






Figure 5.6: Photon number distributions for normal coherent and thermal states and their
photon added and subtracted transformations. Parameters have been fixed at, |α|2 =
1, n̄th = 2, T = 0.9.

be explained by the fact that, under the assumption of photon subtraction, we gain partial

knowledge of the photon number distribution. Specifically, consider the thermal state of

low average photon number (n̄th ≤ 5); if the photon subtraction process has succeeded,

then we know that the state must have contained at least a single photon, which partially

collapses the photon number distribution near the origin. This has the effect of shifting

the distribution to the higher photon numbers. A similar effect happens in the case of

photon addition. Under the assumption of successful photon addition, we are sure that the

distribution cannot contain zero photons; thus our distribution shifts to the higher photon

states. This is a visual description of the effects of the simple cases of photon addition

and subtraction, but in general it is advantageous to have a qualitative way to describe the

effect of photon addition and subtraction. Using the process described earlier to model the

process of m photon addition and subtraction, we can see that a pattern emerges in the

average photon numbers for the addition of m photons to a coherent state as well as m

subtraction of photons from a thermal state. These expressions can be found to be,

⟨n̂coh⟩m+ = T |α|2 + 2m− mLm−1(−T |α|2)
Lm(−T |α|2)

, (5.12)
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where 0 ≤ T ≤ 1 is the decimal value of the variable beam splitters transmissivity, Lm is

the Laguerre polynomial of mth order and m is the number of added photons. For the case

of a m photon subtracted thermal state, we can find,

⟨n̂th⟩m− =
(m + 1)n̄thT

n̄th(1 − T ) + 1
, (5.13)

where n̄th is the average photon number in the thermal state, prior to subtraction.

We can notice that if one sets m = 1, T = 1 in Eq. (5.12), then this reduces to

⟨n̂coh⟩1+ = |α|2 + 2− 1
|α|2+1

. In this case, then we can see that the average photon number,

under the addition of a single photon, increases by nearly two. Intuitively we would believe

that it, of course, increases by one, the photon we added, but the story here is that we are

mixing a state of definite photon number, the single photon Fock state and the coherent

state, with an average photon number, so it need not be necessarily true that the new

average photon number increase by only one. The change depends on the interaction of the

two states, in terms of their photon number distributions. In the case of a photon subtracted

thermal state, a perhaps even more surprising effect can be seen. Taking m = 1, T = 1 in

Eq. (5.13), reduces it to ⟨n̂th⟩1− = 2n̄th, twice its previous value. This, understandably, can

seem suspicious. Under the action of subtracting a single photon, from a thermal beam,

we actually double its average photon number! We again turn to the explanation of photon

number distributions to argue this counter-intuitive effect. Under the successful action of

photon subtraction, we know this could have only occurred if there is at least one photon

in the thermal beam. So by assuming the subtraction event succeeds, we also gain the

knowledge that the thermal beam contains at least one photon, which necessarily must

shift the photon number distribution to the higher photon numbers.

While the effects of the action of photon addition and subtraction can be viewed as

surprising and counter-intuitive, it is worth investigating the efficiencies of this process,

since they occur in a probabilistic way. As mentioned earlier, the required renormalization
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process also serves to quantify the efficiency of the photon addition or subtraction event,

given by Eq. (5.7). Using our previous example of a photon added coherent state, this

probability is,

Pcohm+ = (1 − T )me|α|
2(T−1)Lm(−T |α|2), (5.14)

where we can notice that for T = 1 the probability reduces to Pm = 0, a somewhat

regrettable result. For the case of photon subtraction from a thermal state, we see,

Pthm− =
(n̄th(1 − T ))m

(n̄th(1 − T ) + 1)m+1
, (5.15)

which has the same behavior for T = 1.

This realization tells us that, we achieve the greatest effect from photon addition (the

largest increase in average photon number) when the likelihood of successful photon ad-

dition decreases to zero. Of course, we have the option of not only considering such an

extreme case. We can also consider T < 1, as this regime still gives us an enhanced photon

number, but with a non-zero probability of success. In Figure 5.7, we see the probability,

as a function of the transmissivity of our variable beam splitter, for the case of a SPACS

and SPSTS. It is this type of investigation that showcases our claim of why the use of the

mathematical treatment of photon addition and subtraction may not be adequate in some

applications, as it only applies when T ≈ 1, but as we have just shown, in this limit, the

probability of successfully generating such a state is significantly small.

Also in Figure 5.8, we see the average photon number of these two states as a function

of the transmissivity. From these two plots we can note that the number statistics generally

increase with T , but the probabilities, for sufficiently large T , drop sharply. This tells us

that we can still achieve an enhancement in the photon number statistics, while maintaining

a respectable probability of success if we choose a value for T of 0.65 ≤ T ≤ 0.9. Also

shown in this figure are the expected average photon numbers. We chose this description

because, in the case of the SPACS, the average photon number in the coherent state is fixed
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Figure 5.7: Probability of successfully generating a SPACS and SPSTS according to the
model presented in the text. Average photon number prior to addition or subtraction has
been fixed to |α|2 = n̄th = 1.

Figure 5.8: Average photon number of a SPACS and SPSTS, after successful photon ad-
dition or subtraction, as a function of the transmissivity of the variable beam splitter.
Average photon number prior to addition or subtraction has been fixed to |α|2 = n̄th = 1.
Also shown are dashed horizontal lines at the expected average photon values for the sub-
traction case (Black) and addition case (Red).
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at one and we inject another photon during the addition process; therefore any photon

number above two, must be from a quantum mechanical effect and it is this regime that

we are interested in. A similar effect can be described in the case of the SPSTS, which has

an average photon number of one; therefore anything above this value is explained by a

quantum effect.

5.1.3 Signal to Noise Ratios with Photon Addition and Subtrac-
tion

Also of interest is the effect these process has on the noise of these states. Typically

this is shown by calculating the variance of the photon number and forming the Signal to

Noise Ratio (SNR), defined by,

SNR =
⟨n̂⟩√

⟨n̂2⟩ − ⟨n̂⟩2
. (5.16)

For our specific example of photon added coherent states and photon subtracted thermal

states with m photon additions and subtractions, respectively, we can show the their SNR

goes as,

SNRcohm+ =
⟨n̂m+⟩ −m√

⟨n̂2
m+⟩ − ⟨n̂m+⟩2

, (5.17)

where the second moment is given by,

⟨n̂2
m+⟩ =

(m + 2)(m + 1)Lm+2(−T |α|2) − 3(m + 1)Lm+1(−T |α|2) + Lm(−T |α|2)
Lm(−T |α|2)

(5.18)

and ⟨n̂m+⟩ is given by Eq. (5.12). Note that in the definition of our SNR for photon addition

we have subtracted off the number of added photons m. This ensures that our SNR, as

a figure of merit is representative of the quantum effect of photon addition and does not

include the artificial injection of the added photons themselves, only their effect on our
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coherent state. In the case of a photon subtracted thermal state, we find,

SNRthm− =

√
2Tnth(m + 1)√

2nth + 1

=
√

T (m + 1)SNRth,

(5.19)

where SNRth is the SNR of a normal thermal state. Shown in Figure 5.9, we see the SNR

for a SPACS and SPSTS, as compared to a normal coherent state and thermal state, of

the same fixed average photon number.

Again we can comment that, in general the SNR is best at larger values of T , but

we recall that as T → 1, our probability of successfully generating these states decreases

quickly.

We have shown the behavior of two specific states, under the action of single photon

addition and subtraction, but also provided analytical forms for the statistics for these

states under m photon addition and subtraction; however these two presented cases are

just a sample of some of the effects one can observe under the action of these photon addition

and subtraction operations. The behavior of other states continues to have similar effects,

but in general, the effect of photon addition and subtraction can vary, depending on which

state they are performed. We also stress the need for an accurate model of photon addition

and subtraction as its probabilistic nature can lead to overly optimistic conclusions, which

do not take into account the efficiency of these processes.

We will now show how the probabilistic nature of photon addition affects the statistics

of the SPACS. While the previous figures show promise for the SNR as a function of the

transmissivity, along with the associated probabilities for each measurement condition, it

is perhaps more useful to look at simulated data, to showcase how these schemes, along

with their inherent probabilities are expected to perform in an experiment. We calculate

this simulated data following the prescription of, using the discrete, analytical form of the

photon number distribution according to Eq. (4.4) for each case of PACS, then average
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Figure 5.9: Signal to noise ratio of the SPACS and SPSTS as compared to standard coherent
and thermal states of average photon number |α|2 = n̄th = 1. A clear enhancement can be
seen for values of T ≥ 0.5.

over a psuedo-random choice of photon numbers from this distribution. The amount of

choices made in each case is directly dependent on their efficiencies given by Eq. (5.14).

