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Abstract

The last few years have witnessed an ever growing interest in the field of mobile location

systemsfor cellular systems. The motivation is the series of regulations passed by Federal Com-
munications Commission, requiring that wireless service providers support a mobile telephone
callback feature and cell site location mechanism. A further application of the location technol-
ogy isin the rapidly emerging field of intelligent transportation systems, which are intended to
enhance highway safety, location based billing etc.
Many of the existing location technologies use GPS and its derivatives which require a special-
ized subscriber equipment. Thisis not feasible for popular use, as the cost of such equipmentsis
very high. Hence, for a CDMA network, various methods have been studied that use the cellular
network as the sole means to locate the mobile station (MS), where the estimates are derived
from the signal transmitted by the M S to a set of base station’s (BS) This approach has the ad-
vantage of requiring no modificationsto the subscriber equipment. While subscriber location has
been previously studied for CDMA networks, the effect of multiple access interference has been
ignored. In this thesis we investigate the problem of subscriber location in the presence of mul-
tiple access interference. Using MATLAB as a simulation tool, we have developed an extensive
simulation technigue which measures the error in location estimation for different network and
user configurations. In our studies we include the effects of log-normal shadow and Rayleigh
fading. We present results that illustrate the effects of varying shadowing losses, number of BS's
involved in position location, early-late discriminator offset and cell sizesin conjunction with the
varying number of users per cell on the accuracy of radiolocation estimation.



Chapter 1

Overview of Subscriber Location

The spatial properties of wireless channels are very important in determining the perfor-
mance of a subscriber location system. In this chapter we would be looking at the most com-
monly used channel models like macro-cellular and micro-cellular channel models, followed by
an overview of radio propagation environment. Later we would look at the most commonly used
subscriber location techniques and conclude with the most useful technique as far as CDMA
cellular networks are concerned.

1.1  Wireless Channel Models

In this section, a few realistic spatial channels are introduced, and the defining equations and
the key results are described. There are various models developed, each catering to a realm of
applications. More information about the various channel models can be obtained at [8].

1.1.1 Macrocell Model

In a macro-cellular environment it is usually assumed that the scatterers around the M S are usu-
ally of the same height as or higher than the MS. This implies that the received signal a the MS
arrives from all directions and hence is assumed to have an uniform distribution over [—x, 1] [5]
[6]. But the situation is different at the BS. In amacro-cellular environment it is assumed that the
BS is deployed above the surrounding scatterers and hence the multi path components at the BS
are restricted to a smaller angular region, and the direction of arrival is no longer uniform over
[, 7). Jakes[5] and Gans[7] have modeled the macro-cellular environment as aring of scatter-
ers around the MS but with BS outside thisring. Fig.1.1 [1] illustrates this geometry. Scatterers
are assumed to be present on a ring of radius a around the MS, and the BS is assumed to be at
adistance d from MS, such that d >> a. Assuming that MS uses an omni directional antenna,
distribution for signals arriving at BS p(0) is given by [1]

p(@):{ g\/[(ﬁ)z—(ﬂ—e)z] B—60um<0<pB+60n

otherwise

where,
a
Om = arctan(a)

1



Figure 1.1: MS-BS Geometry Assuming a Ring of Scatterers for Macrocells

1
= - df

2arcsin(=*)
For d >> a, we can approximate 6y, as a
O =~ =
M d

giving

1
K~ —
T

For M S thismodel predicts arelatively high probability of multipath components with small ex-
cess delaysalong the line of sight. From the BS perspective, all of the multi path components are
restricted to lie within a small range of angles. Measurements reported in [8] suggest that typical
angular spreads at BS for macro-cellular environment with T-R separation of 1Km, approximate
to 2 to 6 degrees.

This model can be used to generate sample channels for ssimulation processes. Generation
can be done by uniformly placing scatterersin a circular scatter region around the MS and then
calculating the corresponding direction of arrival, time of arrival and power levels.



1.1.2 Microcell Model

A micro-cell model assumes BS aswell as M S to be surrounded by scatterers. Thus, the angular
spread of the received signals at the BS is much higher in micro cells than in macro cells. The
situation in amicro cellular environment can be modeled as an ellipse with BS and MS located
at the foci of ellipse [8]. Fig. 1.2 represents geometrical interpretation of a Maricela model. In

Figure 1.2: MS-BS Geometry for Microcells

amicro cellular environment antenna heights are very low, hence multi path scattering isjust as
likely near the BS as it is near the MS. An essential feature of micro cellular model is that it
considers multi path signalsthat arrive with adelay < a chosen value of maximum delay 7, [8].
This assumption islogical, as components with longer delays correspond to longer path lengths,
which experience higher path losses. If 7, is chosen sufficiently large, model would take into
consideration nearly all the power and DOA of multi path components. If a,, and by, represent
major and minor axis of the ellipse containing the scatterers,

am = Cizmbm = /C?12, —d? (L1)
where c isthe speed of light. The power-delay-angle profile obtained from this model is given by
[8l:

(d®-7%c?)(d?c-2dcr? cos(¢)+7°c%)  d
fro(r. ) = { , cosg—cr) c <T<Tm

otherwise

This model is used to simulate power-delay-angle profiles, power-delay profiles, joint marginal
characteristics of direction of arrival and narrow band fading envel opes.



1.2 Radio Propagation Environment

Radio signals generally propagate according to three mechanisms:. reflections, diffraction and
scattering. As aresult, radio propagation can be characterized by 3 nearly independent phenom-
enons

1. Path Loss
2. Slow Log Normal Shadowing
3. Small scalefading

1.2.1 Path Loss

Both theoretical and measurement based propagation models indicate that the intensity of an
electromagnetic wave in free space decays with the square of radio path length d. The received
power at adistance d is given by N
(9

4nd
where € is the transmitted power, A. is the wavelength and k is a constant of proportionality.
These losses are categorized under ‘Large Scale Losses' . Simplest path loss model assumes that
the received power is

Qp(d) = Qk(7—)° (1.2)

() = 25(ck) — 10mlog(5) 13

where Qp(do) is the average received power at a known reference distance do. The parameter m
is called the path loss exponent. For any transmitter and areceiver these losses are expressed as a
function of of the distance’'d’, by using a path loss exponent ‘m’. Value of m dictates the rate at
which the signal strength decays with distance. Typically for free space communications value of
mis assumed to be 2. In real world scenario value of path loss exponent depends on the cell size
and local terrain. Its value varies between 3 to 4 for a macro cellular environment and between
2 to 8 for a micro cellular environment. Table 1.1 [16] lists Path Loss Exponents for different
environments.
In our model we are considering m = 4.

1.2.2 Slow Log-normal Shadowing

Equation (1.3) can not be directly used in estimation of Path Losses. Thisis aresult of varying
environment clutter. M easurements have shown that at any value of d, the path loss at a particular
location is random and distributed log-normally about the mean distance dependent value. The
simplest path loss model assumes that [21]

2(0) = () — 10mIOg(2)(dBM) + s (ABM) (14)

where



Table 1.1: Path Loss Exponents for different Environments

Environment Path Loss Exponent, m
Free Space 2
Urban area cellular radio 2.7t03.5
Shadowed urban cellular radio 3to5
In building line of sight 16t0l18
Obstructed in building 4t06
Obstructed in factories 2t03

* L0 dBm)(do) isthe average received signal power at aknown reference distance do. This av-
erage power would depend on the frequency, antenna heights, their gains and other factors.

e misthe path loss exponent factor.

* ¢qp) iSazero mean Gaussian random variablein dB that representsthe error between actual
and estimated path loss. Variation inits valueis caused due to shadowing.

1.0 10.0 100.0 Km
50 R \ I

=70 |— ‘\ \\\ free sapce propogation
B -20dB per decade

Figure 1.3: Path Loss in Free Space and Macrocellular Environments, =4, o-o=8dB

Shadows are generally log-normally distributed, and their probability density function is

given by [21]
(X = Haygem (A))?
o (d)(X) = exp{— ) 15
Pa,(dem)(d)(X) Vron Pl 202 } (1.5)
where, g
Moy dem)(d) = pa,dsm)(do) — 1Omlog(d—0)(dBm) (1.6)

and, o isthe shadow standard deviation. Fig. 1.3 [21] illustratesthe variation in signal strength
with distance in presence and absence of shadowing. Usually o ranges from 4 to 12 dB with
8dB being itstypical value.



1.2.3 Small Scale Fading

Transmitter

Receiver

9‘;‘&5 NLO% @\83\"; \%;“%64(17'2

VY. Y

Figure 1.4: Multipath Propagation

As can be seen from Fig. 1.4 plane waves at receiver arrive from many directions with
different delays and phase angles. This phenomenon isdescribed as multi path propagation. Thus
at the receiver, all these multiple copies vectorially combine to produce a composite received
signal as shown in Fig. 1.5. Mobile communication uses radio frequencies with wavelengths
in orders of ten’s of centimeters. Hence, small changes in differential propagation delays lead
to changes in the phase of arriving plane waves. Hence the waves undergo a constructive and
destructive interference at the receiver. As aresult the signal experiences rapid fluctuations in

Threshold

: u-\<;;7ﬂff\<7, ---------- -

time ~

amplitude =

fade fade

Figure 1.5: Received Signal at Receiver due to Multipath Propagation

amplitude over a short period of time, as can be seen in Fig. 1.5. Such an effect leads to fading
often referred to as multi path fading or small scale fading.
Multipathsin radio channel result in the following:

1. Rapid changesin signal strength over asmall period or distance.

2. Random frequency shifts on different multi path signals, thereby leading to a form of fre-
guency modulation. These random frequency shiftsin the multi path versions of the signal
are refereed to as Doppler shifts. These Doppler shifts are a result of relative motion be-
tween the transmitter and receiver. Fig. 1.6 illustrates one such situation, where a MS

6
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Figure 1.6: Doppler Spread in Cellular Networks

moves with a constant velocity v from X to Y aong a path of length d. It is receiving
2.7)

signals from a remote source S. The difference in path lengths traveled by the wave from

source S topoints X and Y is
Al = dcos6o
VAt cosé

where At is the time required for the MS to travel from X to Y and 6 is assumed to be
constant over distance Al. The phase change in the received signal due to differencein path

lengthsis
2rAl
Ap = —
‘ A
= 2rVAL cosé (1.8)
and hence the apparent change in frequency or Doppler shift is given by
fo LA
47 21 At
(1.9

Vv
= —Cos6
A
3. Time dispersion caused by the multi path propagation delays. This can be explained as

broadening of a pulse due to time delay as shownin Fig. 1.7.
Small scale fading can be further classified into frequency non-selective or flat and frequency

selective fading.
7



origina pulse

time
broadened pulse
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Figure 1.7: Time Dispersion in Transmitted Pulse due to Multipath Propagation

amplitude

time

s(t) r(t)
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Figure 1.8: Flat Fading Channel Characteristics

e Flat fading: If the mobile radio channel has a constant gain and linear phase response over
abandwidth which isgreater than the bandwidth of the transmitted signal, then the received
signal would undergo flat fading [16]. The characteristics of a flat fading channel can be
illustrated as shown in Fig. 1.8. Thus, in aflat faded channel, amplitude of the received
signal may change with time but the frequency spectrais preserved. Flat fading channels
are also referred to as amplitude varying or narrow band channels, since the bandwidth
of signal is narrow as compared to channel bandwidth. The most commonly encountered
amplitude distributions belong to the category of flat fading are Rayleigh, Rician and Nak-
agami fading.

e Frequency selective fading: If the channel possesses a constant gain and linear phase re-
sponse over a bandwidth that is smaller than the bandwidth of the transmitted signal, then
the channel creates frequency selective fading over the signal [16]. When this occurs, re-
ceived signal consists of multiple versions of original waveform that are attenuated and
delayed in time, thereby distorting the received signal. Thus, the channel introduces inter-
symbol interference (I1Sl). When viewed in frequency domain, certain frequency compo-
nents in the received signal spectrum have greater gains than others. Frequency selective
fading channels are also refered to as wide-band channels as the bandwidth of the trans-
mitted signal is more than the bandwidth of the channel impul se response.



