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ABSTRACT 

The voice activity detection (VAD) is crucial in all kinds of speech applications. 

However, almost all existing VAD algorithms suffer from the nonstationarity of both 

speech and noise. To combat this difficulty, we propose a new voice activity detector, 

which is based on the Mel-energy features and an adaptive threshold related to the signal-

to-noise ratio (SNR) estimates. In this thesis, we first justify the robustness of the Bayes 

classifier using the Mel-energy features over that using the Fourier spectral features in 

various noise environments. Then, we design an algorithm using the dynamic Mel-energy 

estimator and the adaptive threshold which depends on the SNR estimates. In addition, a 

realignment scheme is incorporated to correct the sparse-and-spurious noise estimates. 

Numerous simulations are carried out to evaluate the performance of our proposed VAD 

method and the comparisons are made with a couple existing representative schemes, 

namely the VAD using the likelihood ratio test with Fourier spectral energy features and 

that based on the enhanced time-frequency parameters. Three types of noise, namely 

white noise (stationary), babble noise (nonstationary) and vehicular noise (nonstationary) 

were artificially added by the computer for our experiments. As a result, our proposed 

VAD algorithm significantly outperforms other existing methods as illustrated by the 

corresponding receiver operating curves (ROCs). Finally, we demonstrate one of the 

major applications, namely speech waveform compression, associated with our new 

robust VAD scheme and quantify the effectiveness in terms of compression efficiency. 

 iv



1. INTRODUCTION   

1.1. Motivation 

Nowadays, speech processing techniques can be applied in a wide variety of 

devices such as cellular handsets, internet search machines, call-in telephony services, 

etc. Despite of its constant growth, voice activity detection, one of important speech 

processing problems, is still intriguing to many researchers [1]. A voice activity detector 

is a pre-processing system for speech recognition systems, isolated word boundary 

detection systems, cell phones and speech enhancement systems. Voice activity detection 

(VAD) algorithm is designed to distinguish the speech from the background noise among 

short-time frames. The importance of the VAD system to the speech processing 

applications can be easily found in the existing literature. For instance, the VAD system 

plays a key role in the spectral subtraction techniques [2]. Furthermore, a major source of 

the errors incurred in the automatic speech recognition systems (ASRs) is the inaccurate 

detection of the beginning and the ending of utterances according to [3]. Therefore, a 

robust voice activity detector can definitely improve the overall performance of many 

speech applications. 

A typical voice activity detector can be divided into two parts, namely the feature 

extraction module and the pattern classification module [4, 5]. In the early developed 

VAD algorithms, the features were extracted from the short-time energy, zero-crossing 

rates [6], linear predictive coding coefficients [7] and cepstral coefficients [8]. Recently, 

Mel-energy features [3], the wavelet transforms [9], the correlation coefficients [10], and 

the likelihood ratios [11, 12] have been adopted as the underlying features for the VAD 

techniques.  
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In the next section a more detail information is provided regarding some of the 

existing speech detection techniques. 

1.2. Review of Existing Speech Detection Techniques 

 In this section we present a literature survey of the existing wok done in the area 

of voice activity detection. More details of different speech detection techniques are 

described in the following subsections 

1.2.1. Speech Detection Using Energy and Zero Crossing Rate 

A simple but efficient speech detection algorithm has been proposed in [6] which 

classify the frames based on the differential parameters of logarithmic energy and zero 

crossing rate. In addition, the recommendation for G.729 Annex B [13] proposed a 

feature vector consisting of linear prediction coefficients, full-band energy, low-band 

energy, and zero-crossing rate. This standard was developed in collaboration with France 

Telecom-CNET (FT-CNET), the University of Sherbrooke, NIT and AT&T Bell labs. 

1.2.2. Speech Detection Using Wavelet Transforms 

  A new VAD method based on the perceptual wavelet packet transform (PWPT) 

and the Teager energy operator (TEO) was proposed in [9]. Accordingly, first, the 

speech is decomposed into the critical sub-bands using PWPT and then the voice activity 

shape (VAS) parameter is derived from these sub-bands using TEO. Finally, the VAS 

parameters are used for the speech detection. The main advantage of this new VAD 

scheme in [9] is that it does not need the preset thresholds or a priori knowledge of the 

signal-to-noise ratio (SNR) as compared to any other conventional VAD method. 

