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Table 5.2. Regression analyses of trait dissimilarities on phylogenetic distances among 25
taxa of the genus Tangara.

Number of
pairwise Standardized
Trait comparisons b t p* R’
Microhabitat preference 300 0.4018 7.5753 0.001 0.162
Fruit foraging 300 -0.0235 -0.4075 0.420 0.001
Habitat use 300 -0.0055 -0.0948 0.494 0.000
Elevational distribution 300 -0.00456 -0.0788 0.497 0.000

* Significance was evaluated based on Mantel tests with 1000 randomizations.
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Figure 5.9. Scatter plots of ecological traits vs. genetic divergence (P-distance).
(a) Microhabitat preference, (b) Fruit foraging, (c¢) Habitat use, (d) Elevational distribution.
S: slow evolving pair, C: convergence, m: species pairs that include 7. meyerdeschauenseei.

128



—_—
(2]
N

Habitat use dissimilarity

Elevational distribution dissimilarity

4
m m
m" m
3 n m m m m m
m
2 x = X
x
x X x
S X %ﬁ&xxxx
X X N
X 5 xxX)S( X
X X
X %X
S % X X
W X )QXXXXXX§ ﬁ«)’% b3
X X XX Xx o x X% 35& xxx
x X
S x )%(X Q&
« X &% ﬁxx X X
0 T T T T T
0.00 0.02 0.04 0.06 0.08 0.10 0.12
10
8 -
XX
X
X )Kxxx X
6 - x X XK XX x
X
X x x;( wx X x X
X x x X X X X X
X X XX xy
X X
4 | X X X i X . )>: X )20()( x));(XX
- KR
x X xx)@( X)S(XXY\/%XXX X
X x R R T
X
" TR S
2 %y xx X):(XX»%))((M’((X;X xXx
x
X ) X F X X xy x’)‘(%ig;&x&
X X X X X)S( X
« X XX X X
X xx X
0 T T T T T
0.00 0.02 0.04 0.06 0.08 0.10 0.12
P-distance

Figure 5.9. (cont.)
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vegetation in a dry Andean valley of southern Peru and foraged fruit genera unique to such a dry
scrub habitat, in contrast with other Tangara tanagers that inhabited forest and foraged mostly
fruits of the genus Miconia. The scatter plot of elevational distribution was similar to the figure
5.2c; however, high level of convergence among distantly related species-pairs made a
regression line statistically insignificant (Fig. 5.9d). Although no significant phylogenetic effect
was found, there is a strong upper-bound limit of character dissimilarity at small p-distance (Fig.
5.9d).

MODE OF EVOLUTION

The relative disparity of microhabitat decreased more rapidly than the other niche axes
(Fig. 5.10). This was largely due to the initial sorting of microhabitat preference that occurred at
the first two nodes. At the first node, Tangara species segregated to one subclade with aerial- or
leaf-foragers and the other with mostly branch-foragers (Fig. 5.11). At the second node, the
branch-forager subclade further divided to twig-leaf foragers and thicker-branch-foragers.
Further along, Tangara schrankii and probably T. labradorides emerged from the branch-
foraging subclade and converged on leaf-foraging (Fig. 5.11).

In contrast, the relative disparity of fruit foraging hardly decreased except at the second
node, where three high elevation taxa separated from the other species. Similarly, the relative
disparity of habitat use decreased slowly except at the fifth and sixth nodes, where T.
meyerdeschauenseei separated from the rest. Elevational distribution decreased slowly and
showed a similar pattern of increase and decrease in relative disparity of microhabitat preference,

although it lacked the initial sorting of microhabitat preference.
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CORRELATION BETWEEN ECOLOGICAL AND MORPHOLOGICAL
CHARACTERS

The PCA of morphometrics based on 23 skeletal measurements yielded three principal
axes, which together accounted for 91% of the total variation (Fig. 5.12). PCI reflected overall
body size and ordered Tangara from small to large species. PC2 was negatively weighted by
premaxilla length, premaxilla length from narial opening, and minimum mandible length, and
thus was a measure of relative bill length. PC3 was negatively weighted by tibiotarsus length
and tarsometatarsus length and positively weighted by keel depth, and thus reflected relative leg
length. No significant multiple correlations were found between these PCs of /n-transformed
skeletal measurements and ecological variables (Table 5.3).

By using six skin measurements and body mass, a significant association between
morphological and ecological variables was found only in elevational distribution, although the
first canonical correlation of all niche axes exceeded 0.80 (Table 5.4). In addition, for
elevational distribution alone, both of two tests of overall significance, Wilks’ lambda and Roy’s
Greatest Root, rejected the null hypothesis of no association between the ecological and
morphological data sets (P <0.001). To interpret canonical variables, the correlations between
morphological and elevational variables and canonical variables were presented in Table 5.4.
Because of the strong correlation among morphological variables, these correlations were more
readily interpretable than the canonical coefficients themselves because they showed how much
each variable was related to canonical axes (Manly 1994; Miles and Ricklefs 1984).

For the morphological variables, the first canonical variable indicated overall body size
and was primarily related to wing, tail, and tarsus lengths (Table 5.5). The second canonical
variable was negatively related to wing and tail length, and positively related to bill width,

though the correlation was weak. For the ecological variables, the first canonical variable was
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Table 5.3. The results of multiple correlation analyses between ecological and
morphological characters based on PCA of skeletal measurements.

Statistical tests

PC
Morphology
(skel)  Multiple R Multiple R>  Rao-F df P

Microhabitat 1 0.41 0.17 0.6 4,12 0.66
preference 2 0.34 0.12 0.4 4,12  0.81
3 0.75 0.56 3.8 4,12 0.03
Fruit 1 0.71 0.50 1.3 7,9 0.35
foraging 2 0.71 0.50 1.3 7,9 0.35
3 0.72 0.52 1.4 7,9 0.32
Habitat 1 0.30 0.09 0.4 3,13 0.73
use 2 0.37 0.14 0.7 3,13 0.58
3 0.21 0.04 0.2 3,13 0.90
Elevational 1 0.09 0.7 2,14  0.53
distribution 2 0.35 3.7 2,14  0.05
3 0.45 5.7 2,14  0.02

-
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Table 5.4. The results of canonical correlation analyses between ecological and
morphological characters based on PCA of skin measurements.

Statistical tests

Canonical Canonical
Canonical variates correlation R? F df P
Microhabitat X
morphology (skin)
1 0.81 0.66 1.2 28,45  0.294
2 0.66 0.44 0.8 18,37  0.667
3 0.52 0.27 0.6 10,28  0.833
4 0.21 0.04 0.2 4,15 0.950
Fruit X morphology (skin)
1 0.85 0.73 0.8 49,50  0.725
2 0.77 0.60 0.6 36,47 00919
3 0.58 0.34 0.4 25,42 0.985
4 0.45 0.20 0.4 16,37  0.986
5 0.34 0.12 0.3 9,32 0.966
6 0.27 0.07 0.3 4,28 0.887
7 0.05 0.00 0.0 1, 15 0.862
Habitat X morphology
(skin)
1 0.85 0.73 2.0 21,38  0.030
2 0.69 0.48 1.2 12,28  0.308
3 0.42 0.18 0.6 5,15 0.674
Elevation X morphology
(skin)
1 0.88 0.77 34 14,28  0.003
2 0.63 0.40 1.6 6, 15 0.204
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Table 5.5. Correlations between the morphological and ecological variables
and the canonical variables.

