A characterization of almost all minimal not nearly planar graphs

Kwang Ju Choi
Louisiana State University and Agricultural and Mechanical College, mathed96@gmail.com

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations
Part of the Applied Mathematics Commons

Recommended Citation
https://digitalcommons.lsu.edu/gradschool_dissertations/2011
A CHARACTERIZATION OF ALMOST ALL MINIMAL NOT NEARLY PLANAR GRAPHS

A Dissertation
Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Mathematics

by
Kwang Ju Choi
B.S., Seoul National University, 2000
M.S., Seoul National University, 2006
M.S., Louisiana State University, 2008
August 2013
Acknowledgments

This dissertation would not be possible without the assistance of my committee members, my family, and my friends. Foremost, I am grateful to my advisor, Dr. Bogdan Oporowski. He always encouraged me to move forward. I also owe my deepest gratitude to Dr. James Oxley. He advised me to continue working with patience and sharpness for my research. I am also grateful to Dr. Guoli Ding. He introduced me *Combinatorica*, a package of Mathematica for my work. Additionally, I also would like to show my gratitude to Dr. Stan Dziobiak. He helped me how to operate the program.

This work was motivated by Theorem 3.4 in [DOTV11] brought to my attention by the similarity between crossing number and planarity.

I am indebted to my family members. They always support me and show an unconditional source of love throughout my life.

Finally, I appreciate my friends cross the world. I am very fortunate to have had their friendship.

I gratefully acknowledge the support from all people who supported me to complete this research.
Table of Contents

Acknowledgments ... ii

List of Figures ... iv

Abstract ... ix

Chapter 1: Introduction .. 1

Chapter 2: Minimal Not Nearly Planar Graphs Whose Connectiv
Is Less Than 3 ... 7
 2.1 Graphs Whose Connectivity Is Less Than 2 7
 2.2 Connectivity-2 graphs .. 8

Chapter 3: Minimal 3-connected not nearly planar graphs 21
 3.1 Graphs that are t-shallow .. 23
 3.2 The Graphs Containing $K_{4,4}$ as a Minor 32
 3.3 Alternating double wheel with axle B_k 33

Chapter 4: The k-rung Möbius ladder 44

References ... 78

Vita ... 80
List of Figures

1.1 A minor graph of a nearly planar graph 3
1.2 Minimal graphs that are not nearly planar 5
2.1 Disconnected graphs in \mathcal{M} ... 8
2.2 Connectivity 1 graphs in \mathcal{M} .. 9
2.3 Connectivity 2 ... 10
2.4 Connectivity 2 graphs in \mathcal{M} (Part 1) 12
2.5 Graph $K_{3,3}^+$... 12
2.6 Connectivity 2 graphs in \mathcal{M} (Part 2) 13
2.7 Connectivity 2 graphs in \mathcal{M} (Part 3) 13
2.8 Nearly planar graphs made by 2-sum 14
2.9 Connectivity 2 graphs in \mathcal{M} (Part 4) 14
2.10 Graphs made by adding one edge to a subdivision of $K_{3,3}$ or of K_5 . 15
2.11 2-summing one of $K_{3,3}^{S^+}$ and $K_5^{S^+}$ with one of $K_{3,3}$, K_5, and $K_{3,3}^+$ 16
2.12 Graphs made by 2-summing $K_{3,3}^{S^+}$ and $K_5^{S^+}$ 16
2.13 Connectivity 2 graphs in \mathcal{M} (Part 5) 17
2.14 Connectivity 2 graphs in \mathcal{M} (Part 6) 18
2.15 $K_{3,3}^{SS^2+} \oplus_2 K_{3,3}^+, K_5^{SS^2+} \oplus_2 K_{3,3}^+$, and $K_{3,3}^{SS^2+} \oplus_2 K_5^{SS^2+}$ 18
2.16 Connectivity 2 graphs in \mathcal{M} (Part 7) 19
2.17 $K_5 \oplus_2 K_{3,3}$ and $K_5 \oplus_2 K_5$ 19
2.18 Connectivity 2 graphs in \mathcal{M} (Part 8) 19
3.1 Graphs containing $K_{3,4}$ as a minor .. 22
3.2 One part of a separation of order three .. 22
3.3 Subdivisions of $K_{2,3}$... 23
3.4 Planar part of a separation of order 3 of graphs in \mathcal{M} (Part 1) . . 24
3.5 Not allowed planar part of a separation of order 3 of graphs in \mathcal{M} . 25
3.6 Planar part of a separation of order 3 of graphs in \mathcal{M} (Part 2) . . 26
3.7 Abstract structures of planar part of a separation of order 3 (Part 1) 27
3.8 Planar part of a separation of order 3 of graphs in \mathcal{M} (Part 3) . . 27
3.9 Abstract structures of planar part of a separation of order 3 (Part 2) 28
3.10 Planar part of a separation of order 3 of graphs in \mathcal{M} (Part 4) . . 29
3.11 Abstract structures of planar part of a separation of order 3 (Part 3) 29
3.12 Planar part of a separation of order 3 of graphs in \mathcal{M} (Part 5) . . 30
3.13 Abstract structures of planar part of a separation of order 4 (Part 4) 30
3.14 Graph $K'_{4,4}$... 32
3.15 A subgraph of $K'_{4,4}$... 33
3.16 A subdivision of $K_{3,3}$ that is a subgraph of $K'_{4,4}$ 33
3.17 A member of \mathcal{M} dominating B_3 ... 33
3.18 Not allowed graphs, containing B_4, for \mathcal{M} (Part 1) 35
3.19 Not allowed graphs, containing B_4, for \mathcal{M} (Part 2) 37
3.20 Not allowed graphs, containing B_4, for \mathcal{M} (Part 3) 37
3.21 Not allowed graphs, containing B_6, for \mathcal{M} 38
3.22 A structure of a graph that is not a member of \mathcal{M} 42
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Members of (\mathcal{M}) containing (M_3) or (M_4)</td>
<td>44</td>
</tr>
<tr>
<td>4.2</td>
<td>A subdivision of (M_4) with an edge</td>
<td>45</td>
</tr>
<tr>
<td>4.3</td>
<td>A Petersen graph</td>
<td>45</td>
</tr>
<tr>
<td>4.4</td>
<td>Example of not allowed sets of bridges</td>
<td>45</td>
</tr>
<tr>
<td>4.5</td>
<td>Not allowed sets of bridges for the smallest number of bridges</td>
<td>46</td>
</tr>
<tr>
<td>4.6</td>
<td>Change of bridges by replacement of homeomorphic embeddings</td>
<td>47</td>
</tr>
<tr>
<td>4.7</td>
<td>A subdivision of (M_k) with an edge from rim to rung (Part 1)</td>
<td>48</td>
</tr>
<tr>
<td>4.8</td>
<td>Planar embeddings of some graphs (Part 1)</td>
<td>48</td>
</tr>
<tr>
<td>4.9</td>
<td>Subgraphs of (H) containing (K_{3,3}) subdivisions</td>
<td>49</td>
</tr>
<tr>
<td>4.10</td>
<td>A subdivision of (M_k) with an edge from rim to rung (Part 2)</td>
<td>49</td>
</tr>
<tr>
<td>4.11</td>
<td>A planar embedding of a graph (Part 2)</td>
<td>50</td>
</tr>
<tr>
<td>4.12</td>
<td>Graphs that are not dominated by graphs in (\mathcal{M}) (Part 1)</td>
<td>50</td>
</tr>
<tr>
<td>4.13</td>
<td>Graphs that are not dominated by graphs in (\mathcal{M}) (Part 2)</td>
<td>52</td>
</tr>
<tr>
<td>4.14</td>
<td>A list of graphs that are not dominated by graphs in (\mathcal{M})</td>
<td>54</td>
</tr>
<tr>
<td>4.15</td>
<td>Graph that is not dominated by graphs in (\mathcal{M}) (Part 3)</td>
<td>55</td>
</tr>
<tr>
<td>4.16</td>
<td>A Graph that is not dominated by graphs in (\mathcal{M}) (Part 4)</td>
<td>55</td>
</tr>
<tr>
<td>4.17</td>
<td>Two isomorphic graphs that are not dominated by graphs in (\mathcal{M})</td>
<td>56</td>
</tr>
<tr>
<td>4.18</td>
<td>A not nearly planar graph which is not a member of (\mathcal{M})</td>
<td>57</td>
</tr>
<tr>
<td>4.19</td>
<td>Graphs that are not dominated by graphs in (\mathcal{M}) (Part 4-1)</td>
<td>57</td>
</tr>
<tr>
<td>4.20</td>
<td>Graphs that are not dominated by graphs in (\mathcal{M}) (Part 4-2)</td>
<td>58</td>
</tr>
<tr>
<td>4.21</td>
<td>Graphs that are not dominated by graphs in (\mathcal{M}) (Part 5)</td>
<td>60</td>
</tr>
<tr>
<td>4.22</td>
<td>Isomorphic graphs to the previous graphs</td>
<td>60</td>
</tr>
</tbody>
</table>
4.45 Fundamental subgraphs for the graphs in \mathcal{M} containing a large M_k 77

4.46 An example graph in \mathcal{M} made by three fundamental subgraphs . . 77
Abstract

In this dissertation, we study nearly planar graphs, that is, graphs that are edgeless or have an edge whose deletion results in a planar graph. We show that all but finitely many graphs that are not nearly planar and do not contain one particular graph have a well-understood structure based on large Möbius ladders.
Chapter 1
Introduction

We shall assume the reader is familiar with the basic terms and definitions and notation of graph theory. Any unexplained terminology used here will follow [Die05] and [Oxl11]. For the readers convenience, we introduce the following terminology from [Bol98], [Big93], [Die05], and [Oxl11]. The vertex set of a graph G is referred to as $V(G)$, its edge set as $E(G)$. The degree of a vertex v is the number $|E(v)|$ of edges at v. If all the vertices of a graph G are pairwise adjacent, then G is complete. A complete graph on n vertices is a K_n. A complete bipartite graph, $G := (V_1 \cup V_2, E)$, is a bipartite graph such that for any two vertices, $v_1 \in V_1$ and $v_2 \in V_2$, $v_1 v_2$ is an edge in G. The complete bipartite graph with partitions of size $|V_1| = m$ and $|V_2| = n$, is denoted $K_{m,n}$. When $G = (V, E)$ and $G' = (V', E')$ are two graphs, if $G' \subseteq G$ and G' contains all the edges $xy \in E$ with $x, y \in V'$, then G' is an induced subgraph of G. A graph G is called k-connected (for $k \in \mathbb{N}$) if $|G| > k$ and $G - X$ is connected for every set $X \subseteq V$ with $|X| < k$. The greatest integer k such that G is k-connected is the connectivity of G. An embedding of a graph G into a surface M, $G \subset M$, is a realization of a homeomorphic image of G as a subspace of M. A graph is called planar if it can be embedded in the plane. A graph G is an edge-transitive graph if, for every pair of edges e_1 and e_2, G has an automorphism that maps e_1 to e_2.

This dissertation is focused on nearly planar graphs, that is, graphs G such that G is edgeless or $G \setminus e$ is planar for some edge e. The ultimate goal of this project is to fully describe the class of nearly planar graphs by listing all minimal graphs that are not nearly planar. We need to discuss the relations of graphs, such as
minors and topological minors, in order to explain the notion of minimality. All graphs considered in this dissertation are finite, loopless, and may have multiple edges, that is, several edges joining the same vertices. Edges are parallel to each other if they join the same vertices. If a graph G is not planar but $G \setminus e$ is, then e is a planarizing edge of G.

Let e be an edge, whose endpoints are x and y, of a graph G. By G/e, we denote the graph obtained from G by contracting the edge e into a new vertex v_e, which becomes adjacent to all the former neighbors of x and of y. A graph H is a minor of a graph G if it can be obtained from G by a sequence of operation, each of which is one of the following.

(1) deleting an edge;

(2) deleting an isolated vertex; and

(3) contracting an edge.

A graph H is a topological minor of a graph G if it can be obtained from G by a sequence of operation each of which is one of the following.

(1) deleting an edge;

(2) deleting an isolated vertex; and

(3) contracting an edge incident with a vertex of degree two.

We say that a graph H is a subdivision of a graph G if there exists a map $\eta : (V(G) \cup E(G)) \rightarrow (V(H) \cup E(H))$ with the following properties when $v, w \in V(G)$ and $e, f \in E(G)$;

(1) $\eta(v)$ is a vertex of H, and if v, w are distinct then $\eta(v), \eta(w)$ are distinct.
(2) if e has ends v, w, then $\eta(e)$ is a path of H with ends $\eta(v), \eta(w)$, and otherwise disjoint from $\eta(V(G))$, and

(3) if e, f are distinct, then $\eta(e)$ and $\eta(f)$ are edge-disjoint, and if they have a vertex in common, then this vertex is an end of both.

Following [DOTV11], we call such a map η a homeomorphic embedding of G into H.

The class of nearly planar graphs is not closed under the taking of minors, because we find an example of a graph G that is nearly planar, but some minor of G is not nearly planar. This is illustrated in Figure 1.1.

![Figure 1.1: This is an example of nearly planar graphs whose minor is not nearly planar.](image)

However, it is easy to show that the class of nearly planar graphs is closed under the taking of topological minors using Kuratowski's theorem in [Kur30] and [Kur83].

Theorem 1.1. [Kuratowski’s theorem] A graph is planar if and only if it does not contain a subgraph that is a subdivision of K_5 or of $K_{3,3}$.

Lemma 1.2. The class of nearly planar graphs is closed under the taking of topological minors.

3
Proof. Suppose that a graph H is a topological minor of a graph G with a homeomorphic embedding η. Let H be not nearly planar. Then, for every edge e of H, $H \setminus e$ is not planar. Therefore, $H \setminus e$ contains a subgraph that is a subdivision of K_5 or of $K_{3,3}$.

For every edge \hat{e}_0 of G in $\eta(H)$, there is an edge \hat{e} of H such that \hat{e}_0 is in $\eta(\hat{e})$. Then, $H \setminus \hat{e}$ is a topological minor of $G \setminus \hat{e}_0$ and $G \setminus \hat{e}_0$ contains a subgraph that is a subdivision of K_5 or of $K_{3,3}$. Therefore, $G \setminus \hat{e}_0$ is not planar.

For every edge \tilde{e} of $(E(G) \setminus E(\eta(H)))$, $G \setminus \tilde{e}$ contains $\eta(H)$ as a subgraph and $G \setminus \tilde{e}$ is not planar. As a result, G is not nearly planar, either.

We will show some properties about minimal graphs that are not nearly planar under the taking of topological minors.

Lemma 1.3. If a graph contains three edges that are parallel to each other, then the graph is not in the class of minimal graphs that are not nearly planar under the taking of topological minors.

Proof. Let a graph G contain edges e_1, e_2, and e_3 that are parallel to each other. Suppose that G is in the class of minimal graphs that are not nearly planar under the taking of topological minors. By the minimality, $G \setminus e_1$ is nearly planar. There exists an edge e such that $(G \setminus e_1) \setminus e$ is planar. Yet, $G \setminus e$ is also planar and this is in contradiction to the fact that G is in the class of minimal graphs that are not nearly planar under the taking of topological minors.

Lemma 1.4. Suppose that graph G contains a vertex w whose neighbors are only two vertices u and v. If there are double edges between w and u and if there is one edge between w and v, then G is not in the class of minimal graphs that are not nearly planar under the taking of topological minors.
Proof. Let e_1 and e_2 be the parallel edges between w and u. Suppose that G is in the class of minimal graphs that are not nearly planar under the taking of topological minors. By the minimality, $G \setminus e_1$ is nearly planar. There is an edge e such that $(G \setminus e_1) \setminus e$ is planar. However, $G \setminus e$ is also planar and this is in contradiction to the fact that G is in the class of minimal graphs that are not nearly planar under the taking of topological minors.

Taking topological minors, we find that each minimal not nearly planar graph containing double edges gives rise to a trivial infinite sequence of not nearly planar graphs G such that every proper topological minor graph of G is nearly planar, as illustrated in Figure 1.2.

To get a simple list of minimal graphs that are not nearly planar, we define a new relation \preceq between two graphs and this relation is an extension of topological minors. A graph H is dominated by a graph G, denoted by $H \preceq G$, if H can be obtained from G by a sequence of operation each of which is one of the following.

1. deleting an edge;

2. deleting an isolated vertex;
(3) contracting an edge incident with a vertex with exactly two neighbors and deleting all resulting loops, if any.