These choices are then made for each value of transmissivity, in steps of ∆T = 0.05.

Recall that the efficiency of each PACS drops sharply in the regime where T → 1. In

Figure 5.10 we show the result of this method for the average of various photon added

coherent states (m = 1, 2, 3), along with dashed curves showing the theory representations.

The total number of measurements is fixed at 3600 measurements for all the displayed

states, with M showing the number of kept measurements for each case, due to the post

selection requirement (this is simply related by each of the Pm’s given by Eq. (5.14)).

After averaging over all kept measurements for each value of transmissivity, we see that

the higher photon additions do attain a higher photon number as predicted by theory,

but the scatter also worsens for the higher photon additions as the kept measurements

also decreases significantly. We stress that, in each case, the total measurements taken

is M = 3600, and the use of post selection discards some of these measurements, but we

are comparing schemes which run in a simulated experiment for equal time and thus we

can still attain enhanced photon number, while incorporating the efficiencies of the photon

addition process, with the addition of slightly nosier data. The scatter in the data could be

lessened however, if one had the option performing longer experiments in the case of photon
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addition. We also show, in Figure 5.11 how this effect is modeled in terms of the SNR.

Note the significantly increased scatter in the PACS 3+ SNR as compared to the PACS

1+; this is a direct result of our model showcasing the effect of the decreased efficiency in

adding three photons when compared to adding a single photon.

Figure 5.10: Plot of average photon number of various PACS (m = 1, 2, 3), as a function of
variable transmissivity, T , with simulated data for a number of measurements of 3600 per
value of transmissivity and the associated successful measurements (M) for each scheme.
For each value of transmissivity, we have averaged over all successful measurements. Theory
lines (M → ∞) also shown for each case and we have fixed |α|2 = 1; therefore any curves
above one (blue) can be viewed as an enhancement of the photon number.

We have shown a way to account for the probabilistic nature in the case of photon

statistics, but we will also now discuss the effects of this probabilistic process in terms of a

phase estimation.

5.1.4 Photon Addition and Subtraction in Phase Estimation

In previous sections we discussed the field of phase estimation along with its goals

and benchmarks. Now we will revisit this realm with the twist of probabilistic effects,

such as photon addition and subtraction. We have seen that some statistics of photon

addition and subtraction can deteriorate when we consider the full probabilistic model, but

we again show that proper modeling of this process needs to be considered before claims

of improvement can be made. The key consideration in this field is that typically studied
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Figure 5.11: SNR of various PACS (m = 1, 2, 3), as a function of variable transmissivity,
T , with simulated data for a number of measurements of 3600 per value of transmissivity
and the associated successful measurements (M) for each scheme. Theory lines (M → ∞)
also shown for each case and we have fixed |α|2 = 1; therefore any curves above one (blue)
can be viewed as an enhancement of the SNR.

states are, in theory, capable of being generated deterministically, but in the case of photon

added and subtracted states, we are forced to probabilistically generating these states and

therefore before we compare these two kinds of processes, we must account for this change

in nature.

In the case of phase estimation, consider the example of a SPACS and squeezed vacuum

state as initial states in a standard MZI setup. We have shown the ways in which one can

model such a system, but as the creation of the SPACS is probabilistic, its use requires

some caution. The use of the SPACS, along with Fisher information as a metric, requires

us to use probabilistic Fisher information, as the creation of the SPACS is nondeterminis-

tic and Fisher information initially assumes identical trials over many experimental runs.

This modification is a simple one and was recently described in [10], where they showed

coupling a probabilistic process, with Fisher information. For our example of the SPACS

and squeezed vacuum, we model it following the many examples discussed previously and

propagate these states through the MZI, to the final detectors. Here, we will utilize Fisher

information to describe the phase variance of our chosen measurement. For simplicity, we
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chose a basic measurement of click detection, that is, the event that our detector (either

output) detect any number of photons, which is the event that a standard avalanche photo-

diode is sensitive to. We denote the probability that our detector receives a click as Pc;

then we must also have that the probability that our detector receive no photons is 1−Pc.

From these two possible events, we can easily see this covers all possible outcomes. We

then follow Eq. (4.11) to construct the phase variance from the Fisher information, with the

modification that we must carefully consider the effects of using the nondeterministic cre-

ation of the SPACS. The reasoning is straight forward in that, we will collect the maximum

information about our unknown parameter ϕ if we keep all experimental trials, even those

that do not produce our desired states. Ideally, in the cases where we fail to generate our

desired states, little information about ϕ is obtained, but realizing that Fisher information

is strictly a positive quantity, we can only lose information if we do not keep these failed

cases. To accomplish this, we form the following probabilistic Fisher information,

CFIPc =P+

(
1

Pcs

(
∂Pcs

∂ϕ

)2

+
1

1 − Pcs

(
∂Pcs

∂ϕ

)2
)

+ (1 − P+)

(
1

Pcf

(
∂Pcf

∂ϕ

)2

+
1

1 − Pcf

(
∂Pcf

∂ϕ

)2
) (5.20)

where P+ is the probability of successfully generating a SPACS, Pcs is the probability of

getting a click at the detector, when a SPACS is successfully created, Pcf is the probability

of getting a click at the detector, when a SPACS is failed to be created. While this form

can first appear cumbersome, with some explanation, each piece can be interpreted in a

particularly straightforward way. The first line can be seen to be the information gathered

during the event that a SPACS is created and the detector clicks (first term in parenthesis)

and does not click (second term). The second line is the information gathered during the

event that a SPACS is not created and the detector clicks (first term in parenthesis) and

does not click (second term). Note that the probabilities of clicking are different for the

case of a successful creation or failed creation of a SPACS. In principle, the detector we use
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to herald for successful creation of the SPACS could also contain information, but as this

process is taking place at the input and does not depend on ϕ, we can neglect this portion of

the CFIPc . Also note that each term presented in Eq. (5.20) is positive; therefore if we only

consider the postselected state where SPACS is successfully generated, we are discarding

information, which necessarily leads to a worse phase variance. Also of importance to

note is that P+ ≤ 1 and therefore, as a nondeterministic process, serves to weight our

information by its probability of success. It is this treatment that is typically overlooked

in treatments of photon addition or subtraction. Without the inclusion of these weights,

one is assuming the photon addition or subtraction can be performed deterministically, for

every run of an experiment.

5.2 Photon Addition and Subtraction Must be Non-

deterministic

A natural question to wonder is then, perhaps the previously described physical pro-

cesses are poor choices of the mathematical treatment and there may exist one that models

the mathematical model deterministically. With a relatively simple gedanken experiment,

we can argue that this is impossible. This will show that if one believes that super-luminal

communication is not possible, then so to is deterministic photon addition or subtraction.

This gedanken experiment, described in terms of an Alice and Bob scenario, is as follows:

1. Alice and Bob setup a simple optical system consisting of only a laser, squeezer, beam

splitter and black box that performs deterministic photon addition.

2. They agree that if a photon added coherent state is measured, this serves as a logical

1. A normal squeezed coherent state serves as a logical 0.

3. Alice prepares a squeezed coherent state, splits it on a 50-50 beam splitter, keeps one

output locally and sends the other output to Bob.

4. Bob can choose to perform m photon additions to his portion of the beam. A value of

m ≥ 5 ensures that the photon statistics between a photon added squeezed coherent
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state and a normal squeezed coherent state, are significantly different.

5. Due to entanglement between the two portions of the squeezed coherent state, if Bob

performs photon addition on his end, Alice also sees effects to the photon statistics

on her end.

6. With the conditions set previously, this allows Bob to send 1 or 0 to Alice, determinis-

tically, at super luminal speeds, as the collapse of the wave function is instantaneous.

A depiction of this setup is shown in Figure 5.12. Clearly, something must prevent this

process from being physically realizable. While we are ignoring effects such as decoherence

and loss of entanglement over long distances, in principle, this should not be possible over

any distance. The issue here then lies with the fact that photon addition and subtraction

must be nondeterministic, which then would modify the previously described scenario to

one in which Bob must tell Alice (via classical communication) when the photon addition

process has succeeded, limiting it to classical limits. This protocol would then be very

similar to a quantum teleportation protocol, which also requires classical communication.