Canonical variables

Morphological Ecological
Vi V2 W1l W2
Morphological variables
Weight 0.08 0.42 0.07 0.26
Bill length -0.14 0.40 -0.13  0.25
Bill width 0.34 0.36 0.30 0.23
Bill depth -0.08 0.36 -0.07 0.23
Wing length 0.33 -0.16 0.29 -0.10
Tail length 0.37 -0.31 0.32 -0.20
Tarsus length 0.24 0.44 0.21 0.28
Ecological (Elevation)
PC1 0.78 0.27 0.89 0.44
PC2 -0.28 0.59 -0.33  0.94
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strongly associated with PC1 of elevational distribution, which indicated overall elevation. The
second canonical variable was associated with PC2, elevational range (Fig. 5.8).
DISCUSSION

The lack of an overt phylogenetic effects in fruit-foraging and habitat use is not
surprising when the large degree of geographic variation observed among four subspecies pairs
is considered (Fig. 5.6 and 5.7). The slow decrease in the disparity-through-time plot, and the
lack of association between these ecological traits and morphology, also indicate little or no
phylogenetic structuring in these niche axes. Fruit foraging also showed marked seasonal
changes in many frugivorous birds including Tangara tanagers (Chapter 4, Loiselle and Blake
1990; Loiselle and Blake 1991). Although most, if not all, frugivorous birds show some
preference for certain types of fruits (Loiselle and Blake 1990; Moermond and Denslow 1983;
Moermond and Denslow 1985), the differences in fruit choice seem to be manifest at a higher
taxonomic level, such as genus or family, where larger morphological and physiological
differences are expected (e.g., see Fig. 2 in Loiselle and Blake 1990). Little difference seems to
exist in fruit-foraging among species and lineages in Tangara.

These tanagers have been thought to be segregated by differences in habitat use (Isler and
Isler 1999; Snow and Snow 1971), and my study included four non-forest taxa (Tangara
meyerdeschauenseei, T. larvata, T. cyanicollis cyanicollis, T. cyanicollis cyanopygia) in addition
to forest species; however, this study showed little species- or lineage-specific habitat use.
Tangara cyanicollis and T. nigrocincta, usually considered as species of semiopen habitat, were
observed in mixed-species flocks with forest Tangara species in primary forest canopy in
northern Bolivia (Naoki unpublished data). Even a true non-forest species (7.
meyerdeschauenseei) was observed in a disturbed forest with taller trees syntopically with

Tangara xanthocephala, which is usually considered a typical forest Tangara (Naoki 2003). My
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habitat categories focused on variations in local vegetation types such as primary forest,
secondary forest, semiopen, and scrub. Each Tangara species tends to use all or most of these
habitat types, but proportional use of each habitat varies among species.

Elevational distribution also did not show significant phylogenetic effects, but did show a
strong upper-bound limit of trait divergence between closely related species (Fig. 5.9d); this
suggests that elevational distribution did not diverge as rapidly as fruit-foraging and habitat use.
Closely related species have a similar elevational distribution, which implies there was gradual
invasion and occupation of distinct vegetation types. The change in elevational distribution was
associated with a change in overall body size, following elevational application of Bergmann’s
rule. Subspecies pairs actually show almost identical elevational distributions, and sister species
usually have elevationally parapatric distributions. The lack of significant phylogenetic effects is
due to high homoplasy of many distantly related species, which resulted from repeated invasion
of the same elevational zones (Burns and Naoki in prep). Other studies of avian ecological
diversification based on phylogeny also found similar repeated shifts in vegetation use or
elevational distribution (Cicero and Johnson 1998; Johnson and Cicero 2002; Joseph and Moritz
1993; Richman and Price 1992; Note: Some of these studies used the term “habitat” to define
vegetation though their habitats are equivalent to elevational distributions in this study), and
concluded that these vegetation shifts are a factor promoting speciation among closely related
species.

Microhabitat preference showed significant phylogenetic effects and was the most
conserved trait in relation to the phylogeny. A few large divisions of microhabitat preference
were observed at the beginning of the diversification, followed by finer segregation, which
compartmentalized most Tangara species based on microhabitat exploitation (Isler and Isler

1999). Two remarkable convergences were also observed in this study: 7. labradorides and T.
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schrankii. Tangara schrankii, in particular, showed a drastic shift in microhabitat preference
from moss-covered branch to twig and leaf at the tip of the phylogeny (Fig. 5.11). Foraging
behavior and morphological characters developed to exploit a particular microhabitat were also
most consistent with the phylogeny in other avian groups (Joseph and Moritz 1993; Richman and
Price 1992). Surprisingly, however, this early differentiation in Tangara tanagers was not
related to any marked morphological changes, in contrast to other studies of avian adaptive
radiations in which tight ecomorphological associations were observed (e.g., Grant 1986;
Moreno and Carrascal 1993; Richman and Price 1992; but see Dendroica in Price et al. 1998).
This difference may be due to non-linear ecomorphological correlation expected among Tangara
tanagers. The other studies of avian ecomorphology investigated groups of birds that exploited
similar substrate types; thus, the differences in both morphology and behavior among the birds
were mainly quantitative and presented a linear correlation (e.g., see Richman and Price 1992).
In contrast, Tangara tanagers used diverse attack maneuvers to exploit very different substrate
types; therefore, the difference in behavior may be more qualitative and may not show a linear
correlation with morphological differences.

In these omnivorous tanagers, 70% of their diet is fruits (Chapter 2), from which most of
their necessary calories can probably be obtained. Arthropods are an important source of
proteins especially during nesting seasons (Chapter 4), but may not be indispensable for the
survival of adult birds. These tanagers show noticeably lower efficiency in arthropod foraging
than more specialized sympatric arthropod foragers such as ovenbirds, flycatchers, and warblers;
their capture rate of arthropods is notably low (Rodrigues 1995, Remsen pers. comm., Naoki
pers. obs.). Because they can obtain most of their energy from fruits, the selective pressure on
their morphology in arthropod foraging may not be so strong. Alternatively, their highly

omnivorous diet forces them to maintain intermediate morphology appropriate for both fruit and
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arthropod foraging. In this scenario, it may be hard to find strong ecomorphological association
based on any single food type.

In short, detailed examination of four niche axes based on a molecular phylogeny
revealed diverse evolutionary patterns unique to each niche axis among 25 Tangara taxa. The
relative strength of phylogenetic effects, frequency of homoplasy, mode of evolution, and
association with morphology differed substantially among these four niche axes. Fruit foraging
and habitat specialization showed the greatest ecological plasticity in relation to phylogeny. The
variation in microhabitat preference associated with foraging behavior was the most conservative

and consistent with the phylogeny.
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CHAPTER 6
SUMMARY AND CONCLUSION

ECOLOGICAL DIVERSIFICATION OF TANGARA TANAGERS

Striking differences in arthropod foraging among sympatric Tangara tanagers were
observed at all sites where their foraging ecology has been studied (see Hilty et al. 1986; Isler
and Isler 1999; Rodrigues 1995; Snow and Snow 1971). Although no quantitative study of
interspecific competition among sympatric Tangara has been conducted, the differential use of
substrates appears to be important for avoiding resource competition, especially during the
breeding season when the demand for protein-rich arthropods increases (Poulin et al. 1992). In
contrast, sympatric Tangara species show little differences in fruit-foraging and habitat use
(Snow and Snow 1971; but see Rodrigues 1995). Fruit-foraging and habitat use largely depend
on spatial and temporal availability of food; as a result, sympatric tanagers tend to shift their
resource use in similar ways. As expected, neither phylogenetic effects nor evolutionary
structuring is found in fruit-foraging and habitat use, which are largely governed by local
ecological factors. At a larger spatial scale, elevational distributions (vegetation types) further
contribute ecological differences among “sympatric” Tangara tanagers because many syntopic
species actually have different centers of abundance, and the population densities of these
species are often lower at areas of coexistence (Fig. 6.1).

