




The above formulation is for general interatomic potentials. Now let us incorporate the EAM
potentials into equation (3.41). Recall the following EAM expressions

Etot =
N
∑

i=1

Ei (3.42)

Ei = Fi(ρ̄i) +
1

2

rij≤rcut
∑

j 6=i

Vij(rij) (3.43)

ρ̄i =

rij≤rcut
∑

j 6=i

ρj(rij) (3.44)

The local dynamical matrix of atom i then becomes

Di
pq =

∂2Etot
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i
q
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∂xip∂x
i
q

[
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[
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∂xip

]
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(

F
′
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′

(rij) + F
′
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′
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]
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[

F
′
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′
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′
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′
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i
q

+
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[(

F
′
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′

(ρ̄j)
)

ρ
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(ρ̄j)ρ
′

(rij)ρ
′

(rij)
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∂rij
∂xip

+
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∑

j 6=i

[

F
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(ρ̄i)

(
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∑

k 6=i

∂ρ

∂rik

∂rik
∂xiq

)

ρ
′

(rij)

]

∂rij
∂xip

(3.45)

where (i 6= j, no sum on i and j)

∂rij
∂xip

=
1

rij
(xip − xjp) (3.46)

∂2rij
∂xip∂x

i
q

=
1

rij
δpq −

1

r3ij
(xip − xjp)(x

i
q − xjq) (3.47)

The derivative of dynamical matrix with respect to deformation gradient is given by

∂Di
pq

∂FlM

=
∂

∂FlM

〈

∂2Utot

∂xip∂x
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〉

=
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i
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〉
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+
∂
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〉

= S1 + S2 + S3 (3.48)

where
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(3.50)
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∂ρ̄i
∂FlM

=

rik≤rcut
∑

k 6=i

∂ρ

∂rik

∂rik
∂FlM

(3.52)
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∂rij
∂FlM

=
(xil − xjl )(X

i
M −Xj

M)

rij
(3.53)

∂2rij
∂xip∂FlM

=
δpl(X

i
M −Xj

M)

rij
−

(xil − xjl )(X
i
M −Xj

M)(xip − xjq)

r3ij
(3.54)

∂3rij
∂xip∂x

i
q∂FlM

= −(X i
M −Xj

M)

r3ij

[

δql(x
i
p − xjp) + δpl(x

i
q − xjq) + δpq(x

i
l − xjl )

]

+
3

r5ij
(X i

M −Xj
M)(xil − xjl )(x

i
p − xjp)(x

i
q − xjq) (3.55)
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Figure 3.6: Effect of temperature on the lattice parameter of single crystal aluminum

The resulting continuum model is used to analyze the lattice structure of FCC aluminum
using EAM potential in [62]. The lattice parameter a0, that characterizes the primitive cube
corners of the crystal, is obtained by calculating the 1st Piola-Kirchoff stress T at various

values of a0 at zero deformation gradient, i.e. by calculating T(a0)|F=I = ∂U(a0)
∂F

∣

∣

∣

F=I
. Since

the material is expected to be stress free at unit deformation gradient, the lattice parameter
of the material can now be obtained from the equation T(a0) = 0. The equilibrium lattice
constant of a0 = 4.050Å and the elastic moduli predicted by this potential C11 = 113.68 GPa,
C12 = 61.43GPa, and C44 = 31.60GPa are very close to those in [62]. This result can be
compared to material properties of single crystal aluminum in [34]. These analytical predictions,
are written in material properties such as shear modulus µ and Poisson ratio ν and effective
values for the parameters were computed fromC11, C12, and C44 by performing a Voigt average.
The invariants of the elastic modulus tensor computed from the effective isotropic moduli by
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Voigt average are the same as those from the anisotropic moduli [34]. The relations for effective
parameters are

µ =
1

5
(C11 − C12 + 3C44)

ν =
1

2

[

C11 + 4C12 − 2C44

2C11 + 3C12 + C44

]

(3.56)

which give µ = 29.41GPa and ν = 0.334 for Mishin Aluminum. Finally the effect of temperature
on the lattice parameter is depicted in figure 3.6.