1.2.3. Speech Detection Using Correlation Coefficient 

In [10], a new VAD algorithm was proposed to improve the word boundary detection for 

the variable background noise levels. Noise parameters are first estimated from the initial 
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frames and then these parameters are updated during the silence periods using a first-

order autoregressive filter. The robust parameters used in this algorithm are the 

correlation coefficients for the instantaneous spectrum and an average of background 

noise spectrum. Subsequently, a statistical approach using a simple binary Markov model 

is taken for the speech detection. 

1.2.4. Speech Detection Using Statistical Model Based VAD 

Sohn et al. had proposed a statistical model based VAD (SMVAD) in which the 

decision rule was derived from the likelihood ratio test (LRT) by estimating the unknown 

parameters using the maximum likelihood (ML) criterion [11]. Further improvement was 

achieved by optimizing the decision rule using the Decision-directed (DD) method for the 

estimation of the unknown parameters [12]. The proposed algorithm further optimized 

the decision rule by adapting the decision threshold using the measured noise energy in 

order to achieve the robustness in low SNRs. 

1.2.5. Speech Detection Using Cepstral Features and Mel-Energy Features 

  Haigh et al. showed the robustness to different background noise levels for the 

successful end-of-speech detection using the thresholds based on the cepstral features [8].  

Lin et al. proposed a robust word boundary detection method (ETF VAD) based on the 

enhanced time frequency (ETF) and the minimum Mel-scale frequency band (MIMSB) 

parameters extracted from the multi-band spectral analysis using the Mel-scale frequency 

banks [3]. 

Among all of the adopted features for VAD, the Mel-spectra have been shown to be 

very promising in the previous VAD method using the threshold based on the minimum 

sub-band Mel-energy [3]. According to several experiments in [3], the Mel-spectral 

features would lead to the most robust VAD performance compared with almost all of 
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other features. However, the comprehensive studies associated with the Mel-spectral 

features for VAD cannot be found in the existing literature.  

In most of the aforementioned techniques, the feature extraction is followed by the 

threshold detection. In the realistic environments, there exist nonstationary noises such as 

babble noise and car noise. Therefore, the static thresholds, which can only depend on the 

information extracted from the first few frames, would cause numerous classification 

errors [10]. Hence, dynamic or adaptive thresholds were proposed to combat the problem 

of nonstationary noises [3]. Nevertheless, how to appropriately adjust the threshold 

dynamically is still very challenging up to now [3, 10]. 

In this thesis, we propose a new adaptive threshold, which depends on the signal-to-

noise ratio (SNR) estimates and results from the dynamical speech and noise information. 

Consequently, it can lead to much better VAD performance in the presence of 

nonstationary noise. Furthermore, we extend our new VAD technique for the application 

of the speech waveform compression, which can be used in the voice communications 

and storage [14]. In the next section we discuss some of the applications of the VAD. 

1.3. VAD Applications  

VAD algorithm is a crucial front-end mechanism of many speech processing 

applications, such as robust speech recognition, speech compression and speech 

enhancement. More details of the aforementioned applications are described in the 

following subsections. 

1.3.1. Speech Recognition 

 Numerous VAD techniques have been proposed which are used in the front-end 

of the speech recognition systems. A robust VAD algorithm improves the recognition 

accuracy and simplifies the speech recognition system structure.  
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1.3.2. Speech Compression 

 Another VAD application is related to the removal of the unvoiced frames to 

reduce the voice data necessary for transmission. In addition, the VAD is used in the 

cellular systems for reducing co-channel interference and power consumption of any 

subscriber’s device [15]. As the outcome from the VAD, the speech compression 

techniques can be used in multimedia and voicemail applications for the efficient voice 

data storage [16]. 

1.3.3. Speech Enhancement 

  VAD is also used in the front end of the noise suppression algorithms. A robust 

VAD is crucial for improving the performance of the noise suppression algorithms [17], 

such as Wiener filtering and spectral subtraction. 