Our ultimate goal of this project is to describe all the members of the class \mathcal{M} that consists of \succsim-minimal graphs that are not nearly planar. Using Lemma 1.3 and 1.4, we can say that no graphs in \mathcal{M}

(1) contain parallel edges more than two or

(2) contain a vertex whose neighbors are two vertices.

In Chapter 2, we show the full lists of graphs in \mathcal{M} whose connectivity is 0, 1, and 2. In Chapter 3, we show that each sufficiently large 3-connected graph in \mathcal{M} that does not contain $K_{3,4}$ as a minor dominates a large Möbius ladder, which is explained in Chapter 3. Finally, in Chapter 4, we show that each such graph consists of a large Möbius ladder and a number of small subgraphs of three types.
Chapter 2
Minimal Not Nearly Planar Graphs Whose Connectivity Is Less Than 3

2.1 Graphs Whose Connectivity Is Less Than 2

Suppose that a graph $G \in \mathcal{M}$ is disconnected. Then, there are some properties about the connected components of G.

Lemma 2.1. For every disconnected graph in \mathcal{M}, none of its components is planar.

Proof. Let a graph $G \in \mathcal{M}$ be disconnected. Suppose that A is a connected component of G such that $G|A$ is planar. If A does not have any edges, then A is a single vertex and G is not minimal. Therefore, A has an edge. Let e_A be an edge of A. Since G is in \mathcal{M}, there is an edge \bar{e} such that $(G \setminus e_A) \setminus \bar{e}$ is planar. Since e_A is in A, $G \setminus \bar{e}$ is planar. This contradicts the fact that G is in \mathcal{M}. Therefore, $G|A$ is not planar. \qed

Lemma 2.2. For every disconnected graph in \mathcal{M}, the number of its components is exactly two.

Proof. Let a graph $G \in \mathcal{M}$ be disconnected. Suppose that G contains three connected components A, B, and C. By Lemma 2.1, all of $G|A$, $G|B$, and $G|C$ are not planar. Since G is in \mathcal{M}, for every edge e of G, there is an edge \bar{e} of G such that $(G \setminus e) \setminus \bar{e}$ is planar. However, by Pigeonhole principle, at least one of $G|A$, $G|B$, and $G|C$ must be contained in $(G \setminus e) \setminus \bar{e}$. This is in contradiction to the fact that G is in \mathcal{M}. Therefore, the number of components of G is two. \qed

The following graphs are made by 0-sum of two copies of $K_{3,3}$ and K_5. It is easy to show that each of the following graphs is in \mathcal{M}. Therefore, if a graph $G \in \mathcal{M}$ is disconnected, then G is one of the following.
Suppose that a graph $G \in \mathcal{M}$ has connectivity-1. Then, G is 1-sum of connected subgraphs A and B.

Lemma 2.3. Suppose that a graph $G \in \mathcal{M}$ is 1-sum of graphs A and B. Then, none of A and B is planar.

Proof. The argument follows the same idea of Lemma 2.1. \qed

Therefore, both of A and B are not planar. As a result, each of A and B contains a subdivision of $K_{3,3}$ or K_5 by Theorem 1.1. The following graphs are made by 1-sum of subdivisions of $K_{3,3}$ and K_5. It is easy to show that each of the graphs in Figure 2.2 is a member of \mathcal{M}.

Therefore, if a graph $G \in \mathcal{M}$ has connectivity one, then G is 1-sum of two subdivisions of $K_{3,3}$ and K_5.

2.2 Connectivity-2 graphs

To describe connectivity-2 graphs in \mathcal{M}, we will introduce some definitions in Chapter 4 of [DO02] for readers. If G is a graph, E_0 is a subset of $E(G)$, and S is a set, then define a function $L_G : S \times (V(G) \times V(G)) : e \mapsto (s(e), (u(e), v(e)))$ so that for each e in E_0, $u(e)$ and $v(e)$ are the end vertices of e, and if $s(e) = s(f)$, then $e = f$. Call L_G a directed labeling of G where $u(e)$ and $v(e)$ are the tail and the head, respectively, of e. Assume that $L_H : E(H) \to S \times (V(H) \times V(H)) : e \mapsto (s(e), (u_H(e), v_H(e)))$ and $L_K : E(K) \to S \times (V(K) \times V(K)) : e \mapsto (s(e), (u_K(e), v_K(e)))$ are directed labelings of disjoint graphs H and K, re-
FIGURE 2.2: The complete list of connectivity-1 graphs in \mathcal{M}
spectively, and there is only one pair, $h \in E(H)$ and $k \in E(K)$, of edges such that $s(h) = s(k)$. Then the edge-sum of H and K (with respect to L_H and L_K), denoted $(H, L_H) \oplus_2 (K, L_K)$ or, more commonly, $H \oplus_2 K$ is obtained by first identifying h and k head-to-head and tail-to-tail, and then deleting the identified edge. We may sometimes refer to $H \oplus_2 K$ as the edge-sum of H and K along h and k when L_H and L_K are understood.

Lemma 2.4. Every 2-sum of two planar graphs is planar.

Proof. Let A and B be planar graphs. Suppose that e_A and e_B are edges of A and B, respectively, to be used for $A \oplus_2 B$. Since every planar graph has an embedding in the 2-dimensional sphere, we find a planar embedding of each of A and B such that each of e_A and e_B is incident to the outer face using stereographic projection. With these new planar embedding for A and B, we get a plane graph that is isomorphic to $A \oplus_2 B$. \hfill \Box

Let a graph $G \in \mathcal{M}$ have connectivity two such that G becomes disconnected by deleting two vertices p and q. Then we can show the abstract structure of graph G as illustrated in Figure 2.3.

![Figure 2.3: Connectivity 2](image)

We can say that $V(G)$ is a disjoint union of non-empty sets $V(A_1)$, $V(A_2)$, and $\{p, q\}$ such that each induced subgraph by $V(A_1)$ and $V(A_2)$ is connected. For each i, let \tilde{A}_i be the induced graph of G by $V(A_i) \cup \{p, q\}$ with an edge e_i which
is incident with \(p \) and \(q \). Then, one of \(\tilde{A}_1 \) and \(\tilde{A}_2 \) is not planar because of Lemma 2.4. The following theorem proves that both of \(\tilde{A}_1 \) and \(\tilde{A}_2 \) are not planar.

Theorem 2.5. Let a graph \(G \in \mathcal{M} \) have connectivity two and is such that \(G \) becomes disconnected by deleting two its vertices \(p \) and \(q \). Let \(A_1 \) and \(A_2 \) be the connected components of \(G - \{p, q\} \). For each \(i = 1, 2 \), if \(\tilde{A}_i \) is the subgraph of \(G \) induced by \(V(A_i) \cup \{p, q\} \) joining \(p \) and \(q \) by an edge \(e_i \), then each \(\tilde{A}_i \) is not planar.

Proof. Without loss of generality, we may assume that \(\tilde{A}_1 \) is planar and \(\tilde{A}_2 \) is not. Graph \(\tilde{A}_2 \) is nearly planar because \(G \in \mathcal{M} \) and \(\tilde{A}_2 \not\subset G \). Then, \(\tilde{A}_2 \) dominates \(K_5 \) or \(K_{3,3} \). Let \(M \) be a subgraph of \(\tilde{A}_2 \) that is a subdivision of \(K_{3,3} \) or of \(K_5 \). Graph \(M \) has an edge \(e_0 \) such that \(\tilde{A}_2 \setminus e_0 \) is planar. (If not, since the induced subgraph of \(G \) by \(V(A_1) \cup \{p, q\} \) has a path \(P \) from \(p \) to \(q \) and an edge \(e_* \) that does not belong to \(E(P) \), \(G \setminus e_* \) is not nearly planar. This contradicts the fact that \(G \) is a member of \(\mathcal{M} \).) If \(e_0 \neq e_2 \), then by the previous lemma, \(G \setminus e_0 \) is planar. This is in contradiction to the fact that \(G \) is a member of \(\mathcal{M} \) if \(e_0 \neq e_2 \). If \(G \) is a member of \(\mathcal{M} \), then edge \(e_0 \) is edge \(e_2 \) of \(\tilde{A}_2 \).

We may assume that edge \(e_2 \) is the only edge that makes \(\tilde{A}_2 \) planar by edge deletion. If \(G \) contains edge \(pq \), namely \(e_3 \), then each of \(\tilde{A}_1 \) and \(\tilde{A}_2 \) has double edges between \(p \) and \(q \). In addition, since \(\tilde{A}_2 \setminus e_2 \) is not planar because of \(e_3 \), \(\tilde{A}_2 \) is not nearly planar. As \(G \) is 2-connected, both of \(\tilde{A}_1 \) and \(\tilde{A}_2 \) should be 2-connected. Therefore, there is a cycle \(C_0 \) containing \(e_1 \) in \(\tilde{A}_1 \) and we can say that \((C_0 \setminus e_1) \cup e_3 \) is a subgraph of \(G \). Then, \(\tilde{A}_2 \) is dominated in \(G \) and \(\tilde{A}_2 \setminus e_2 \) is not nearly planar. This contradicts the fact that \(G \in \mathcal{M} \) since \(V(A_1) \) is not empty. Therefore, \(G \) does not contain an edge \(pq \) and the induced subgraph of \(V(A_2) \cup \{p, q\} \) with double edges between \(p \) and \(q \) is not a proper topological minor of \(G \). Suppose that there are edge disjoint paths \(P_\alpha \) and \(P_\beta \) from \(p \) to \(q \) in \(\tilde{A}_1 \setminus e_1 \). By the minimality of \(G \),
\(\tilde{A}_1 \setminus e_1 \) has an edge \(e^* \) such that \(e^* \) is not in \(E(P_\alpha) \cup E(P_\beta) \). Then, \(G \setminus e^* \) is not nearly planar and \(G \notin \mathcal{M} \). Therefore, \(\tilde{A}_1 \setminus e_1 \) does not have edge disjoint paths from \(p \) to \(q \). As \(\tilde{A}_1 \setminus e_1 \) is planar and \(\tilde{A}_1 \setminus e_1 \) does not have edge disjoint paths from \(p \) to \(q \), by Jordan curve theorem, there exists an edge \(e_3 \) in \(\tilde{A}_1 \setminus e_1 \) such that every path from \(p \) to \(q \) in \(\tilde{A}_1 \setminus e_1 \) contains \(e_3 \). In this case, \(G \setminus e_3 \) is planar. As a result, both of \(\tilde{A}_1 \) and \(\tilde{A}_2 \) are not planar.

Using 2-sum of copies of \(K_{3,3} \) and \(K_5 \), we find connectivity-2 graphs in \(\mathcal{M} \) which are illustrated in Figure 2.4.

![Figure 2.4: Members of \(\mathcal{M} \) constructed by 2-sum of \(K_{3,3} \) and/or \(K_5 \)](image)

Let \(K_{3,3}^+ \) be the graph obtained from \(K_{3,3} \) joining two non-adjacent vertices with new edge \(e^+ \). This graph is needed for 2-sum to describe members of \(\mathcal{M} \) whose connectivity is 2. When we 2-sum \(K_{3,3}^+ \) and another graph, we 2-sum them along \(e^+ \).

![Figure 2.5: Graph \(K_{3,3}^+ \)](image)

Let \(\mathcal{P} \) be the set of \(K_3 \) and \(K_5 \) and let \(\mathcal{P}^+ \) be the set of \(K_3 \), \(K_5 \), and \(K_{3,3}^+ \). There are some members of \(\mathcal{M} \) described by 2-sum of \(K_{3,3}^+ \) with one of \(\mathcal{P}^+ \).
Using 2-sum of $K_{3,3}^+$ with a subdivision of one of P, we describe other graphs in M. However, every graph G made by 2-sum of $K_{3,3}^+$ with a subdivision of $K_{3,3}^+$ is not nearly planar but not in M because G dominates a member of M as stated in Lemma 2.6.

Let A be a copy of one of P and let B be a subdivision of one of P with a homeomorphic embedding η. Suppose that e is an edge of $\eta^{-1}(B)$ such that $\eta(e)$ is a path whose length is at least 2. When we 2-sum A and B along an edge of A and an edge \tilde{e} of $\eta(e)$, $A \oplus_2 B$ is nearly planar as shown in Figure 2.8. In Figure 2.8, red edges are planarizing edges. After doubling some edges of $\eta(e)$, we describe some members of M in Figure 2.9 by 2-sum.

In Figure 2.10, we introduce new six graphs each of which is obtained by adding an edge e^+, indicated red edge, to a subdivision of one of P. These six graphs, needed to describe more graphs in M using 2-sum, are $K_{3,3}^{S^+}$, $K_{3,3}^{SS1^+}$, $K_{3,3}^{SS2^+}$, K_5^S, $K_5^{SS1^+}$, and $K_5^{SS2^+}$.
FIGURE 2.8: Nearly planar graphs made by 2-sum of a copy of one of \mathcal{P} with a subdivision of one of \mathcal{P}

FIGURE 2.9: Members of \mathcal{M} containing 2-sum of a copy of one of \mathcal{P} with a subdivision of one of \mathcal{P}

Each graph in Figure 2.11 made by 2-summing $K_{3,3}^{S^+}$ or $K_5^{S^+}$ with one of \mathcal{P}^+ along e^+ is not nearly planar and it is not minimal because, when e is one of the red edges of every graph G in Figure 2.11, $G \setminus e$ is not nearly planar, either.

When we 2-sum $K_{3,3}^{S^+}$ and $K_5^{S^+}$, since both of these two graphs are not edge-transitive, we get two graphs by 2-sum as illustrated in Figure 2.12. Both of graphs G in Figure 2.12 are not members of \mathcal{M} even though both are not nearly planar because, when e is a red edge in Figure 2.12, $G \setminus e$ is not nearly planar, either.
However, if we subdivide \(e^+ \) of \(K^+_{3,3} \) or \(K^+_{5} \) before 2-sum with one of \(\mathcal{P} \), using 2-sum, we describe members of \(\mathcal{M} \) in Figure 2.13.

From Figures 2.11 and 2.12, we know that all of \(K^+_{3,3} \oplus 2 K^+_{3,3}, \ K^+_{5} \oplus 2 K^+_{3,3}, \) and \(K^+_{3,3} \oplus 2 K^+_{5} \) are not members of \(\mathcal{M} \). When we 2-sum two of \(K^+_{3,3}, \ K^+_{3,3}, \) and \(K^+_{5}, \) even though we take a subdivision before 2-summing, the graph made by 2-sum is not in \(\mathcal{M} \) by the following lemma.

Lemma 2.6. Let \(\mathcal{K} = \{K^+_{3,3}, K^+_{3,3}, K^+_{5}, K^+_{5}, K^+_{3,3}, K^+_{3,3}, K^+_{5}, K^+_{5}, K^+_{3,3}, K^+_{3,3} \} \). Suppose \(A \) is a copy of one of \(\mathcal{K} \) and \(B \) is a graph obtained by subdividing \(e^+ \) of one of \(\mathcal{K} \).

If a graph \(G \) is made by 2-sum of \(A \) and \(B \) along \(e^+ \) of \(A \) and an edge in \(B \) from the path that is made by subdivision, then \(G \) is not in \(\mathcal{M} \).

Proof. Let \(\eta(e^+) \) be a path of \(B \) made by the subdivision of \(e^+ \). Suppose \(e^+_B \) is an edge of \(\eta(e^+) \) such that graph \(G \) is made by 2-sum of \(A \) and \(B \) along \(e^+ \) of \(A \) and \(e^+_B \). Since each of \(A \setminus e^+ \) and \(B \setminus (E(\eta(e^+))) \) dominates \(K_{3,3} \) or \(K_5 \), graph \(G \setminus (E(\eta(e^+)) \setminus e^+_B) \) dominates one of graphs in Figures 2.1 or 2.2. Therefore, \(G \) is not a member of \(\mathcal{M} \). \(\square \)
FIGURE 2.11: Graphs, which are not members of \(\mathcal{M} \), made by 2-summing \(K_{3,3}^{S+} \) or \(K_{5}^{S+} \) with one of \(\mathcal{P}^{+} \)

FIGURE 2.12: Graphs, which are not members of \(\mathcal{M} \), made by 2-summing \(K_{3,3}^{S+} \) and \(K_{5}^{S+} \)

By Figures 2.1, 2.2, and 2.12, we use neither \(K_{3,3}^{S1+} \) nor \(K_{5}^{S1+} \) for 2-sum to describe members of \(\mathcal{M} \) by the following lemma.

Lemma 2.7. Every graph made by 2-summing a copy of one of \(K_{3,3}^{S1+} \) and \(K_{5}^{S1+} \) with a graph dominating one of \(\mathcal{P} \) is not a member of \(\mathcal{M} \).