The Forces on Atoms at Finite Temperature

The partial derivative of Helmholtz free energy(3.37) with respect to the displacement of atom
l gives the forces on atom l

f lr =
∂A

∂xlr

=
∂Etot

∂xlr
+ 3kBT

N
∑

i=1

1

6

1

‖Di‖
∂‖Di‖
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∂Etot

∂xlr
+

1

2
kBT

N
∑

i=1

1

‖Di‖adj(D
i)pq

∂Di
pq

∂xlr
(3.57)

The first term on the right-hand side is the contribution due to static lattice energy, the same
as in previous chapter. The second term is the contribution due to thermal energy.

The derivative of dynamical matrix with respect to displacement of atom l is given by
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∂ρ̄i
∂xlr
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∑

k 6=i

∂ρ

∂rik

∂rik
∂xlr
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∂rij
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=
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(δil − δjl) (3.63)

∂2rij
∂xip∂x

l
r

= −(δil − δjl)

r3ij
(xir − xjr)(x

i
p − xjp) +

(δil − δjl)

rij
δpr (3.64)

∂3rij
∂xip∂x

i
q∂x

l
r

= − 3

r5ij
(xiq − xjq)(x

i
p − xjp)(x

i
r − xjr)(δil − δjl)

−(δil − δjl)

r3ij

[

δpq(x
i
r − xjr) + δqr(x

i
p − xjp) + δpr(x

i
q − xjq)

]

(3.65)
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With the effect of temperature incorporated into local and nonlocal parts of the computational
model, numerical simulation of the coupled QC method follows the development in section 3.5.
Various examples to demonstrate the effectiveness of the method are presented in the next
chapter.
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Chapter 4

Nanoindentation Problems at Finite
Temperatures

4.1 Introduction

The indentation test is widely used to assess the hardness in the materials industry. In nanoin-
dentation experiments, a nanoscale indenter is pressed on the material to generate dislocations
within the material. Nanoindentation is therefore a powerful way to investigate incipient plas-
ticity at the atomistic scale of the material. Important mechanical properties, such as elastic
moduli, hardness, flow strength can be obtained through such a nanoindentation experiment
[68]. An understanding of those properties is critical in the design of such materials.

.

contacting surface

Indenter

Indenter

gap function g(x,y)

x

y

QC domain with FEM nodes + atoms

Figure 4.1: Schematic of the computational model used in a nanoindentation experiment

Literally, the nanoindentation is an extension of classical indentation problem to a length
scale where the mechanics of the material is governed by atomistic interactions. In classical

67



indentation, the large plastic region formed beneath the indenter is used to generate the yield
strength of the material using semiempirical formulations [68]. In nanoindentation there is no
large-scale plasticity. Instead, early discrete dislocations under the indenter generated at thresh-
old loads are used as indicators for the onset of plasticity.

There are many experimental studies of nanoindentation [7, 36, 55, 60, 86, 98]. Those exper-
iments offer useful information on the onset of the plasticity. Some difficulties emerge in analysis
of nanoindentation test data. These include the tip geometrical imperfections of the indenter
and the definition of the contact area [29]. Therefore, numerical simulations of nanoindentation
tests can be a helpful tool for better understanding the influence of the collective behavior of
dislocations. In nanoindentation tests, the size of the residual impression is too small to be
measured directly. Thus, the contact areas are obtained from recorded depth together with a
known geometry of the indenters [29]. In general, sharp, geometrically-similar indenters such as
the Berkovich triangular pyramid are useful when one wishes to probe properties at the smallest
possible scale. The Berkovich indenter has the advantage that the edges of the pyramid are
more easily constructed to meet at a single point than Vickers pyramid. Spherical indenters
are also frequently employed in nanoindentation tests. The main advantage of the spherical
indenter is that it provides a smooth transition from elastic to elastic-plastic contact. Another
reason for interest in spherical indenters is that even the sharpest Berkovich diamonds are not
perfectly sharp but have a tip radius in the order of 10-100nm [71]. Due to the complicated
stress distribution in the neighborhood of the indenter, interpretation of nanoindentation experi-
ments at fundamental level is still challenging. Computer simulations have been very useful for a
clear understanding of the process taking place during the test. Recently there have been many
studies on nanoindentation by using molecular dynamics(MD) simulation [110]. Those studies
provided good understanding of atomistic mechanisms in nanoindentation response. However,
the MD simulation faces some serious challenges. These include the large computational cost
which in turn could results in small model sizes. Some investigators have studied the nanoin-
dentation process using finite element method [4, 33, 51, 105]. A number of atomistic simulation
of nanoindentation have been conducted in recent years[42, 110]. Tadmor et al.[92] used the QC
method to study two-dimension nanoindentation. Knap and Ortiz [45] used the QC method to
study effect of indenter-radius size on Au(001) nanoindentation.

