype only and appears to be responsible for

methanol production in vivo. A predominant 36.7 k protein was associated with localized pH

reduction in a pectin-agarose gel. The PME-2 form was detected in both genotypes and appears

to be active in disrupted tissue only. A 40.8 k protein was resolved consistently in PME-2 active
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fractions. In conclusion, PME-1 appears to be responsible for PME activity in vivo and was

associated with the ease of fruit detachment in tabasco pepper.
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CHAPTER 1. INTRODUCTION

In most cultivated peppers (Capsicum spp.) the fruit adheres tightly to the calyx when

ripe and the pedicel remains attached to the fruit when harvested (Motsenbocker, 1996). This is a

concern in processing for pepper sauce because woody pedicels and green calyxes introduced

into the mash impart off-color and lower the quality. Consequently, to comply with the low

tolerance for green-woody tissue, more effort and time is required to remove the stem from the

fruit affecting the harvest and post-harvest cost. Development of cultivars that facilitate

mechanical harvest therefore, will impact modernization and development of cost-efficient

harvest technology. 

Chile pepper is one of the fastest growing spices in U.S. market due to the changing

American diet and the growing influence of Latin-American foods and population (Buzzanell et

al., 1995). Chile peppers are used in pickling, relishes, catsup, sauces, and processed meat and

fish. The U.S. market for all chile peppers increased from 95 million pounds dry-weight basis in

1980 to 210 million pounds in 1993 (Buzzanell et al., 1995). Domestic pepper production,

although expanding, is insufficient to furnish the U.S. demand and imports accounted for 34 %

of the market in 1990-93, up from 27 % in 1980-83. In addition, the value of all chile and pepper

imports increased from $174 million in 1992 to $568 million in 2001 (FAOSTAT, 2003).

In the past, raw product supply for the Louisiana pepper hot sauce and pickling industry

came from local production areas close to the processors. Currently, imports from other countries

or states account for almost all the pepper processed in Louisiana. For instance, almost all

tabasco pepper (C. frutescens) is grown in Central and South America and processed into sauce

in Louisiana. One of the several factors that have initiated this shift in production areas is labor
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cost and availability. For both processing and fresh market, harvest of pepper fruit is still

primarily conducted by hand and the greatest single expense is often harvest costs.

Understanding the metabolic process and factors involved in the separation of the fruit from the

calyx may assist in the development of cultivars that facilitate and improve pepper harvest for

processing, and increase local pepper production near Louisiana processors.

The main objective of this study was to determine the metabolic processes occuring

during ripening and the factor(s) leading to the ease of fruit detachment from the calyx in tabasco

pepper. Two tabasco genotypes that differ in the ease of ripe fruit detachment from the calyx

were used: Easy Pick (EZ) which requires low force (0.6 N) and ‘Hard Pick’ (HP) which

requires higher force (8.9 N) (Motsenbocker, 1996). Ripening in tabasco pepper is represented

by changes in the fruit external color as determined by colorimetric analysis, so the ripening

stage when the fruit detachment force (FDF) decreased was established. In order to accomplish

the main objective, studies were conducted to analyze pectin characteristics in association with

FDF throughout ripening. Activity of cell wall degrading enzymes in protein extracts were

evaluated also throughout ripening. The results of these experiments suggested that pectin

methyl-esterase (PME) plays a role in the ease of fruit separation. Therefore, studies to

investigate PME activity in vivo and in vitro assessed by methanol production  were conducted.

The ripening specific PME associated with the ease of fruit detachment was then partially

characterized. In addition, the role of PME activity on pectin metabolism in ripening tabasco

pepper fruit is discussed.
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CHAPTER 2. REVIEW OF LITERATURE

The ease of fruit detachment in tabasco pepper is characterized by a dramatic decrease in

the force required to separate ripe fruit from the calyx, which facilitates pepper harvest while the

pedicel remains on the plant (Motsenbocker, 1996). A study conducted to determine differences

in mechanically harvest tabasco pepper resulted in higher harvest yield of easy-detachable fruits

than hard-detachable fruits (Davis, 1980). The ease of fruit detachment in peppers was reported

to be inherited as a single dominant gene (Smith, 1951). This characteristic was later designated

“soft-flesh” since it is the consequence of fruit tissue disintegration. A similar phenotypic

characteristic has been described in other crops. Fruit of the tomato cultivar ‘San Marzano’

separates very easily at both the pedicel joint and the fruit-calyx junction (Rick and Sawant,

1955). However, the jointless character was usually accompanied by a very tight attachment of

the pedicel to the fruit so that fruit tissue was torn away at harvest. In peach, the melting flesh /

non-melting flesh (M/m) gene was associated with pectin degradation (Scorza and Sherman,

1996; Pressey and Avant, 1978).

Several studies have been conducted to investigate the role of fruit characteristics on the

ease of fruit detachment. In an inheritance study of pepper (C. annuum), Werner and Honma

(1980) reported a positive and significant correlation between FDF and fruit length, width, and

weight. Histological studies of fruit detachment zones in pepper attributed the ease of fruit

detachment to structural differences between genotypes. Studies in cayenne pepper and tabasco

pepper reported higher sclereids content in the junction of the calyx and fruit of a non-detachable

in comparison to a readily detachable genotype (Gersch et al., 1998; Sundberg et al., 2003).

However, the peripheral parenchyma cells in the easy detachable tabasco genotype stretched and
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the intercellular space enlarged as less and less middle lamella was bound between adjacent cells

(Sundberg et al., 2003). Also, residual fruit tissue remained in the calyx after ripe tabasco pepper

fruit was detached (Motsenbocker, 1996). These results are similar to those reported in peach

fruits where fruit abscission from the receptacle occurred by disintegration of the middle lamella

and adjacent primary cell wall which was attributed to the activity of  polygalacturonase (PG)

and endo-$-1,4-glucanase (EGase) or commonly called cellulase  (Bonghi et al., 1993). In

addition, antisense suppression of a tomato EGase increased the force required to break the fruit

abscission zone (Brummell et al., 1999). These results suggest that the ease of fruit detachment is

associated with the level of cell wall degradation in ripe fruit.

Cell wall architecture and metabolism play a role in the integrity of plant tissue.

(Brummell and Harpster, 2001). Cell wall is composed mainly of crystalline micro-fibrils of

cellulose (~30%) embedded in a  noncrystalline amorphous matrix of pectin (~35%) and

hemicellulose (~30%) with small quantities of intercalated structural proteins (Fischer and

Bennett, 1991; Fry, 1995). Pectin is composed of alternate branched blocks of  methyl-esterified

polyuronides with unbranched blocks of varying degrees of esterification (Jarvis 1984). The

unbranched blocks aggregate through Ca2+ bridges between de-esterified carboxylic groups of

adjacent polymers keeping the cell wall matrix coherent and maintaining cell to cell adhesion.

As the calcium concentration increases, the number of polyuronides that aggregate increases

which is directly related to gel stiffness (Tibbits et al. 1998). In contrast, as free calcium ions

decrease the eventual dissolution of the gel occurs as a result of dissociation of calcium bridges.

Therefore, the degree of pectin esterification and apoplastic conditions play an important role in

the integrity of the cell wall structure and in the texture of fresh and processed fruit products.
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Pectin metabolism affects the texture of fruit and vegetable as well as the texture of

processed fruit products. In tomato fruit homogenate processed to paste, pectin degradation is

enhanced in comparison to fresh fruit affecting the textural characteristics of the product

(Brummell and Labavitch, 1997; Hurtado et al., 2002). The capacity of pectin to form gels and

influence the viscosity of solutions depends on the integrity of pectin polymers. In fact, one of

the assays to study PG activity is by viscosity reduction of a pectin solution (Bonghi et al.,

1993). Therefore, pectin integrity in the harvested fruit destined for processing is an important

factor that influences the quality of the processed product and every effort is made to preserve

the desired pectin characteristics.

Plant cell wall degrading enzymes associated with abscission and/or fruit softening have

been reviewed previously (Fisher and Bennett, 1991; Fry, 1995; Brummell and Harpster, 2001).

The main cell wall hydrolytic activities that have been subject of intense study in relation to fruit

softening and abscission are PG (EC 3.2.1.15), EGase (EC 3.2.1.4), PME (EC 3.1.1.11), exo-$-

D-galactosidase (EGal) (EC 3.2.1.23), and xyloglucan endotransglycosylase (XET) (EC

2.4.1.207). Other hydrolytic activities such as $-mannanase and glycosidases have secondary

roles. All these enzymes have been identified and studied in tomato, a relative of pepper in the

Solanaceae family.  In addition, EGase, PG, and PME have been identified also in pepper

(Ferrarese et al., 1995; Harpster et al., 1997; Sethu et al., 1996). EGase hydrolyzes internal

linkages of (1-4)$-D-linked glucans present in cellulose and xyloglucan. This is difficult to

demonstrate in cellulose though, because of its semi-crystalline nature and water insoluble

characteristic (Brummell and Harpster, 2001). In contrast, pectin depolymerization and

dissolution is attributed to PG activity (Gross and Wallner, 1979; Huber, 1983; DellaPenna, et
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al., 1990; Brummell and Harpster, 2001). According to activity studies in vitro and with isolated

cell wall however, PG-mediated pectin degradation is enhanced by the action of PME (Pressey

and Avants, 1982; Koch and Nevins, 1989). PME catalyzes the cleavage of the ester bond

between the methyl and the C6 carboxyl group of galacturonosyl units in of the polyuronide

chain. As a result, methanol is released and the de-esterified  polygalacturonic acid is exposed to

PG action. PG catalyzes the hydrolysis of the "-(1–4) linkages between adjacent galacturonic

acid units, leaving smaller size polyuronides associated with fruit softening (Brummell and

Harpster, 2001).

Hemicellulose, one of the main components of the cell wall matrix, undergoes

depolymerization during fruit ripening which is attributed to several enzymes including EGase

(Huber, 1983). However, ripening specific EGases isolated from pepper and tomato have been

associated only with fruit abscission (Ferrarese et al., 1995; Harpster et al., 1997; Brummell et

al., 1999). In fact, 80% EGase mRNA reduction in fruit abscission zone by antisense suppression

increased the force required to break the abscission zone but did not affect fruit softening

(Brummell et al., 1999).

Another mayor cell wall component, pectin, is degraded by PG during fruit ripening.

Pectin degradation in tomato is characterized by an increase in soluble uronide and a decrease in

polyuronide molecular size (Brummell and Harpster, 2001). Although there is hydrolysis of

polyuronides covalently attached to the wall, only a portion of polyuronides become water

soluble because most remain associated to the wall by ionic bonds to other insoluble molecules

(Brummell and Harpster, 2001). Chelating agents such as CDTA and EDTA can remove calcium

from the wall increasing the solubility of pectin held to the wall by ionic bonds, and pectin held
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in the wall by covalent bonds can be released by sodium carbonate. Size exclusion

chromatography profiles of chelator-soluble uronide showed a molecular size downshift from

almost exclusively large polymers in mature-green tomato into a wide range of large to medium

size molecules in fully ripe fruit (Huber, 1983; DellaPenna et al., 1990; Tieman et al., 1992;

Huber and O’Donoghue, 1993; Brummell and Labavitch, 1997). In contrast, an almost complete

switch into very small oligouronides that elute at the end of the separation range was detected in

ripe fruit of ‘Hass’ and ‘Lula’ avocado, and in disrupted tomato tissue (paste and active cell wall

extract) after incubation (Huber and O’Donoghue, 1993; Brummell and Labavitch, 1997).

Studies of pectin degradation in situ using non-softening rin (ripening inhibitor) mutant tomato

which was transformed to express a chimeric PG resulted in slight increase in pectin

depolymerization and pectin dissolution reached levels similar to the wild-type, but fruit

softening was not affected (Giovannoni et al. 1989; DellaPenna et al. 1990). In addition,

suppression of PG activity by antisense RNA to less than 1% in protein extract delayed slightly

pectin depolymerization in vivo and did not prevent polyuronide dissolution (Smith et al., 1990;

Brummell and Labavitch, 1997). The suppression of pectin depolymerization by PG antisense

RNA, however, was more distinguishable in tomato paste than in intact fruit (Brummell and

Labavitch, 1997). Based on these results, it was suggested that PG-mediated pectin degradation

is normally restricted in vivo but in homogenized tissue the restriction is removed and pectin

disassembly results. PG affects directly polyuronide molecular size but pectin dissolution and

fruit softening appear to be influenced by additional factors. 