While there are likely many other explanations that one could construct to show such a

contradiction, the conclusion is that a deterministic photon addition or subtraction process

should not be possible. This connects to our previous argument that when modeling photon

addition and subtraction, one must consider some physical model in order to account for

the required nondeterministic nature of this process.
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Bob

Figure 5.12: Gedanken experiment that shows, if deterministic photon addition were possi-
ble, then such a protocol would allow for super-luminal communication. Green box labeled
S denotes a single mode squeezer while the red box labeled P+ denotes a deterministic
photon adder. The dotted line depicts that, in principle, Alice and Bob may be separated
by an arbitrary distance.
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Chapter 6
Full Examples

6.1 Simplified Advanced LIGO

Throughout this dissertation, we have shown how to model various states of light, opti-

cal elements, and quantify phase measurements. For completeness, we will now fully show

an example of an interesting process, the search for gravity waves. While our treatment

lacks many of the technical challenges of LIGO in their effort to achieve a direct measure-

ment of a gravity wave, this example will still serve as a simplified version of their efforts,

with a conclusion that a superior measurement scheme still exists.

While the full LIGO interferometer is a large scale Michelson interferometer, we choose

to model it by an equivalent model, the Mach-Zehnder interferometer (MZI) as shown in

Figure 3.1. Here, an input of a coherent state and squeezed vacuum is used to model that

of the Advanced LIGO setup. With this input state, it is known that the phase sensitivity

can be below the SNL, typically defined as ∆ϕ2
SNL = 1/N , where N is the total number of

photons entering the MZI [24].

In terms of Wigner functions, the input state can then be written as,

W (X) =

1

π2
Exp(−2|α|2 − p21 + 2

√
2|α|x1 − x2

1 − (e2rp22 + e−2rx2
2))

(6.1)

where X is a list of the mode labels x1, p1, x2, p2, labeling the position and momentum

components of each spatial mode. The average photon number in the coherent state is

Ncoh = |α|2 and in the squeezed vacuum state Nsqz = sinh2 r, which sets the SNL to be

∆ϕ2
SNL = 1/Ntot = 1/(|α|2 + sinh2 r). Both states have equal phases, as this gives rise to

the optimal phase sensitivity (discussed later) and are taken to be θcoh = θsqz = 0.

The propagation of this Wigner function is accomplished by a simple transformation

of the phase space variables through the MZI, dictated by its optical elements. These
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transformations are described by

BS(1/2) =
1√
2



1 0 1 0

0 1 0 1

1 0 −1 0

0 1 0 −1


(6.2)

PS(ϕ) =



cos(ϕ
2
) − sin(ϕ

2
) 0 0

sin(ϕ
2
) cos(ϕ

2
) 0 0

0 0 cos(ϕ
2
) sin(ϕ

2
)

0 0 − sin(ϕ
2
) cos(ϕ

2
)


(6.3)

where both beam splitters are fixed to be 50/50 and we have chosen to use a symmetric

phase model in order to simplify calculations as well as agree with many other references

[80, 45]. Using these transforms, the total transform for phase space variables is given by,



x1f

p1f

x2f

p2f


= BS(1/2) · PS(ϕ) ·BS(1/2) ·



x1

p1

x2

p2


(6.4)

From here, the final variables (denoted by x1f etc.) are inserted to the initial Wigner

function to obtain the Wigner function at the output.

We can also consider photon loss in the model by way of two mechanisms, photon

loss to the environment inside the interferometer and photon loss at the detectors, due to

inefficient detectors. Both of these can be modeled by placing a fictitious beam splitter in

the interferometer with vacuum and a interferometer arm as input and tracing over one of

the output modes, to mimic loss of photons to the environment [61]. This linear photon
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loss mechanism can be modeled with the use of a relatively simple transform, since these

states are of Gaussian form. Specifically this amounts to a transform of the covariance

matrix according to σL = (1 − L)I · σ + LI, where σ is the covariance matrix of the two

mode Gaussian state (in (x, p) phase space), 0 ≤ L ≤ 1 is the combined photon loss

and I is the 4x4 identity matrix. Similarly the mean vector is transformed according to

⟨R̂⟩L =
√

(1 − L)I · ⟨R̂⟩.

6.1.1 LIGO Measurement

6.1.1.1 Quantum Cramér Rao Bound

In the classical version of this setup, a coherent state and vacuum state were used as

input. With these two input states, the best sensitivity one can achieve is bounded by

the SNL, which is achievable with many different detection schemes, but importantly, it is

achievable with a standard, single mode, intensity measurement, I = ⟨â†â⟩ = ⟨x̂2 + p̂2⟩/2,

which is implemented by simply collecting the outgoing light, directly onto a detector. It is

this detection scheme that LIGO is configured for and has many technologies employed to

extract the most efficiency out of this measurement scheme. The benefit of using squeezed

vacuum in place of vacuum is then that the phase measurement can now reach below the

previous SNL. In order to compare various choices of measurement schemes, we not only

need to calculate the various measurement choices, but also need to show the best sensitivity

attainable with these input states. The best phase measurement one can do is given by

the Quantum Cramér Rao Bound (QCRB) [27] and is related to the Quantum Fisher

Information (QFI) [19] simply by ∆ϕ2
QCRB = QFI−1. For the input states of a coherent

and squeezed vacuum, one can use the Schwinger representation and many references to

calculate the QFI, since these are pure states [80, 50]. Another option, and the method we

use here, instead utilizes the Gaussian form of the states and can be calculated directly in

terms of covariance and mean [65, 34]. This method applies to pure and mixed states, as

long as it maintains Gaussian form. Using this formalism, the QCRB for a coherent state
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and squeezed vacuum into an MZI can be found to be [75]

∆ϕ2
QCRB =

1

|α|2e2r + sinh2(r)
. (6.5)

While this gives us a bound on the best sensitivity obtainable with these given input states,

it does not directly consider loss or even tell us which detection scheme attains this bound.

To handle these issues we proceed to model loss as described earlier and calculate the lossy

QCRB. As described earlier, this is done with fictitious beam splitters, but again this has

the same linear effect as before. The lossy QCRB of this mixed state then becomes

∆ϕ2
QCRBLossy

=

− ((A(AB − C)(AB + C)er(8A3B5C + 4|α|2C2

+ A(4AB4(A− A cosh 2r − 1)

+ B2(2 − A− 4A|α|2 + 2 cosh 2r + A cosh 4r)

− A sinh3 2r)))/((B − 2AB + C)

(1 + A2 − cosh 2r(A2 − 1))2)),

(6.6)

where, A = (1 − L), B = sinh r, C = cosh r.

Note that this QCRB with loss only considers linear photon loss caused by photon loss

inside the interferometer and photon loss due to inefficient detectors. In reality, Advanced

LIGO needs to account for very specific sources of noise [4, 20], but our methods purpose

is to show a preliminary case when simple loss models are considered.

6.1.1.2 Specific Measurements

Now that we have a bound on the best possible sensitivity, we now seek to show how var-

ious choices of measurement compare to this bound. Along with Advanced LIGO’s current

measurement scheme, single port intensity measurement, we consider some other typical

measurement choices, homodyne, intensity difference, and parity. While each of these mea-

surements would require a significant reconfiguration of Advanced LIGO’s setup, it is worth-
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while to show how each choice impacts the resulting phase sensitivity measurement. This is

accomplished for a chosen measurement operator ⟨Ô⟩ by way of ∆ϕ2 = ∆Ô2/|∂⟨Ô⟩/∂ϕ|2.

For homodyne detection, Ô = x̂ (we find the optimal homodyne measurement is taken

along the x quadrature). For a balanced homodyne detection scheme, one would impinge

one of the outgoing light outputs onto a 50/50 beam splitter, along with a coherent state

of the same frequency as the input coherent state (usually this is derived from the same

source) and performing intensity difference between the two outputs of this beam splitter.