1.3 Overview of Subscriber Location

The art of subscriber location in awireless network is aso termed as” Radiolocation”. It involves
the following:

1. Identifying the BS's that would participate in the process of subscriber location. This
involves selection of a set of BS's within the coverage area that receive intelligible levels
of signal from the MS under consideration. Normally three or more BS's from coverage
area are selected for subscriber |ocation.

2. Estimating 1-D position: Each BS, participating in the process, independently produces an
estimate of the subscriber location based on its measurements.

3. Location estimation: Estimates from all the participating BS's are then used by position
location algorithms to produce an accurate estimate of the subscriber location within the
coverage area.

But, the estimates produced are not always very accurate. The major sourcesof error in subscriber
location systems are

e Multi path Propagation: Multi path propagation is a primary source of error in position
location techniques. Accuracy is greatly affected when the reflected rays arrive within a
very small period of thefirst arriving ray. Case is even more worsened when the power of
reflected rays is more than the first arriving ray. Several methods have been developed to
mitigate the effects of multi path on radiolocation. The most recent being super resolution
techniques such as Root-MUSIC [13] and TLS-ESPIRIT algorithms[9]. Other developed
techniques are based on Extended Kalman Filtering [10], High-resolution frequency esti-
mation [12], and Least Mean Square [11] approach.

e Non-line-of-sight propagation: Typicaly Non-line-of-sight (NLOS) propagation in wire-
less communications accrue up to an average of 400-700m [14] and bias the estimations.
Hence it is necessary to distinguish between aNLOS and aline of sight (LOS) component.
By using the a priori information about range error statistics, range estimations made over
a period of time and corrupted by NLOS errors can be adjusted to near their correct val-
ues. An alternative approach is to reduce the weights of the BS's prone to NLOS reception
while estimating location using position location algorithms[1].

e Multiple Access Interference: Co-channel interference is a problem faced by al the cel-
lular systems. In CDMA users share the same frequency band, but use unique PN codes.
Near far effectsin CDMA networks are the biggest source of errorsin position estimation.
Multiple access interference (MAI) greatly effects the performance of ToA estimation sys-
tems. We havetried to study the effects of MAI on accuracy of subscriber location systems.
More about effect of MAI on subscriber location will be discussed in subsequent chapters.

The following parameters of aradio signal can be used to perform Radiolocation,

9



e Signal Strength
e Angle of Arrival (AOA)
e Timeof arrival (ToA)

Let us briefly look into each of the above methods.

1.3.1 Signal Strength

This method makes use of known mathematical models describing signal attenuation with dis-

tance [2][3]. Thus by exploiting the one-to-one relationship between the signal strength and

distance, an estimate of the distance is obtained. The MS lies on acircle centered at the BS and

radius equal to the estimated distance. By using multiple BS's, M S location can be estimated.
This method of estimation assumes the following:

e Signal attenuation isonly due to path loss.
e The path loss model is known and is deterministic.

But, in real world situationsthe aforementioned assumptionsfail. In aradio environment the path
loss depends not only on distance but also on the antenna heights of the BS and M S, and terrain
characteristics such as buildings, hills etc. The site specific dependence of radio propagation
makes the theoretical prediction of path loss difficult. As a combined effect of all these losses
signal strength may vary as much as 30-40dB over distances of about half wavelength. Effect of
these variable losses can be minimized by making use of premeasured contours centered at the
BS[4]. Method of contours assumes the following

e Topography around the BS remains constant
¢ All the BS swithin the coverage area have such contours

Plotting these contours for every base station within the coverage area is a time consuming and
tedious job. Moreover, these contours are subject to change every time the topography around
the BS changes. Thus, it isaless attractive approach especially for amicro cellular environment,
where the number of BS's within a coverage area are much more.

1.3.2 Angle of Arrival

Angle of Arrival (AoA) or Direction of Arrival (DoA) techniques constitute a class of position
location systems called direction finding systems. These techniques restrict the location of aM S
along aline in the estimated DoA. As shown in Fig. 1.9 when multiple AOA measurements are
made at multiple locations, location of the MS can be estimated by intersection of their line of
bearings. In theory, we need only two BS to estimate the M S location, but in practice due to the
channel impairments, discussed earlier, more than 2 sensors are required.

10
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Figure 1.9: 2-D AoA Position Locator

AOA measurements can be made by using antenna arrays or super resolution techniques.
The antenna arrays to be used for AOA measurements should have large apertures and must bear
large number of elements. Also, for increased accuracy they must be able to provide a high
angular resolution. AoA measurements can suffer from radio channel impairments such as multi
path propagation, NL oS reception and MAI. In AOA measurement systemsthe direction of source
is usually chosen to be the one of the strongest arriving signal component. In systems that also
estimate multi path delays, the direction of source is estimated using the first resolvable multi
path component.

The problem is elevated when estimation is carried out in a micro cellular environment
where the BS's are usually surrounded by a number of local scatterers. In such shadowed areas
the LOS signal may be completely obstructed by the surrounding environment and only multi
path components of the signal may be detectable, resulting in the arrival of signal at the BS
with greater angular spreads. In such cases, the estimate will be along the strongest or the first
resolvable multi path component, which leads to error in estimated MS location. The situationis
slightly better for macro cells. In amacro cell the scattering objects are primarily within a small
distance of the MS, as the BS's are usually elevated well above the local terrain [5], [6]. Jakes
[5] and Gans[7] have modeled this situation.

Though we may use A0A technique in amacro cellular environment, it isimpractical to use
it in micro cellular environment. Also, accuracy of estimation in using AoA technique reduces
as distance between MS and BS increases [1]. Moreover, the methods used for AOA estimation
necessitate the use of complex signal processing methods for estimation.

1.3.3 Time of Arrival

Time of Arrival (ToA) constitutes a class of position location methods called ‘ True Ranging
Position Location’ systems. It measures the exact distance between a MS and a set of BS's
through the use of Time of Arrival (ToA) of the signal. Distance between aBS and aMSisequal
to the product of the velocity of the radio signal and the time it takes to reach the BS from the
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MS, i.e,
R =cr (1.10)

where, R is the range measurement, c is the speed of light, 7; is the ToA estimate at the i
receiver. Thus, if a measurement was made, MS must lie on the periphery of acircle centered at
the measuring BS and radius equal to the estimated distance. An exact estimation of location can
be made using triangulation, as shown in figure 1.10

Figure 1.10: 2-D ToA Position Locator

The accuracy of subscriber location is directly related to the accuracy of the ToA estima-
tion. Both GSM and CDMA systems use PN sequences. In GSM every burst consists of a pre
determined 26 bit PN sequence. Thus at a BS, the receiver synchronizes the locally generated
PN sequence with the received PN sequence and estimates the delay in received signal. Similar
to this, in a CDMA network the receiver synchronizes itself with the received PN sequence and
thus estimates the delay.

For systems employing PN codes, we could

1. estimate a coarse timing using a sliding correlator or matched filter
2. estimate fine time using a delay locked loop or tau dither loop

[1]. Since finer estimates can be obtained from delay locked loop’s (DLL), they are better suited
for TOA estimations in radiolocation systems.

Fig. 1.11 outlines the structure of a typical DLL employed in TOA estimations. It alows
synchronization of locally generated PN sequence with the incoming code. It generates a local
code and correlates theincoming PN code with the early and late versions of thelocally generated
code. Shown in Fig. 1.12 are the autocorrelations of the early and late codes, where N represents
the length of the PN code.

The accuracy with which the DLL can track the incoming PN code depends on a parameter
A called the ‘Early-Late’ discriminator offset. The early and late PN sequences are separated by
aperiod equal to 2AT.. The code phase error signal e(t) is obtained by squaring and differencing
the correlator outputs. The squaring operations remove the effect of modulation and carrier phase
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Figure 1.11: Non Coherent DLL used for Time Based Subscriber Location
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Figure 1.12: Autocorrelation Functions of the Early and Late PN code

shift [1]. Thiserror signal isthen passed through alow passfilter, to eliminate the high frequency
components and obtain the signal u(t). u(t) drives the voltage controlled clock (VCC) to correct
the code phase error of locally generated code. Also the level and polarity of thissignal provides
an estimate of 7. Fig. 1.13 is the discriminator characteristic curve for the DLL, shown in Fig.
1.11. Let 7 represent the value of r for which the DLL is synchronized with the incoming PN
sequence. At T =7, u(t) = 0.

Once an estimate of ToA is obtained, the next step is position location. The simplest ap-
proach in position estimation using TOA estimate is the geometric approach which computes the
point of intersection of circles of ToA, as shown in Fig. 1.14. The location of MSis the point of
intersection of the circles. But, this would happen only when the ToA estimates are exact which
in practice israrely possible due to

e Effectsof MAI, NLOS propagation and multi path fading.
e Accuracy of the employed delay estimation techniques.

In practicethe situationisas shownin Fig. 1.14. The circles do not intersect at one common
point. As can be seen there are three points of intersections. In such cases location estimate is
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u(T)

Transmission

Figure 1.14: Ambiguity in Radiolocation, as all the Circles do not Intersect at one point

derived by finding out the centroid of the triangle so formed.

To improve the accuracy of estimation, we use more than three BS's. In such a case, es-
timation of position using geometric approach is very difficult. In practice a popular method
for estimating MS location is using the method of non-linear least squares (NLLS) [1]. This
approach assumes that the MS located at (Xo, Yo) transmits the signal at time 7. There are N
BS'slocated at (X1, Y1), (X2, ¥2),.....(Xn, Yn), iNVOIved in the process of subscriber location. They

receive the transmitted signal at times 74, 75,.....7n, respectively. As a performance measure we
consider the function [1]

fi(2) = o = ) = V0§ =07+ (1 =97 L1y

where c is the speed of light, and

z=[X9,7].
Basically, fi(z) isan estimation of the error between the actual distance c(r; — 79) of MSfrom BS
i a (x,Y;) (based on ToA estimate, 7;), and the estimated distance +/(x — X)2 + (y; — )2, where
(X,y) represent the estimated location of the MS. Note that if the estimated values of (X,y) and 7
coincide with the actual position of MS and actual time 7o at which the signal was transmitted,
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then fi(z) is zero. However, the estimated values of ToA's 7; are in error. Hence to obtain a
location estimate based on raw ToA estimate the following cost function is used [1],

N
F(2) = Z a2 £2(X) (1.12)
i=1

where «; are the weights that can be chosen to reflect the reliability of a BS in estimating 7. If
a BS used in position location is prone to heavy multi path and NLOS losses due to its terrain
and topography, we could choose a lower value of « for it. A location estimate is obtained by
minimizing the cost function F(z) givenin (1.12).

1.3.4 TDoA Estimation

Similar to the ToA approach, there is a TDoA (Time Difference of Arrival) approach, which
makes use of difference of ToA’'s at the participating BS's. In TDoA approach, the BS's are
located at the foci of the hyperbola on which the MS must lie. Making use of triangulation,
an exact MS location can be found. Relationship between the range difference and the TDoA
measurement between the receiversis given by

R j = crij
= c(ri— 7))
= R -R; (1.13)

where 7; j is TDOA between receiver i and j, R ; istherange difference, r; and r; are ToA arrival
estimatesat BSi and j, while R; and R; are range estimates at BSi and j. Figure 1.15 illustrates
aTDOoA estimationin 2-D.

Figure 1.15: 2-D TDoA Position L ocator

There are 2 ways of obtaining TDOA estimates [8]. The first way is subtracting the ToA
estimates from two BS to produce a relative TDOA estimate. But this requires a knowledge of
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timing at the 2 BS's and thus requires a strict clock synchronization between the two BS's. For-
tunately, thisis availablein CDMA networks. Also, this method has an advantage of eliminating
the errors in TOA estimates common to al the BS's. While, determining the TDOA estimates
from ToA estimates is feasible for some air interfaces, the second method that makes use of the
cross correlation estimation technique is the predominantly used technique for deriving TDoA
estimate. Consider asignal s(t) being radiated by a MS and being received by two BS[§].