Similar community structures in microhabitat preferences were observed at three study
sites: El Copal (Costa Rica), Mindo (western Andes of Ecuador), and Serrania Bella Vista
(eastern Andes of Bolivia) (Chapter 2). This similarity, however, is not the result of repeated
origins of the same microhabitat preference at each region, but rather the result of single or few
adaptive events followed by dispersal and allopatric speciation. Furthermore, major divergence

in microhabitat preference occurred at an early stage in Tangara diversification, and most
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subsequent speciation events were not associated with changes in microhabitat preferences, nor
were they associated with interspecific interactions in arthropod foraging. Thus, differential
microhabitat preference, although striking, is at most a force that maintains current species
combinations and community structure, rather than a force driving diversity.

Several observations highlight the inflexibility in microhabitat use of 7angara tanagers.
First, some Tangara species are distributed widely over Central America and South America.
For example, 7. gyrola is a member of diverse communities, inhabiting from the depauperate
island community of Trinidad to one of the most species-rich Andean foothill communities.
Despite a three-fold difference in the number of sympatric congeners, no indication of ecological
release or niche expansion is observed in 7. gyrola or T. guttata in Trinidad (Fig. 6.2). This
suggests that these tanagers cannot easily change their stereotyped substrate-search-behavior.
Second, I calculated Levins’s measures of niche breadth (Krebs 1999) of 25 Tangara taxa based
on their substrate use and habitat use (Fig. 6.3). Only one Tangara species is found in Andean
upper montane forests (7. vassorii) and southern Peruvian dry scrub (7. meyerdeschauenseei).
These Tangara tanagers from single-species communities show no increase in niche breadth
when compared with other Tangara tanagers from species rich communities (Fig. 6.3). Thus, a
comparison of niche breadth among 25 taxa also indicates the same lack of ecological release
and niche expansion as found in depauperate communities. Levins’s measure of niche breadth
does not consider the difference in resource availability among localities; thus, this measure
tends to underestimate the niche breadth of species from resource poor localities. However, all
substrate types are available in all study sites with the exception of moss-covered-branches,
which are scarce in lowland forests and dry scrub. Therefore, the shortcoming of Levins’s

measure does not explain why Tangara tanagers in depauperate communities have not become
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generalists in substrate use. Substrate generalists seem extremely rare among birds even in
species-poor communities, and this is probably due to the biomechanical limitations of
morphological characters that do not allow these birds to exploit diverse substrate types
efficiently (for one of few examples of substrate generalists see Sherry 1985).

In contrast to microhabitat preference, habitat use of Tangara tanagers seems to expand
in species-poor communities in the Lesser Antilles (7. cucullata) and southern Mexico (7.
cabanisi) (Hilty and Simon 1977), although habitat expansion was not observed in 7. vassorii
and 7. meyerdeschauenseei in my study (Fig. 6.3). This might be due to homogeneous and poor
habitat quality in the two study sites (dry scrub for 7. meyerdeschauenseei and high-elevation
elfin forests for 7. vassorii), which may have constrained niche breadth of these species.

Interestingly, most sister species and closely related species with similar microhabitat
preferences differ in centers of abundance, when they occur at the same slope (e.g., T. vassorii
and 7. nigroviridis, T. arthus and T. icterocephala, T. cyanicollis and T. larvata in Fig. 6.1). In
most cases, these sister species do not show completely parapatric elevational distributions, but
variable degrees of sympatry with plenty of opportunities to interact. This distributional pattern
might suggest that parapatric speciation is common in the genus 7angara in the Andes.
However, none of 108 currently recognized subspecies of Tangara is found elevationally
parapatric, and all subspecies in the Andes are found latitudinally allopatric separated by dry
valleys or found in the eastern and western sides of the Andes separated by the Andean ridge
(Isler and Isler 1999). In addition, hybridization between two Tangara species is known only for
T. cayana and T. preciosa in south-central Brazil (Ingels 1971). Therefore, most, if not all,

Tangara in the Andes speciated allopatrically along a north-south axis, and the elevational
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parapatric distributions are probably the result of secondary contact after the establishment of
reproductive isolation (see Bates and Zink 1994).

We know nothing about how reproductive isolation was established in the Tangara or
how they recognize conspecific individuals. Rapid diversification and reproductive isolation
may have been achieved by extremely diverse plumage colors or their simple but recognizable
songs. As a result, sexual selection may have played a central role in producing numerous
ecologically similar species (Price et al. 2000). In this scenario, a fine segregation in arthropod
foraging facilitated coexistence of ecologically similar species by avoiding competitive
exclusion. The question concerning their diverse plumage patterns is a totally open field to
explore in the future.

As shown in a few other studies of ecological diversification, early divergence in
microhabitat preference often associated with morphological changes and subsequent habitat
shifts seems common among birds (Joseph and Moritz 1993; Richman and Price 1992; Schluter
1996). This contrasts strikingly with other organisms, such as Anolis lizards in Caribbean
Islands, where repeated evolution of the same ecomorphs were observed on each island (Losos et
al. 1998). One explanation for the limited number of ecomorphological changes in birds is that
in these highly mobile organisms dispersal is so fast that repeated origins of the same niche occur
rarely. In contrast, repeated origins of ecomorphs are more common among less mobile
organisms in geographically isolated islands, as in the Anolis lizards. Moreover among Anolis
lizards, no convergence to the same ecomorph has been found on the same island (Losos 1992).
These hypotheses that dispersal ability and geographic isolation affect the rate of niche

diversification can be tested in the future, when more studies of adaptive radiation are conducted,
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and more rigorous comparisons among diverse groups become possible (e.g., Harmon et al. in
press).

DIFFERENCES IN SPECIES RICHNESS AMONG CENTRAL AMERICA, WESTERN
ANDES, AND EASTERN ANDES

Table 6 shows the number of Tangara species and their elevational distributions on three
slopes: Caribbean slope of Central America, the western slope of Ecuadorian Andes, and the
eastern slope of Bolivian Andes. Central America has only half the number of species found on
each Andean slope. This reduction in the number of species in Central America reflects the
nearly complete lack of Tangara species unique to montane forests in that region (Table 6). The
Talamanca mountain range in western Panama and eastern Costa Rica reaches almost 4,000 m,
well above a tree-line, and has similar habitats as Andean humid forests; however, this mountain
range was isolated from the Andes by Darién lowlands in eastern Panama and western Colombia.
Only the ancestor of 7. nigroviridis seems to have crossed this gap successfully: this ancestral
tanager evolved to 7. fucosa on the hills in Darién gap and to 7. dowii in the Talamanca
mountain range (Fig. 5.3). The barrier of lowland humid forests appears to have prevented many
other common Andean montane birds, such as the tanager genera Buthraupis, Anisognathus,
Conirostrum, from reaching Central American mountains.