During growth and development, pectin is synthesized fully esterified so it can be

transported in solution and the process of de-esterification occurs at the destination site by PME
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as required (Jarvis 1984). This is supported by the detection of PME activity in protein extracts

from various tissues (Gaffe et al, 1994). Multiple PME isoforms have been identified in tomato

depending on fruit ripening stage and variety. At least three isoforms have been identified by

ion-exchange chromatography in immature-green tomato fruit, one additional isoform appeared

in ripe fruit only, and another isoform was present in one variety out of three studied (Pressey

and Avants, 1972, Tucker et al.,1982, Warrilow et al., 1994). In another study, three

immunologically related PME isoforms were found to be specific to tomato fruit in addition to

several other isoforms found in all tissues including fruit (Gaffe el al. 1994). In tomato, PME

activity in protein extract increased two to three fold in early ripening stages, but reports on the

pectin esterification decline in cell wall extracts are inconsistent. The degree of pectin

esterification (DPE) was reported as being reduced extensively (Koch and Nevins, 1989),

reduced slightly (Tieman et al. 1992), or not at all (Koch and Nevins 1990), though different

varieties were used. In addition, antisense transformed tomato with PME activity in vitro

reduced to less than 10% had only a slight effect on the DPE and on the reduction of polyuronide

molecular size in comparison to wild type Rutgers (Tieman et al., 1992). In contrast to tomato,

PME activity in bell pepper protein extract increased from immature-green to mature-green stage

and then decreased to even lower levels in turning and red-ripe fruit, but there was no indication

of the degree of pectin esterification (Sethu et al., 1996). Therefore, the role of PME in pectin

degradation in vivo remains unclear.

Apoplastic conditions influence pectin metabolism during fruit ripening. Protein binding

and enzyme kinetics are influenced by the ion composition and strength due to shielding effects

on molecular charges. In tomato, optimal pH for PG-mediated pectin dissolution and
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depolymerization in vitro is between pH 4 and pH 5 and is influenced by the ion type and

concentration used in the reaction solution (Pressey and Avants, 1982; Chun and Huber, 1998).

Optimal pH for PME activity in vitro however, is pH 7 and higher (Pressey and Avants, 1982).

Apoplastic pH and ionic conditions in tomato pericarp change dynamically. The pH of apoplastic

fluids from pericarp decreased from pH 6.7 in mature-green to pH 4.4 in fully-ripe fruit

(Almeida and Huber 1999). In contrast, K+, PO4
3-, and Cl- increased, and Na and divalent cations

remained relatively constant. Therefore, Almeida and Huber  (1999) suggested that the cell wall

dissolution and depolymerization by PG during fruit ripening is under the control of local pH

and ionic conditions.

Recently, an expansin-type protein was found also to be expressed specifically during

tomato fruit ripening, and it was proposed to have a role in cell wall softening (Cosgrove 1997,

Rose et al. 1997). Expansins are a class of cell wall proteins that have been proposed to disrupt

hydrogen bonds at the cellulose/hemicellulose interface and to allow “cell wall creep” in

expanding cells (Cosgrove, 1997). Recently, suppression and over-expression of a ripening-

regulated tomato expansin in transgenic plants was investigated (Brummell et al., 1999). Fruits

in which expansin accumulation was suppressed to 3% were firmer and fruits over-expressing

high levels of recombinant expansin were much softer throughout ripening than the control wild

type. Therefore, there are still aspects of cell wall degradation and fruit softening during ripening

that need to be elucidated.

Objective color measurements of the fruit external color is an important consideration in

research analysis. The International Commission on Illumination [Commission Internationale de

l’Eclairage (CIE)] established a tristimulus color system commonly used for surface color
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measurements (McGuire, 1992). This system is based on a three dimensional color space with

three coordinates (L* a* b* or CIELAB). The three elements of perceived color are value

(lightness from black to white), chroma (degree of departure from gray to pure chromatic color),

and hue (the chromatic colors) and they are determined from the CIELAB coordinates. The L*

coordinate measures directly the value or lightness of the color. The coordinates a* and b* locate

the color on a rectangular-coordinate grid perpendicular to L*, so they reflect indirectly on

chroma and hue. Chroma is represented by the hypotenuse of a right triangle created by joining

points (0,0), (a*, b*), and (a*, 0), and the hue angle is the angle (0° to 360°) between the

hypotenuse and 0° on the a* (blue-green / red-purple) axis. Quantitative representation of the

ripening process by colorimetric analysis of the fruit external color may help to identify the

precise stage when an event such as FDF reduction or cell wall degradation occurs.
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CHAPTER 3. FRUIT DETACHMENT FORCE AND CELL WALL DEGRADING ENZYMES
IN TABASCO PEPPER

INTRODUCTION

Easy detachment of ripe pepper fruit is characterized by a dramatic decrease in the force

required to separate the fruit from the calyx (Motsenbocker, 1996). This characteristic facilitates

pepper harvest while the pedicel remains on the plant (Smith,1951; Davis, 1980). Studies with

two tabasco pepper genotypes that differ in the ease of fruit separation showed differences in

FDF and in visual aspects of the separation zone only in ripe fruit (Motsenbocker, 1996).

However, the precise ripening stage when the decrease in FDF occurred was not defined because

only four predetermined ripening stages were used.

Anatomical studies of detachment zones in these tabasco genotypes reported reduced cell

to cell adhesion in easily detached fruit (Sundberg et al., 2003). These observations were

comparable to those found in peach fruits where cell separation by cell wall degradation at the

fruit-pedicel abscission zone was attributed to PG and EGase activity (Bonghi et al., 1993).

These findings suggest that fruit separation in tabasco pepper depends on cell wall degradation

associated with fruit ripening. Cell wall degradation in tomato has been studied extensively and

it has been attributed to the action of PG and EGase (Brummell and Harpster, 2001). In tomato,

PG was expressed at the onset of fruit ripening as induced by ethylene action. EGase activity

was however, present at all developmental stages although it increased during ripening and

several isoforms were reported (Huber, 1983; Brummell and Harpster, 2001). These enzymes

were present also in pepper (Ferrarese et al., 1995; Harpster et al., 1997; Sethu et al., 1996).

The first objective of this study was conducted to determine the association of the ease of

fruit detachment from the calyx with changes in the fruit external color during ripening. The
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second objective was to analyze the activity of cell wall degrading enzymes (PG and EGase) in

relation to the ease of fruit separation in tabasco pepper during ripening.

MATERIALS AND METHODS

Plant Material. Two tabasco pepper genotypes that differ in the ease of fruit detachment

were used: ‘Easy Pick’ (EZ) which required a low force to separate the fruit from the calyx, and

‘Hard Pick’ (HP) which requires a higher force (Motsenbocker 1996). Seed was sown in 98 cell

trays filled with soilless medium (Metro Mix 200; Scott Sierra, Marysville, OH) and kept under

greenhouse conditions. Four weeks old seedlings were transplanted into 12 L pots filled with

soilless medium (Metro Mix 700, Scott Sierra, Marysville, OH) supplemented with slow-release

fertilizer (3.8 g"L-1 Osmocote 14-14-14, Scott Sierra, Marysville, OH), dolomitic limestone (5.1

g"L-1 Easy Lime, Sylacauga, AL),  and micro-nutrients (0.64 g"L-1 Micromax, Scott Sierra,

Marysville, OH). Plants were grown under greenhouse conditions with temperatures set to 30 oC

/ 15 oC day / night. Plants were micro-irrigated automatically twice a day in winter and three

times a day during the summer based on water requirement. Sidedress fertilization was

supplemented with slow-release fertilizer as needed. Plants were randomly distributed in the

greenhouse with each plant considered an experimental unit. Assays were performed with fruit

tissue from each genotype simultaneously and repeated at least three times.

Ripening and Fruit Detachment Force. Fruits of different ripening stages from

immature-green to overripe were harvested for analysis and the fruit external color (hue) was

determined by colorimetric analysis in a spectrophotometer (Minolta CM-3500d, Ramsey, NJ).

In addition, the FDF in Newton (N) required to separate the fruit from the calyx was determined

using a push-pull force gauge (Chatillon CE Digital Force Gauge DFIS 10, Greensboro, N.C.).
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The fruit pedicel was firmly held by the gauge and the fruit was pulled by hand parallel to the

fruit axis until separation (Motsenbocker 1996). The peak force for separation was recorded for

analysis.

Enzyme Extraction. After removing the pedicel from the fruit, a 3mm fruit section was

excised from the fruit-calyx junction end [detachment zone (DZ)] and used for assays. The tissue

was ground in liquid nitrogen and homogenized in 0.5 mL extraction buffer (20 mM NaOAc

buffer and 1.25 M NaCl, pH 6.0). The suspension was stirred for 2 h (RotoMix type 50800,

Thermolyne, Dubuque, IA) and centrifuged at 16000 g for 10 min in a micro-centrifuge

(Eppendorf 5415C, Hamburg, Germany). The supernatant was used to test for EGase and PG

activity. Protein content was determined by the method of Bradford (1976) using BSA as

standard. All steps during protein extraction were conducted at 5 °C. 

Enzyme Activity Assays. Activity of EGase and PG was determined by viscosity

reduction (Bonghi et al., 1993). EGase activity was tested by incubating 200 :L of the extract in

8 ml EGase-substrate [0.6 % carboxymethylcellulose (CMC; Sigma Chemical Co., St. Louis,

MO.) in 20 mM NaOAc, pH 6.0] at room temperature in an Oswald 100 viscometer. The  flowing

time of the reaction mixture was determined every hour up to 5 h. PG activity was tested

similarly in 8 mL PG-substrate [0.5 % pectin from apple (Sigma Co.) in 20 mM NaOAc, pH 5.5]

for 12 hours. An activity unit was defined to reduce the flowing time 1%  in 1 h.

RESULTS

Ripening. Under greenhouse conditions, the ripening process of tabasco pepper from

mature-green fruit until purple-red lasted between 13 and 16 days. The fruit color changed

progressively from green to yellow, orange, red, and culminated in purple-red. The fruit external



14

color was used as ripening indicator and it was reported quantitatively by the hue (angle in the

CIE a*b* chromaticity diagram; Fig. 3.1). The a* value represents green (-) to red (+) color in

the CIELAB color space. This scale was not suitable as a ripening indicator because it was

unable to separate red fruit from purple-red fruit. A comparative description of fruit ripening

stage based on color and the hue angle is as follows: immature- and mature-green fruit (hue 102

to 95), yellow fruit (hue 90 to 80), breaker stage (hue 75 to 65), orange (hue 60 to 50), red-

mature (hue 45 to 35), and purple-red fruit (overripe; hue <35). In comparison, the red painted

stick used as a commercial harvest index for tabasco peppers has hue 34.

Ease of Fruit Detachment. The dramatic decrease in the force required to separate ripe

fruit from the calyx is characteristic of the EZ tabasco pepper genotype. Based on the data, The

FDF during ripening in the EZ tabasco genotype followed a reverse sigmoidal pattern with three

phases (Fig. 3.1). Fruit color in phase I was between hue 102 and hue 52 and FDF ranged

between 17 and 26 N. In phase II, fruit color ranged between hue 52 and  hue 48 where FDF

dropped to 5.4 N or lower as will be shown in following studies. This phase lasted approximately

12 h. In phase III, the mean FDF was 3 N and fruit color changed from hue 48 to hue 30 at the

end of the ripening process. In contrast, the pattern of FDF in the HP genotype was comprised of

two phases (Fig. 3.1). In Phase I the FDF stayed in the range between 18 and 27 N until hue 45,

and then in phase II the FDF decreased to approximately 10 N when fruit color reached hue 30.

Fruits of both genotypes softened when ripe, but the EZ fruit became much softer after the

decline in FDF. In addition, the placenta and pericarp of EZ fruit disintegrated almost

completely. Measuring the shear force of tabasco pepper fruit was not reliable in determining

fruit softening because of the seed content (data not presented).
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Fig. 3.1. Fruit detachment force during fruit ripening in 'Easy Pick' (EZ) and 'Hard Pick' (HP)
tabasco pepper. Fruit ripening is represented by the fruit external color (hue 100 corresponds to 
immature-green and hue 30 to purple-red). Arrow indicates harvest index at hue 34. Coefficient
of determination: r2=0.95 (solid line) and r2=0.72 (dash line).
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Endo-$-1,4-Glucanase (EGase). Activity of EGase in protein extracts was measured by

viscosity reduction and the results are shown in Fig. 3.2. Activity was expressed in relation to

amount of tissue (Fig. 3.2 A) and in relation to protein content in the extract (Fig. 3.2 B). Based

on the data, activity was low or undetected in the early ripening stages (hue < 60). After hue 60,

activity was higher in both tabasco genotypes and increased steadily until the end of the ripening

process (hue 30). Although, there was a correlation ( r = -0.67) between FDF and EGase activity

there was no difference in EGase activity between the genotypes.

Polygalacturonase (PG). Activity of PG in protein extract was measured by viscosity

reduction and the results were expressed in relation to amount of tissue (Fig. 3.3 A) and to

protein content in the extract (Fig. 3.3 B). Based on the data, activity was low or undetected in

the early ripening stages (hue < 60). After hue 60, activity was higher in both tabasco genotypes

and the highest activity in relation to protein content was detected between hue 50 and hue 40.

Thereafter, activity decreased toward the end of the ripening process (hue 30). Although, there

was a correlation ( r = -0.58) between FDF and PG activity, there was no difference in PG

activity between the genotypes.