Proof. Let \(\alpha \) and \(\beta \) be endpoints of \(e^{+} \) of \(K_{3,3}^{S1+} \). Then, \(V(K_{3,3}^{S1+}) - (N(\alpha) \cup N(\beta)) \) is a vertex set with two elements. Suppose \(\{\gamma, \delta\} = V(K_{3,3}^{S1+}) - (N(\alpha) \cup N(\beta)) \). As \(K_{3,3}^{S1+} \setminus \gamma \delta \) dominates \(K_{3,3} \), none of \(K_{3,3}^{S1+} \oplus_{2} K_{3,3}, K_{3,3}^{S1+} \oplus_{2} K_{5}, K_{3,3}^{S1+} \oplus_{2} K_{3,3}^{+}, K_{3,3}^{S1+} \oplus_{2} K_{3,3}^{+} \).

16
\[K_{3,3}^{S+} \bigoplus_2 K_{3,3}^{S+}, \text{ and } K_{3,3}^{S+} \bigoplus_2 K_5^{S+} \text{ is a member of } \mathcal{M} \text{ by Figures 2.1, 2.2, and 2.12.} \]

Let \(\epsilon \) and \(\zeta \) be endpoints of \(e^+ \) of \(K_5^{SS1+} \). Then, \(V(K_5^{SS1+}) - (N(\epsilon) \cup N(\zeta)) \) is a vertex set with one element. Let \(\theta \) be the only element of \(V(K_5^{SS1+}) - (N(\epsilon) \cup N(\zeta)) \).

Graph \(K_5^{SS1+} - \theta \) is a copy of \(K_{3,3} \). By the above argument, none of \(K_5^{SS1+} \bigoplus_2 K_{3,3}, K_5^{SS1+} \bigoplus_2 K_5, K_5^{SS1+} \bigoplus_2 K_5^{S+}, K_5^{SS1+} \bigoplus_2 K_5^{S+}, \) and \(K_5^{SS1+} \bigoplus_2 K_5^{S+} \) is a member of \(\mathcal{M} \).

In addition, \(K_{3,3}^{S+} \bigoplus_2 K_5^{SS1+} \) is not a member of \(\mathcal{M} \), either.

\[\square \]
Even though we know Lemma 2.7, if we take a subdivision of e^+ of $K_{3,3}^{ss1+}$ or of K_{5}^{ss1+} before 2-sum, then we can describe some members of \mathcal{M} as shown in Figure 2.14.

Since we know that each of $K_{3,3}^{s+}$, $K_{3,3}^{ss1+}$, K_{5}^{s+}, and K_{5}^{ss1+} dominates a subdivision of $K_{3,3}$ containing e^+, we use none of these four for 2-sum with one of $K_{3,3}^{ss2+}$ and K_{5}^{ss2+}. We deal each member of \mathcal{A} with one of $K_{3,3}^{ss2+}$ and K_{5}^{ss2+} for 2-sum to describe members of \mathcal{M}. We notice that none of $K_{3,3}^{ss2+} \uplus_2 K_{3,3}^{+}$, $K_{5}^{ss2+} \uplus_2 K_{3,3}^{+}$, and $K_{3,3}^{ss2+} \uplus_2 K_{5}^{ss2+}$ is a member of \mathcal{M} because it has some red edge e in Figure 2.15 such that none of $(K_{3,3}^{ss2+} \uplus_2 K_{3,3}^{+}) \setminus e$, $(K_{5}^{ss2+} \uplus_2 K_{3,3}^{+}) \setminus e$, and $(K_{3,3}^{ss2+} \uplus_2 K_{5}^{ss2+}) \setminus e$ is nearly planar.

FIGURE 2.14: Members of \mathcal{M} made by 2-sum of a copy of one of P with a subdivision of one of $K_{3,3}^{ss1+}$ and K_{5}^{ss1+}

FIGURE 2.15: None of $K_{3,3}^{ss2+} \uplus_2 K_{3,3}^{+}$, $K_{5}^{ss2+} \uplus_2 K_{3,3}^{+}$, and $K_{3,3}^{ss2+} \uplus_2 K_{5}^{ss2+}$ is a member of \mathcal{M}
However, we describe members of \mathcal{M} using 2-sum of $K_{3,3}^{SS2+}$ with one of \mathcal{P}. In addition, subdividing e^+ of $K_{3,3}^{SS2+}$, we describe members of \mathcal{M} by 2-summing the subdivided graph with one of \mathcal{P}. These members of \mathcal{M} are shown in Figure 2.16.

While $K_{3,3}^{SS2+} \oplus_2 K_{3,3}$ and $K_{3,3}^{SS2+} \oplus_2 K_5$ are members of \mathcal{M}, $K_5^{SS2+} \oplus_2 K_{3,3}$ and $K_5^{SS2+} \oplus_2 K_5$ are not members of \mathcal{M} because, for every red edges e in Figure 2.17, both of $(K_5^{SS2+} \oplus_2 K_{3,3}) \setminus e$ and $(K_5^{SS2+} \oplus_2 K_5) \setminus e$ are not nearly planar.

Similar to the previous examples, if we subdivide e^+ of K_5^{SS2+} before 2-sum with one of \mathcal{P}, then we find members of \mathcal{M}, which are illustrated in Figure 2.18.
Fifty-seven graphs in Figures 2.4, 2.6, 2.7, 2.9, 2.13, 2.14, 2.16, and 2.18 are the complete list of connectivity-2 graphs in \mathcal{M}.
Chapter 3
Minimal 3-connected not nearly planar graphs

In this chapter, we will use a result in [DOTV11] to describe 3-connected graphs in \mathcal{M}. We begin by introducing some terminology from [DOTV11].

Let k be an integer greater than two. The $2k$-spoke alternating double wheel, denoted by A_k, has vertices $v_0, v'_0, v_1, v_2, \ldots, v_{2k}$, where v_1, v_2, \ldots, v_{2k} form a cycle in this order, v_0 is adjacent to $v_1, v_3, \ldots, v_{2k-1}$, and v'_0 is adjacent to v_2, v_4, \ldots, v_{2k}. The vertices v_0 and v'_0 will be called the hubs of A_k. The edges incident to a hub are called spokes. The cycle that consists of v_1, v_2, \ldots, v_{2k} is called the rim of A_k. As A_k is 3-connected and planar, it has combinatorially unique plane embedding. We define B_k to be the graph obtained from A_k by adding an edge joining its hubs, which is called an axle.

The k-rung Möbius ladder M_k has vertices $x_1, x_2, x_3, \ldots, x_k, y_1, y_2, \ldots, y_k$, which form a cycle of length $2k$ in the order listed. Edges of M_k are edges of the above cycle of length $2k$ and $x_i y_i$ for each i.

A graph G is t-shallow if, for every separation (A, B) of order at most three, one of $G|A$ and $G|B$ has fewer than t vertices and can be drawn in a disk with $A \cap B$ drawn on the boundary of the disk. For example, every 4-connected graph is k-shallow for any integer $k \geq 4$ and almost 4-connected graph is 5-shallow.

Theorem 3.1. Suppose that graph G is not $K_{3,4}$. If G has connectivity three and is such that, for some separation (A, B) of order three, neither $G|A$ nor $G|B$ can be drawn in a disk without crossing with $A \cap B$ drawn on the boundary of the disk, then each of $G|A$ and $G|B$ contains $K_{2,3}$ as a topological minor and G contains $K_{3,4}$ as a subgraph or one of the following graphs.
Proof. Since $K_{2,3}$ is a subgraph of K_5 and of $K_{3,3}$, we may assume that neither $G|A$ nor $G|B$ dominates K_5 or $K_{3,3}$.

Since $G|(B - A)$ is connected, if we contract every edge of $G|(B - A)$, then $G|(B_A)$ becomes a single vertex and $G|B$ becomes $K_{1,3}$ as illustrated in Figure 3.2. Because $G|A$ cannot be drawn in a disk without crossing with $A \cap B$ drawn on the boundary of the disk, $G|A$ with $K_{1,3}$, as shown in Figure 3.2, contains $K_{3,3}$ as a topological minor. Therefore, $G|A$ contains $K_{2,3}$ as a topological minor. Using the same argument, we know that $G|B$ contains $K_{2,3}$ as a topological minor.

Both of $G|A$ and $G|B$ contain one of the following as a topological minor even though $G|A$ or $G|B$ contains K_5 or $K_{3,3}$ as a topological minor because G has connectivity three. Combining two graphs from Figure 3.3, we can get the result.
3.1 Graphs that are t-shallow

If G has connectivity three and does not contain $K_{3,4}$ as a minor, then for any separation (A, B) of order three, one of $G|A$ and $G|B$ can be drawn in a disk with $A \cap B$ drawn on the boundary of the disk. For a fixed separation (A, B) of order three, let $V(A \cap B)$ be $\{x, y, z\}$. Without loss of generality, we may assume that $G|B$ can be drawn in a disk. Now, we will describe planar part $G|B$ using the terminology $m_{x,y}$ and n_z in [BORS13]. We define $m_{x,y}$ as the maximum number of edge disjoint paths from x to y without z in $G|B$. Let n_z be the maximum number of edge disjoint paths from z to the union of edge disjoint paths from x to y without z in $G|B$. (We will assume that if there exists an edge between two vertices of $\{x, y, z\}$, then the edge is in $G|A$. Since G is 3-connected, $m_{x,y} \geq 1$ and $n_z \geq 1$. Now, we will use the results in [BORS13].

In this chapter, if x, y, and z are all of degree-one vertices of a copy of $K_{1,3}$, then we will call it as a rooted $K_{1,3}$. Suppose that $m_{x,y} > 1$, $m_{y,z} > 1$, $m_{z,x} > 1$, $n_x > 1$, $n_y > 1$, and $n_z > 1$. Then, for some $1 \leq i \leq 20$, $G|B$ contains graph Y_i in Figures 3.4 and 3.5 as a topological minor. From the graphs in Figures 3.4 and 3.5, white points mean $\{x, y, z\}$. In Figure 3.5, the colored edge is a redundant edge for the graphs in \mathcal{M} as stated in Lemma 3.2.
FIGURE 3.4: Possible structures of planar part of a separation of order 3 of graphs in \mathcal{M} (Part 1)
Lemma 3.2. Suppose that $G \in \mathcal{M}$ and it has a separation (A, B) of order three such that $G|B$ can be drawn in a disk with $A \cap B$ drawn on the boundary of the disk. Then $G|B$ cannot contain Y_{20} in Figure 3.5 as a topological minor.

Proof. Suppose that $G|B$ contains Y_{20} as a topological minor. Let the subdivision of the red edge in Y_{20} contain α in $G|B$. Since $G \in \mathcal{M}$, we can find an edge β such that $(G \setminus \alpha) \setminus \beta$ is planar. If β is in $G|B$, then $((G|B) \setminus \alpha) \setminus \beta$ contains a rooted $K_{1,3}$ as a topological minor, $(G \setminus \alpha) \setminus \beta$ is not planar. Therefore, β is in $G|A$. Since $(G|B) \setminus \alpha$ contains a rooted $K_{1,3}$ as a topological minor, $(G|A) \setminus \beta$ can be drawn in a disk with $A \cap B$ drawn on the boundary of the disk. This means $G \setminus \beta$ is planar and G is nearly planar. This is in contradiction to the fact that $G \in \mathcal{M}$. \hfill \Box

![Figure 3.5](image.png)

FIGURE 3.5: If the planar part of a separation of order 3 of graph G is Y_{20}, then G is not in \mathcal{M}.

Lemma 3.3. Suppose that $G \in \mathcal{M}$ and it has a separation (A, B) of order three such that $G|B$ can be drawn in a disk with $A \cap B$ drawn on the boundary of the disk. If $G|B$ dominates Y_i with $1 \leq i < 20$, then $G|B$ is homeomorphic to Y_i.

Proof. Let $i \in \{k|1 \leq k < 20\}$ and suppose $Y_i \not\succeq G|B$ and $G \in \mathcal{M}$. Then, for any edge e in $G|A$, $(G|A) \setminus e$ cannot be drawn in a disk with $A \cap B$ drawn on the boundary of the disk because $G \in \mathcal{M}$. Since $Y_i \not\succeq G|B$, we can find an edge γ in a bridge of Y_i in $G|B$. As $G \in \mathcal{M}$, we can find an edge e such that $(G \setminus \gamma) \setminus e$ is planar. If e is in $G|A$, because $(G|A) \setminus e$ cannot be drawn in a disk with $A \cap B$
on the boundary of the disk, this contradicts the fact that \(G \in \mathcal{M} \). If \(e \) is in \(G|B \), then we can find a rooted \(K_{1,3} \) in \(\{(G|B) \setminus \gamma\} \setminus e \). This is in contradiction to the fact that \(G \in \mathcal{M} \). Therefore, if \(G \in \mathcal{M} \), \(G|B \) is homeomorphic to \(Y_i \).

Suppose that \(m_{x,y} = 1 \), \(m_{y,z} > 1 \), \(m_{z,x} > 1 \), \(n_x > 1 \), \(n_y > 1 \), and \(n_z > 1 \). Then, for some \(21 \leq i \leq 23 \), \(G|B \) contains graph \(Y_i \) in Figure 3.6 as a topological minor. From the graphs in Figure 3.6, white points mean \(\{x, y, z\} \). If \(G|B \) has an edge \(e \) such that \((G|B) \setminus e \) does not contain the rooted \(K_{1,3} \), then we colored edge \(e \) of graphs in figures of this section. (If the number of edges satisfying this condition is not one, then we use distinct colors for each edge.)

![Figure 3.6: Possible structures of planar part of a separation of order 3 of graphs in \(\mathcal{M} \) (Part 2)](image)

Lemma 3.4. Suppose that \(G \in \mathcal{M} \) and it has a separation \((A, B)\) of order three such that \(G|B \) can be drawn in a disk with \(A \cap B \) on the boundary of the disk. If \(G|B \) does not dominate \(Y_i \) for \(1 \leq i \leq 20 \) but dominates \(Y_j \) for some \(21 \leq j \leq 23 \), then \(G|B \) is homeomorphic to \(Y_j \).

Proof. Assume that there exists some \(j \) with \(21 \leq j \leq 23 \) such that \(Y_j \preceq (G|B) \) with \(G \in \mathcal{M} \). Without loss of generality, we may assume that \(m_{x,y} = 1 \) for \(G|B \). \(G|B \) has the abstract structure in Figure 3.7.

Let \(G' \) be made by replacing \(G|B \) with \(Y_j \) for some \(21 \leq j \leq 23 \). Then, \(G' \) is nearly planar. Let \(e \) be the red edge in \(Y_j \). Then, \(e \) is the only planarizing edge of
FIGURE 3.7: Abstract structures of planar part of a separation of order 3 (Part 1)

G'. From every planar embedding of $G' \setminus e$, we can notice that, if e_{sub} is an edge of $G|B$ in the path made by the subdivision of e, then $G \setminus e_{\text{sub}}$ is planar. This contradicts the fact that $G \in \mathcal{M}$. As a result, $G|B$ is homeomorphic to Y_j.

Suppose that $m_{x,y} = 1$, $m_{y,z} > 1$, $m_{z,x} = 1$, $n_x = 1$, $n_y > 1$, and $n_z > 1$. Then, for some $24 \leq i \leq 28$, $G|B$ contains graph Y_i in Figure 3.8 as a topological minor. In graphs in Figure 3.8, white points mean \{x, y, z\}.

FIGURE 3.8: Possible structures of planar part of a separation of order 3 of graphs in \mathcal{M} (Part 3)

Lemma 3.5. Suppose that $G \in \mathcal{M}$ and it has a separation (A, B) of order three such that $G|B$ can be drawn in a disk with $A \cap B$ on the boundary of the disk. If
$G|B$ does not dominate Y_i for $1 \leq i \leq 23$ but dominates Y_j for some $24 \leq j \leq 28$, then $G|B$ is homeomorphic to Y_j.

Proof. Assume that there exists some j with $24 \leq j \leq 28$ such that $Y_j \not\approx (G|B)$ with $G \in \mathcal{M}$. Without loss of generality, we may assume that $n_x = 1$, $m_{z,x} = 1$, and $m_{x,y} = 1$ for $G|B$. $G|B$ has the abstract structure in Figure 3.9.