The numbers of species found on eastern and western slopes of the Andes are similar
(Table 6). The western slope, however, lacks the extensive diversification of lowland species
found on the eastern slope. Instead, on the western slope, various species have evolved in hilly
tropical forests in the extremely wet Choco region. Extensive lowlands in the Amazon basin
were crucial for speciation in situ (T. velia, T. callophrys, T. chilensis, T. mexicana), as well as

additional invasions from Andean montane forests (7. schrankii, T. xanthogastra, T. nigrocincta,
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Fig. 6.4), whereas a narrow strip of wet lowlands on the western slope seems not to have offered
such an opportunity for in situ speciation.

My analyses of historical biogeography appear to suggest that historical factors have
played an important role in creating the differences in species composition and species richness
among the three sites; however, they do not discard the possible importance of ecological factors.
For example, the lack of lowland species on the western slope of the Andes and the lack of
montane species in Central America might still be partially due to the lack of suitable habitats in

these regions.
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APPENDIX 1: DATA FOR ARTHROPOD FORAGING
PERCENT OF FORAGING CATEGORIES USED BY TANGARA SPECIES

Tangara species

b
2 & s S RS
% “ “ § § § S = % %
: S = © 5§ § & § & & g § ¢t
Foraging > 3 5 2 & &5 ¥ 2 % 8 % ¢
parameter Categories SV S S SR S R S S -
Attack
maneuver glean 9.1 309 5.6 18.8 38.1 15.2 45.8 49.3 28.3 25.0 10.5 28.7
reach-up 00 36 00 52 48 3.0 63 99 130 94 12 149
reach-out 00 73 0.0 52 00 00 63 70 65125 12 32
reach-down 30.9 27.3 25.0 2.1 26.2 455 16.7 7.0 17.4 28.1 279 5.3
hang-down 49.1 182 139 2.1 11.9 273 125 155 152 94 326 6.4
hang-side 1.8 55 0.0 1.0 167 3.0 83 42 87 94 93 53
hang-
upsidedown 00 00 00 00 24 00 00 14 22 31 00 149
probe 3.6 0.0 139 0.0 0.0 0.0 00 28 00 00 35 0.0
pull/bite 55 55417 00 0.0 6.1 21 00 6.5 0.0 11.6 2.1
sally 00 1.8 0.0656 0.0 00 21 28 22 31 23 19.1
Substrate  moss 382 00 306 00 24 00 2.1 0.0 0.0 19.0 30.2 0.0
partially-moss-
covered branch 56.4 3.6 63.9 0.0 19.0 364 2.1 0.0 0.0 429 558 2.1
bare branch 5.5 873 28 1.0 66.7 545 31.3 2.8 19.6 19.0 93 1.1
dead leaf 00 00 28 00 0.0 30 42 14 22 00 00 1.1
leaf 0.0 3.6 0.0 18.8 11.9 6.1 56.3 83.1 609 19.0 3.5 734
flower bud 00 1.8 0.0292 0.0 00 2.1 12.7 174 0.0 0.0 19.1
air 0.0 36 0.0500 0.0 00 00 00 00 00 12 32
others 00 00 00 10 0.0 00 21 00 00 0.0 00 0.0
Perch
diameter <5 mm 3.6 11.1 0.0 424 16.7 6.3 55.8 54.0 46.7 20.0 6.0 45.0
5-10 mm 23.6 55.6 17.1 51.5 52.4 37.5 39.5 46.0 48.9 57.5 39.3 48.3
10-20 mm 309 13.0 20.0 3.0 28.6 156 4.7 0.0 4.4 150 179 5.0
20-30 mm 29.1 16.7 37.1 3.0 0.0 31.3 00 0.0 00 7.5 274 1.7
30-60 mm 12.7 3.7 200 00 24 94 00 0.0 00 00 83 0.0
60 <mm 00 00 57 00 00 00 00 00 00 0.0 12 0.0
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Appendix 1. (cont.)

Tangara species

5
2 S S 2 5 8
§ “n R § '§ § S = §* %
Foraging ¥ S S o o om T & 8 % 8 B
parameter Categories MYV S S S S S SR SR
Perch angle horizontal 54.5 61.1 54.3 469 56.1 54.8 67.4 54.1 55.6 43.2 63.0 68.3
diagonal 43.6 35.2 45.7 46.9 293 419 25.6 41.0 35.6 54.1 28.4 26.7
vertical 1.8 37 00 63 146 32 7.0 49 89 27 86 50
Foliage
density 0% 26.0 404 533 24 135 357 85 0.0 6.8 194 253 22
0-5% 30.0 40.4 26.7 9.5 32.4 250 17.0 4.4 11.4 258 40.0 6.7
5-25% 44.0 19.2 20.0 76.2 51.4 35.7 59.6 82.4 70.5 48.4 33.3 83.1
25-75% 00 0.0 00 119 27 3.6 149 132 114 65 13 79
Foraging
height <5m 333 9.1 139 232 119 152 19.1 26,5 11.1 333 193 213
5-10m 53.7 50.9 44.4 579 33.3 66.7 46.8 33.8 42.2 66.7 49.4 50.0
10-15 m 11.1 18.2 30.6 11.6 42.9 152 27.7 33.8 37.8 0.0 24.1 24.5
15-20 m 19 127 11.1 53 7.1 3.0 64 59 89 00 6.0 43
20-30 m 00 91 00 21 48 00 00 00 00 00 12 0.0
Vertical
position <5 148 73 83 1.1 00 6.1 64 59 22 3.0 11.0 43
5-6 93 182 83 1.1 48 152 64 59 11.1 3.0 122 6.5
6-7 222 20.0 194 84 95 121 85 59 200 6.1 195 9.7
7-8 27.8 18.2 19.4 253 31.0 21.2 25.5 14.7 31.1 30.3 28.0 28.0
8-9 204 16.4 38.9 20.0 23.8 39.4 42.6 38.2 11.1 51.5 17.1 29.0
9-10 5.6 20.0 5.6 442 31.0 6.1 10.6 29.4 244 6.1 12.2 22.6
Horizontal
position  inner 154 3.6 333 00 00 91 00 0.0 00 0.0 169 1.1
middle 76.9 49.1 583 0.0 56.1 72.7 83 0.0 0.0 22.9 60.2 2.1
foliage 7.7 45.5 8.3 51.0 439 18.2 91.7 100 100 77.1 21.7 93.6
outer 00 1.8 00490 00 00 00 00 00 00 12 32
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Appendix 1. (cont.)