In this thesis, we first justify the advantages of the Mel-energy features via the 

Bayes hypothesis analysis instead of the psychophysical conjectures in the existing 

literature [3]. Then a new robust VAD algorithm is proposed, which is based on the Mel-

energy features and the adaptive threshold detection. Such a dynamical threshold can be 

derived from the SNR estimates in [18]. The outcomes of our VAD algorithm can be 

utilized for the silence deletion. Many simulations are performed to compare our 

proposed VAD algorithm with the existing VAD techniques, namely the VAD method 

using the likelihood ratio test with Fourier spectral energy features (SM VAD) in [12] 

and the enhanced time frequency based robust word boundary detection algorithm (ETF 

VAD) [3]. 

The rest of this thesis is organized as follows. The time-frequency features of the 

speech signals are studied and analyzed in Chapter 2. In Chapter 3, we introduce the new 

robust VAD scheme, using the Mel-energy features and the SNR-based adaptive 
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threshold. The speech compression application is presented in Chapter 4. The simulation 

results to demonstrate the effectiveness of our proposed VAD algorithm will be presented 

and the concluding remarks will be finally drawn in Chapter 5. 
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2. TIME-FREQUENCY REPRESENTATION AND ANALYSIS 

The features play a key role in all voice activity detectors. The ambiguity due to 

the unreliable features, especially in the conditions of low SNRs and/or nonstationary 

background noises, will cause the misdetection very often [1]. According to a few 

simulations in [3], robust speech detection can be achieved using the Mel-spectral 

features compared to the Fourier spectral features. The existing literature provides the 

explanation simply based on the auditory psychophysics that the human ears perceive 

acoustic waves along the nonlinear scale in the frequency domain, which forms the Mel 

filter bank [3]. In addition, the dimensionality reduction but not in the tradeoff of 

performance can be achieved for speech detection and recognition using the Mel-spectral 

features. In the subsequent sections, we formulate the Fourier spectral and the Mel-

spectral features for VAD. Then, we compare the VAD performances using these two 

features via the Bayes hypothesis testing analysis accordingly to show the effectiveness 

of the Mel-spectral features. 

2.1. Fourier Spectral Features  

Fourier spectral features are obtained from the short-time Fourier transform. A 

primary Fourier spectral feature, short-time Fourier energy 
2

],[ knx freq , is defined as 

[19]: 

            
21

0

2 2exp)()(],[ ∑
−

=
⎟
⎠
⎞

⎜
⎝
⎛−−≡

N

m
freq N

kmjmwmnxknx π ,                         (1) 

where  is the discrete-time speech signal,  is the window sequence and N is 

the window size. According to Eq. (1), it is noted that 

)(nx  )(mw

2
],[ knx freq  is a double-indexed 

function with time index n and frequency index k. Usually, the short-time framed Fourier 
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energy  will be collected for [ knEFT ,′ ] LL ,,,2,,0 nnnnn ∆′∆∆= , and  

such that 

{ }0∪∈′ +Zn

[ ] 2
],[, knnxknE freqFT ∆′≡′ , for ,                           (2) { }0∪∈′ +Zn

where  is the frame advance step size. 0>∆n

2.2. Mel Spectral Features 

The Mel-spectral features can be acquired through the weighted Fourier spectral 

features via the Mel filter bank which is a uniformly spaced filter bank on a nonlinearly 

wrapped frequency scale, known as the Mel-scale, as illustrated in Figure 1. 

 
Figure 1. A Mel filter bank composed of the triangular band-pass filters each with a 

bandwidth and the spacing in accordance with the Mel-scale in the frequency domain.  
 
The relationship between the Mel-scale frequency  and the conventional frequency 

  (in Hz) is given by [3]: 
melf

conf

⎟
⎠
⎞

⎜
⎝
⎛ +=

700
1log2595 con

mel
ff .                       (3) 
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Without loss of generality, we choose a set of 20-band Mel filters throughout this thesis 

as illustrated in Figure 1. As depicted in Figure 1, the squared magnitude response of the 

ith Mel filter, ,201,10,)( 2 ≤≤−≤≤ iNk ki,H mel  specifies the individual weighting 

factor for the kth frequency component of the Fourier spectra [3]. According to Eqs. (2) 

and (3), the short-time framed Mel-energy ( )inEmel ,′  is given by  

( ) [ ] 201,)(,, 21

0
≤≤∑ ′=′

−

=
iki,HknEinE mel

N

k
FTmel ,                        (4) 

where, i is the Mel filter index. It is noted that the frequency dimensionality of ( )inEmel ,′  

is reduced from N of [ knE ]FT ,′  to 20. 