![Figure 3.9: Abstract structures of planar part of a separation of order 3 (Part 2)](image)

Let G' be made by replacing $G|B$ with Y_j for some $24 \leq j \leq 28$. Then, G' is nearly planar. Let e be the red edge in Y_j. Then, e is the only planarizing edge of G'. From every planar embedding of $G' \setminus e$, we can notice that, if e_{sub} is an edge of $G|B$ in the path made by the subdivision of e, then $G \setminus e_{sub}$ is planar. This is in contradiction to the fact that $G \in \mathcal{M}$. As a result, $G|B$ is homeomorphic to Y_j. □

Suppose that $m_{x,y} = 1$, $m_{y,z} = 1$, $m_{z,x} = 1$, $n_x > 1$, $n_y = 1$, and $n_z = 1$. Then, for some $29 \leq i \leq 30$, $G|B$ contains Y_i in Figure 3.10 as a topological minor. In graphs of Figure 3.10, white points mean \{x, y, z\}.

Lemma 3.6. Suppose that $G \in \mathcal{M}$ and it has a separation (A, B) of order three such that $G|B$ can be drawn in a disk with $A \cap B$ on the boundary of the disk. If $G|B$ does not dominate Y_i for $1 \leq i \leq 28$ but dominates Y_j for some $29 \leq j \leq 30$, then $G|B$ is homeomorphic to Y_j.

28
FIGURE 3.10: Possible structures of planar part of a separation of order 3 of graphs in \mathcal{M} (Part 4)

Proof. Assume that there exists some j with $29 \leq j \leq 30$ such that $Y_j \preceq (G|B)$ with $G \in \mathcal{M}$. Without loss of generality, we may assume that $n_x > 1$, $n_y = 1$, and $n_z = 1$ for $G|B$. $G|B$ has the abstract structure in Figure 3.11.

Let G' be made by replacing $G|B$ with Y_j for some $29 \leq j \leq 30$. Then, G' is nearly planar. Since $G \in \mathcal{M}$ and $G|A$ cannot be drawn in a disk with $A \cap B$ on the boundary, a planarizing edge of G' must be the red edge or the blue edge of Y_j. Without loss of generality, we may assume that the red edge is a planarizing edge of G'. Let e be the red edge in Y_j. From every planar embedding of $G' \setminus e$, we can notice that, if e_{sub} is an edge of $G|B$ in the path made by the subdivision of e, then $G \setminus e_{\text{sub}}$ is planar. This contradicts the fact that $G \in \mathcal{M}$. Therefore, Y_j is homeomorphic to $G|B$. \square
Suppose that $m_{x,y} = m_{y,z} = m_{z,x} = n_x = n_y = n_z = 1$. Then, $G|B$ contains graph Y_{31} in Figure 3.12 as a topological minor. In graph Y_{31}, white points mean $\{x, y, z\}$.

Figure 3.12: Possible structures of planar part of a separation of order 3 of graphs in \mathcal{M} (Part 5)

Lemma 3.7. Suppose that $G \in \mathcal{M}$ and it has a separation (A, B) of order three such that $G|B$ can be drawn in a disk with $A \cap B$ on the boundary of the disk. If $G|B$ does not dominate Y_i for $1 \leq i \leq 30$ but dominates Y_{31}, then $G|B$ is homeomorphic to Y_{31}.

Proof. Assume that $Y_{31} \prec (G|B)$ with $G \in \mathcal{M}$. Then, $n_x = 1$, $n_y = 1$, and $n_z = 1$ for $G|B$. $G|B$ has the abstract structure in Figure 3.13.

Figure 3.13: Abstract structures of planar part of a separation of order 4 (Part 4)

Let G' be constructed by replacing $G|B$ with Y_{31}. Then, G' is nearly planar. Since $G \in \mathcal{M}$ and $G|A$ cannot be drawn in a disk with $A \cap B$ on the boundary, a planarizing edge of G'' must be an edge of Y_{31}. Without loss of generality, we may
assume that the red edge is a planarizing edge of G'. Let e be the red edge in Y_{31}. From every planar embedding of $G' \setminus e$, we can notice that, if e_{sub} is an edge of $G|B$ in the path made by the subdivision of e, then $G \setminus e_{sub}$ is planar. This is in contradiction to the fact that $G \in \mathcal{M}$. Therefore, Y_{31} is homeomorphic to $G|B$. □

In the previous lemmas, we checked all of the possible structures of $G|B$ which can be drawn in a disk with $A \cap B$ on the boundary. Therefore, we get the following theorem.

Theorem 3.8. If $G \in \mathcal{M}$ and G does not contain $K_{3,4}$ as a minor, then G is 10-shallow.

By the following theorem in [DOTV11], every large non-planar almost 4-connected graph contains $B_k, M_k, K_{4,k}$ and $K'_{4,k}$ as a topological minor.

Theorem 3.9. For every two integer $k, t \geq 4$, there is an integer N such that every almost 4-connected t-shallow non-planar graph with at least N vertices contains a subgraph isomorphic to a subdivision of one of $B_k, M_k, K_{4,k}$, and $K'_{4,k}$.

Using this theorem, we can get the following corollary.

Corollary 3.10. For every k, there is an integer N such that if a graph in \mathcal{M} whose connectivity is three has at least N vertices but it does not contain $K_{3,4}$ as a minor, then it contains a subgraph isomorphic to a subdivision of one of B_k or M_k.

Proof. Suppose that G satisfies all of the given conditions. Since $K_{3,4}$ is not a minor of G, G contains neither $K_{4,k}$ nor $K'_{4,k}$ as a topological minor and G has a separation (A, B) of order three such that $G|B$ can be drawn in a disk with $A \cap B$ on the boundary of the disk. As G has connectivity three, G is 10-shallow. We can replace $G|B$ as $K_{1,3}$. When we do this action repeatedly, we can get an
almost 4-connected graph G' that is dominated in G. Using the previous theorem, G' dominates one of $B_k, M_k, K_{4,k}$, and $K'_{4,k}$. Therefore, G dominates one of B_k or M_k.

In this paper, let $N(20)$ be an integer in the above corollary when $k = 20$. Integer $N(20)$ is used for the main theorem of this paper.

3.2 The Graphs Containing $K_{4,4}$ as a Minor

From Theorem 3.9, if we do not have the condition that $K_{3,4}$ is not a minor of every graph in \mathcal{M}, it is enough to check $B_k, M_k, K_{4,k}$, and $K'_{4,k}$ for infinitely many graphs in \mathcal{M}. In this subsection, we show that every graph containing $K_{4,k}$ or $K'_{4,k}$ as a topological minor is not in \mathcal{M}.

Theorem 3.11. Every graph dominating $K_{4,4}$ or $K'_{4,4}$ is not in \mathcal{M}.

Proof. Since $K_{3,4} \in \mathcal{M}$, every graph G containing $K_{4,k}$ for $k \geq 4$ as a topological minor is not in \mathcal{M}. Let us check $K'_{4,4}$ which is obtained from $K_{4,4}$ by splitting each of the 4 vertices in one set of the bipartition of $K_{4,4}$ in the same way as illustrated in Figure 3.14.

![Graph K'_{4,4}](image)

FIGURE 3.14: Graph $K'_{4,4}$

Let α be an old edge which exists before split of vertices when we get $K'_{4,4}$ from $K_{4,4}$. If $K'_{4,4}$ is in \mathcal{M}, then $K'_{4,4} \setminus \alpha$ should be nearly planar. $K'_{4,4} \setminus \alpha$ has the following $K'_{3,4}$ as a subgraph which is nearly planar.

We can pick an edge β in Figure 3.15 such that $K'_{3,4} \setminus \beta$ is planar. If $K'_{4,4} \setminus \alpha \setminus \beta$ is not planar, then $K'_{4,4}$ is not a member of \mathcal{M} because of the symmetry of $K'_{3,4}$.

32
which is related to the selection of β. $(K_{4,4}' \setminus \alpha) \setminus \beta$ has a subgraph in Figure 3.16 which is a subdivision of $K_{3,3}$. Therefore, $K_{4,4}'$ is not in \mathcal{M}.

Therefore, for $n \geq 4$, every graph dominating $K_{4,k}$ or $K_{4,k}'$ cannot be in \mathcal{M}.

3.3 Alternating double wheel with axle B_k

In this section, we will consider the near planarity of a graph dominating a subdivision of B_k. When k is three, we find a member of \mathcal{M} that contains graph B_3 as a subgraph. It is easy to show that the graph in Figure 3.17, dominating B_3, is in \mathcal{M}.
We want to show that a graph that dominates B_k for $k \geq 6$ can not be in \mathcal{M}. In this section, if H is a subgraph of $G \in \mathcal{M}$ and if H is a subdivision of B_k, we will call a subdivision of edge between v_i and v_{i+1} of B_k in H as v_i-rim-path. In this paper, consecutive spokes mean two edges from one hub to v_i and to v_{i+1}. To investigate B_k for $k \geq 6$, we want to show a definition and a theorem from [DOTV11].

Definition 3.12. If there exists a homeomorphic embedding $\mu : C \hookrightarrow G$, then a μ-path in G is a path in G with both ends are in $\mu(C)$ and otherwise disjoint from it.

Theorem 3.13. Let $k \geq 4$ be an integer, let H be a non-planar graph, and let $\eta : A_{2k+1} \hookrightarrow H$ be a homeomorphic embedding. Then one of the following holds.

(i) There exist a homeomorphic embedding $\eta' : A_k \hookrightarrow H$ and an η'-path P in H such that η' maps the hubs of A_k to the same pair of vertices η maps the hubs of A_{2k+1} to, and the ends of P are the images of the hubs of A_k under η'.

(ii) There exist a homeomorphic embedding $\eta' : A_{2k+1} \hookrightarrow H$ and a separation (A, B) of H of order at most three such that $|\eta'(V(A_{2k+1})) \cap A - B| \leq 1$ and $H|A$ cannot be embedded in a disk with $A \cap B$ embedded in the boundary of the disk.

In the first case of the previous theorem with B_{2k+1} of $H \in \mathcal{M}$, we can make the following lemma.

Lemma 3.14. For $k \geq 4$, suppose that G is not nearly planar with a homeomorphic embedding $\eta : B_{2k+1} \hookrightarrow G$ and that there exist a homeomorphic embedding $\eta' : A_k \hookrightarrow G$ and an η'-path P in G such that η' maps the hubs of A_k to the same
pair of vertices \(\eta \) maps the hubs of \(B_{2k+1} \) to, and the ends of \(P \) are the images of the hubs of \(A_k \) under \(\eta' \).

If the image of the rim of \(A_k \) under \(\eta' \) and the image of the rim of \(B_{2k+1} \) under \(\eta \) are edge disjoint, then \(G \notin \mathcal{M} \).

Proof. Suppose \(G \in \mathcal{M} \). Let \(e \) be an edge in the image of a spoke in \(B_{2k+1} \) under \(\eta \) that contains no edges of \(\eta'(A_k) \). Since \(\eta(B_{2k+1}) \setminus e \) dominates \(B_{2k} \), we need to delete a rim edge of \(\eta(B_{2k+1}) \) or an edge which belongs to the axle of \(B_{2k+1} \) from \(G \setminus e \) because \(G \in \mathcal{M} \). If we delete a rim edge of \(\eta(B_{2k+1}) \), then it is still not planar because of \(\eta'(A_k) \) with the axle. If we delete the axle of \(B_{2k+1} \), we can find a path between two hubs that contains no edges of \(\eta'(A_k) \) using the spokes and the rim of \(\eta(B_{2k+1}) \setminus e \). Using this path and \(\eta'(A_k) \), there exists \(B_k \) which is not planar. This contradicts the fact that \(G \in \mathcal{M} \). \(\square \)

The following lemmas are needed for the coming theorem.

Lemma 3.15. No graphs in \(\mathcal{M} \) dominate one of the graphs in Figure 3.18.

![Figure 3.18: No graphs in \(\mathcal{M} \) dominate one of the above graphs.](image)

Proof. Let us call edge \(u_9u_{10} \) and path \(u_9u_{12}u_{10} \) (in \(G_3 \), path \(u_9u_{11}u_{10} \)) from Figure 3.18 as two axles. Suppose that there exists a graph \(G \in \mathcal{M} \) dominating \(G_i \) of the above graphs for some \(1 \leq i \leq 3 \). Let \(H \) be a subgraph of \(G \) such that \(H \) is a subdivision of \(G_i \). If we delete an edge \(e_0 \) of \(G \) from the subdivision of \(u_8u_{10} \),
then all of planarizing edges α_0 of $G \setminus e_0$ must be in the subdivision of the path $u_2u_3u_4u_5u_6$ (in G_2, path $u_2u_3u_{11}u_4u_5u_6$). If we delete an edge e_1 of G from the subdivision of u_1u_9, then every planarizing edge of $G \setminus e_1$ is also in the subdivision of the path $u_2u_3u_4u_5u_6$ (in G_2, path $u_2u_3u_{11}u_4u_5u_6$) and there are no paths from the inner vertices of the subdivision of u_8u_{10} to the inner vertices of the subdivision of axles because $G \in \mathcal{M}$. Since $G \in \mathcal{M}$, $G \setminus \alpha_0$ is not planar and $(G \setminus \alpha_0) \setminus e_0$ is planar.

Therefore, there exists a minimal set B of bridges of H such that $(\bigcup_{B \in B} B \cup H) \setminus \alpha_0$ is not planar.

If there is a path P from an inner vertex β of the subdivision of u_2u_3 to an inner vertex of the subdivision of u_8u_{10}, then $H \cup P$ has the unique planarizing edge $u_3\beta$. As $(H \cup P) \setminus e_1$ has the same unique planarizing edge $u_3\beta$, there exists a set B_1 of bridges. Using the similar argument from the above with $G \setminus e_0$, there are no paths from the inner vertices of the subdivision of u_1u_9 to the inner vertices of the subdivision of axles. When we delete an edge of G in the subdivision of u_9u_{10}, we notice that $G \notin \mathcal{M}$ because the unique planarizing edge of $H \cup P$ is $u_3\beta$ and G contains B_1.

Otherwise, when we delete an edge of G in the subdivision of u_9u_{10}, we notice that $G \notin \mathcal{M}$ because every planarizing edge of $G \setminus u_9u_{10}$ is in the path $u_2u_3u_4u_5u_6$ (in G_2, path $u_2u_3u_{11}u_4u_5u_6$) and because G contains B.

\hfill \Box

Lemma 3.16. No graphs in \mathcal{M} dominate one of the graphs in Figure 3.19.

Proof. Let us call one of the graphs in Figure 3.19 as H. Since $H \setminus u_5u_9$ is not nearly planar, No graphs in \mathcal{M} dominate H. \hfill \Box

Lemma 3.17. No graphs in \mathcal{M} dominate one of the graphs in Figure 3.20.
Proof. Let us call one of the graphs in Figure 3.20 as H_0 and suppose that $G \in \mathcal{M}$ such that G has a subgraph H that is a subdivision of H_0 with $\mu : H_0 \hookrightarrow G$. We know that the planarizing edges of each of H_0 and $H_0 \setminus u_5 u_9$ are $u_8 u_{12}$ and $u_2 u_{14}$. (or only $u_8 u_{12}$.)

Let e_1 be an edge in $\mu(u_5 u_9)$ and e_2 be an edge in $\mu(u_8 u_{12})$ such that, by symmetry, $(G \setminus e_1) \setminus e_2$ is planar. Since $G \in \mathcal{M}$, there exists a minimal set \mathcal{B} of bridges of H in G such that $\left(\bigcup_{B \in \mathcal{B}} B \cup H \right) \setminus e_2$ is not planar. We can find a spoke s_0 in H_0 such that there are no attachments of bridges of \mathcal{B} among the inner vertices of $\mu(s_0)$. (If not, G has a path from an inner vertex of the subdivision of $u_5 u_9$ to an inner vertex of the subdivision of each spoke and $G \notin \mathcal{M}$.) Let e be an edge in $\mu(s_0)$. Then, $G \setminus e$ is not nearly planar because of \mathcal{B}.

\[\square \]
Lemma 3.18. Suppose that, for a graph \(G \), there exists a homeomorphic embedding \(\eta : B_9 \hookrightarrow G \). Let \(e_0 \) be the edge of \(B_9 \) joining the two hubs. Let \(\eta_0 \) be the restriction of \(\eta \) to \(A_9 \) and \(J \) be the union of \(\eta_0(A_9) \) and all \(\eta_0 \)-bridges except the one that includes \(\eta(e_0) \). If \(J \) is planar, then \(G \notin \mathcal{M} \).

