Highly Active and Stable Carbon Nanosheets Supported Iron Oxide for Fischer-Tropsch to Olefins Synthesis

Yunyun Zhou
National Energy Technology Laboratory, Pittsburgh

Sittichai Natesakhawat
National Energy Technology Laboratory, Pittsburgh

Thuy Duong Nguyen-Phan
National Energy Technology Laboratory, Pittsburgh

Douglas R. Kauffman
National Energy Technology Laboratory, Pittsburgh

Chris M. Marin
National Energy Technology Laboratory, Pittsburgh

See next page for additional authors

Follow this and additional works at: https://digitalcommons.lsu.edu/geo_pubs

Recommended Citation

This Article is brought to you for free and open access by the Department of Geology and Geophysics at LSU Digital Commons. It has been accepted for inclusion in Faculty Publications by an authorized administrator of LSU Digital Commons. For more information, please contact ir@lsu.edu.
Title: Highly Active and Stable Carbon Nanosheets Supported Iron Oxide for Fischer-Tropsch to Olefins Synthesis

Authors: Yunyun Zhou; Sittichai Natesakhawat; Thuy-Duong Nguyen-Phan; Douglas R. Kauffman; Chris M. Marin; Kim Kisslinger; Ruqian Lin; Huolin L. Xin; Eli Stavitski; Klaus Attenkofer; Yijie Tang; Yisong Guo; Iradwikanari Waluyo; Amitava Roy; Jonathan W. Lekse; Yang Yu; John Baltrus; Yu Lu; Christopher Matranga; Congjun Wang

This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record.

To be cited as: 10.1002/cctc.201802022

Link to VoR: https://doi.org/10.1002/cctc.201802022
Highly Active and Stable Carbon Nanosheets Supported Iron Oxide for Fischer-Tropsch to Olefins Synthesis

Abstract: Light olefins production utilizes the energy intensive process of steam cracking. Fischer-Tropsch to olefins (FTO) synthesis potentially offers a more sustainable alternative. Here we show a promising FTO catalyst comprised of iron oxide nanoparticles supported on carbon nanosheets (CNS) fabricated from the carbonization of potassium citrate, which incorporates well dispersed K-promoter throughout the CNS support. This catalyst exhibits, to the best of our knowledge, the highest iron time yield of 1990 μmol CO₂/gₜₚₜₛ reported in the literature, 41% light olefins selectivity, and over 100 hours stable activity, making it one of the best performing FTO catalysts. Detailed characterization illustrates that the CNS support facilitates iron oxide reduction to metallic iron, leading to efficient transformation to the active iron carbide phase during FTO reaction. Since K is a commonly used promoter, our K-promoted CNS support potentially has broad utility beyond the FTO reactions demonstrated in the current study.

Introduction

Light olefins (C₂–C₅) are important building blocks in the chemical industry. [1] Traditionally, they are produced from steam cracking and catalytic cracking of naphtha, gas oil or light alkanes. However, these processes are extremely energy intensive with significant CO₂ emissions.[1a] There has also been growing interest in reducing the dependence on petroleum feedstocks for these chemicals.[1a] A promising alternative is to produce light olefins directly from syngas (CO and H₂), which can be derived from coal, natural gas or biomass. This direct route is more sustainable and potentially economically profitable.[1a] To this end, catalysts such as Fe- and Co-based Fischer-Tropsch to olefins (FTO) catalysts[1c, 2] and hybrid oxide-zeolites catalysts[1c] have been developed. Some catalysts have demonstrated remarkable olefins selectivity exceeding predictions from the Anderson-Schulz-Flory distribution,[1b, 2] which describes the ideal relative ratios of hydrocarbon products in a polymerization process.[3]

Iron-based catalysts have received increasing attention for FTO synthesis.[1c, 4] Despite recent advances, challenges such as poor stability and/or high methane and CO₂ production still persist.[1a, 1c, 4b-6] One particular difficulty is the sintering and deactivation of catalyst nanoparticles during reaction. Strong interaction between catalyst and support can limit sintering, but it can also inhibit catalyst activity.[5c] Consequently, much attention has focused on catalyst support materials that can promote the reducibility and carburation of catalysts and minimize aggregation and fragmentation.[5c, 6] Carbon materials have been considered as promising supports.[5b, 7] For example, one of the best reported FTO catalysts is Na and S promoted iron oxide on carbon nanofibers.[1c] Compared with metal oxide supports, weak interaction between iron oxide catalyst particles and carbon nanofiber support facilitates catalyst activation while maintaining structural stability.[1c, 5b, 7b]