Finally, Figure 2 illustrates the spectrograms for the Fourier spectral features and Mel-

spectral features respectively. The spectrogram is a three-dimensional plot of the energy  

 
(a) 

 
Figure 2. (a) Input speech signal, (b) Spectrogram for Fourier spectral features and (c) 

Spectrogram for Mel-spectral features (fig. cont’d.). 
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(b) 

 
(c) 
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for the temporal frequency contents of a signal as it changes over time. The vertical axis 

represents the frequencies range from 0 to 8000 Hz, the horizontal axis indicates the 

incremental time towards the right, and the colors specify the most important acoustic 

peaks for a given time frame. In a decreasing order, red, orange, yellow, green, cyan, 

blue, magenta, gray and white represent the energies from the highest to the lowest, 

accordingly. 

 According to Figure 2, it can be observed that the distinction between speech and 

noise intervals using Mel-spectral features is much clearer than those using Fourier 

spectral features. Comparative analysis and simulations will be presented in the next 

section to further illustrate the superiority of the Mel-spectral features. 

2.3. Comparative Studies between Fourier and Mel Spectral Features 

 In this section, we will provide the simulation results for the speech/noise 

classification to justify the advantage of the Mel-energy features over the Fourier energy 

features extracted on frame-by-frame basis. We establish an optimal Bayes classifier in 

[20] to evaluate the effectiveness of the extracted features under the assumption that the 

entire feature vectors are drawn from the multi-dimensional Gaussian processes. The 

general framework of the Bayes classifiers is shown in Figure 3. Provided speech data, 

the framed Fourier and Mel-energies are acquired to establish the corresponding Bayes 

classifiers and the ground truth (the true speech/noise frame labels) are applied to 

determine the optimal threshold. Then the outcomes of each classifier will be compared 

with the ground truth. The Bayes classifiers can be constructed as follows. Each feature 

vector is of dimension d (d=N for Fourier spectral features, d=20 for Mel-spectral 

features). For a feature vector in an arbitrary frame, let us denote it as dX R∈
v

. Thus, the 

speech/noise frame classification becomes a binary Bayes hypothesis test, where 
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ss XH ω∈
v

:  (  is extracted from a frame in the presence of both speech and noise) and X
v
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v

:  ( X
v

 is extracted from a frame in the presence of noise only) are the two 

corresponding values. 

Bayes 
decision rule 
based on the 

Fourier 
energy 
features 

 
Figure 3. Comparison of different features using Bayes classifiers. 

 
Let the two a priori probabilities be )( sP ω  and )( nP ω  respectively. Then, the a 

posteriori probabilities are given by [20]: 
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+=  is a common factor associated with the 

nonparametric probability.  
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The conditional probabilities are given by 

( ) ( )

( ) ( ⎥⎦
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XXXP
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1exp~
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2
1exp~

)2(

1)|(

)
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where sµ
v , nµ

v  are the mean vectors and s∑
~

, n∑
~

 are the covariance matrices associated 

with the extracted feature vectors X
v

 for Hypotheses  and  respectively. 

According to Eq. (5), the Bayes classifier depends on

sH nH

)|( sXP ω
v

, )|( nXP ω
v

, )( sP ω  and 

)( nP ω  only. The ground truth can be utilized to determine )( sP ω  and )( nP ω . In 

addition, the ground truth can also be utilized to determine the logarithms of the 

conditional probabilities as well, such that 

[ ] ( ) )(
~

)(
2
1~

log
2
1)2log(

2
)|(log 1

ss
T

sss XXdXP µµπω vvvvv
−∑−−∑−−= − ;         (7) 

[ ] ( ) )(
~

)(
2
1~

log
2
1)2log(

2
)|(log 1

nn
T

nnn XXdXP µµπω vvvvv
−∑−−∑−−= − .         (8) 

According to Eqs. (5)- (8), the Bayes decision rule is given by 

( ) ( XX n

X

X

s

n

s
vv

v

)
v

|| ωω
ω

ω

Γ
<
>

Γ
∈

∈

,                                                 (9) 

where the discriminant functions are defined as 
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−∑−−∑−≡Γ

−

−

.       