In this chapter we use the finite temperature QC method, developed in this dissertation, to
model typical nanoindentation experiments. The results are meant to demonstrate the efficacy
of the developed computational in dislocation generation and motion for indenters of different
shapes in 2D and 3D problems.

4.2 Contact Algorithm for Indentation Problem

In a typical indentation experiment, shown in figure 4.1, indenter of spherical or conical or
cylindrical shapes are used to generate dislocations along the contact surface. In order to
account for varied indenter shapes, a suitable contact algorithm needs to be incorporated into
the coupled QC finite element procedure developed in chapter 2&3. Figure (4.1) shows the effect
of an indenter on the material surface. Global surfaces/atoms of the material domain under an
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indenter are constrained to move normal to the indenter surface. On the other hand regions
away from the indenter are expected to move such that they do not penetrate the indenter.
The resulting contact problem is a system subject to inequality constraints that need to be
applied on the global DOF {D} of the computational model. The pivotal issue of the contact
formulation is the method used to convert the associated inequalities constraint into a tractable
system of algebraic equation. Most proposed techniques can be broken down into two broad
categories: the method of Lagrange multipliers and the penalty method. In these iterative
methods, DOF directly under the indenter are assumed to be on the contact surface (equality
constraint with zero gap between indenter and DOF ). The remaining portion of the material
domain is assumed to satisfy the the inequality constraint (positive gap function) apriori. If
the computational solution is such that non contacting regions penetrate the indenter, they
are made into contacting DOF and the computational model is resolved iteratively until the
exact contacting surface is obtained. The perturbed Lagrangian formulation is a mixed method
which introduces a quadratic term to classical Lagrangian functional to regularize the penalty
formulation [87]. Various aspects of this formulation are considered next.

4.2.1 Perturbed Lagrange Formulation

Let ∂Ωi be the boundary of the indenter. Further, let g(x) be the gap between the nodes/atoms
and indenter, ∂ΩC be the contact surface, λ be the contact force acting on C. The contact
condition may be expressed in a Kuhn-Tucker form as

gλ = 0, λ ≤ 0, g ≥ 0 (4.1)

Let Π̄ be the total potential energy associated with the structure underneath the indenter. The
mixed penalty functional Πε is defined as [87]

Πε = Π̄ +
m
∑

j=1

λjgj −
1

2ε

m
∑

j=1

λ2j (4.2)

where m is the number of contact nodes, ε is a large positive parameter. The last term in equa-
tion (4.2) is to regularize the classical Lagrangian. The functional Πε is referred as a perturbed
Lagrangian. As ε→∞ the solution from 4.2 will converges to the solution obtained by classical
Lagrange multiplier method. The stiffness matrix obtained from classical Lagrange multiplier
method, corresponding to 1

ε
= 0, always has a zero diagonal terms which makes the solving

precess more complicated. The additional penalty term regularizes the system by generating
positive definite stiffness matrix for the discrete problem.

Variation of the functional Πε is given by

δΠε = δΠ̄ +
m
∑

j=1

(δλjgj + λjδgj)−
1

ε

m
∑

j=1

λjδλj (4.3)

To make the perturbed Lagrangian Πε stationary, one gets the following equations

∑

e

∫

Ωe

[B]T{T}dV +
∑

j

λj
∂g

∂x
= 0 (4.4)

gj −
1

ε
λj = 0 j=1, ..., m (4.5)
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The first term in equation (4.4) is the nodal force vector due to deformation in the specimen;
the second term in the equation is contribution to force vector due to contacts. The equation
(4.5) is the non-penetration condition when ε→∞. If the # DOF in a problem is denoted by
NQ, there are m additional unknowns (i.e. contact forces λj, j = 1, ...,m, m is the number of
contacts) from equation (4.5). Therefore, the total number of DOF in the system will beNQ+m.