Herein, we report on the use of K-promoted carbon nanosheets (CNS) as supports for iron-based FTO catalysts. The CNS supports are fabricated from the carbonization of potassium citrate serving as an inexpensive carbon source with an added benefit of dispersing K promoter throughout the supports. The catalyst demonstrates high activity and stability towards C₂-C₅ light olefins and exhibits the highest reported iron time yield (FTY) values of 1790–1990 μmol CO₂/gₜₚₜₛ for ~100 h on stream (TOS). Furthermore, the catalyst can be used repeatedly and high activity can still be achieved after 500 h of cumulative TOS. This level of catalytic performance is not achievable by
simply adding K promoters to carbon and silica supports using traditional incipient wetness impregnation approaches. Various characterization results reveal that the as-deposited iron oxide catalyst nanoparticles on K-promoted CNS are more readily reduced and stabilized as metallic iron after the initial H₂ activation compared with a control catalyst sample supported on carbon nanotube (CNT). The more robust formation of metallic iron on CNS results in more efficient conversion in the subsequent FTO reaction to form highly active iron carbide. Additionally, the K embedded in CNS enhances the catalyst activity and selectivity. Finally, as K is a common promoter for a broad range of reactions, our approach for fabricating K-promoted CNS catalyst supports has broad utility beyond the FTO reactions demonstrated in the current study.

Figure 1. Electron microscopy and XRD characterization of Fe₃O₄/CNS catalyst. a) SEM and b) TEM images of the Fe₃O₄/CNS catalyst. (inset) size distribution of Fe₃O₄ nanoparticles from analysis of > 800 nanoparticles. c) XRD pattern of Fe₃O₄/CNS catalyst compared with the standard reference of Fe₃O₄ (PDF 01-076-1849). d) High resolution TEM (HRTEM) image of Fe₃O₄ nanoparticles showing lattice fringes consistent with the Fe₃O₄ phase.

Results and Discussion

Characterization of Fe₃O₄/CNS catalysts

The as-synthesized iron oxide on interconnected carbon nanosheets (Fe₃O₄/CNS) catalyst consists of 10.0 nm ± 4.8 nm Fe₃O₄ nanoparticles well dispersed on CNS with a rose-like structure (Figure 1a, b). XRD indicates the main crystal phase of Fe₃O₄ particles is Fe₂O₃ (Figure 1c). The calculated size of Fe₂O₃ nanoparticles is 11 nm from the Scherrer formula using the peak (311) at 35.4°, consistent with the TEM particle size analysis. The broad peak at 23° arises from the CNS support (Figure S1). The HRTEM images of the iron oxide nanoparticles in Figure 1d and S2 show lattice fringes of 4.9 Å and 2.6 Å corresponding to the d spacing of (111) and (311) planes in Fe₂O₃, respectively, which further confirm the XRD results.

Raman and X-ray photoelectron spectroscopy (XPS) results illustrate that the CNS are highly functionalized, with various functional groups such as carboxyl, carbonyl and C-O containing groups (Figure S3). These functional groups have been reported to contribute to catalyst performance by anchoring and stabilizing supported iron oxide nanoparticles. EDX mapping confirms the presence of evenly distributed K that was introduced during CNS synthesis by the potassium citrate precursor (Figure S4). This ubiquitous and well-dispersed K throughout the support plays a key role in the activity and selectivity of this catalyst system.

Catalytic performance for FTO synthesis with Fe₃O₄/CNS catalysts

Prior to FTO reaction, Fe₃O₄/CNS catalysts were reduced in H₂ for 3 hours at 400 °C to obtain metallic iron. Good reducibility of iron oxides in iron-based FTO catalysts is essential to achieving high catalytic activity. Fe₂O₃ is more readily reducible compared to Fe₃O₄ reported in other FTO work. It can be more efficiently transformed into Fe metal during the H₂ activation step and subsequently to the active iron carbide phase upon syngas exposure under FTO synthesis conditions. In situ XRD confirms the excellent reducibility of the Fe₃O₄/CNS system, which forms FeO and α-Fe phases in 4% H₂ at 300 °C, and further completely transforms to α-Fe metal at 400 °C (Figure S5). Under FTO conditions, the metallic α-Fe is then readily carburized and forms the active species Fe₃C₂ (see below).