For quantificational convenience, we artificially add the clean speech with noise (SNR = 

5 dB) and carry out the Bayes classifiers as given by Eq. (9). The speech data are 
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randomly picked from the TIMIT database (three male and three female speakers) [21] 

while the white and the babble noises are taken from the NOISEX-92 database [22]. The 

ground truth comes from the speech frame labels specified in the TIMIT database. The 

outcomes of the Bayes classifiers in terms of the percentages of classification errors for 

both Mel-spectral features and Fourier spectral features are presented in the Table I. 

According to Table I, the Mel-spectral features lead to much better speech/noise frame 

detection performance than the Fourier spectral features, in both white and babble noises. 

Table I. Percentages of classification errors using the Bayes classifiers for white noise 
and babble noise. 

Male speakers Female speakers 

Percentage of classification errors Percentage of classification 
errors 

Types of 
Noise 

 
 Samples 

Mel-
spectral 
features 

Fourier 
spectral 
features 

Samples 
Mel-

spectral 
features 

Fourier 
spectral 
features 

Speaker1 
Speaker2 
Speaker3 

14.13% 
23.85% 
12.18% 

31.43% 
31.98% 
42.26% 

Speaker1
Speaker2
Speaker3

17.40% 
24.92% 
31.35% 

61.86% 
33.98% 
34.52% 

White noise 
(SNR=5dB) 

 
Average 16.72% 35.23% Average 24.55% 43.46% 

Speaker1 
Speaker2 
Speaker3 

13.66% 
19.85% 
15.90% 

44.00% 
31.98% 
42.26% 

Speaker1
Speaker2
Speaker3

17.26% 
23.68% 
32.62% 

11.12% 
65.92% 
45.57% 

Babble 
noise 

(SNR=5dB) 
 Average 16.47% 39.42% Average 24.52% 40.87% 
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3. SPEECH DETECTION USING MEL-SPECTRA 

In this chapter, we describe the feature extraction as well as the adaptive 

threshold estimation and propose the new Mel-energy based adaptive threshold voice 

activity detector (ME VAD). Furthermore, we discuss a realignment mechanism to 

correct the classification errors generally encountered after the detection. 

 First, feature extraction is presented in Section 3.1. Then a threshold adaptation 

procedure is described in Section 3.2. Finally, the realignment mechanism is presented in 

Section 3.3. 

3.1. Mel-Energy Feature Extraction 

Feature extraction is the crucial part of the voice activity detection and its 

methodology is described in this section. Consider a time-domain noisy speech signal x, 

which is divided into the overlapping frames of size 256 each. Furthermore, each frame is 

weighted by a 256-point Hamming window. Initially, the short-time framed Fourier 

energy  of this signal is determined as described in Eq. (2) of Section 2.1. Next, 

the short-time framed Mel-energy 

[ knEFT ,′ ]

( )inEmel ,′  for the ith frequency band of the  frame 

are calculated as describe in Eq. (4) of Section 2.2. 

thn′

             Finally, , for i=1, …, 20, is summed over the 20 frequency bands to 

obtain the robust energy indicator 

( inEmel ,′ )

)(nI ′ : 

 ),()(
20

1
inEnI

i
mel ′=′ ∑

=

.                                                        (10) 

For example, the parameters )(nI ′  corresponding to a clean speech signal are depicted in 

Figure 4 and the parameters  for a speech signal corrupted by the babble noise with 

SNR= 5 dB are shown in Figure 5 respectively.   

)(nI ′
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(a) 

 

 
(b) 

 
Figure 4. Robust energy indicator )(nI ′  and its corresponding time-domain speech 

signal: (a) clean speech waveform, (b) )(nI ′  for clean speech. 

 16



 
(a) 

 

 
(b) 

 
Figure 5. Robust energy indicator )(nI ′  and its corresponding time-domain speech signal:  

(a) waveform corrupted by babble noise (SNR=5dB), (b) )(nI ′  for corrupted speech.  
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3.2. Adaptive Threshold Detection 

We propose a new “two-threshold” scheme for a better speech/noise classification. 