Let

ri(t) = Cys(t — di) + ne(t)
ra(t) = Cos(t — dp) + my(t) (1.14)

represent the received signalsat thetwo BS's. C; and C, are the scaled amplitudes of the received
signals with delays d; and d,, corrupted with noise ny(t) and ny(t). It is assumed that s(t), ny(t)
and ny(t) arereal and jointly stationary, zero mean random processes and that s(t), n(t) and n,(t)
are uncorrelated. Assuming d; < dy, (1.14) can be rewritten as

ri(t) = st) + m(t)
F2(t) = As(t — d) + n(t) (1.15)

where Aisthe amplituderatio between the two received signalsand d = d,—d;. TDOA estimation
requires estimation of values of d.

Hi(f)
\—‘1
l()2 -pé’(lk =d

} Hy(f) | ‘ delay‘

L

ry

Figure 1.16: Generalized Cross Correlation Method for TDOA estimation

A generalized cross correlation approach is shown in Fig. 1.16. In the most simplest form,
excluding the two filters shown in Fig. 1.16, the cross correlation function of these two received
signalsis

C(r) = % fo ' F(Oro(t + 7)dt (1.16)

TDOA estimate d is the value of 7 that maximizes the cross correlation. This approach requires
analog signalsry(t) and r,(t) to be sent to a common processing site. Also, since estimation due
to TDOA does not require the BS's to be synchronized in time, it can be applied in narrow band
cellular systems like GSM for subscriber location.

Once the TDoA estimate is found, a hyperbolic position location algorithm is used to pro-
duce an accurate and unambiguous solution to the position location algorithm. In our work we
have evaluated the performance of position location techniques using ToA estimates and hence
we would not be discussing the hyperbolic position location techniques in detail. For further
reading on hyperbolic position location estimation techniques, reader is directed to [8].
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1.4 Subscriber Location in CDMA systems

Section 1.3 outlines various methods can be used for subscriber location in a cellular environ-
ment. In CDMA cellular systems the MS's are power controlled to combat the near-far effect.
Hence we can not use the estimation method based on signal strengthsin a home cell, asthe sig-
nals from all the M S within the home cell would be received with the same strength at the home
BS. AOA method could find application in systems requiring lower accuracies. With increased
multi path interference and poor LOS reception in amicro cellular environment, AOA provesto
be a very ineffective method for radiolocation in micro cells. Also estimation of angle of arrival
by means of an antenna array is a complicated process. It requires a complicated antenna design
and extensive signal processing. For TDoOA systems, the signals received at the BS's must be
transmitted to a common processing site. Thisincreasesthe overheadson the BS's. Alternatively
ToA methods could be used. The only drawback they face is the requirement of high timing
resolution equipment. But for a CDMA cellular network more accurate time estimates can be
derived because they employ PN sequences.

Thus, for a CDMA network, time based approach is the most promising technique. Our
discussion in the subsequent chapterswould be based on subscriber |ocation using TOA approach.
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Chapter 2
Approximating MAI in CDMA Networks

2.1 Multiple Access Interferences in CDMA Networks

InaCDMA system al the users share the same frequency band. Asaresult, at a CDMA receiver
signals from users, other than the intended user, act as interfering signals, thereby giving rise to
multiple access interference. Fig. 2.1 represents such a situation.

Figure 2.1: Coverage Area

With reference to Fig. 2.1, the coverage area comprises of three cells, C;, C; and Cy. These
cells have n;, n; and ny users respectively. The BS'si, j and k exercise power control over the
usersthey serve. Let A, A; and A, denote their areas. Only three cells have been considered for
simplicity of explaination.

Multiple access interference within a coverage area can be broadly classified as:

¢ Intracellular interference: Intracell interference experienced at aBSis caused by the users
in the same cell. This is mainly caused due to the non orthogonality in the PN codes
assigned to the users. For instance, consider cell C;. At BSi while processing the signal
from user U1, signals from the other n; — 1 users, power controlled by BS i, would act
asinterferes. A mathematical expression for the intracellular multiple access interference
would be derived in subsequent sections.
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2.2

Intercellular interference: Intercell interference experienced at aBS, is caused by the users
in other cells. These users are power controlled by another BS. It is assumed that the
power control overcomes shadowing losses and large scale losses. Users within acell are
al power controlled by the same BS and hence the received power at the controlling BS,
from the usersit power controls, is same and is equal to the nominal power. For instance,
consider cell C;. The received power due to all the n; users of cell C; at BSi would be the
same and be equal to nominal power P. Same is the case with the n; users of cell C; at
BS j. But, the received powers of n; users, power controlled by BS i, at BS j would not
be the same. The power received at BS j from user U1, power controlled by BS, at the
edge of cell i, would be comparable to the power received from user U2, even thoughiit is
not power controlled by BS j. Thus, it will act as an interferer at BS j. Similar will be the
case with all theusersof cell i. Such an interferenceis called intercellular interference. We
would derive a mathematical expression for the same in subsequent sections.

Modeling Intracellular Multiple Access Interference at the
Receiver Output

Let us derive a mathematical model for the intracellular multiple access interference caused due
to the n, — 1 users of some cell C,, at itsBS p. In a CDMA system using binary signaling, the
radio signal from the k' user, arriving at the BSis given by:

St — ) = V2Piai(t — bt — 7) cos(wet + ) (2.2)

where,

P, is the power received from the k' user at the BS. Assuming, perfect power control is
exercised, we can replace Py by P, where P represents the nominal power received at the
BS from a user under its power control.

c(t) isthe spreading (or chip) sequence for a user k.
b« (t) isthe data sequence for a user k.

7 isthe delay for user k relative to a user O.

¢k isthe phase change for user k relative to a user 0.

wc isthe carrier frequency.

In the above equation we assume that there is no multi path interference in the channel.

A PN sequence c(t) is of the form: [16]

S S R (V)
6=, ¥ aan LT @2)
j=—c0 i=0 ¢
aie{-11



where,
e T representsthe chip duration.
e MT, represents the chip repetition period.
¢ II represents the unit pulse function given by

0<t<1

1@ = { 0 otherwise (23)

e i isanindex to denote a particular chip within a PN cycle.

For data sequence by(t), Ty, isthe bit period such that
Ty, = GT,

where G represents the spreading factor or gain of the CDMA system. It is not necessary that
the gain G of a CDMA system be equal to M. In case they are same, a PN sequence would be
repeated for every bit period T,.

The user data sequence by(t) is given by

N t—jT
() = D, bll—=) (2.4)
j:—cx)
bk,j € {—l, l}

Figure 2.2 isamodel for CDMA multiple access interference. As can be seen from Fig.2.2,
the signal received at the BSis given by

np—1

r(t) = > sdt-7d+n@ (25)
=0

k

where

e n(t) represents a zero-mean white Gaussian noise with two sided power spectral density
No/2.

e N, represents the number of users power controlled by BS p.

To derive adecision statistic, the received signal r(t) is mixed with the baseband, multiplied with
the PN sequence of the desired user, and integrated over the bit period T,. Assuming that the
receiver is phase and delay synchronized with the k" user, the output of the correlator can be
written as, [16]

(j+1)To
Z = f r(t)ck(t) cos(wct)dt (2.6)
J

Tb
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Figure 2.2: Model for CDMA Intracellular Multiple Access Interference

Assume that the receiver is phase and delay synchronized with the k' user, for simplicity we
would assume 7,=0, and ¢«=0. For simplicity of notation, we assume that the desired user is user
0. Hence k=0.

Substituting equation’s (2.1) and (2.5) in equation (2.6) we obtain

Th
Zy = . [r(t)co(t) cos(wct)]dt

Th
[ [(Z St - ) + n(D)co(t) costweD)]el

f :[(Z V2Pt - 1Bt~ ) COs{wet + ) + (D] coft) cos(wet)lt (2.7)
=0 k=0

Zo isadecision statistic for the desired user.
We may express equation (2.7) as

Zo=lo+{+n (2.8)
where,

1. I isthe contribution from the desired user, i.e.,
Tb
lp = V2Pobig(t)CA(t) cos?(w,t)dt
t=0
Ascy € {-1,1}, 2=1.
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Hence expression for | reduces to

lo = \/%bo(t)-rb (29)

2. { represents the contribution of multiple access interference and is the summation of np, -1
terms, I, where

Th
I = . V2Pyc(t — 1) bi(t — 7ic) cos(wit + i) Co(t) cos(wet)dt (2.10)
np-1
[ = Z M (2.11)
]

3. n represents the contribution of noise and is given by

To
n= f N(t)Co(t) cos(wct)dt (2.12)
t=0
L et us determine the variance and mean of 7.
To
o = Eln] = [ EInO]eo) coswitdt = 0 (213
t=0

Variance of n can be computed as
o2 = E[(n - uy)?] = E[n’]
Th
= E[ f n(t)n(1)co(A) cos(wc)Co(t) cos(wct)dtdA]
f f " BRIt costwe o) cos(wetitdl
Now,

E[n(t)n(2)] = —6(t - Q)

Hence

0' = f f —co(/l) COS(wcA)Co(t) cos(wct)s(t — A)dtda
A

o2 = f —ch(t) cos(wet)dt
t=0 2
c5(t) = 1. Hence

2_ (™ No
oy = f Z(l + cos(2w.t))

=0
2 NoTp
o, = 7

(2.14)
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2.2.1 Gaussian Approximation of Intracellular MAI Present at the Corre-
lator Output

Assuming alarge number of interferes, by virtue of the central limit theorem (CLT), the distribu-
tion of £ can be approximated by a zero-mean Gaussian distribution [16] with variance o-§ given
by [16] .
2 \Mp—
o= M (2.15)
‘ 6

Let,

E=C+n (2.16)

define the combined noise and intracellular interference at the receiver output. Assuming that the

& represnts total noise present at the correlator output (excluding intercellular noise)
(¢ represents the intracellular interference component of total noise

7 represents thermal noise

noise n(t) - mmmomoooooooooooo o \

e a ey

MAI

Figure 2.3: Representation of Noise Present at the Correlator Output

multiple access interference and noise are independent processes, the variance of & can be written
as

o"? = 0'? + 0',2] (2.17)
GT2YP ' P NoTo
= = 2.1
6 T (2.18)

2.3 Modeling Intercellular Multiple Access Interference

Let us derive an expression for the intercellular interference caused by the users of cell C; at BS
J. Let usrepresent thisby I;;. Let the user U1, shown in fig. 3.2 be located at M(X,y). Let the
path loss exponent be m. Let the fading on path from this user to cell C; be Rayleigh distributed,
and represented by y; . Similarly, let the fading on the path from this user to cell C; be Rayleigh
distributed, and represented by yj. The average of x? is the log-normal fading on the path from
this user to cell i, i.e, E[x?|4] = 1074/1%, where ¢ is the decibel attenuation due to shadowing,
and is a Gaussian random variable with zero-mean and standard deviation o5 [18]. Similarly the
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average of )(J? isthe log-normal fading on the path from this user to cell j. Let P be the nominal
power received at BSi from user U 1.

It isassumed that the power control mechanism overcomes both the large scale path loss and
shadow fading. However, it does not overcome fast fluctuations of signal power due to Rayleigh
fading [17]. AsBSi exercises a power control over the MS, the actual transmission power of the
MSwould be

P x ri(x, y)™104/1° (2.19)

where ri(x,y) is the distance of the MS from BSi. Consequently, assuming an uniform user
density in the cell, the relative average interference at cell C; caused by all the usersin cell C; is

given by [19] 16
(%, y) x 107
Iy = E[ f f e yl(fy) dAX. )] (2.20)

The expectation is calculated as follows:
Using iterated expectations,

E[10% 2] = E[E[10% x2IZ;, /]

= Eq [10BEQ2I4. £]]

Given ¢ and gj,
ElxfIgi. 1]
islog normal and is equal to
g
1 -1
Thus,
I i-¢p)
E[10% ] = E[107 ™ ]
Let X= ¢ - ¢

Thus, X isa Gaussian variable of zero-mean and variance equal to 20°2.

g X
E[10%,}] = E[”]

7X2

I © Xe4‘r2
E[10% ] =
: \/47r0'2
E[10% .XJ?] = g’ (2.21)

where y = In(10)/10. Substituting the result back in (2.20) we obtain

oot f f i :EX 3 %) (2.22)




If @ denotes the voice activity factor, then the above equation becomes

m
o i@ f f V) A 223
X y) X.Y) (223)
Let ;; denote inter-cell interference factor dueto auser incell i at BS j.
Hence,
Iij
Kij = F (224)
()
g0 2 f f dA(X 2.25
i y) A0 (2.25)

Note, that in our model «;; is zero. It isimportant to point out the importance of «;j. «ij gives
theinterference at BS j caused by asingleuser incell i. Thus, if the total number of usersincell i
were to change, the new interference levels can be obtained by simply taking a product of «;; and
the number of users.This simplifies our calculations as the interference need not be recal culated
for the new number of users.