DISCUSSION

The results of this study indicated that pepper fruit separation at the fruit-calyx junction

is associated with fruit ripening. The difference in FDF of ripe fruit between the EZ and HP

tabasco genotypes was similar to previously reported studies (Motsenbocker, 1996). The

ripening stage when the FDF decreased, however, was more accurately described by using

objective measurement of the fruit external color (hue) as a ripening indicator (Fig. 3.1). Color

changes during pepper fruit ripening are associated with degradation of chlorophyll, which
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Fig. 3.2. Endo-$-1,4,-glucanase (EGase) activity during fruit ripening in 'Easy Pick' (EZ) and
'Hard Pick (HP) tabasco pepper. Activity in fruit detachment zone extracts was determined by
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caused the flowing time to decrease 1% in 1h. Fruit ripening is represented by the fruit external
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unmasks previously present pigments, along with biosynthesis of one or more pigments, usually

anthocyanins or carotenoids (Tucker, 1993). In pepper, capsanthin is the most quantitatively

important color compound (Davies et al., 1970). Classical tomato fruit ripening stages have been

defined according to visual determination of fruit external color (Huber, 1983). Verbal

description of colors can be difficult and confusing because two people may describe the same

color in very different terms. Description of the color by comparison to standardized color tables

have been used also to determine the precise ripening stage (Motsenbocker, 1996). Other

researchers used days after harvest as a quantitative representation of fruit ripening in tomato and

bell pepper (DellaPenna et al., 1990, Sethu et al., 1996). Fruit ripening is a dynamic

physiological process that is affected by several factors such as temperature, ethylene, stress,

variety, etc., hence it is difficult to define uniform ripening stages in time. Because color

development is closely associated with fruit ripening, objective measurement of the fruit external

color (hue)(McGuire, 1992) resulted in a more precise determination of the FDF decline (Fig.

3.1). The ripening stage when the FDF decreased differed between the EZ and the HP genotypes

suggesting that different mechanisms may be involved.

Activity of PG and EGase in protein extract increased in both genotypes with fruit

ripening. The pattern of PG and EGase activity in tabasco pepper throughout ripening was

consistent with the pattern reported in bell pepper (Ferrarese et al., 1995; Sethu et al., 1996) and

tomato (Huber, 1983). The level of EGase activity in ripe tabasco pepper was similar to the level

reported in peach and PG activity in tabasco was twice as much as peach (Bonghi et al., 1993).

EGase in bell pepper, however, was 40 times higher than the results with tabasco pepper

(Ferrarese et al., 1995). Activity levels reported in other studies were different because of
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differences in the assays (Huber, 1983; Sethu et al., 1996). Although PG and EGase activities in

protein extracts were associated with FDF, they were the same in both tabasco pepper genotypes.

These results were not consistent with the anatomical differences of parenchyma cell between

the EZ and HP genotypes described previously (Sundberg et al., 2003). 

EGases have been isolated in several plant species including tomato and bell pepper, and 

associated with fruit ripening, and organ abscission, in addition to cell elongation (Brummell and

Harpster, 2001).  In pepper, different EGases were isolated from leaf abscission zone and

ripening fruit (Ferrarese et al., 1995). Only one fruit EGase has been reported in pepper and its

expression was enhanced by ethylene, although pepper is considered a non-climacteric fruit

(Ferrarese et al., 1995; Harpster et al., 1997). In addition, suppression of this EGase resulted in

undetectable activity levels but it had no effect on depolymerization of cell wall matrix glycans

(Brummell and Harpster, 2001). These results and the results from tabasco pepper suggest that

there is only one EGase gene associated with fruit ripening in pepper, but it is not a primary

determinant of fruit softening. In tomato however, several EGases were isolated from fruit and

individual antisense suppression of LeCel1 and LeCel2 genes reduced mRNA expression to less

than 5% in relation to normal fruit (Brummell et al., 1999; Brummell and Harpster, 2001).

Although mRNA reduction of these genes had no effect on fruit softening, reduced mRNA of

either of these genes in abscission zones increased the force required to cause its breakage.

Similar inconsistences were reported in studies with PG transgenic tomatoes (Giovannoni

et al., 1989; DellaPenna et al., 1990; Smith et al., 1990).  The mutant rin tomato which blocks

many aspects of ripening, including PG transcription, was transformed by introducing a chimeric

PG gene (Giovannoni et al., 1989; DellaPenna et al., 1990). Expression of PG resulted in
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accumulation of active PG and the degradation of fruit cell wall polyuronide. No significant

effect on fruit softening was detected though. Similarly, PG activity reduction to 1% in tomato

by antisense PG transformation inhibited pectin depolymerization, but pectin dissolution was not

affected (Smith et al., 1990). In conclusion, these results indicate that PG is responsible for

pectin degradation, but suggest that degradation is not sufficient to induce softening. Also, these

results suggest that an additional factor(s) may be involved in cell wall degradation that leads to

the ease of fruit detachment in tabasco pepper.
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CHAPTER 4. PECTIN ULTRA-DEGRADATION AFFECTS THE EASE OF FRUIT
DETACHMENT IN TABASCO PEPPER

INTRODUCTION

 Easy detachment of ripe fruit from the calyx is a desirable trait in pepper (Capsicum

spp.) because it expedites the harvest and increases the yield of mechanically harvested pepper

(Davis, 1980). This characteristic was later designated “soft-flesh” since it is the consequence of

fruit tissue disintegration. Degradation of cell wall components has been attributed primarily to

PG and EGase activity (Brummell and Harpter, 2001). These activities were detected in extracts

from EZ and HP tabasco pepper fruit detachment zone and associated with FDF (Chapter 3). The

level of activity however, was the same in fruit of both genotypes, so the difference in FDF could

not be explained by PG or EGase activity. 

Pectin degradation attributed to the action of PG has been studied extensively in tomato

and has been associated with fruit softening (Brummell and Harpter, 2001). Pectin degradation is

characterized by uronide depolymerization and dissolution during fruit ripening (Gross and

Wallner, 1979; Huber, 1983; DellaPenna, 1990). Studies with isolated cell wall however,

showed that  pectin degradation and dissolution by PG is more effective in de-esterified cell wall

(Pressey and Avants, 1982).

The texture of fresh and processed fruit products is affected by pectin metabolism (Jarvis,

1984; Hurtado et al., 2002). The capacity of pectin to form gels and influence the viscosity of

solutions depend on the integrity of pectin polymers. Therefore, the pectin integrity in the

harvested fruit destined for processing is an important factor that influences the quality of the

processed product and every effort is made to preserve the desired pectin characteristics.
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In this study, differences in pectin characteristics of fruit detachment zone were analyzed

during ripening in the EZ and HP tabasco pepper genotypes (Motsenbocker, 1996). Residual

fruit tissue that remains in the calyx after separation suggests that fruit separation depends on

fruit tissue degradation instead of a classical abscission layer. In addition, the reduced cell to cell

adhesion (Sundberg et al., 2003) and the loss of tissue integrity in ripe deciduous fruits (soft-

flesh), but not in non-deciduous ones, suggest that the ease of fruit detachment depends on the

level of pectin degradation associated with fruit ripening. Therefore, the objective of this study

was to associate pectin degradation to the ease of fruit detachment in tabasco pepper.

MATERIALS AND METHODS

Plant Material, Fruit Ripening, and Detachment Force. Fruit from EZ and HP tabasco

pepper genotypes were grown, harvested, and analyzed for ripening stage and FDF as described

previously (chapter 3). 

Tissue and Cell Wall Preparation. After removing the pedicel, a 3 mm thick disk (20 to

30 mg) from the fruit DZ was excised. The disk was used fresh (FT), or it was frozen in liquid

nitrogen and freeze-dried (DT). Cell wall was extracted from DT by grinding it in 0.5 mL of

100% (CW) or 60% ethanol (CW60), heat-inactivated at 90 o C for 20 min, and centrifuged at

16000 g for 5 min in a micro-centrifuge (Eppendorf 5415C, Hamburg, Germany). The pellet was

rinsed three times by cycles of 0.5 mL acetone and centrifugation, and then air-dried. Samples

were kept in vacuum at room temperature until used.

Pectin Dissolution. The excised FT was dipped  in 600 :L water for 10 min and the

soluble uronide that diffused into solution was determined as uronic acid (UA) equivalents by

the hydroxybiphenyl method (Blumenkrantz and Asboe-Hansen, 1973) using galacturonic acid
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as a standard. In different experiments, pectin solubility in water and chelator was determined in

CW from fruit at different ripening stages. Water-soluble UA was tested by mixing 5 mg CW in

1 mL water at room temperature. After 10 min and 1 h in suspension, the sample was centrifuged

and an aliquot was taken to determine the soluble UA content by the hydroxybiphenyl method

(Blumenkrantz and Asboe-Hansen, 1973). Chelator soluble UA was tested similarly, but in

extraction buffer (50 mM Na acetate, 40mM EDTA, pH 4.5) for 1 h.  In addition, pectin

solubility in 60 % ethanol was determined in DT after heat inactivation. The supernatant was

dried at 55 °C and the residue dissolved in water to determine the UA content (Blumenkrantz

and Asboe-Hansen, 1973). The correlation between FDF and soluble UA was analyzed. 

Total Uronide Content. Total uronide was extracted from 5 mg DT, CW, and CW60 by

digestion and dissolution in 2 mL H2SO4 as described by Ahmed and Labavitch (1977). The

solution was then diluted with water to a suitable concentration and tested for UA content by the

hydroxybiphenyl method (Blumenkrantz and Asboe-Hansen, 1973) using galacturonic acid as a

standard.

Pectin Depolymerization. The degree of depolymerization of EDTA-soluble pectin

extracted from CW was determined by size-exclusion chromatography in a Sepharose CL-4B

column (30 x 1.5 cm) following the method of DellaPenna et al. (1990) with some modifications.

The tissue sample was suspended in extraction buffer (50 mM Na acetate, 40 mM EDTA, pH 4.5)

overnight at 4 °C  and diluted to give a uronide concentration of 0.5 mg/mL. A 1 mL sample was

passed through the Sepharose column equilibrated with elution buffer (100 mM Na acetate, 20

mM EDTA, pH 6.5). A 0.5 mg/mL solution of galacturonic acid was used as the monomer

standard. The elution rate was 0.4 mL/min and 2 mL fractions were collected. The UA content of
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each fraction was determined by the hydroxybiphenyl method (Blumenkrantz and Asboe-

Hansen, 1973) and expressed as a percentage of recovery from the injected sample.

Degree of Pectin Esterification (DPE). A sample of 5 mg CW was suspended in 600 :L

water overnight at 4 °C. Then, methanol was extracted by saponification with 300 :L 1.5 N

NaOH at room temperature for one hour. The sample was chilled on ice, acidified with 300 :L

of cold 6 N H2SO4, and centrifuged to precipitate and separate solid CW material from the liquid

phase. The methanol molar content was determined chemically by the pentane-2,4-dione method

(Wood and Siddiqui, 1971). Uronide content was determined as described above (Ahmed and

Labavitch, 1977; Blumenkrantz and Asboe-Hansen, 1973) and the total molar content was

calculated. The DPE was defined as the proportion in percent of the methanol molar content to

the UA molar content.

RESULTS

Pectin Dissolution. The level of soluble UA in FT from ripe (hue <50) fruit increased in

both lines, but it was 20 times higher in the EZ genotype (Fig. 4.1A) than in the HP genotype

(Fig. 4.1B). The phases that comprise the changes in soluble uronide coincided with the phases

of FDF for each genotype. In the initial ripening stages soluble UA was very low or undetected

and the FDF was high in both genotypes (phase I, chapter 3). Between hue 52 and hue 48,

soluble uronide in the EZ genotype increased rapidly as FDF dropped (phase II). Then in phase

III, soluble UA in the EZ genotype remained high (average of 5.81 :g/mg FT) and FDF stayed

low until overripe (hue 30). In contrast, water soluble uronide in the HP line increased slightly in

phase II (hue <45), reaching a maximum of 0.41 :g/mg FT. Correlation analysis indicated that 
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Fig. 4.1. Fruit detachment force (FDF) and water-soluble pectin (as uronic acid (UA)) from fresh
fruit tissue throughout ripening in (A) ‘Easy Pick’ (EZ) and (B) ‘Hard Pick’ (HP) tabasco
pepper. Fruit ripening is represented by the fruit external color (hue 100 corresponds to
immature-green and  hue 30 to purple-red). Coefficient of determination in A: r2=0.95 (dash line)
and r2=0.93 (solid line), and in B: r2=0.64 (dash line), and r2=0.70 (solid line).
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pectin dissolution from the detachment area is associated ( r = -0.92) with FDF which implies

that pectin degradation in vivo is associated with the ease of fruit separation from the calyx.

Disruption of the cell wall structure and separation of cellular components during CW

extraction facilitated the release of soluble pectin. Water soluble uronide extracted from CW

throughout fruit ripening (data not presented) followed the same sigmoidal pattern of chelator

soluble uronide for each genotype (Fig. 4.2A). There was no difference between extraction for

10 min and for 1 h in either genotype which indicates that most if not all of the water soluble

uronide in tabasco CW was released within 10 min.. The level of EDTA-soluble uronide during

fruit ripening for both genotypes is shown in Fig. 4.2A. EDTA in the extraction solution is

thought to disrupt Ca2+ bridges between galacturonic acid residues of adjacent pectin polymers

which allows ionically bound uronide to become soluble. This does not appear to be the case in

tabasco CW since the level of chelator-soluble UA was the same as water-soluble UA for each

genotype throughout ripening. Chelator soluble UA in the early ripening stages up to hue 53 was

the same in both tabasco lines. Thereafter, EDTA-soluble uronide increased to an average of 54

:g/mg in HP CW and 97 :g/mg in EZ CW or 1.8 times higher. Chelator soluble uronide from

CW was also associated ( r = -0.84) to the FDF throughout ripening.