A standard intensity difference is simply defined as Ô = â†â − b̂†b̂. Parity detection is

defined to be Ô = (−1)⟨â
†â⟩ = πW (0, 0) ≡ ⟨Π̂⟩. While all chosen measurements can

surpass the SNL, in the lossless case, to various degrees, in order of improving phase

sensitivity, the current Advanced LIGO standard (intensity) performs the worst, followed

by intensity difference, homodyne, and finally parity. Shown in Figure 6.1, we show a

logplot of the phase variances obtainable from various measurement choices. Intensity

difference, homodyne, and parity each almost nearly perform the same, and their different

performance is nearly impossible to see in Figure 6.1. In this figure however, it is clear

at which value of phase the various measurements attain their lowest value. It is this

value of phase that one attempts to always take measurements at with the use of a control

phase inside the interferometer. The width of each of curve then can be interpreted as

the chosen measurement schemes resistance to phase drift, fluctuations in our ability to

fix the control phase. From this viewpoint then, its clear that while the performance of

various measurement may attain nearly the same phase variance, parity would appear to

be quite limited in its ability to maintain enhancement in the presence of significant phase

drift. The modeling and discussion of phase drift is shown in the appendix. Evaluating

each phase variance at the optimal phase value then gives us analytical results for each

measurement as a function of r and |α|. We confirm that, under ideal (lossless) conditions,
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parity attains the best sensitivity and exactly matches the lossless QCRB [75],

∆ϕ2
Π̂

=
1

|α|2e2r + sinh2(r)
. (6.7)

homodyne attains,

∆ϕ2
x̂ =

1

|α|2e2r
, (6.8)

and intensity difference attains,

∆ϕ2
â†â−b̂†b̂

=
e−2r(4|α|2 + (e2r − 1)2)

(cosh(2r) − 2|α|2 − 1)2
(6.9)

while a single mode intensity measurement attains a minimum of,

∆ϕ2
â†â =

4|α|2e−2r + 2 cosh(2r) + 4
√

2|α| sinh(2r) − 2

(cosh(2r) − 2|α|2 − 1)2
. (6.10)

At this point we can note however, in the case of Advanced LIGO, the powers in which

they operate fixes |α|2 ≈ 1024 (while LIGO operates in continuous wave mode, we assume

an integration time of one second, a circulating power of P = 800 kW and wavelength

λ = 1064 nm, throughout), in which case, all the analyzed detection schemes asymptote to

the QCRB, so that there is no significant advantage in utilizing a detection scheme other

than their current intensity measurement, showing that their current detection scheme is

nearly optimal in this high power regime. Specifically, for high powers, each detection

schemes leading term in the phase variance is given by ∆ϕ2
all ≈ (|α|2e2r)−1, which is nearly

optimal since the sinh2(r) term in the QCRB is negligible compared to large α. The

phase variances shown above, are at their respective minima, in terms of optimal phase.

In all but the intensity measurement scheme, this optimal phase is a constant value and

therefore should not prove overly difficult to stabilize. In the case of intensity measurement

however, this optimal phase depends on both the squeezing strength (r) and the amplitude

of the coherent state (|α|). Therefore, fluctuations in the source will actually affect the
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optimal phase setting and in general degrade the phase measurement in this measurement

scheme. Specifically, the optimal phase for a single mode intensity measurement is given by,

ϕâ†â → 2 tan−1(21/4
√

|α|/ sinh(2r)). The other measurements attain their minimum phase

variance at optimal phases of, ϕΠ̂ → π, ϕx̂ → π, ϕâ†â−b̂†b̂ → π/2. Note that, in practice,

typical experiments use an offset to remain near these optimum values, but purposely

remain slightly away from the minimum, due to noise considerations. The ranking of the

various measurements phase variance can be listed as ∆ϕ2
Π̂
< ∆ϕ2

x̂ < ∆ϕ2
â†â−b̂†b̂

< ∆ϕ2
â†â.

Some measurements appear similar on plots due to the fact that Advanced LIGO is typically

run at very large photon number (|α|2 ≈ 1024) but realistic squeezing strength limits

r ≃ 1, Nsqz = sinh2 r ≃ 1.38. Each of these phase variances can be generalized to the

photon loss case by using the process described earlier and severly worsens the parity

measurement, but the remaining measurements maintain their rankings from the lossless

case. From these forms then, we can say that in the low photon number regime (|α|2 <

500), the difference in these detection schemes can be significant, but in the high photon

number regime (|α|2 > 105), there is little difference between the various detection schemes.

This means that the current setup of Advanced LIGO is near optimal and no significant

improvement can be made by changing detection schemes, but in small scale LIGO-type

setups that operate at lower powers, utilizing a detection scheme such as homodyne, may

be advantageous. This is still considering that each detection scheme may be optimized

perfectly, but as we argue, is likely more difficult for an intensity measurement than the

other presented measurements.

However, as shown in Figure 6.1, when we consider a total photon loss of L = 20%,

the effects on each measurements performance is significant. We can then also plot the

phase variance as a function of average photon number, shown in Figure 6.2, which can be

related to the lights optical frequency and power by |α|2 = P/(~ω0) [29]. In this form, its

clear that a parity measurement suffers greatly, under lossy conditions. Parity may also be

difficult to implement in a setup like Advanced LIGO as it either involves number counting
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Figure 6.1: Log plot of phase variance for various detection schemes for a coherent state
and squeezed vacuum into an MZI, as a function of the unknown phase difference, ϕ. Loss
parameters have been set to, L = 20%. Input state parameters for each respective state
are set to |α|2 = 500 and r = 1. SNL and QCRB are also plotted with the same loss
parameters.

(which is not feasible at the powers at which Advanced LIGO operates) or several homodyne

measurements [70]. Alternatively, a single homodyne measurement is nearly optimal in this

lossy case and still only requires measurement on a single mode, is simpler to implement

than parity, and is not nearly as sensitive to phase drift and loss. While intensity difference

is also close in phase variance to a homodyne measurement (when |α|2 > 100) it requires

utilization of both output modes for phase measurement, which may not be feasible in some

setups.

We suggest that a homodyne measurement is likely the most realistic, optimal mea-

surement choice for a setup like Advanced LIGO, as it is a typical measurement choice in

interferometer experiments, as well as being a single mode measurement, likely resistant

to photon loss, detector efficiency, and phase drift, but shows its main benefits in the low

power regime. If we instead operate in the high power regime, then a homodyne mea-

surement only achieves a factor of two improvement over an equally optimized standard

intensity measurement.
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Figure 6.2: Log plot of phase variance for various detection schemes for a coherent state
and squeezed vacuum into an MZI, as a function of the average coherent photon number,
|α|2. Loss parameters have been set to, L = 20%. We have assumed one can set the control
phase to its optimal value, to obtain the best phase variance in each measurement choice.
Squeezing strength in the squeezed state is set to r = 1. Note that Parity is now not
able to achieve even sub-SNL, due to loss, while homodyne and intensity difference quickly
approach the QCRB (appear on top of one another). SNL and QCRB are also plotted with
the same lossy parameters.

6.1.1.3 Noise Model

In addition to photon loss, detector efficiency, and phase drift, we also model the

inevitable interaction with thermal noise from the environment. This is accomplished much

in the same way as a photon loss model, but here we consider a thermal state incident on a

fictitious beam splitter, on both arms of the interferometer, inside the interferometer and

trace out one of its output modes. This allows a tunable amount of thermal noise (by

changing the average photon number in the thermal state), into the interferometer. The

effects of this unwanted thermal noise, to the various measurements phase variance is shown

in Figure 6.3. From this, we can see that even in the regime of introducing a relatively low

photon number of thermal noise, it significantly degrades the phase variance of each scheme,

but drastically affects the parity scheme, making it significantly above the SNL. Also in

this regime, a standard single mode intensity measurement now does not acheive sub-SNL
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phase variance, but homodyne and intensity difference barely manage to achieve. We also

note that the advantage of homodyne over intensity measurement is significantly decreased

under thermal noise, but homodyne still maintains its superiority. An introduction of larger

thermal photon number continues to degrade all measurements so that they no longer beat

the SNL, but this example showcases their behavior under this noise model. It should be

noted that in the optical regime, the occupation of a thermal state, at room temperature

is approximately nth ≈ 10−20 and therefore, Advanced LIGO does not deal with significant

contribution from this model of thermal noise, but experiments in the microwave frequencies

can have nth ≈ 1, where this model is more applicable. This model of thermal noise is not

to be confused with other models of thermal noise, such as in the case of LIGO, where some

references of thermal noise refer to thermal excitation of mechanical degrees of freedom,

which is not considered here. We have argued that the width of each measurements phase

Figure 6.3: Log plot of phase variance of the various detection schemes, with introduction of
thermal noise into the signal beam, of total average photon number of nth = 1/3. Strength
of the two input sources are set to |α|2 = 500, r = 1.

variance curve, shown in Figure 6.1, gives an idea of each measurements resistance to

phase drift. However, we will however be considering the lossless case in this section The

mechanism of phase drift comes about due to the limited ability to set control phases in the

interferometer with infinite precision. In general, the control phase value will vary around
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the optimal phase setting. For this reason we aim to show this phase drift in a more

mathematical way and therefore we use the analytical forms of the various measurement

phase variances, as a function of unknown phase, ϕ, and simulate phase drift by computing

a running average of the phase variance, with a pseudo-randomly chosen phase, near the

optimal phase, for each measurement. This psuedo-random choice is made from a Gaussian

distribution, whose mean is fixed at the optimal phase choice and has a chosen variance,

shown in each plot in Figure 6.4. As predicted in the text, this gives a clearer picture of

each measurements behavior under phase drift.