Figure 2. Catalytic performance of Fe₃O₄/CNS catalyst. a) Iron time yield (FTY) (red circles, right y axis), CO conversion (%), black triangles, left y axis), and b) light olefins selectivity (wt. %, blue squares, left y axis) and olefin to paraffin ratio, O/P, (green diamonds, right y axis) as a function of time on stream (TOS) under reaction condition of 350 °C, 20 bar, H₂/CO =1 and WHSV = 30,000 cm³(STP)/(gcat•h).
The CO conversion, iron time yield (FTY, the number of CO molecules converted to hydrocarbons per gram of Fe per second), light olefins selectivity and olefin to paraffin ratio (O/P) are illustrated in Figure 2. In the first 10 h, the CO conversion quickly increased from 50% to 70%. This induction period corresponds to the carburization process that transforms metallic iron to catalytically active iron carbide phases. After 10 h of TOS, CO conversion maintained its steady state at 70% until ~100 h TOS. The FeO/CNS catalysts investigated exceed 18 %C. In Figure 3a, we compare the selectivity of the CO molecule converted to short chain hydrocarbons (C2-C4) production and only trace and/or negligible amounts of hydrocarbons of C6 and beyond were observed. We note that the CO2 selectivity of our FTO catalyst is ~58 %C. In comparison, two of the best syngas supported sample, bulk Fe supported on reduced graphene oxide, however, the activity decreased to 60% within 90 h. This is in contrast to our results, where the CO2 selectivity remains constant across all TOS conditions (350 °C, 20 bar, H2/CO=1) except FeO/CNT supported catalyst, which shows better olefin selectivity (~100 h TOS). Finally, compared with one of the best FTO catalysts reported in the literature, FeO supported on CNF, the extraordinary 1882 μmolCO/gFe*s FTY of our FeO/CNS catalysts is ~6 times higher, which is also sustained with high CO conversion (72.6%) and high olefin selectivity (41.2%). All comparisons here indicate that the K-promoted FeO/CNS system is one of the best performing Fe based FTO catalysts.

Comparison with other FTO catalysts

To study the role of carbon support materials, FeO/CNT catalyst has been prepared and tested for FTO as a control sample. The as-received CNTs have an outer diameter of ~10 nm and length of 3-20 μm. The average size of the CNT supported FeO nanoparticles is ~7.3 nm (Figure 3a) and XRD indicates the oxide is also in the FeO phase (Figure S7). Despite similar characteristics between the CNT and CNS supported samples, the FeO/CNS catalyst outperforms the FeO/CNT in all aspects of FTO synthesis (Figure 3b, S9, Table 1). Although the CO conversion is relatively stable (~45%) for FeO/CNT, it is significantly lower than that of FeO/CNS (~70%), and the FTY slowly decreases from 1000 to 860 μmolCO/gFe*s over 90 h TOS. Compared with the stable O/P ratio of 3.4 for the FeO/CNS catalyst, the FeO/CNT exhibits a substantially lower O/P ratio, which also changes over time from 0.3 to 1.2 in 90 h (Figure 3b and S9).

The catalytic performance of several Fe based catalysts is summarized in Table 1. To make a more direct comparison with the K-promoted CNS system, we have prepared and evaluated the catalyst of FeO/CNT promoted with 1% K (1K-FeO/CNT). While the 1K-FeO/CNT sample shows better olefin selectivity (54.4%) than the unpromoted FeO/CNT (33.1%), its activity and stability are drastically reduced, with a CO conversion of only 4.1% at 10 h TOS and almost complete deactivation after ~18 h TOS. This finding validates that high FTO performance cannot be simply achieved by adding K onto CNTs and highlights the advantage of using CNS as a support. A standard non-supported sample, bulk Fe-Cu-K-SiO2 catalyst promoted by Cu and K, achieves 52.3% CO conversion, but demonstrates poor stability after ~18 h. Finally, compared with one of the best FTO catalysts reported in the literature, FeO supported on CNF, the extraordinary 1882 μmolCO/gFe*s FTY of our FeO/CNS catalysts is ~6 times higher, which is also sustained with high CO conversion (72.6%) and high olefin selectivity (41.2%). All comparisons here indicate that the K-promoted FeO/CNS system is one of the best performing Fe based FTO catalysts.
product with respect to the total number of C atoms in the hydrocarbon mixture.[14]

