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ABSTRACT 
 

Of the 36 species of felines in the world, all except the domestic cat are listed as 

endangered or threatened.  To preserve the genetic diversity of felines and other species, 

genome resource banks have been established.  Due to limited availability of germ cells 

for research, studies must use models to optimize the techniques before they are applied 

to endangered species.  In this study, preservation of oocytes and spermatozoa was 

examined using the bovine as a model for felines.  In the first series of experiments, 

bovine and feline oocytes were dehydrated, vitrified, warmed and cultured to assess their 

ability to undergo embryonic development using a choline-based medium (CJ2) for 

vitrification and warming solution preparation as well as the standard sodium based 

media.  In the second series of experiments, feline spermatozoa were dehydrated using 

air- and freeze-drying as alternative methods to standard cryopreservation.  Assessment 

was done by examining embryonic development after intracytoplasmic sperm injection 

(ICSI) and DNA integrity of the dehydrated spermatozoa using the comet assay.  In the 

second series of experiments, bovine and feline oocytes behaved osmotically in response 

to increasingly concentrated solutions.  However, vitrified-warmed bovine oocytes had 

significantly higher cleavage and blastocyst rates compared with their feline counterparts 

and development using CJ2 medium was similar to the standard media used for cattle but 

was detrimental to feline oocytes.  In the third experiment, cleavage and blastocyst 

development of feline oocytes injected with cat spermatozoa preserved using air- and 

freeze-drying was observed.  Also, exposure to the dehydration solution and vitrification 

did not induce DNA damage but the process of freeze-drying did have significantly 

higher levels compared with controls.  Air-dried sperm did not decondense.  In 

 xii



conclusion, the use of bovine oocytes as a model for feline oocytes was successful.  Both 

bovine and feline oocytes responded similarly to dehydration and vitrification, except 

when processed using CJ2 medium.  Furthermore, feline spermatozoa can be preserved 

using dehydration as demonstrated by their ability to produce blastocysts.  This study has 

encouraging results for germ cell preservation.  However, the efficiency of these 

procedures must be improved before they can be used as alternative methods of 

preservation in endangered species. 
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CHAPTER 1 
INTRODUCTION 

 
1.1 General Introduction 

1.1.1 Use of ART on Endangered Species 

Human activities such as mining, deforestation, agriculture, over-hunting and 

introduction of foreign species are leading causes of increased extinction rates of 

numerous species of animals (Sunquist and Sunquist, 2002).  The resulting habitat 

destruction has led to population fragmentation, which results in inbreeding and increased 

sensitivity to disease.  In situ conservation of threatened and endangered species is 

undoubtedly the best way to overcome such problems.  Unfortunately, uncooperative 

governments, local people and industry make this type of conservation unrealistic in most 

cases.  Therefore, ex situ conservation has become an essential tool in the preservation of 

endangered species.  The use of assisted reproductive techniques (ART) has become a 

valuable tool to help increase population size, to decrease species inbreeding and to re-

introduce lost genetics into the gene pool (Holt and Pickard, 1999).  These techniques 

involve a wide range of relatively noninvasive to extremely invasive methods, such as: 

artificial insemination (AI), embryo transfer (ET), in vitro fertilization (IVF), 

intracytoplasmic sperm injection (ICSI), nuclear transfer (NT) and embryo, oocyte and 

sperm cryopreservation.  Currently, the most widely used technique of assisted 

reproduction is artificial insemination (Comizzoli et al., 2000).   

One factor that severely limits the use of most reproductive strategies is the lack 

of basic knowledge of the reproductive biology of the species in question.  Although 

there have been innumerable studies of the reproductive biology of domestic species, 

fewer than 3% of mammalian species have been investigated at all and very little has 
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been done on endangered species (Comizzoli et al., 2000).  Species differ in their 

physiology, their anatomy and their sexual and social behavior.  With respect to 

reproduction, there are differences in ovulation patterns, hormones, estrous cycles, corpus 

luteum function, pregnancy maintenance, embryonic diapause, site of fertilization, 

implantation, gestation length, as well as many other facets of reproduction (Holt and 

Pickard, 1999, Comizzoli et al., 2000).   

In particular, the preservation of the germline is essential for the maintenance of a 

viable population.  The standard methods used include sperm, oocyte or embryo 

cryopreservation.  The problem with these methods of preservation is that they must be 

optimized for each species and access to their genetic material is very limited.  The 

ability to apply these reproductive biotechnologies is hampered due to the large variations 

in the reproduction of the different species (Comizzoli et al., 2000; Holt et al., 2003).   

1.1.2 Methods of Preserving the Germline of Various Species 

Even though there is a pressing need for such reproductive techniques, relatively 

few species have been preserved other than domestic and laboratory animals.  Techniques 

employed for oocyte and embryo preservation are standard equilibrium freezing and 

nonequilibrium freezing (such as vitrification).  Techniques used for sperm preservation 

include standard cryopreservation or slow cooling, rapid cooling and ultra-rapid cooling 

or vitrification and most recently, dehydration.  Oocytes of all species are sensitive to 

chilling injury making their cryopreservation very difficult (Vincent and Johnson, 1992; 

Leibo et al., 1996).  Further complicating matters is the small surface-area to volume 

ratio of oocytes.  This reduces the rate of water loss from the cell during dehydration, an  
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important part of standard slow cooling cryopreservation.  Dehydration is required to 

avoid intracellular ice formation (IIF) that may be detrimental to cell survival.  

Vitrification avoids IIF by rapidly changing the intracellular contents from a liquid to a 

solid “glass like” state (Rall and Fahy, 1985; for a review see Vajta and Kuwayama, 

2006).   

Other techniques that have been used to improve the efficiency of oocyte 

preservation are lipid removal, use of cytoskeleton stabilizers and microinjections of 

trehalose (Liebermann et al., 2002).  Although there have been many studies to improve 

the efficiency of oocyte preservation, in many nondomestic species, it has not yet been 

achieved.   

Sperm preservation has had significantly more success compared with the oocyte.  

Compared to the oocyte, sperm have very large surface-area to volume ratio which allows 

for more rapid dehydration during cryopreservation.  The first successful sperm 

preservation was reported in 1949 (Polge et al., 1949) whereas, oocyte cryopreservation 

was not successful until 1972 (Whittingham et al., 1972).  Semen collection and 

cryopreservation in cattle is a multimillion dollar industry where preserved sperm are 

routinely used for artificial insemination.  Sperm at various stages of maturation have 

also been successfully cryopreserved in 50 species (Wirtu, 2004).  However, it was not 

until 1992 that sperm from many strains of inbred mice were successfully cryopreserved 

using raffinose (Nakagata and Takeshiuma, 1992) and many other strains still do not 

survive using this technique.  Vitrification of human sperm has been recently attempted 

with and without cryoprotectants to overcome this problem (Nawroth et al., 2002).   
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Another alternative method used to preserve sperm cells is dehydration.  There 

are three types of dehydration: convective or evaporative drying, freeze-drying and air-

drying.  All of these types of dehydration render the sperm immotile and therefore unable 

to fertilize oocytes normally.  It was not until the mid 1970s, that Uehera and 

Yanagimachi (1976) first reported attempting to inject a single sperm directly into 

hamster oocytes using ICSI.  These injected sperm developed into pronuclei, a normal 

stage in fertilization.  Only then was fertilization using dehydrated sperm considered a 

possibility.  Freeze-dried sperm of three species have been used to produce live young of 

mice (Wakayama and Yanagimachi, 1998), rabbits (Liu et al., 2004) and rats 

(Hirabayashi et al., 2005).  However, no studies have been successfully completed on 

endangered or exotic species.   

1.1.3 Use of Domestic Species as Models for Endangered Species 

The limited availability of germ cells from endangered species makes direct 

research impractical in most instances (Holt and Pickard, 1999).  This is a major problem 

in the advancement of ART in nondomestic species.  Due to this limited access, studies 

using closely related nonendangered species can be done to optimize techniques.  Many 

studies have been completed using domestic species as a model for their endangered 

counterparts, such as felines, canids, camelids, deer and cattle (for a review see 

Comizzoli et al., 2000).  Models using unrelated species with similar physiological 

characteristics have also been used.  For example, ram sperm cryopreservation protocols 

have been applied to endangered deer species (Chemineau et al, 1991).  Due to limited  
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number of animals available as recipients for embryo transfer, interspecies transfers have 

been used as a successful tool for endangered species such as the gaur, horse, mouflon 

and Desert cat (for a review see Comizzoli et al., 2000).   

Another limiting factor to the direct study of endangered species is the regulation 

on animal acquisition and study.  To surmount this problem, investigators performing 

nuclear transfer have used donor cytoplasts to produce cloned offspring of a different 

species such as the gaur.  However, these alternative methods must consider the 

physiological similarities between species to find the best substitute.  One example of 

such a study is the use of bovine oocytes to test the fertilizability of cryopreserved oryx 

sperm and other Bos species by IVF (Roth et al., 1998). 

As previously mentioned, many mammalian oocytes have large lipid stores, 

which give them a dark appearance.  In mammals, the major lipid storage consists of 

saturated and monosaturated fatty acids (Gurr and Harwood, 1991 as cited in Kim et al., 

2001).  In oocytes, lipids are also used as a type of energy source, they are part of the 

cytoplasmic membrane and organelles and can adjust physiological functions (Kim et al., 

2001, Fujihira et al., 2004).  Lipid content varies from species to species and also varies 

with level of maturity.  Differences of color of the cytoplasm have been correlated to the 

amount of lipids within the cytoplasm (dark color and opaqueness of cytoplasm), 

although other factors such as pigments may also be involved (Fujihira et al., 2004).  

Analysis of the total level of lipid content in oocytes has been done for various domestic 

species such as sheep (McEvoy et al., 2000), pigs (Kim et al., 2001) and cattle (Genicot 

et al., 2005).   
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Furthermore, the lipid content has been reported to determine chilling sensitivity 

during cryopreservation (Dobrinsky, 1996; Otoi et al., 1997).  The decrease in lipid 

content observed in frozen-thawed bovine embryos may be a factor in the decreased 

survival and developmental rates observed although further study of the membranes is 

required (Kim et al., 2001).  Low cryotolerance has been linked to high lipid content and 

it may also increase the sensitivity of the organelles to low temperatures by altering the 

composition of their surrounding membranes (Otoi et al., 1997).  Lipids are also thought 

to interact with the oocyte cytoskeleton and these interactions are irreversibly affected 

during the cryopreservation (Fujihira et al., 2004).  In cattle, total lipid content decreases 

during the maturation process suggesting a vital role in developmental competence of the 

oocytes (Kim et al., 2001).  Decreases in the level of lipids after cryopreservation or 

vitrification may be due to breaks in the cytoplasmic membranes or damage to the 

cytoplasm (Fujihira et al., 2004).   

1.1.4 Feline Reproduction 

 In the last few decades, the understanding of feline biology has been greatly 

improved by the use of captive individuals in zoos and other collections.  There are 36 

species of cats in the world and almost all are considered either threatened or endangered 

by the Conservation on the International Trade of Endangered Species of Wild Fauna and 

Flora (CITES).  This global treaty to protect all species of life was established in 1975.  

Wild felines are found on all continents except Australia and Antartica.  Cats come in a 

large range of body sizes, from the smallest cat weighing only 1.0 kg (Black-Footed cat) 

to the largest weighing 320 kg (tiger) (Sunquist and Sunquist 2002).  Fortunately, they all 

have very similar anatomy, which makes comparative studies more practical.  In general, 
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most studies done in felines have used the domestic cat as the model for their endangered 

relatives.  To date, embryos have been cryopreserved in the domestic cat (Pope et al., 

1994; Gómez et al., 2003) as well as in a few endangered felines, such as the tiger 

(Crichton et al., 2003), the African Wildcat (Pope et al., 2000) and the ocelot (Swanson et 

al., 2000).   

Oocyte cryopreservation is currently limited to the domestic cat.  In contrast, 

sperm cryopreservation has been the most studied compared with oocyte and embryo 

cryopreservation.  Various studies have successfully cryopreserved sperm from domestic 

felids (Platz et al., 1978, Pope et al., 1991, Hay and Goodrowe, 1993; Lengwinat and 

Blottner, 1994; Stachecki et al., 1994; Tsutsui et al., 2000; Zambelli et al., 2002) as well 

as some endangered species (Byers et al., 1989, Donoghue et al, 1992, Swanson et al., 

1996a,b; Nelson et al., 1999, Bartels et al., 2000).  The big problem associated with 

sperm preservation in felids is the high incidence of teratospermia, which is highest in the 

cheetah with 75% abnormal sperm (for a review see Luvoni et al., 2003).  Vitrification or 

dehydration may be valuable alternatives in these species to overcome the problems 

associated with in vitro fertilization and standard cryopreservation. 

1.2 Review of Literature 

1.2.1 The Effect of Volumetric Changes of Bovine Oocytes Dehydrated with Two 
Disaccharides on the Cytoskeleton and Mitotic Spindle 

 
 Numerous studies have been done to determine the effect of water movement in 

living cells exposed to anisotonic solutions.  Membrane permeability is a fundamental 

property of cells, which is characteristic of each cell type (Leibo, 1980).  It has been 

demonstrated that osmotic stress on oocytes is detrimental to their developmental 

potential (Oda et al, 1992; Agca et al., 2000).  The effects of osmotic shock on cells were 
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initially conducted on various somatic cell types such as erythrocytes and on eggs of 

lower organisms such as sea urchins, amphibians and fish.  Since then, the osmotic 

behavior of different stages of mammalian oocytes and embryos has been examined.  