Figure 6.4: Log plots of phase variance as a function of number of measurements (M). For
all plots shown, |α|2 = 100, r = 1 and the maximum possible phase drift, away from the
optimal, for each measurement, is shown. Note that some plots have different ranges and
phase drift percentages.

Shown in Figure 6.4, we see the phase variance for each measurement scheme, as a

function of number of measurements. As the number of measurements is increased, the

phase variance asymptotes to the ideal measurement case, given by the phase variance

at the optimal phase. Note that the ranges for some plots are different as they attain

different minimum phase variances. Also of significant difference is the phase drift for
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parity, which uses a psuedo-randomly chosen phase from a Gaussian distribution, centered

on the optimal phase but with a standard deviation of only, σΠ̂ = 0.001, yet, still has

a large range, and still performs fairly poorly as compared to the other measurement

schemes. In the case of intensity, homodyne, and intensity difference measurements, which

use σx̂ = σâ†â = σâ†â−b̂†b̂ = 0.15, its clear that homodyne and intensity difference attain

a small phase variance, while also being more tolerant of phase drift, as compared to

a standard intensity measure. In principle, all of these different measurement schemes

will each attain their respective phase variance minimum, as the number of measurements

increases to infinity, but it is instructive to see how quickly a finite number of measurements

approaches the ideal phase variance minimum. We note that this model of phase drift,

while general, may not necessarily apply if one has significant control over these fluctuating

parameters, so that their drift effects are rendered insignificant, which is likely the case in

Advanced LIGO.

6.2 Photon Subtracted Thermal State

6.2.1 Photon Subtraction in Phase Measurement: The Bad

6.2.1.1 State Preparation and Photon Subtraction

To complete our discussion of full examples, we will also show a complete working of

a photon subtracted thermal state (PSTS) and squeezed vacuum, into an MZI, shown in

Figure 6.5. While the thermal state itself is not an ideal choice for use in phase estimation,

as it contains significant noise, we wish to investigate the effects of photon subtraction and

therefore a coherent state is not valid.

We begin much in the same way as our previous example and construct the initial

Wigner function from the product of a thermal state and squeezed vacuum, which takes

the form of,

W (x1, p1, x2, p2) =
1

(1 + 4nth)π2
e
p22(1−2G−2

√
G(G−1))− 1

1+4nth
(x2

1+p21)+x2
2(1−2G+2

√
G(G−1))

,

(6.11)
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Figure 6.5: MZI with the generation of a squeezed vacuum (lower) and a photon subtracted
thermal state (upper) as input states. Blue beam splitter denotes a variable transmissivity,
while black beam splitter are fixed to 50-50. Detector DS is used to herald the subtraction
event in the thermal state. These two states mix, experience a phase difference ϕ, and exit
the interferometer at detectors D1 and D2.

where G ≥ 1, is the gain of the squeezer, n̄ = 2nth is the average photon number in the

thermal state and we have fixed the squeezing angle, θsqz = 0. With this initial state, we

then proceed to perform photon subtraction on the thermal state following the prescription

shown in Section 5.1.1. This process involves the transform,



x1s

p1s

x3s

p3s


= BS(T ) ·



x1

p1

x3

p3


, (6.12)

where the “s” subscript denotes that these phase space variable are after the subtraction
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beam splitter. We also need a projection operation for confirmation of the photon sub-

traction process; this is realized as a projection onto the single photon state, given by

Eq. (4.12). After this process, we also need to re-normalize our state, following Eq. (5.7).

This process then needs to be repeated for the case where photon subtraction fails. To do

this, we simply consider the complement of the projection onto the single photon state.

Specifically this projection takes the form,

Wf (x1, p1, x2, p2) =

∫
(1 − 2πF1(x3, p3))W (x1, p1, x2, p2, x3, p3)dx3dp3, (6.13)

indicating that we project on the subspace corresponding to our heralded detector receiving

any number of photons, other than a single photon. In this case, we say that we failed to

subtract exactly one photon. These two cases, in general, lead to different Wigner functions

and therefore both cases must be considered separately. From here we can now propagate

our two states of light through the MZI according to Eq. (3.12).

6.2.1.2 Analysis

We now have our photon subtracted thermal state and squeezed vacuum, at the output

of the MZI. At this point we have many choices on how to proceed with detection or to

attempt a calculation of the QCRB. While the ideal case would be to calculate the QCRB

and find a matching detection scheme, calculating the QCRB proves extremely difficult as

we are dealing with a mixed, non-Gaussian state (due to the photon subtracted thermal

state). Therefore, for simplicity with this example, we choose a specific measurement, a

parity measurement, and calculate its phase variance, carefully accounting for the nonde-

terministic nature of the photon subtraction process. Since the parity measurement is a

single mode measurement, we are free to trace over the secondary mode and calculate the

parity measurement on the remaining mode according to,

⟨Π̂⟩ = πW (02, 02), ⟨Π̂2⟩ = 1, (6.14)
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where we have used the subscript to indicate that we have performed the parity mea-

surement on mode two. We can now calculate the total information of this measurement

according to,

Itot =

(
1

Ps

1 − ⟨Π̂s⟩2

(∂⟨Π̂s⟩/∂ϕ)2

)−1

+

(
1

1 − Ps

1 − ⟨Π̂f⟩2

(∂⟨Π̂f⟩/∂ϕ)2

)−1

, (6.15)

where the subscript “s (f)” indicates that we are performing the parity measurement on the

state resulting from a success (failure) of photon subtraction and we note we have included

the probability of subtraction success (failure), in each case. We now have a weighted

information for the estimate of ϕ, in the case of successful photon subtraction and failed

photon subtraction. This method ensures we are not discarding any information, as this

accounts for all outcomes with this choice of projection and measurement scheme. To obtain

the phase variance of this scheme, we simply use the relation, ∆ϕ2 = I−1
tot . In Figure 6.6,

we show the phase variance, as a function of nth for the case of a standard thermal state

and squeezed vacuum (MZI) and from a photon subtracted thermal state and squeezed

vacuum (P- Tot), when we consider the total phase measurement. We can see that they

perform nearly identically, with the photon subtracted scheme actually performing slightly

worse than the standard scheme. The two phase variances match exactly in the limit

that T → 1 and P-Tot never outperforms MZI, for any choice of parameters. We take

from this that, given the ability to perform such an experiment, we should actually not

perform subtraction at all and instead use a standard thermal state! We caution that

if we instead do not consider this weighted total phase measurement, but instead only

consider the successful measurement, without weighting it by its probability of success,

then one may conclude a result that shows a photon subtracted state performs better than

a standard thermal state, but this treatment assumes one can perform deterministic photon

subtraction, which we argued is impossible. This is not definitive that photon addition and

subtraction is not useful at all for phase measurements, but at least illustrates that for this
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choice of input states and parity measurement, that photon subtraction does not provide

a superior phase measurement.

Figure 6.6: Phase variance of a standard thermal state and squeezed vacuum into an MZI
(MZI), compared to a weighted total phase measurement of a photon subtracted thermal
state and squeezed vacuum into an MZI (P-Tot). While both can surpass the SNL, it’s clear
that photon subtraction provides no benefit over a standard setup. Relevant parameters
have been fixed to T = 0.95, G = 1.1, ϕ = 0.