Pectin and other CW polymers precipitate in ethanol. Reducing the ethanol concentration

to 60 % in the first step of CW extraction was intended to improve the separation of sugars and

other soluble components. Because of the unexpectedly low levels of total UA when EZ CW60

was extracted under this condition, 60 % ethanol-soluble UA in DT was determined throughout

ripening and the result is shown in Fig. 4.2B for both genotypes. Soluble UA was very low

(under 12 :g/mg DT) in the HP genotype throughout the ripening process and in unripe 
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Fig. 4.2. Pectin dissolution throughout fruit ripening in‘Easy Pick’ (EZ) and ‘Hard Pick’ (HP)
tabasco pepper. (A) EDTA-soluble pectin (as uronic acid (UA)) in cell wall extracts (CW). (B)
UA soluble in 60% ethanol from freeze-dried tissue (DT). Fruit ripening is represented by the
fruit external color (hue 100 corresponds to immature-green and  hue 30 to purple-red).
Coefficient of determination in A: r2=0.87 (dash line) and r2=0.95 (solid line), and in B: r2=0.24
(dash line), and r2=0.95 (solid line).
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(hue >50) EZ DT. In contrast, the soluble UA from ripe (hue <50) DT of the EZ genotype

reached levels above 50 :g/mg DT indicating that there was a higher proportion of uronide

oligomers of low molecular weight than in HP DT. Uronide soluble in 60 % ethanol was

associated ( r = -0.85) with the FDF throughout ripening. Smaller UA oligomers soluble in 60 %

ethanol in ripe fruit of the EZ genotype indicates that higher pectin degradation was associated

with the ease of fruit detachment in tabasco pepper.

Uronide Content. Total uronide content in DT, CW60, and CW was analyzed for

differences between both tabasco genotypes. Pectin content remained the same in both lines

throughout the ripening process when extracted from DT and ranged between 78 :g/mg to 104

:g/mg with an average of 88 :g/mg DT. Ethanol/acetone extraction of CW separated ethanol

soluble sugars and acetone soluble lipids increasing the proportion of pectin in comparison to

DT. The total uronide content in CW (A) and CW60 (B) from both tabasco genotypes during

fruit ripening is shown in Fig. 4.3. Pectin content in CW from both genotypes was the same, but

it increased slightly as fruit ripened (Fig. 4.3A). Metabolism and dissolution during ripening of

alcohol insoluble carbohydrates may account for this slight increase of the uronide proportion in

CW. Reducing the ethanol concentration to 60 % was intended to improve the separation of

sugars from CW. In the HP line, extraction in 60 % or 100 % ethanol yielded the same

proportion of pectin throughout the ripening process (Fig. 4.3). In contrast, uronide content in

CW60 from the EZ line decreased as fruit ripened (Fig. 4.3B). This decrease of uronide content

after hue 50 in EZ CW60 indicates that degraded low molecular weight UA became soluble in

60 % ethanol and it was lost during extraction.
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Fig. 4.3. Cell wall pectin content (as uronic acid (UA)) throughout fruit ripening in ‘Easy Pick’
(EZ) and ‘Hard Pick’ (HP) tabasco pepper. (A) Cell wall (CW) extracted in 100% ethanol. (B)
Cell wall (CW60) extracted in 60% ethanol. Fruit ripening is represented by the fruit external
color (hue 100 corresponds to immature-green and  hue 30 to purple-red). Coefficient of
determination in B: r2=0.59 (dash line), and r2=0.62 (solid line).
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Pectin Depolymerization. The effect of PG activity in vivo was evaluated by the degree

of pectin degradation determined by molecular-size exclusion chromatography. The molecular

size profiles of EDTA-soluble polyuronide extracted from CW of two ripening stages are shown

in Fig. 4.4. The elution profile of mature-green fruit (hue 94 and 97 for EZ and HP respectively)

was the same in both lines (Fig. 4.4A). Uronide polymers of large molecular size constituted the

larger proportion of EDTA-soluble pectin that eluted first in the void volume followed by a tail

of polyuronide of decreasing molecular size that extended up to the end of the separation range.

In contrast, the elution profile of red-mature tissue was different between the genotypes (Fig.

4.4B). The elution profile of uronide from ripe (hue 40) EZ CW shows an almost complete

downshift of the uronide molecular size to oligomers of a few galacturonic acid residues as a

consequence of extensive depolymerization. In the case of ripe (hue 44) HP CW, the elution

profile shows that uronide was distributed throughout a wide range of large to medium size UA

polymers. This indicates that the degree of pectin depolymerization was not as extensive as in

the EZ line. This assay was performed also with heat inactivated DT of similar ripening stages

and the results were the same (data not presented). Therefore, higher pectin dissolution in the EZ

genotype (Fig. 4.1 and 4.2) may be associated with extensive pectin depolymerization. Also, the

higher depolymerization into galacturonic acid and UA oligomers soluble in 60 % ethanol may

explain the decrease in total uronide content in ripe EZ CW (Fig. 4.3B).

Degree of Pectin Esterification. The association of the DPE with pectin

depolymerization in vivo and therefore with the ease of fruit detachment was evaluated. The DPE

in CW extracted from fruit detachment zones throughout fruit ripening is shown in Fig. 4.5. In

the early ripening stages (hue > 60),  DPE was the same in both genotypes ranging between
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Fig. 4.4. Size-exclusion chromatography profile of EDTA-soluble polyuronide from‘Easy Pick’
(EZ) and ‘Hard Pick’ (HP) tabasco pepper. (A) mature-green fruit and (B) red-mature fruit. The
column (30 x 1.5 cm) was filled with Sepharose CL-4B. Arrows indicate void (Vo) and total (Vt)
volume. Uronide content in fractions is expressed as percentage of the total uronic acid (UA)
assayed. Galacturonic acid (GA) was used as monomer standard. Fruit ripening stage was
determined by the fruit external color (hue).
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55 % and 78 %. As fruit ripened, DPE in the HP genotype stayed within the same range until the

end of the ripening process. In contrast, the DPE in the EZ genotype decreased after hue 52

down to 43 % in overripe tissue. DPE was correlated ( r = 0.78) also with the FDF indicating that

PME activity in vivo in the EZ genotype had an effect on the DPE that was not detected in HP

fruit tissue. Furthermore, the lower DPE indicates increased substrate available for PG action,

which may explain the extensive pectin depolymerization in the EZ genotype.

DISCUSSION

The ease of pepper fruit detachment from the calyx when ripe is characterized by a

dramatic decrease in FDF which results in clean fruit separation during harvest while the pedicel

remains on the plant (Smith,1951; Motsenbocker, 1996). This characteristic may not always be a

desirable trait as modern cultivars have been bred for larger and heavier fruit tightly attached to

the plant. Similar phenomena have been reported in tomato (Rick and Sawant, 1955) and in

peach (Scorza and Sherman, 1996). The results of this study indicates that pepper fruit separation

at the fruit-calyx junction was the result of pectin degradation intrinsic to fruit ripening instead

of a classical abscission layer. This is supported by the lack of a distinct layer of cells

identifiable as abscission zone in the fruit-calyx junction of cayenne pepper (Gersch et al., 1998)

and tabasco pepper (Sundberg et al., 2003). The differential reduction of the force required to

remove ripe fruit from the pedicel between EZ and HP tabasco pepper (Fig 4.1) was attributed to

a differential degree of pectin metabolism as indicated by solubility studies (Figs. 4.1 and 4.2).

Pectin degradation and FDF reduction occurred in both genotypes, but the earlier and

pronounced FDF drop in the EZ tabasco genotype (Fig. 4.1A) was the result of pectin ultra-

depolymerization (Fig. 4.4B) that causes the fruit tissue disintegration. The ripening stage
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between hue 52 and hue 48 was the critical stage for the FDF decline (Fig. 4.1). At this same

stage, pectin dissolution increased (Fig. 4.1) and the DPE decreased (Fig. 4.5), resulting in a

correlation with FDF and hence with the ease of fruit detachment. Pectin ultra-degradation in EZ

fruit detachment zone was consistent with the reduced cell to cell adhesion found at the fruit-

calyx junction of EZ tabasco pepper (Sundberg et al., 2003) and peach (Bonghi et al., 1992).

These results support the relationship between PG-mediated pectin degradation and fruit

softening, and establish the association between the ease of fruit detachment and pectin ultra-

degradation in ripe tabasco pepper.

Pectin metabolism during fruit ripening in tabasco pepper was characterized by an

increase in soluble uronide (Figs. 4.1 and 4.2) and a decrease in polyuronide molecular size (Fig.

4.4), while total pectin content remained the same as determined in DT or increased slightly as

determined in CW (Fig. 4.3). Pectin degradation by PG in tomato during fruit ripening exhibited

these same characteristics, although the level of pectin dissolution and the degree of pectin

depolymerization varied according to the methodology used and genotype evaluated (Gross and

Wallner, 1979; Huber, 1983; Koch and Nevins, 1990; DellaPenna et al., 1990; Watson et al.,

1994; Brummell and Labavitch, 1997). Chelator-soluble pectin extracted from CW is considered

to be ionically bound and part of the cell wall structure (Jarvis 1984). This seems not to be the

case in tabasco pepper fruit since the profile of EDTA-soluble UA in extracted CW throughout

ripening (Fig. 4.2A) was similar to the profile of water soluble UA in both genotypes (data not

presented). Similar levels of EDTA-soluble UA (DellaPenna et al., 1990; Watson et al., 1994)

and water-soluble UA (Gross and Wellner, 1979) were reported in tomato. Nevertheless, water-

soluble uronide that diffused out from fresh detachment area (Fig. 4.1) and soluble UA in 60 %
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ethanol (Fig. 4.2B) presented a more dramatic difference between ripe and unripe CW, and

between EZ and HP genotype in ripe fruit. Similar differences in water-soluble UA that diffused

from cell wall of tomato pericarp discs during fruit ripening were reported between normal and

non-softening tomato lines (Koch and Nevins, 1990), although the soluble UA was extracted by

centrifugation.

Pectin dissolution depends on the size of the uronide polymer. In contrast to galacturonic

acid and UA oligomers, dissolution of larger pectin polymers is difficult because they are

ionically bound and form part of the cell wall structure (Jarvis 1984). In mature-green tabasco

fruit, the size exclusion profile of EDTA-soluble uronide was the same for both genotypes (Fig.

4.4A) and it was indistinguishable from those reported for tomatoes (DellaPenna et al., 1990;

Huber and O’Donoghue, 1993; Brummell and Labavitch, 1997). At this stage, large pectin

polymers were tightly bound so they were not released from fresh tissue into water (Fig. 4.1),

unless the cell wall structure was disrupted allowing some dissolution (Fig.4.2A). In red-ripe HP

tabasco fruit instead, there was a  limited degree of pectin depolymerization comparable to levels

found in ripe wild-type tomatoes (DellaPenna et al., 1990; Huber and O’Donoghue, 1993;

Brummell and Labavitch, 1997). Pectin dissolution from fresh tissue however, increased slightly

(Fig. 4.1B) indicating that most of the pectin was still ionically bound and maintaining the

integrity of the cell wall structure. In contrast, pectin ultra-depolymerization detected in ripe fruit

of the EZ genotype was similar to that found in ripe ‘Hass’ and ‘Lula’ avocado, and after

incubation of enzymatically active alcohol-insoluble solids from tomato (Huber and

O’Donoghue, 1993), and in tomato paste (Brummell and Labavitch, 1997). Consistent with the

reduced cell to cell adhesion in this genotype (Sundberg et al., 2003), highly degraded
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oligouronide could no longer hold the cell wall structure leading to its disintegration.

Consequently, oligouronide easily diffused out from fresh tissue (Fig. 4.1A). These results

suggest that pectin ultra-degradation exhibited by the EZ line is the consequence of an enhanced

PG activity in vivo not detected in the HP line, despite the fact that PG activity extracted from

the detachment zone was the same in both genotypes (chapter 3).