The above equations are nonlinear and need to be solved iteratively. Differentiating 4.4, 4.5
with respect to the unknowns (i.e. the displacements of the nodes and atoms and the contact
forces), the stiffness matrix contribution due to contact j can be written as:

[

Kj
cont1

]

= λj







∂2g
∂x2

∂2g
∂x∂y

∂2g
∂x∂z

∂2g
∂y∂x

∂2g
∂y2

∂2g
∂y∂z

∂2g
∂z∂x

∂2g
∂z∂y

∂2g
∂z2







(xj ,yj ,zj)

(4.6)

{

Kj
cont2

}

=

[

∂g

∂x

∂g

∂y

∂g

∂z

]

(xj ,yj ,zj)

(4.7)

The diagonal entry in stiffness matrix corresponding to jth contact is − 1
ε
.

Implementation of Perturbed Lagrangian Problem in Indentation Problem

In this dissertation, we assume the indenter is rigid with no interaction between the contact
surfaces (friction-free conditions). When a material is acted upon by the indenter, the material
particles on the contact surface should lie on the surfaces defined by the geometry of the inden-
ter. Since a frictionless condition is assumed in the present work, no constraint is imposed on
the tangential displacements at the interfaces. Also, since the indenter is assumed to be rigid, it
is not necessary to model indenter deformation explicitly in the simulation. Instead, the vertical
down-ward displacement can be used directly to describe the position of the whole indenter. The
resulting constraint equation is imposed through a perturbed Lagrange formulation discussed
in the previous section.

For a horizontal flat 2D indenter, the contact surface is:

(y − yc) = 0 (4.8)

where yc is the vertical coordinate of the horizontal contacting surface. The resulting gap
function can now be written as:

g(x, y) = y − yc (4.9)

with the gap function g(x, y) ≥ 0 for any point not inside the indenter. Physically such a con-
straint implies impenetrability of the material domain into the rigid indenter. Similarly for a
2D cylindrical indenter, the contact surface is:

(x− xc)
2 + (y − yc)

2 −R2 = 0 (4.10)

where (xc, yc) is the coordinate of the center of the cylindrical indenter, R is the radius of the
indenter. The resulting gap function can now be written as:

g(x, y) = (x− xc)
2 + (y − yc)

2 −R2 (4.11)
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Using a similar methodology it is quite easy to show that the gap function for a 3D spherical
indenter of radius R is given as:

g(x, y, z) = (x− xc)
2 + (y − yc)

2 + (z − zc)
2 −R2 (4.12)

With the above gap functions, we can implement equation (4.4), 4.5 into the coupled QC fi-
nite element procedure developed in chapters 2&3. In the iterative procedure, the finite element
program continually checks the status of each contact DOF, iteratively deleting and reinstating
contact atoms/nodes as required, until force equilibrium is reached with an unchanging set of
contact points. Theoretically, the penalty parameter ε in equation (4.5) should be assigned an
infinite value to ensure a non-penetrating contact between the indenter and specimen. However,
this is not possible in practice because of the finite numeric restrictions of computer hardware.
Consequently, during contact, the indenter could possibly slightly intrude into the specimen by
a small amount, which depends on the largeness of the penalty parameter. It is desirable at least
to have the penalty parameter considerably larger than stiffness of the specimen material. If the
penalty parameter is too low, then there is insufficient stiffness to enforce the contact condition.
If the penalty parameter is too large, then there is numerical error due to the loss of information
when a large quantity is added to a small one in the computer. A penalty parameter of ≈ 10000
times of stiffness of the specimen material is usually sufficient.

4.3 Applications to Nanoindentation Simulations

In these set of results, two different crystallographic orientations were studied for the nanoin-
dentation of aluminum. In the first one the indenter was driven into a (001) surface of the
crystal, while in the second one the indenter was pressed into a (1̄10) surface. Besides the two
different crystallographic orientations, two different indenter geometries were investigated. The
first one is a rectangular indenter with a width of 250Å. The second indenter geometry was
cylindrical indenter with a radius of 11.6Å. We note that the choice of indenter size was by
choice and does reflect a fundamental limitation of the system sizes that the model can handle.
For both indenter geometries the indenter was modeled as displacement boundary condition
applied to the surface node/atoms lying underneath it. Therefore the indenter is rigid and there
are no interactions between tip atoms and film atoms. Friction-free condition was considered
between indenter and crystal. The substrate was modeled as a rigid surface allowing no dis-
placements. The top surfaces(except the region right under the indenter) was left unconstrained.