Although there has been quite a lot of interest in the permeability of water through the 

cell membranes of oocytes and embryos of different species, most of the studies have 

been done in the mouse (Leibo, 1980; Oda et al., 1992; McWilliams et al., 1995; Pedro et 

al., 1997).   

Osmotic behavior of oocytes has also been examined in a few other domestic 

species including the goat (Le Gal et al., 1994), the human (Hunter et al., 1992) and the 

cow (Ruffing et al., 1993; Agca et al., 1998, 2000).  One study examined the effect of 

osmotic stress on immature and mature bovine oocytes on fertilization and embryonic 

development but they used sodium chloride to create the anisotonic solutions (Agca et al., 

2000).  They reported a significant decrease in developmental rates in all oocytes exposed 

to hypertonic solutions.  However, sodium chloride has been reported to have a 

detrimental effect on cells in high concentrations due to the increased electrolyte 

concentration, which causes the destabilization of the plasma membrane (Lovelock, 

1954; Stachecki et al., 1998b; Acker and McGann, 2003).  Although Myers et al. (1987) 

examined the osmotic behavior of immature bovine oocytes using sucrose instead of 

sodium chloride, there has been no report of mature oocyte dehydration using a 

saccharide.   

Unfertilized mouse oocytes and zygotes behave as perfect osmometers (Leibo, 

1980).  This was determined by placing the cells into increasing hypertonic solutions and 

then measuring their volume at equilibration.  The cell volume relative to the isotonic 
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volume is plotted as a linear function of the reciprocal of the solution’s osmolality.  This 

is referred to as a Boyle van’t Hoff plot.  Extrapolations of the Boyle van’t Hoff plots to 

an infinitely high concentrated solution indicated a nonosmotic volume of 18% for mouse 

zygotes (Leibo, 1980).  This nonosmotic volume was confirmed by other studies, such as 

17% for immature bovine oocytes (Myers et al., 1987) and 21% for hamster oocytes 

(Shabana and McGrath, 1988).  This type of plot has also been constructed for various 

cell types and it has been found that all cells, with the exception of sperm cells and 

erythrocytes, have a nonosmotic volume of approximately 20%.   

Membrane permeability as well as nucleation temperature are used to create 

thermodynamic models which can be used to optimize equilibrium freezing protocols 

(Mazur, 1963).  Vitrification, a nonequilibrium freezing protocol, employs high 

concentrations of cryoprotective additives (CPAs).  Therefore step-wise addition is used 

to minimize damage to the cell caused by fluxes in cell volumes (Vajta and Kuwayama, 

2006).  Cell expansion upon warming and CPA removal is another cause of membrane 

damage (Hotamisligil et al., 1996).  Therefore, ways to minimize the effects of osmotic 

stress on oocytes must be examined to determine the optimal method of cryopreservation. 

The dehydration of oocytes that occurs during cryopreservation is essential to 

their survival.  Due to their low surface to volume ratio, cryopreservation of mammalian 

oocytes has had low success, with the exception of the mouse (Stachecki and Willadsen, 

2000; Parks and Ruffing, 1992).  There are two major mechanisms of cryoinjury, 

intracellular ice formation and solution effects (Mazur et al., 1972).  Intracellular ice is 

formed during rapid cooling when there is not enough time for water to exit the cell.  

Therefore, large ice crystals form within the intracellular compartments.  These crystals 
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will cause breaks in the cell membranes and can also damage cell organelles.  If the 

oocyte is allowed to dehydrate before intracellular nucleation, intracellular ice crystals do 

form but they are much smaller whereas, the bulk of the ice crystal formation is 

extracellular and therefore does not cause significant damage to the cell. 

During standard cell cryopreservation, CPAs such as glycerol, dimethylsulfoxide 

(DMSO) and ethylene glycol (EG) are added to the medium.  The oocyte can be exposed 

to the CPAs as a single step or as a multiple step addition.  Both permeating and 

nonpermeating CPAs are used to cause a shift in the isotonic state between the 

intracellular and extracellular spaces of the cell that causes water to flow out of the cell.  

Permeating CPAs can produce large cell volume changes during both the freezing and 

thawing processes.  During freezing, the extracellular space will become hypertonic due 

to the increase in solutes compared with that in the intracellular spaces.  Therefore, water 

leaves the cell resulting in cell shrinkage (Mazur and Schneider, 1986).  During thawing, 

a rapid influx of water into the cell due to the higher intracellular solute concentration, 

before the permeating CPA can be removed, can result in osmotic shock and cell lysis 

(Mazur and Schneider, 1986).  The water enters the cell faster than the solute can exit 

therefore increasing the cell volume beyond its lytic volume.  Protocols that require 

minimal cell volume excursions should be used to reduce cellular membrane damage.   

In addition to physical damages incurred by volume changes, a toxic solute effect 

on the cellular membrane and other organelles may be caused by the high concentrations 

of solutes surrounding the cell as well as the permeating CPAs entering the cell during 

dehydration.  Different CPAs offer different levels of protection during the freezing and 

thawing process depending on the relative permeability of the particular cell type.    
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Therefore, cryopreservation protocols have been devised to minimize intracellular ice 

formation, cell volume excursions, as well as to decrease the time the cells are exposed to 

high concentrations of solutes in the freezing medium. 

 Contraction of cell membranes during dehydration around the nucleus causes re-

arrangement of organelles including the cytoskeleton and the meiotic spindle.  The 

abruptness and extent of this disruption may be a contributing factor to the decreased 

survival of cryopreserved oocytes.  Most mammalian oocytes are cryopreserved at the 

metaphase-II (MII) stage.  At this stage, the chromosomes are attached to the 

microtubules at their centrosomes and are pulled into the equatorial region of a barrel-

shaped structure before cell division.  If the chromosomes are not properly aligned, there 

is unequal division resulting in aneploidy.  During cellular division, the chromatin 

condenses and distinct chromosomes which then migrate to an equatorial position during 

prophase.  After reaching this equatorial position during metaphase, the chromosomes 

divide through metaphase-anaphase and then cellular division follows during telophase 

(cytokinesis) (for a review see Johnson and Everitt, 2000).   

Depolymerization of tubulin has been related to the decreased fertilization and 

developmental rates in many species.  Factors known to lead to the disruption of the 

cytoskeleton and microtubule structure of the metaphase spindle in oocytes are 

temperature and chemicals used during cryopreservation.  The effect of temperature on 

spindle morphology has been studied in the mouse (Magistrini and Szollosi, 1980; 

Pickering and Johnson, 1987), human (Pickering et al., 1990) and in cattle (Aman and 

Parks, 1994).  Oocytes of some species, such as the pig, are more sensitive to chilling 

injury than others.  In the pig, removal of some of the cytoplasmic lipids is required for 
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survival post-cryopreservation.  In the mouse, after 60 minutes at 0ºC, MII-stage oocytes 

exhibited complete spindle disassembly (Magistrini and Szollosi, 1980).  In the cow, 

cooling oocytes to 4ºC for 20 minutes resulted in complete disorganization of the meiotic 

spindle and those maintained at room temperature for 30 minutes had disrupted or 

abnormal spindle morphologies (Aman and Parks, 1994).  In another study, Wu et al. 

(1999) also observed spindle disassembly and reduced cleavage rates after fertilization in 

oocytes chilled to 4ºC for 10 minutes but they did not observe any difference in oocytes 

held at room temperature compared with control oocytes.   

The effect on embryonic development of bovine oocytes exposed to room 

temperature was also examined by Martino et al. (1996) and they observed no difference 

in cleavage and blastocyst rates compared to control oocytes.  Extended exposure of 

oocytes to room temperature can also cause microtubule disruption.  Pickering et al. 

(1990) observed that human oocytes also exhibited tubulin disassembly if maintained at 

room temperature for only 30 minutes.  Therefore, human oocytes are more sensitive to 

cooling than bovine and mouse oocytes.  This variability in response to different 

temperatures may explain the need to devise cryopreservation protocols for each species 

specifically.  However, this disruption may or may not be reversible depending on the 

amount of damage incurred and the species involved.  In some species, rewarming of the 

oocyte, such as in the mouse and to a lesser extent in the human, can result in the 

reorganization of the meiotic spindle.  This ability to reverse the damaging effects of 

cooling on the cytoskeleton has been reported not to occur in the bovine oocyte (Aman 

and Parks, 1994).  Actin microfilaments are not as sensitive to cooling compared with 

microtubules, but they can be disrupted by exposure to various CPAs. 
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Chemicals used during cryopreservation, such as CPAs, have also been shown to 

have detrimental effects on both the actin and tubulin configurations of oocytes.  

Propanediol (PrOH) can induce depolymerization in rabbit oocytes and DMSO will do 

the same in the mouse whereas, DMSO has little detrimental effect on the rabbit 

cytoskeleton (Vincent et al., 1989).  Only a few studies have examined the effects of 

different CPA exposure to mature bovine oocytes.  Saunders and Parks (1999) examined 

the effects of ethanediol on bovine oocytes.  They observed abnormal actin distribution 

and depolymerization of tubulin in the majority of the treated oocytes.  Mixtures of two 

low concentrations of cryoprotectants, which add up to a high total concentration, have 

also been shown in some cases to have less of a disruptive effect than the same total 

concentration using a single CPA (Liebermann et al., 2002).  Besides temperature and 

chemical damage, cryopreservation is also a major contributor to cytoskeletal damage.   

1.2.2 Blastocyst Formation from Vitrified Bovine Oocytes, Zygotes and 2-Cell 
Embryos 

 
One common problem in oocyte cryopreservation is their large, spherical size.  

Oocytes have a smaller surface area compared with their large internal volume which 

may contribute to a decrease in their rate of dehydration, an essential step in limiting the 

formation of intracellular ice.  Therefore, either longer exposures to CPAs is required for 

slow cooling rates to allow for better dehydration or higher concentrations of CPAs 

compared with embryo protocols are required for rapid cooling protocols to increase the 

speed of dehydration.  Longer exposure of oocytes to CPAs has been thought to be toxic 

and a major cause of poor survival.  The detrimental effects of the increased 

concentration of CPAs used in vitrification are reduced due to the short time that oocytes 

are exposed to them during the vitrification.   
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The degree of oocyte maturation, from the germinal vesicle (GV) stage to the MII 

stage, has also been shown to have an effect on survival post-vitrification in some species 

(Parks and Ruffing, 1992).  At the MII stage, the DNA of the oocyte is condensed into 

chromosomes that are aligned along the equatorial region of the metaphase spindle.  This 

stage is thought to be more susceptible to disruption than the GV-stage or the developing 

embryo in which the DNA is decondensed chromatin of interphase.  However, in cattle, 

GV-stage and MII-stage oocytes behaved similarly to cooling to 10º or 0º for ~30 

minutes (Martino et al, 1996).  Both stages of oocytes exhibited a decrease in cleavage 

and blastocyst rates after chilling.  Also, during cooling the disruption of the meiotic 

spindle can cause the chromosomes to separate from the spindle resulting in disjunction 

and aneuploidy in the fertilized embryo.  Only 31% of the frozen-thawed mature bovine 

oocytes (Saunders and Parks, 1999) and 16% to 19% of human oocytes (Boiso et al., 

2002) had normal chromosome arrangements after cooling.   

Species differences introduce other factors that can decrease their survival post 

cryopreservation, such as their cytoplasmic lipid content and chilling sensitivity.  

Damage to the oocytes can be caused by alterations in the physicochemical properties of 

the cytoplasmic lipids during the freeze-thaw process (Isachenko et al., 2001a).  The 

exact cause of this damage in unknown but it may be due to the interaction of the lipids 

with the cytoskeleton.  Upon hardening, the lipids may cause disruption in the 

arrangement of microtubule and microfilaments that make up the cytoskeleton (Isachenko 

et al., 2001a).  Although cytoplasmic lipids are found in oocytes of many species, the 

type and amount of lipids vary tremendously.  Nagashima et al. (1994) found that 

removal of these cytoplasmic lipids, referred to as delipation, from cleavage-stage 
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porcine embryos increased survival and live young were produced.  This process has also 

been used in porcine GV-stage oocytes with limited success (Park et al., 2005).  Although 

the most extensive research has been done in mice and cattle, oocytes of several other 

species including human have been successfully preserved using both standard 

cryopreservation and vitrification. 

Vitrification is a type of ultra-rapid cooling first developed by Rall and Fahy in 

1985.  Vitrification is a quick and simple technique compared with standard slow cooling 

or equilibrium freezing protocols which take at least 90 minutes to several hours to 

complete.  It also is less expensive because it eliminates the use of programmable 

freezers (for a review see Liebermann et al., 2002; Shaw and Jones, 2003).  Vitrification 

was first proposed by Luyet (1937) as a method to avoid the damaging crystallization of 

intracellular water by creating a vitreous state instead.  Cooling rates of standard slow 

cooling are 0.2ºC to 20ºC/minute versus in vitrification, cooling rates exceed 

20,000ºC/minute (Vajta et al., 1997).  These rates are achieved by using very small 

volumes of vitrification solution, as little as 1 µl compared with 0.25 ml used in standard 

cryopreservation in straws (Martino et al, 1996).  To achieve these small volumes, 

various holders or tools have been employed such as straws, open pulled straws (OPS), 

insemination pipettes, flexipet-denuding pipette (FDP), electron microscope  

copper grids, microdrops, solid surface metal blocks, nylon coils or mesh, cryoloops and 

most recently, CryoTops (for a review see Liebermann et al., 2002; Vajta and 

Kuwayama, 2006). 