The association between the DPE and the FDF found in this study strongly suggests that

the DPE has an effect on PG-mediated pectin degradation and hence on the ease of fruit

separation of tabasco pepper. Higher PME activity could result in enhanced PG activity by

increasing the amount of substrate available. The level of pectin esterification in the cell wall is

thought to be the result of PME activity during growth (Jarvis, 1984), but the DPE during

ripening varies according to the genotype and differential expression of specific PME isozymes

may be involved (Pressey and Avant, 1972; Tucker et al., 1982). In tomato, PME activity

extracted from disrupted fruit tissue increases during fruit ripening (Pressey and Avant, 1982;

Harriman et al., 1991; Tieman et al., 1992;), but DPE either decreases dramatically (Koch and

Nevins, 1989), decreases slightly (Tieman et al., 1992), or remains the same (Koch and Nevins,

1990). Similarly, the DPE in CW extracted from ripe detachment zones was different between

EZ and HP tabasco pepper genotypes (Fig. 4.5). It is known that PME enhances PG activity in

vitro (Pressey and Avant, 1982, Koch and Nevins 1989). Thus, in the EZ tabasco genotype,

pectin de-esterification by higher PME activity in vivo may have increased the proportion of

polygalacturonic acid susceptible to PG depolymerization. In contrast, pectin degradation in HP

peppers appears to be limited to those de-esterified areas with their origin during fruit growth

and therefore resulting in larger uronide polymers.
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Total pectin content in CW varied according to the method of CW extraction and the

level of pectin degradation (Fig 4.3). Metabolism and dissolution during ripening of ethanol-

insoluble carbohydrates may be accounted for by the slight increase in CW uronide content

during ripening. Previous studies reported a decrease in CW pectin content during fruit ripening

and it was attributed to degradation (Gross and Wallner, 1979; Gross et al., 1986). The results of

this study indicate that total pectin content was not reduced by PG-mediated depolymerization,

but ultra-degraded oligouronide was lost during CW extraction in 60 % ethanol (Fig. 4.3).

Finally, the results obtained in this study revealed a discrepancy in the usefulness of the

easy detachment characteristic in pepper. Fruit harvest is facilitated with easily detachable fruits.

In fact, hand harvest of EZ tabasco fruit went faster and mechanical harvest yield was three times

higher than HP fruit (Davis, 1980). In contrast, the quality of processed product in relation to

textural characteristics depends directly on the integrity of pectin (Hurtado et al., 2002). Even

though pectin is degraded to some extent during processing (Brummell and Labavitch, 1997;

Hurtado et al., 2002), pectin metabolism in the fruit before processing preconditions its integrity.

Therefore, the easy detachment characteristic of the fruit shows potential to improve mechanical

harvest toward processing, but pectin ultra-degradation may affect the textural characteristics of

the processed product.
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CHAPTER 5. PECTIN METHYL-ESTERASE ACTIVITY IN VIVO IS ASSOCIATED WITH
THE EASE OF FRUIT DETACHMENT IN TABASCO PEPPER

INTRODUCTION

The ease of fruit detachment from the calyx in tabasco pepper fruit has been attributed to

pectin ultra-degradation (chapter 4). In addition, a lower degree of pectin esterification in cell

wall extract from ripe EZ fruit was associated with the ease of fruit separation suggesting that

PME activity may enhance pectin depolymerization in vivo (chapter 4). In tomato, PME activity

has been detected at all developmental stages and several isozymes have been reported (Hall et

al., 1994; Gaffe et al., 1994; Warrilow et al., 1994). PME activity was also detected in bell

pepper (C. annuum) and was associated with fruit softening (Sethu et al., 1996).

Pectin depolymerization and dissolution is attributed to PG activity (Gross and Wallner,

1979; Huber, 1983; DellaPenna, et al., 1990). In studies with isolated cell wall or disrupted

tissue, however, PG-mediated pectin depolymerization and dissolution was enhanced  by PME

(Pressey and Avants, 1982, Koch and Nevins, 1989). PME catalyzes the cleavage of the ester

bond between the methyl and the C6 carboxyl group of galacturonosyl residues of the

polyuronide chain. As a result, methanol is released and the de-esterified  polygalacturonic acid

is exposed to the action of PG (Brummell and Harpster, 2001). Enzyme activity studies of

proteins extracted from disrupted tissue don’t take into consideration that regulatory mechanisms

may have been disrupted also resulting in unrestricted enzymatic activity (Brummell and

Labavitch 1997). To overcome this, the effect of PME activity in vivo on pectin characteristics

was studied using transgenic tomato plants (Tieman et al. 1992). Antisense PME suppression

increased slightly the degree of pectin esterification and slightly reduced the level of pectin
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depolymerization. The fruit firmness, however, was not affected. Therefore, the mechanism of

pectin degradation and fruit softening remains unclear.

This study was conducted to determine the role of PME activity on the ease of fruit

detachment from the calyx in tabasco pepper. A novel method to assess PME activity in vivo was

developed because of the discrepancies between PME activity in protein extracts and the

expected DPE decline (Koch and Nevins, 1989 and 1990; Tieman et al. 1992). Methanol

released from fresh fruit tissue and pH in the fruit-calyx junction opening were analyzed to

determine their association with the DPE decline in the EZ genotype (chapter 4) and with the

ease of fruit separation. Finally, the role of PME activity on tissue integrity and on the ease of

fruit separation is discussed.

MATERIALS AND METHODS

Plant Material, Fruit Ripening, and Detachment Force. Fruit from EZ and HP tabasco

pepper genotypes were grown, harvested, and analyzed for ripening stage and FDF as described

previously (chapter 3)

Fruit-Calyx Junction pH. Changes in pH at the fruit-calyx junction opening were

determined during ripening using a micro-probe (Lazar Research Labs., Inc.. Los Angeles, CA)

attached to a pH-meter (Corning Science Products, Corning NY). This probe was recommended

to measure tissue surface pH and pH of small volumes (5 :L). The pH in the fruit opening was

measured immediately after the pedicel was removed. Alternatively, a drop of water (10 :L) was

placed on the fruit junction opening and the pH was measured after 10 min. The placement of a

drop of water improved the contact avoiding further disruption of the tissue.
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Protein Extraction. De-seeded fruit pericarp tissue was ground in liquid nitrogen and

homogenized in 1mL extraction solution (1 mL of 20 mM EDTA, 2 M NaCl,  pH 5). The

suspension was stirred for 3h (RotoMix type 50800, Thermolyne, Dubuque, IA) and centrifuged

at 14000 rpm in a microcentrifuge for 10 min. The supernatant was filtered through a 0.45 um

nylon filter unit (Nalgene, Rochester, NY) and desalted through an Econo-pac® 10 DG column

(Bio-Rad Lab., Hercules, CA) into 1.5 mL of eluting solution (1 mM EDTA and 10 mM NaCl,

pH 5), and then tested for PME activity. All extraction steps were conducted at 5 °C. Protein

content was determined by the method of Bradford (1976) using BSA as standard.

Enzyme Assay by Titration. Activity of PME was determined by titration of the

carboxyl groups produced (Harriman et al., 1991). Protein extract (1 mL) was added to 30 ml

substrate [0.4 % apple pectin (Sigma Chemical Co.) in 150 mM NaCl, pH 7.5]. The DPE of the

apple pectin was 52 % which is equivalent to 7 % w/w of methoxy groups. The reaction solution

was incubated at room temperature and titrated with 20 mM NaOH to maintain the pH. A PME

activity unit was defined as to produce 1 :mol of carboxyl groups per minute under these

conditions. Control for all activity tests was performed with heat-inactivated protein samples.

Tissue Preparation. After removing the pedicel, a 3 mm long fruit DZ was used for

assays unless indicated otherwise. The tissue was analyzed for methanol production either fresh

(FSH) with no further disruption, or frozen (FZN) at  -20 °C overnight and thawed during assay.

Also, methanol production was analyzed in active freeze-dried tissue (ADT) which was frozen in

liquid nitrogen and freeze-dried, and inactive freeze-dried (IDT) which was inactivated at 90°C

for 20 min. in alcohol and then vacuum dried again.



42

Methanol Production In Vivo. Methanol production in vivo from tabasco fruit tissue

was determined by gas chromatography. FSH DZ  was incubated at room temperature in a 1.8

mL sealed vial. Intact whole fresh fruit was incubated in 8 mL vial fitted with a serum cap. An

air sample (100 :L) from the head space was taken periodically for three days and analyzed by

gas chromatography (Varian model 3700, Walnut Creek, CA). The analyzer was set up with an

Alltech 6 ft long by 1/8 inch ID stainless steel column packed with 5 % carbowax 20 M on

graphpack GBAW 80-120 mesh. The carrier gas was helium, the column pressure was kept at 33

psi, and the oven temperature was 107 °C. Methanol concentration in the air space was

determined by the area of the peak in comparison to those of methanol standards.

Methanol Production In Vitro. Methanol production in vitro was assessed in FZN and

ADT DZ. The tissue was frozen overnight in a 1.8 mL sealed vial and then incubated at room

temperature for 8 h. Air samples (100 :L) were taken from the air space and analyzed for

methanol content as described above. To evaluate methanol production from re-moistened ADT

DZ, tissue was incubated in a 1.8 mL vial with 200 :L of water at 35 °C for 20 h. IDT DZ was

used as control. Similarly, methanol production from ADT DZ was evaluated in 200 :L of 50

mM NaOAc buffer at pH 5 and pH 6.0, and in 200 :L of 50 mM Na2HPO4 buffer at pH 7.0.

Methanol content of the solutions were determined based on the methanol content in air samples

of standard solutions.

RESULTS

Fruit-Calyx Junction pH. The pH at the fruit-calyx junction area was measured to

determine variations in the apoplastic environment during fruit ripening. The pH in HP fruit was

maintained throughout ripening and ranged between pH 5.6 and pH 6.3 (Fig 5.1). In contrast, the
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Fig. 5.1. Fruit detachment zone pH throughout fruit ripening in ‘Easy Pick’ (EZ) and ‘Hard Pick’
(HP) tabasco pepper. The pH was determined in the fruit opening immediately after pedicel
removal. Fruit ripening is represented by the fruit external color (hue 100 corresponds to
immature-green and  hue 30 to purple-red). Coefficient of determination: r2=0.85 (solid line).
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pH in the EZ genotype decreased to an average of pH 5.2 in ripe fruit (hue < 40). The average

pH of EZ fruit with hue less than 40 was 0.6 units lower than the pH of HP fruit. Acidification of

the apoplastic environment in ripe EZ fruit was considered to be the result of PME mediated

pectin de-esterification that freed carboxyl groups in the polyuronide chain.

Enzyme Assay by Titration. Activity of PME was detected in protein extracts from EZ

and HP fruit pericarp throughout ripening (Fig. 5.2). PME extract and detection in ripe tissue

was increased by maintaining the pH below pH 5.0 and desalting. Activity extracted from DZ

was unreliable because of the little sample available. In immature-green tissue (hue >100), PME

was high in both genotypes but dropped drastically in mature-green fruit (hue <100) at the

beginning of ripening. PME activity stayed low in HP fruit throughout the ripening process. In

contrast, PME activity in the EZ genotype increased in ripe fruit (hue between 55 and 35) and

decreased in purple-red tissue (hue <35). There was a negative correlation ( r = -0.74) between

FDF and PME activity during fruit ripening (between hue95 and hue 30) with data from green

fruit excluded. This association suggests that there was a ripening specific PME activity in the

EZ genotype that had an effect on the ease of fruit detachment from the calyx.

Methanol Production In Vivo. Pectin de-esterification by PME activity in vivo was

assessed by the methanol released from FSH DZ (Figs. 5.3 and 5.4). A significant amount of

methanol released from EZ FSH DZ was detected within 20 hours when the ripening stage was

between hue 52 and hue 40 (dark orange to red) (Fig. 5.3A) . Methanol production was not

detected in immature-green and early ripening stages (hue >55) (mature-green to orange) and in

purple-red fruit tissue (hue <38). Fruit tissue in early ripening stages (hue 80 to 54) incubated for

72 hours reached the adequate ripening stage and released significant amounts of methanol (Fig.
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Fig. 5.2. Pectin methyl-esterase (PME) activity during fruit ripening in 'Easy Pick' (EZ) and
'Hard Pick (HP) tabasco pepper.  Activity in protein extracts from fruit pericarp was tested by
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purple-red). Coefficient of determination: r2= 0.83 (dash line) and r2= 0.93 (solid line).
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 5.4). In contrast, methanol production was not detected in the HP line throughout ripening even

when incubation time was 72 hour (Figs. 5.3B and 5.4). Methanol production between hue 102

and hue 45 (mature-green to methanol peak) followed an inverse relationship ( r = -0.94) with

FDF in the EZ tabasco genotype (Fig. 5.3A). In the early ripening stages (hue >53) when the

FDF was high, methanol production was not detected. Then, between hue 52 and 47 when FDF

decreased, methanol production increased reaching its maximum. Although methanol was

undetectable or very low after hue 40, FDF stayed low until the end of the ripening process (hue

30). In contrast, no relationship could be found in the HP genotype since methanol was not

detected (Fig. 5.3B). The same relationship between methanol production and FDF in the EZ

genotype was found with intact fruits and no methanol was detected in HP samples (data not

presented).

