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the selected point by the total discharge. That calcu-
lation is repeated for both the computed stream function
and the actual discharge measured for several points on

the contracted section.
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7.3.2 Flood of April 6, 1964

A higher flood at Tallahala Creek at State Highway 528
near Bay Springs, Mississippl, was recorded on April 6, 1964.
That flood overtopped the roadway of the left embankment.
The USGS made a discharge measurement during the flood and
surveyed high-water marks near the bridge after the flood.

The discharge measurement was made after the flood
crested, 0.17 feet below the peak; the total measured dis-
charge was 20015 cfs. Of the total discharge, ten percent
was measured crossing the left embankment. The total dis-
charge at the peak (22,000 cfs) was obtained from the sta-
tion rating, and ten percent of that total (2,200 cfs) was
assumed to cross the left embankment.

The stream function values at grid nodes adjacent to
the left embankment were set by boundary condition in order
to set the flow distribution on the overtopped embankment.
Ten percent of the computed flow was forced to cross the
embankment.

The hydraulic roughness coefficients used ﬁre tabulated
in table 7.6. Théy are the same as those used for the flood
of April 14, 1969, except for the value at node (I=18,
J=16). Since the spur dike on the upstream side of the left
embankment was not in place at the time of the earlier flood,
it was not necessary to increase the roughness at that point.
The ground-surface elevations used are the same as those for
the flood of April 14, 1969 (cf. table 7.2).

The computed results are tabulated in tables 7.7 and
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7.8. Table 7.7 tabulates values of the computed normalized
stream function and table 7.8 tabulates computed water
levels. The values are tabulated for the nodes of the fi-
nite element grid which can be located by reference to
figure 7.2,

Since the flow over the left embankment can be ex-
pected.to be critical, the pressure equation (4.9) cannot
be applied on computed streamlines that cross the embankment.
Additional approximations are thus necessary for the appli-
cation of algorithm 5.1 to the higher flood. Water levels
were not computed for grid nodes in the region upstream
from the left embankment that were on computed streamlines
that crossed the embankment; water levels at those nodes
were approximated by extrapolating the computed water levels
at neighboring nodes on the water-level contour map (figure
7.6). The numerical entries are not tabulated in
table 7.8 for those nodes. The water levels on filgure 7.6
are to gage datum (265.43 feet above mean sea level).

The fall was measured by the USGS at the time of the
discharge measurement (0.17 feet below flood peak). The
water levels were marked at the downstream side of the
abutments and on the upstream side of the embankment one
bridge width from the abutments according to the field pro-
cedure discussed in section 1.2.2. That measured fall is
reported by the BPR (1970, table B-2, p. 102) as 1.62 feet.
The fall at the flood peak can be expected to be somewhat

greater.
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FLOOD OF APRIL 6, 1964

COMPUTED FLOW DISTRIBUTION
(COMPUTED NORMALIZED STREAM FUNCTION)
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TALLAHALA CREEK AT STATE HIGHWAY 528 NEAR BAY SPRINGS, MISSISSIPPI
FLOOD OF APRIL 6, 1964
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The high-water marks shown on figure 7.6 support the
higher computed water levels upstream from the left embank-
ment as compared with the levels upstream from right embank-
ment (see figure 7.6). That configuration is also typical
of the computed water levels shown on figure 7.4 for the
flood of April 14, 1969; the high-water marks for that flood

do not support that water-level differential.

7.3.3 Computed Fall (Ah)

The difference in water level across the approach em-
bankment Ah was defined in section 1.2.2.2 and its impor-
tance as an objective index for verification work was dis-
cussed. Two different definitions were given. The first
was that used by the BPR and was based on the water level
at the channel centerline on section (3) (cf. figure 1.2) as
a measure of water level on the downstream side of the em-
bankment. The second was based on the field procedure for
measuring fall during floods; it used the average of the
water levels at the abutments of the bridge as a measure of
downstream water level.

The computed water surface shown in figures 7.4 and
7.6 are not characterized by the descriptions of typical
water—surface configuration of the BPR (1970, p. 25) or of
Kindsvater, Carter and Tracy (1953, p. 4) (cf. section
1.2.2). Referring to the schematic diagram of figure 1.2,
the average computed water level on the region AEFG is not
the same as the average computed water level on the region

ABCD; the computed water levels are not constant on those
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two regions as postulated in section 1.2.2; there is no
stagnation zone or corresponding pool water level down-
stream from the left embankment; and the computed flow dis-
tribution indicates a significant angle of flow with the
contracted section.