Tangara species

3 =
= =
s £
S 2 g
- S 8 S S
& 3 2 v 8 9 E
< -~ Q i) S = = Q
S S =& T T £ =z 2
S ) S <) S S N S = 3 %
= S 3 S = 2 X 0 2 § 3 S N
£ 8 3§ f§ 8 & £ £ 2 &N &8 b ¥
i 5 ¥ £ &§ § ¥ 8 € &» 3 £ & @
Foraging S B & 2 & 5 v f§ & £ £ =
parameter Categories R T T T T T T T T T T T
Attack
maneuver glean 21.1 37.8 20.0 20.2 17.8 15.4 9.7 50.0 40.9 9.0 18.4 29.1 38.2
reach-up 00 92 62 1.1 85 1.0 9.716.7 6.8 1.3 4.1273 14.7
reach-out 14143 41 00 &5 19 32 7.1 23 3.8 0.0 1.820.6
reach-down 36.6 143 379 447 34308 65 24 91231 20 18 59
hang-down 21.1 59179255 1.7356 00 0.0159295 0.0 1.8 59
hang-side 70 6.711.7 43 42 58 00 24 68 26 20 3.6 29
hang-
upsidedown 00 25 00 00 08 00 00 24 23 13 0.0109 0.0
probe 28 1.7 00 00 00 29 0.0 00 45128 0.0 3.6 0.0
pull/bite 99 25 07 32 00 58 0.0143 9.116.7 00 9.1 0.0
sally 0.0 50 14 1.1551 1.071.0 48 23 0.073.510911.8
Substrate  moss 569 0.0 14379 0.0413 00 00 45795 0.0 00 0.0

Perch
diameter

partially-moss-
covered branch

bare branch
dead leaf
leaf

flower bud
air

others

<5 mm
5-10 mm
10-20 mm
20-30 mm
30-60 mm
60 <mm

36.1
5.6
0.0

1.4 933

0.0
0.0
0.0

0.0 25.0 16.7

0.0 27.6 54.7 0.0 22.1 0.0 0.0

3.4 67.6
0.0 0.7
2.1
0.0
0.7
0.0

0.0

34
0.0
0.0

0.0

3.2 28.0
0.0 22.9
0.0 34.7
0.0 0.0

2.2 147

2.0 25.0 61.1 57.5

4.2 144308 65 24295
1.9 0.0 9.5 227
1.9 19.4 83.3 29.5
1.0 32 24 45
1.0 71.0 2.4 23
0.0 0.0 0.0 0.0

6.8 154 0.0 0.0 59
3.8 2.0 0.0 88
1.3 0.0 55 59
0.0 28.6 87.3 61.8
0.0 10.2 3.6 29
0.059.2 3.6 59
0.0 0.0 0.0 838

1.3 21.4 34.1 34.5

22.5 68.2 58.3 51.1 73.5 31.4 75.0 38.9 37.5 34.2 64.3 58.5 51.7
23153244 29324 0.0
23 9.711.1 591284 0.0
23 00 89 29 29 0.0
0.0 00 22 00 29 0.0

22.5
40.0
15.0

0.0

0.0 5.0303 7.1
0.0 0.0224 7.1
0.0 00 79 0.0
0.0 0.0 39 0.0

4.9
0.0
24
0.0

6.9
3.4
3.4
0.0
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Appendix 1. (cont.)

Foraging

parameter Categories

Tangara species

S =
o~ -~
S0 S o~
= 2 3
5 >
T 8 N S
. S E\ ..% S
= S
% = o
SV N2 8 o= <
NS S =2 T K = S
S S, Q = g o~ 2 R 1)
= Q S 3 S .5 S N SEEE
IS 8 5 ¥ 8 v I8 ¥ 3T 5 = °
T 3 ¥ 2§ % 5 §8 S & 5 8 ®m
S &8 £ 8 £ =¥ 8 & & § & <& %
S S & S 3 < = 3 L0 3 S S X
= & X < 8 © < =& ] & & =&

Perch angle horizontal

Foliage
density

Foraging
height

Vertical
position

Horizontal
position

diagonal
vertical

0%
0-5%
5-25%
25-75%

<5m
5-10 m
10-15m
15-20 m
20-30 m

<5
5-6
6-7
7-8
8-9
9-10

inner
middle
foliage
outer

74.3 59.1 58.3 44.4 52.9 74.8 66.7 63.9 58.5 73.7 72.0 46.5 55.2
20.0 31.8 33.3 51.1 38.2 19.4 28.6 27.8 26.8 23.7 24.0 41.9 44.8
57 9.1 83 44 88 58 48 83146 26 4.011.6 0.0

333 00348214 4931.6103 0.018.6457 2.6 0.016.7
40.0 0.037.733314.6122 69 49140143 53 57 6.7
23.3 73.4 27.5 42.9 68.3 49.0 62.1 61.0 55.8 38.6 78.9 64.2 56.7
33266 0.0 24122 7.120.734.111.6 1.4 13.230.220.0

22.512916.0 309 203 6.8 69 0.011411.5 4.1 0.097.1
53.559.5 68.1 55.3 61.9 45.6 44.8 35.7 54.5 37.2 429 33.3 2.9
21.1 24.1 13.9 10.6 16.1 39.8 27.6 50.0 25.0 39.7 22.4 53.7 0.0
28 2.6 2.1 32 08 58138 95 68 7.7143 93 0.0
0.0 09 0.0 0.0 08 19 69 48 23 38163 3.7 0.0

99 43 9.0223 68204 34 24136192 00 56412
169 52 11.1 53 42 87 00 24 68179 2.1 3.7 0.0
21.1 103 18.1 17.0 7.6 13.6 20.7 9.5 22.7 23.1 18.8 9.3 23.5
29.6 14.7 25.7 23.4 17.8 29.1 24.1 23.8 11.4 21.8 4.2 18.5 14.7
14.1 26.7 23.6 25.5 16.9 20.4 17.2 16.7 29.5 15.4 27.1 18.5 5.9

85388125 6.446.6 7.8345452 159 2.647.9 444 14.7

250 0.8 2.1 53 09230 00 0.0 00263 0.0 00 0.0
694 0837360.0 5164.0 6.5 00 68658 4.1 0.0 14.7
5.6 98.3 60.6 34.7 59.8 12.0 22.6 97.6 90.9 7.9 36.7 98.1 79.4
0.0 0.0 0.0 00342 1.071.0 24 23 00592 19 59
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APPENDIX 2: DATA FOR FRUIT FORAGING
PERCENT OF FORAGING CATEGORIES USED BY TANGARA SPECIES

Tangara species

g
2 e s S S B
= £ 3 8 - S 3
5 ¢ € % g S E g £ 2 § &
s £ % § £ 0% 8 §ofosof o8
. S = © 5§ § 2 § & & g § °©=
Foraging » f$ f 5 & s ¥ &8 3% % § 8
parameter Categories SV Y S S S S S SR S
Attack

maneuver glean 62.2 71.8 61.4 69.7 55.9 64.2 70.8 64.2 72.6 72.4 59.4 68.5
reach-up 74 26 35 57 59 46 86 44 00 00 85 82
reach-out 88 51 35 6.1 59 83 &1 101 14 20.7 6.1 4.1
reach-down 6.8 7.7 140 57 59 119 49 44 55 69 9.1 27
hang-down 34 19 88 27 29 46 1.1 3.1 00 00 42 00
hang-side 54 45 35 1.1 88 18 49 44 68 00 3.6 55