6.2.2 Photon Subtraction in SNR: The Good

6.2.2.1 Distant Source Model and State Preparation

While the previous result may imply that one should dismiss the idea of photon sub-

traction from thermal states, we will now present a regime where they retain a useful

character. Instead of the setup discussed in the previous section, we instead consider per-

forming photon subtraction at the output of an MZI which has input states of a thermal

state and vacuum state. Shown in Figure 6.7, we see the proposed configuration. The

reasoning behind the placement of the photon subtraction stage, at the output, is a simple

model of limited control. We assume that we are interested in measuring the statistics of

a distant thermal source, to which one does not have physical access. In this case, one is

limited to modification of the interferometer, at the output. With this restriction in place,
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the goal is now to enhance the photon statistics of such a setup. A deterministic amplifier,

such as a quantum mechanical squeezer proves useless for this setup as it always amplifies

the noise of the state, along with its photon number, leaving the SNR unchanged, at best.

A nondeterministic amplifier, such as photon subtraction functions as a so called noiseless

amplifier and showcases enhanced SNR.
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Figure 6.7: A standard Mach-Zehnder Inteferometer where ϕ encompasses a phase differ-
ence between the two arms, as well as a control phase (not shown). Photon subtraction
is modeled in the top output arm by a variable transmissivity (T) beam splitter (blue)
where other beams splitters are standard 50-50 (black). Post selection is conditioned on
the successful detection of a single photon, registered at detector DS.

We begin with the initial state of a thermal state and vacuum state, written as,

Win(x1, p1, x2, p2) =
1

π2(1 + 4nth)
e

−x21−p21
1+4nth e−x2

2−p22 , (6.16)

where n̄ = 2nth is the average number of photons in the thermal mode (this choice is a

simple matter of convenience). The propagation of this two mode Wigner function through

the various linear optical elements of the MZI is again given by Eq. (3.12). It is important to

note that once we have a form of the output state, prior to our probabilistic amplification,

all operations are Gaussian preserving, but the use of photon addition or subtraction breaks

this preservation (due to its projective measurements).
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6.2.2.2 Photon Statistics

Once we have obtained the state at the output, we can then perform photon subtrac-

tion as given by Eq. (6.12) and (6.13), applied on the upper mode. The probability of

successfully subtracting a single photon is given by,

P1 =
2nth cos2 (ϕ/2)(1 − T )

(2nth cos2 (ϕ/2)(1 − T ) + 1)2
. (6.17)

For an arbitrary condition of using full number counting detection for m subtracted pho-

tons, one can find that the probability of this event goes as

Pm =
(2nth cos2 (ϕ/2)(1 − T ))m

(2nth cos2 (ϕ/2)(1 − T ) + 1)m+1
. (6.18)

We also consider a simpler conditional measurement, that of click detection, where an

APD clicks whenever it receives any number of photons, but is not sensitive to the specific

number of photons it receives. In this case,

Pc = 1 +
1

2nth cos2 (ϕ/2)(T − 1) − 1
. (6.19)

These various probabilities of successfully generating a photon subtracted thermal state

are shown in Figure 6.8.

For a postselection condition of single photon counting, we now have an average photon

number of

n̄th1− =
4Tnth

(2nth(1 − T ) + 1
,

and for click conditions,

n̄thc− =
4Tnth(nth(T − 1) − 1)

(2nth(T − 1) − 1
,

One can see that for T = 1, both of the previous expressions reduce to, n̄th− = 2n̄, twice

the previous value. This result, while surprising should also be considered with caution as
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Figure 6.8: Probability of successfully heralding a photon subtraction event for using click
detection (Pc) and various numbers of photon counting (Pi), for n̄ = 2nth = 4. One can
note that click detection generally has the best chance of succeeding but as seen later,
comes at the cost of less than ideal number statistics.

from Eq. (6.17) and (6.19) we see that the probability of this state being generated tends

to zero.

A general form for the average photon number in a photon subtracted thermal state

resulting from m subtracted photons is given by,

n̄thm− =
2(m + 1)nthT cos2 (ϕ/2)

2nth(1 − T ) cos2 (ϕ/2) + 1

=
T (m + 1)

2nth(1 − T ) cos2 (ϕ/2) + 1
n̄MZI,

(6.20)

where n̄MZI is the average photon number for a normal thermal state sent through an MZI.

Note that the average photon number increases linearly with the number of subtracted

photons but as shown in Eq. (6.18) or Figure 6.8, the probability of generating these states

decreases with m. Also shown in Figure 6.9 and 6.10, we can see for successive photon

subtraction, we do increase the average photon number in the resulting state.

An important point is that when T = 1, generally the resulting state under this condi-

tion has the best characteristics. However, it’s clear that generating a photon subtracted

state under these conditions is extremely unlikely, as, if the beam splitter transmissivity is

set to unity, no photon addition or subtraction event is likely to occur. This is characterized
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and shown in Figure 6.8. One can also see this from the form of Eq. (6.19) that Pc → 0 for

T → 1. It is also in this limit that this beam splitter model for photon subtraction converge

back to the mathematical treatment of the annihilation operator. For values of T ̸= 1 we

then create a photon subtracted state with some less than ideal statistics. Of course the

resulting state itself also is modified as T changes and, in general, the characteristics of

the state worsen as T decreases to zero. However, the question remains, is there a region

where the probability of creating some subtracted state remains significantly large and the

resulting state also contains some useful character? In order to answer this question, we

investigate various metrics. Many different metrics may be used when characterizing a

quantum metrology topology. Here we will discuss phase information (phase sensitivity)

through Fisher information as well as signal-to-noise ratio. Generally the phase estimation

route is viewed as more robust and is typically the chosen metric in quantum metrology,

but we will see that SNR, while being perhaps a more limited metric, has some aspects not

possible when phase estimation is considered.

Figure 6.9: Photon number distributions for a normal thermal state along with various
photon subtracted thermal states. The average photon number for the normal thermal
state is n̄ = 4, while for the photon subtracted thermal states n̄ ≈ 4(m+1), where m is the
number of subtracted photons, significantly larger than its initial value. Transmissivity of
the beam splitter is set to T = 0.9.
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Figure 6.10: Average photon number for a normal thermal state and photon subtracted
thermal states (n̄ = 2nth = 4). Various versions of the photon subtracted thermal state are
shown, dependent on the choice of projective post selection (number of subtracted photons).
Using a simple click detection scheme gives a modest improvement over single photon
counting, but is quickly overtaken by higher photon counting schemes. The subtraction
stage beam splitter transmissivity is set at T = 0.9

6.2.2.3 Phase Measurement

As a general improvement, even a probabilistic amplification is bounded by the Quan-

tum Cramér-Rao Bound (QCRB), which, for a fixed MZI topology, is calculated as a

function of the input states only, and minimizes (maximizes for the Quantum Fisher Infor-

mation (QFI)) over all possible detection schemes [18]. Here, since our only modification

of the MZI is after the unknown phase, ϕ, it can be viewed as a particular measurement

scheme, and so the QCRB is most directly calculated as a function of the total state, im-

mediately after the unknown phase ϕ, depicted in Figure 3.1. When this is calculated for

any classical states as input states, the full state is Gaussian and thus can be calculated

following [65]. As expected, since the states at this point are purely classical, the QCRB

is simply the shot-noiselimit (SNL), which is given by I−1
Q = 1

νn̄
= QCRB = ∆ϕ2

min, where

n̄ is the average photon number in the initial state and ν is the number of experimental
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trials. This result seems discouraging, as it shows that one cannot improve overall phase

variance with this probabilistic amplification. However, since this probabilistic amplifica-

tion is a form of weak value amplification and it is known that weak value amplification

schemes show their benefit when technical noise is considered, one may still be able to use

this implementation under the conditions of certain conditions of technical noise [55].

One can generalize the Fisher Information formalism to the probabilistic case, as dis-

cussed in [26, 10], which provides a proper description of the probabilistic portion of this

scheme and now no longer assumes all trials are identical, but properly weighs all trials by

their associated probability of success. This adaptation is key when using any probabilistic

process that claims to show improvement on the previously described, deterministic lim-

its. This describes the CFI in two pieces, namely the information obtained at the meter

(measuring the state itself) and the conditional probabilistic event. The meter information

portion is given by

Fm(ϕ) = Pc(ϕ)
n∑

j=1

1

Pj(ϕ)

[
dPj(ϕ)

dϕ

]2
, (6.21)

with Pj(ϕ) the chosen POVM of the output state. The probabilistic measurement infor-

mation is given by,

FPc(ϕ) =
1

Pc(ϕ)[1 − Pc(ϕ)]

[
dPc(ϕ)

dϕ

]2
, (6.22)

where Pc(ϕ) is the probability of success for the probabilistic measurement and ϕ is the

parameter to be estimated. Also in Ref. [26], a nice argument points out that, post se-

lection alone must necessarily discard some of the information about the parameter to be

estimated, ideally this discarded information is small, but nevertheless must decrease the

total information. Then there are clear bounds that show that the postselected space must

contain less information than the whole set of results. It remains an open consideration

however, if postselection can provide some benefit in technical noise cases. The key ar-

gument here is that each experimental trial obtains information about the parameter ϕ.