Proof. For a contradiction, assume \(G \in \mathcal{M} \). Let \(B \) be the \(\eta_0 \)-bridge that includes \(\eta(e_0) \). If there is a bridge of \(\eta(B_9) \) that contains a path from an inner vertex of \(\eta(e_0) \) to \(\eta_0(A_9) \), then one of the graphs in Figure 3.21 is dominated by \(G \).

\[
\begin{array}{c}
\includegraphics[width=0.4\textwidth]{G1}\quad \includegraphics[width=0.4\textwidth]{G2}
\end{array}
\]

FIGURE 3.21: No graphs in \(\mathcal{M} \) dominate one of the above graphs.

Suppose that there is a homeomorphic embedding \(\eta_1 : G_1 \hookrightarrow G \). We know set \(\{u_2u_5, u_3u_4, u_4u_5, u_5u_6, u_14u_16, u_15u_16\} \) is the set of planarizing edges of each of \(G_1 \) and \(G_1 \setminus u_{11}u_{15} \). Let \(e \) be an edge in \(\eta_1(u_{11}u_{15}) \) whose endpoint is \(\eta_1(u_{15}) \). Since \(G \in \mathcal{M} \), for some edge \(\alpha \in \{u_2u_3, u_3u_4, u_4u_5, u_5u_6, u_{14}u_{16}, u_{15}u_{16}\} \), there exists an edge \(e_1 \) in \(\eta_1(\alpha) \) such that \((G \setminus e) \setminus e_1 \) is planar. Let \(C_{11} \) be a closed path \(u_1u_2u_{15}u_7u_6u_{14}u_1 \) in \(G_1 \) and \(C_{12} \) be a closed curve \(u_9u_{15}u_{13}u_{12}u_{11}u_{10}u_9 \) in \(G_1 \). In every planar embedding of \((G \setminus e) \setminus e_1 \), \(\eta_1(C_{11}) \) and \(\eta_1(C_{12}) \) generate three regions \(R_{11}, R_{12}, \) and \(R_{13} \) such that the boundary of \(R_{11} \) is only \(\eta_1(C_{11}) \) and that the boundary of \(R_{12} \) is only \(\eta_1(C_{12}) \) and that the boundary of \(R_{13} \) is \(\eta_1(C_{11}) \) and
η_1(C_{12}). Inside of R_{13}, there are two paths η_1(u_1u_{13}) and η_1(u_7u_8u_9) from η_1(C_{11}) to η_1(C_{12}). Since we can find a path from η_1(u_{14}) to η_1(u_{15}) using some edges of J and at least one edge of B \setminus e_1 in ((G \setminus e) \setminus e_1) \setminus (η_1(C_{11}) ∪ η_1(C_{12})), because of the previous two paths η_1(u_1u_{13}) and η_1(u_7u_8u_9), B \setminus e_1 is inside of R_{11} in every planar embedding of (G \setminus e) \setminus e_1 by Jordan curve theorem. We know that (G \setminus e) \setminus e_1 is isomorphic to ((J ∪ B) \setminus e) \setminus e_1. Therefore, G \setminus e_1 is isomorphic to (J ∪ B) \setminus e_1. In every planar embedding of J, η_1(u_{11}u_{15}) is inside of R_{12}. Because of the previous argument, in every planar embedding of ((J ∪ B) \setminus e) \setminus e_1, since B \setminus e_1 is inside of R_{11}, we can add edge e to ((J ∪ B) \setminus e) \setminus e_1 inside of R_{12}. As a result, G \setminus e_1 is nearly planar. This is in contradiction to the fact that G ∈ M.

Suppose that there is a homeomorphic embedding η_2 : G_2 ↪ G. We know set \{u_2u_3, u_3u_5, u_5u_6, u_6u_7, u_{14}u_{16}\} is the set of planarizing edges of each of G_2 and G_2 \setminus u_{11}u_{15}. Let e be an edge in η_2(u_{11}u_{15}) whose endpoint is η_2(u_{15}). Since G ∈ M, for some edge β ∈ \{u_2u_3, u_3u_5, u_5u_6, u_6u_7, u_{14}u_{16}\}, there exists an edge e_2 in η_2(β) such that (G \setminus e) \setminus e_2 is planar. Let C_{21} be a closed path u_1u_2u_{15}u_7u_8u_{14}u_1 in G_2 and C_{22} be a closed curve u_9u_{15}u_{13}u_{12}u_{11}u_{10}u_9 in G_2. In every planar embedding of (G \setminus e) \setminus e_2, η_2(C_{21}) and η_2(C_{22}) generate three regions R_{21}, R_{22}, and R_{23} such that the boundary of R_{21} is only η_2(C_{21}) and that the boundary of R_{22} is only η_2(C_{22}) and that the boundary of R_{23} is η_2(C_{21}) and η_2(C_{22}). Inside of R_{23}, there are two paths η_2(u_1u_{13}) and η_2(u_8u_9) from η_2(C_{21}) to η_2(C_{22}). Since we can find a path from η_2(u_{14}) to η_2(u_{15}) using some edges of J and at least one edge of B \setminus e_2 in ((G \setminus e) \setminus e_2) \setminus (η_2(C_{21}) ∪ η_2(C_{22})), because of the previous two paths η_2(u_1u_{13}) and η_2(u_8u_9), B \setminus e_2 is inside of R_{21} in every planar embedding of (G \setminus e) \setminus e_2 by Jordan curve theorem. We know that (G \setminus e) \setminus e_2 is isomorphic to ((J ∪ B) \setminus e) \setminus e_2. Therefore, G \setminus e_2 is isomorphic to (J ∪ B) \setminus e_2. In every planar embedding of J, η_2(u_{11}u_{15}) is inside of R_{22}. Because of the previous argument, in every planar embedding of
((J ∪ B) \ e) \ e_2, since B \ e_2 is inside of R_{21}, we can add edge e to ((J ∪ B) \ e) \ e_2 inside of R_{22}. As a result, G \ e_2 is nearly planar. This contradicts the fact that G ∈ M.

Therefore, two hubs are the only attachments of B. Let α and β be two hubs of B_9. Suppose that an edge e is in B \ η(αβ). Then, there exists an edge e_3 such that (G \ e) \ e_3 is planar as G ∈ M.

(1) If e_3 is a rim edge, then G \ e_3 is not planar because of B. This means that, for every rim edge ˜e, G \ ˜e is not planar because of B since the attachments of B are only α and β. In addition, for every edge ˜e of B, G \ ˜e is not planar because G ∈ M. When we pick an edge ˜e from an η-image of a spoke, G \ ˜e is not nearly planar because of B. This is in contradiction to the fact that G ∈ M.

(2) If e_3 cannot be a rim edge, then, e_3 is in η(e_0) Since, for every edge ˜e of B, G \ ˜e is not planar because G ∈ M. When we pick an edge ˜e from an η-image of a spoke, G \ ˜e is not nearly planar because of B. This contradicts the fact that G ∈ M.

As a result, G /∈ M.

Using the argument of a theorem in [DOTV11] with these previous results, we can say that if B_k ≼ G for k ≥ 9, then G /∈ M.

Theorem 3.19. No graphs in M dominate B_9.

Proof. Let G ∈ M, and suppose for a contradiction that G ≽ B_9. Let η : B_9 ↪ G be a homeomorphic embedding, and let η_0 be the restriction of η to A_9. Let e_0 be the edge of B_9 joining the two hubs. From Theorem 3.13 applied to A_9, G, and η_0, we deduce that (i) or (ii) of Theorem 3.13 holds.
If (i) holds, then suppose that \(J \) be the union of \(\eta_0(A_0) \) and all \(\eta_0 \)-bridges except the one that includes \(\eta(e_0) \). Because of Lemma 3.18, \(J \) is not planar. By (i), \(J \) contains a \(\eta_0 \)-path \(P \) between two hubs. \(P \) is an axle and \(J \) does not contain \(\eta(e_0) \).

Therefore, we conclude that \(G \) dominates the graph \(K_0 \) obtained from \(B_4 \) by adding an edge \(e_1 \) parallel to \(e_0 \) under \(\preceq \). (In \(G, \eta(e_1) \) is \(P \).) Let \(K \) be a subgraph of \(G \) such that \(K \) is a subdivision of \(K_0 \) with a homeomorphic embedding \(\tilde{\mu} \). For each rim edge \(\alpha \) of \(K \), we can find a minimal set \(B_\alpha \) of Bridges of \(K \) in \(G \) such that \(\left(\bigcup_{C \in B_\alpha} C \cup K \right) \setminus \alpha \) is not planar because \(G \in M \). In addition, the inner vertices of neither \(\tilde{\mu}(e_0) \) nor \(\tilde{\mu}(e_1) \) contain any attachment of \(B_\alpha \) because of Lemma 3.15.

For some spoke \(s_0 \) in \(K_0 \), let \(s \) be an edge of \(K \) in \(\tilde{\mu}(s_0) \) such that one endpoint of \(s \) must be on the rim. Then, there exists a rim edge \(\alpha_s \) such that \((G \setminus s) \setminus \alpha_s \) is planar but \(G \setminus \alpha_s \) is not planar. In this case, we have two possibilities about the set \(B_\alpha_s \).

1. Since \((G \setminus \alpha_s) \setminus s \) is planar, for a planar embedding of \((G \setminus \alpha_s) \setminus s \), there exists a face \(F \) such that two endpoints of \(s \) and all attachments of every bridge in \(B_\alpha_s \) are in the boundary of \(F \). In this case, after the planar embedding of \((G \setminus \alpha_s) \setminus s \), when we draw \(s \), \(s \) is crossing one of \(B_\alpha_s \).

2. There exists a path \(P_1 \) is a bridge of \(K \) such that one of endpoints of \(P_1 \) is an endpoint of \(s \) and that \((K \cup P_1) \setminus \alpha_s \) is not planar but \((K \cup P_1) \setminus \alpha_s \) is not planar. In this case, \(P_1 \) is the only bridge of \(B_\alpha_s \). After a planar embedding of \(K \setminus \alpha_s \), when draw \(P_1 \) over the embedding, the \(P_1 \) is crossing a spoke or a rim.

When we delete an edge \(e_3 \) in the subdivision of \(e_0 \), we notice that \(G \notin M \). If we delete every rim edge \(\alpha \) from \(G \setminus e_3 \), because of \(B_\alpha \), \((G \setminus e_3) \setminus \alpha \) is not planar. If we delete an edge \(e_2 \) of \(K \) in \(\tilde{\mu}(e_1) \), because of \(B_\alpha_s \), \((G \setminus e_3) \setminus e_2 \) is not planar. (In
case (1), s is still crossing $B_{α_s}$. In case (2), P_1 is still crossing a spoke or a rim.)

Because of the contradiction, (i) does not hold.

If (ii) holds, there exist a homeomorphic embedding $η' : A_{2k+1} \rightarrow H$ and a separation (A, B) of G of order at most three such that $|η'(V(A_{2k+1})) \cap A - B| \leq 1$ and $G|A$ cannot be embedded in a disk with $A \cap B$ embedded in the boundary of the disk. From $|η'(V(A_{2k+1})) \cap A - B| \leq 1$, if $|η'(V(A_{2k+1})) \cap A - B| = 1$, then G has a graph in Lemma 3.16 or in Lemma 3.17 under \preceq because none of hubs can be in $A \setminus B$. Suppose that $|η'(V(A_{2k+1})) \cap A - B| = 0$. Let e be an edge in $η$-image of a spoke edge of B_9 in G. Then, there exist an edge \tilde{e} such that $(G \setminus e) \setminus \tilde{e}$ is planar. Since \tilde{e} is in $η$-image of a rim edge or of an axle, edges in A are preserved in $(G \setminus e) \setminus \tilde{e}$. For any planar embedding of $(G \setminus e) \setminus \tilde{e}$, we can find graph \tilde{G} in Figure 3.22 as a part of $(G \setminus e) \setminus \tilde{e}$ under \preceq with a homeomorphic embedding $ξ$ such that vertices $ξ(a)$ and $ξ(b)$ are in $V(A)$ and vertices $ξ(x)$, $ξ(y)$, and $ξ(z)$ are in $V(A \cap B)$.

For some edge e in $ξ(ay)$, there exists an edge r of $μ(B_9)$ in B such that $(G \setminus e) \setminus r$ is planar. Since $G \in \mathcal{M}$, $G \setminus r$ is not planar. Therefore, there exists a minimal set
\(\mathcal{B} \) of bridges of \(\mu(B_9) \cup \tilde{G} \) in \(G \) such that \(\left(\bigcup_{Y \in \mathcal{B}} Y \cup (\mu(B_9) \cup \tilde{G}) \right) \setminus r \) is not planar. In this case, all of attachments of each bridge of \(\mathcal{B} \) are only in \(A \) or only in \(B \). Therefore, every attachment of each bridge of \(\mathcal{B} \) is the inside area made by closed path \(\xi(axbza) \). We can find a spoke \(s_0 \) in \(B_9 \) such that there are no attachments of bridges of \(\mathcal{B} \) among the inner vertices of \(\mu(s_0) \). Let \(s \) be an edge in \(\mu(s_0) \). Then, \(G \setminus s \) is not nearly planar because of \(\mathcal{B} \). This is in contradiction to the fact that \(G \in \mathcal{M} \). By the contradiction, no graphs in \(\mathcal{M} \) dominate \(B_9 \). \(\square \)
Chapter 4
The \(k \)-rung Möbius ladder

The \(k \)-rung Möbius ladder, denoted by \(M_k \), has vertices \(v_1, v_2, \ldots, v_k, u_1, u_2, \ldots, u_k \), where \(v_1, v_2, \ldots, v_k \) and \(u_1, u_2, \ldots, u_k \) form paths in the order listed, and \(v_i \) is adjacent to \(u_i \) for \(i = 1, 2, \ldots, k \) with edges between \(v_1 \) and \(u_k \) and between \(u_1 \) and \(v_k \). We will call a rung for each \(v_iu_i \) edge and call consecutive rungs for edges \(v_iu_i \) and \(v_{i+1}u_{i+1} \). It is easy to show the following graphs are in \(\mathcal{M} \) and dominate \(M_3 \) or \(M_4 \).

![FIGURE 4.1: Members of \(\mathcal{M} \) containing \(M_3 \) or \(M_4 \)](image)

Guoli Ding proved the following lemma.

Lemma 4.1. Suppose \(G \) dominates \(H \) which is a subdivision of \(M_4 \). If there exists a bridge \(B \) of \(H \) in \(G \) such that all attachments of \(B \) are inner vertices of subdivisions of two rungs which are not consecutive, then \(G \) dominates a subdivision of Petersen graph.

Proof. \(G \) dominates the graph in Figure 4.2 which is drawn in the projective plane.
FIGURE 4.2: A subdivision of M_4 with an edge

The graph in Figure 4.2 is isomorphic to the graph in Figure 4.3.

FIGURE 4.3: A Petersen graph

The above lemma says if a graph $G \in \mathcal{M}$ contains a path from an inner vertex of the subdivision of a rung to that of another rung, then two rungs must be consecutive. In this chapter, we will select a homeomorphic embedding of M_k with the smallest number of bridges. In the graph of Figure 4.4, if the red subgraph means the bridges of a homeomorphic embedding of M_k, then this embedding is not what we want because we can reduce the number of bridges.

FIGURE 4.4: An example of not allowed sets of bridges for the smallest number of bridges of a homeomorphic embedding of M_k

With a homeomorphic embedding of M_k with the smallest number of bridges, the following red bridges cannot be shown in a separation of the order 4. (Each black path belongs to the homeomorphic embedding of M_k.)
FIGURE 4.5: Not allowed sets of bridges for the smallest number of bridges of a homeomorphic embedding of M_k

In a homeomorphic embedding of M_k with the smallest number of bridges, the above graphs must be shown in Figure 4.6, respectively. Each red subgraph means bridges and each black subgraph belongs to the homeomorphic embedding of M_k.

The following lemmas are trivial but are used for every argument in this chapter.

Lemma 4.2. Suppose that G is in \mathcal{M} and G has a subgraph M which is a subdivision of M_k for $k \geq 6$ with a homeomorphic embedding η. For every rung edge e in M, there exists an edge e_0 in M_k with $e \in E(\eta(e_0))$ and there is a rim edge \tilde{e}_0 in M_k such that, for some edge \tilde{e} in $E(\eta(\tilde{e}_0))$, $(G \setminus e) \setminus \tilde{e}$ is planar.

Proof. Since $M_k \setminus e_0$ is not planar, we need a rim edge \tilde{e}_0 such that $M_k \setminus \{e_0, \tilde{e}_0\}$ is planar. \hfill \square

Lemma 4.3. Suppose that G dominates M_{20} with a homeomorphic embedding η. Let e_3 be an edge in $\eta(u_3v_3)$. Let \mathcal{B}_3 be a set of bridges of $\eta(M_{20})$ in G such that every attachment of each member of \mathcal{B}_3 is on $\eta(u_1u_2u_3u_4u_5) \cup \eta(v_1v_2v_3v_4v_5) \cup \eta(u_2v_2) \cup \eta(v_1v_3) \cup \eta(v_2v_3)$.