hang-
upsidedown 14 06 18 15 00 09 05 00 00 00 12 27
probe 47 58 35 69147 28 1.1 94 137 00 79 82
sally 00 00 00 04 00 09 00 00 00 00 00 00
Fruit genera Acnistus 00 00 00 00 00 00 00 00 0.0 00 0.0 00
Adenaria 0.0 00 00 00 00 00 0.0 00 0.0 0.0 0.0 0.0
Annona 00 00 00 00 00 00 00 00 0.0 00 0.0 0.0
Banara 0.0 00 0.0 00 0.0 00 0.0 00 0.0 0.0 0.0 0.0
Bocconia 0.0 00 00 00 00 00 0.0 00 0.0 0.0 0.0 0.0
Brunellia 00 00 00 00 00 00 00 00 0.0 00 0.0 00
Cavendishia 00 00 00 00 00 00 00 06 00 00 0.0 00
Cecropia 07 53 00 12 00 85 00 06 42 00 00 29
Celtis 00 00 00 00 00 00 00 00 0.0 00 0.0 0.0
Cestrum 0.0 276 0.0 74 0.0 17.0 0.0 0.0 29.2 0.0 0.0 10.0
Clethra 00 00 00 00 00 00 00 00 00 00 0.0 00
Clusia 0.0 00 00 00 00 00 0.0 00 0.0 00 0.0 0.0
Conostegia 0.0 00 0.0 00 0.0 00 0.0 00 0.0 0.0 0.0 0.0
Cordia 0.0 0.7 00 04 00 00 00 00 14 00 0.0 0.0
Coussapoa 00 00 00 00 00 00 00 00 0.0 00 0.0 00
Dendropanax 0.0 00 00 00 00 00 00 0.0 0.0 0.0 0.0 0.0
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Appendix 2. (cont.)

Tangara species

%
3 S S 3 8
% “ .2 § § § 3 = %” §
S 5 3 ¢§ s s TROogo¥
| S % 2§ § % 0§ 0§ 2 & % o%
Foraging ¥ 3% & & & §F & % £ F B
parameter Categories SV VI S S S N G SR S
Fruit genera Eugenia 0.0 00 00 00 00 00 0.0 00 0.0 0.0 0.0 0.0
Ficus 0.7 07 00 08 00 19 05 06 00 00 1.2 0.0
Freziera 00 00 00 00 00 00 00 00 0.0 00 0.0 00
Gonzalagunia 00 00 00 00 00 00 00 00 0.0 00 0.0 00
Guettarda 75 13333 741257208 1.6 94 0.0 0.0 85 43
Hedyosmum 6.1 00 00 70 00 00 00 06 00 00 55 29
Hyeronima 00 00 00 00 00 00 00 00 0.0 00 0.0 00
Isertia 34 20 1.8 19 57 00 05 13 0.0 0.0 3.0 00
Lasiacis 0.0 39 00 35 00 09 00 0.0 11.1 0.0 0.0 1.4
Leandra 00 00 00 04 00 00 00 00 00 00 0.0 00
Marcgravia 0.0 00 00 00 00 00 0.0 00 0.0 0.0 0.0 0.0
Miconia 76.9 52.6 61.4 62.6 68.6 47.2 97.3 85.6 48.6 100 75.8 74.3
Mircinia 00 00 00 00 00 00 00 00 00 00 0.0 00
Mpyrcia 0.0 00 00 00 0.0 00 0.0 00 0.0 0.0 0.0 0.0
Mpyrica 0.0 00 00 00 00 00 00 13 00 00 55 00
Myrsine 00 00 00 00 00 00 00 00 0.0 00 0.0 0.0
Oreopanax 0.0 00 00 00 00 00 0.0 00 0.0 00 0.0 0.0
Orycanthus 0.0 00 00 00 00 00 00 00 00 00 00 00
Palicourea 00 00 00 04 00 00 00 00 00 00 0.0 00
Phoradendron 0.0 0.0 0.0 00 0.0 00 0.0 00 00 0.0 00 0.0
Phytolacca 0.0 00 00 00 00 00 00 00 00 00 00 0.0
Psychotria 00 26 00 16 00 00 00 00 0.0 00 0.0 29
Rubus 00 13 00 19 00 00 00 00 28 00 00 14
Sabicea 0.0 00 00 00 00 00 00 00 00 00 00 0.0
Satyria 00 00 00 00 00 00 00 00 0.0 00 0.0 0.0
Saurauia 0.0 00 00 00 0.0 00 0.0 00 0.0 00 0.0 0.0
Schefflera 34 00 00 0.8 00 00 00 00 00 00 06 00
Psidium 00 00 00 00 00 00 0.0 00 0.0 00 0.0 00
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Appendix 2. (cont.)

Tangara species

%
< & s = S S
§ “n .« § § § S = §* %
. s 2 £ § § T § 8§ 2 g2 % %
Foraging ¥ 5 ¥ o & m T & 8 & ¥ B
parameter Categories S S Y Y VY Y™
Fruit genera Solanum 00 00 35 0.0 0.0 00 00 00 00 00 00 0.0
Tetrochidium 00 00 00 0.0 0.0 00 00 00 00 00 00 0.0
Tibouchia 07 00 00 0.0 0.0 0.0 00 00 00 00 00 0.0
Tournefortia 07 20 00 19 00 38 00 00 28 00 00 0.0
Tovomita 00 00 00 0.0 0.0 00 00 00 00 00 00 0.0
Trema 00 00 00 0.8 0.0 00 00 00 00 00 00 0.0
Turpinia 00 00 00 0.0 0.0 0.0 00 00 00 00 00 0.0
Viburnum 00 00 00 0.0 0.0 00 00 00 00 00 00 0.0
Perch
diameter <5 mm 52.6 61.7 65.3 57.1 44.4 48.0 67.5 63.0 56.7 53.6 56.7 76.9
5-10 mm 45.1 34.4 34.7 42.0 55.6 43.9 32.5 35.6 41.8 46.4 42.7 21.5
10-20 mm 1.5 23 00 04 00 6.1 00 15 1.5 00 0.0 1.5
20-30 mm 08 16 00 04 00 1.0 00 00 00 00 00 0.0
30 <mm 00 00 00 00 00 10 00 00 0.0 00 0.7 0.0
Perch angle horizontal 62.8 48.4 68.0 52.3 53.6 62.9 53.5 56.7 51.5 60.7 55.4 50.8
diagonal 32.6 46.9 26.0 45.5 39.3 35.1 37.7 39.6 42.4 39.3 39.2 43.1
vertical 47 47 6.0 23 7.1 21 88 37 6.1 00 54 62
Foliage
density  0-5% 07 33 7.1 32 32 18 05 26 00 00 25 57
5-25% 72.3 83.6 71.4 74.6 71.0 79.8 73.2 77.1 81.9 58.6 77.4 84.3
25-75% 27.0 13.2 21.4 22.2 25.8 18.3 26.2 20.3 18.1 41.4 20.1 10.0
Foraging
height <5m 24.0 34.7 12.5 36.3 16.7 25.0 21.3 20.9 47.2 18.5 31.5 40.8
5-10m 59.6 34.7 50.0 46.9 50.0 40.4 62.6 62.8 27.8 81.5 53.7 47.9
10-15 m 13.7 23.3 28.6 12.7 23.3 25.0 155 9.5 20.8 0.0 13.0 11.3
15-20 m 2.1 53 89 37100 7.7 06 54 42 00 19 0.0
20-30 m 07 20 00 04 00 19 00 14 00 00 0.0 0.0
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Appendix 2. (cont.)