Thus, using (2.23) we can compute relative average intercellular interference for an uniform
user distribution. Thus, for an uniform user distribution, we can write the total intercellular
interference at BS j dueto usersincell i as

lij = M X kij (2.26)

It should be noted that the above interference cal culations are assuming nominal power as unity.
If Pisthenominal power from apower controlled user received at home BS, then equation (2.26)
would be modified as

Iij :PxniXKij (227)

Equation (2.27) givesthe total intercellular interference at cell C; dueto usersin cell C;.

2.4 MAI at Home BS

Consider that the desired user isin cell C;. Hence cell C; isthe home cdll, and BSi isthe home
BS. (refer to Fig. 2.4) Thetotal MAI at home BS has two components; namely

1. Intracell MAI at homeBS: n;—1 usersof cell C; other than the desired user act asinterferes.
If modeled as awhite Gaussian process, its variance alzh can be computed in away same as
(2.15) was derived, giving

GT2'
O'|2h = TC P
k=1
GT2
= P(n, (2.28)
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Figure 2.4: Estimation of Total MAI

2. Intercell MAI at home BS: All the usersin cells within the coverage area other than cell C;
would contribute to the inter cell interference at BSi. Referring to (2.27), if A represents
the set of cellsin the coverage area, then assuming that the nominal power level throughout
the coverage areaisthe same and is P, the total intercellular interference at home BSi , Ig,
given by:

le, =P > Nk, (2.29)

ee{ A}

where k,; givesthe interference dueto asingle user in cell ¢ at BSi, i.e. the home BS.

2.5 MAI at a Non-home BS

For illustration consider that TOA estimation is being carried at BS j, while the user is power
controlled by cell C;. The total MAI at a non-home BS has three components; viz

1. Intracell MAI at BS j: n; users of cell C; act as interferes. If modeled as white Gaussian
process, its variance o2 is give by

Inh
GT2 ¢
O-|2nh = 6C Z P
k=1
GT?
6

= P(ny) (2.30)
2. Intercell MAI at BS j dueto N; — 1 usersof cell Ci: Then; — 1 usersof cell C; other than the
desired user act asinter cell interferesto the signal of the desired user at BS j. Referring to
(2.27), thetotal intercellular interference at BS j dueto n; — 1 users of cell C; (home cell)

le,, givenby:
IEnhh = P(ni - l)Kij (231)
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3. Intercell MAI a BS j dueto all other cell’s: The users of al cells other than cell C; (home
BS) and C; (cell carrying out TOA estimation) act as inter cell interferes to the signal of
the desired user at BS j. Referring to (2.27), the total intercellular interference at BS j due
to all other cell’s g, isgiven by:

lew =P > Nk, (2.32)
pe{A-{ij}

2.6 Signal Strength at the Receiver

In the above sections, we have estimated the total multiple access interference at the BS involved
in the process of radiolocation. But, for simulation purpose we aso need to consider the attenu-
ation in signal, whileit travelsfrom the MS to the receiver. As earlier there are two cases.

1. Signal strength at home BS: As home BS exercises power control over the MS, the power
received at the home BS is same as nominal power P. Hence, the received power P, is
given by

P=P (2.33)

2. Signal strength at a non home BS: «ij gives the interference due to asingle user in cell C;,
at BS j. The signal reaching the non home BS j can be considered as interference for the
users of cell C;. It should be noted that «;; is a measure of power level. For simulations,
we need to know the reduction in signal strength, while traveling from ahome BS to a non
home BS. Thisisgiven by /kij. Also, if P represents the nominal received power at a BS,
then the signal power received at a non-home BS would be

P,— = PKij. (234)
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Chapter 3

Simulating Subscriber Location

3.1 Tools Used

The following tools were used to develop this ssmulation

1. Matlab: MATLAB is a high performance language for technical computing. It integrates
programming, visualization and computation in a very easy to use environment. Typical
uses of MATLAB involve [24]

(8) Mathematical computation
(b) Algorithm development
(¢) Modeling, simulation and prototyping
(d) Dataanalysis
(e) Scientific and engineering graphics
(f) Application development including building of a GUI
It features afamily of add-on application specific packages called ‘ Toolboxes . Toolboxes,

are a collection of Matlab files (m-files) that extend its functionality to solve a particular
class of problem. MATLAB also allows a user to define his own functions and scripts.

Our simulation uses MATLAB Release 14, V7.0. For application development, we have
used the digital signal processing and communi cations tool boxes.

2. Simulink: Simulink is a software package for modeling, ssimulating, and analyzing dy-
namic systems. It supports linear and nonlinear systems, modeled in continuous time,
sampled time, or a hybrid of the two. Systems can also be multirate, i.e., have different
parts that are sampled or updated at different rates. [25]

Simulink allows an engineer to move beyond idealized linear models to real world non-
linear, dynamically changing models that describe real world phenomenon. It includes a
comprehensive library of sinks, sources, connectors, linear and non-linear components. It
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also alows creation of user defined blocks through ‘ S-Functions'. Functionality can be
extended by using application specific blocksets. Simulink also provides various tools for
debugging the ssmulink models.

For our use we have used Simulink 6.0. Our simulation involves use of communication
and DSP blocksets.

3. ASAMIN: ASAMIN[26] isaMatlab gateway function to Lester Ingber’s “Adaptive Simu-
lated Annealing” (ASA) package.
ASA [27] is a C-language code developed to statistically find the best global fit of a non-
linear constrained non-convex cost-function over a n-dimensional space.
We estimate the user location by minimizing Equ. (1.12). If we were to minimizeit using
conventional approaches such as steepest descent algorithms a global optimum may not be
obtained. It is also very likely that while searching for an optimal solution, the algorithm
gets trapped in local minima’s. Functions that have local minima's are called multi-modal
functions. Also since the solution space spreads over alarge set of pointsit is very ineffi-
cient to exhaustively search for a global minima. To locate minima’s for such multi modal
functions, the simulated annealing approach is used.
At the heart, this approach is analogous to thermodynamics[ 28], specifically theway alig-
uid freezes and crystallizes, or metals cool and anneal. At higher temperatures, molecules
of aliquid move freely, but as the temperature starts dropping, they start coming close to
each other and their thermal mobility is lost. As temperature starts dropping, the atoms
line up and a crystal is formed that has a very regular structure. Such a state is supposed
to be a state of minimum energy. The amazing fact is that for a slowly cooled system,
nature is able to find this state of minimum energy, but if the liquid is cooled rapidly or
"quenched”. It does not reach this state but forms a polycrystalline state or amorphous

state having higher energy. Boltzmann (k) distribution given by
E
Prob(E) ~ exp(—ﬁ (3.1

expresses the idea that a system in thermal equilibrium at temperature T has its energy
probabilistically distributed among all different energy states E.
For minimization of our cost function we have used ASA ver 25.25 obtained from

http://www.ingber.com/ASA.zip .

As this set of C functions cannot be directly interfaced with Matlab, we have used the
ASAMIN package developed by Shinichi Sakata. More detailed information regarding
these can be obtained from [27], [28] and [26].

3.2  Components of Simulation

Through our simulations, we have modeled the following components:
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1. Coverage areaor cell site

2. Position location system

3.2.1 Coverage Area

Coverage areais asimple graphical user interface (GUI), developed in MATLAB, to simulate a
CDMA cellular network. It isdivided into equal sized grids. User can specify the

1. Length of the coverage area
2. Breadth of the coverage area
3. Width of the grid

4. Breadth of the grid

Figure 3.1 shows a coverage area without any cellsinit. An user can place any number of non-
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Figure 3.1: Coverage Area

overlapping cells within the coverage area. A cell can be created by clicking anywhere within
the coverage area. The point of click specifies the location of the BS for that cell. For creation of
acell, auser needsto specify

e Radius of the cell: The distance between the BS and the farthest point of the cell.
e Transmission power of the BS.

e Number of usersin the cell.

30



e Susceptibility of the cell to fading, in terms of the weight factor « ranging from 0 to 1. As
can be seen from Equ. (1.12), alower value of «a; indicates that results obtained from BSii
will be weighed less against the results obtained from other BS's. This could be because,
BSi isproneto heavy losses. For our work, we have assumed a;=1, i.e. we have weighed
every BS equally.

e Shape of the cell: Ideally a cell is visualized as hexagonal in shape, but in practical en-
vironments, it is irregular in shape due to the impairments in channels. The tool offers a
choice to the users in selecting the cell shape. The cells could be a regular hexagon thus
allowing user to tessellate the entire plain without any gaps. Or the cells can be circular
such that they completely inscribe the regular hexagon.

Single cell
10000
8000
7000
He *
6000
T 1
> 5000
4000 o =
3000
*
2000
1000
0 il
0 2000 4000 6000 8000 10000
X -

Figure 3.2: A Cell within a Coverage Area

A cell isformed out of a number of smaller grids, as shown in Fig. 3.2. Thereis no upper limit
on the number of cells that can be included in the coverage area. The GUI by itself identifies
the location of other BS's so as to minimize inter cellular spaces, based on the data entered for
the current cell, and indicates it to the user by means of an ‘*’ on the grid as shown in Fig. 3.2.
Figure 3.3 shows a simulated coverage area. The information collected by the GUI is stored in
the form of a base station database. A BS database consists of:

Base station ID: An unigue number assigned to each base station.
X co-ordinate: X co-ordinate of the base station.
Y co-ordinate: Y co-ordinate of the base station.

Radius: Radius of the cell.
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Figure 3.3: Simulated Coverage Area: Hexagonal cells

Cells: Grid points that make up the cell.

Cell shape: Indicates the selected cell shape.

{1 Itisthe standard deviation of the shadowing losses within a cell.

Along with the above information specific to a base station, the database has the following
information needed for the ssimulation:

Length : Thetotal length of the areain meters.

Breadth : Thetotal breadth of the areain meters.

dx : Horizontal grid size in meters.

dy : Vertica grid sizein meters.

cellBinding : Itisaboolean variable. 1t is0, if we are neglecting shadowing losses within a cell,

F” .

egseitisl.

It isthe interference matrix. If there are N base stations included in the coverage area, Fi;
isaN x N matrix, where fi; € F;; istheinterference dueto auser incell C; at BS j and can
be computed using (2.24). But, (2.24) contains an integration over area of acell, whichis
difficult to evaluate in MATLAB. Hence we modify (2.24) as

erod® Iy df(x, y)
N & dl(x.y)

Kij = (3.2)
where
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kij . Itisthe value of interference dueto auser in cell C; at BS |.

n; : Itisthe number of grids enclosed within the area defined by cell C;.
dy : It isthe distance of the k' grid from the BS of cell C;.
d; : Itisthe distance of the k™ grid from the BS of cell C;.

os . Itisthe standard deviation of the shadowing lossesin a cell

oy:y:%.

and evaluate every element of the matrix.

3.2.2 Position Location System

Based on the TOA of the received signal, the position location system attempts to estimate the
user location.
Accuracy of estimation depends on:

1. Number of cellswithin the coverage area.
. Transmission power of the M S under consideration and other M S within the coverage area.

. Size of the cdlls.

2

3

4. Number of usersin every cell.

5. Number of BS'sinvolved in the process of radiolocation.
6

. Characteristics of the TOA estimator.