46
FIGURE 4.6: Change of bridges by replacement of homeomorphic embeddings of M_k

$\eta(u_3v_3) \cup \eta(u_4v_4)$. For every edge $e \in \eta(u_5u_6 \ldots u_{19}u_{20}v_1) \cup \eta(v_5v_6 \ldots v_{19}v_{20}u_1)$, if $\left(\bigcup_{B \in B_3} B \cup \eta(M_{20}) \right) \setminus e$ is not planar, then G is not in \mathcal{M}.

Proof. If subgraph $\bigcup_{B \in B_3} B \cup \eta(M_{20})$ of G does not have any planarizing edges, then for every edge e_{13} in $\eta(u_{13}v_{13})$, another subgraph $\left(\bigcup_{B \in B_3} B \cup \eta(M_{20}) \right) \setminus e$ of G has no planarizing edges, either and graph G is not in \mathcal{M}. (Since attachments of every member of B_3 are on $\eta(u_1u_2u_3u_4u_5) \cup \eta(v_1v_2v_3v_4v_5) \cup \eta(u_5v_2) \cup \eta(u_3v_3) \cup \eta(u_4v_4)$, path $\eta(u_{13}v_{13})$ is redundant.)

Therefore, if G is in \mathcal{M}, then subgraph $\bigcup_{B \in B_3} B \cup \eta(M_{20})$ has planarizing edges on $\eta(u_1u_2u_3u_4u_5) \cup \eta(v_1v_2v_3v_4v_5)$. For some edge e_{13} in $\eta(u_{13}v_{13})$, we can find an edge \tilde{e}_{13} in $\eta(u_1u_2u_3u_4u_5) \cup \eta(v_1v_2v_3v_4v_5)$ such that $(G \setminus e_{13}) \setminus \tilde{e}_{13}$ is planar. Since G is in \mathcal{M}, there is a minimal set B_{13} of bridges of $\bigcup_{B \in B_3} B \cup \eta(M_{20})$ in G such that
for every edge \(\tilde{e} \) in \(\eta(u_1u_2u_3u_4u_5) \cup \eta(v_1v_2v_3v_4v_5) \),

\[
\left(\bigcup_{B_3 \in B_3} B_3 \right) \cup \left(\bigcup_{B_{13} \in B_{13}} B_{13} \right) \cup \eta(M_{20}) \setminus \tilde{e} \text{ is not planar}
\]

and

\[
\left\{ \left(\bigcup_{B_3 \in B_3} B_3 \right) \cup \left(\bigcup_{B_{13} \in B_{13}} B_{13} \right) \cup \eta(M_{20}) \setminus \tilde{e} \right\} \cup e_{13} \text{ is planar}.
\]

Let \(e_{16} \) be an edge in \(\eta(u_{16}v_{16}) \). Then, graph \(G \setminus e_{16} \) is not nearly planar because of \(\bigcup_{B_{13} \in B_{13}} B_{13} \). This is in contradiction to the fact that \(G \) is in \(\mathcal{M} \).

With these lemmas, we will focus on a bridge containing a path from the image of a rim to the image of a rung or another rim.

Lemma 4.4. The planarizing edges of the graph in Figure 4.7 are only \(u_1u_2 \) and \(u_6v_1 \).

![Figure 4.7: A subdivision of \(M_k \) with an edge from rim to rung (Part 1)](image)

Proof. Let the above graph be \(H \). We can get a planar embedding of each of \(H \setminus u_1u_2 \) and \(H \setminus u_6v_1 \) as shown in Figure 4.8. It is easy to show that none of rung

![Figure 4.8: Planar embeddings of \(H \setminus u_1u_2 \) and \(H \setminus u_6v_1 \)](image)
edges can be planarizing edges of H because of the structure of Möbius ladder. If we delete a rim edge other than u_1u_2 and u_6v_1 from H, it has a subdivision of $K_{3,3}$ one of whose nodes is vertex α as illustrated in Figure 4.9. (A node means a vertex whose degree is greater than 2.) Therefore, the planarizing edges of graph H are only u_1u_2 and u_6v_1.

Lemma 4.5. The planarizing edges of the graph in Figure 4.10 are only u_1u_2, u_6v_1, and βv_3.

Proof. Let the above graph be H. We can get a planar embedding of each of $H \setminus u_1u_2$ and $H \setminus u_6v_1$ using the argument in Lemma 4.4. We can get a planar embedding of $H \setminus \beta v_3$ as shown in Figure 4.11. Using the similar argument of Lemma 4.4, we know that the planarizing edges of graph H are only u_1u_2, u_6v_1, and βv_3.

\[\square\]
Theorem 4.6. If graph G dominates one of the graphs in Figure 4.12, then G is not in \mathcal{M}.

Proof. Since these two graphs are satisfying the condition of Lemma 4.3 by Lemma 4.4 and 4.5, graph G is not in \mathcal{M}. \hfill \square

In the following lemmas, we want to show that if a graph $G \in \mathcal{M}$ dominates a Möbius ladder with a path from an inner vertex of the subdivision of a rung to a vertex of the subdivision of a rim edge, then the rung and the rim edge are adjacent in the Möbius ladder.

For the convenience, when there is a homeomorphic embedding $\eta : M_k \hookrightarrow G$, if there exist inner vertices α and β in $\eta(v_i v_{i+1})$ in the order of $\eta(v_i) \alpha \beta \eta(v_{i+1})$ in $\eta(M_k)$, then we will pick rational numbers q and r with $i < q < r < i + 1$ and rename α as v_q and β as v_r. If there are inner vertices in $\eta(u_i u_{i+1})$, then we will use the same argument in the above. If there exist inner vertices γ and δ in $\eta(u_k v_1)$
in the order of $\eta(u_k)\alpha\beta\eta(v_1)$ in $\eta(M_k)$, then we will pick rational numbers q and r with $0 < q < r < 1$ and rename α as v_q and β as v_r. If there are inner vertices in $\eta(v_k u_1)$, then we will use the same argument.

Lemma 4.7. Suppose $M_{20} \not\subseteq G$ with a homeomorphic embedding $\eta : M_{20} \hookrightarrow G$ and α is an inner vertex of $\eta(v_1 u_1)$. If a bridge of $\eta(M_{20})$ in G has a path P from α to v_i for some $3 \leq i \leq 19$, then $G \notin \mathcal{M}$.

Proof. Using the symmetry, we may assume that $3 \leq i \leq 11$. We can construct a subdivision of $K_{3,3}$ in G such that α is a node. By Lemma 4.4, every homeomorphic embedding of $K_{3,3}$ with a node α must contain edges $v_1 u_{20}$ and $u_1 u_2$ and the only planarizing edges of $P \cup \eta(M_{20})$ are edges of $\eta(v_1 u_{20})$ and of $\eta(u_1 u_2)$.

Suppose that $G \in \mathcal{M}$. Let e be an edge of $\eta(v_{10} u_{10})$. Since $G \in \mathcal{M}$, there exists an edge \tilde{e} such that $(G \setminus e) \setminus \tilde{e}$ is planar. By the previous argument, \tilde{e} is in $\eta(v_{10} u_{20})$ or in $\eta(u_1 u_2)$. As $G \in \mathcal{M}$, $G \setminus \tilde{e}$ is not planar. Therefore, there exists a minimal set \mathcal{B} of bridges of $\eta(M_{20})$ in G such that $(\bigcup_{B \in \mathcal{B}} B \cup \eta(M_{20})) \setminus \tilde{e}$ is not planar but

$$\left\{ \left(\bigcup_{B \in \mathcal{B}} B \cup \eta(M_{20}) \right) \setminus \tilde{e} \right\} \setminus e \text{ is planar.}$$

There are two possible cases about \mathcal{B}.

1. A closed path $\eta(v_9 v_{10} v_{11} u_{11} u_{10} u_9 v_9)$, path $\eta(v_{10} u_{10})$, and \mathcal{B} contains a subgraph K that is a subdivision of K_4 such that graph K with a path $\eta(v_{11} v_{12} \ldots v_{20} u_1 u_2 \ldots u_9)$ or with a path $\eta(u_{11} u_{12} u_{13} \ldots u_{20} v_1 \ldots v_9)$ becomes a subdivision of $K_{3,3}$.

2. Set \mathcal{B} contains a path from an inner vertex of $\eta(v_{10} u_{10})$ to a vertex v_i with $i < 9$ or $11 < i \leq 20$. Then, we can find a subdivision of $K_{3,3}$ using \mathcal{B} and this subdivision of K_4 such that the inner vertex of $\eta(v_{10} v_{30})$ becomes a node of the subdivision of $K_{3,3}$.
(3) Set B contains a path from an inner vertex of $\eta(v_{10}u_{10})$ to a vertex u_i with $i < 9$ or $11 < i \leq 20$. Then, we can find a subdivision of $K_{3,3}$ using B and this subdivision of K_4 such that the inner vertex of $\eta(v_{10}v_{30})$ becomes a node of the subdivision of $K_{3,3}$.

If we want to destroy a subdivision of $K_{3,3}$ made by B by one edge deletion, the possible edges for the deletion in Case (1) are in $\eta(v_8v_9v_{10}v_{11}v_{12})$, in $\eta(v_9u_9)$, in $\eta(v_{10}u_{10})$, or in $\eta(v_{11}u_{11})$ and the possible edges for the deletion in Case (2) are in $\eta(v_8v_9v_{10}v_{11}v_{12})$ or in $\eta(u_8u_9u_{10}u_{11}u_{12})$ by Lemma 4.4 and 4.5. Let \hat{e} be an edge of $\eta(v_{15}u_{15})$. Then $G \setminus \hat{e}$ dominates M_{19} under relation \preceq and $G \setminus \hat{e}$ is not nearly planar because of P and B. This contradicts the fact that $G \in \mathcal{M}$. □

Theorem 4.6 and Lemma 4.7 show that if a graph $G \in \mathcal{M}$ dominates a Möbius ladder with a path from an inner vertex of the subdivision of a rung to a vertex of the subdivision of a rim edge, then the rung and the rim edge are adjacent in the Möbius ladder.

Now, we want to talk about a path from a rim to another rim. The following lemmas show the prohibited rim-to-rim paths for graphs in \mathcal{M}.

Lemma 4.8. If graph G is in \mathcal{M}, then graph G dominates none of the graphs in Figure 4.13.

![Figure 4.13](image)

FIGURE 4.13: Every graph in \mathcal{M} does not dominate any of the above graphs (Part 2)
Proof. Let S_1 be the left graph among the above graphs. In S_1, edges v_2u_2 and v_3u_1 with the closed path $v_1v_2v_3u_3u_2u_1v_1$ become a subdivision of K_4. Therefore, S_1 has a subdivision of $K_{3,3}$ made by this subdivision of K_4 with a path $u_3u_4 \ldots u_8v_1$. As a result, the set of planarizing edges of S_1 is \{$u_8v_1, v_1v_2, v_2v_3, u_1u_2, u_2u_3, u_3u_4$\}.

Let S_2 be the middle graph among the above graphs. Since S_2 is made by splitting vertex v_3 from S_1, in S_2, edges v_2u_2 and $u_1\gamma$ with the closed path $v_1v_2v_3u_3u_2u_1v_1$ form a subdivision of K_4. We can see a subdivision of $K_{3,3}$ made by this subdivision of K_4 with path $u_3u_4 \ldots u_8v_1$ or with path $v_3v_4u_4u_5 \ldots u_8v_1$. Therefore, the set of planarizing edges of S_2 is \{$u_8v_1, v_1v_2, v_2\gamma, \gamma v_3, u_1u_2, u_2u_3$\}.

Let S_3 be the right graph among the above graphs. As S_3 is made splitting vertex u_1 from S_2, using the similar argument from the above, we know that the set of planarizing edges of S_3 is \{$v_1v_2, v_2\gamma, \gamma v_3, u_1\delta, \delta u_2, u_2u_3$\}.

Let S be one of the above three graphs and suppose that $G \in \mathcal{M}$ dominates S. Then, there exists a subgraph S_0 of G such that S_0 is a subdivision of S with a homeomorphic embedding η. Let E_S be the set of planarizing edges of S. This means that for every $e \in E_S$, $S \setminus e$ is planar. We know that $v_5u_5 \notin E_S$ and $v_7u_7 \notin E_S$. Since the set of planarizing edges of $S \setminus v_5u_5$ is E_S, by the previous lemmas, there is a minimal set B of bridges of S_0 in G such that members of set B and the closed path $\eta(v_4v_5v_6u_6u_5u_4v_4)$ with path $\eta(v_5u_5)$ dominate a subdivision of K_4 that is a subgraph of a subdivision of $K_{3,3}$ in $G \setminus e$ for every edge e in set E_S. However, as the set of planarizing edges of $S \setminus v_7u_7$ is also E_S, G cannot be in \mathcal{M} because of B. \qed

Theorem 4.9. If graph $G \succ M_{20}$ dominates one of the graphs in Figure 4.14, then G is not in \mathcal{M}
Proof. By Lemma 4.1, 4.6, and 4.8, if G dominates one of the above with $G \trianglerighteq M_{20}$, then G is not in \mathcal{M}. \hfill \Box

Lemma 4.10. Suppose $M_{20} \trianglerighteq G$ with a homeomorphic embedding $\eta : M_{20} \hookrightarrow G$. Graph G contains vertices v_α and u_β with $1 \leq \alpha < 2$ and $3 < \beta < 12$. If a bridge of $\eta(M_{20})$ in G has a path P from v_α to u_β, then $G \notin \mathcal{M}$.

Proof. Suppose that $G \in \mathcal{M}$. The set of planarizing edges of $P \cup \eta(M_{20})$ is a subset of $E(\eta(v_1v_2\ldots v_{12}) \cup \eta(v_{20}u_1u_2\ldots u_{11}u_{12}))$ by the similar argument of Lemma 4.8. Let e be an edge in $E(\eta(v_{14}u_{14}))$. Then, the set of planarizing edges of $(P \cup \eta(M_{20})) \setminus e$ is still a subset of $E(\eta(v_1v_2\ldots v_{12}) \cup \eta(v_{20}u_1u_2\ldots u_{11}u_{12}))$. Since $G \in \mathcal{M}$, there exists a minimal set \mathcal{B} of bridges of $P \cup \eta(M_{20})$ such that members of set \mathcal{B} and the closed path $\eta(v_{13}v_{14}v_{15}u_{15}u_{14}v_{13})$ with path $\eta(v_{14}u_{14})$ dominate a subdivision of K_4 that is a subgraph of a subdivision of $K_{3,3}$ in $G \setminus \hat{e}$ for every edge \hat{e} in edge set $E(\eta(v_1v_2\ldots v_{12}) \cup \eta(v_{20}u_{11}u_{12}\ldots u_{11}u_{12}))$. Let \hat{e} be an edge in $E(\eta(v_2u_2))$. Then, the set of planarizing edges of $(P \cup \eta(M_{20})) \setminus \hat{e}$ is still a subset of $E(\eta(v_1v_2\ldots v_{12}) \cup \eta(v_{20}u_1u_2\ldots u_{11}u_{12}))$. Because of \mathcal{B}, $G \notin \mathcal{M}$. This is in contradiction to the fact that $G \in \mathcal{M}$. \hfill \Box

The previous lemma and the following lemma explain that if a graph G dominates M_k with $k \geq 20$ with a homeomorphic embedding η and if a bridge of $\eta(M_k)$
Lemma 4.11. If a graph dominates the graph in Figure 4.15, then the graph is not in \mathcal{M}.