Structure-activity correlation

Detailed characterization of the FTO catalysts has been carried out to understand the structure-activity correlation. The Fe$_2$O$_3$/CNS catalysts undergo significant structural and phase changes under FTO reaction conditions (Figure 4a, b). The post-reaction iron-based nanoparticles slightly increased to an average particle size of 12.1 nm. Some larger nanoparticles (> 30 nm) were also observed (Figure 4a), indicative of some agglomeration due to sintering.

Nevertheless, both the catalytic activity and product selectivity are stable throughout the entire reaction testing process (Figure 2). Analysis of the HRTEM images indicates the post-reaction catalyst nanoparticles are composed of a Fe$_2$C$_2$ core with a thin amorphous iron oxide shell. The observed lattice fringes in the core are consistent with the d spacing of (510), (200), and (11-2) planes of Fe$_2$C$_2$ phase (See Figure S10a).[14] In addition, the 70° angle also agrees with the expected angle between (021) and (-11-1) planes in Fe$_2$C$_2$ structure (Figure 4b) as analyzed by the CrystalMaker software.[15] EDX mapping clearly illustrates the Fe$_2$C$_2$/amorphous iron oxide core/shell structure in the spent catalyst (Figure S10): Fe is present in both the core and shell, with C in the core and O in the shell. The same conclusion is further supported by XPS depth-profiling studies (Figure S11). As the oxide shell is gradually removed by sputtering, the embedded Fe$_2$C$_2$ core becomes increasingly exposed as evidenced by the growth of the peak at 708 eV associated with C in the core with a thin amorphous iron oxide component in the fresh catalyst. The observed planes of Fe$_2$C$_2$ lattice fringes in the HRTEM image of an Fe$_2$O$_3$/CNT catalyst, consistent with the mixed oxide phase. The high χFe$_2$C$_2$ Mössbauer spectrum of the fresh Fe$_2$O$_3$/CNT catalyst shows significant differences (Figure 4c), which is mainly composed of χFe$_2$C$_2$ (72% of the Fe species), with contributions from a minor Fe$_2$C phase and a mixed oxide phase. The high χFe$_2$C$_2$ content in the spent catalyst correlates well with its high activity and selectivity.[16, 11, 13]

![Figure 4](image-url)

Figure 4. Characterization of Fe$_2$O$_3$/CNT catalyst after FTO reaction. a) TEM image of spent Fe$_2$O$_3$/CNT catalysts, (inset) particle size distribution of spent iron nanoparticles based on > 500 nanoparticles. b) HRTEM image of an isolated iron carbide/iron oxide core/shell nanoparticle with lattice spacing in the core consistent with that of Fe$_2$C$_2$. 57Fe Mössbauer spectra (black hashed lines) of c) the fresh Fe$_2$O$_3$/CNT catalyst with the overall spectral simulation (black solid line) and a magnetic subcomponent simulation representing the ferrous sites of Fe$_2$O$_3$ (blue solid line); d) the spent Fe$_2$O$_3$/CNT catalyst with the overall spectral simulation (black solid line), the spectral simulation representing χFe$_2$C$_2$ (red solid line) and an additional iron carbide phase Fe$_2$C (green solid line). The arrows indicate the spectral component similar to the iron oxide component in the fresh catalyst.