Methanol Production In Vitro. Methanol released from FZN and ADT DZ was

analyzed throughout ripening to assess PME activity in disrupted tissue. Both tabasco genotypes

produced detectable amounts of methanol from thawed FZN tissue (Fig. 5.5) and from ADT DZ

soaked in water, but not from IDT (Fig. 5.6). This indicates that methanol is released by an

enzymatically active metabolic process. Methanol released from FZN and ADT DZ varied

among plants of the same genotype but there was no difference between genotypes throughout

ripening. Methanol production was high in immature-green fruit (hue >95), decreased at the

beginning of ripening until the orange stage (hue 90 to 55), and then increased again in ripe

tissue (hue 55 to 30). The level of methanol released per amount of tissue differed between FZN

and ADT because; for FZN samples, methanol released corresponds to air methanol content, and

for ADT samples corresponds to total methanol in solution (Figs. 5.5 and 5.6). The pattern of 
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Fig. 5.5. Methanol released from disrupted (frozen (FZN)) tissue during fruit ripening. Methanol
content in air space after 8 h was determined by gas chromatography. Fruit ripening is
represented by the fruit external color (hue 100 corresponds to immature-green and  hue 30 to
purple-red). (EZ) 'Easy Pick' and (HP) 'Hard Pick' tabasco pepper genotypes. Coefficient of
determination: r2= 0.52 (dash line) and r2= 0.43 (solid line).



50

0

20

40

60

80

100

120

140

160

180

200

2030405060708090100110
Fruit color (hue)

0

20

40

60

80

100

120

140

160

180

200
M

et
ha

no
l r

el
ea

se
d 

(µ
m

ol
es

/g
).

EZ IDT
HP IDT
EZ ADT
HP ADT
EZ
HP

Fig. 5.6. Methanol released from remoistened freeze-dried (ADT) and heat-inactive dried (IDT)
fruit tissue during fruit ripening. Total methanol content in solution after 20 h was obtained from
the methanol concentration in the air space determined by gas chromatography. Fruit ripening is
represented by the fruit external color (hue 100 corresponds to immature-green and  hue 30 to
purple-red). (EZ) 'Easy Pick' and (HP) 'Hard Pick' tabasco pepper genotypes. Coefficient of
determination: r2= 0.78 (dash line) and r2= 0.53 (solid line).



51

methanol released during ripening for ADT was comparable to the pattern of protein extract with

exception of HP ripe tissue (Fig 5.2). PME activity increased in disrupted (FZN and ADT) ripe

HP tissue to the same level detected in the EZ genotype, which indicates that a PME activity was

expressed by a similar amount.

Methanol released from ADT DZ soaked in buffer at pH 5 (Fig. 5.7A), pH 6 (Fig. 5.7B),

and pH 7 (Fig. 5.7C) was tested throughout ripening to evaluated PME activity in situ at

expected apoplastic pH conditions. Methanol released increased in tissue from both genotypes

with increasing solution pH. The pattern of methanol production during ripening was the same as

in water soaked tissue. The amount of methanol released from ripe (hue <55) fruit tissue at pH 6,

however, was higher in the EZ genotype (38 :mol/g ADT) than in the HP genotype (19 :mol/g

ADT). Methanol released at pH 5 an pH 7 were not significantly different throughout ripening.

These results indicates that PME activity was affected by pH conditions and PME activity can be

detected at pH found in the apoplast.

DISCUSSION

The ease of fruit detachment from the calyx is caused by pectin ultra-degradation

(chapter 4) which is enhanced by a ripening specific PME activity. In the EZ genotype, the FDF

drop coincided with and was associated with the peak of methanol production in vivo which was

attributed to PME activity (Fig 5.3A). These results suggest that in the EZ genotype, PME

activity in vivo reduced the DPE, thereby resulting in pectin ultra-degradation (chapter 4).

Consequently, the cell wall is disintegrated causing the fruit to detach easily from the calyx. In

contrast, methanol was not detected in the HP genotype (Fig 5.3B) which requires higher force

for fruit detachment. In addition, contrary to the results of PME activity in protein extracts,
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methanol was not detected in HP tissue and in mature-green EZ tissue. This suggests that there

may be a regulatory mechanism blocking PME activity in vivo, and that the ripening specific

PME activity in the EZ genotype is not affected.

Methanol production from plant tissue was attributed to PME activity. There is enough

evidence indicating that methanol is released by PME which catalyzes the de-methoxylation of

galacturonosyl residues in the pectin polymer (Wood and Siddiqui, 1971; Bartolome and Hoff,

1972; Frenkel, et al., 1998; Brummell and Harpter, 2001). In this study, methanol released in

vivo in the EZ genotype was associated with and may explain the DPE decrease in CW (chapter

4), and the pH decrease in the detachment opening during ripening (Fig 5.1). Decrease of DPE

during ripening has been associated with PME activity in vitro (Koch and Nevins, 1989 Tieman

et al., 1992). Antisense suppression of PME activity in vivo though, resulted in a slight DPE

increase in tomato fruit tissue (Tieman et al., 1992). Also, pH in tomato apoplastic fluids

decreased during ripening (Almeida and Huber, 1999). There is no previous report of methanol

released from live plant tissue associated with PME activity in vivo. Free methanol content in

crude plant homogenates though, was attributed to PME activity in vivo (Bartolome and Hoff,

1972; Frenkel, et al., 1998; Koch et al., 1999). In tabasco pepper, methanol released from

disrupted tissue (FZN and ADT) was associated with PME activity in vitro throughout ripening

(Figs. 5.5 and 5.6). In addition, methanol production was not detected in heat-inactivated IDT

which indicates that the reaction responsible for methanol production is mediated by enzymatic

activity.

PME activity is present in all ripening stages as determined by  in vitro assays, although

variations throughout ripening were detected (Figs. 5.2, 5.5 and 5.6 ). The level of PME activity



54

and pattern during ripening detected in tabasco fruit extracts were similar to those reported for

bell pepper (Sethu et al., 1996), but 10 times lower than tomato (Harriman et al., 1991; Warrilow

et al., 1994). Methanol production in vitro from disrupted tissue developed a similar pattern as

PME activity in EZ protein extracts: high in immature-green tissue, decreased in early ripening,

and increased again in ripe fruit (Figs. 5.2, 5.5 and 5.6). The high PME activity in vitro detected

in immature-green fruit of both genotypes appears to have no effect on the apoplastic pH (Fig.

5.1) and on the DPE (chapter 4). In contrast, The higher PME activity in vivo detected in EZ ripe

fruit (Fig. 5.3) was associated with the lower apoplastic pH and DPE in this genotype (Fig. 5.1

and chapter 4). These results may explain the inconsistency in reports about PME effect on DPE

(Koch and Nevins, 1989 and 1990; Tieman et al., 1992). Detection of high PME activity in

immature-green fruit though, support the requirement of pectin assembly during growth and

development: pectin is synthesized fully esterified so it can be transported in solution and the

process of de-esterification occurs at the destination site by PME as required (Jarvis 1984).

The current study suggests that the PME activity in vivo in the EZ genotype is a ripening

specific PME isozyme. Multiple PME forms were identified in tomato depending on fruit

ripening stage and variety (Pressey and Avant, 1972, Tucker et al.,1982, Warrilow et al., 1994).

Two iso-forms were present in mature-green and ripe fruit, one form appeared in ripe fruit only,

and another form was present in one variety out of three studied (Pressey and Avant, 1972).

Also, different physiological functions, such as cell wall growth or degradation during ripening,

were suggested for isozymes with different kinetic properties (Warrilow and Jones, 1995). In

tabasco pepper, the PME activity in vivo was detected in ripe EZ fruit only and coincided with
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higher activity in protein extracts from ripe fruit (Fig. 5.2). Serological and molecular studies are

necessary to determine the expression characteristic of this PME isozyme. 

Pectin ultra-degradation in EZ ripening fruit (chapter 4) is initiated by the ripening

specific PME activity. Although pectin depolymerization occurred in both lines during fruit

ripening, the uronide molecular size in EZ ripe fruit was much smaller than the HP genotype

(chapter 4). The enhancement of PG-mediated pectin depolymerization and dissolution by PME

activity in vitro was demonstrated with isolated cell wall and attributed to a reduction in the DPE

(Pressey and Avant, 1982, Koch and Nevins 1989). Also, antisense suppression of PME in

tomato resulted in a slight reduction of PG-mediated pectin depolymerization (Tieman et al.,

1992). In tabasco pepper, the DPE reduction occurred in fruits of the EZ line only (chapter 4).

These results suggest that the metabolic mechanism leading to the ease of fruit detachment from

the calyx begins with the ripening specific PME activity (Fig. 5.3). This activity reduces the DPE

(chapter 4)  leaving higher amount of polygalacturonic acid available for PG action (Pressey and

Avant, 1982, Tieman et al., 1992). Consequently, PG activity is enhanced resulting in pectin

ultra-depolymerization and dissolution (chapter 4). In conclusion, this enhanced pectin

degradation causes the disintegration of the fruit tissue and decreases the FDF required to

separate EZ ripe fruit from the calyx (chapter 3). In contrast, PME activity in vivo seems to be

obstructed in the HP genotype (Fig 5.3B) and the DPE does not change during ripening (chapter

4). Therefore, PG can act only on pectin de-esterified areas originated during growth resulting in

limited depolymerization and low dissolution (chapter 4). The limited pectin depolymerization

maintained the integrity of the cell wall in the fruit-calyx junction zone making the separation

more difficult (Fig 5.3B).
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A regulatory mechanism seems to be involved in PME activity in vivo and thus it has a

critical role in controlling cell wall integrity. This is supported by the difference in methanol

production between live and disrupted tissue (Figs. 5.3, 5.5 and 5.6). When the tissue is

disrupted, this mechanism is also disrupted and unrestricted PME activity is detected as assayed

by methanol production from FZN and ADT, and titration in protein extracts (Fig 5.2). In

tomato, PG-mediated pectin degradation is normally restricted in vivo, but in homogenized tissue

(Brummell and Labavitch, 1997) or in active CW extract (Koch and Nevins, 1989; Huber and

O’Donoghue, 1993) the restriction was removed and pectin ultra-degradation and dissolution

occurred. This can be explained by the activation of PME in disrupted tissue enhancing PG-

mediated pectin depolymerization. In conclusion, PME and its regulatory mechanism have a

critical role in cell wall stability during growth, and in pectin degradation and dissolution during

fruit ripening. In addition, the data indicate that PME is the limiting factor for PG-mediated

pectin ultra-degradation in vivo.
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CHAPTER 6. PECTIN METHYL-ESTERASE ISOFORM ASSOCIATED WITH THE EASE
OF FRUIT DETACHMENT IN TABASCO PEPPER

INTRODUCTION

In tabasco pepper, the ease of fruit detachment from the calyx is reportedly related to

pectin ultra-degradation (Chapter 4) which is induced by ripening specific pectin methyl-esterase

(PME) activity (Chapter 5). PME activity in vivo was detected only in the ‘Easy Pick’ (EZ)

tabasco genotype by the methanol released from ripe fruit tissue. In tomato, PME protein and

activity were detected throughout fruit development, increasing from early fruit development to

a peak at the onset of ripening and then declining slightly in ripe fruit (Harriman et al., 1991;

Tieman et al., 1992). At least four PME genes were reported in tomato and several of them were

highly homologous (Harriman et al., 1991; Hall et al., 1994; Gaffe et al., 1997). Although these

isoforms have been detected in ripe tomato, they were expressed mainly in mature-green fruit.

The molecular size of these PME proteins ranged between 33k to 44k (Harriman et al., 1991;

Warrilow et al., 1994; Gaffe et al., 1997). An additional ripening specific PME isoform was

detected in ripe tomato and another was present in one variety out of three investigated (Pressey

and Avants, 1972). Molecular characterization of these ripening specific PME isoforms in

tomato were not reported. Similarly, characterization of the PME activity detected in pepper has

not been previously reported.

The objective of this study was to isolate PME activities in immature-green and ripe

tabasco pepper fruit, and to determine the molecular characteristics of the ripening specific PME

isoform associated with the ease of fruit detachment from the calyx. To reach these goals, a

colorimetric PME-activity test was developed to detect pH decreases in the substrate solution.

PME-mediated pectin de-esterification generates free carboxyl groups in each galacturonan
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component of the chain reducing the solution pH. Similarly, localized pH reduction in a gel was

used to identify PME isoforms after gel electrophoresis.

MATERIALS AND METHODS

Plant Material, Fruit Ripening, and Detachment Force. Tabasco pepper fruit from EZ

and HP genotypes were analyzed for color and FDF as described previously (Chapter 3).

Protein Extraction. Cell wall proteins were extracted from immature and mature-green

fruit pericarp following the method of Warrilow and coworkers (Warrilow et al., 1994) with

modifications. All the steps during extraction were conducted at 5 °C. Tissue (30 g) was

pulverized in liquid N2 with a mortar and pestle and homogenized in two volumes (v/w) of cold

homogenization solution (1% Triton X-100 and 0.1% ascorbic acid, pH 3.3). The slurry was

centrifuged for 10 min at 23,700 g (Avanti J-25, rotor JA 25.50, Beckman-Coulter, Palo Alto,

CA) and the supernatant was discarded after checking for PME activity. The pellet was rinsed

once by suspending it in water followed by centrifugation. The second pellet was suspended in

an equal volume (v/w initial weight) of extraction solution (2 M NaCl, pH 7.5) and stirred for 4

h. The slurry was centrifuged again and the supernatant was saved as CW-proteins. Proteins

were fractionated with ammonium sulfate at 35% and 75% and the pellets were suspended in

buffer (10 mM Na2HPO4, 10 mM NaCl, pH 7.5). The ammonium sulfate fractions were desalted

through Econo-pac® 10 DG columns (Bio-Rad Lab.) into the same buffer and assayed for

protein content and PME activity.