Before we go to 2D QC simulation of indentation, the out-of-plane movements of nodes/atoms
is briefly discussed.

4.3.1 Deformation in Out-of-plane Direction

Plain Strain Problem

In plain strain problem, the deformed shape of the material is limited to remain in-plane. There
are no out-of-pane movements for neither nodes nor true atoms.

ux = ux(x, y)
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uy = uy(x, y)

uz = 0 (4.13)

The the unknowns are ux and uy. Although the analysis is performed in 2D coordinate system,
the atoms are in a 3D atomistic environment. Specifically, each atom is surround by a sphere
of neighbor atoms for the purpose of calculating atomic force and stiffness.

Generalized Plain Strain Problem

In generalized plain strain problem, the displacement fields are in-plane movements plus a
uniform out-of-plane deformation.

ux = ux(x, y)

uy = uy(x, y)

uz = ūz (4.14)

where ū is the so called out-of plane generalized plane strain. The the unknowns are ux, uy
at all nodes/atom and ū which is a constant for the entire domain of analysis. Similarly, each
atom is in 3D atomistic environment. In generalized plane strain for continuum problem, the
sum of out-of-plane force is set to be zero for the purpose of solving out-of-plane deformation.
If there are n nodes in the system, then we have 2n in-plane unknowns (n ux and n uy) and one
additional out-of-plane unknowns (ū). Correspondingly, we have 2n in-plane constrain equa-
tions(n fx = 0 and n fy = 0) and one additional out-of-plane constrain equation(fz = 0). In
this continuum/atomistic coupling model, the above assumptions still hold. The issue is how we
calculate the out-of-plane force. For continuum region, we can calculate the deformation gra-
dient for given in-plane displacement field plus a given out-of-plane deformation. Out-of-plane
force contribution due to continuum region can be obtained with these deformation gradients.
For atomic region, the calculation is based on repeating cells. As an example, the cell contains
six atoms residing in cell position for an FCC crystal rotated into the [111] − [1̄10] coordinate
system. The out-of plane force on those atoms in the repeating cell is from contribution of
atoms in another half plane. The sum of these half-plane atomic forces is the out-of-plane force
acted on the cell. Again, the sum over forces on all repeating cells is the out-of-plane force for
atomic region.Adding up the out-of-plane force due to continuum region and atomic region, we
get total out-of-plane force of the system. In the generalized plane strain problem, the unknown
out-of plane strain ū is solved so as to render this out of plane force equal to zero.

4.3.2 2D Cylindrical Indenter

In this example a rigid cylindrical indenter, infinite in the out-of-plane direction, is pressed into
a (1̄10) plane of the crystal as shown in figure 4.2. The radius of the indenter is R = 11.64Å.
Friction-free conditions were assumed between the indenter and the thin film. For the cylin-
drical indenter, the contact area increases with indentation depth and new atoms/nodes will
occasionally come into contact with the indenter surface. To handle this we implement the
contact algorithm discussed in the previous section.
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Figure 4.2: Nanoindentation in an aluminum single crystal with cylindrical indenter

The material assumed is FCC aluminum with EAM potentials obtained from [62]. As dis-
cussed in chapter 3, the equilibrium lattice constant at 0 K is a0 = 4.050Å. The elastic moduli
predicted by this potential are C11 = 113.68 GPa, C12 = 61.43GPa, and C44 = 31.60GPa.

As the indenter is [1̄10] direction, the rotated FCC crystal into the [111]− [1̄10] coordinate
system to get representative cell to be used in the analysis. The cell contains six representative
atoms. The dimensions of the repeating cell then are ax =

√
3a for x direction; ay = 0.5

√
6 a for y

direction; az = 0.5
√
2a for out-of-plane direction, where a is the lattice parameter for aluminum.