Since the first  frames consist of noise only, we can determine the first threshold or 

the a priori threshold 

noiseN

( )napr ′η , for the frame n′ , as  

( ) ( )
⎥⎦
⎤

⎢⎣
⎡ +′

≡′
2

,2.1min max n
napr

EnE
Enη ,                                       (11)    

where ∑
=

≡
noiseN

mnoise
n mI

N
E

1
)(1  denotes the average energy of first few noise frames; 

. Accordingly, the a priori decision rule is given by ( ) { })(max1max mInE nm ′≤≤=′

                                .                                                  (12) ( )nnI apr

noise

speech

′
<
>′ η)(

After the first  noise frames, the classified noise energy indicator noiseN )()( nInN ′=′ , if 

the th frame is the noise frame index according to Eq. (12), it is stored in a noise 

energy buffer while 

n′

)()( nInS ′=′  is stored in a speech energy buffer if such a frame is 

the speech frame instead. Once the sufficient collection of both  and )(nN ′ )(nS ′  is 

available, the SNR estimation can be achieved using [18].  

Next, we like to introduce the procedure for estimating the temporal SNR and the a 

posteriori threshold ( )naps ′η  as follows. The temporal speech energy estimate  can 

be obtained as 

( )nS ′ˆ

( ) ∑∑
′

+−′=

′

+−′=

−≡′
n

Bnm

n

Bnm ns

mNmSnS
11

)()(ˆ ,                                  (13) 

where  and  specify the speech buffer and noise buffer sizes, respectively. Thereby, 

the temporal SNR can be calculated as 

sB nB
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According to Eq. (14), we can estimate the temporal noise energy estimate  as  ( )nN ′ˆ

( ) ( )
)(1

ˆ max

nSNR
NE

nN noise

′+
≡′

γ
,                                               (15) 

where γ  is the control parameter. Thus, the a posteriori threshold ( )naps ′η  can be 

determined as 

( ) ( ) ( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ ′+′′≡′
2

ˆ
,ˆ2.1min max nNnE

nNnapsη .                              (16) 

The a posteriori speech/noise frame classification can be achieved using  

( )nnI aps

noise

speech

′
<
>′ η)( .                                                  (17) 

According to Eqs. (11) and (16), the two thresholds are dynamically adapted and 

therefore they can track the nonstationarity. Finally, these speech/noise frame labels are  

sent through a realignment mechanism to remove the sparse occurrence of speech/noise 

as described in the next section.  

3.3. Realignment Mechanism 

Maleh et al. concluded that the hangover schemes are not effective in correcting 

isolated VAD errors (i.e. a speech frame among a sequence of noise frames or vice versa) 

and hence they proposed an isolated error correction mechanism (IECM) [5]. Our 

realignment mechanism is simply based on the similar approach using the majority voting 

to forcefully re-assign the labels resulting from Eq. (17) consistent with the majority           
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every 5 to 7 successive frames. Finally the proposed algorithm can be summarized using 

the flowchart in Figure 6. 

Figure 6. Flow chart of our proposed ME VAD algorithm. 
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4. SPEECH WAVEFORM COMPRESSION 

The recently increasing demand in the voice communications, storage and 

voicemail applications is the driving force behind the improved cost-effective speech 

compression algorithms. Researchers are still interested in developing the efficient 

speech compression algorithms nowadays. Section 4.1 is focused on the application of 

the VAD outcomes as described in Chapter 3, to perform the speech waveform. In 

Section 4.2, the corresponding reconstruction procedure is also addressed.  