A different method was followed to extract protein from red-ripe fruit pericarp because

high levels of PME activity was present in the first supernatant (homogenization solution) and

the activity was lost rapidly when extracted in 2 M NaCl at pH 7.5. Total proteins were extracted
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directly from 20 g of tissue pulverized in liquid N2 with 2 volumes (v/w) extraction solution (10

mM EDTA and 2 M NaCl, pH 5). The slurry was stirred for 2 h and centrifuged as described

above. The supernatant was filtered through glass microfibre filters GF/C (Whatman, England)

and then through 0.45 um nylon syringe filter units (Nalgene, Rochester, NY) to separate debri.

Samples were desalted as described above into 1 mM EDTA, 150 mM NaCl, pH 5 and assayed

for PME activity and protein content.

Separation. PME separation was conducted by ion-exchange chromatography in 1.5 x 15

cm column of CM-Sepharose CL6B. All the steps were conducted at 5 °C. Desalted protein

extract (4 mL) from mature-green fruit was applied to the column equilibrated with elution

buffer (10 mM Na2HPO4 and 10 mM NaCl, pH 7.5) and washed with 30 mL elution buffer. Then,

a 400 mL linear gradient from 10 to 500 mM NaCl in elution buffer was applied. The column

was washed further with 30 mL of 1 M NaCl. The conditions used to separate PME from ripe

fruit were different. A Biologic LP system (Bio-Rad Lab.) equipped with a UV detector and an

electrical conductivity cell was used. Desalted protein extract (25 mL) was applied to the CM-

Sepharose column equilibrated and run with 10 mM NaOAc, pH 5.0, 1 mM EDTA, and 150 mM

NaCl. Then, a 250 mL linear gradient from 150 to 500 mM NaCl in running buffer was applied 

followed by 30 mL 1 M NaCl. The flow in all separation processes was 0.5 mL@min-1 and 5 mL

fractions were collected. Fractions were monitored for PME activity and the active fractions of

each peak were used for further analysis.

Gel Electrophoresis. Gel electrophoresis under denaturing conditions (SDS-PAGE) was

conducted with PME active samples (Laemmli, 1970). An aliquot was mixed with an equal

volume of 2x dissociation buffer (62.5 mM tris pH 6.8, 2 % SDS, 5 % mercaptoethanol, 10 %
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glycerol, 0.002 % bromophenol blue), heated at 100 °C for 4 min, and cooled down in ice.

Protein samples from desalted extract (20 :g) and from active peak fraction (0.5 - 2 :g) were

applied to a discontinuous gel (4 % polyacrylamide for stacking and 12 % for separation) and

run at 30 mA until the dye front was 1 cm from the bottom. Because the low protein

concentration in the fractions, proteins in 1 mL active fraction were precipitated by adding

ethanol to 60 %. The pellet was rinsed with acetone, suspended in 20 :L 10 mM tris-HCl, pH 6.8

and 20 :L 2x dissociation buffer, and analyzed by SDS-PAGE. The gels were stained with

Coomassie Brilliant Blue R-250, or silver following the procedures of the kit's manufacturer

(Bio-Rad). The MW of the PME protein was calculated by the relative mobility (RM) in relation

to marker proteins. The marker proteins were bovine albumin (66,000), egg albumin (45,000),

glyceraldehyde-3-phosphate dehydrogenase (36,000), carbonic anhydrase (29,000), trypsinogen

(24,000), trypsin inhibitor (20,100), and "-lactalbumin (14,200).

Pectin Methyl-Esterase Activity Assays. PME activity in fractions from ion-exchange

chromatography was monitored by a colorimetric assay which assesses pH reduction in the

reaction mixture. Fraction samples (20 :L) were mixed with 200 :L substrate (0.3 % apple

pectin, 150 mM NaCl, 2 mM NaP04, pH 7.5, and 0.01 % bromothymol blue) in 96-cell micro-

plate (one cell per fraction). PME mediated pectin de-esterification reduces the pH by generating

free carboxyl groups in each galacturonan component of the chain. As pH decreased in the active

samples, bromothymol blue in the solution changed color from blue (pH 7.5) to yellow (pH 6.0).

Absorbance at 600 nm was measured in a microplate reader (EL311, Bio-Tek Instruments,

Winooski, VT) every 30 min to quantify changes in color. PME activity was expressed as the

absorbance reduction in one hour.
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PME activity was detected also by colorimetric assessment of pH reduction directly in

the gel after SDS-PAGE. After the run, the gel was rinsed three times in 100 mL of cold 10 mM

NaP04 and 10 mM DTT, pH 5.5 for 20 min each. The pH was increased by rinsing in 200 mL 20

mM NaP04, pH 7.5 for 20 min and then the gel was stained in 200 mL 0.01% bromothymol blue

and 2 mM NaP04, pH 7.5, for another 20 min. The gel was put in a petri dish and warm solution

(1 % agarose, 0.3 % pectin, 2 mM NaP04, pH 7.5, and  0.05% bromothymol blue) was poured to

form a three mm thick gel on top. The gel was kept at room temperature in the dark for 24 h and

the appearance of a green-yellowish band indicating a localized pH reduction was considered to

be PME activity.

RESULTS

Separation. Cell wall proteins extracted from immature and mature-green fruit, and total

proteins extracted from red-mature fruit were separated by ion-exchange chromatography and

analyzed for PME activity. Only 6% of the cell wall proteins extracted from green fruit pericarp

and 2% of the total protein extracted from ripe pericarp were recovered in the fractions with

PME activity. The colorimetric method used to monitor fractions detected PME activity in 20

:L samples containing less than 300 ng protein (Fig. 6.1). Activity peaks were more noticeable

by quantitative measurement of the absorbance reduction at 600 nm as the solution pH decreased

(Fig. 6.2). Chromatography activity profiles of green fruit tissue revealed three main PME

activity peaks (Fig. 6.2). The activity profiles from both tabasco pepper genotypes were similar

indicating that the same PME isoforms were present in both genotypes.

CM-Sepharose chromatography profiles of total protein extracted from ripe fruit pericarp

are shown in Fig. 6.3. A large protein peak eluted between 30 and 160 min which corresponds to 
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Fig. 6.1. Colorimetric assessment of pH reduction (blue = pH 7.5, yellow = pH 6.0) by pectin
methyl-esterase (PME) activity. Cell wall proteins from mature-green fruit were separated by
ion-exchange chromatography in a CM-sepharose column (1.5 x 15 cm) and eluted with a
gradient from 10 mM to 500 mM NaCl. Cells A-1 and A-2 are blanks. Cells A-3 to A-9
correspond to pH range (pH 6.0 - pH 7.5). Cells B-1 to H-12 correspond to fractions 1 to 88. (A)
‘Easy Pick’ and (B) ‘Hard Pick’ tabasco pepper genotypes.
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Fig. 6.2. Fractionation of pectin methyl-esterases (PME). Cell wall proteins from mature-green
fruit pericarp were separated by ion-exchange chromatography in a CM-sepharose column (1.5 x
15 cm) and eluted with a gradient from 10 mM to 500 mM NaCl. PME activity determined by
colorimetric assay: absorbance (600 nm) reduction (-Abs) in 1h. (A) ‘Easy Pick’ (EZ) and (B)
‘Hard Pick’ (HP) tabasco pepper genotypes. Protein content (open symbols) and PME activity
(closed symbols).
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Fig 6.3. Fractionation of pectin methyl-esterases (PME). Total proteins from mature-red fruit
pericarp were separated by ion-exchange chromatography in a CM-sepharose column (1.5 x 15
cm) and eluted with a gradient from 150 mM to 500 mM NaCl. Protein content is indicated by
UV absorbance (AU) and NaCl concentration is indicated by the electrical conductivity (mS/cm)
of the eluting solution. (A) ‘Easy Pick’ and (B) ‘Hard Pick’ tabasco pepper genotypes.
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the proteins that were not retained by the gel. This flow-through protein accounted for 98% of

total protein assayed. A slight protein dome eluted between 320 and 390 min and another one

when the NaCl concentration increased to 1 M (680 min) as indicated by UV light absorbance.

There were no apparent differences between the profiles from the tabasco genotypes. In contrast,

the activity profiles of the fractions revealed two PME active peaks (named PME-1 and PME-2)

in the EZ genotype and only one (PME-2) in the HP genotype (Figs. 6.4 and 6.5). The first PME

active peak (PME-1) in the EZ chromatography profile (fractions 27-29) eluted at a NaCl

concentration equivalent to an electrical conductivity of 27 mS@cm-1  (Table 6.1). The amount of

activity recovered for this isoform was variable among the extracted samples (Table 6.1). PME-1

was detected consistently in protein extract from EZ fruit only. PME-2 was present consistently

in the HP genotype, however, in the EZ genotype it was present in fruits from two out of three

plants used for extraction. PME-2 from both genotypes eluted at a NaCl concentration

represented by an electrical conductivity of 33 mS@cm-1 under the chromatographic conditions

described previously (Table 6.1). The decrease in absorbance detected in fractions 60 to 74 of

the EZ activity profile occurred in the first hour and then stopped without reaching the bright

yellow color (pH < 6.0) expected with PME activity (Fig. 6.5A). In addition, absorbance

reduction in these fractions was not detected in the profiles of other EZ extractions.

Molecular Characteristics. Proteins in PME-1 and PME-2 active fractions were

analyzed by SDS-PAGE (Fig. 6.6). EZ PME-1 active fractions were resolved into two protein

bands (Fig. 6.6, lane EZ-PME-1) and with heavier loads additional faint bands were resolved.

The molecular size of proteins consistently present in PME-1 fractions were 22,500  and 36,700.

In gels assayed to for localized pH reduction, a yellow-green band appeared in the PME-1 lanes 
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Fig 6.4. Colorimetric assessment of pH reduction (blue = pH 7.5, yellow = pH 6.0) by pectin
methyl-esterase (PME) activity. Total proteins from ripe fruit separated by ion-exchange
chromatography in a CM-sepharose column (1.5 x 15 cm) and eluted with a gradient from 150
mM to 500 mM NaCl. Cells A-1 to G-2 correspond to fractions 1 to 74. Cell G-3 to G-11 are
blank pH 7.5, and cell G 12 is blank pH 6.0. (A) ‘Easy Pick’ and (B) ‘Hard Pick’ tabasco pepper
genotypes.
.
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Fig. 6.5. Fractionation of pectin methyl-esterases (PME) from ripe tabasco pepper. Total proteins
from mature-red fruit pericarp were separated by ion-exchange chromatography in a CM-
sepharose column (1.5 x 15 cm) and eluted with a gradient from 150 mM to 500 mM NaCl. PME
activity determined by colorimetric assay: absorbance (600 nm) reduction (-Abs) in 1h. (A)
‘Easy Pick’ and (B) ‘Hard Pick’ tabasco pepper genotypes.
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Table 6.1. Characteristics of pectin methyl-esterase isoforms (PME-1 and PME-2) isolated from
‘Hard Pick’ (HP) and ‘Easy Pick’ (EZ) ripe tabasco pepper fruit.

Separation step Molecular
size

PME activity1

(unit@mg-1

protein)

NaCl EC 2

(mS@cm-1)

Desalted extract

       EZ 0.9 - 1.73

       HP 0.3 - 0.7

Ion-exchange
chromatography

    EZ PME peak-1 22.5 k  &  36.7 k 5 - 160 27

    EZ PME peak-2 36.7 k  &  40.8 k 15 33

    HP PME peak-2 40.8 k   8 33

1 Units of PME activity: moles of carboxyl groups produced in 1 min.
2 EC: electrical conductivity indicates NaCl concentration when protein was desorbed from the
column.
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  EZ    Mkr   HP
 PME-1                  PME-2

40.8k
36.7k

22.5k

Fig. 6.6. Gel electrophoresis (SDS-PAGE) of fractions containing pectin methyl-esterase isoform
1 (PME-1) and 2 (PME-2). Total proteins from red-mature ‘Easy Pick’ (EZ) and ‘Hard Pick’ (HP)
tabasco pepper fruit were separated by ion-exchange chromatography. Marker proteins (Mkr)
66k, 45k, 36k, 29k, 24k, and 20.1k. Molecular size of protein bands were calculated by the
relative mobility.
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which coincided with the large prominent protein band (Fig. 6.7). Color change was not detected

in the other protein bands present in PME-1 fractions. Localized color change in the gel was

detected when the sample load contained PME activity higher than 0.5 unit. Localized color

change was not detected in PME-2 samples (Fig. 6.7). The low protein concentration in PME-2

fractions either from HP or EZ fruit may account for the lack of color change. One protein band

with molecular size of 40,800 was resolved consistently from HP PME-2 fractions (Fig. 6.6, lane

HP-PME2). Two protein bands, however, were resolved in EZ PME-2 fractions (data not

presented). The larger band coincided with the HP PME-2 protein and the smaller band coincided

with PME-1 36,700 protein, but the amount of protein was significantly less.