The writer suggests that an appropriate value to assign
to the computed fall for comparison with observed fall on
the basis of the field practice definition would be the
difference between the average computed water level on the
region ABCD (cf. figure 1.2) upstream from the left embank-
ment and the computed stagnation water level downstream
from the right embankment. The comparison of a computed
water level on the region upstream from the left embankment
with the stagnation water level downstream from the right
embankment 18 justified by the eccentricity of the computed
flow distribution. Those two regions are the only regions
where the pool water levels emphasized in the‘definitions
of fall (cf. section 1.2.2) are approximated. The calcu-

lations are summarized in table 7.9.

Another value for the computed fall appropriate to the
BPR definition could be obtained by comparing the average
water level on the approach section (1) with the centerline
water level on the contracted section (3) (cf. figufe 1.2).
That value might seem more objective since it more nearly
represents the nominal fall postulated by the BPR defini-
tion (BPR, 1970) (cf. section 1.2.2) even though 1t is

based on a computed water surface that is not characteristic
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Table 7.9
Comparison of Computed and Observed
Fall Based on the Fleld Practice Definition

April 14, 1969

Water Level Computed Observed

Upstream from left
embankment.l........0....... 312'6 312.85

Stagnation zore
downstream from right

cambankment...ceeecccsnosces 311.4 311.54
Average of left

and right abutments........ 311.55
Fall (Ah) ® & 8 &8 & & & & 8 ¢ 56 0 0 0 0 o P 0 1.2 l.3

April 6, 1964

Upstream from left
embankment.ceeesecscscccane 49.6 49.5

Stagnation zone
downstream from right
embankment...coeeececsccses 47 .75 47.8

Fall (Ah)vo..c..o.'....n...o.. 1.85 107

Fall measured during
flood 0.17 feet below
crest..Q................l. 1.62
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of the BPR typical water-surface configuration as discussed

above. The calculations are summarized in table 7.10.

Table 7.10

Comparison of Computed and Observed
Fall Based on BPR Definition

April 14, 1969

Water Level Computed Observed
Average at section (l)..coceee 312.3 312.85
Reference Mark (RM).ceeeeoesce 311.97
Centerline Section (3)ecceeeeee 311.5

Fall (Ah)...ecveeeecenncoonnnn 0.8 0.88

April 6, 1964

Average at section (1)........ . 49,15 49.7
Reference Mark...ooeeoeeseseaes 48.43
Centerline....ceeeececcoccocos 48.2

Fall (Ah)ool.l.-o.l.......00.0 0-95 103



7.4 Computed Vorticity

The calculations were all performed with the material
derivative of vorticity DZ/Dt (cf. equation 5.12) assumed
to be zero. The vorticity was then computed on each ele-
ment of the finite element grid system using equation
(5.19). ~The values for computed vorticity did not differ
significantly from zero.

The material derivative DZ/Dt represents changes in
angular velocity of the fluid elements. Since the rota-
tional motion of the fluid 1s caused by viscous forces
generated at the channel bottom G and solid boundaries 9D,
and 9D,, it is not surprising that angular momentum of
the fluid is dominated by the surface forces that generate
it. 1Indeed the classical argument for the symmetry of the
viscous stress tensor is baséd on the dominance of surface
forces over body forces. Surface area of a fluid element
is related to the square of a characteristic dimension
for the element while volume is related to the cube of the
characteristic dimension. As the characteristic dimen-
sion approaches zero the body forces which are related to
the volume of the element are dominated by surface forces
which are related to surface area (Pao, 1967, p. 37).

For these reasons the material derivative DG/Dt will
probably always be approximately zero. Equation (3.13)

could then be represented by the homogeneous relationship:

(7.1) Curl F = 0

109



The vorticity should always be computed, however, to check
on the assumption.

Even though the vorticity is small, the conclusion
that it is zero should be avoided. The computed flow
distribution shown in figures 7.4 and 7.6 are very dif-
ferent from the potential flow distribution. To assume
a potential flow distribution would be a serious error.

A significant change in flow distribution can be associ-
ated with a very small vorticity. The angular momentum

associated with that small vorticity can be insignificant.
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8. CONCLUSIONS

For the steady gradually varied subcritical flow of
a fully developed turbulent boundary 1ayer; the Bernoulli
equation on a two-dimensional streamline equation (4.9)
is an itegral identity of the Euler momentum equation; it
is valid even along streamlines that pass through the con-
traction. Hydrostatic pressure distribution is specified
by the definition of gradually varied flow;

Techniques for computing water levels in natural chan-
nels by the numerical solution of the Bernoulli equation
are currently available (e.g., step backwater). For two-
dimensional flow, however, the two-dimensional stream-
lines must be accurately located before the water levels
can be computed. The Bernoulli equation is not inde-
pendent of path in a rotational flow field; it can only
be used among points that lie on the same streamline.

The finite element technique developed by Zienkiewicz
(1970) for computing the deflections of an elastic membrane
can be used to locate the two-~dimensional streamlines.