So ν trials obtain ν times as much information about the parameter as one trial. Once
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postselection schemes are taken into account however, it is now Pc×ν number of trials that

are kept and since Pc ≤ 1, it is clear that postselection when weighted by its probability

of success sees a reduction in number of kept trials. Of course, there is an increase in

information in the cases of successful postselection, but this increase is exactly countered

by the reduction mentioned earlier, leaving the final total information, still bounded at

the classical limit. The trouble with postselection can be that if one only considers the

successful trials, without weighting them by their associated probabilities, it can lead to

a total information beyond that of the classical limit. This pitfall is easy to believe but

must not be misunderstood. Postselection when a metric of phase measurement is chosen,

must always account for probabilities in the metric itself, due to the inherent conditions

under which the typical bounds are considered. A phase uncertainty, described through

Fisher Information is an asymptotic bound in the limit of many measurements. That is,

one can approach the true phase uncertainty with a chosen POVM (or without a pre-chosen

POVM if the QFI is considered), in the limit of many experimental trials and all bounds

referenced from this argument assume this many trials case. When postselection enters the

consideration, the number of trials is now reduced and properly accounting for this must

be done before comparisons with typical metrology limits can be done. Note that in the

case considered here, performing photon subtraction at the output of an MZI, limits us

to the SNL, but this does not claim that photon addition/subtraction as a whole has no

use at all in metrology, merely that it must always come with proper probabilities if phase

information is the chosen metric.

As an example, we examine the case of a thermal state and vacuum into an MZI and

perform photon subtraction on either output arm. The total CFI in this case, considering all

events and postselection probabilities, with a chosen detection scheme of click detection the

following CFI is simply the sum of the the CFI obtained at each detector. This expression
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is given by

F = Pc

(
1

Pcs1(1 − Pcs1)
P ′2
cs1

+
1

Pcs2(1 − Pcs2)
P ′2
cs2

)
+(1 − Pc)

(
1

Pcf1(1 − Pcf1)
P ′2
cf1

+
1

Pcf2(1 − Pcf2)
P ′2
cf2

)
+

1

Pc(1 − Pc)
P ′2
c ,

(6.23)

where Pc is given by Eq. (6.19) and Pcsi is the probability distribution of the ith detector

clicking, Pcfi is the probability distribution of the ith detector “not clicking”, and derivatives

are taken with respect to ϕ. This construction is easily seen in pieces given by the first

piece representing the information acquired at both detectors, weighted by the probability of

photon subtraction succeeding. The second piece (second line) is the information acquired

at both detectors, weighted by the probability of photon subtraction failing. The final piece

is the information acquired by the photon subtraction herald mode itself. It’s clear that the

first and second piece necessarily involve different probability distributions, as postselection

on vacuum or postselection on not vacuum results in different states. Once this total Fisher

information is obtained, we maximize it as a function of ϕ and take its inverse to obtain a

minimum phase variance ∆ϕ2. In this case this minimum phase variance is given exactly

by ∆ϕ2 = 1/(2nth) =SNL, indeed showing agreement with the QCRB for these classical

input states. While this is a classical Fisher information calculation, meaning it does not

explicitly show that other measurements must be limited to this same bound, we use it as

an indication that this scheme is likely limited to the classical SNL, as we would expect.

6.2.2.4 SNR Measurement

Another metric of interest is the SNR, defined by SNR = ⟨â†â⟩
σ
â†â

, that is, the average

photon number divided by its standard deviation, also typically described as intensity and

σâ†â =
√
⟨(â†â)2⟩ − ⟨â†â⟩2 . Since this metric is not constructed in the same way as Fisher

Information, repeated trials and asymptotic limits are not necessarily incorporated into

this metric. Therefore, while we should still note the associated probabilistic nature of
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the processes here, they are not directly incorporated into the metric. As with previous

discussions, we can describe the effect on the SNR for an arbitrary number of subtracted

photons from a thermal state, given by,

SNRm− =
| cos (ϕ/2)|

√
2Tnth(m + 1)√

2nth cos2 (ϕ/2) + 1
.

=
√

T (m + 1)SNRMZI

(6.24)

Thus far all considerations have considered ideal, lossless interferometers with perfect

detectors. An immediate question one may consider is, do these benefits with photon

subtraction only hold in this case? In fact, the behavior of photon subtraction is somewhat

robust when loss and detector efficiency are considered. For simplicity, we assume that

photon loss occurs equally in both arms inside the MZI and that all detectors share the

shame efficiency. For completeness, Figure 6.11 shows the SNR with loss parameters of

L = 30% and D = 70% for all displayed curves. It is easily seen that the photon subtraction

schemes described earlier maintain their advantage in lossy conditions.

In the case of a phase measurement it is clear how the nondeterministic nature of

photon subtraction affects our statistics. In the case of an SNR measurement however,

the probability of generating a photon subtracted state are not directly integrated into

our measurements. In order to fairly quantify the effects of this probabilistic process, we

simulate the effect of this process by considering the fact that the efficiency of generating

the photon subtracted state directly affects the number of our kept measurements. This

has the effect of limiting to accuracy of our overall SNR measurement and is shown in

Figure 6.12. Here we see that the SNR, in each case of photon subtraction, has significant

scatter around the theoretical value, dependent on the efficiency. In this way, one can

interpret this as the condition that, in the case of photon subtracted thermal states, if one

requires a particularly accurate measurement, then use of this scheme comes at the price of

longer experiment times, but can, in principle, achieve their theoretical predictions. Note
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Figure 6.11: SNR, with loss, of various photon subtracted thermal states. Average photon
number is fixed at n̄ = 4, before losses, and variable beam splitter is fixed at T = 0.9. In
this low photon regime, click detection and single photon subtraction achieve nearly the
same SNR, while higher photon subtraction show improved benefit. Photon loss inside the
MZI, equal in both arms, is set to L = 30% and all detector efficiency is D = 70%.

Figure 6.12: Simulated data of the SNR for various subtraction of photons from the thermal
state. Number of kept measurements, M , is shown for each case, which is a result of the
probability of subtraction. We note that the trade for an increased SNR, is for the accuracy
of the SNR measurement, but, in general can be improved with more measurements.
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that in the case of three photon subtractions, if we wish to achieve the same accuracy as

compared to a standard thermal state, we would require sixty times more measurements.

This condition may or may not be reasonable, depending on the application, but at the

very least serves as an option, where deterministic methods provide no improvement to the

SNR, regardless of the number of measurements performed.
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Chapter 7
Mathematica MZI Toolbox

7.1 Introduction & Motivation

The previous chapters have discussed the mathematical background of using Wigner

functions in phase space to model the properties of quantum sensing in the form of a

Mach-Zehnder Interferometer. We have used this background to construct a Mathematica

notebook with the goal of requiring nearly no modification but remaining versatile enough

to handle many combinations of input states, modifications, and detection schemes. Here

we will discuss the use of this toolbox, but focus more on the function of this notebook as

this is a physics discussion, not one of computer science and therefore we will not discuss

the deep inner workings of every command used. A few technical notes, this notebook was

made in Mathematica 10.3.1, and requires no special packages or files to function. Access

to this notebook is intended for any wishing to familiarize themselves with this modeling

of quantum light but was originally made as a culmination of the research progress made

during graduate work and serves as a parting gift to the Quantum Science and Technologies

(QST) group at Louisiana State University.