Besides the use of ultra-rapid cooling rates, high concentrations of CPAs are 

employed.  The process of vitrification uses a 10 fold higher concentration of both 

 15



permeating (e.g., glycerol, DMSO and EG) and nonpermeating (e.g., sucrose, glucose, 

trehalose) cryoprotectants.  High concentrations of CPAs depress ice crystal formation 

(Liebermann et al., 2002).  Due to the high concentrations of CPAs, besides rapid cooling 

rates, rapid warming rates are also important to avoid osmotic shock and toxic exposure 

to the cell.  Methods used to minimize the toxic effects of CPAs are the following: 

Substitution of an amino group for a hydroxyl group to increase the ability of the solution 

to undergo vitrification, increasing the hydrostatic pressure of the solution to reduce the 

temperature at which nucleation occurs and reducing the amount of the CPA to its 

minimal concentration (Liebermann et al., 2002).  The latter can be achieved either by 

using a nonpermeating CPA, such as a saccharide, or by using a combination of two 

CPAs, each of which will be at a lower concentration but the combined concentration 

will remain effective.   

The first report of successful vitrification was done using mouse embryos (Rall 

and Fahy, 1985).  It was not for another decade that this technique was first successfully 

used on bovine oocytes (Martino et al., 1996) and early embryos (Vajta et al., 1997).  

Human oocyte vitrification resulting in a live birth was only recently achieved 

(Kuleshova et al., 1999).  To date, embryos of various species and at various stages of 

development have been vitrified in the mouse (Rall, 1987; Wood et al., 1993; Rall and 

Wood, 1994; Nakao et al., 1997; Uechi et al., 1999; Kito et al., 2003), rat (Han et al., 

2003; Kono et al., 1988), rabbit (Silvestre et al., 2003; Cai et al., 2005), cat (Crichton et 

al., 2003), a mustelid (Piltti et al., 2004), pig (Dobrinsky, 1996; Gajda and Smorag, 2000; 

Berthelot et al., 2000; 2001; Gajda and Smorag, 2002; Esaki et al., 2004), sheep (Naitana 

et al., 1997; Papadopoulos et al., 2002; Dattena et al., 2004), goat (El-Gayar and Holtz, 
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2001; Begin et al., 2003), several bovid species (cattle: Massip et al., 1986; Rizos et al., 

2003; buffalo: Hufana-Duran et al., 2004), llama (Aller et al., 2002), horse (Hochi et al., 

1996; Moussa et al., 2005), a nonhuman primate (Yeoman et al., 2001) and the human 

(Katayama et al., 2003; Son et al., 2002; 2005).   

There has been some success in oocyte vitrification with mammalian species.  

Oocytes of different maturational stages have successfully been vitrified in various 

species, such as the mouse (Nakagata, 1989; van der Elst et al., 1992; Wood et al., 1993; 

Hotamisligil et al., 1996; Isachenko and Nayudu, 1999; Chen et al., 2000; 2001; Lane and 

Gardner, 2001), hamster (Critser et al., 1986; Lewin et al., 1990; Wood et al., 1993; Lane 

et al., 1999b), pig (Park et al., 2005) cat (Murakami et al., 2004), sheep (Isachenko et al., 

2001b), goat (Begin et al., 2003), a few bovid species (cattle: Vajta et al., 1998; Le Gal et 

al., 2000; Rho et al., 2002; Men et al., 2003a,b; Chian et al., 2004; Modina et al., 2004; 

buffalo: Wani et al., 2004), horse (Maclellan et al., 2002) and the human (Kuleshova et 

al., 1999; Wu et al., 2001; Kuwayama et al., 2005).  Although there has been some 

success in preserving oocytes and embryos of domestic species, very few exotic or 

endangered species have been preserved using vitrification.  This may be due to the 

limited genetic material available to determine efficient methods of vitrification in these 

species. 

Various chemicals and solutions are used to prepare the vitrification medium.  All 

media begin with a similar isotonic solution containing a buffer, usually either a 

phosphate-buffered saline or a HEPES-buffered medium (Liebermann et al., 2002).  Both 

of these solutions allow for the manipulations to be done in air without experiencing a pH 

shift whereas, bicarbonate-buffered medium must be gassed to maintain a proper pH 

 17



throughout the protocol.  The next major component is the CPA used to confer protection 

during the cooling process.  As previously mentioned, high concentrations of CPAs are 

used to create a viscous solution capable of making the liquid to solid transition without 

the formation of ice.  The most common CPA used for vitrification procedures is EG.  It 

appears to be less toxic to both oocytes and embryos and rapidly diffuses across the cell 

membranes (Emiliani et al, 2000).  Other CPAs used include glycerol, PrOH and DMSO.   

In addition, sugars such as sucrose, glucose, fructose, raffinose and most recently 

trehalose are often an important part of the vitrification solution.  Sugars with high 

molecular weights like disaccharides do not permeate the cell and can therefore reduce 

the amount of cryoprotectant required for successful vitrification.  However, the 

components and their concentrations used to make up the vitrification solution has varied 

(for a review see Ali and Shelton, 1993; Pedro et al., 2005).  For instance, in some 

species DMSO is more toxic than EG or sucrose is more effective than trehalose. 

Most of the current vitrification solutions contain sodium.  Recent studies have 

demonstrated the detrimental effects of sodium on mouse oocytes (Stachecki et al., 

1998a,b).  It has been proposed that a sodium ion overload may occur during cooling 

because the sodium/hydrogen pump is impaired.  Stachecki et al. (1998a,b) proposed the 

use of choline as a substitute cation for sodium and have reported significantly higher 

blastocyst rates of oocytes cryopreserved in the choline-substituted medium (CJ2) 

compared with those frozen in standard cryopreservation media.  Choline is an organic 

osmolyte, which is thought to confer protection to cellular membranes during freezing 

(Stachecki et al, 2002).  Unlike sodium, choline is thought not to cross the cell membrane 

and would therefore not disrupt the intracellular ion load.  However, CJ2 medium has 

 18



only been employed using conventional freezing methods and has not been attempted in 

conjunction with vitrification to date.  Furthermore, mouse oocytes frozen in CJ2 medium 

are always fertilized after the zona has been artificially breached. 

1.2.3 The Effect of Volumetric Changes of Feline Oocytes Dehydrated with Two 
Saccharides 

 
As previously mentioned, numerous studies have been done to determine the 

effect of water movement in cells exposed to anisotonic solutions.  Membrane 

permeability is a fundamental property of cells, which is specific for each cell type 

(Chamberlin and Strange, 1989; Critser et al., 1997).  Previous studies have demonstrated 

that osmotic shock is lethal to cells and must be considered when designing a 

cryopreservation protocol (Oda et al, 1992; Agca et al., 2000).  Osmotic shock occurs 

when a cell is rapidly diluted out of a hypertonic solution into an isotonic solution.  The 

cell will expand larger than its original isotonic volume and this can lead to cell lysis.  

The physiological response of cells to anisotonic solutions is cell volume changes.   

During cryopreservation, volume changes occur during exposure to the CPA, 

during freezing and during warming.  If these changes are abrupt, cellular membranes 

may be damaged and cell lysis can occur.  Various studies have examined the osmotic 

behavior of mammalian oocytes and embryos, which include the mouse (Leibo, 1980; 

Toner et al., 1991; Oda et al., 1992; Pedro et al., 1997), the sheep (Szell et al.1989), the 

goat (Le Gal et al., 1994), the cow (Ruffing et al., 1993; Agca et al., 2000), the monkey 

(Songsasen et al., 2002) and the human (Paynter et al., 2001, 2005; McWilliams et al., 

1995).  In these studies, the effect on fertilization and embryonic development of osmotic 

stress on immature and mature oocytes was examined.  In the mouse, unfertilized mouse 

oocytes and zygotes were found to behave as ideal osmometers (Leibo, 1980).  To 
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determine a cells osmotic behavior, it is placed into increasingly hypertonic solutions and 

their volumes are measured at equilibrium.  The results are plotted as a function of the 

exposed cell volume relative to the isotonic volume, as a linear function of the reciprocal 

of the solution’s osmolality in a Boyle van’t Hoff plot.  Extrapolations of the linear 

regression line for a cell in an infinitely concentrated solution represents the nonosmotic 

volume of the cell.  Nonosmotic volumes range from 18% in the mouse to 32% in cattle 

(Leibo, 1980 and Ruffing et al., 1993, respectively).   

 Besides the injury of volume excursions, oocytes must tolerate toxic levels of 

CPAs generally used in cryopreservation and vitrification protocols.  Detrimental effects 

of CPAs depend on three factors, their concentration, the temperature at which the cells 

are exposed and the length of time to which the cells are held.  Adding to the problem is 

that CPA toxicity is very speciesspecific.  For example, rabbit oocytes exposed to PrOH 

and DMSO exhibit depolymerization of their microtubules and disruption of the actin 

microfilaments (PrOH only) (Vincent et al., 1989).  In the mouse, PrOH and DMSO 

cause disruption of actin microfilaments and disorganization in the microtubules at low 

doses of PrOH (Johnson and Pickering, 1987; Vincent et al., 1990; Joly et al., 1992).   

These effects are temperature dependant, as were those during cooling and the 

detrimental effects on the microtubules may be reversed.  Also, exposure of bovine 

oocytes to EG at room temperature resulted in abnormal spindle morphology greater than 

with cooling alone (Saunders and Parks, 1999).  There has been very little study of the 

effects of various CPAs on feline oocytes.  One study evaluated the effects of PrOH and 

EG on mature cat oocytes and found that all concentrations used (except 1.5 M PrOH) 

caused disruption of the meiotic spindle (Comizzoli et al., 2004).  The effects of DMSO 

 20



and that of a combination of CPAs have not yet been examined in the cat.  Therefore, the 

choice of CPAs must be examined for each species before an appropriate protocol can be 

established.   

 Dehydration can cause detrimental effects to the cell by altering the structure of 

the cytoskeleton and displacing the chromosomes.  This effect is thought to be more 

severe in mature, MII-stage oocytes due to the structure of the meiotic spindle.  If the 

spindle is disrupted, normal fertilization cannot occur because the chromosomes are 

dispersed.  This results in disjunction during syngamy and the resulting embryos are 

aneuploid.  As in the case of CPAs, severe dehydration may disrupt the actin 

microfilaments and the microtubule arrangement of the meiotic spindle.  Besides the 

disruption of cytoskeletal features, cytoplasmic membranes are also affected by severe 

dehydration.  There is a potential loss of some of the cytoplasmic membrane so that when 

the cell is returned to isotonic conditions, the cell can no longer expand to its original 

volume and lysis occurs.  This loss is thought to result from the fusion of membranes 

(Wolfe and Bryant, 1999).  This theory is, however, disputed as the hydrostatic forces of 

the lipid bilayers would make this impossible unless all water of hydration was removed 

(Mazur, 2004).  Overall, many factors affect the survival of oocytes during the 

dehydration process of preservation using cryoprotectants.   

1.2.4 Embryo Development of Vitrified Feline Oocytes with Two Different Diluents 
(CJ2 and M199 Media) 

 
 The first report of live offspring in domestic felines produced by ART used 

cryopreserved sperm in conjunction with artificial insemination (AI) (Platz et al., 1978).  

Since then, a few nondomestic feline species (cheetah, ocelot and the Leopard cat) have 

produced offspring after being surgically inseminated with cryopreserved sperm 
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(Swanson et al, 1996a; Howard et al, 1997).  However, oocyte cryopreservation has been 

much less successful.  Only two studies to date have reported in vitro development from 

either cryopreserved or vitrified-warmed domestic cat oocytes (Luvoni and Pellizzari, 

2000; Murakami et al., 2004).  There have been no reports of cryopreserved endangered 

feline oocytes to date.   

The relatively low success of oocyte preservation may be due to their high lipid 

content and the inability of cryoprotectants to pass through the plasma membrane 

(Luvoni, 2000).  However, cryopreservation of cleavage-stage embryos has had greater 

success in the domestic cat (Gómez et al., 2003) and also in a nondomestic species (tiger) 

(Crichton et al., 2003).  To understand the low success in feline oocyte preservation, 

Comizzoli et al. (2004) assessed the effect of CPAs on feline oocytes.  They observed 

that exposure to either ethylene glycol EG or PrOH causes a high incidence of abnormal 

spindle morphologies and decreased blastocyst development, with the exception of 1.5 M 

PrOH at 25ºC.  Luvoni et al. (1997, 2000) also reported detrimental effects of CPAs and 

cryopreservation on feline oocytes.   

 Various components make up the vitrification solution used for oocyte 

preservation.  First, there is the base medium which is generally composed of a buffered 

saline solution, such as TCM-199 or phosphate-buffered saline (PBS).  These solutions 

contain high levels of sodium which is detrimental to embryonic development in mouse 

oocytes due to the increased cation load during dehydration and cooling process 

(Stachecki et al., 1998b).  To reduce this detrimental effect, Stachecki et al. (1998a) have 

developed CJ2 in which the sodium is replaced by choline.  A 40% increase in blastocyst  
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development was observed compared with a sodium-based medium.  This choline-based 

medium has been also successfully used to preserve human oocytes (Quintans et al., 

2002).   

Besides the base medium, vitrification solutions contain CPAs such as EG, PrOH, 

DMSO or propylene glycol (PG).  In addition to the permeating CPAs, nonpermeating 

CPAs such as sucrose, glucose or trehalose have been used in the cryopreservation/ 

vitrification medium.  In the cat, 40% EG and 0.3 M sucrose were used successfully to 

vitrify oocytes (Murakami et al., 2004).  These authors used a two-step dilution beginning 

with 20% EG only followed by the vitrification solution described above.  Two-step 

dilutions allow for the oocyte to dehydrate slowly avoiding osmotic shock due to the high 

concentrations of CPAs used.  Luvoni et al. (1997) found no significant difference in the 

resumption of meiosis of cryopreserved feline oocytes using either DMSO or EG.   