Mössbauer spectroscopy has been utilized to study the evolution of Fe$_2$O$_3$ nanoparticles during the FTO process. The Mössbauer results also quantify the types of Fe species present in the catalyst before and after reaction (Table S1). The Mössbauer spectrum of the fresh Fe$_2$O$_3$/CNT catalyst shows a sextet splitting pattern typically associated with magnetic iron species (Figure 4c). It suggests that Fe$_2$O$_3$ is the predominate phase in the fresh, unactivated, Fe$_2$O$_3$/CNT catalyst, consistent with the XRD and HRTEM analysis. In comparison, the Mössbauer spectrum of the spent catalyst shows significant differences (Figure 4d), which is mainly composed of χFe$_2$C$_2$ (72% of the Fe species), with contributions from a minor Fe$_2$C phase and a mixed oxide phase. The high χFe$_2$C$_2$ content in the spent catalyst correlates well with its high activity and selectivity.[16, 11, 13]

![Figure 5](image-url)

Figure 5. X-ray absorption spectra of Fe$_2$O$_3$/CNT and Fe$_2$O$_3$/CNT catalysts. Fourier transformed Fe K-edge EXAFS data of fresh and reacted a) Fe$_2$O$_3$/CNT and b) Fe$_2$O$_3$/CNT samples at TOS = 0 h (fresh), 0.5 h, 1 h, 2 h, 3 h, 4 h, 7 h, 10 h and 10 h in H$_2$/CO (1:1) syngas at 20 bar and 350 °C. The inset shows the corresponding EXAFS spectra in k-space. The solid lines represent experimental data, and the circles are fitted spectra. Details of the spectra...
fitting are described in supplementary information. The vertical dashed lines indicate the feature of Fe-Fe coordination from FeO2.

X-ray absorption spectroscopy (XAS) provides important details on the transformation of iron oxide nanoparticles during FTO reactions. The evolution of the X-ray absorption near edge structure (XANES) spectra for both FeO2/CNS and FeO2/CNT catalysts at different reaction time demonstrates the conversion of iron oxide to iron carbide during FTO reaction (Figure S12), consistent with TEM, XRD and Mössbauer results shown above. Despite the similar conversion processes for the two catalyst systems, the degree of carburization of FeO2/CNS catalysts appears to be much more complete than that of FeO2/CNT catalysts. This difference is more clearly illustrated by Fourier transformed extended X-ray absorption fine structure (EXAFS) in Figure 5. For the fresh catalysts, the first peak located between 1 and 2 Å is associated with the first Fe-O shell around the Fe absorbing core at 1.9–2.1 Å. The second peak between 2 and 3.5 Å originates from the Fe-Fe scattering of FeO2 at 3.0–3.5 Å (see fitting results in Table S2, S3). In the reacted catalysts, the Fe-Fe scattering from FeO2 in the fresh catalyst diminishes as a function of TOS. Instead, a new peak at ~2.0 Å appears (denoted by the vertical dashed lines in Figure 5), which is ascribed to the Fe-Fe coordination from iron carbide composition (Table S4, S5). The growth of this FeO2 peak is much more pronounced for FeO2/CNS catalysts than FeO2/CNT catalysts (Figure 5). These results suggest more effective carburization of iron oxide supported on CNS, leading to much improved catalytic performance for FeO2/CNS catalysts compared with FeO2/CNT catalysts (Table 1).

Effect of catalyst supports

As discussed in the previous section, the difference in catalyst performance for CNS and CNT supported catalysts is a result of the more complete transformation from iron oxide to iron carbide for CNS supported catalysts. For quantitative comparison, the evolution of Fe-Fe coordination number for FeO2 from FeO2/CNS and FeO2/CNT catalysts as a function of TOS is illustrated in Figure 6a and Figure S14. The FeO2/CNS catalyst demonstrates higher growth rate of FeO2 phase than the FeO2/CNT catalyst. To understand the difference in carburization on different catalyst supports, the EXAFS spectrum of the H2 reduced FeO2/CNS catalyst (Figure 6b) offers direct evidence for the presence of metallic iron, whereas the H2 reduced FeO2/CNT catalyst contains mostly oxidized Fe species (Figure 6b). Furthermore, EDX mapping of reduced FeO2/CNS is consistent with a core/shell structure with a metallic Fe core and an amorphous iron oxide shell presumably due to exposure to air (Figure S15). The improved reducibility of FeO2/CNS catalyst is also suggested by the H2-TPR profiles (Figure S16).