In this example, any element with strain energy error density larger than 1% of the average
system strain energy is selected to be refined to next level. The elements on initial mesh (level
0) have dimension of 32ax × 32ay. Continuum elements could therefore exist as high as the
5th level. A element at 5th level, having dimension of ax × ay will be opened into atoms
if needed. A series of the progressive mesh refinements for this problem are given in figure
(4.3). Refinement through all 6 levels (upto atoms) occurred at the first step, with subsequent
refinements skewed mainly from 5th-6th level. The QC model has 99 nodes in initial mesh.
At final stage (1st dislocation) the QC model only includes 2,134 atoms plus 897 nodes (3011
total). The actual thin film contains around 1.1 million atoms, demonstrating the substantially
reduced computational expense of the current method. At each load step, the indentation depth
is increased by 0.1 Å. This depth was chosen so as to prevent too many new contact points at
each iteration step.

The atomic structures under indenter during the formation of the 1st dislocation is given
in figure 4.4. The 1st Piola-Kirchhoff stress (Tyy) just before first dislocation is presented in
figure 4.6. The load-displacement curve obtained from the simulation is plotted in figure 4.7.
The loads are given in Newtons per meter length of the indenter in the out-of-plane direction.
The result of Tadmor [92] is also plotted in the figure. The current predictions are in excellent
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(a) Original mesh (b) 2 levels

(c) 4 levels (d) 6 levels plus atoms (the void)

Figure 4.3: Automatic multi-scale mesh refinement generated for nanoindentation problem in
figure 4.2
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Figure 4.4: Atomic structure under indenter, just before nucleation of first defect, for nanoin-
dentation problem in figure 4.2
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Figure 4.5: Atomic structure under indenter, just before nucleation of first defect, for nanoin-
dentation problem in figure 4.2, a close look

agreement with the results in Tadmor[92] with both simulations predicting first dislocation at
depth around 6.5 Å.

For a cylindrical indenter, Hertz contact theory provides th relationship between indentation
load P and the contact half-width a,

a2 =
4PR

πE∗
(4.15)

where for rigid indenter,

E∗ =

(

1− υ2

E

)−1

=
2µ

(1− υ)
(4.16)

Substituting equation 4.16 into equation 4.15,we have,

P =
πµa2

2(1− υ)R
(4.17)

Substituting in the corresponding values we got previously (i.e. µ = 29.41GPa, ν = 0.334, and
R = 11.64Å ) yields P = 0.600a2 with P taken in N/m and a obtained in Å.

The load versus contact half-width obtained from equation (4.17) and that predicted by the
simulation were compared in figure 4.8. Elasticity contact theory assumed that the contact halt-
width increase continuously with the load P ; however in our simulation the contact half-width
grows in jumps as new atoms become in contact with the indenter surface. We see that before
dislocation the elastic continuum theory matches the stepwise atomic simulation pretty well at
the early stages of the simulation, but deviates from the hertzian solution with increased loads.
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Figure 4.6: Stress Tyy (in Pa) just before first dislocation for nanoindentation problem in figure
4.2

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5 6 7 8

F
or

ce
/u

in
t t

hi
ck

ne
ss

[N
/m

]

Indentation depth[Angstrom]

current work
Tadmor

Figure 4.7: Load vs indenter displacement for nanoindentation problem in figure 4.2

4.3.3 Effect of Temperature due to Nanoindentation of a 2D Flat
Indenter

To demonstrate the steps involved in the finite temperature adaptive multi-scale model, consider
the problem depicted in figure 4.9. Here a rigid rectangular indenter, infinitely long in the out
of plane direction, is pressed into the free surface of a single crystal aluminum along the 010
direction. The displacement in the out-of-plane direction are constrained to zero values, i.e plain
strain problem. The indenter is a rigid rectangular block 257.6Å wide.

The thin film studied in this example is 515.1Å thick, 772.7Å wide. This system size was
chosen to ensure that the far-field boundary conditions did not affect the behavior in the vicinity
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Figure 4.8: Load vs contact half-width for nanoindentation problem in figure 4.2

of the indenter. Increasing system size did not change the results. The system investigated here
is very large by current direct atomistic modeling. A direct atomistic modeling would require
300, 000 atoms or 900, 000 degrees of freedom. By using the quasicontinuum method the com-
putational cost is greatly reduced. In current simulation, only 2, 080 nodes+atoms are explicitly
treated (4,160 degrees of freedom) in the analysis.