Various instruments have been used for oocyte cryopreservation.  For 

cryopreservation, standard 0.25 ml straws are used and loaded into a controlled rate 

freezer.  Different instruments have been used for vitrification, such as open pulled 

straws (OPS) (Vajta et al., 1998), electron microscope grids (Martino et al., 1996), 

cryoloops (Lane et al., 1999a) and CryoTops (Kuwayama et al., 2005).  The last two 

devices have significantly improved the success of embryonic development after 

vitrification by decreasing the minimum volume required and subsequently increasing the 

cooling rates.  For example, the OPS method makes use of a 1.5 µl volume whereas, the 

CryoTop method uses a <0.1 µl volume.  Consequently, the cooling and warming rates  

 23



increases from ~16,000ºC/minute to 23,000ºC/minute for cooling and 14,000ºC/minute to 

42,000ºC/minute for warming (Kuwayama et al., 2005).  In the cat, only straws have been 

used to date for oocyte vitrification (Murakami et al., 2004).   

1.2.5 Blastocyst Development from Feline Oocytes Injected with Dehydrated Feline 
Spermatozoa 

 
Natural dehydration of organisms was first described by Antoine van 

Leeuwenhoek in 1702 when he observed the rehydration of what he called “animalcules” 

(McGinnis et al., 2005).  The technique of dehydration was first attempted by Polge et al. 

(1949) using fowl sperm.  Briefly, they exposed the sperm to a 20% or 30% glycerol 

solution, cooled it to -79°C, then rewarmed it to -25°C, attached the sample to a freeze-

dryer, rehydrated and warmed the sample to 40°C before they assessed motility.  The 

authors reported a maximum of 50% motility but they did not assess fertility of the 

sperm.  There have been a few reports of success in rabbits (Yushchenko, 1957 as stated 

in Wakayama and Yanagimachi, 1998) and in cattle (Larson and Graham, 1976) after AI 

with freeze-dried spermatozoa, but these studies could not be verified by others.  These 

reports are considered suspect because the freeze-drying process renders the sperm 

immotile.   

It was not until the advent of intracytoplasmic sperm injection (ICSI) that 

immotile, dried sperm was re-examined.  In brief, a single spermatozoon is selected and 

injected directly into the cytoplasm of a mature oocyte.  This bypasses the normal 

processes of fertilization, including the acrosome reaction and membrane fusion.  These 

reactions are necessary to initiate pathways responsible for oocyte activation.  Activation 

is required for the oocyte to resume meiosis and allow for the extrusion of the second 

polar body.  Uehera and Yanagimachi (1976) reported the first successful production of 
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embryos by injecting hamster sperm into a mature hamster oocyte.  They observed male 

pronuclear formation within the hamster oocytes and embryos.  It was not until decades 

later that the first accepted report of live young was produced with freeze-dried sperm 

using ICSI in mice by Wakayama and Yanagimachi (1998).  Since this first report, there 

have been a handful of studies involving the use of freeze-dried or dried sperm.  Most of 

the studies to date have been done in the mouse (e.g., Kusakabe et al., 2001; Pangestu et 

al., 2000; Bhowmick et al., 2003; Kaneko et al., 2003a,b; Ward et al., 2003).  Live young 

have also been produced using freeze-dried sperm in a few other species, such as the 

rabbit (Liu et al., 2004) and the rat (Hirabayashi et al., 2005).  Embryo production has 

also been accomplished in the cow (Keskintepe et al., 2002) and the pig (Kwon et al., 

2004) using freeze-dried sperm. 

There main types of sperm dehydration are convective or evaporative drying, air-

drying and freeze-drying.  The first employs a very simple procedure of drying a sample 

at room temperature while freeze-drying involves a three-step process including freezing, 

sublimation or primary drying and diffusion/desorption or secondary drying (Acker et al, 

2004).  In convective or evaporative drying, the sample is placed onto a surface across 

which an inert gas such as nitrogen is passed (forced convection), or it is left out in the 

open (passive convection).  In both cases, as long as the vapor pressure of the 

surrounding environment is less than that at the surface of the sample, water will 

evaporate thereby drying the sample (Acker et al., 2004).   

Although natural convection is a simple technique, it has a much slower drying 

rate compared with other drying techniques because it is dependant upon the relative 

humidity level of the sample’s environment.  The major disadvantage of this type of 
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drying is that the final moisture level is unknown and there is always humidity left in 

both open and closed environments.  Forced convection can provide more rapid drying 

rates than natural convection by blowing desiccated air or a gas over the sample.  The 

rate of drying depends on the temperature, velocity of gas and the shape and size of the 

container holding the sample (for a review see Acker et al., 2004).  Because of the 

continuous flow over the sample, a lower level of dehydration can occur compared with 

natural convection, as the moisture released from the sample is immediately removed 

from the environment.   

Air-drying is the simplest method of dehydration.  It involves the simple 

evaporation of the sperm sample into the air.  The rate of evaporation will vary depending 

on the temperature and the relative humidity of the environment to which the sample is 

exposed.  To increase the evaporation rates, the temperature of the sample must be raised 

and the humidity of the room be decreased.  With this method of drying, these variables 

are much more difficult to control compared with convective or freeze-drying. 

Freeze-drying involves the freezing of the sample to separate the unbound water 

from the cells (~80% of water in the original solution) in the form of ice.  This is called 

the primary drying phase whereby the water is removed by sublimation.  Usually the 

sample is kept below 0ºC and at a high vacuum (<100 mbar).  This drying occurs until 

the sample undergoes the glass phase transition at which point secondary drying will 

occur.  The temperature of the container is then raised above the glass transition point to 

allow for the removal of the bound water (20% water of hydration), during the second 

phase of drying.  This phase allows the remaining water to be removed by desorption (for 

a review see Acker et al., 2004).  This last step is very sensitive to permutations.  The 
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temperature must be raised in a controlled manner and not exceed the critical temperature 

at which the sample looses it ability to rehydrate properly.  The resulting product is a 

lyophilized sample that can be stored at room temperature or refrigerated. 

There are several advantages and disadvantages of preserving sperm using the 

different types of dehydration.  Evaporative or convective drying has the advantage of 

being simple and requires less expensive instruments than does freeze-drying and all 

steps can be performed at room temperature.  The main disadvantage of this method of 

dehydration is unequal drying rates for the front and end of the container.  In order to 

minimize this effect, the flow rate can be increased and the container size decreased.  

With freeze-drying, the removal of the water of hydration by desorption enables further 

dehydration compared with evaporative or convective drying.  The rate of drying is 

dependant on the sample temperature and the vacuum pressure produced by the freeze-

drying apparatus.  The major problem with this type of drying it that it is very time-

consuming as drying may take from several hours to a few days to complete.  Although 

this technique does require the use of liquid nitrogen, it is still more efficient than 

standard cryopreservation because the dried samples can be stored at room temperature or 

refrigerated. 

Since the first successful report of sperm dehydration, various studies have been 

reported using different methods of drying.  Although simple methods of sperm 

desiccation like convective (Bhowmick et al., 2003) and evaporative drying (Pangestu et 

al., 2000) have been studied, the most common method of dehydration remains freeze-

drying (Wakayama and Yanagimachi, 1998; Kusakabe et al., 2001; Keskintepe et al., 

2002; Bhowmick et al., 2003; Kaneko et al., 2003a,b; Ward et al., 2003; Kusakabe and 
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Kamiguchi, 2004; Kwon et al., 2004; Liu et al., 2004; Hirabayashi et al., 2005).  In 

general, a 100 µl sperm suspension is transferred to a glass ampule or microcentrifuge 

tube, which is immediately plunged into LN2 for 20 to 30 seconds up to 10 minutes.  The 

ampule is then connected to a freeze-dryer for 4 (Kusakabe et al., 2001) to 18 hours 

(Wakayama and Yanagimachi, 1998; Keskintepe et al., 2002) and then sealed.  The inlet 

pressure reported varied tremendously for each study (Inlet pressure = 32 – 40 x 10-3 

mbar; 1 to 30 mbar; 190 x 103 mbar) and may depend solely on the manufacturer’s 

specifications of the freeze-drying apparatus used.  In one case, the value reported is 

much higher than all the other studies (190 x 10-3 mbar).  Besides the different methods 

of drying used, several species have been dried with varied results.   

As previously mentioned, production of live young using dehydrated sperm has 

only been done in three species, the mouse, rabbit and the rat.  In other species, various 

levels of embryonic development have been observed.  Blastocyst development has been 

reported in two species.  In the cow, Keskintepe et al. (2002) obtained a 30% blastocyst 

rate and in the pig, Kwon et al. (2004) had slightly lower blastocyst development (10%).  

There has been no report of feline sperm dehydration to date. 

Dehydration of spermatozoa causes the loss of motility in all species examined.  

Because of this, in vitro fertilization is not possible and therefore, it was not until the 

development of ICSI that embryo production was possible (Wakayama and Yanagimachi, 

1998).  In mice, the sperm heads are removed from the tails before injection because the 

microtubules needed for pronuclear formation are provided by the oocytes and not the 

mid-piece as in other species.   
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In mammals, oocyte activation is critical for fertilization to occur.  Oocyte 

activation is the process by which a metabolically quiescent oocyte is converted into a 

metabolically active embryo, which can undergo DNA synthesis, RNA translation and 

cell division (Ozil and Huneau, 2001).  Activation can be attained naturally, as in normal 

fertilization (in vivo or in vitro) or due to oocyte ageing.  Alternatively, oocytes can be 

artificially activated by subjecting them to mechanical, chemical or electrical stimulation.  

In artificially activated oocytes, the normal sperm-oocyte interactions, such as sperm-

zona binding, the acrosome reaction, plasma membrane binding, are bypassed.  In this 

case, oocyte activation must be initiated by some other factor.  However, the resulting 

cascade of events mimics that obtained by natural fertilization (for a review see Williams, 

2002).  In some species, mechanical damage to the oocyte caused by the injection is 

sufficient to induce activation.  Other species, not properly activated by the mechanical 

injury of the injection, require chemical or electrical activation protocols. 

Although much has been learned in the past decade about oocyte activation, the 

complete signaling pathway is not yet known.  Natural activation begins with a trigger 

such as a spermatozoon binding to an oolema.  This initiates a cascade of events 

involving the release of intracellular calcium stores and an increase in pH, which lead to 

the exocytosis of cortical granules within the ooplasm and the resumption of meiosis (for 

a review see Schultz and Kopf, 1995; Tesarik, 1998; Alberio et al., 2001; Williams, 

2002).  A few candidates as possible triggers are a tyrosine kinase receptor on the sperm 

membrane or a cytosolic sperm factor within the sperm head.  During normal 

fertilization, a spermatozoon binds to the zona pellucida of an oocyte, undergoes an 

acrosome reaction and then binds to the oolema.  The contents of the sperm head enter 
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the ooplasm and activation occurs (Williams, 2002).  Oocytes that have remained 

unfertilized for a prolonged period of time are referred to as “aged oocytes.”  These 

oocytes can undergo spontaneous activation, or if fertilized, they will be activated and 

cleave.  However, the resulting embryos exhibit fragmentation, apoptosis and poor 

embryonic development (Fissore et al., 2002). 

Activation protocols are used in conjunction with several reproductive techniques, 

such as nuclear transfer, parthenogenesis and ICSI.  The present study deals with the 

latter.  All three types of oocyte activation, mechanical, chemical and electrical have been 

used in conjunction with ICSI.  The most common type of mechanical activation is the 

damage that results during ICSI, but improper handling can also induce activation.  

Chemical activation is achieved by use of a variety of chemicals that promote the release 

of internal calcium stores, such as calcium ionophores, strontium chloride, phorbol 

esthers, ethanol and the best is ionomycin followed by 6-dimethylaminopurine (DMAP) 

(Alberio et al., 2001).  Finally, an electrical direct current pulse can also induce oocyte 

activation (Ozil, 1990).   

1.2.6 Assessment of DNA Integrity of Dehydrated Feline Spermatozoa with the 
Comet Assay 

 
Freeze-drying or lyophilization is commonly used in the food and drug industries.  

It has also been used to preserve bacteria and other microbial organisms, but only 

recently has this technique been applied to mammalian cells and tissues (for a review see 

Crowe et al., 2004).  Because one first must determine optimal freezing protocols, tissue 

preservation using this technique has not been as successful as cell drying.  However, red 

blood cells and human fibroblast cells have been successfully freeze-dried (Goodrich et 

al., 1992; Puhlev et al., 2001).  With the success of freeze-dried mouse sperm by 
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Wakayama and Yanagimachi (1998), dehydration of spermatozoa has been proposed as a 

cost effective means of preserving the many transgenic strains of mice produced for 

biomedical research (Kusakabe et al., 2001).  This technique may provide an effective 

method of preserving spermatozoa of many inbred mouse strains, that with conventional 

freezing, exhibit poor post-thaw recovery.   

Desiccation allows sperm to be stored at room temperature compared with 

cryopreserved samples that must be maintained at ultra-low temperatures.  This type of 

storage would result in a drastic decrease of the cost of maintaining large storage 

facilities of liquid nitrogen tanks.  Furthermore, this simple technique would also be more 

practical for field work where access to cooling units and liquid nitrogen is unavailable.  

Transport of dried material is also far less expensive and would require less special 

handling, allowing for easier movement of specimens between different locations. 

 Different media have been used to preserve cells during dehydration.  In the 

original publication by Wakayama and Yanagimachi (1998), they used two types: CZB 

medium without EDTA and DMEM supplemented with 10% fetal bovine serum (FBS).  