These results suggest more robust formation of metallic Fe nanoparticles on the CNS support than on the CNT. The stabilization of metallic Fe nanoparticles by CNS subsequently leads to more effective and complete carburization upon introduction of CO under FTO conditions. In contrast, for the other catalysts, the less effective formation and/or stabilization of metallic iron entails that the conversion to iron carbides is hindered due to the extra barrier to push out oxygen in iron oxides. These different effects of the two support materials can then explain the improved catalytic activity and selectivity for CNS supported catalysts.

One possible reason that CNS is a superior support material might be that CNS can offer an optimal interaction with the catalyst particles leading to enhanced reduction/carburization. We note that the average particle size formed on CNS is 10±5 nm but decreases to 7±3 nm on CNTs despite using identical synthesis procedures. This may suggest a stronger interaction between the iron oxide nanoparticles and the CNT support resulting in the stabilization of smaller sized particles. This stronger interaction with the CNS support is consistent with our observation that the FeO2/CNT catalyst is more difficult to reduce and carburize (Figure S16).

![Figure 6. Transformation of FeO2/CNS and FeO2/CNT catalysts.](image-url)

The comparison of the evolution of the coordination number (CN) of Fe-Fe scattering from FeO2 composition in the FeO2/CNS (red circles) and FeO2/CNT (black squares) catalysts as a function of TOS. b) Fourier transformed Fe K-edge EXAFS spectra of H2 reduced FeO2/CNS (red) and H2 reduced FeO2/CNT (black) catalysts. The most significant distinction between the two spectra is the two additional peaks at 2.2 Å and 4.4 Å observed in reduced FeO2/CNS, which correspond to the Fe-Fe bonds from metallic iron. In contrast, the reduced FeO2/CNT catalyst is mostly comprised of oxidized Fe species.

Another important factor contributing to the catalytic performance of FeO2/CNS is the potassium contained in the CNS support. Potassium is widely used as a promoter for improving olefin selectivity and activity by facilitating the formation of Hägg carbide, improving the surface CO/H2 ratio, and stabilizing active iron facets. In fact, the CNS...
support is specifically chosen for this work because it derives from carbonization of potassium citrate with residual K distributed evenly through the entire support (Figure S4). The Fe₂O₃/CNS catalyst contains 1.8 wt.% K by elemental analysis, which is consistent with surface K concentration of 1.9 wt.% estimated by XPS (Figure S17). The K should offer a promoter effect. We have also investigated the K effect in Fe₂O₃/CNT catalysts by adding ~0.1–1 wt.% K (1K-Fe₂O₃/CNT, Table 1); however, these K-promoted Fe₂O₃/CNT catalysts exhibit much lower activity and reduced stability, despite an enhancement in light olefins selectivity. This result suggests the synergistic effect of the CNS support and the inherently embedded and evenly distributed potassium leads to more effective catalyst than the ones with simple addition of K to the CNT support. Finally, we point out that K promoters are commonly used in various catalytic applications, such as ammonia synthesis.[21] These K-promoted CNS supports should therefore have utility for a plethora of catalyst applications beyond the current demonstration for FTO reactions.

Conclusions

We have developed a new K-promoted CNS supported Fe₂O₃ catalysts for FTO synthesis. The catalyst demonstrates superior catalytic activity and stability, with good olefins selectivity. Its FTY in the range of 1790–1990 μmol/O₂/gcat•h is the highest values of reported Fe based FTO or FT catalysts, to the best of our knowledge. The catalyst is highly robust over ~100 h of TOS. Moreover, the catalyst can be reused repeatedly without degradation in catalytic performance for at least 500 h cumulative TOS. The effect of the CNS support has been investigated and compared with CNT. EXAFS studies indicate that K-promoted CNS can stabilize the metallic iron nanoparticles during H₂ reduction, which enhances the formation of iron carbide under FTO reaction conditions. The efficient and complete carbonization of Fe₂O₃/CNS catalyst results in its high catalytic activity, selectivity and stability. In contrast, the CNT supported catalyst nanoparticles exhibit smaller average sizes and are more difficult to reduce, leading to less efficient transformation to catalytically active iron carbide. These observations suggest that the K-promoted CNS support offers a relatively weak but balanced interaction with the catalyst nanoparticles that enables the improved catalyst reduction and carbonization while maintaining the structural integrity under reaction conditions. Future studies will focus on using in operando characterization techniques as well as computational modeling to better understand the effect of K-promoted CNS catalyst support.