In our work, we have considered a seven cell system as we are limiting the effect of interference
from the first tier of interferer’'s only. The MS under consideration is under the power control
of the central cell so that it finds all the nearest neighbors. To study the effect of MAI on the
accuracy of position location, we assume presence of L OS propagation between the MS and BS.
This rules out consideration of a microcellular environment. Regarding the cell size, it would be
impractical to consider large cells, as large cellsrequire the MS at the cell peripheriesto transmit
with relatively large powers, while the maximum transmission power from MSis limited by its
battery capacity and life. Choosing very small sized cellslead to amicrocell environment. Hence
cell sizes of 1500m seem to be a good option. We would consider an uniform user distribution.

Figure 3.4 gives a diagrammatic representation of the simulated position location (PL) system. It
shows a MS located at (X, Y), whose position is to be estimated. This position in simulation is
arandom location within the central cell. Now, based on the path |oss exponent and shadowing
losses the signal undergoes attenuation and reaches the BS's. For improved estimations we need
to select the BS sthat receive the strongest signalsfrom the MS. The BS' sindependently estimate
the TOA’s of the received signals as 71, 7, and 73. After an estimate of TOA’s is obtained, the
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Figure 3.4: Simulated Position Locator System

results are processed by a central processing site and (X, Y) is the estimated location of the M S.
The error in estimation is computed as

Error = /(X — %2 + (y — 9)2 (3.3)
We can list the essential components of the PL system simulation as:
1. Signa generator
2. Channel/Modeling MAI
3. ToA Estimator at the BS
4.

Position location (PL) algorithm

Delay Tradking Loop
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Figure 3.5: Components at the Receiver
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We would discuss each of the above in greater detail in the following sections. The Simulated PL
system is shown in Fig. 3.5. To simplify the discussion we would begin our discussion with the
ToA estimator at the BS, proceed backwards to the MS, and discuss the PL agorithm at the end.

3.2.3 ToA estimator at the BS

ToA estimation is carried out by tracking the received PN sequence. This is accomplished by
simulating a non-coherent DLL. A non-coherent |oop does not depend on the carrier phase lock,
which is difficult to maintain, and hence is less susceptible to lock loss. A conventional non
coherent DLL isshown in Fig. 1.11. To study the effect of MAI on accuracy of 2D position
location, we assume that the signal transmitted between the MS and BSis a PN sequence. There
isno carrier transmitted to the BS. This eliminates the need of the BPF s and squarers shown in
Fig. 1.11. Theloop filter F(s) showninthe Fig. 1.11 isaL PF for separating the HF components
of the received signal. The early and late waveforms are separated from each other by a period
equal to 2AT,. A isthe time resolution factor of the DLL and T. is the chip duration. A can take
various values such as § .3, 1 etc. For example, say A = . Then, the early and |ate waveforms
would be separated by % a chip period. Lower the value of A, better would be the accuracy of
estimation. But, the lowest value A can achieve is limited by the hardware. Parameter 1 will be
referred as sub-chip resolution parameter. Thus, the sub-chip resolution parameter can be defined
as the number of intervalsin which the tracking loop would divide a single chip interval.

The voltage controlled clock (VCC) source shown in Fig. 1.11, adjusts the phase of the locally
generated PN code as per signal e(t). The changesin level of e(t) dictateif the phase of thelocally
generated PN code has to be advanced or retarded. The smulated version of the DLL isdightly

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

r(t) = s(t — 1)+ n(t) |
’fl t— AATC ;S : e(t
Received ! N |
signal delay 1 L +
delayed by 7 | | |
: § Ck(t — 7—) :
Early Late Correlator | | Estimated
7-2 Delay(T) Control [~
Logic
NOTE: delay
7T = kAT,
where K is some constant Generator

Local Generator

Figure 3.6: Block Diagram of the Simulated DLL
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different from the conventional DLL, as discussed above. Thisdifferenceisdueto the limitations

of implementation using Simulink. Block diagram of the simulated DLL is shown in Fig. 3.6.

The main blocksinvolved in ssmulating the DLL are:

Delay elements : An important aspect of smulating the DLL is generating the early and late
PN sequences with reference to the locally generated PN sequence. Figure 3.7 shows the

AT,

—

Early
Sequence

t

Locally generated/
Incoming Sequence
Sequence

t

Late
Sequence

t

AT,
Early and late waveforms are seperated by 2AT,

Figure 3.7: Timing Diagram of the Early and Late Sequences

relation of the early and late sequencesto the locally generated sequence. It is not possible
to generate a sequence ahead of itstime. Hence, we cannot derive an early waveform from
the locally generated PN sequence. To circumvent this problem, we consider the locally
generated PN sequence as reference and use it as an early sequence. The late sequenceis
derived from the early sequence, by delaying it additionally by 2AT.. But, the issue with
this approach isthat, the incoming sequence and early sequence are no longer separated by
AT.. Thiscan be satisfied only if we delay theincoming PN sequence additionally by AT..
With above approach in mind, if the incoming PN sequence is delayed by an amount KAT
(where k is some constant value), and the ToA estimate achieved using the DLL is aso
KAT,, then

1. At the input of DLL, the incoming sequence must be additionally delayed by AT,
resulting in atotal delay of (k + 1)AT..
2. The early waveform must be delayed by KAT..
3. The late waveform must be delayed by (k + 2)AT..
Early-Late correlator : Thereceived PN sequenceis multiplied with thelocally generated early

and late sequences.
Let the received PN sequence be

r(t) = s(t—7) + n(v),
where 7 isthe delay experienced by the received PN sequence, and

k=00
st) = ) V2PC(t) (34)

k=—00
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where C,(t) represents a PN sequence of k' user of the form [16]

M-1

() = i aiI(

j=—c0 i=0

t—(l+]|\/|)T) (35)

ai€{-1,1)
The product resultsin

Early product +2PCy(t—7— AT¢) x Ci(t — 7)
Late product 2P Cy(t— 71— AT¢) X Cy(t— 7 — 2AT)

The resultant signal at the output of early-late correlator is the difference of early and late
products given as

e(t) = V2P Ci(t — 7 — AT)[Cilt — 7) — Ci(t — 7 — 2AT,)]

where e(t) iscalled the *error signa’.
The dc component of e(t) isused for code tracking. The time-varying component is called
the ‘ code self noise’. The dc component of e(t), denoted as v2P¢D(r, ) is given by:

Gk

V2P (. F) = % L0

where G is the gain of the CDMA system. Assuming that we are estimating the ToA for

user O,
1 T_zc k=co
V2P Da(r,7) = > V2PCult - 7 - ATO)[Colt - 7) - Colt - & - 2AT)]
GTC _GT_ZC k=—c0

Based on the definition of autocorrelation function of PN sequences, D (7, 7) is defined as

Da(1,7) = Ri(t = 7) = Ri(t = 7 — 2AT,)
= R[(0)Tc] = R[(0 - 20)T(]
= Dya(6) (3.6)

Thisfunction is plotted in Fig. 3.8 for various values of A.

Control logic : Thesignal e(t) derived from the correlator isfed to a control logic. Therole of a
voltage controlled clock (V CC) sourcein the conventional DLL is performed by the control
logic in the ssimulated DL L. Main function of the control logic isto adjust the delay of the
early sequence in such away that it matches with the unknown delay of the incoming PN
sequence.
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Figure 3.8: S curve'sfor different values of A

Simulated DLL being a discrete system, would alter the delay of early sequence only in steps
of AT.. Hence, when the locally generated PN sequence is synchronized with the incoming PN
sequence, if the delay suffered by the received sequence is not an integral multiple of AT, the
maximum error in estimation would be + ATTC.

Figure 3.9 shows the simulated tracking loop. Control logic isan ‘user defined” Simulink block.
The control logic has been implemented as a C-code and then compiled by the MEX compiler to
produce the Simulink block. Along with a control unit it consists of a programmable averager.
This averager is akin to the integrator employed in a conventional DLL. The time over which
it performs averaging can be controlled. Figure 3.10 is the block diagram representation of the
integrated control unit. Asclearly seen the integrated unit has three sections, namely

1. Averager : This portion acts as an integrator, and computes the average of the error signal
arriving within the integration period. The integration period should be long enough to
capture the variations in the error signal. Ideally it is set to G chip periods, where G is
the gain of the CDMA system. The averaging operation can be understood as areset able
accumulator followed by a scaling operation.The time of integration is an user defined
parameter in the simulations, and can be altered. Internally the control unit counts the
number of samples. If T, represents the value of integration period, then for zero delay,
the control unit accepts % number of samplesand computesits mean. For delay’s> 0, the
control unit automatically expands the integration period by avalue % , Where 7 represents
the estimated delay value. Thisis done to compensate for the additional bits inserted by
the delay blocks. For further discussion, we would represent the computed average value
as S;.

2. Running sum: Figure 3.8 shows the early-late discriminator characteristics. Estimation is
exact at the point where the S-curve crosses the zero level. But, in noisy environments, as
shownin 3.11, it isdifficult to estimate the point where it crossesthe zero level. A complex
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Note: This is a functional diagram of the implemented Tracking Loop
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Figure 3.9: Functional Diagram of the Simulink Model of Tracking Loop

algorithm should be used to detect the point of interest. To circumvent this, we employ a
running sum over the error signal. Advantage of doing so is obtained in terms of reduction
of number of zero crossing points. The characteristics are transformed from a S-shaped
curve to an inverted V-shaped curve as shown in Fig. 3.12. Characteristics shown in Fig.
3.12, for different values of A, were obtained at the time of simulation a a home BS for
SNR=25dB.

In the transformed characteristics, amatch isfound when the curve attains apeak, which is
well defined. Also, in the case of noisy environments, the detection would be simpler and
results would be more accurate as peak will be well above the noise floor.

The control unit, internally keeps on adding the S;’s, and this operation is called running
sum operation.

. Control unit : Figure 3.12 shows the discriminator characteristics for various values of A.
Primary function of the control unit isto detect the peak. For detection of the peak, we use
the ‘serial search technique’ [22]. It employs searching serially through all potential code
delays until the correct delay isidentified. Each estimated delay is evaluated by an attempt
to despread the received signal. If the estimated delay is correct, the received signal will
be despread and will be sensed. If the estimated delay is incorrect, the received signal will
not be despread and the delay of the reference code will be stepped to a new value of delay.
Thistechniqueiscalled the ‘serial search’.

The basic principle of working of the seria search technique, isthe fact that an appreciable
signa level will be produced by the discriminator when the locally generated sequence
despreads the received signal. Similar is the working principle of the control unit. It keeps
on delaying the locally generated PN sequence until it senses an appreciable level of the
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Figure 3.11: Discriminator Characteristics under Noisy Conditions

despread signal. The discriminator characteristics shown in Fig. 3.12 are plotted when the
SNR of the received signal is very high. But, in practical scenarios, the actual SNR levels
can belower than 0dB at non-homeBS's. Thus, amorerealistic discriminator characteristic
isshown in Fig. 3.13. The figure shows more than one peak, and hence it is difficult to
determine the exact value of delay that would despread the received signal. A control unit
must be intelligent enough to disregard the false alarms triggered by the noisy error signal.
This intelligence is engineered in the control unit by means of some control signals. The
following describes each of the control signalsin detail.

(@) sens: It stands for the sensitivity of the control unit. Suppose it is set to 1073, the
control unit would not respond to signal variations less than, 10~3. Thus, it prevents
DLL from responding to small variations in the error signal.

(b) monLevel : It stands for ‘monitor level’. As can be seen from Fig. 3.13 this serves as
areference level to the control unit. Only when, accumulated value of the signal S;,
crosses the reference level, the control unit starts a serial hunt for the peak.
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Figure 3.13: Control Signals used by the Control Unit

(c) monSpan : It standsfor ‘monitor span’. Because of the addition of variable amount of
noise, it is not always possible to define a discrete monitor level. Hence, optionaly a
provision is made in terms of the control signal monS pan that reduces the monL evel

to monLevel — TNSEAXRONLeE Ay glternative could be setting the monLevel to lower
value, and monSpan to zero.