~~  0.3 million atoms

772.7 A
o

515.1 A

P

Indenter

o

[100]

[001]

257.6 A
o

Figure 4.9: Nanoindentation in an aluminum single crystal

The adaptive refining algorithm discussed previously was used in this example. Specifically,
any element with strain energy err density larger than 1% of the average system strain energy is
selceted to be refined to next level. In this example, the elements on initial mesh(level 0) have
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dimension of 32a × 32a, where a is the lattice parameter for aluminum. Continuum elements
could exist as high as 6th level. A element at 6th level, having dimension of a×a will be opened
into atoms if needed. A series of the progressive mesh refinements for this problem are given in
figure (4.10). The QC model has 35 nodes in initial mesh. At final stage (1st dislocation) the
QC model only includes 1, 068 atoms plus 1012 nodes. We assume that the atoms in contact
with the indenter cannot slip out from under the indenter (the atoms right under the indenter
experience very little x-direction movement).

The atomic structures under indenter at different temperature(0 K, 293 K, 373 K) are given
in figure(4.11, 4.12, 4.13). The load-displacement curve obtained from the simulation is in figure
4.14. The results were performed with displacement control and thus the figure represents the
load required to hold the indenter at a given indentation depth. At each load step, the indenta-
tion depth is increased by 0.3 Å. Loads are given in Newtons per meter length of the indenter
in the out-of-plane direction.

For 0 K temperature, the resulting response of the material is almost linear as predicted
by elasticity theory till the formation of defects at the atomistic scale. Toward the end of
the loading cycle these defect cause a flat shift in the load-displacement curve. This in turn is
reflected by the fact that the corner atom under the indenter requires no contact force. From this
deformed configuration shown in figure 4.11, the corner atoms under the indenter are expected
to move into the defect under the indenter resulting in the formation of the 1st dislocation in
the material. The first dislocation is emitted at the indentation depth of 27.7 Å. At the initial
stage,i.e. till depth equal to 5.0 angstroms, the responses of 293 K and 373 K are almost the
same to 0 K. Passing that point, both cases show somewhat nonlinear properties. However, the
critical loads for emission are close to each other. We may conclude that the temperature effect
on first dislocation is small when the temperature is moderate. The 1st Piola-Kirchhoff stress
(Tyy) distribution, at 373K during the formation of the 1st dislocation is shown in figure 4.15.

4.3.4 Nanoindentation with a Spherical Indenter

In this 3D example, a rigid indenter(R=4700 Å) is driven into a thin single crystal aluminum
along the 001 direction. The dimensions of the material specimen, schematically shown in figure
4.16, is 0.829 µm x 0.829 µm x 0.415 µm. The bottom surface of the cell rests on a rigid half
space, with traction-free surfaces. The contact algorithm discussed previously is used to model
the spherical indenter. The size of the indenter is from the experiment of [97]. The cell contains
around 1.7× 1010 atoms.

The initial uniform mesh is 16×16×8 with 2601 nodes. The elements on initial mesh(level 0)
have dimension of 128a×128a×128a, where a is the lattice parameter for aluminum. The adap-
tive refinement algorithm automatically delineate the region of severe deformation upto 7 levels
of continuum elements and into atoms at the 8th level. Strain energy error was taken as error
estimator to decide what elements to be refined. Specifically, any element with strain energy
err density larger than 1% of the average system strain energy is selceted to be refined to next
level. Varied step sizes were taken in this simulation. At the early stage, the indenter is pushed
down 10 Å each step. Near to the critical load, the step load low down to 0.5Å. At a indenta-
tion depth of 210.5 Å, the model includes 78, 000 nodes+atoms. The mesh at depth of 210.5 Å
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(a) Original mesh (b) 2 levels

(c) 4 levels (d) 6 levels,the void are atoms

Figure 4.10: Automatic multi-scale mesh refinement generated for nanoindentation problem in
figure 4.9

.

455

460

465

470

475

480

485

490

495

500

505

200 250 300 350 400 450 500 550 600

Atom position
Lattice config

Figure 4.11: Atomic structure under indenter, just before nucleation of first defect, for nanoin-
dentation problem (temperature: 0 K) in figure 4.9
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Figure 4.12: Atomic structure under indenter, just before nucleation of first defect, for nanoin-
dentation problem (temperature: 293 K) in figure 4.9
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Figure 4.13: Atomic structure under indenter, just before nucleation of first defect, for nanoin-
dentation problem (temperature: 373 K) in figure 4.9

is given by figure 4.17. Note that the refinement mainly focus on the edge of the contact surface.