4.1. Speech Compression Using Silence Deletion 

This thesis focuses on the waveform compression using the silence deletion. A 

considerable portion, up to 60% of a two-way conversation, of normal speech belongs to 

silence. In practical applications, such as Global System for Mobile Communications 

(GSM), the silence detection and the comfort noise injection are applied for a higher 

coding efficiency [13]. In principle, the input signal is classified into the segments of 

active voice (speech) and inactive voice (silence or background noise) and the 

compression is performed by the deleting those inactive voice intervals. The silence 

deletion algorithm proposed by Loo et al. was capable of discarding up to 50% of the 

speech portion if the original speech signal is in a noise-free environment [14]. The 

speech waveform compression for the noisy speech signals is carried out with the help of 

the classified labels from the ME VAD scheme. In digital communications, this silence 

deletion leads to the dual-mode speech coding. The full-rate speech coder operates in the 

active speech mode, but a low-rate transmission is employed for the silence mode 

involving much fewer bits. Such a two-mode codec will lead to very efficient data 

communications. 
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Furthermore, for voice storage applications, the markings about the beginnings, 

ends and durations of the inactive intervals (silence) are stored as the additional 

information to the compressed speech waveforms. As illustrated in Figure 7, the inactive 

or silence intervals will be removed except that those markings will be recorded for the 

later speech reconstruction. The compressed signal consists of the segmented active 

speech waveforms together with the markings about the inactive (silence) intervals. 

 
Figure 7.  Speech waveform compression using silence deletion. 

 
4.2. Speech Reconstruction 

Speech reconstruction is undertaken when we insert the silence intervals back at 

the appropriate locations specified by the markings. Once the silence intervals are 

retrieved, the aforementioned dual-mode voice decoder in [14] or the simple zero-

patching reconstruction scheme in [16] can be applied. In this thesis, the latter speech 

reconstruction approach is adopted as depicted in Figure 8. 

 
Figure 8. Speech reconstruction by silence insertion. 

 
Finally, the procedure of the speech waveform compression and reconstruction is 

illustrated by the example in Figure 9. Figure 9 (a) depicts the original noisy speech 

signal waveform. Our ME VAD algorithm is employed to generate the speech/noise 

classification labels for this signal. Then the speech waveform is compressed using the 
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silence deletion based on the attained labels, which is shown in Figure 9 (b). Finally, 

Figure 9 (c) depicts the reconstructed speech signal from Figure 9 (b) after the silence 

insertion. 

 
(a) 

 
Figure 9. (a) The speech signal corrupted by babble noise (SNR=15dB), (b) compressed 

speech signal, and (c) reconstructed signal (fig. cont’d.). 
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(b) 

 

 
(c) 
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5. SIMULATION AND CONCLUSION 

We have implemented the proposed Mel-Energy Based Adaptive Threshold Voice 

Activity Detection Algorithm (ME VAD) and compared the performance for different 

noise environments at various noise levels with the two major existing algorithms 

namely, A Statistical Model Based Voice Activity Detection Algorithm (SM VAD) in [11] 

and An Enhanced Time Frequency Based Robust Word Boundary Detection Algorithm 

(ETF VAD) in [3]. The SM VAD and ETF VAD algorithms were carried out and the 

corresponding parameters complied with [3, 11]. As stated in Section 5.1, the TIMIT 

database was chosen under testing and evaluation. As introduced in Section 5.2, the 

Receiver Operating Characteristics (ROC) curves for all algorithms were achieved to 

make the performance comparison. Finally, the different impacts of the VAD methods on 

the speech compression results are presented in Section 5.3. 

5.1. Database 

The signals to be experimented were drawn from the TIMIT databases [21], 

which were corrupted by the nonstationary babble and vehicular noises drawn from the 

NOISEX-92 database [22]. The sampling frequency was set as 16 kHz. Three male and 

three female speakers were selected from each of the three different US regions (New 

England, Southern, and Western) [21]. Thirty-six files were generated by the computer; 

each data file under test consisted of three different speech utterances from the same 

speaker concatenated together with the pauses in between; each speech data was added 

with the aforementioned noise samples for SNR=5 and SNR=15 dB respectively.  