(d) monWindow : It stands for ‘monitor Window’. The basic principle of operation of
the control unit is to serially search for the peak and delay the locally generated PN
code until an appreciable signal level is detected. But, it is very much possible that
once a peak is attained, the signal level momentarily drops due to the noisy signal
and attains a higher peak level after recovering from amomentary fade. To tacklethis
situation, we allow the signal level to drop within monWindow percent of the attained
level, before it concludes that the current level is the peak level. If the signal level
falls more than that, it is concluded that we just crossed the peak and the peak hunting
stops.

It should be noted that, the peak level is not defined. It isany level above the monitor level.
But in practice, it is very likely that the received signal never crosses the monitor level.
This can happen when the signals are weak. To handle such situations, the control logic
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is defined in such a way that, if during its exhaustive search it hits the maximum possible
trackable delay, it sets the estimated delay to a value of delay 7, for which it encountered
the maximum value of S;. The maximum track able delay is defined as ‘maxDelay’ .

Depending on the error signal e(t), the control block would produce a value kA by which the
early sequence is delayed. Since 0 < A < 1, itisdifficult in Matlab to delay the sequences by
fractional values, so we expand al the sequences by a factor % and delay the early sequence by
k. Hence the locally generated PN sequence is expanded by a factor % using the repeater block
from the DSP blockset. The control logic is modified to produce an output k instead of KA.

In an actual DLL, the loop filter consists of an integrator, that integrates the incoming signal for
aspecified time. In the simulated DLL, the integrator is embedded within the control block. The
duration of integration is specified by the parameter ‘clkPeriod’. Ideally, integration is carried
over abit interval. Hence clkPeriod is set to a value same as the gain of CDMA system G. For
our ssimulations, value of thisvariableis set to 128.

3.2.4 Channel

We model the MAI at each BS by a white Gaussian noise process. In light of the central limit
theorem and with large number of interferer’s this modeling assumption isjustified. It is neces-
sary that the power of this WGN added at the BS is derived from the amount of MAI the signal
would experience. As explained earlier, the total interference at a home BS is different from the
total interference at a non-home BS. Similarly, the amount of WGN to be added at a home BS
will be different from the WGN added at a non-home BS.

3.2.4.1 Total Noise due to MAI at the Receiver Input at Home BS

For a home cell, equation (2.17) gives the variance of the total noise (excluding intercellular
noise) present at the output of a decorrelator (despreader) and demodulator. In our simulations
the MAI is modeled as a white Gaussian process at the output of receiver. Thus, the variance
of this process needs to be recalculated so as to represent the same variance 0'? at the output of
the despreader and the demodulator. Thus, if 0'|2h represents the variance of intracellular multiple
access interference at the receiver input,

from calculations similar to that leading to equation (2.14) we get

0'? = 0'|2h > (3.7)
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Thus,

2
2 _ 24
0'|h—0'§_|_b
2
- G_°(n -
= GBTb(n' P
2
- G—°_(n —
= GBGTC(n' P
= %(ni—l)P (3.8)

Let W denote the chip rate. Then 3.8 can be rewritten as

1
ot = M(ni - 1P (3.9
Thus, total intracellular multiple access interference at the receiver input can be modeled as white
Gaussian noise process with variance o-,2h given by equation (3.9).

The total intercellular interference at ahome BSi, as derived in section 2.4 isgiven by (2.29) as

le, =P > Nk

el A}

Equation (2.29) gives the total interfering power at home BSi. Note that the interference I g, as
calculated in (2.29) is at the input of the decorrelator. Thus after decorrelation and demodulation
the variance of the WGN modeling the intercell MAI will be equal to the PSD of the intercell
interference, given by

J=
ot = o
P
= W D Nk (3.10)
el A}

Thus, the variance of the modeled noise due to MAI at the receiver input at home BS is given by

2_ 2 2
O'h—0'|h+O'Eh

1R P
= BT/ Z P+ W Z n‘pK(pi. (311)

=1 e{A}-i)

3.2.4.2 Total Noise due to MAI at the Receiver Input at a Non-Home BS
Asexplained in section 2.5, total MAI at a non-home BS is made up of three parts



1. Intracell interference due n; users of the non-home BS j, given by (2.30) as

GT2 ¢
0-|2n|'1 = 6C Z P
k=1
GT?
= Pnj—=
16

2. Intercell interference dueto n; — 1 users of the home BSi, given by (2.31) as

IEnhh = P(ni - 1)Kij

3. Intercell interference due to users of al other cells, given by (2.31) as
lew =P D Nk,
el AN-{i. ]}

Thetotal interference at the input of receiver isthe sum of al the above interferences. Thus, itis
merely the sum of all the interfering powers and hence can be modeled as WGN, as explained in
section 2.4. Thus, the variance of the modeled WGN at the input of receiver at anon-home BSis
given as

2 _ 2 2 2
Tph = Oy T Oy T Oy

P P P
BTan + W(ni - l)Kij + W Z . NeKypj (312)
pef AL ]}

Figure 3.14 shows the SIMULINK implementation of the channel discussed above. The blocks
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Figure 3.14: Model of a Radio Channel in Simulation

used to simulate the channel are:



1. AWGN channel: Thisblock adds white Gaussian noise to the input signal. The variance of
the noise is specified in terms of

. %f(d B): Itistheratio of signal energy to noise power spectral density in dB. Equations

(2.33) and (2.34) give the power received at home and non-home BS's respectively.

If Ty denotes bit period, the total signal energy over a bit duration at a home BS is
given by:

Es=PxTp. (3.13)

Similarly, the total signal energy over a bit duration at a non-home BS is given by:
Es = PKij X Tb. (314)

For 1S-95 CDMA standard, full rate bit rate is 9600bps and hence Ty, is 10.416mSec.
The PSD of noise due to MAI at the receiver input isgiven by (3.11) and (3.12). The
total noise at a receiver input would include thermal noise in addition to the MAI
given by (3.11) and (3.12). If 2 represents the PSD of thermal noise at the receiver
input, the total noise PSD at the receiver input of a

— HomeBSisgivenas:

N
Nt = O'ﬁ + ?O
using (3.11), we obtain
np—1
1< P No
= o D P+ > Nk + ) (3.15)
k=1 el A-{i)
— Non-home BSisgiven as.
N
using (3.12), we obtain
P P P No
Nt = Bvl(nj) + W(ni — l)Kij + W Z n(pK‘pj + ? (316)

pelAN-{ij}
In our simulations we have added 10-8watt/Hz of thermal noise. Hence,

% =10"° (3.17)

Thus, signal energy to noise power spectral density in dB can be computed as

N (B) = 10109 < (3.18)

where, for ahome BS Eg and N; are given by (3.13) and (3.15) respectively, whilefor
anon-home BS's they are given by (3.14) and (3.16) respectively.
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e Power P;,: Itisthe power received at aBS and is given by (2.33) and (2.34) for home
BS and non-home BS's respectively.

e Symbol period Ts: We assume, the use of a modulation scheme where the symbol
duration is same as bit duration, and hence T = Ty,

2. Gain: Asdiscussed in section 2.6, signal suffers attenuation while traveling from aMS to
aBS. It is necessary to model this attenuation while simulating a position location system.
Using (2.33) and (2.34) if the MSis power controlled by C; and we are estimating the ToA
at BS |, we get

1 =]
Attenuation = { N-RES (3.19)

To model the attenuation, we scale the incoming signal using the 'Gain’ block with the
scaling factor set to the desired value of attenuation.

3. Variable fractional delay: When signal transmitted from a MS at (X,y) reaches a BS at
(x,y:) it travelsa distance d given by

d = Vix=X)7+ ¢~ V)

If ¢ denotes the velocity of light, the time taken by the signal to reach the BS, assuming
absence of multipath propagation, is given as v = cd. This block is used to model this
delay . Any signal transmitted from MSis delayed by atime equal to 7.

3.2.5 Signal Generator

1 1
CO—=|In Out% Repeater —=C)

_ Unipolar to Power To model early
Bipolar Converter late discriminator
offset (A)

Figure 3.15: Model of a Signal Generator in Simulation

It represents the signal generator (MS) whose location is to be estimated. It is made up of
the following blocks from the SIMULINK library:

e Unipolar to bipolar converter: In practice, the PN sequences employed over CDMA net-
works are bipolar in nature. Hence, in our simulations we convert the unipolar PN se-
guences to bipolar. This block takes input from a PN sequence generator and convertsit to
asigna with levels +1.
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e Gain: If Pnony IS the received signal power at a home BS, then using (2.1) we conclude
that the signal amplitude is v2P,om. Hence, we need to scale the signal with level +1 to
+ V2P om- Thisisdone using the 'gain’ block from the Simulink library.

e Repeater: It up-samples the input, to a rate L times higher than the input sample rate
by repeating each consecutive input sample L times at the output. The Repetition count
parameter L isthe value of 1.

3.2.6 Position Location (PL) Algorithm

Asdiscussed in 1.3.3, the method of non Linear Least Squares (NLLS) isavery popular method
of deriving position estimate using the estimated ToA’s. We need to minimize the cost function
in (1.12) given as

N
F@) = ) o?f2(0).
i=1
One method of optimization isthe method of steepest descent [1]. But, the method of minimiza-

Cost Function for Radiolocation Illustrating Local & Global Minimas
14

12

Cost Function —

Global Minig o0
X (m) - s 000 1%
10000 10000 Y (m)—

Figure 3.16: Plot of Cost Function F(z)

tion using the method of steepest descent has the following drawbacks:

Convergence A typical plot of the cost function (1.12) isshownin Fig.3.16. Asthe cost function
is not a convex function, steepest descent may get stuck in alocal minimaand result in a
sub optimal solution.

Slow rate of convergence It could take very long before the minimization algorithms converge
to produce an optimal result.
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To overcome the inaccuracies in position estimation due to optimality in convergence and to
reduce the convergence time, we have used the method of * Simulated Annealing’ [27].

We have integrated MATLAB with the ssmulated annealing package using ASAMIN. More on
the ways of integration can be read from [26].

To communicate the results of ToA estimations to ASAMIN, we need to form the cost function
F(z). The Matlab version of the cost function is as follows:

function [cost_value, cost_flag] = test_cost_funcl (param)
%

% $Id: costFunc.m $

%

1> global alpha; %Weight Vector

2> global EstdDELAY; %Estimated Delay Vector

3> global XI; %Vector containing the X Co-ordinate of the BS’s involved in re
4> global YI; %Vector containing the Y Co-ordinate of the BS’s involved in r:
5>

6> ¢c=3*(10"8); % velocity of light

7> f=(c.*EstdDELAY)-sqrt (((XI-param(1)). 2)+((YI-param(2)). 2));
8> F=sum((alpha. 2).*(£f.72));

9> cost_value = F;

10> cost_flag=1;

11> if(cost_value<0)

12> cost_flag=0;

13> end;

A terminating condition is very essential while defining any minimization maximization algo-
rithm. F(z) being a sum of squares should always be positive. Hence, the minimum value, it
could attain would be zero.

Variables

cost_value, cost_flag

are reserved by the ASAMIN package and posses special meanings. Inline 9, it isindicated to
ASAMIN that our cost function is defined by F. Lines 11-13 test for the terminating condition.
If the value of cost function becomes negative, the variable

cost_flag

IS set to zero, that is an indication to ASAMIN to terminate the process.
Once the algorithm converges, it returns the estimated values (X, §) of MSlocation.

3.3 Software Flowchart

Figure 3.17 presents an overview of the program used to estimate user location in CDMA net-
work. Using the base station database, and the values of
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Pnhom : Nominal power of the received signal at a home base station.

ChipRate, R, : Thechip rate.

Bit rate: Thisistherate of the channel. Currently we have fixed it to 9600bps.
NUMyer - The number of usersin every cell.

os . Thestandard deviation of shadowing lossesin every cell.

numgs : Thisisthe number of BS's participating in the triangulation process.
subChip : Thisreflects the time tracking capability of the DLL.

