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Abstract. We present the current development of a new ab initio ap-
proach for nuclear reactions that takes advantage of SU(3) symmetry
and its relevant dynamics combined with the resonating group method.
In this model, the structure of the clusters is based on the ab initio
symmetry-adapted no-core shell model, which enables the description of
spatially enhanced nuclear configurations. We will present the formalism
that involves the expression of the norm kernels in the SU(3) symmetry-
adapted basis, in addition to first results for the p-α, p-16O and p-20Ne
scattering reactions.

Keywords: Nuclear structure, nuclear reactions, group theory, astro-
physics

Introduction: The development of new experimental facilities has highlighted
the need for new microscopic nuclear reaction models. In addition, recent pro-
gresses in ab initio nuclear theory using realistic, QCD inspired, interactions as
well as many developments in high performance computing (HPC) have given
the necessary tools to theoretical approaches such as the no-core shell model to
provide an ab initio description of the structure of light nuclei [1, 2]. Its recent
implementation within the resonating group method (RGM) [3] has allowed a
microscopic study of nuclear reactions [4, 5], pursuing the long-lasting goal to
unify the nuclear structure and reactions. However, even with the development
of more advanced HPC techniques, the nuclear structure and reactions for cer-
tain mass region remain out of reach for ab initio approaches mainly due to
the the size of the configuration space. Recently, the symmetry-adapted no-core
shell model (SA-NCSM) [6, 7] which considers a more physically relevant basis,
has proven its efficacy and has been successfully applied to the description of
nuclear structure for nuclei up to medium mass. Motivated by the need for cal-
culated nuclear cross sections in experimental research and astrophysics studies,
and following the spirit of the NCSM/RGM, we combine the SA-NCSM with
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the RGM, with the view toward providing a complete description of structure
and reactions for binary reactions in which the projectile is a nucleon.

Unified Ab Initio Approach For Medium-mass Nuclei: In the RGM, the
wave function is expanded within a clusters basis:

|ΨJ
πT 〉 =

∑
ν

∫
r

drr2 g
JπT
ν (r)

r
Â |ΦJ

πT
νr 〉 , (1)

where the index ν gathers all quantum numbers defining channels and par-
titions: ν = {(A− a)α1I1T1; aα2I2T2; `s}, and the cluster states are defined as

|ΦJπTνr 〉 =
[
(|(A− a)α1I1T1〉 ⊗ |aα2I2T2〉)(sT )× Y`(r̂A−a,a)

](JπT )
δ(r−rA−a,a)
rrA−a,a

. The

wave functions gJ
πT

ν (r) in Eq.(1) are the quantities to be determined. They de-
scribe the relative motion between the target and the projectile for all channels
ν, and the cross section can be extracted from their asymptotic behavior. The
determination of gJ

πT
ν (r) is achieved by solving the Schrödinger equation:∑

ν

∫
drr2

[
HJπT
ν′ν (r, r′)− ENJπT

ν′ν (r′, r)
] gJπTν (r)

r
= 0 . (2)

Here, the Hamiltonian HJπT
ν′ν (r′, r) and norm NJπT

ν′ν (r′, r) kernels are expressed

as: 〈ΦJπTν′r′ | ÂÔÂ |ΦJ
πT
νr 〉, where Â is the antisymmetrizer ensuring the Pauli ex-

clusion principle, and they are computed using the wave functions of the clusters.
Once the kernels are computed within a given basis, Eq.(2) can then be solved
using an R-matrix approach.

An ab initio application of this approach is the NCSM/RGM which uses
ab initio NCSM wave functions generated using realistic interactions in order
to compute the kernels. The NCSM/RGM has then been succesfully applied
to the description of several nuclear reactions involving light nuclei. However
the method becomes numerically challenging for heavier systems due to the
size and complexity of the configuration space. In addition, the inversion of the
norm kernel as well as the treatment of the center-of-mass excitations become
challenging tasks when the number of channels increases. In this context, the
SA-NCSM combined with the RGM holds promise to obtain a unified ab initio
description of structure and reaction for intermediate- up to medium-mass nuclei.

In the SA-NCSM, the microscopic many-body basis (Slater determinants) is
based on the spherical harmonic oscillator single particle basis. In our case, we
consider a basis made of the irreductible representations according to the group
chain: SU(3)(λµ) ⊃κ SO(3)L ⊃ SO(2)ML

. Consequently, for any given total spin

and its projection JM , the wave function of a nucleus will be described within a
basis {|αi(λiµi)κi(LiSi)JiMi〉} with each components weighted by a coefficient
Ci, and where αi gathers additional quantum numbers needed to enumerate the
complete shell model space.