Keskintepe et al. (2002) also used DMEM supplemented with 10% FBS but added 

glutamine, sodium pyruvate, nonessential amino acids and nucleosides.  The most 

common medium used to protect mouse sperm during desiccation consists of a 10 mM 

Tris-HCl buffer containing 50 mM EGTA (ethylene glycol-bis [β-animoethyl ether]-

N,N,N’,N’-tetraacetic acid) in 50 mM NaCl with a high pH (8.0 - 8.4) (Kusakabe et al., 

2001).  They compared the effects of the CZB medium to the Tris-HCl buffer and found 

that the latter resulted in a higher percentage of karyologically normal embryos.  High 

concentrations of a calcium-chelating agent, such as EGTA, are used routinely to help 
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maintain chromosome integrity in DNA preparations from eukaryotic cells.  This solution 

has subsequently been used in many studies of different species (Bhowmick et al., 2003; 

Kaneko et al., 2003a,b; Ward et al., 2003; Liu et al., 2004).  Other liquids used for 

desiccation procedures include distilled water (Hoshi et al., 1994), ethanol, dithiothreitol 

(DTT), methanol, acetone, or a chloroform-methanol (2:1) mixture (Katayose et al., 

1992).   

The rehydration of samples reported has been the same for all studies.  This was 

done by simply adding 100 µl (equal volume to that of original sample) of ultra-pure 

water to the freeze-dried sperm (Wakayama and Yanagimachi, 1998).  An increase in the 

time of injection after rehydration was correlated with a decrease in the rates of activation 

and fertilization in mice (Wakayama and Yanagimachi, 1998).   

 The length of storage and the temperature at which the samples are stored has also 

been evaluated.  The longest period reported is for rabbit spermatozoa, which have been 

stored for more than 2 years at ambient temperature (Liu et al., 2004).  Storage time was 

shown not to have a deleterious effect on the genetic integrity of freeze-dried samples 

(Ward et al., 2003).  However, various storage temperatures that have been studied are: 

22 to 25°C, 4°C, -80°C or -196°C.  By applying the theory of accelerated degradation 

kinetics on freeze-dried sperm, it was estimated that samples stored above  

-80°C for 10 or more years would result in a 0% blastocyst rate in mice (Kawase et al., 

2005).  However, in the short-term (<1 year), there were no significant differences if 

freeze-dried sperm were stored at 4°C or -80°C.  Until samples have been stored for 

many years at various temperatures, the true effects on genetic integrity will not be 

known. 
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In addition to measuring embryonic development, several studies have examined 

the effect of sperm dehydration on DNA integrity or cell ploidy.  It is well known that 

freeze-drying causes severe damage to the acrosome and plasma membranes.  The 

deleterious effect of drying on sperm has been done by examination of chromosomal 

spreads of zygotes (Kaneko et al., 2003a,b; Ward et al., 2003; Kaneko and Nakagata, 

2005) and most recently, by use of the comet assay (Kawase et al., 2005).   

Briefly, chromosomal spreads are prepared to allow for the counting of the 

number of chromosomes in the zygotes resulting from oocytes injected with dried sperm.  

Because oocyte chromosomes seldom show chromosomal aberrations at the zygote-stage, 

any abnormal chromosomes are considered to be of paternal origin (Kaneko et al., 

2003b).  In the mouse, the percentage of abnormal sperm was not significantly different 

from controls (56% to 76%) when samples were stored at 4ºC for up to 5 months 

(Kaneko et al., 2003b; Kaneko and Nakagata, 2005).  However, Ward et al., (2003) found 

a similar level but it was significantly lower than their controls.  The number of  

chromosomal abnormalities observed in embryos produced by use of freeze-dried sperm 

was not significantly different from that resulting from ICSI alone (Kusakabe et al., 

2001).   

The comet assay (single-cell gel electrophoresis or microgel electrophoresis) is an 

assay used to detect the presence of unbound or fragmented DNA within an individual 

cell (for a review see Fairbairn et al., 1995; Olive, 2002; Collins, 2004).  This technique 

uses an electrical current to pull the charged DNA from the nucleus.  The relaxed or 

broken DNA strands migrate further resulting in a ‘comet-like’ shape after staining for 

which it is named.  The amount of stain (or fragments) in the tail region is a measure of 
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the amount of DNA damage within the cell.  The comet assay was developed by Ostling 

and Johanson in 1984 to assess DNA damage incurred in somatic cells after irradiation 

(Fairbairn et al., 1995).  Since then, hundreds of investigators have used the comet assay 

to assess damage in a variety of cell and tissue types (for a review see Fairbairn et al., 

1995).   

To determine the DNA damage in sperm, few modifications of the comet assay 

were required.  Briefly, the chromosomes must be decondensed after being embedded in 

an agarose matrix and then the cells are lysed to allow for unbound DNA to migrate away 

from the sperm head when exposed to a low level electrical current (Kawase et al., 2005).  

In a study examining freeze-dried sperm, Kawase et al. (2005) observed the presence of 

comet tail in samples stored at 4ºC for several months but not when samples were fresh 

or freeze-dried samples were stored at -80ºC.  Recently, the comet assay has been used in 

human fertility clinics as a predictor of male infertility (Morris et al., 2002).  The biggest 

problem associated with this technique is the inability to directly compare results from 

different studies due to the numerous computer assisted analysis programs and varied 

protocols.  DNA integrity is an important but sometimes forgotten factor that must be 

examined to ultimately determine the success of a desiccation protocol.   
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CHAPTER 2 
THE EFFECT OF VOLUMETRIC CHANGES OF BOVINE OOCYTES 

DEHYDRATED WITH TWO DISACCHARIDES ON THE CYTOSKELETON 
AND MITOTIC SPINDLE 

 
2.1 Introduction 

 For decades, various methods of mammalian oocyte cryopreservation have been 

studied but with much less success compared with that of sperm cryopreservation.  This 

is mainly due to the low surface-area to volume ratio of oocytes.  In oocytes, insufficient 

dehydration can result in the formation of ice crystals at subzero temperatures.  

Vitrification is a form of ultra-rapid cryopreservation that results in a glass-like 

solidification without ice crystal formation by exposing cells to high concentrations of 

cryoprotectants (Rall, 1987).   

Cooling oocytes below 20°C has been reported to result in decreased fertilization 

rates and increased polyspermy due to the disorganization or disruption of the meiotic 

spindle (Magistrini and Szollosi, 1980; Pickering and Johnson, 1987; Pickering et al., 

1990; Aman and Parks, 1994; Martino et al., 1996; Wu et al., 1999).  After oocyte 

vitrification, partial or complete disruption of microtubules (Rho et al., 2002) and 

premature cortical granule exocytosis (Hytell et al., 2000) have been reported.  What 

remains unclear is whether this disruption was caused by the vitrification method or by 

the exposure to high concentrations of cryoprotectant, in particular, to the high 

concentration of sucrose used in the process.  In mature bovine oocytes, the meiotic 

spindle is a symmetrical, barrel-shaped structure, located peripherally with anastral poles, 

to which the microtubules are closely associated (Rho et al., 2002).  Microtubules and 

actin microfilaments are known to be an integral role in the movement of chromosomes  
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and in cell division (Kim et al., 2000).  The objective of this study was to examine the 

effects of increased dehydration of mature bovine oocytes on the cytoskeletal 

arrangement and the components of the metaphase spindle.   

2.2 Literature Review 

2.2.1 Studies of Oocyte Dehydration 

 Numerous studies have been reported on determining the effect of water 

movement in living cells exposed to anisotonic solutions.  Membrane permeability is a 

fundamental property of cells, which is characteristic of each cell type (Leibo, 1980).  It 

has been demonstrated that osmotic stress on oocytes is detrimental to their 

developmental potential (Oda et al, 1992; Agca et al., 2000).  The effects of osmotic 

shock on cells were initially conducted on various somatic cell types, such as 

erythrocytes and on eggs of lower organisms such as sea urchins, amphibians and fish.  

Since then, the osmotic behavior of several different stages of mammalian oocytes and 

embryos has been examined.   

Although there has been extensive interest in the permeability of water through 

the cell membranes of oocytes and embryos, most of the studies have been done in the 

mouse (e.g., Leibo, 1980; Toner et al., 1991; Oda et al., 1992; Pedro et al., 1997).  

Osmotic behavior has been examined on oocytes of other domestic species such as the 

goat (Le Gal et al., 1994), the human (Trad et al., 1998) and the cow (Ruffing et al., 

1993; Agca et al., 2000).  In those studies, the investigators examined the effect on 

fertilization and embryonic development of osmotic stress on immature and mature  
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bovine oocytes, however, they used sodium chloride to create the anisotonic solutions.  

They reported a marked decrease in developmental rates of all the oocytes exposed to 

hypertonic solutions.   

Sodium chloride has been reported to have a detrimental effect on cells in high 

concentrations due to the increased ion load, which causes the destabilization of the 

plasma membrane (Stachecki et al., 1998b).  Although Myers et al. (1987) examined the 

osmotic behavior of immature bovine oocytes using sucrose instead of sodium chloride, 

there has been no report of mature oocyte dehydration using a saccharide.   

Unfertilized mouse oocytes and zygotes were reported to behave as perfect 

osmometers (Leibo, 1980).  This was determined by placing the cells into increasing 

hypertonic solutions and then measuring their volume after equilibration.  He plotted the 

cell volume relative to the isotonic volume, as a linear function of the reciprocal of the 

solution’s osmolality (Boyle van’t Hoff plot).  Extrapolations of the Boyle van’t Hoff 

plots to an infinitely high concentrated solution indicated a nonosmotic volume of 18% 

for mouse zygotes (Leibo, 1980).  This nonosmotic volume agreed well with other 

studies, such as 21% for hamster oocytes (Shabana and McGrath, 1988) and 17% for 

immature bovine oocytes (Myers et al., 1987).  This type of plot has also been 

constructed for various cell types, and it has been found that all cells with the exception 

of sperm cells and erythrocytes, have a nonosmotic volume of approximately 20%.   

Membrane permeability as well as nucleation temperature are used to create 

thermodynamic models, which can be used to optimize equilibrium freezing protocols 

(Myers et al., 1987).  Vitrification is a nonequilibrium freezing protocol which employs 

high concentrations of CPAs used in step-wise additions to minimize damage to the cell 
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caused by fluxes in cell volumes.  Cell expansion during warming and CPA removal are 

other causes of membrane damage (Hotamisligil et al., 1996).  Therefore, ways to 

minimize the effects of osmotic stress on oocytes needs to be examined to determine the 

optimal method of cryopreservation. 

2.2.2 Cryoinjury Due to Intracellular Ice Formation and Solute Effects 

The dehydration of oocytes that occurs during cryopreservation is essential to 

their survival.  Mammalian oocytes have a low surface to volume ratio.  Because of this, 

oocytes will be more difficult to dehydrate, a necessary step in equilibrium freezing.  

Therefore, oocyte cryopreservation has had relatively low success in most mammalian 

species, with the exception of the mouse (e.g., Stachecki and Willadsen, 2000; Parks and 

Ruffing, 1992).   

As first hypothesized by Mazur et al. (1972), the major mechanisms of cryoinjury 

are intracellular ice formation (IIF) and solution effects.  During slow-cooling, the cell 

maintains an equilibrium between its intracellular and extracellular environments through 

the process of dehydration.  Intracellular ice is formed when the equilibrium between 

these two environments is disrupted (Parks and Ruffing, 1992; Muldrew et al., 2004).  

When the cooling rate is too rapid to allow for the water to exit the cell, intracellular ice 

will form resulting in large ice crystals forming within the intracellular compartments.  

These crystals will cause breaks in the cell membranes and can also damage other cell 

organelles.  If the oocyte is allowed to dehydrate before nucleation, intracellular ice 

crystals do form but they are smaller and cause less damage to the cell.  

During standard cell cryopreservation, cryoprotectant additives (CPAs), such as 

glycerol, dimethylsulfoxide (DMSO) and ethylene glycol (EG) are added to the media.  
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The exposure of the oocytes to these CPAs can be done as a single step or a multiple step 

addition.  Both permeating and nonpermeating CPAs are used to cause a shift in the 

isotonic state between the cell intracellular and extracellular spaces causing water to flow 

out of the cell.  Permeating CPAs can produce large-volume changes during both the 

freezing and thawing processes.  During freezing, the extracellular space will become 

hypertonic due to the increase in solutes compared with that in the intracellular spaces 

resulting in water leaving the cell and cell shrinkage (Mazur and Schneider, 1986).  

During thawing, a rapid influx of water into the cell due to the increased concentrations 

of solutes within the cell, before the permeating CPA can be removed, can result in 

osmotic shock and cell lysis (Mazur and Schneider, 1986).  The water enters faster than 

the solute can exit thus, increasing the cell volume beyond its lytic volume.  Protocols 

that require maximal cell volume excursions at a rate that the cells can tolerate should be 

used to reduce cellular membrane damage.   

In addition to physical damages incurred by volume changes, a toxic solute effect 

on the cellular membrane and other organelles may be caused by the high concentrations 

of solutes surrounding the cell as well as the permeating CPAs entering the cell during 

dehydration.  Different CPAs confer different levels of protection during the freezing and 

thawing process depending on the relative permeability of the particular cell type.   

Therefore, cryopreservation protocols have been devised to minimize intracellular ice 

formation, cell volume excursions, as well as to decrease the length of time that the cells 

are exposed to high concentrations of solutes in the freezing medium. 
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2.2.3 Role of Microtubules During Fertilization and Cellular Division 

 The contraction of the cell membranes during dehydration around the nucleus 

causes a re-arrangement of cell organelles including the cytoskeleton and the meiotic 

spindle.  The abruptness and extent of the disruption of the cytoskeleton and meiotic 

spindle may be a contributing factor to the decreased survival of cryopreserved oocytes.  