Tintegrate - 1t SEtSthe time of integrator in the DLL.

the entire ssmulation is carried out.
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Load BS database

Accept/set values of

the user defined
parameters

Select arandom
MS location within
the cell. (x,y)

Identify the nearest
BS'sto the selected
location (X,Y)

estdDelay = {estdDelay;,
estdDelays..estdDelay, }

X ={BS,.z, BSy.x...BS,.x}
Y ={BS,.y, BS2.y,..BS,.y}
a ={BSia,BS;.c, ... BS,.at}.
(2,9) = (0,0)

¢

(ZIA?,?J):
estimateLocation(estdDelay,X,Y,a

i

error=+/(z — 2)2 + (y — )?

{

Log theresultsto afile

For every identified
BS, do the following:

a) Compute distance

between the BS
and the MS

b)delay=distance/c
where c=> Velo. of
light

c) Estimate the values

of SNR, received gower
at the receiving B

d)Estimate the delay
using the simulated
DLL. Let thevalue
of estimated delay
be estdDelay

|

{

Figure 3.17: Flowchart of the Position Estimation Software
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Chapter 4

Results

To study the effect of MAI on the estimation error, simulation experiments were carried out with
the following set of fixed parameters:

1.
2.
3.

© © N o O

10.

Asper 1S-95 standards, a chip rate of 1.2288MHz was selected. Hence, Rc = 1.2288 Mcps.
As per 1S-95 standards, gain of the CDMA system is 128. Hence, G=128

For most practical purposes, path loss exponent for mobile communications is 4 [23].
Hence, m=4

As we are restricting the interference from the first tier of interferer’s, number of cellsin
the coverage areais 7. Hence, NBS = 7

The value of a for home BSis unity.
The value of a for non-home BSis0.3.
Nominal power of MS, P, =1

Speed of radio signal, C = 3x108 m/Sec
Thermal noise, 2 = 1078 dB/W

User distribution per cell isuniform and every cell has same number of users N.

The variable set of parameters included:

1.
2.
3.
4.
S.

N: Number of users per cell.

o s. The standard deviation of shadowing lossesin every cell.
Nss: Number of BS's participating in radiolocation.

A: DLL resolution.

R: Radius of the cells.

Through our experiments, we have studied the:
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Table 4.1: List of Experiments

[os(dB) | N [Nes [A] R |
6 1to100instepsof 10 || 3 | £ [ 1500m
8 1to100instepsof 10 | 2 i 1500m
8 1to100instepsof 10 | 3 i 1500m
8 1to100instepsof 10 | 4 i 1500m
8 1to100instepsof 10 | 3 1 1500m
8 1to100instepsof 10 | 3 1 1500m
8 1t0100instepsof 10 | 3 1 100m
8 1to100instepsof 10 | 3 i 500m
10 1to100instepsof 10 | 3 % 1500m

1. Effect of varying the number of users per cell, assuming an uniform distribution,on the
accuracy of estimation.

2. Effect of varying shadow |osses on the accuracy of estimation.

3. Effect of varying the number of BS's participating in radiolocation on the accuracy of
estimation.

4. Effect of varying the DLL resolution on the accuracy of estimation.
5. Effect of varying the size of cells on the accuracy of estimation.

The set of experiments carried out are listed in table 4.1.
Some other notations used in the explanation ahead are:

Ngs : It represents the number of BS's used for radiolocation.

Tine - It represents the integration period of the control unit.

4.1 Effect of Varying Shadowing Losses on the Accuracy of
Radiolocation

This experiment was conducted to study the combined effect of varying shadowing losses and the
number of users per cell on the error in radiolocation. To carry out the experiment:

1. Set
. Az%.
e Number of BS's participating in radiolocation = 3.
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e Radius of the cell = 1500m.
e Integration period = T = 128T..

Generate acell site BS database for 7 cells of radius 1500m each, using the GUI.
Set value of o5 to 6dB.

2. For the given value of o-s compute the interference matrix F;;.

3. Now, vary the number of users per cell from 1 to 100, in steps of 10, and estimate the error
in position estimation as per Fig. 3.17.

4. Similarly, set o-s=8dB and 10dB, and goto step 2.

For every setting of o5, and number of users per cell, 50 random locations were chosen within
the central cell, and estimations were carried out. The final results are an average of the results
obtained at the 50 locations. Similar procedureiscarried out for the remaining set of experiments.
Variation in shadowing losses will have a considerable effect on the SNR at the receiving BS's.
Figure 4.1 showsthe variation in SNR at a home BS with the number of usersper cell N, and .

Variation of SNR with N and R at home BS

25
J
200\ e S U [Acr=100m | ]
-5 R=500m
-©- R=1500m
T st '
m
E)
e
=z
? 10
5-
0 1 1 1 1
0 20 40 60 80 100

N (users per cell) —»

Figure 4.1: Measured SNR at Home BS
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The following conclusions can be drawn from Fig. 4.1.

1. For a given value of o, SNR decreases as N increase: Equation (3.11) gives the total
interference at a home BS for a given number of usersin a cell. The total amount of
interference is proportional to the number of users in the cell. Thus, as the number of
users per cell increases, the total interference at a home BS increases, thereby degrading
the SNR.

2. For a given value of N, SNR decreases as o increases: From (3.11) and (2.24), we can
say that for a given number of users per cell, the total interference increases with the o,
standard deviation of shadowing.

Variation of SNR with N and o, at non home BS
25 L] L] L] L]

20 ETTR RSN e :
: : : A GS=6dB

= 05:8dB

SNR (dB) —

0 20 40 60 80 100
N (users per cell) »

Figure 4.2: Measured SNR a Non-Home BS

Figure 4.2 shows:

1. At a non-home BS, for a given value of o5, SNR decreases as N increase: Equation
(3.12) givesthe total interference at a non-home BS for a given number of users per cell.
The total amount of interference at a non-home BS is proportional to the number of users
per cell. Hence, as the number of users per cell increases, the total interference at a non-
home BS increases, thereby degrading the SNR.
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2. For a given value of N, SNR increases as o5 increases: From (3.12) and (2.24), we can
say that for a given number of users per cell, the total interference increases exponentially
as the standard deviation of shadowing, os. For a given number of users, the interference
increases as the value of os. But, SNR is aratio of the received signal energy and the
interfering power. The received signal strength at a non-home BS depends on the value of
ki given by Equ. (2.34). «ij increases exponentially with o-s. Asthe value of o5 increases,
due to perfect power control, the transmitting power of a M S increases, thus increasing the
energy of the signal reaching the non-home BS. SNR at a non-home BSis the ratio of two
terms, with denominator having a term independent of o-s. Hence, numerator varies faster
than the denominator which leads to an increase in the received SNR at a non-home BS
with o.

Variation in Radiolocation Error with N and o,
400

350

w
o
o

250

200

150

Error in Radiolocation (m) —

100

0 20 40 60 80 100
N (users per cell) —»

Figure 4.3: Variation of Radiolocation Error with N and o

The plot in Fig. 4.3 shows the variation of error in radiolocation with number of users per cell
and os. The mean value of the radiolocation error, tabulated below is determined by taking an
average of al the points plotted in the Fig. 4.3. When the number of users are varied from 1 to
100, other conditions remaining same, the minimum, maximum and mean values of the observed
errors are tabulated in Table 4.2. Plotsin Fig. 4.4 reveal that the TOA estimation at a home BS
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Variation of Error in ToA estimation with N for o = 6,8,10 dB

T

£°-0.4f T et '
N int c

2 —&— Home BS: 6 =6

g -0.6F —a—- NonHome BS: os:G

2 -4 Home BS: 6 _=8

-o- NonHome BS: 05:8
-0.8f A Home BS: 6 =10
NonHome BS: 05:10

20 40 60 80 100
N (users per cell) —»

-1.2
0

Figure 4.4: Variation of Error in TOA at Home and Non-Home BS for o5 = 6, 8, 10dB
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Table 4.2: Min and Max Error in Radiolocation for different values of o

| o5 (dB) || minErr(m) || maxErr(m) | mean error(m) |

6 27.399 366.33 123.35
8 26.944 124.29 72.612
10 26.955 98.915 76.633

is poorest for o5 = 10dB, while the estimation at a non-home BS is poorest for o5 = 6dB. The
increased error in radiolocation for o-s = 6dB isaresult of poor TOA estimation at the non-home
BS's. The mean error in 2-D position estimation remains almost constant when o ¢ is increased
from 8dB to 10dB.

4.2 Effect of Varying the Number of Participating BS’s on the
Accuracy of Radiolocation

With reference to Fig. 1.14 in section 1.3.3, if only 2 BS's are used to estimate the subscriber
location, due to the inaccuracies in TOA estimations, the circles would intersect at 2 different
points, and an accurate estimation in such a case will be difficult. But if athird BSisintroduced,
asshownin Fig. 4.6 the region of uncertainty decreases and the accuracy of estimation improves.
To determine the effect of the number of BS's involved in radiolocation on the accuracy of esti-
mation, we performed an experiment where 2,3 and 4 BS's were used to estimate the subscriber
location. The results are plotted in Fig. 4.5. The following conclusions can be drawn:

1. Accuracy improves drastically if we use more than two BS’s for estimation: The accu-
racy of estimation improvesto 72.612m from 699.32m when we employ 3 BS'sto estimate
the subscriber location instead of 2. Thus, it is very evident that introduction of athird es-
timator has a significant impact on the estimation accuracy.

2. There is no significant improvement in the estimation accuracy when the number of
BS’s is increased from 3 to 4: The mean radiolocation error improves by ~ 7m when we
increase the number of BS'sto 4. This shows that, there is no appreciable benefit obtained
when we increase the number of BS's from 3 to 4. For applications with lower accuracy
requirements, 3 BS's would be sufficient for radiolocation.

Table 4.3, derived from Fig. 4.5, outlines the minimum, maximum and mean values of estimation
errors for various values of Ngs as the number of users per cell is varied from 1 to 100, other
conditions remaining same.
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Variation of Error in Radiolocation with N and NBS
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Figure 4.5: Variation of Radiolocation Error with N and Ngs

4.3 Effect of Varying the Early-Late Discriminator Offset on
the Accuracy of Radiolocation

As earlier explained in section 1.3.3, the accuracy of radiolocation depends on the accuracy of
the delay estimation technique. For our work we have used a non-coherent DLL for estimating
the TOA of the received signal. The accuracy of estimating the TOA using a DLL depends on
how closely the DLL can track the incoming signal, and this is defined by the parameter A. To
study the effect of variation of A on the accuracy of estimation, we have performed experiments
with A=2,Z and £. The results of the experiment are plotted in Fig. 4.7.

The following is concluded from the experiment:

1. Accuracy of estimation is inversely proportional to the value of A: Plot in Fig. 4.8
illustrates the performance of the DLL under varying values of A and N. While, the error in
ToA estimation at ahome BS almost remains within quarter chip period, when N increases
from 1 to 100, error in TOA estimation at a non-home BS improves as DLL’s with greater
timing resolution capabilities are used. Hence, performance of the radiolocation system
improves as DLL'swith lower values of A are used.
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r2

Z RLocation of MS is constrained within this area
Figure 4.6: Estimating Subscriber Location Geometrically

Table 4.3: Min and Max Error in Radiolocation for different values of Ngs

| Ngs || minErr(m) || maxErr(m) || meanErr(m) |

2
3
4

543.1
26.944
24.695

721.64
124.29
111.4

699.32
72.612
65.393

Table 4.4, derived from Fig. 4.7, outlines minimum and maximum values of errors for
different values of A as the number of users per cell are increased from 1 to 100, other
conditions remaining same.

Table 4.4: Min and Max Error in Radiolocation for different values of A

| A || minErr(m) || maxErr(m) || meanErr(m) |

% 84.858 911.02 733.13
% 51.715 735.97 525.23
% 26.944 124.29 71.827

The mean radiolocation error reduces to 71.827m from 525.23m when, A is reduced from
ltod,

4 8

But, the lowest value of A islimited by

(@) Inpractice, thelocally generated PN sequence will have to phase delayed to generate

the early and late PN sequences. As per |S-95 standards, one chip period corresponds

t0813.80 nSec. Thus, if we wereto deploy atracking loop with A= % , the requirement
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Figure 4.7: Variation of Radiolocation Error with N and A

on the timing resol ution capability of the hardware will be

At=T.xA

_ 81302
- 16

50.8626nSec

Implementing such high precision tracking loops is both challenging and expensive.