Experimental Section

Catalyst preparation

Carbon nanosheets (CNS) were prepared by carbonization of potassium citrate, which was heated in an alumina ceramic tube under N₂ to 850 °C with a ramp rate of 1 °C/min and was held at this temperature for 1 h. This procedure is a slightly modified process using a different heating rate from that reported in the literature.[19] This recipe was chosen to not only form interconnected CNS, but also to efficiently incorporate the K promoter into the catalyst support. The product was then cleaned with 10% HCl and subsequently washed with copious amounts of water until the solution pH was neutral. The carbon nanosheets were then dried at 70 °C for 2 h and further dried under vacuum for 12 h.

Ammonium iron citrate was used as the Fe precursor for depositing iron oxide nanoparticle catalysts on the CNS support.[18] Ammonium iron citrate solution (1.4 M, 333 μL) was diluted by 5 mL of water and added slowly to 500 mg of CNS until the powder was fully wet. The mixture was then allowed to dry slowly to 50 °C for several hours and further dried under vacuum overnight. Subsequently, the mixture was calcined at 500 °C for 2 h with a ramp rate of 5 °C/min under N₂ to form the Fe₂O₃/CNS catalyst (with nominal Fe content of 5 wt.%).

For comparison, iron-based nanoparticles supported on carbon nanotubes (CNTs) were also prepared. Ammonium iron citrate solution was mixed with multiwalled carbon nanotubes (Sigma-Aldrich) with 6-13 nm in outer diameter and 2.5-20 μm in length and the resulting mixture was processed in the same manner as described above to form Fe₂O₃/CNT catalyst. For K-promoted Fe₂O₃/CNT catalyst, K₂CO₃ was added to ammonium iron citrate solution for the iron oxide deposition step. Elemental analysis of the blank CNT indicates that there is a trace amount (0.01 wt.%.) of Fe in the as-received CNT.

The Fe₂O₃/CNS catalyst were determined to contain 3.6 wt.% Fe and 1.8 wt.% K using ICP-MS. The unpromoted Fe₂O₃/CNT contained 4.2 wt.% Fe and no K (below the ICP-MS detection limit). The nominal 1 wt.% K-promoted Fe₂O₃/CNT contained 3.9 wt.% Fe and 1.2 wt. % K.

Catalyst performance evaluation

FTO testing was conducted in a fixed-bed reactor system (Process Integral Development Engineereed & Tech.). The prepared catalysts were evaluated at 350 °C and 20 bar, which favored the production of short chain hydrocarbons. The weight hourly space velocity (WHHSV) was maintained at 30,000 cm³(STP)/(gcat•h). The feed gas composition was CO/H₂/N₂ = 45/45/10 and the total flow rate was 100 cm³(STP)/min. Prior to reaction, catalyst samples (200 mg) were activated in situ in flowing H₂ (50 cm³(STP)/min) at 400 °C and 1 bar for 3 h. The feed and product streams were analyzed online using an Agilent GC7890A equipped with flame ionization and thermal conductivity detectors (FID/TCD) as well as a methanizer. Separation of the compounds was performed using Ar as a carrier gas and 2 columns: molecular sieve 13X (6 ft × 1/8 in. SS, 60/80 mesh) for light gases (H₂, N₂, CH₄, and CO) and Hayesep Q (10 ft × 1/8 in. SS, 80/100 mesh) for CO₂ and C₂-C₆ hydrocarbons. CO conversion, hydrocarbon product selectivity (which excludes CO₂), and iron time yield (FTY) are defined as described in supplementary information.
Catalyst characterization
Scanning transmission electron microscopy (STEM) images were taken with a Hitachi HD-2300A dedicated scanning transmission electron microscope with a field-emission gun (FEG) and an optimal resolution of 0.204 nm. The powder catalyst sample was suspended in ethanol, spread onto a Cu grid coated with a holey carbon film (HC-Cu grid) and then dried in air. The bright-field imaging (BF), high-angle annular dark-filed (HAADF) imaging, and secondary electron imaging (SE) were carried out with a 200-kV electron probe. A Thermo Scientific Noran System SIX (NSS) energy dispersive X-ray spectroscopy (EDX) system was used to collect elemental chemistry and X-ray maps.