The stream function specifies the two-dimensional flow
distribution and the level curves (contours) of the stream
function are the two-~dimensional streamlines along which
the Bernoﬁlli equation can be applied. The differential
equation of motion which governs the flow distribution has

a form similar to that of thé unioaded elastic membrane
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equation (cf. equation 3.13) (i.e., the homogeneous '"quasi-
harmonic" partial differential equation). The values of
the stream function correspond to the membraﬁe deflections,
and a coefficient which is a function of channel convey-
ance and magnitude of velocity corresponds to the membrane
stiffness coefficient in the membrane analogy; The
boundary conditions are specified as forced deflections

at the edges of the membrane;

Field data collected by the USGS at Tallahala Creek
at State Highway 528 near Bay Springs, Mississippi, are
characterized as follows: 1) above normal water levels
downstream from the contracted section; 2) the absence of
separation downstream from the left approach embankment;
and 3) estimated backwater five times as great as the
value that would be predicted by empirical techniques
currently used by the USGS and the BPR. The mathematical
model developed in this dissertation can explain each.

The contraction causes increased velocities and in-
creased lengths of streamlines in both the regions up-
stream and downstream from the contracted section; head
loss due to friction along those streamlines is increased
accordingly (cf. equation 4.9). Unless the flow is criti-
cal at some point on a streamline, the increased friction
losses will result in above normal water levels both up-
stream and downstream from the contracted section.

A necessary condition for separation is that the



velocity head at the point of separation exceed the total
head loss due to friction along the free streamline (cf.
equation 6.3). If the velocity head on the free stream-
line is not sufficient to balance head loss due to fric-
tion on the free streamline then the Bernoulli equation
on the free streamline (cf. equation 4.9) requires a
change in water level somewhere on the free streamline.

But the free streamline is the boundary of the stagnation

zone and the water level must be constant on the stagnation

zone. Such water level fluctuations on the free stream-
line would thus result in discontinuities in the hydro-
static pressure distribution (cf. equation 4.2). Such
discontinuities would result in forces that cauld not be
supported by the fluid.

The necessary condition for separation can be used
to predict the absence of separation. The absence of
separation is associated with a flow distribution that can

damage the downstream side of an earthen highway embank-

ment. The necessary condition for separation thus provides

important design information. Where hydraulic roughness
18 large in the expansion zone downstream from a con-
traction and friction loss 1s expected to be great,
separation should not be expected.

Comparison of computed and measured values of fall Ah
(cf. tables 7.9 and 7.10) indicate that the finite element

model can predict the large contraction losses that
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currently used empirical techniques seriously underesti-
mate.

Additional data is needed to completely verify that
algorithm 5.1 computes the proper flow distribution over
the entire two-dimensional region near the contracted
section. High-water marks and ground-surface elevations
are needed over a region subtended by one valley width
upstream and one valley width downstream of the contracted
section.

The writer suggests that the testing of equations 4.9

and 7.1 (equation 4.9) under conditions of steady gradually

varied turbulent flow mighi be valid gsubjects for labora-
tory hydraulic model studies. Once verified the equations
would become the basis for an extension of the theory to
field prototypes. This approach would be more valid than
the presently used approach of comparing the field proto-
types directly to small scale models. The latter exa-
gerates the effects of viscosity (cf. section 1.1) while
the suggested approach merely tests a general hypothesis
which when verified could be applied generally through
mechanics.

There has been no experimental investigation of the

two-dimensional nature of hydraulic roughness. Low values

of roughness are usually assigned in main channels passing

through wooded areas. But 1f the flow at flood stage is

not directed along the channel then the low value is not

114



115

justified. Zienklewicz'a (1970) general linear "quasi-
harmonic" partial differential equation admits an aniso-
tropic conductance which could eaéily be adopted to an
anisotropic channel resistance Cf in equation (5.3);
More extensive field surveys would be required; however,
and the added effort would have to be justified economi-
cally.

The accuracy of the finite element solution procedure
used by algorithm 5.1 can be improved by the use of quad-
ratic elements; the form of the interpolating function

(5.5) can be changed to one of the following:

(8.2a) ¢ = Oyx + 0,y + Oyxy + O,
(8.2b) b = @1X + 0,y + 0gx® + a,y® + o
(8.2¢) b = 0;x + a,y + a,xy + uuxz + asy2 + 0

The forms (8.2) are assoclated with elements that have
four, five, and s8ix degrees of freedom respectively; the
linear form (5.5) has three degrees of freedom. There
must be one information node for each degree of freedom
assoclated with each element. The increased number of
parameters would increase the order of equations (5.8),
but larger quadratic elements would make the same ac-

curacy obtainable with a smaller number of elements as



116

compared with the linear elements. Zienkiewicz (1970)
suggests an element based on equation (8.2c) with six

information nodes chosen at the vertices and midpoints.
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