Most mammalian oocytes are cryopreserved at the metaphase-II (MII) stage.  At this 

stage, the chromosomes are attached to the microtubules at their centrosomes and are 

pulled into the equatorial region of a barrel-shaped structure before cell division.  If the 

chromosomes are not properly aligned, there is unequal division resulting in aneploidy 

(trisomy).  During cellular division, the chromatin condenses and distinct chromosomes 

form.  These chromosomes migrate to an equatorial position during prophase.  After 

reaching this equatorial position during metaphase, the chromosomes divide through 

metaphase-anaphase and then cellular division follows during telophase, which includes 

cytokinesis (for a review see Johnson and Everitt, 2000).   

Various studies have demonstrated that extended exposure of oocytes to subzero 

or room temperature and to CPAs can result in depolymerization of the microtubules 

leading to the dispersal of chromosomes (Magistrini and Szollosi, 1980; Johnson and 

Pickering, 1987; Pickering and Johnson, 1987; Van der Elst et al., 1988; Pickering et al., 

1990; Vincent et al., 1990; Vincent and Johnson, 1992; Aman and Parks, 1994; Fuku et 

al., 1995b; Martino et al., 1996; Wu et al., 1999). 

2.2.4 Disruption of the Cytoskeletal and Microtubule Arrangements 

Depolymerization of tubulin has been correlated to a decreased in fertilization and 

developmental rates in many species.  Factors known to lead to the disruption of the 
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cytoskeleton and microtubule structure of the metaphase spindle in oocytes are 

temperature and chemicals used during cryopreservation.  The effect of temperature on 

spindle morphology has been evaluated in the mouse (Magistrini and Szollosi, 1980; 

Pickering and Johnson, 1987), human (Pickering et al., 1990) and cattle (Aman and 

Parks, 1994).   

Oocytes of some species, including the pig, are more sensitive to chilling injury 

than others.  In the pig, removal of a small volume of the cytoplasmic lipids is required 

for survival of post-cryopreservation embryos (Park et al., 2005).  In the mouse, after 60 

minutes at 0ºC, MII-stage oocytes exhibit complete spindle disassembly (Magistrini and 

Szollosi, 1980; Pickering and Johnson, 1987).  In the cow, cooling oocytes to 4ºC for 20 

minutes have resulted in complete disorganization of the meiotic spindle and even 

holding them at room temperature for 30 minutes, caused disruption or abnormal spindles 

(Aman and Parks, 1994).  Pickering et al. (1990) reported that human oocytes also 

exhibited tubulin disassembly if maintained at room temperature for only 30 minutes.  

This indicates that human oocytes are more sensitive to cooling than bovine and mouse 

oocytes.   

This variability to different cooling temperatures may explain the need to devise 

cryopreservation protocols for specific species.  However, this disruption may or may not 

be reversible depending on the species and the amount of damage incurred.  In some 

species, such as the mouse (Pickering et al., 1990) and to a lesser extent the human 

(Magistrini and Szollosi,, 1980, Wang et al., 2001), rewarming of oocytes can result in 

the reorganization of the meiotic spindle.  This ability to reverse the damaging effects of 

cooling on the cytoskeletal arrangement has been reported to not to occur in bovine 
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oocytes (Aman and Parks, 1994).  Actin microfilaments are not as sensitive to cooling as 

the microtubules, but they can be disrupted by exposure to various CPAs (Saunders and 

Parks, 1999). 

CPAs have also been shown to have detrimental effects on both the actin and 

tubulin configurations of oocytes during cryopreservation.  Propanediol (PrOH) can 

induce depolymerization in rabbit oocytes and DMSO will do the same in the mouse 

whereas, DMSO has little detrimental effect on the rabbit oocyte cytoskeleton (Vincent et 

al., 1989).  The effects of different CPA exposure have been evaluated on mature bovine 

oocytes (Fuku et al., 1995b; Agca et al., 1998; Saunders and Parks, 1999).  Saunders and 

Parks (1999) evaluated the effects of EG on bovine oocytes and noted abnormal actin 

distribution and depolymerization of tubulin in the majority of the treated oocytes.  

Besides temperature and chemical damage, it has been well documented that 

cryopreservation is also a major contributor to cytoskeletal damage.  Therefore, the 

objective of this study was to determine the effects of dehydration on the cytoskeleton 

and meiotic spindle of bovine oocytes. 

2.3 Materials and Methods 

 All compounds unless otherwise stated were purchased from Sigma Chemical 

Company, St. Louis, MO.   

2.3.1 Experimental Design 

 In the first experiment (Experiment 1), bovine oocytes were allotted to one of six 

treatments groups for dehydration.  For the control groups, MII-stage oocytes (n = 22) 

exposed to either an isotonic solution of modified TCM-199 alone (Control mTCM) or an 

isotonic solution of modified M2 alone (Control mM2).  Then in the remaining treatment 
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groups MII-stage oocytes were exposed to one of four different saccharide solutions as 

follows: mTCM + Sucrose (n = 5), mTCM + Trehalose (n = 6), mM2 + Sucrose (n = 12) 

and mM2 + Trehalose (n = 6).   

In the second experiment (Experiment 2), similar bovine oocytes were either 

dehydrated or not dehydrated and then stained to examine their cytoskeleton and DNA.  

The six treatment groups were as follows: Control MII-stage oocytes (n = 57) in mTCM 

or mM2 that were not dehydrated but were stained (Control mTCM and Control mM2) 

and in the remaining treatment groups, MII-stage oocytes that were dehydrated in one of 

four different saccharides solutions (as described for Experiment 1) as follows: mTCM + 

Sucrose (n = 54), mTCM + Trehalose (n = 43), mM2 + Sucrose (n = 49) and mM2 + 

Trehalose (n = 42). 

2.3.2 Oocyte Collection and Processing 

Bovine cumulus-oocyte-complexes (COCs) were collected by a private company 

(Ovagenix, San Angelo, TX) from ovaries obtained from an abattoir in Texas.  The COCs 

were graded and those considered to be of good quality were shipped overnight by 

express courier in maturation medium, using a portable incubator (temperature 37.8-

39.1°C) to the LSU Embryo Biotechnology Laboratory in St. Gabriel, Louisiana.  The 

maturation medium consisted of TCM-199 (12340-030; Gibco, Grand Island, NY) with 

0.5 M L-glutamine (G-8540), 1% fetal bovine serum (FBS) (SH30070.02; Hyclone 

Laboratories Inc., Logan, UT), 10 µg/ml of bovine Luteinizing Hormone (LH) (L-9773), 

0.7 IU/ml of Follicle Stimulating Hormone (FSH) (F-2293), 0.01 mg/ml of estradiol (E-

2758) and 0.1% penicillin/streptomycin (15140-122; Gibco).   
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After 22 to 26 hours of maturation, COCs were removed from maturation medium 

and washed twice in 2 to 3 ml of modified TCM-199 (mTCM).  Modified TCM-199 

medium was prepared by supplementing TCM-199 with 10% FBS.  Cumulus-oocyte-

complexes were then transferred to a 15 ml centrifuge tube containing 2.2 mg of 

hyaluronidase (H-3506) in 4 ml of TCM-199 and were vortexed for ~1 minute to partially 

remove the cumulus cells surrounding the oocytes.  Partially denuded oocytes were 

washed twice in mTCM and then placed 5 to 6 oocytes per 100 µl droplet of mTCM 

under mineral oil (M-8410) and incubated (38.5°C) in 5% CO2 in air for 1 hour prior to 

starting these experiments.   

2.3.3 Dehydration of Oocytes 

Solutions used for dehydration consisted of a saccharide (sucrose or trehalose) 

prepared in either mTCM or mM2.  Modified M2 medium was prepared by 

supplementing M2 medium (M-7167) with 10% FBS.  The osmolality of the solutions 

was determined with a freezing-point osmometer (Model # 3W2; Advanced Instruments 

Inc., Needham Heights, MA).  At least three readings were completed for each solution.  

The average osmolality of each solution was calculated and was considered to be the 

osmotic pressure of the solution. 

In Experiment 1, oocytes from all treatment groups were partially denuded and 

transferred in groups of 5 or 6 in a small volume (<5 µl) of mTCM into either mTCM 

alone or mM2 alone.  Both mTCM and mM2 were used in bovine oocyte and embryo 

manipulations.  The volume of the oocytes in these isotonic solutions was recorded as the 

control volume for the volumetric analyses.  The oocytes were allowed to equilibrate for 

approximately 10 minutes after which digital images were recorded using a personal 
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computer with image capturing software (Scion Image for Windows, Beta 4.0.2; Scion 

Corporation, Frederick, MD) attached to a Nikon Diaphot inverted microscope.  All steps 

were conducted at room temperature (22°C to 25°C).   

Control oocytes remained in mTCM or mM2 while the oocytes for all other 

treatment groups were then sequentially rinsed through a series of 35 mm petri dishes 

containing 2 to 3 ml of increasing concentrations of either sucrose (S-1888) or 

D(+)trehalose (T-5251) dissolved in either mTCM or mM2.  For the trehalose treatments, 

0.13, 0.25, 0.35, 0.55 and 0.65 M solutions were used and for the sucrose treatments, 

0.15, 0.30, 0.50, 0.65 and 0.99 M were used (Table 2.1).   

The maximum concentration used for trehalose is lower than that used for sucrose 

due to its lower solubility.  The oocytes were allowed to equilibrate for ~10 minutes in 

each of the treatment solutions.  Digital images were made of the oocytes in each of the 

saccharide solutions.  Oocytes were dehydrated using mM2 (HEPES buffered solution) as 

the diluent were done in air while those completed in mTCM (bicarbonate-buffered 

solution) were performed in a modular incubator chamber (Billups-Rothenberg, Inc., Del 

Mar, CA ) that was filled with a humidified atmosphere of 5% CO2, 5% O2 and 90% N2.   

2.3.4 Volumetric Measurements 

The volumes of oocytes exposed to the two isotonic media (Control mTCM and 

Control mM2) and to each saccharide solution were calculated assuming the oocytes to 

be spherical.  Calibrated digital imaging software (Spot Advanced, Version 3.5.5 for 

Windows; Diagnostic Instruments Inc., Sterling Heights, MI) was used to measure the 

diameter of each oocyte.  Volume was calculated using the formula for a sphere  
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Table 2.1 The osmolarities and osmotic pressures of sucrose and trehalose solutions  
   prepared in mTCM and mM2 for Experiment 1 
 
Saccharide Concentration Osmolarity  Osmotic pressure 
in mTCM (M) (mOsm)  (1/mOsm) 
 
Sucrose 0.00 0.29 3.44 
 0.15 0.46 2.16 
 0.30 0.61 1.63 
 0.50 0.85 1.18 
 0.65 1.01 0.99 
 0.99 2.86 0.35 
Trehalose 0.00 0.29 3.44 
 0.13 0.42 2.36 
 0.25 0.57 1.76 
 0.35 0.68 1.47 
 0.55 0.90 1.11 
 0.65 1.02 0.98 
 
Saccharide Concentration Osmolarity  Osmotic pressure 
in mM2 (M) (mOsm)  (1/mOsm) 
 
Sucrose 0.00 0.28 3.57 
 0.15 0.45 2.23 
 0.30 0.60 1.66 
 0.50 0.85 1.18 
 0.65 1.04 0.96 
 0.99 2.94 0.34 
Trehalose 0.00 0.28 3.57 
 0.13 0.42 2.40 
 0.25 0.56 1.79 
 0.35 0.67 1.50 
 0.55 0.89 1.12 
 0.65 1.00 1.00 
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V = 4/3π(d/2)3.  The mean relative volumes were calculated by taking the average 

volume of the oocytes exposed to the various saccharide solutions and dividing it by the 

average isotonic volume for each diluent and expressed as a percentage.  This method of 

determining the relative volumes of oocytes was previously reported by Jackowski et al. 

(1980), Leibo (1980), Oda et al. (1992) and McWilliams et al. (1995).   

2.3.5 Immunostaining of the Cytoskeleton and DNA Staining 

Immunostaining was used to identify the presence and location of microfilaments 

and microtubules and Hoechst staining was used to identify the DNA in Experiment 2.  

Mature oocytes were obtained and partially denuded and allowed to equilibrate at 38ºC 

for 1 hour prior to staining as described in section 2.3.2 of this chapter.  Approximately 

10 oocytes were stained and were used for negative controls.   

Briefly, oocytes were transferred from mTCM into either fresh mTCM or mM2 

alone and allowed to equilibrate for 10 minutes.  They were then sequentially dehydrated 

using sucrose (0.15, 0.65 and 0.99 M) or trehalose (0.125, 0.35 and 0.65 M) prepared in 

mTCM or mM2 and allowed to equilibrate at 20ºC to 25ºC for ~10 minutes in each 

solution.  This was under the same conditions as described for the dehydration.  The 

oocytes were fixed in 4% paraformaldehyde (Electron Microscope Science, Fort 

Washington, PA) containing either 0.99 M sucrose or 0.65 M trehalose and prepared in 

Dulbecco’s phosphate-buffered saline (PBS) (14040-141; Gibco, Grand Island, NY) for 

30 minutes and then transferred into ~2 ml of acetone in a glass dish at -20°C for 30 

minutes.   