The atomic-resolution transmission electron microscopy (TEM) images of the catalysts were collected using an FEI Talos F200X instrument operated at 200 keV at Center for Functional Nanomaterials at Brookhaven National Laboratory. With the aid of the ultra-bright field emitter, this instrument can image near diffraction limit in annular dark-field STEM (ADF-STEM) mode and routinely achieve 1.4–1.5 angstrom resolution. X-ray diffraction (XRD) measurements were carried out using a PANalytical Xpert pro X-ray diffractometer with Cu Kα radiation (λ=1.5418 Å) with a step size of 0.017° and 200 s/step in the 2θ range from 10° to 80°. The XRD was operated at 45 kV and 40 mA. The crystallite size of Fe₃O₄ was calculated by the Scherer equation.

⁵⁷Fe Mössbauer spectra were collected using a ⁵⁷Co radiation source mounted on a velocity transducer operating under a constant acceleration mode. Velocity was calibrated with a-Fe metal. During the measurements, the samples were kept at 4.2 K in a SuperVaritemp dewar designed by Janis Research (Wilmington, MA). Mössbauer spectral simulations were performed by using the WMOSS software package (SEE Co., Edina, MN). Isomer shifts are quoted relative to a-Fe metal at 25 °C.

X-ray absorption fine structure (XAFS) experiments were carried out at the 8-ID ISS beamline at National Synchrotron Light Source II (NSLS-II) at Brookhaven National Laboratory and the XAS beamline at Center for Advanced Microstructures and Devices (CAMD) at Louisiana State University. The Fe₃O₄/CNS and FeO/CNT catalyst samples were prepared by mixing with boron nitride (BN) (mass ratio of 1:2 due to their low Fe concentration) and were pressed into a pellet of ~1 mm in thickness. Reference samples such as Fe₂O₃, FeO, and FeO were mixed with BN with 5 wt.% Fe in BN. For X-ray spectroscopy experiments, fresh catalysts, catalysts reduced under He at 400 °C for 1 h, and catalysts undergoing FTO reaction conditions for different periods of time were prepared using a fixed-bed reactor under the same FTO conditions as the catalyst performance studies. All X-ray absorption measurements were conducted ex situ under ambient conditions. Fe K-edge XAFS data were collected in transmission mode for reference samples and in fluorescence mode for Fe₂O₄/CNS and FeO/CNT samples. The IFEFFIT software package was used to analyze the XANES and EXAFS data to obtain the local structural information of iron. FEFF6 was applied to calculate single scattering paths modeled the χ(R).[22]

Acknowledgements
We would like to thank Dr. Long Li and Dr. Kristin Bunker for their assistance with STEM experiments. This work was supported by the National Energy Technology Laboratory's ongoing research in Coal & Coal Biomass to Liquids under RES contract DE-FE0004000. This research used resources of the Center for Functional Nanomaterials, as well as beamlines 8-ID (ISS) and 23-ID-2 (IOS) of the National Synchrotron Light Source II, which are U.S. Department of Energy (DOE) Office of Science User Facilities operated for the DOE Office of Science by Brookhaven National Laboratory under Contract No. DE-SC0012704.

This project was funded by the Department of Energy, National Energy Technology Laboratory, an agency of the United States Government, through a support contract with AECOM. Neither the United States Government nor any agency thereof, nor any of their employees, nor AECOM, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Conflict of interest
The authors declare no conflict of interest.

Keywords: Fischer-Tropsch • olefins • catalysis • carbon support • iron oxide

A K promoted, carbon nanosheets supported iron oxide catalyst shows robust and extremely high activity for Fischer-Tropsch to olefins (FTO) synthesis. The carbon nanosheets support is shown to stabilize metallic Fe during the catalyst activation step which leads to more efficient transformation to catalytically active Fe$_5$C$_2$ under FTO conditions.

Highly Active and Stable Carbon Nanosheets Supported Iron Oxide for Fischer-Tropsch to Olefins Synthesis

Page No. – Page No.