DISCUSSION

Three main PME activities from immature and mature-green tabasco fruit were separated

by ion-exchange chromatography (Fig. 6.1). All isoforms detected in green fruit were present in

both the EZ and HP tabasco genotypes. PME activity in vivo and DPE reduction, were not

detected in unripe tissue (Chapter 4 and 5). Therefore, PME isoforms present in immature and

mature-green tabasco pepper fruit were not associated with the ease of fruit separation from the

calyx. The presence of multiple PME isoforms extracted from mature-green tomato fruit has been

reported in several studies (Pressey and Avants, 1972; Tucker et al., 1982; Gaffe et al., 1994;

Warrilow et al., 1994). Several isoforms have been cloned and characterized (Harriman et al.,

1991; Hall et al., 1994; Gaffe et al., 1997). The PME isoforms detected in mature-green tabasco

pepper may belong to the same group isolated from green tomato since they did not affect DPE

during ripening (Chapter 4). The role of PME in plant growth, however, has not been elucidated

since several isoforms with different kinetic characteristics seems to be involved (Warrilow and 
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A 
 EZ1        EZ1           HP1       EZ2
PME2    PME1        PME2    PME1

B 
     EZ1         EZ1         HP1        EZ2
   PME2      PME1     PME2      PME1

Fig.6.7. Gel electrophoresis (SDS-PAGE) of fractions containing pectin methyl-esterase isoform
1 (PME-1) and 2 (PME-2). (A) PME activity detected colorimetrically in the gel after several
washes with DTT and (B) the same gel after staining with coomassie blue. Total proteins from
ripe ‘Easy Pick’ (EZ) and ‘Hard Pick’ (HP) tabasco pepper fruit were separated by ion-exchange
chromatography. EZ1 and EZ2 correspond to extractions 1 and 2.
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Jones, 1995). It was suggested that a free carboxyl group in the pectin molecule may be necessary

to serve as an initiation point for PME enzymatic attack (Pressey and Avants, 1972). The function

of one of the pectin methyl-esterases may be to create initiation points for the other isoforms.

Another possible role for PME may be related to healing of wounded tissue. Cell wall needs to be

modified during healing to allow callus to form. Therefore, PME is ready to become active when

tissue is disrupted (Chapter 5). This is supported by the report that PME activity was detected in

protein extracts from all tissue types (Gaffe et al., 1994; Gaffe et al., 1997). 

The significance of the presence of PME isoforms in green fruit, however, is not clear

because their activity in vivo has not been detected previously and correlation with fruit softening

has been difficult (Pressey and Avants, 1982; Tucker et al., 1982; Harriman et al., 1991; Tieman

and Handa,1994). Proposed roles for PME in plants include (a) localized reduction in pH due to

demethoxylation of pectin that may be associated with extension and growth (Brummell and

Harpster, 2001), (b) de-esterification of pectin making it more susceptible to depolymerization by

PG and enhancing cell separation during fruit ripening and abscission (Fischer and Bennett,

1991), and (c) generation of free carboxyl groups, which facilitates formation of new Ca2+ cross-

linkages in cell wall (Fry, 1986). Based on the kinetic properties of tomato PE-A activity in vitro,

it was suggested that this PME isolated from mature-green fruit was responsible for continued

pectin demethoxylation leading to pectin degradation (Warrilow and Jones, 1995). In contrast,

antisense suppression of this tomato PME increased slightly the DPE and showed no effect on

fruit firmness suggesting that it may be involved in fruit growth and development instead (Tieman

et al., 1992). The results obtained with tabasco pepper indicate that PME activities expressed in

green tissue and at least one detected also in ripe tissue were blocked in vivo, and a ripening
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specific PME activity appears to be responsible for pectin demethoxylation during fruit ripening

(Chapter 5 and this Chapter).

Two PME activities were detected in ripe tabasco pepper fruit (Fig.6.5).  PME-1 was

detected in fruit extracts from ripe EZ tabasco pepper only and appears to be responsible for

methanol production in vivo and the DPE reduction detected in ripe fruit of this genotype

(Chapter 4 and 5). The role of PME-1 therefore, seems to be the enhancement of pectin

degradation associated with fruit softening and the ease of fruit detachment during ripening

(Chapter 4). Suppression or elimination of PME-1 activity in the EZ genotype and expression in

the HP genotype, as well as inheritance studies may support this conclusion (Smith, 1951; Tieman

et al., 1992). In contrast, PME-2 activity was detected in both genotypes, and therefore, was not

associated with methanol production in vivo. PME-2 however, appears to be responsible for

activity in protein extracts and in disrupted tissue from ripe fruits (Chapter 5). A ripening specific

PME activity was separated also from tomato protein extract by ion-exchange chromatography,

but its role in fruit ripening was not determined (Pressey and Avants, 1972). This is the first study

reporting the association of a ripening specific PME activity with pectin degradation in vivo and

with the ease of fruit detachment (Chapter 4).

Multiple protein bands were resolved in the fractions containing EZ PME-1 (Fig. 6.6). In

contrast, only one protein was resolved consistently in HP PME-2. Previous studies with PME

extracted from mature-green tomato reported also several protein bands associated with PME

active fractions after ion-exchange chromatography (Warrilow et al., 1994). According to the

localized pH decrease in the gel after electrophoresis, the EZ PME-1 active isoform appears to be

the 36.7 k protein (Fig. 6.7, lanes EZ1-PME1 and EZ2-PME1). The sensitivity of the localized pH
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reduction test in polyacrylamide gel was very low in comparison to a similar test reported

previously (Gaffe et al., 1994). It is possible that the low mobility of PME and pectin in

polyacrylamide gel has affected the sensitivity of the test. Since the EZ PME-2  36.7 k isoform

was not present in HP extracts, PME-2  40.8 k protein seems to be the PME-2 active isoform

(Fig.6.6). The molecular size of PME-1 and PME-2 associated protein, with the exception of

PME-1 22.5 k, were within the range (30,200 to 43,200) of PME associated proteins isolated from

tomato (Harriman et al., 1991; Warrilow et al., 1994). PME-1 36.7 k protein was abundant in the

chromatography fractions and well defined in the gels, but  PME-1 activity decreased rapidly in

high NaCl concentration. In contrast, PME-2 proteins detected in the gels were very low and

activity was stable during extraction and analysis. Tomato PME isoforms were previously

reported to be difficult to resolve and detect in SDS-PAGE (Warrilow et al., 1994). PME-1 was

not totally isolated in this study and the pIs of the tabasco PME isoforms are yet to be determined.

Further purification and IEF analysis, therefore, as well as serological and molecular studies are

necessary to fully characterize PME-1 and PME-2 isoforms.

Finally, serological and molecular (cDNA) studies are also necessary to characterize the

expression pattern of tabasco pepper PME-1 and PME-2 throughout fruit development and

ripening (Harriman et al., 1991; Tieman et al.,1992; Gaffe et al., 1994; Hall et al., 1994).

Sequence analysis of the PME isoforms are necessary to determine the level of homology with

PME expressed in different ripening stages and tissues, and in other species (Hall et al., 1994;

Gaffe et al., 1997). Sequence analysis of PME-1 and PME-2  may also elucidate molecular

differences associated with the ability to act in vivo. A possible explanation for the activity in vivo

of PME-1 would be the ability to be exported from the cell. PME-2 may have lost the sequence
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necessary to be exported and remains in the cytoplasm until tissue is disrupted, or, its role may be

related to the healing process after wounding.
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CHAPTER 7. SUMMARY AND CONCLUSIONS

Pectin metabolism was investigated in tabasco pepper during fruit ripening to determine

the factors associated with the ease of fruit detachment from the calyx when ripe. The ease of

fruit separation is a characteristic of wild peppers, but it is not present in most cultivated peppers

and the pedicel remains attached to the fruit when harvested. Two tabasco pepper genotypes that

differ in the ease of fruit detachment were identified previously (Motsenbocker, 1996) and used

in this study: EZ which requires a low force to detach from the calyx and HP which requires

higher force. In this study, changes in FDF throughout ripening was measured in association

with the fruit external color (hue). In EZ tabasco pepper, the FDF decreased from 20 N to 3 N as

the fruit external color changed from hue 52 to hue 48 in 12 h. In the HP genotype, however, the

FDF began to decrease at hue 45 down to only 10 N in purple-red fruit (hue 30). Objective color

measurement facilitated the determination of the precise ripening stage when the FDF decreased

and it was used to analyzed events associated with the ease of fruit detachment from the calyx.

Cell wall degrading enzymes were analyzed during ripening to determine their

association with the ease of fruit separation in tabasco pepper. Activity of PG and EGase in

protein extract increased in ripe fruit from both genotypes and were correlated with FDF. PG and

EGase activity, however, were the same in both the EZ and HP genotypes. This suggests that the

difference in FDF between the EZ and HP genotypes depends on an additional factor.

Pectin characteristics of fruit DZ were analyzed to determine differences in pectin

degradation associated with the ease of fruit detachment. Pectin dissolution was inversely

correlated to the FDF during fruit ripening. The amount of soluble uronide released from fresh

ripe fruit tissue and in cell wall extracts was higher in the EZ genotype than the HP genotype.
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The higher pectin dissolution was attributed to the enhanced pectin depolymerization detected in

the EZ genotype. Size-exclusion chromatography of EDTA-soluble polyuronides showed that

pectin was degraded in ripe tissue of both tabasco genotypes, but the degree of depolymerization

was more extensive in the EZ genotype. These results suggest that the ease of fruit detachment

was caused by the disintegration of the cell wall as the result of pectin ultra-degradation. The

results obtained in this study however, indicate that this characteristic may have limited

usefulness. Although easy fruit detachment has the potential to improve mechanical harvest,

pectin ultra-degradation may affect the textural characteristics of the processed product.

Since EGase and PG activity were the same in protein extracts from both genotypes, and

the DPE and the pH at the junction area was lower in ripe EZ fruit, the role of PME activity in

pectin degradation was investigated. PME activity was assessed in vivo by the methanol released

from the de-esterification reaction. Methanol production was detected in ripe EZ fruit only when

the fruit external color was between hue 52 and hue 40. The rise in methanol production

coincided with the FDF decline. Therefore, the decrease in DPE and pH at the fruit junction area

detected in EZ ripe fruit was attributed to PME activity  in vivo. In contrast, PME activity in

vitro was detected in protein extracts and in disrupted fruit tissue from both genotypes at all

ripening stages. PME activity in vitro was high in immature-green fruit, decreased in early

ripening stages, and then increased again in ripe fruit. These results suggests that there was a

PME regulatory mechanism that blocked PME activity in vivo, but this mechanism was lost in

disrupted tissue.

PME activity in disrupted mature-green fruit tissue was attributed to three main PME

activities separated by ion-exchange chromatography. Because these PME activities appeared
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not to have an effect on the DPE during ripening, they were not associated with the ease of fruit

detachment in tabasco pepper. Two PME activities in protein extract from ripe fruit were

separated by ion-exchange chromatography. PME-1 activity was detected in protein extracts

from EZ fruit only. Consequently, PME-1 appears to be responsible for the methanol produced

in vivo by ripe fruit of the EZ genotype. In contrast, PME-2 was detected in protein extracts from

both genotypes. PME-2, therefore, appears to be responsible for PME activity in disrupted ripe

fruit tissue from the HP genotype. The PME-1 36.7 k and the PME-2 40.8 k proteins seems to be

the active forms for each PME activity. Further purification of PME-1 and PME-2 isoforms and

molecular studies are necessary to fully characterize this enzyme and to understand the

characteristics associated with the ability to act in vivo.

Finally, the suggested model for pectin degradation in tabasco pepper indicates that

PME-1 has a role in the ease of fruit detachment from the calyx. A sequence of events conducive

to pectin degradation and to the ease of fruit detachment from the calyx is summarized in Fig.

7.1. In the EZ genotype, PME-1 becomes active in vivo at hue 52 and reduces the DPE which

results in higher proportion of polygalacturonic acid available for PG action. Enhanced pectin

depolymerization by PG, which was already present, increases pectin dissolution in fresh tissue

and the cell wall structure is disrupted. Consequently, fruit tissue is disintegrated resulting in

easy fruit separation. In contrast, the HP genotype lacks PME-1 activity and PME-2 activity

appears to be blocked in vivo. The DPE is not affected during fruit ripening and PG can act only

on pectin de-esterified areas originated during growth resulting in limited depolymerization and

low dissolution. Partially degraded pectin is still able to maintain the integrity of the cell wall

structure in the fruit-calyx junction zone and the FDF decline is suppressed.
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Fig 7.1. Tabasco pepper ripening related events associated with the ease of fruit detachment from
the calyx. EZ (A) and HP (B) pepper genotypes. Fruit ripening is represented by the fruit
external color (hue 100 corresponds to immature-green and hue 30 to purple-red). Events are:
pectin methyl-esterase activity in vivo (PME), degree of pectin esterification (DPE),
polygalacturonase activity in protein extracts (PG), pectin dissolution from fresh tissue (PDiss),
and fruit detachment force (FDF). Relative detection level is represented by the color gradient.
Black corresponds to maximum level and white corresponds to undetected.
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