7.2 Function & Usage

We begin by listing the capabilities of this notebook. In terms of input states, one

can select, using a dynamic choice of, a coherent, vacuum, thermal or single photon Fock

state, in either input mode of a MZI. Some of these choices adhere to the Gaussian form

and therefore this notebook will utilize Gaussian information calculations, when applicable,

discussed in prior chapters. This greatly simplifies some of the calculations and allows for

while you wait calculations, in most cases, detailed later. While we could choose to model a

completely general Gaussian state, with the use of a displaced, squeezed, thermal state, but

in some cases, this leads to overly complicated calculations when a simpler case of vacuum

or a coherent state is sufficient. Our construction allows the same functionality as using a

85



general Gaussian, but can be more simplified, in some cases. A note that all choices made

in this notebook utilize the dynamic capabilities of Mathematica and therefore subsequent

choices may change, depending on previous choices.

Once the input states are selected, one has a choice of modifications to these states.

These modifications include, squeezing, displacing, adding or subtracting a photon. A word

of caution that while the notebook is capable of handling any combination of state and

modification, the more complicated combinations can lead to lengthy calculation times

and this should be considered fully. An important note is also that some combinations

of states and modifications are invalid due to the fact that some combinations result in

redundant states. For example, if vacuum is selected, then a modification of displacement

is not available (one will not see this option even listed) due to the fact that this would

result in a coherent state, which is already an option to begin with. For each state chosen

as an input state, one can select the number of modifications desired, which then allows

the selection of which specific modifications one desires. The order in which one selects

these modifications, of course, also matters, as generally quantum operators do not com-

mute. Therefore, squeezing and then displacing a state, can lead to different results when

compared to displacing and squeezing the same state. One can also notice that choosing a

first modification of, say, photon addition to a coherent state, re-opens the ability to choose

further modifications such as squeezing or displacing.

Based on the choices made previously, one then calculates the propagation of the re-

sulting state through the MZI following the mathematical description shown in previous

chapters. If the state retains Gaussian form, the notebook calculates everything using

Gaussian information, if the state is non-Gaussian, it constructs the corresponding non-

Gaussian Wigner function and performs all calculations in this form. From here, one can

now choose a detection scheme ⟨Ô⟩ for either output. These choices include, homodyne,

parity, intensity, click, and intensity difference. Each of these detection schemes, in general,

leads to a different signal and phase variance, which can be calculated following previous
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chapters. A word of caution that some detection choices are significantly harder to calcu-

late than others. In order of simplest to most complicated, in terms of computation time,

we can rank these detection schemes according, homodyne, parity, click, intensity, and in-

tensity difference. This ranking can be seen from the fact that using Gaussian information

allows us to calculate homodyne detection, directly from the covariance and mean, while

the other detection schemes require construction of the full Wigner function and utiliza-

tion of our “speedy” integral trick discussed in previous chapters. In the case of parity, the

calculation remains fairly simple due to the usage of ⟨Π̂2⟩ = 1. Both choices of intensity

and intensity difference, remain fairly complicated as the full calculation for phase variance

requires a second moment calculation, which proves fairly time consuming, unless some

assumptions are made, which take the form of assuming all initial state phases are taken to

be equal. Specifically, this is selected in the Optimize section and this sets all phase angles

from the initial state, coherent phase, displacement angle, squeezing angle to be zero. This

assumption is found to be best to minimize the phase variance and also serves to greatly

speed calculations. Based on the choice of detection scheme, the phase variance is also cal-

culated using ∆ϕ2 = ∆Ô2/∂⟨Ô⟩/∂ϕ. The notebook also takes advantage of a simplification

possible when the mean of the output state is zero. This includes thermal, vacuum states

and squeezed version of these states. In these cases, calculation of an intensity measure-

ment and its phase variance are greatly simplified as the higher moments required for this

calculation can be calculated with various identities, in terms of its covariance, since if the

mean is zero, then ∆Ô2 = ⟨Ô2⟩.

An also interesting property we show in this notebook is the construction of the photon

number distribution in each mode of the output of the MZI. Since this state is dependent

on the unknown phase, ϕ, this variable serves as a control (or “steering”) of the state.

For a value of ϕ = 0, input 1 exits output 2 and input 2 exits output 1. For ϕ = π/2,

both inputs equally split into output 1 and 2 and so their distributions are identical. For

ϕ = π, then, as expected, the outputs swap from the case of ϕ = 0. Any other value of ϕ
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then allow one to see the arbitrary mixing of the two inputs, as a function of the relevant

parameters, which depend on the choices selected previously. It is worth noting that, unless

the assumption of equal phases has been made, then all possible parameters for the various

combinations of input states and modifications is left completely analytical and therefore

utilization of Mathematica’s manipulate function is used to allow modification of these

parameters, inside their plots to instantly see their effects, rather than having to turn to a

numerical method with many more calculation runs.

The next section of the notebook calculates the phase variance attainable, with the

selected detection scheme. Note that some of these may calculate in a few seconds, to a

few minutes, depending on ones computational power and the level of complexity chosen in

previous steps. Again we stress the importance of setting initial phases, prior to this stage,

as they prove to severely complicate this stage, while the phase variance always achieves

its minimum when these parameters are set to be equal. Therefore, unless for a specific

requirement, we suggest choosing “All initial state phases” in the “Optimize” section of

the notebook. In this section we can note that some detection schemes allow for a phase

variance below the SNL, with the choice of a quantum input state, while others, do not and

this effect should be considered carefully as it directly shows that some detection schemes,

while perhaps complicated to implement physically (such as a Parity measurement), in

some cases can allow for enhanced phase measurement, while a simpler detection scheme

(such as Click detection) exhibit fairly poor statistics.

When we consider the large number of combinations possible in each stage of this

notebook, we can see that this notebook is capable of reproducing results of many papers,

including, in 1981, when Caves [24] first suggested using a coherent state and squeezed

vacuum into an MZI, up to some of the results of more recent papers, considering more

exotic states into an MZI, such as Nori [80]. We also note that likely contained in this

notebook is the possibility of choices that have not been fully investigated, mostly concern-

ing the proper use of photon addition and subtraction, which seem to have little benefit in
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phase estimation problems, when their probabilistic nature is properly taking into account.

Therefore we suggest that this notebook, confirmed by reproducing many of various pa-

pers previous results and capable of generating new results, serves as a very useful tool in

the investigation of general quantum sensors and is also possible to be adapted to specific

schemes, with some minor modifications.
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Chapter 8
Conclusion

In this dissertation, we have discussed many topics in the field of quantum metrology,

including a basic introduction to the use of Wigner functions in phase space, a simplified

model of LIGO, a full model of photon addition or subtraction, and also a description of

noise sources such as photon loss, inefficient detectors, phase drift and thermal noise.

We have shown the merits of describing quantum states of light, in terms of continuous

phase space variables and discussed some of their challenges. We also briefly described

the connection between a quantum Gaussian information treatment and Wigner functions,

showcasing that these methods can be combined, when the Gaussian form is maintained.

Using these methods for quantum metrology, we also showed the propagation of light

through a typical interferometer setup used for phase measurement as well the use of SNR

as a metric. In the case of phase measurement, we showed bounds given by the SNL and

also discussed calculation of the QCRB through quantum Gaussian information. We con-

trasted these two metrics and showed that some schemes, as is the case for our example

of a photon subtracted thermal state, are able to improve the SNR but not enhance a

phase measurement, when the post-selection requirement of photon subtraction is taken

into account. The nondeterministic nature of photon addition and subtraction was also

argued in terms of a Alice and Bob gedanken discussion. This argument indicates that

while our chosen physical model of photon addition and subtraction need not be the only

model, any model must be described by a nondeterministic process, likely accompanied

by post-selection, and this requirement directly affects claims of improved phase variance

measurements. We also argue that due to this requirement, that a mathematical model of

photon addition and subtraction with creation and annihilation operators is insufficient to

account for the effects of this nondeterministic process. One can accommodate a mathe-

matical model, along with inefficiencies to try to more closely model the realistic process,
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but we suggest it is more advantageous to model the actual physical process, rather than

rely on purely numerical methods, which may or may not model the physical process.

We have also included a manual of sorts which accompanies the use of the MZI Toolbox

Mathematica notebook, which serves as a useful tool to easily show the results of sending

various Gaussian states of light through a MZI, with many different combinations of mod-

ifications and detection schemes. This notebook requires a minimal amount of changes,

but allows the calculation of hundreds of combinations of input state, modifications, and

detection schemes.
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[29] Rafa l Demkowicz-Dobrzański, Konrad Banaszek, and Roman Schnabel. Fundamen-
tal quantum interferometry bound for the squeezed-light-enhanced gravitational wave
detector GEO 600. Physical Review A, 88:041802, 2013.
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