Proof. Let us call the above graph as H. We know that because edge $\alpha \beta$, the set A of planarizing edges of H is \{u_1\alpha, \beta u_7, u_7u_8, u_8v_1, v_1v_2, v_6v_7, v_7v_8, v_8u_1\}. Suppose that a graph $G \in \mathcal{M}$ dominates H with a homeomorphic embedding η. Let edge e be in $\eta(u_4v_4)$. We know that for every edge ξ in A, $G \setminus \xi$ is not planar. Therefore, there exists a minimal set B of bridges of $\eta(H)$ in G such that $\left(\bigcup_{B \in B} B \cup \eta(H) \right) \setminus \xi$ is not planar for every ξ in A and that $\left(\bigcup_{B \in B} B \cup \eta(H) \right) \setminus \xi \setminus e$ is planar for every ξ in A. By the minimality of B, every attachment of each member of B is on $\eta(u_2u_3u_4u_5u_6) \cup \eta(v_2v_3v_4v_5v_6) \cup \eta(u_3v_3) \cup \eta(u_4v_4) \cup \eta(u_5v_5)$. Since the set of planarizing edges of $H \setminus u_8v_8$ is still A, because of B, G is not in \mathcal{M}. This contradicts the fact that $G \in \mathcal{M}$. \qed

Lemma 4.12. None of graphs in \mathcal{M} dominates the graph in Figure 4.16.
Proof. Let the above graph be H. Suppose that graph $G \in \mathcal{M}$ dominates H with homeomorphic embedding η. Let edge e be is in $\eta(u_2v_2)$ such that $\eta(u_2)$ is an endpoint of e. Since graph G is in \mathcal{M}, there is another edge \tilde{e} such that $(G \setminus e) \setminus \tilde{e}$ is planar such that $G \setminus \tilde{e}$ is not planar.

If there is a bridge of $\eta(H)$ in G such that it contains a path P from u_q to u_r with $1 < q < 3$ and $3 < r \leq 11$, then $P \cup \eta(H)$ dominates a forbidden graph in Lemma 4.8 or 4.10 and G is not in \mathcal{M}. For example, the graphs in Figure 4.17 are isomorphic to each other. (In these graphs, vertex α means u_q and vertex β means u_r.) We notice that they dominate a graph in Figure 4.13 and this is in contradiction to the fact that G is in \mathcal{M}.

![FIGURE 4.17: Two isomorphic graphs that are not dominated by graphs in \mathcal{M}](image)

The second case is coming from the fact that edge u_1u_2, u_2u_3, u_1u_3, v_1v_2, v_2v_3, u_1v_1, u_2v_2, and u_3v_3 form a subdivision of K_4. By the argument of Kuratowski in [Kur30], it is possible that G contains a bridge of $\eta(H)$ containing a path from an inner vertex of $\eta(u_1u_3)$ to an inner vertex of $\eta(u_2v_2)$. Then, G dominates the graph in Figure 4.18. Let us call the following graph as \tilde{H}. Since $\tilde{H} \setminus u_4v_4$ is not nearly planar, \tilde{H} is neither nearly planar nor in \mathcal{M}. This contradicts the fact that G is in \mathcal{M}.

We need to check the third case that a bridge contains a path that can replace path $\eta(v_1v_2)$ or path $\eta(v_2v_3)$ containing \tilde{e} to preserve the Möbius structure. In other words, if \tilde{e} is in $\eta(v_1v_2)$, then a bridge contains a path from a vertex of $\eta(u_2v_2)$ except $\eta(u_2)$ to a vertex of $\eta(u_1v_1)$ except $\eta(u_1)$. If \tilde{e} is in $\eta(v_2v_3)$, then a
bridge contains a path from a vertex of $\eta(u_2v_2)$ except $\eta(u_2)$ to a vertex of $\eta(u_3v_3)$ except $\eta(u_3)$. By the symmetry, we may assume that \tilde{e} is in $\eta(v_1v_2)$. Then, by the argument, there is a path between a vertex of $\eta(u_1v_1)$ to $\eta(u_2v_2)$. Since $\eta(u_2)$ is an endpoint of e, $(G \setminus \tilde{e}) \setminus e$ is not planar because $(G \setminus \tilde{e}) \setminus e$ dominates a Möbius ladder structure. (Remember that e contains $\eta(u_2)$ as its endpoint.) Therefore, the first case does not occur if G is in \mathcal{M}.

Let us check the last case. By Theorem 4.9, a path in a bridge B_1 of $\eta(H)$ in G from an inner vertex of $\eta(u_2v_2)$ must have its other endpoint from vertices of the closed path $\eta(u_1u_2u_3v_3v_2v_1u_1)$. By the symmetry, we may assume that a bridge contains a path from an inner vertex $\eta(u_2v_2)$ to a vertex of $\eta(u_2u_1v_1v_2)$ as illustrated in Figure 4.20.

We know that the closed path $u_1u_2v_2v_1u_1$ and the path from an inner vertex $\eta(u_2v_2)$ to a vertex of $\eta(u_2u_1v_1v_2)$ form θ-graph in [Kur30]. Since $G \setminus \tilde{e}$ is
not planar, we need more bridge B_2 of H in G such that this bridge with the previous θ-graph makes a subdivision of K_4. Therefore, all of the attachment of B_1 and B_2 are on the closed path $\eta(u_1u_2v_2v_1u_1$. Then, the possible planarizing edges of $\eta(H) \cup B_1 \cup B_2$ are in $\eta(v_1v_2)$. Let ϵ be an edge in $\eta(u_9v_9)$. Since $G \in \mathcal{M}$, there exists an edge $\tilde{\epsilon}$ such that $G \setminus \epsilon \setminus \tilde{\epsilon}$ is planar. We can notice that $\tilde{\epsilon}$ is in $\eta(v_1v_2)$ by the previous argument. Therefore, there exists a minimal set \mathcal{B} of bridges of H such that $\left(\bigcup_{B \in \mathcal{B}} B \cup \eta(H) \cup B_1 \cup B_2 \right) \setminus \tilde{\epsilon}$ is not planar but $\left\{\left(\bigcup_{B \in \mathcal{B}} B \cup \eta(H) \cup B_1 \cup B_2 \right) \setminus \tilde{\epsilon}\right\} \setminus \epsilon$ is planar. If we select an edge ξ from $\eta(u_{14}v_{14})$, then $G \setminus \xi$ is not nearly planar because of B_1, B_2, and \mathcal{B}. This is in contradiction to the fact that $G \in \mathcal{M}$.

\[\square \]

Lemma 4.13. Suppose $M_{20} \preceq G$ with a homeomorphic embedding $\eta : M_{20} \hookrightarrow G$. Graph G contains vertices u_α and u_β with $1 \leq \alpha < 2$ and $3 < \beta \leq 6$ If a bridge of $\eta(M_{20})$ in G contains a path P from u_α to u_β, then $G \notin \mathcal{M}$.

Proof. The proof is very similar to that of Lemma 4.12. Let H be a graph made by $\eta(M_{20})$ and P. To get a contradiction, let G be in \mathcal{M}.
If there is a bridge of H in G such that it contains a path Q from u_q to u_r with an integer n satisfying

1. $\alpha < q < \beta$,

2. $\beta < r \leq 11$, and

3. $q < n < r$,

then $Q \cup H$ dominates a forbidden graph in Lemma 4.8 or 4.10 and G is not in \mathcal{M}. This contradicts the fact that G is in \mathcal{M}.

Let m be an integer with $\alpha < m < \beta$. If a bridge of H in G contains a path Q from an inner vertex of P to an inner vertex of $\eta(u_mv_m)$. As the argument in Lemma 4.12, $H \cup Q$ is neither nearly planar nor in \mathcal{M}. Therefore, this is in contradiction to the fact that G is in \mathcal{M}.

Let n be an integer with $\alpha < n < \beta$ and e be an edge of $\eta(u_nv_n)$ such that u_n is one of the endpoints of e. Suppose that we can find edge \tilde{e} such that $(G \setminus e) \setminus \tilde{e}$ is planar and \tilde{e} is contained in path $\eta(v_{n-1}v_n)$ or path $\eta(v_nv_{n+1})$. If a bridge contains a path that can replace path $\eta(v_{n-1}v_n)$ or path $\eta(v_nv_{n+1})$ containing \tilde{e} to preserve the Möbius structure like the third case of Lemma 4.12, then $(G \setminus e) \setminus \tilde{e}$ is not planar. This is a contradiction of the property of \tilde{e}.

Let r be an integer with $\alpha < r - 1 < r < \beta$ and e be an edge contained in $\eta(u_{r-1}v_{r-1})$ or in $\eta(u_rv_r)$. Since G is in \mathcal{M}, there is an edge \tilde{e} such that $(G \setminus e) \setminus \tilde{e}$ is planar. If there is a set \mathcal{B} of bridges of H such that every attachment of every member of \mathcal{B} is on path $\eta(u_{r-1}u_rv_rv_{r-1}u_{r-1})$, then G is not in \mathcal{B} because of redundant rung edges of $\eta(M_{20})$ using the argument of Lemma 4.12.

We want to check the first case of each of Lemma 4.12 and 4.13
Lemma 4.14. If graph G is in \mathcal{M}, then none of the graphs in Figure 4.21 is dominated in G.

Proof. We notice that the above graphs are isomorphic to the graphs shown in Figure 4.22, respectively.

By Lemma 4.8, graph G is not in \mathcal{M}. □

The following lemma is generalization of the above lemma using Lemma 4.11 and Theorem 4.9.

Lemma 4.15. Suppose $M_{20} \lessdot G$ with a homeomorphic embedding $\eta : M_{20} \hookrightarrow G$. Graph G contains vertices u_α, u_β, u_γ, and u_δ with an integer n such that $1 \leq \alpha < 2 < \beta \leq 6$, $\gamma < \beta < \delta$, and $\gamma < n < \delta$. If each of a path from u_α to u_β and a path from u_γ to u_δ belongs to some bridge of $\eta(M_{20})$ in G, then G is not in \mathcal{M}.

From the argument of the second case of Lemma 4.12, we can get the following lemma.
Lemma 4.16. If a graph is in \mathcal{M}, then it dominates none of the graphs in Figure 4.23.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure4.23.png}
\caption{Every graph in \mathcal{M} does not dominate the above graphs (Part 6)}
\end{figure}

Proof. Suppose that graph G dominates T_4 or T_7. Since neither T_4 nor T_7 is nearly planar, neither $T_4 \setminus (u_{12}v_{12})$ nor $T_7 \setminus (u_{12}v_{12})$ is nearly planar. Therefore, G is not in \mathcal{M}.

Suppose that graph G dominates T_5 or T_8. Since edge $u_3\alpha$ is the only planarizing edge of both of T_5 and T_8, by Lemma 4.3, G is not in \mathcal{M}.

Suppose that graph G dominates T_6 or T_9. Since $u_1\beta$ and $u_3\alpha$ are the only planarizing edges of both of T_6 and T_9, by Lemma 4.3, G is not in \mathcal{M}.

The right picture in Figure 4.24 shows an embedding of $K_{3,4}$ on the projective plane.

In this paper, we will consider graphs that do not contain $K_{3,4}$ as a minor. Therefore, we will focus on graphs that do not dominate any of the graphs in Figure 4.25.

To get a graph in \mathcal{M} from a given Möbius ladder M_k with $k \geq 20$, we are focusing on bridges of a homeomorphic embedding of M_k and we want to know that the bridges can be used for graphs in \mathcal{M}.
Lemma 4.17. Suppose that a graph G dominates H_1 in Figure 4.26 with homeomorphic embedding η. If $\eta(v_4\alpha)$ is just an edge in G, then G is not in \mathcal{M}.

Proof. Suppose that G is in \mathcal{M}. Since $\eta(v_4\alpha)$ is an edge in G, by Lemma 4.7 and 4.10, it is enough to focus on the closed path $\eta(u_4\alpha u_5 v_5 v_4 u_4)$ with $\eta(v_4\alpha)$ as a θ-graph in [Kur30] to focus bridges of $\eta(H_1)$ in G. Let e be edge $\eta(v_4\alpha)$. Then, there is an edge \tilde{e} such that $(G \setminus e) \setminus \tilde{e}$ is planar and $G \setminus \tilde{e}$ is not planar. Since every $K_{3,3}$ subdivision in $G \setminus \tilde{e}$ contains e, from θ-graph $\eta(v_4\alpha) \cup \eta(u_4\alpha u_5 v_5 v_4 u_4)$, we can find a minimal set B of bridges of $\eta(H_1)$ in G such that $\left(\bigcup_{B \in B} B \cup \eta(H_1) \right) \setminus \tilde{e}$ is not planar but $\left\{ \left(\bigcup_{B \in B} B \cup \eta(H_1) \right) \setminus e \right\} \setminus \tilde{e}$ is planar. By Theorem 4.9, we notice that every
attachment of each member of \mathcal{B} is on the closed path $\eta(u_4\alpha u_5 v_5 v_4 u_4)$. If there are planarizing edges of $\bigcup_{B \in \mathcal{B}} B \cup \eta(H_1)$, then they are on $\eta(u_3 u_4 \alpha u_5 u_6) \cup \eta(v_3 v_4 v_5 v_6)$. By Theorem 4.3, graph G is not in \mathcal{M}. This is in contradiction to the fact that G is in \mathcal{M}.

We can use a similar argument to the one in this lemma for H_2 in Figure 4.26.

Lemma 4.18. Suppose that a graph G dominates H_2 in Figure 4.26 with homeomorphic embedding η. If $\eta(v_4 u_5)$ is just an edge in G, then G is not in \mathcal{M}.

Lemma 4.19. Graphs in \mathcal{M} dominate none of the graphs in Figure 4.27.

![Figure 4.27](image)

FIGURE 4.27: Every graph in \mathcal{M} does not dominate the above graphs (Part 7)

Proof. Suppose that $G \in \mathcal{M}$ dominates H_3 with a homeomorphic embedding η. Let e be an edge in $\eta(\beta \gamma)$. There exists an edge \bar{e} such that $(G \setminus e) \setminus \bar{e}$ is planar. Since G is in \mathcal{M}, it follows that $G \setminus \bar{e}$ is not planar. We know that every subgraph of $G \setminus \bar{e}$ dominating $K_{3,3}$ contains e. Because of Theorem 4.9, it is enough to focus on three θ-graphs made by

1. $\eta(u_3 u_4 \beta \gamma v_4 v_3 u_3) \cup \eta(\beta v_4)$ which is called as J_1 in this proof
2. $\eta(u_4 \alpha \gamma v_4 \beta u_4) \cup \eta(\beta \gamma)$ which is called as J_2 in this proof
3. $\eta(v_4 \beta \gamma \alpha u_5 v_5 v_4) \cup \eta(\gamma v_4)$ which is called as J_3 in this proof

Since $G \setminus \bar{e}$ is not planar, there is a minimal set \mathcal{B} of bridges of $\eta(H_3)$ in G such that $\left(\bigcup_{B \in \mathcal{B}} B \cup \eta(H_3)\right) \setminus \bar{e}$ is not planar but $\left\{\left(\bigcup_{B \in \mathcal{B}} B \cup \eta(H_3)\right) \setminus e\right\} \setminus \bar{e}$ is planar.
By Theorem 4.9, for each $1 \leq i \leq 3$, if J_i is dominated in a $K_{3,3}$ subdivision of $\left(\bigcup_{B \in B} B \cup \eta(H_3) \right) \setminus \hat{e}$, then every attachment of each member of B is on J_i. We conclude that every attachment of each member of B is on $\eta(u_3u_4v_5v_4v_3u_3) \cup \eta(u_4\beta v_4) \cup \eta(\alpha \gamma v_4) \cup \eta(\beta \gamma)$. Then, the set of planarizing edges of $\left(\bigcup_{B \in B} B \cup \eta(H_3) \right)$ is a subset of $E(\eta(u_3u_4\alpha u_5) \cup \eta(v_3v_4v_5))$ and by Lemma 4.3, G is not in \mathcal{M}. We get the fact that G is not in \mathcal{M} and this is in contradiction.

For the right graph of the above, we can use the same argument. Therefore, if G dominates one of the above graphs, then G is not in \mathcal{M}.

Suppose that G dominates a Möbius ladder M_k with a homeomorphic embedding η_0 and G has a bridge of $\eta(M_k)$ such that this bridge has a red path as one of the graphs in Figure 4.28. Since the above graphs are isomorphic to the graphs in Figure 4.28, respectively, for the convenience, we will select another homeomorphic embedding $\eta_1 : M_k \hookrightarrow G$ such that $\eta(M_k)$ is dominated in one of the below graphs not in one of the above.

![Figure 4.28: Not allowed bridges of a homeomorphic embedding of M_k](image)

We want to show that the allowed bridges of a homeomorphic embedding of M_k are the bold lines in the graphs in Figure 4.30.

Lemma 4.20. If graph G in \mathcal{M} dominates M_{20}, then G dominates none of the graphs in Figure 4.31.

64
Proof. Suppose that graph G is in \mathcal{M} and graph X_1 comes from Figure 4.31. Let $G \succeq X_1$ with a homeomorphic embedding η. Suppose that G has a bridge containing a path P from an inner vertex of $\eta(\gamma\delta)$ to a vertex ζ of $V(\eta(X_1) \setminus \eta(\alpha\gamma\beta\delta\alpha) \setminus \eta(\gamma\delta))$.