Tangara species
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Foraging | ¥ s & & m ¥ 8 % £ 3§ 3
parameter Categories F N N K N N E N N §BE 5 &9
Vertical
position <5 34 67 00 29 33 58 06 14 85 00 49 14.1
5-6 34 40 00 29 67 77 1.1 34 70 00 37 42
6-7 75 107 7.1 122 00 106 57 41 99 37 105 99
7-8 23.3 20.0 7.1 155 20.0 144 144 143 22.5 222 19.1 19.7
8-9 32.9 30.7 55.4 253 33.3 394 32.8 36.7 254 59.3 31.5 22.5
9-10 29.5 28.0 304 41.2 36.7 22.1 45.4 40.1 26.8 14.8 30.2 29.6
Horizontal
position  foliage 100 100 100 100 100 100 100 100 100 100 100 100
middle 00 00 00 00 00 00 00 00 00 00 00 00
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Appendix 2. (cont.)

Tangara species

S =
= ~=
- X
NS 2 2
- SRS 3 S
S 3 2 S 5 2 $
S < S 2 X X8 B . S
RS ) S 8 K S f 5 8
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Foraging = 5 % S 8 § & % § ] & £ =
parameter Categories NN NN NN NN N NN NN
Attack
maneuver glean 47.7 38.2 29.6 36.1 40.7 62.8 73.1 78.1 90.1 53.9 65.1 60.6 43.8
reach-up 86113119 94 93 43 1.1 1.6 42 26 62 28313
reach-out 18.0 25.8 19.0 27.4 229 43 22 94 28 43 34127 63
reach-down 148 84138143 84 7.7 65 47 14104 62 14 94
hang-down 00 1.8 1.6 1.9 09 14 0.0 00 00 00 07 00 0.0
hang-side 7.0 113164 34 9.814.0 32 3.1 14157123 56 0.0
hang-
upsidedown 0.8 0.0 03 0.0 05 0.0 00 1.6 00 09 0.7 00 0.0
probe 23 33 74 75 7.0 4814.0 1.6 0.0122 55155 94
sally 0.8 0.0 0.0 0.0 05 0.5 0.0 0.0 00 0.0 0.0 1.4 0.0
Fruit genera Acnistus 0.0 0.7 0.0 0.0 00 39 76 16 00 3.6 00 00 0.0
Adenaria 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.3
Annona 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.7
Banara 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.4 0.0
Bocconia 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 00 0.0 2.8 33
Brunellia 0.0 0.0 0.0 0.0 0.0 1.0 87 16 29 27 28 00 0.0
Cavendishia 1.6 1.1 1.0 42 0.0 0.5 0.0 0.0 0.0 09 0.7 0.0 0.0
Cecropia 39 88158 04 89172 65 1.6 0.0179162 2.8 0.0
Celtis 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 56.7
Cestrum 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Clethra 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.7
Clusia 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Conostegia 1.6 74 84 45322 0.0 00 00 00 00 00 00 0.0
Cordia 0.0 0.0 0.0 0.0 0.0 1.014.1 47 14 3.6 35 42 00
Coussapoa 70 1.8 74113 56 0.0 1.1 0.0 0.0 09 0.0 0.0 0.0
Dendropanax 0.8 0.7 0.0 04 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Appendix 2. (cont.)

Tangara species
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Foraging = & &% = S 5§ o 8 T ] & £ s
parameter Categories NN NN NN NN N NN NN
Eugenia 0.0 0.0 0.0 0.0 0.0 15109 3.1 00 2.7 35 85 0.0
Ficus 7.8 18373192 93 2.0 33 0.0 0.0 3.6 2.1 2.8 0.0
Freziera 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Gonzalagunia 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Guettarda 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Hedyosmum 1.6 04 0.6 38 05 49 00 00 14 36 2.1 14 00
Hyeronima 0.0 0.0 0.0 0.0 0.0 1.5 0.0 0.0 0.0 1.8 0.0 2.8 0.0
Isertia 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Lasiacis 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Leandra 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Marcgravia 0.0 04 0.0 0.0 0.0 0.0 00 00 0.0 0.0 0.0 0.0 0.0
Miconia 72.7 66.2 28.0 51.3 38.3 51.0 38.0 65.6 77.1 34.8 33.8 40.8 0.0
Mircinia 0.0 04 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Myrcia 0.0 0.7 0.0 04 05 0.0 0.0 0.0 00 00 00 00 0.0
Myrica 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Myrsine 0.0 0.0 0.0 0.0 0.0 2.0 22 1.6 0.0 09 0.7 42100
Oreopanax 0.0 0.0 0.0 04 0.0 0.0 0.0 0.0 00 09 0.0 2.8 0.0
Orycanthus 0.0 0.0 0.0 0.0 09 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Palicourea 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 56 0.0
Phoradendron 1.6 22 00 04 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Phytolacca 0.0 0.0 0.0 04 0.0 0.0 0.0 00 0.0 0.0 0.0 0.0 0.0
Psychotria 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Rubus 0.0 0.0 03 04 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Sabicea 0.8 04 03 1.1 0.0 0.0 0.0 00 00 0.0 0.0 0.0 0.0
Satyria 0.0 0.0 0.6 1.5 0.0 0.0 0.0 00 0.0 0.0 0.0 0.0 0.0
Saurauia 0.0 04 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Schefflera 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Psidium 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.3
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Appendix 2. (cont.)

Tangara species
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Foraging = % & = & §8 & 3% § § & ¢ =
parameter Categories RN NN NN NN N NN RN
Solanum 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 00 36 14 42 0.0
Tetrochidium 0.8 1.1 03 0.0 19 00 0.0 0.0 00 0.0 0.0 0.0 0.0
Tibouchia 0.0 0.0 0.0 00 0.0 00 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Tournefortia 0.0 0.0 0.0 00 00 00 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Tovomita 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Trema 0.0 0.0 0.0 0.0 00123 7.620.317.117.933.1155 0.0
Turpinia 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 09 0.0 0.0 0.0
Viburnum 0.0 40 0.0 04 09 00 0.0 00 00 0.0 0.0 0.0 0.0
Perch
diameter <5 mm 50.9 53.9 28.7 42.4 46.2 44.4 47.1 70.0 62.9 41.0 33.5 50.0 34.8
5-10 mm 47.3 40.9 61.0 55.6 51.3 39.9 46.0 30.0 37.1 46.7 45.1 43.2 60.9
10-20 mm 1.8 52 74 0.0 26 7.6 46 0.0 00 57 9.1 41 43
20-30 mm 0.0 00 22 1.0 00 66 23 00 00 38 7.3 2.7 0.0
30 <mm 0.0 00 0.7 1.0 00 1.5 0.0 0.0 0.0 29 49 0.0 0.0
Perch angle horizontal 58.2 52.2 44.9 60.6 46.2 70.7 79.1 71.7 77.1 68.2 71.3 66.2 47.8
diagonal 30.9 33.9 33.1 34.3 38.5 13.6 16.3 23.3 21.4 16.8 16.5 25.7 52.2
vertical 109 13.922.1 5.1 154157 47 50 14150122 8.1 0.0
Foliage
density  0-5% 00 00 1.1 08 26 54 53 00 15 44 47 25 6.7
5-25% 54.5 57.0 67.2 58.6 60.0 58.1 56.4 62.5 50.7 65.5 72.1 63.8 46.7
25-75% 45.5 43.0 31.6 40.6 37.4 36.5 38.3 37.5 47.8 30.1 23.3 33.8 46.7
Foraging
height <5m 25.6 24.8 20.3 25.0 46.0 8.7 13.7 3.1 2.8 8.6 1.2 13.8 100
5-10m 60.5 63.3 54.0 53.4 41.8 43.5 43.2 34.4 46.5 38.8 39.5 40.0 0.0
10-15m 11.6 11.9 17.7 17.0 12.2 41.1 32.6 45.3 38.0 42.2 50.6 30.0 0.0
15-20 m 23 00 7.7 45 00 6.8 74125113 69 58 13.8 0.0
20-30 m 0.0 00 03 0.0 00 00 32 47 14 34 29 25 0.0
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Appendix 2. (cont.)
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N =