In the symmetry-adapted RGM (SA-RGM), the channels are defined by cou-
pling each components of the SA-NCSM wave functions between the projectile
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and the target. Consequently, the channels with good SU(3), spin and isospin
quantum numbers are given in the case of one nucleon projectile as:

|Φρ(λµ)κ(LS)JMTMT
γn 〉 = {|α1(λ1µ1)S1T1〉 ⊗ |(n0)

1

2

1

2
〉}
ρ(λµ)κ(LS)JMTMT

, (3)

where the index: γ ≡ {(A− a)α1(λ1µ1)S1T1; a 1
2

1
2} label our channel basis, (n0)

represents the SU(3) relative motion of the projectile, and
(

1
2

1
2

)
its spin and

isospin respectively. In this basis, the exchange matrix, which ensures the anti-
symmetrization in the kernels, has the following form (in conventional notations
[8]):

〈Φρ
′(λ′µ′)κ′(L′S′)JMTMT

γ′n′ | P̂A,A−1 |Φρ(λµ)κ(LS)JMTMT
γn 〉

=
1

A− 1
δρρ′δ(λµ)(λ′µ′)δκκ′δLL′δSS′

∑
τρo(λoµo)

Soρ̄

ΠτSoS′1T
′
1
(−1)

n+n′−(λo+µo)

× (−1)
T1+ 1

2 +T ′
(−1)

S1+ 1
2 +S′

{
S1 So S

′
1

1
2 S 1

2

}{
T1 τ T

′
1

1
2 T 1

2

}
×

√
dim(λoµo)

dim(n0)
U [(λ1µ1)(λoµo)(λ

′µ′)(n′0); (λ′1µ
′
1)ρ̄ρ′(n0)ρoρ

′′]

× 〈α′1(λ′1µ
′
1)S′1T

′
1| ||{a

†
(n0) 1

2
1
2

⊗ ã( ˜0n′)

1

2

1

2
}
ρo(λoµo)Soτ

|||α1(λ1µ1)S1T1〉ρ̄. (4)

An important advantage here is that the exchange matrix is diagonal within this
SU(3) basis, and this allows one to overcome numerical inversion of the norm.
So with such an approach, the dependence on angular momentum is defered to
the very last step in the calculations, and in turn, facilitates quick calculations
[9]. Then, only at the end we transform back to the partial waves expansion, i.e

|Φρ(λµ)K(LS)JMTMT
γn 〉 → |ΦJπTνn 〉 using the coefficients Ci, and calculate the norm

NJπT
ν′ν (r′, r) using the conventional formula [4].

In order to demonstrate the efficacy of the approach, we present a benchmark
calculation for p-4He. We compare the exchange part of the norm (see in Ref.[4])
using the two NCSM/RGM and SA-RGM approaches Fig.(1a). The SA-RGM
result has been obtained using a 4He wave function truncated to only several
SU(3) shapes. To illustrate the potential of applying this approach to heavier
systems, we present calculations of this exchange part for heavier system in
Fig.(1b), for p-16O and p-20Ne.

Hence those results show that the use of a physically relevant basis through
the SA-RGM is a promising approach, where truncated target wave functions
can be implemented to reach heavier system for nuclear reactions So far, the
spurious center-of-mass motion between the clusters has not been removed, but
it is expected to be negligible for reactions involving one nucleon plus an A > 16
target. This work presents the method to implement the RGM within an SU(3)
basis, more specifically how to take advantage of the SU(3) basis to calculate
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(a)

(b)

Fig. 1. (a) Exchange part of the norm kernel for p-4He. The target wave function is
calculated in a Nmax = 4 model space, and is truncated in the SA-RGM calculation
by selecting only components greater than 1%. The calculation of 4He was performed
using the chiral N2LOopt NN interaction. (b) Exchange part of the norm calculated
for two heavier system using SA-RGM. Target wave function has been generated using
the chiral N2LOsat NN in 10 shells (h̄Ω = 16 MeV) for 16O and the chiral N2LOopt

NN in 13 shells (h̄Ω = 15 MeV) for 20Ne, with selected SU(3) configurations that have
a contribution greater than 2%. In all calculations, the spurious center-of-mass motion
has been removed from the ab initio wave functions, but not from the cluster system.

the norm kernel. The same procedure will be used for the Hamiltonian kernel.
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4. S. Quaglioni and P. Navrátil, Phys. Rev. C 79, 044606 (2009)
5. S. Baroni, P. Navrátil and S. Quaglioni, Phys. Rev. Lett. 110, 022505 (2013)
6. T. Dytrych et al., Phys. Rev. Lett. 111, 252501 (2013)
7. K. D. Launey, T. Dytrych and J. P. Draayer, Prog. Part. Nucl. Phys. 89, 101 (2016)
8. J. P. Draayer and Y. Akiyama, J. Math. Phys. 14, 12 (1973)
9. K. T. Hecht, Nucl. Phys. A283, 223 (1977)


	New Ab Initio Approach to Nuclear Reactions Based on the Symmetry-Adapted No-Core Shell Model
	Recommended Citation

	tmp.1634140413.pdf.h0yKN