The rest of the immunostaining protocol was modified from that reported by 

Erogulu et al. (1998).  Oocytes were rinsed twice in ~2 ml of PBS containing 0.05% BSA 
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Fraction V (A-7511).  Then the oocytes were then incubated for 30 minutes in a 

‘blocking solution’ containing 2% goat serum, 2% BSA, 0.01% Triton-X 100 (X-100) 

prepared in PBS to reduce nonspecific binding.  Oocytes were then transferred into a 80 

µl droplet of primary antibody, rat anti-α-yeast tubulin (1:20) (provided by Dr. John 

Lynn, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA), 

on a slide and incubated for 1 hour at room temperature in the dark.  They were then 

rinsed twice in wash buffer containing 0.05% BSA prepared in PBS and then transferred 

to a new slide containing a secondary antibody, anti-rat IgG conjugated to fluorescein 

isothiocyanate (FITC) (1:40) (F-9387) and rhodamine phalloidin (1:40) (R-415; 

Molecular Probes, Eugene, OR).   

The oocytes were incubated as described above for 2 hours.  The oocytes bathed 

in washing solution for 30 minutes prior to being mounted to remove excess stain.  The 

oocytes were mounted using ~100 µl of SlowFade-Antifade (S-2828; Molecular Probes) 

containing 0.1 µl/ml stock of Hoechst 33342 (B-2261) was added.  Oocytes were 

examined and images recorded with a Nikon 35 mm SLR camera mounted on a Nikon 

Diaphot fluorescence microscope.  Oocytes were also examined using a laser scanning 

confocal microscope (Model # 3W2; Leica Microsystems, Exton, PA) and imaging 

software.  Laser lines used were 488 nm and 534 nm.   

In a preliminary experiment, bovine oocytes (n = 7 per treatment group) were 

collected and processed as described earlier and fixed as above excluding the addition of  

either saccharide.  All subsequent steps of staining were the same as described above.  

These oocytes were examined using the same laser scanning confocal microscope and the 

images were analyzed for the presence and location of actin, tubulin and DNA.  
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2.3.6 Statistical Analysis 

 A linear regression was performed on the average relative volumes of oocytes 

exposed to each saccharide prepared in either mTCM or mM2, over the average osmotic 

pressure of the solution.  Chi-square analysis and Fisher’s exact test were performed to 

test for statistical differences in tubulin and actin among treatment groups (P≤0.05 

statistically different) (Instat Graphpad, Version 3.0, San Diego, CA). 

2.4 Results 

2.4.1 Volumetric Response to Dehydration 

 In the first experiment (Experiment 1), the effects on oocyte volumes of various 

concentrations of each saccharide prepared either in a bicarbonate-buffered (mTCM) or a 

HEPES-buffered (mM2) solution were examined.  For both diluents, bovine oocytes 

behaved osmotically when transferred from an isotonic solution into increasingly 

hypertonic solutions.  For each treatment, the number of oocytes used was as follows.  A 

total of 22 mature bovine oocytes were used as controls (Control mTCM and Control 

mM2), for sucrose in mTCM (n = 4 or 5), trehalose in mTCM (n = 5 or 6), sucrose 

prepared in mM2 (n = 5 - 12) and trehalose in mM2 (n = 5 or 6).  The effect of increased 

dehydration due to increased osmotic pressure found in the bovine oocytes is shown in 

Figure 2.1.   

The resulting data obtained from oocyte dehydration demonstrate that bovine 

oocytes exhibit a linear decrease in volume as a function of the reciprocal of osmolality.  

The osmotic pressures of the isotonic solutions of mTCM and mM2 alone were 344  
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Figure 2.1 Photomicrographs of bovine oocytes suspended in various concentrations of 

trehalose prepared in mM2.  (a) Oocyte exposed to mM2 alone for ~10 
minutes at room temperature in air, (b) 0.13 M trehalose, (c) 0.25 M, (d) 0.35 
M, (e) 0.55 M and (f) 0.65M.  Note the increasing perivitelline space between 
the oocyte and the zona pellucida.  Images were obtained using Scion Imaging 
Software attached to a Nikon Diaphot microscope with 20X objective.  
Images were adjusted for brightness and contrast using Adobe Photoshop, 
Version 6.0.  (Scale bar = 100 µm, set for all images). 
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mOsm and 357 mOsm, respectively.  Oocytes exposed to 0.99 M sucrose in mTCM 

contracted to 39% of their isotonic volume, while those exposed to 0.65 M trehalose in 

the same diluent contracted to 35%.  Oocytes exposed to the same osmolalities of sucrose 

and trehalose but prepared in mM2, were dehydrated to 32% and 39%, respectively.  The 

results in Figures 2.2 and 2.3 are a Boyle van’t Hoff plots for bovine oocytes. 

2.4.2 Immunostaining Results 

 In the second experiment (Experiment 2) bovine oocytes were exposed to the 

highest concentrations of sucrose and trehalose in Experiment 1 to assess the effect of 

dehydration on the cytoskeleton and DNA spindle.  After being stained, oocytes were 

mounted and examined both by fluorescence microscopy and by confocal microscopy.  

Immunostained oocytes were examined for the location of the actin microfilaments and 

the alignment of the microtubules and chromosomes.  All negative controls exhibited no 

evidence of autofluorescence (Figure 2.4).   

In a preliminary Experiment in which oocytes were fixed without being exposed 

to a saccharide, all of the control oocytes (n = 7) had intact meiotic spindles with co-

localization of actin and tubulin.  The location of DNA was not analyzed in this 

experiment.  The results listing the percentage of oocytes with intact or disrupted tubulin 

and actin are presented in Table 2.2.  In all saccharide-treated oocytes, there were 

significantly fewer intact meiotic spindles compared with controls.  Of the oocytes 

treated with trehalose prepared in either mTCM (n = 7) or mM2 (n = 7), 57% had intact 

microtubules and the majority exhibited co-localization of the actin and tubulin. 
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Figure 2.2 Boyle van’t Hoff plots of bovine oocytes exposed to various solutions of 

sucrose prepared in mTCM or mM2. The points represent the mean relative 
volumes of oocytes.  The correlation coefficients (R2) for sucrose prepared in 
mTCM and mM2 were 0.99 and 0.98, respectively.  
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Figure 2.3 Boyle van’t Hoff plots of bovine oocytes exposed to various solutions of 

trehalose prepared in mTCM or mM2.  The points represent the mean relative 
volumes of oocytes.  The correlation coefficients (R2) for trehalose prepared 
in mTCM and mM2 were both 0.98. 
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Figure 2.4 Photomicrographs of negative control for the primary antibody (rat-anti-α-
tubulin) and rhodamine phallodin.  Bovine oocytes were immunolabeled as 
previously described with the omission of primary antibody.  Oocytes were 
incubated in mTCM or mM2 alone for the same period of time used for 
staining.  (a) and (b) No presence of non-specific binding of secondary 
antibody or autofluorescence, (c) DIC image of oocyte, (d) overlay of tubulin 
and actin, no staining observed.  Images were captured using a laser scanning 
confocal microscope and imaging software, with a 63X oil immersion 
objective.  All oocytes were fixed in 4% paraformaldehyde, post-fixed in 
acetone at –20ºC, immunolabeled and mounted in 50% (v/v) glycerol. 
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This was, however, significantly higher than the results observed for oocytes exposed to 

sucrose prepared in either media.  Only 2 (29%) of the sucrose-treated oocytes had intact 

spindles and co-localization was also reduced. 

The majority of the 57 control oocytes 54 (79%) contained intact spindles, as 

indicated by their microtubule arrangement, while only 12 (21%) had disrupted 

microtubules (Figure 2.5).  Representative micrographs of immunostaining of oocytes 

exposed to sucrose or trehalose prepared in mTCM and mM2 are in Figures 2.6 and 2.7.  

Of the oocytes exposed to 0.65 M trehalose prepared in mTCM (n = 43) and mM2 (n = 

42), 12 and 13 oocytes exhibited disrupted microtubule arrangements and 31 and 29 

oocytes, no organized structure was observed, respectively.  Of the oocytes exposed to 

0.99 M sucrose in mTCM (n = 54) and mM2 (n = 49), 14 and 16 had disrupted spindles 

and in 39 and 33 oocytes, no organized tubulin structure was noted, respectively.  Only 

one intact spindle was observed in all the saccharide-treated oocytes (Table 2.3).   

Co-localization of actin filament and microtubules was observed in 93% of the 

control oocytes (Control mTCM and Control mM2) and in 1% to 30% of the sucrose and 

trehalose treated bovine oocytes.  The difference between the number of oocytes with 

actin present and those exhibiting co-localization with the microtubules was due to a 

diffuse staining throughout the oocytes exposed to sucrose prepared in mTCM.  In some 

cases, when the actin extending from one side of the oocyte to the other, in close 

proximity to the spindle (Figures 2.6 and 2.7, panel d).  Bovine oocytes stained for DNA 

with Hoechst were used to confirm the location of the chromosomes within the  
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Figure 2.5 Photomicrographs of mature bovine oocytes immunolabeled with rat-anti-α-
tubulin (green) and stained with rhodamine phallodin (red).  (a) Image of an 
intact metaphase plate, (b) Image of a large bundle of actin microfilaments, (c) 
DIC image of oocyte, (d) overlay of tubulin and actin labeling demonstrating 
any regions of co-localization (orange).  Images were captured using a laser 
scanning confocal microscope and imaging software, with a 63X oil 
immersion objective.  All oocytes were fixed in 4% paraformaldehyde, post-
fixed in acetone at –20ºC, immunolabeled and mounted in 50% (v/v) glycerol. 
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Table 2.2 Summary of cytoskeletal integrity and co-localization of actin and tubulin in 
   bovine oocytes exposed to 0.65 M trehalose and 0.99 M sucrose prepared in 
   both mTCM and mM2 and allowed to recover before fixation (Preliminary  
   Experiment) 
 

  Meiotic spindle Actin 
 No. of 
Treatments oocytes Intact  Disrupted Absent Co-localized 
 
Control 7 7 (100)  0 (0)  0 (0) 7 (100) 
 
mM2 + Trehalose 7 4 (57) 2 (29) 1 (14) 6  (86) 
 
mTCM + Trehalose 7 4 (57) 1 (14) 2 (29) 5  (71) 
 
mM2 + Sucrose 7 2 (29) 2 (29) 3 (43) 18 (33) 
 
mTCM + Sucrose 7 2 (29) 2 (29) 3 (43) 28 (52) 
 
Numbers in parentheses represent percentage of the total number of oocytes stained for 
each treatment.  No statistical significances in this table (P≤0.05).  
 
 
Table 2.3 Summary of cytoskeletal integrity and co-localization of actin and tubulin in  
   bovine oocytes exposed to 0.65 M trehalose and 0.99 M sucrose prepared in  
   both mTCM and mM2 (Experiment 2) 
 

 Meiotic spindle Actin 
 No. of 
Treatments oocytes Intact  Disrupted Absent Present Co-localized 
 
Control 57 45 (79)a 12 (21)a    0 (0)a 57 (100)a 53 (93)a 
 
mM2 + Trehalose 42     0 (0)b 13 (24)a 29 (62)b  13 (24)b 13 (24)a 
 
mTCM + Trehalose 43     0 (0)b 12 (28)a 31 (72)b  13 (24)b 13 (24)a 
 
mM2 + Sucrose 49     0 (0)b 16 (30)a 33 (61)b  18 (33)b 16 (30)a 
 
mTCM + Sucrose 54     1 (2)b 14 (26)a 39 (72)b  28 (52)b  6 (11)a 
 
Numbers in parentheses represent percentage of the total number of oocytes stained for 
each treatment.  a,bValues with different superscripts within columns are significantly 
different (P≤0.05).  
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Figure 2.6 Photomicrographs of mature bovine oocytes exposed to 0.65 M trehalose 

prepared in mTCM, fixed and immunolabeled with rat-anti-α-tubulin (green) 
and rhodamine phallodin (red).  (a) Image of a disrupted metaphase spindle as 
well as a second region of tubulin with no distinct organization, (b) Image of 
actin microfilaments, (c) DIC image of oocyte and (d) overlay of tubulin and 
actin labeling, demonstrating a high degree of co-localization (orange).  Images 
were captured using a laser scanning confocal microscope and imaging 
software, with a 63X oil immersion objective.  All oocytes were fixed in 4% 
paraformaldehyde, post-fixed in acetone at –20ºC, immunolabeled and 
mounted in 50% (v/v) glycerol. 
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Figure 2.7 Photomicrographs of mature bovine oocytes exposed to 0.99 M sucrose in 

mM2, fixed and immunolabeled with rat-anti-α-tubulin (green) and rhodamine 
phallodin (red).  (a) Image of a slightly disrupted metaphase spindle, (b) Image 
of actin microfilaments aggregated in a similar region as the tubulin, (c) DIC 
image of oocyte and (d) overlay of tubulin and actin labeling, demonstrating 
co-localization (orange).  Images were captured using a laser scanning confocal 
microscope and imaging software, with a 63X oil immersion objective.  All 
oocytes were fixed in 4% paraformaldehyde, post-fixed in acetone at –20ºC, 
immunolabeled and mounted in 50% (v/v) glycerol. 
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Metaphase spindle.  Representative micrographs are included in Figures 2.8 and 2.9.  In 

all cases in which the microtubules were intact, the chromosomes were intimately 

associated with the spindle structure, as revealed by Hoechst staining.  Simultaneous 

visualization of all 3 dyes was only possible using standard fluorescence microscopy and 

not by laser-scanning confocal microscopy because the microscope that was used was not 

equipped with an ultraviolet laser.  Two distinct regions of bright Hoechst staining were 

observed in all mature oocytes used in this study, one for the metaphase plate and the 

other representing the location of the first polar body.   