By Theorem 4.9, vertex ζ is an inner vertex of path $\eta(\alpha\epsilon\zeta\beta)$. Then, $P \cup \eta(X_1)$ does not have planarizing edges. If e_0 is an edge from a subdivision of a rung except $\alpha\epsilon$ and $\beta\zeta$, then $\{P \cup \eta(X_1)\} \setminus e_0$ is not nearly planar and G is not in \mathcal{M}. This contradicts the fact that G is in \mathcal{M}.

Let e be an edge in $\eta(\gamma\delta)$. Since G is in \mathcal{M}, there exists an edge \tilde{e} such that $G \setminus \{e, \tilde{e}\}$ is planar. Suppose that \tilde{e} is not in $\eta(\tau\alpha) \cup \eta(\epsilon\zeta) \cup \eta(\beta\rho)$. Every planar
embedding of $G \{ e, \tilde{e} \}$ contains the closed path $\eta(\alpha\varepsilon\zeta\beta\gamma\alpha)$. This closed path makes two regions in the planar embedding of $G \setminus \{ e, \tilde{e} \}$. Let us call a region containing $\eta(\tau\alpha)$ and $\eta(\beta\rho)$ as the outside region of the closed path $\eta(\alpha\varepsilon\zeta\beta\gamma\alpha)$ in the given planar embedding of $G \setminus \{ e, \tilde{e} \}$. Then, we call a region containing $\eta(\alpha\delta\beta) \cup \eta(\gamma\delta)$ as the inside region of the closed path $\eta(\alpha\varepsilon\zeta\beta\gamma\alpha)$ in the given planar embedding of $G \setminus \{ e, \tilde{e} \}$. Since $G \setminus \tilde{e}$ is not planar, there is a minimal set \mathcal{B} of bridges of $\eta(X_1)$ in G such that

$$\left(\bigcup_{B \in \mathcal{B}} B \cup \eta(X_1) \right) \setminus \tilde{e} \text{ is not planar}$$

and

$$\left\{ \left(\bigcup_{B \in \mathcal{B}} B \cup \eta(X_1) \right) \setminus \tilde{e} \right\} \setminus e \text{ is planar}. $$

Let \tilde{e} be an edge in η-image of a rung in the Möbius ladder such that none of endpoints of the rung is in $\{ \tau, \alpha, \beta, \rho \}$. Then, because of the property of set \mathcal{B}, planarizing edges of $G \setminus \tilde{e}$ are in $\eta(\tau\alpha) \cup \eta(\varepsilon\zeta) \cup \eta(\beta\rho)$. By Lemma 4.3, G is not in \mathcal{M}. Therefore, \tilde{e} is only in $\eta(\tau\alpha) \cup \eta(\varepsilon\zeta) \cup \eta(\beta\rho)$. By Lemma 4.3, G is not in \mathcal{M}. This is in contradiction to the fact that G is in \mathcal{M}. Therefore, G does not dominate X_1.

Using a similar argument, we know that if G is in \mathcal{M}, then G does not dominate X_i for $1 \leq i \leq 9$ in Figure 4.31. \hfill \square

Lemma 4.21. Suppose that graph $G \succeq M_{20}$. If G dominates one of the graphs in Figure 4.32, then G is not in \mathcal{M}.

Proof. Suppose that graph $G \in \mathcal{M}$ dominates X_{10} in Figure 4.32 with a homeomorphic embedding η. Suppose that G has a bridge containing a path P from an inner vertex of $\eta(\beta\varepsilon)$ to a vertex ς of $V(\eta(X_{10}) \setminus \eta(\alpha\beta\gamma\varepsilon\delta\alpha) \setminus \eta(\beta\varepsilon))$. By Theorem 4.9, vertex ς is an inner vertex of path $\eta(\delta\zeta\lambda\gamma)$. Then, $P \cup \eta(X_{10})$ may have
FIGURE 4.32: Every graph in \mathcal{M} does not dominate the above graphs (Part 9)

planarizing edges on $\eta(\alpha\beta)$. Let e_0 be an edge in the η-image of a rung such that vertex ρ is an endpoint of e_0. If $P \cup \eta(X_{10})$ does not have any planarizing edges, then $\{P \cup \eta(X_{10})\} \setminus e_0$ is not nearly planar and G is not in \mathcal{M}. If $P \cup \eta(X_{10})$ has planarizing edges on $\eta(\alpha\beta)$, then by Lemma 4.3, G is not in \mathcal{M}. This contradicts the fact that G is in \mathcal{M}.

Let e be an edge in $\eta(\beta\varepsilon)$. Since G is in \mathcal{M}, there is an edge \tilde{e} such that $G \setminus \tilde{e}$ is not planar but $(G \setminus \tilde{e}) \setminus e$ is planar. Every planar embedding of $G \setminus \{e, \tilde{e}\}$ contains the closed path $\eta(\alpha\beta\gamma\varepsilon\delta\alpha)$. This closed path makes two regions in the planar embedding of $G \setminus \{e, \tilde{e}\}$. Let us call a region containing $\eta(\tau\alpha)$ and $\eta(\gamma\rho)$ as the outside region of the closed path $\eta(\alpha\beta\gamma\varepsilon\delta\alpha)$ in the given planar embedding of $G \setminus \{e, \tilde{e}\}$. Then, we call a region containing $\eta(\beta\varepsilon)$ as the inside region of the closed path $\eta(\alpha\beta\gamma\varepsilon\delta\alpha)$ in the given planar embedding of $G \setminus \{e, \tilde{e}\}$. Since $G \setminus \tilde{e}$ is not planar, there is a minimal set \mathcal{B} of bridges of $\eta(X_{10})$ in G such that

$$\left(\bigcup_{B \in \mathcal{B}} B \cup \eta(X_{10}) \right) \setminus \tilde{e} \text{ is not planar}$$

and

$$\left\{ \left(\bigcup_{B \in \mathcal{B}} B \cup \eta(X_{10}) \right) \setminus \tilde{e} \right\} \setminus e \text{ is planar.}$$

If $\bigcup_{B \in \mathcal{B}} B \cup \eta(X_{10})$ does not have any planarizing edges, then G is not in \mathcal{M} because G contains redundant rungs. If $\bigcup_{B \in \mathcal{B}} B \cup \eta(X_{10})$ has some planarizing edges, then
these planarizing edges are on $\eta(\tau\alpha) \cup \eta(\gamma\rho)$. By Lemma 4.3, G is not in \mathcal{M}. As a result, if G is in \mathcal{M}, then G does not dominate X_{10}.

Using a similar argument, we know that if G is in \mathcal{M}, then G does not dominate X_i for $10 \leq i \leq 15$ in Figure 4.32.

Lemma 4.22. Suppose that graph G dominates M_{20}. If G dominates one of the graphs in Figure 4.33, then G is not in \mathcal{M}.

FIGURE 4.33: Every graph in \mathcal{M} does not dominate the above graphs (Part 10) (cont.)
FIGURE 4.33: Every graph in \mathcal{M} does not dominate the above graphs (Part 10)

Proof. Let H be one of the graphs in Figure 4.33 and G dominates H with a homeomorphic embedding η. Let e be an edge of η-image of the red edge of H. Since $G \in \mathcal{M}$, there exists an edge \tilde{e} such that $G \setminus \{e, \tilde{e}\}$ is planar. Using a similar argument to the one of Lemma 4.20 and 4.21, there is a minimal set \mathcal{B} of bridges of $\eta(H)$ such that

$$\left(\bigcup_{B \in \mathcal{B}} B \cup \eta(H) \right) \setminus \tilde{e} \text{ is not planar}$$

and

$$\left\{ \left(\bigcup_{B \in \mathcal{B}} B \cup \eta(H) \right) \setminus \tilde{e} \right\} \setminus e \text{ is planar.}$$

If graph $\bigcup_{B \in \mathcal{B}} B \cup \eta(H)$ does not have any planarizing edges, then G is not in \mathcal{M}. Otherwise, graph $\bigcup_{B \in \mathcal{B}} B \cup \eta(H)$ satisfies the condition of Lemma 4.3 and G is not
in \(M \). This is in contradiction to the fact that \(G \) is in \(M \). As a result, if \(G \in M \) dominates \(M_{20} \), then \(G \) does not dominate any of the above graphs.

Theorem 4.23. If graph \(G \in M \) dominates Möbius ladder \(M_k \) with \(k \geq 20 \) with a homeomorphic embedding \(\eta \), then each bridge of \(\eta(M_k) \) in \(G \) is one of bridges in Figure 4.30.

Proof. By Lemma 4.20, 4.21, and 4.22, this theorem holds.

The following lemmas are showing that if graph \(G \in M \) dominates \(M_{20} \) with a homeomorphic embedding \(\eta \), then \(G \) has only limited types of bridges of \(\eta(M_{20}) \).

Lemma 4.24. If graph \(G \in M \) dominates \(M_{20} \) under \(\preceq \), then \(G \) dominates none of the graphs in Figure 4.34.

![Figure 4.34](image)

FIGURE 4.34: Every graph in \(M \) does not dominate the above graphs (Part 11)

Proof. Let \(M \) be one of the above graphs and \(M \) be dominated in graph \(G \in M \). Since \(M \setminus e \) is not planar, there exists a rim edge \(\tilde{e} \) to make \(M \setminus \{e, \tilde{e}\} \) planar by Lemma 4.2. (In this case, \(\tilde{e} \notin \{g, h\} \) because of another Möbius ladder.) Suppose that \(M_0 \) is a subgraph of \(G \) such that \(M_0 \) is a subdivision of \(M \) under a map \(\eta \). Let \(e_0 \) be an edge of \(M_0 \) which is an edge in the path \(\eta(e) \). Let \(\tilde{e}_0 \) be an edge of \(M_0 \) which is an edge in the path \(\eta(\tilde{e}) \) such that \(G \setminus \{e_0, \tilde{e}_0\} \) is planar. Subgraph \(M_0 \) has a subgraph \(C \) which is the subdivision of the red cycle in \(M \). Graph \(C \) is still a subgraph of \(G \setminus \{e_0, \tilde{e}_0\} \). Since graph \(C \) is a cycle, in any planar embedding \(\Xi \) of \(G \setminus \{e_0, \tilde{e}_0\} \), we can say two open regions \(R_1 \) and \(R_2 \) made by graph \(C \).
(Unfortunately, we cannot say faces.) Without loss of generality, we may assume that the any edges of \((M_0 \setminus \tilde{e}_0) \setminus (E(C) \cup E(\eta(e)))\) should be drawn in \(R_2\) in the planar embedding \(\Xi\) of \(G \setminus \{e_0, \tilde{e}_0\}\). Using this planar embedding \(\Xi\), we can construct a new planar embedding \(\tilde{\Xi}\) of \((M_0 \setminus \tilde{e}_0)\) by erasing the inside of \(R_1\) of \(\Xi\) and add edges of \(\eta(e)\). Since \(G \setminus \tilde{e}_0\) is not planar, there is a minimal set \(B\) bridges of \(M_0\) in \(G\) such that
\[
\left(\bigcup_{B \in B} B \cup M_0 \right) \setminus \tilde{e}_0 \text{ is not planar}
\]
and
\[
\left\{ \left(\bigcup_{B \in B} B \cup M_0 \right) \setminus \tilde{e}_0 \right\} \setminus e_0 \text{ is planar}.
\]
As every member of \(B\) does not contain edge \(e_0\), \(\bigcup_{B \in B} B\) is a subgraph of \(G \setminus \{e_0, \tilde{e}_0\}\).

If every attachment of every member of \(B\) is in only closed region \(\overline{R_2}\) of the planar embedding \(\Xi\) of \(G \setminus \{e_0, \tilde{e}_0\}\) and \(G \setminus \tilde{e}\) is not planar, then \(G \setminus \{e_0, \tilde{e}_0\}\) is not planar, either.

If attachments of a member of \(B\) are in \(R_1\) and \(R_2\) simultaneously under \(\Xi\), then, by Theorem 4.9, subgraph \(\bigcup_{B \in B} B \cup M_0\) is satisfying the conditions of Lemma 4.3. Therefore, graph \(G\) is not in \(\mathcal{M}\).

\(B\) must be in drawn in \(R_1\). However, as \(M \setminus f\) is not planar, we will take a rim edge \(\tilde{f}\) to make \(M \setminus \{f, \tilde{f}\}\) planar. We know that \(\tilde{f} \notin \{g, h\}\) because there is another Möbius ladder. Let us select any rim edge \(\tilde{f}\) other than \(g\) and \(h\). We can find a \(W_4\) topological minor \(K\) in \(G \setminus \{f, \tilde{f}\}\) which contains \(e, g, h\) and all of the attachments of \(B\). (Think about the big cycle of \(M_k\).)

By the previous lemmas in this chapter, the graph \(K\) with \(B\) contains a subdivision of \(K_{3,3}\) as a subgraph. Therefore, \(G \setminus \{f, \tilde{f}\}\) cannot be planar. \(G\) cannot be in \(\mathcal{M}\). As a result, the above five graphs cannot be dominated in any graphs in \(\mathcal{M}\). \(\square\)
Using a similar argument to the one of Lemma 4.24 about a redundant rung, we can get the following lemma.

Lemma 4.25. If graphs G dominates M_{20} and one of the following graphs, then G is not in \mathcal{M}.

Lemma 4.26. If graph $G \in \mathcal{M}$ dominates M_{20}, then graph G does not dominate the graph in Figure 4.37.
Proof. Suppose that graph $G \in \mathcal{M}$ dominates the above. Because of Theorem 4.9 and Lemma 4.3 and 4.24, it is enough to focus on the following six graphs \tilde{G} in Figure 4.38.

Since each of the graphs in Figure 4.39 contains a subdivision of $K_{3,3}$ as a subgraph, graph $G \setminus f$ is not nearly planar.

This contradicts the fact that $G \in \mathcal{M}$.

By a similar argument of Lemma 4.26, we can get the following lemma.

Lemma 4.27. If graph $G \in \mathcal{M}$ dominates M_{20}, then graph G does not dominate the graph in Figure 4.40.

We will investigate other graphs.
Lemma 4.28. If graph $G \in \mathcal{M}$ dominates M_{20}, then graph G does not dominate the graphs in Figure 4.41.

Proof. Suppose that $G \in \mathcal{M}$ and G dominates one of the above. By Theorem 4.9 and Lemma 4.3, it is enough to focus on the following graphs \tilde{G} in Figure 4.42.

As each of the graphs in Figure 4.43 contains a subdivision of $K_{3,3}$ as a subgraph, graph $\tilde{G} \setminus f$ is not nearly planar.

This is in contradiction to the fact that $G \in \mathcal{M}$. □

Using the similar argument of the previous lemmas, we can get the following.

Lemma 4.29. If graph $G \in \mathcal{M}$ dominates M_{20}, then graph G does not dominate the graphs in Figure 4.44.

Then, we can say every graph $G \in \mathcal{M}$ which dominates M_k for some $k \geq 20$ is constructed by graphs in Figure 4.45.
In addition, using the graphs in Figure 4.45, for any \(k \geq 20 \), we can construct a graph \(G \in \mathcal{M} \) dominating \(M_k \) as illustrated in Figure 4.46.

Before stating the theorem, define the class \(\mathcal{N} \) of graphs that can be obtained from \(M_k \), for \(k \geq 20 \), by to get one of the graphs mentioned in Figure 4.45. Be precise, so that there is no doubt in reader’s mind what those graphs are. Then you will have the following theorem.

Theorem 4.30. [Main Theorem]

(i) Every graph in \(\mathcal{N} \) is also in \(\mathcal{M} \).

(ii) If a 3-connected graph \(G \in \mathcal{M} \) does not contain \(K_{3,4} \) as a minor with \(|V(G)| \geq N(20)\), then \(G \) is in \(\mathcal{N} \).
FIGURE 4.44: Every graph in \mathcal{M} does not dominate the above graphs (Part 16)
FIGURE 4.45: Fundamental subgraphs to describe every graph G in \mathcal{M} containing M_k for some $k \geq 20$ with $|V(G)| \geq N(20)$

FIGURE 4.46: An example graph in \mathcal{M} made by three fundamental subgraphs on a projective plane
References

Vita

Kwang Ju Choi was born in January 1978, in Seoul, Republic of Korea. He finished his undergraduate studies at Seoul National University February 2000. He earned a master of science degree in mathematics from Seoul National University in February 2006 and from Louisiana State University in December 2008. In August 2006 he came to Louisiana State University to pursue graduate studies in mathematics. He is currently a candidate for the degree of Doctor of Philosophy in mathematics, which will be awarded in August 2013.