5.2. Receiver Operating Characteristics (ROC) of VAD 

The Receiver Operating Characteristics (ROC) of a classifier specifies the 

performance as a trade-off between the selectivity and the sensitivity.  
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(a) 

 

 
(b) 

 
Figure 10. Receiver operating characteristics (ROC) for ME VAD, ETF VAD and SM 

VAD at SNR=5dB, for (a) babble noise (b) vehicular noise. 
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Table II. Correct detection rates for false detection rates=2%, 4% (SNR=5 dB) 

SNR  5dB 

Types of 
Noise 

Babble Noise Vehicular Noise 

VAD 
algorithms 

2% 4% 2% 4% 

ME VAD 63.05% 65.68% 70.00% 71.60% 

ETF VAD 56.23% 59.61% 68.90% 70.88% 

SM VAD 19.72% 35.72% 5.94% 12.80% 

 

Typically a ROC curve measures the relationship between the percentage of the 

correctly classified frames (correct detection rate) versus the percentage of the incorrectly 

classified frames (false detection rate) [23]. The threshold parameter is varied and the 

corresponding correct detection rate and false alarm rate are observed and plotted 

accordingly. The higher the exponential increase in the curve the better is the 

classification accuracy of the VAD, with goal of the VAD being the minimize false 

detection rate for the highest correct detection rate possible.  

The performance of the three algorithms for comparison was evaluated among 

different types of noise at SNR=5dB, 15dB and the ROC curves are shown in Figures 10 

and 11 respectively. Note that the ME VAD performance is always better than the ETF 

VAD and SM VAD methods for the non-stationary babble and vehicular noises.  

In addition, for a better comparison of algorithms we focus on small detection 

rate. For two normal conditions, at the small false detection rates of 2% and 4%, the 

correct detection rates were provided in Tables II, III. According to these tables, our ME 

VAD algorithm is the best for low false detection rates. 
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(a) 

 

 
(b) 

 
Figure 11. Receiver operating characteristics (ROC) for ME VAD, ETF VAD and SM 

VAD at SNR=15dB, for (a) babble noise (b) vehicular noise 
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Table III. Correct detection rates for false detection rates=2%, 4% (SNR=15 dB) 
SNR  15dB 

Types of 
noise 

Babble Noise Vehicular Noise 

VAD 
algorithms 

2% 4% 2% 4% 

ME VAD 70.31% 71.49% 72.58% 73.79% 

ETF VAD 69.76% 71.40% 72.72% 73.39% 

SM VAD 59.03% 62.61% 38.69% 44.01% 

 

5.3. Speech Compression 

In addition, we developed a speech waveform compressor using the ME VAD 

outcomes. This compression algorithm identifies the beginnings and the ends of the 

pauses in a speech signal and then deletes the detected silence frames for the waveform 

compression. The speech reconstruction (decompression) can be performed by re-

inserting the pauses at a desired noise level [18]. The performance of any compression 

scheme is generally measured in terms of compression efficiency and play-back quality 

[19]. However, the compression efficiency measure might be misleading since it 

dramatically varies among data and strictly depends on the durations of the silence 

periods. Therefore, in this thesis, we define a new compression efficiency measure  as  dC

framestotalofnumber The
frames noise detectedofnumberThe

≡dC  (%).                         (18) 

On the other hand, the nature of the original speech data can be characterized as the 

actual noise percentage measure  as aC

framestotalofnumber The
frames noise actualofnumberThe

≡aC  (%).                         (19) 
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  The compression efficiency curves for different speech data files (added with 

babble and vehicular noises at SNR=5 dB) as depicted in Fig. 12 illustrate the 

relationship between  and  from the ground truth. It is obvious that the optimal 

compression is achieved only when 

dC aC

ad CC = . Thus, the closer the ad CC −  curve for each 

scheme to the straight line  as illustrated as “Optimum” in Figure 12, the better the 

compression performance. According to Figure 12, our ME VAD based speech 

compression method significantly outperforms others. 

aa CC −

5.4. Conclusion 

In this thesis, we investigate the advantage of the speech/noise detection using the 

Mel-spectral features over the Fourier spectral features via the Bayes hypothesis analysis. 

Then, we design a robust voice activity detection algorithm using the adaptive a priori  

 
(a) 

Figure 12. Compression efficiency curves of ME VAD, SM VAD and ETF VAD at 
SNR=5dB for (a) Babble noise and (b) Vehicular noise (fig. cont’d.). 
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 (b)  

 
and a posteriori thresholds incorporated with a realignment scheme. Moreover, we can 

extend this new voice activity detection method to establish a new speech waveform 

compressor for voice communications. Simulation results show that our new voice 

activity detection algorithm and speech compression scheme greatly outperform other 

existing methods, especially in the nonstationary noisy environments.  
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