Foraging . = & & & S § © S § & § § g

parameter Categories NN NN N NN NN NN~

Tangara species

Vertical

position <35
5-6
6-7
7-8
8-9
9-10

Horizontal

position  foliage
middle

0.0 00 0.0 0.011.7101 74 3.1 28 43 3.5 3.8200
31 44 77 6.1 7.0 19 42 31 28 69 64 00 0.0
39 81 9.6 87 89145 84 94113 95 &1 88200
24.0 18.1 18.0 12.1 18.3 18.8 12.6 26.6 16.9 13.8 16.9 17.5 23.3
31.0 34.1 28.3 31.4 19.7 25.1 35.8 28.1 33.8 31.9 25.0 25.0 6.7
25.6 26.3 22.2 22.3 34.3 29.5 31.6 29.7 32.4 33.6 40.1 45.0 30.0

100 100 100 100 100 98.6 99.0 100 100 99.2 99.4 100 100
00 00 0.0 00 00 14 1.0 00 00 0.8 06 0.0 0.0
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APPENDIX 3: DATA FOR HABITAT USE
PERCENT OF FORAGING CATEGORIES USED BY TANGARA SPECIES

Tangara species

2
2 BS
3 3 3
~
% = - 3
g 0 S - S N
S 2 T s . R
S 2 o2 = 2 S T S B 3 Y
S ¢ 5 3 ¥ s § 8§ T § =3 3
S & &£ § £ % oL 0§ £ g8 ¥ %
. S = S N < S0 N = A N IS
Foraging 5 3 5 & om ¥ &8 % £ 8§ S
parameter Categories SV S VY S Y S Y
primary
Habitat forest 42.3 22.2 27.8 19.4 67.5 41.4 56.3 49.3 23.9 94.3 53.7 22.6
secondary
forest 51.9 64.8 50.0 46.2 27.5 55.2 29.2 31.3 63.0 2.9 25.6 64.5
semiopen 1.9 93194 65 25 34 63 60 22 00 49 00
secondary
growth 3.8 37 28280 25 0.0 83134109 29 159 129
Vegetation
height <4m 1.9 55 00 84 24 0.0 43 44 6.7 6.1 3.7 32
4-6m 11.1 3.6 11.1 15.8 9.5 9.1 12.8 16.2 4.4 182 9.8 21.5
6-8m 185 1.8 56326 4.8 182 149 8.8 89 485 159 15.1
8-10m 27.8 7.3 83 12.6 143 182 10.6 14.7 6.7 273 17.1 7.5
10-12m 93 9.1 16.7 84143242 149 103 15.6 0.0 9.8 15.1
12-14m 11.1 12.7 56 32 95 6.1 43 11.8 22 00 6.1 7.5
14-16 m 13.0 164 83 8.4 238 6.1 17.0 16.2 20.0 0.0 11.0 9.7
16 - 18 m 1.9 127222 1.1 24 6.1 85 74 89 0.0 49 6.5
18-20m 1.9 55167 42 95 9.1 64 74178 00 122 9.7
20-25m 37200 56 42 48 30 64 29 89 00 9.8 43
25<m 00 55 00 1.1 48 0.0 00 0.0 0.0 0.0 0.0 0.0
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Appendix 3. (cont.)

Tangara species

3 =
= ~
sk
) S S %
. S 3 5 S
S 3 T Y08 & . E
S < S 2 T | =R 9
N S = T £ =< £ 3
S Q0 % 3 S X S N 3 X
S 8§ & 28 8 2 8 % =T ™ § = °¢B
T 3 3 28 S &2 T S & § & ®m °®
i 5 § 5 & § % 8§ % B ;5 5 %8 ¥
Foraging , g 5§ % 8 8 § & % ¥ § § § ¢
parameter Categories NN NN NN NN NN NN N
primary
Habitat forest 60.0 359 45.1 549 9.6 2.0 6.5 73 0.0 2.6 2.1 0.0 0.0
secondary
forest 37.1 44.4 34.7 36.3 31.3 74.3 12.9 73.2 80.0 55.3 75.0 59.3 0.0
semiopen 29 18.8 194 4.4 56.5 20.8 80.6 17.1 10.0 38.2 20.8 40.7 14.7
secondary
growth 00 09 0.7 44 26 3.0 00 24100 39 2.1 0.0853
Vegetation
height <4m 14 09 21 1.1 7.6 0.0 0.0 0.0 0.0 2.6 0.0 0.0 853
4-6m 99 6.0 69138119 1.0 0.0 00 45 13 42 0.0 88
6-8m 155 21.6 16.0 17.0 24.6 39172 7.1 13.6 64 42 3.7 59
8-10m 16.9 19.8 25.0 21.3 17.8 4.9 17.2 19.0 159 103 4.2 3.7 0.0
10-12m 155 24.1 18.1 17.0 153 8.7 3.4 9.5 6.8 7.716.7 11.1 0.0
12-14m 42 95 83 2.1 7.613.6 103143 114 0.0 83 16.7 0.0
14-16 m 155 11.2 11.1 9.6 10.2 24.3 13.8 19.0 18.2 23.1 27.1 259 0.0
16 - 18 m 70 09 76 64 17126 69 7.1 9.1 7.7 63185 0.0
18-20m 113 26 35 74 0.8204103 7.1 23205 42 74 0.0
20-25m 14 26 14 32 1.7 87172119 159179 104 11.1 0.0
25<m 14 09 00 1.1 08 19 34 48 23 26146 19 0.0
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VITA

Kazuya Naoki was born to Yoshiya and Iyoko Naoki on 17 March 1969 in Hyogo, Japan.
In 1970, his family moved to Kawasaki, where he found his earliest interest in the nature and
dreamt to become an entomologist. He attended elementary school in Kawasaki, Osaka, and
Hyogo. He attended Kwansei Gakuin High School at Kobe. In high school Naoki was mostly
interested in tennis and fishing; however, he never deserted his dream to study nature. When he
was 17 years old, he traveled in Kyushu by a bicycle for three weeks, where he met subtropical
forests first time in his life and madly fell in love with her. He studied chemistry at Kwansei
Gakuin University, Kobe city, Hyogo between 1987 and 1989 until he left for Australia, New
Zealand, and Latin America to travel and observe tropical birds for two years. He left the
university in Japan and went to Costa Rica in 1991 to study tropical biology. He completed a
Bachelor of Science degree in biology at Universidad de Costa Rica, San José, Costa Rica in
1996. Kazuya will receive the degree of Doctor of Philosophy in biological sciences and
experimental statistics at Louisiana State University in August 2003. Following graduation, he

will establish himself at Bolivia to continue his study on Andean birds.
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