The 1st Piola-Kirchhoff stress (Tzz) is presented in figure 4.18. The computed force vs
displacement indentation is plotted in figure 4.19. For spherical indenter, Hertz contact theory
provides the relationship between indentation load P and the indentation depth δ [38],

δ =

(

9P 2

16RE∗2

)1/3

(4.18)

Substituting equ. 4.16 into equ. 4.18, we have,

P =
8µδ3/2

√
R

3(1− υ)
(4.19)
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Figure 4.14: Load vs indenter displacement at different temperature for nanoindentation problem
in figure 4.9
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Figure 4.15: Stress Tyy (in Pa) just before first dislocation for nanoindentation problem in figure
4.9 at T = 373K

Substituting in the corresponding values we got previously (i.e. µ = 29.41GPa, ν = 0.334,
and R = 4700.0Å ) yields P = 0.08073δ3/2 with P in µN and δ in Å.

At the indentation depth of 210.5 Å, the force P is 3.02 × 10−4N . The hardness is P/A =
9.20GPa (elasticity theory predicts the hardness as P/A = 7.93GPa), which differs from the
experimental value [97] 0.81GPa. This may be contributed to the fact that no dislocation has
been generated yet. In order to model the problem into generation of the 1st dislocation, it is
estimated that the current computational model would require ≈ 2 million degrees of freedom.
Such a huge system would require parallelization of the computational algorithm which is cur-
rently being pursued by the computational group.
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Figure 4.16: Geometry of the computational cell and initial mesh
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Figure 4.17: Cross section of the computational mesh at an indentation depth of 210.5 Å

To conclude, these examples demonstrate the efficiency and accuracy of the adaptive multi-
scale model for generating incipient plasticity in nanocomposites. The main conclusions of this
dissertation and possible utility of the model are discussed briefly in the next chapter.
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Figure 4.18: Stress Tzz (in Pa) at an indentation depth of 210.5 Å
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Figure 4.19: Force vs displacement curve for the 4700 Å-radius indenter
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Chapter 5

Conclusions and Future Work

In this thesis an adaptive multiscale computational model is used to simulate incipient plas-
ticity in nanoscale materials at finite temperatures. Numerical examples to demonstrate the
applicability of the method for 2D and 3D nanoindentation problems are presented. The com-
putational model uses a continuum scale description of the deformation in regions of smooth
deformation and an atomistic scale description in regions where a dislocation is being generated.
A major advantage of the hierarchical adaptive scheme is that it can automatically delineate
the two-scales of analysis without any user interference. This completely avoids cumbersome
remeshing techniques used in some of the state of art simulations. The underlying physics of the
problem, at both continuum and atomistic scales, is generated through interatomic potentials
at finite temperatures using a local harmonic approximation. This approximation provides an
efficient framework for the analysis of material phenomena without having to employ expensive
MD simulations to capture dynamic atomic vibration. Thus the adaptive nature of the model,
when coupled with finite temperature effects, provides a computational efficient and accurate
method to study plasticity in nanoscale materials at practical time/length scales.

Future applications for the current method are expected to include

• The adaptive computational methodology developed in this thesis can provide an effective
framework for analysis of a large number of physical phenomena in which material behavior
is characterized by deformation/processes localized over sub-regions of the domain.

• At the microscale such processes could include (a) material design of polycrystalline mate-
rials (b) two-scale analysis of composite structures with underlying heterogeneities or (c)
manufacturing processes such as solidification used to prepare such composites.

• At the nanoscale, such phenomena are vital in the characterization of plastic deformation
processes, which in turn are an important aspect for targeted design of these materials.
These could possibly include modeling hardness and toughness experiments for nanocom-
posites composed of a mixture of dissimilar materials which individually provide specific
property enhancements

• The current capabilities have been implemented using in house model development in
a single PC processor environment. When the current 3D capabilities are exported to
parallel processor environment they should be able to greatly assist in the realistic material
design of realistic material/structural systems.
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