If the DLL employ’s a serial search technique, it will have to search through all po-
tential code delays until the correct delay is identified. Suppose, the incoming PN
sequence isdelayed by T.. If A = 1/k, there are k potential delay values between 0
and T, that the DLL will have to search through before it can lock to the subscriber
signal. Thus, the size of the set of potential delays increases as the the value of A
decreases. The bigger the set of potential delays, the longer will it take for the track-
ing loop to achieve alock. The situation becomes more complicated, if we are also
estimating the velocity of the subscriber. The set of potential delays, soon transforms
into a 2D matrix defining the set of potential delays and velocities. A serial search
technique would be inefficient for such cases. More smarter search techniques need
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Variation of Error in TOA estimation with N forA=1/2,1/4,1/8
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Figure 4.8: Variation of Error in TOA at Home and Non-Home BSfor A =1/2,1/4,1/8
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to be employed.
Thus, the time taken for estimation also puts alower limit on the value of A.

2. Accuracy falls as number of users per cell increases : As can be seen from Fig. 4.7, the
accuracy of estimation, falls as the number of users per cell increases. This is because of
the degradation of SNR with increasing number of users per cell, ascan beseenin Fig. 4.1

and Fig. 4.2.

4.4 Effect of Varying the Cell Size on the Accuracy of
Radiolocation

Variation of SNR with N and R at home BS

25 ? ? ? ?
1
200\ S o A Rr=100m | ]
: : - | -8B R=500m
-©- R=1500m
T 15F :
)
=
o
Z
0 10F
5-
0 1 1 1 1
0 20 40 60 80 100

N (users per cell) —»
Figure 4.9: Variation of SNR at Home BSwith N and R

All the earlier experiments were carried out with cells of radius 1500m. To study the effect of
cell size on the accuracy of estimation, we ssimulated coverage area's with cell sizes 100m and
500m. Simulationswere carried out under the following situation:

oA:%

62



Variation of SNR with N and R at non home BS

20 = = = =
Bryco o o A R=100m | ]
: : : = R=500m
-©- R=1500m
T 10} :
%)
)
o
Z
0 5
0 e
_5 Il Il ; Il
0 20 40 60 80 100
N (users per cell) —»
Figure 4.10: Variation of SNR at Non-Home BS with N and R
e o= 8dB

e Number of BS'sinvolved in radiolocation = 3
e Number of usersvaried from 1 to 100 in steps of 10.

The results were then compared with the results of the experiment carried out under identical
situation but using cells of radius 1500m. The results indicate that:

1. Under perfect power, the degradation in SNR with number of users is independent of
the cell size: A plot of SNR-vs-number of users per cell isshowninFig. 4.9 and Fig. 4.10.
As can be seen from the plots, the values of SNR at the home and non-home BS, do not
vary much with the cell size.

For a home BS, Equ. (3.11) gives the total amount of interference at a home BS. The
equation is independent of the radius of acell. Similarly, for a non-home BS Equ. (3.12)
givesthe total amount of interference at anon-home BS. Even this equation isindependent
of the radius of a cell. The signal strength and the amount of interference both depend on
the value of «;;, given by Equ. (2.24). As users are assumed to be power controlled, each
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Variation of Error in ToOA estimation with N for R=100m,500,1500 m
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Figure 4.11: Variation of Radiolocation Error with the Rand N

user transmits a signal level proportional to its distance from the home BS. Hence, SNR
being aratio of signal energy to interfering power, isindependent of the cell radius.

. Under perfect power control, accuracy of estimation is better with smaller cells: Esti-
mation of ToA would be accurate if it lieswithin the tracking range of the DLL. For bigger
cells, the delay experienced by a signal in reaching the non-home BSis large. Plot in Fig.
4.12 gives a comparison of the error’'sin ToA estimation at a home and non-home BS for
cells of radius 100m and 500m. The error in estimation at anon-home BS is better for cells
of radius 100m than for cells of radius 500m. But, at the same time, the ToA estimation at
ahome BS is better for cells with radius 500m. Thisis aresult of the minimum value of
delay that a DLL can estimate. For cells with smaller radius, the delay experienced by the
signal while traveling to a home BS becomes comparable to the timing resolution of the
DLL, and hence the probability of an incorrect estimation increases.

For the experiment conducted with cells of radius 100m, 500m and 1500m it is found that
accuracy of radiolocation is best for cells of radius 100m. Table 4.5 lists the observed
values of minimum, maximum and mean values of error.
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Variation of Error in ToA estimation with N for R=100m,500,1500 m
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Figure 4.12: Variation in ToA Estimation with the Rand N

Table 4.5: Min and Max Error in Radiolocation for different values of R

| R | minErr(m) || maxErr(m) | meanErr(m) |
100 21.766 32.325 31.9
500 24.062 83.485 61.259
1500 26.944 124.29 72.612
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Chapter 5

Conclusion

Through our work, we have investigated the possibility of accurate subscriber locationin CDMA
cellular networks in the presence of multiple access interference. Earlier works haveignored the
effect of non-orthogonality of the PN codes on the estimation accuracy. They usually consider
the case of asingle M Swith no interferer’s, which is not apractical assumption. But, in our work,
we have studied the effect of number of interferer’s on the accuracy of estimation by varying the
number of usersin every cell from 1 to 100. To study the effects of multiple access interference
on the accuracy of estimation, we have assumed the presence of a LoS component between the
MS and the BS. We have studied the effect of MAI in conjunction with:

1. Varying shadowing environments

2. Varying tracking capability of the DLL

3. Varying number of BS's participating in radiol ocation
4. Varying cell sizes

For agiven value of o, the estimation improves by using asmaller early-late discriminator offset
A. Also, for aset value of A, the error in estimation increases with the number of users. Ascan be
seen from the results outlined in table 4.4, estimating subscriber |ocations with systems of lower
values of A is advantageous as the maximum and mean error in estimation dip as A decreases.
But, the lowest value of A is bounded by the hardware complexity of the tracking loop and time
required for estimation.

For 2-D location, the location error is reduced by increasing the number of BS's used in the
location process. Also, under perfect power control, cell sizes effect the accuracy of estimation.
Table 4.5 shows that the maximun and mean error decrease as the cell size decreases. But, the
minimum and maximum cell size a detection system can support is limited by

e The early-late discriminator offset

e The minimum and maximum trackable delay by the employed ToA estimator
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respectively. For example consider an 1S-95 CDMA network with T,=813.02nSec. If A = £, the
minimum cell sizeis computed as

Ruin=TcXAXC
= 60.9765m
These results are not vis-a-vis applicable to a microcellular environment.
The results obtained through the simulations carried out under different conditions are en-

couraging and show that radiolocation is possiblein a CDMA system, even when multiple access
interference is present.
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Chapter 6
Applications

Emergency services and safety concerns have driven the development of |ocation-based

services. Over one-third of emergency calls in the United States are made from mobile phones.
United States and the European Union, laws require wireless service providers to implement
emergency location services. These services communicate the precise geographic location of a
wireless device to the proper authoritieswhen it is used to make an emergency call.
With the resources for location-based emergency services in place and growing interest in target
detection for military applications, additional applications become possible. The rapidly growing
demand for consumer-oriented location based services creates new opportunities for wireless
service providers. HP and Openwave recently conducted aresearch finding survey identifying the
consumer interest in radiolocation services [29]. The survey identified the various applications
for the radiolocation.

6.1 Location-based Services

6.1.1 Get Directions

With positioning capability, this service would provide precise directions from the mobile users
current location. Text instructions accompanied by a customized map guide mobile usersto their
destination. Content quality is crucial to a successful implementation. Directions should account
for mode of transportation (e.g., pedestrian, public transit, private vehicles) and address safety
concernsvoice input and verbal instructions facilitate use by drivers.

6.1.2 Find Nearest

This service combines aspects of the get directions feature with the functionality of the yellow
pages. Subscribers can identify a resource of particular interest close to their current location
and obtain directions and other relevant information about it. Mobile users can find the closest
movie theater, check its schedule, and purchase tickets; or they can search for a particular type
of restaurant, review its menu, and make reservations. Hotels, hospitals, ATMs, gas stations,
parking, and moreall there for the asking. Again, content quality is crucialinformation must be
accurate and thorough.
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6.1.3 Concierge

Of particular interest to frequent travelers and mobile professionals, this service automatically
provides a variety of local information when the subscriber arrives in a new citylocal weather,
travel tips, restaurants, games, events, and other items of interest. Some users would subscribe to
this service regularly, others might prefer to adopt it only for short periods while traveling.

6.1.4 Alerts

This service automatically provides the subscriber with information updates on topics requested
by the user. There is specific interest in commuter information, especially updates about traffic
conditions. Entertainment also drew significant interestannouncements of concerts, shows, and
other special events, ticket sales and special deals. Other alert categoriesinclude school closings,
flight delays, weather, and sports news. Alert services show the most promisein citieswith traffic
problems and extensive entertainment options.

6.1.5 Friend Finder

This service provides position information for other mobile users, allowing subscribers to locate
their friends or share their own location. Position information can be plotted on a map or dis-
played as an address. Privacy and security issues are paramount for thistype of serviceindividual
subscribers must be able to define their own preferences regarding who is authorized to know
their position, and when.

6.1.6 Child Finder

Similar to friend finder, this service alows parents to keep track of their younger children. It
periodically compares the location of a small child (or specifically, a mobile device carried by
the child) against a schedule and geographic area set by the parent. The service alerts the parent
if the mobile device is not where expected. In this manner, parents are reassured that their small
children are safe and where theyre supposed to be. Because of sensitive trust and privacy issues,
however, it may not be appropriate for teens.

6.1.7 Bundled Safety Package

Research showed considerableinterest in bundled safety services. Location information enhances
roadside assistance and emergency calls; and traffic alert and child finder services add value to
basic safety functionality.

6.1.8 Additional Services

Opportunities exist for further expanding and enhancing these location-based services. Interac-
tive games have a measure of appeal for young adults and teens. Other possibilities include a
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service for tracing lost or stolen phones, book-marking locations as landmarks for directions,
even location-based dating services.
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Chapter 7
Future Work

Wireless communications constitute one of the most vital and dynamic areas of the technology
market. With over 500 million cellular phones sold around the world, the last year, and ever
increasing consumer database, emphasis on research in the field of radiolocation is ever increas-
ing. A lot of work has already been done in this field, but to enable a gamut of location based
services aimed at providing security, safety and consumer satisfaction, thisareais an active field
of research.

A few of the active research areas are:

Indoor Radiolocation The problem of indoor radiolocation is severe than the outdoor radiolo-
cation, because the signal in an indoor environment undergoes multiple reflections. This
leads to a severe multipath and radiolocation in such an environment is a challenging task.
Research groups areinvestigating the use of wideband position location systems, like UWB
for indoor radiolocation.

Dynamic user location Most of the current work in radiolocation investigate application of ra-
diolocation techniquesfor static subscribers. But, thisrestriction on user mobility isunreal -
istic. Inreality, the user may be traveling at different speeds. This degradesthe link quality
between the MS and BS. In addition to fading, multipath, and NLOS propagation, the re-
ceived signal will have Doppler shifts. Accurate estimation of TOA under such condition
ischallenging.

Mobility Management It is very necessary to develop a model of the user mobility behavior
in wireless networks. The developed model can be used to estimate the rate at which the
location of the subscriber must be updated. An accurate modeling is essential, astherate of
updation would determine the network traffic and the necessary processing power required
at the BS's.

Development of receiver’s Radiolocation using TOA involve non-home BS's. The SNR at a
non-home BS is very low as compared to the SNR at home BS. Estimation of TOA under
low SNR, multipath, fading and NLOS propagation is difficult. Hence, some attention is
required to enhance the detection and processing capabilities of receivers.
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