2.5 Discussion 

When suspended in increasingly concentrated solutions of an impermeant solute, 

such as a saccharide, the relative volume of a cell decreases in relation to the reciprocal 

of the osmolality to which it is exposed (Ruffing et al., 1993).  Mature bovine oocytes 

have higher permeability coefficients of water and cryoprotectant compared with GV-

stage oocytes (Vincent and Johnson, 1992; Ruffing et al., 1993).  This may account for 

the differences observed in cryopreservation protocols for MII-stage oocytes compared 

with the GV-stage or other stages of oocytes.  Therefore, mature bovine oocytes were 

chosen to study the effects of dehydration on the cytoskeletal arrangement and meiotic 

spindle prior to vitrification.  Reports of cytoskeleton and spindle disruption 

microfilaments were not confined to the meiotic spindle, long fibers of actin were 

observed from cryopreserved mouse and bovine oocytes that have been previously been 

reported (Vincent et al., 1989; Fuku et al., 1995a; Eroglu et al., 1998).  However, there 

have not been any reports on the effects of dehydration due to high concentrations of 

saccharides as used prior to vitrification of mature bovine oocyte. 
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Figure 2.8 Photomicrographs of a mature bovine oocyte exposed to 0.99 M sucrose 

prepared in mM2 and then triple stained for tubulin, actin and DNA to allow 
for simultaneous visualization.  (a) Stained oocyte visualized using a FITC 
filter to visualize tubulin (green) staining using a 40X objective on a Nikon 
Diaphot fluoresce microscope, (b) The same oocyte visualized using a TRITC 
filter for actin (red) staining, (c) Oocyte visualized using UV filter with 
arrows denoting the location of the DNA (blue), (d) Overlay of all three stains 
using a tri-filter block and (e) Brightfield image of the same oocyte.  The 
oocyte was fixed in 4% paraformaldehyde, post-fixed in acetone at –20ºC, 
immunolabeled and mounted in 50% (v/v) glycerol.  Brightness and color 
adjusted using Adobe Photoshop software 6.0.
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Figure 2.9 Photomicrographs of a mature bovine oocyte exposed to 0.65 M trehalose 

prepared in mM2 and triple stained for tubulin, actin and DNA to allow for 
simultaneous visualization.  (a) Stained oocyte visualized using a FITC filter 
to visualize tubulin (green) staining using a 40X objective on a Nikon Diaphot 
fluorescence microscope, (b) The same oocyte visualized using a TRITC filter 
for actin (red) staining, (c) Oocyte visualized using UV filter with arrows 
denoting the location of the DNA (blue), (d) Overlay of all three stains using a 
tri-filter block and (e) Brightfield image of the same oocyte.  The oocyte was 
fixed in 4% paraformaldehyde, post-fixed in acetone at –20ºC, immunolabeled 
and mounted in 50% (v/v) glycerol.  Brightness and color adjusted using 
Adobe Photoshop software 6.0. 
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In the first experiment, volumetric measurements of bovine oocytes at equilibrium 

in hypertonic solutions were made.  At high concentrations of saccharides, oocytes 

undergo dehydration to restore a balance of water activity between their milieu and their 

intracytoplasmic environment, to a minimum of 13% to 23% of their isotonic volume as 

reported for mouse and human oocytes (McWilliams et al., 1995). This maximal level of 

dehydration represents the nonosmotic volume of an oocyte.  In this study, mature bovine 

oocytes exhibited a decrease in relative volume with increasing osmotic pressure to a 

minimum of ~32% of their isotonic volume in 0.99 M sucrose in mM2 (R2 = 0.98).  

Bovine oocytes behaved similarly when exposed to increasing concentrations of sucrose 

or trehalose in both isotonic solutions.  Lysis occurred in a few oocytes when they were 

exposed to a high concentration of sucrose prepared in either diluent.  Under normal 

conditions, sucrose will not diffuse across the cell membrane.  However, at high 

concentrations, there may be leakage due to the effects of severe dehydration on the 

plasma membrane (Oda et al., 1992) at elevated temperatures.  Lyis occurs once cells are 

returned to the isotonic solution. 

In the preliminary immunostaining study, bovine oocytes were fixed without the 

addition of sucrose to the fixation medium.  This allowed time for partial recovery of the 

microtubule structure after the initial dehydration.  Reversal of this microtubule 

disruption due to cooling has been found in mouse oocytes.  In humans, only a partial re-

organization of the meiotic spindle was observed after the oocytes were cooled (Pickering 

et al., 1990; Wang et al., 2001).  However, in bovine oocytes, little to no reversal of the 

de-polymerization of tubulin was observed after simple cooling and rewarming or when 

oocytes were exposed to room temperature (Aman and Parks, 1994).  This difference is 
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thought to be attributed to the significantly higher amount of pericentriolar material 

available in mouse oocytes that allow the re-polymerization of microtubules compared 

with other species (Aman and Parks, 1994).  Microtubules in control oocytes in our study 

were intimately associated with the chromosomes forming the meiotic spindle, which 

appeared as a symmetrical, barrel-shaped structure with anastral poles.  This observation 

agrees with previous studies on the cytoskeletal arrangement in bovine oocytes during 

maturation and cooling (Kim et al., 2000; Rho et al, 2002).  The few disrupted spindles 

may represent immature oocytes that have not properly extruded their first polar body.  

This is in strong contrast to the results obtained with the dehydrated oocytes.  Therefore, 

in Experiment 2, sucrose or trehalose was added to the fixation medium to avoid any 

recovery of the cytoskeleton or meiotic spindle. 

In the second experiment, the highest concentrations of saccharides (0.99 M 

sucrose and 0.65 M trehalose) used in Experiment 1 were used to determine the effect of 

dehydration on cytoskeletal structures and the meiotic spindle.  Microtubules and 

microfilaments are integral cytoskeletal components, required for proper cell division and 

the maintenance of the meiotic spindle (Kim et al., 2000).  Immunohistochemistry was 

used to visualize microtubules and actin microfilaments while Hoechst staining was used 

to identify the positioning of the chromosomes.   

Only one intact meiotic spindle was observed out of the 188 oocytes that were 

exposed to saccharides.  Furthermore, only 24% to 30% of these oocytes had any visible 

tubulin structure.  This level of disruption is thought to be a major factor in the relatively 

low developmental rates obtained with vitrified-warmed oocytes after they are fertilized.  

Without an intact meiotic spindle, normal fertilization and development will not occur.  A 
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region rich in microfilaments has been reported to co-localize with the meiotic spindle 

(Kim et al., 2000).  In our study, co-localization of actin with tubulin was observed in 

most of the control oocytes (93%), but was observed in only a few of the oocytes that had 

been subjected to dehydration.  There was a similar degree of microtubule disruption 

regardless of the saccharide used or the medium in which it was prepared.   

Staining with Hoechst dye revealed the close proximity of the chromosomes to 

the microtubules in all treatments with observable meiotic spindles and in all of the 

controls.  The major cause of the microtubule disruption observed in dehydrated oocytes 

may be due to the severe reduction in cell volume.  This may cause the displacement of  

cytoskeletal structures responsible for maintaining the meiotic spindle in position.  

Rupture of coronal extensions to the oocyte during severe dehydration may also 

contribute to the disruption of the cytoskeleton found in this study.   

2.6 Conclusions 

Bovine MII-stage oocytes behave osmotically in response to increased osmotic 

pressure.  Also, oocytes exposed to high concentrations of saccharides exhibited a high 

degree of meiotic spindle disruption, which may result in the inability of these oocytes to 

be fertilized and to develop.  The use of sucrose as the saccharide for dehydration 

resulted in a higher percentage of spindle disruption in both media used compared with 

the use of trehalose in both media.  Further study is needed to determine whether the 

spindle can be re-organized after vitrification and before fertilization by sequential 

rehydration.  Protective properties of trehalose as well as the use of microtubule 

stabilizers may also be beneficial for its use in vitrification. 
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CHAPTER 3 
BLASTOCYST FORMATION FROM VITRIFIED BOVINE OOCYTES, 

ZYGOTES AND 2-CELL EMBRYOS 
 
3.1 Introduction 

Gamete and embryo preservation is proposed as being essential for conserving the 

genome of all species (Karow and Critser, 1997; Watson and Holt, 2001; Holt et al., 

2003).  Although sperm and embryos of many species are readily cryopreserved, oocyte 

preservation has been less successful.  Many characteristics of oocytes including their 

low surface to volume ratio, stage of maturation and species-specific differences, such as 

sensitivity to chilling and osmotic shock, have contributed to their poor cryopreservation 

success (Parks and Ruffing, 1992).  Although oocyte vitrification was developed in 1985 

by Rall and Fahy, it was not for another decade that progress in oocyte preservation 

increased compared with traditional slow cooling protocols for oocytes.   

Vitrification avoids the deleterious effects of ice formation by solidifying the 

intracellular water into a metastable glass-like substance by using ultra-rapid cooling 

rates (Taylor et al., 2004).  Although there has been an increase in the success using this 

method, oocyte vitrification results in relatively low blastocyst development (~20%) 

compared with vitrified cleavage-stage embryos with >50% blastocyst development in 

cattle (Vajta et al., 1998).  Further impeding the efficiency of oocyte vitrification is the 

multitude of different approaches used including the use of different mixtures of 

cryoprotective additives (CPAs) and their concentrations, the number of steps, length of 

exposure and even the holders used (Vajta, 2000).  New techniques to improve its 

efficiency have concentrated on minimizing the volume of solution vitrified, 

micromanipulation of the oocyte as well as the addition of chemicals to confer stability to 
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the cytoskeletal arrangements.  However, until efficient, standardized vitrification 

protocols can be established for domestic species, the use of oocyte vitrification will 

remain a research technique instead of a commercially applied method of preserving the 

female genome.  The objective of this study was to devise a protocol to preserve bovine 

oocytes and early cleavage-stage embryos with vitrification by comparing their 

subsequent embryonic development after in vitro fertilization (IVF). 

3.2 Literature Review 

3.2.1 Problems Associated with Preserving Oocytes and Embryos 

One common problem in oocyte cryopreservation is their large, spherical size.  

Their relatively small surface-area compared with their large internal volume decreases 

their rate of dehydration.  Dehydration is important to limit the formation of intracellular 

ice during crypreservation.  Furthermore, during slow cooling, oocytes are exposed to 

CPAs for a long period of time.  For rapid cooling, high concentrations of CPAs are 

required for rapid dehydration.  Longer exposure of oocytes to CPAs has been thought to 

be toxic and a major cause of poor survival.  The detrimental effects of the increased 

concentration of CPAs used in vitrification are limited due to their short exposure during 

the vitrification and rapid dilution during warming.   

The stage of maturation, from the germinal vesicle (GV) stage to the metaphase-II 

(MII) stage, has been shown to influence oocyte survival post-vitrification in some 

species (Parks and Ruffing, 1992).  At the MII stage, the DNA of the oocyte is condensed 

into chromosomes that are aligned along the equatorial region of the metaphase spindle.  

This stage of development is more susceptible to disruption than the embryo in which the 

DNA is in the form of decondensed chromatin.  During cooling, the metaphase spindle 
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can be disrupted and the chromosomes separated from the spindle resulting in 

dysjunction and aneuploidy in the developing embryo.  For example, in two of many on 

studies of oocyte cryopreservation, only 31% of the frozen-thawed bovine oocytes 

(Saunders and Parks, 1999) and 16% to 19% of human oocytes (Boiso et al., 2002) had 

normal chromosome arrangements.   

Species differences introduce other factors to cryopreservation, such as 

cytoplasmic lipid content and chilling sensitivity.  The presence of cytoplasmic lipids in 

the oocytes can cause damage during the freeze-thaw process due to alterations in their 

physicochemical properties (Isachenko et al., 2001a).  The exact cause of this damage in 

unknown but it may be due to the interaction of the lipids with the cytoskeleton.  The 

lipids may cause disruption in the arrangement of microtubules and microfilaments that 

make up the cytoskeleton upon their premature release (Isachenko et al., 2001a).  

Although cytoplasmic lipids are found in many species oocytes, there is marked variation 

in the type and amount of lipids.  Removal of cytoplasmic lipids through a process 

referred to as delipation has been found to increase the tolerance to chilling of cleavage-

stage porcine embryos (Nagashima et al., 1994; Ushijima et al, 2004).  This process has 

also been used in porcine GV-stage oocytes with relative success (Park et al., 2005).  

Although the most extensive research has been done in mice and cattle, oocytes of 

several other species including human have been successfully preserved using both 

standard cryopreservation and vitrification (e.g., Wood et al., 1993, Vajta et al., 1998, 

Kuleshova et al., 1999, LeGal et al., 2000, Chen et al., 2001, Chian et al., 2004, 

Kuwayama et al., 2005). 

 

 68



3.2.2 Vitrification as an Alternative Method of Preservation 

Vitrification is a quick and simple technique compared with standard slow 

cooling or equilibrium freezing protocols that take at least 40 minutes to several hours to 

complete.  It also is less expensive by not requiring the use of programmable freezers.  

Vitrification was first proposed by Luyet in 1937 as a method to avoid the damaging 

crystallization of intracellular water.  During the standard slow cooling process, cooling 

rates are around 1ºC/minute whereas, during vitrification, cooling rates can exceed 

20,000ºC/minute (Vajta et al., 1997).  The high cooling rates obtained during vitrification 

are achieved by the use of very small volumes of vitrification solution, as little as 1 µl 

compared with 0.25 ml used in standard oocyte and embryo cryopreservation in straws.  

To handle such small volumes, various holders or tools have been employed such as 

straws, open pulled straws (OPS), insemination pipettes, flexipet-denuding pipette (FDP), 

electron microscope copper grids, microdrops, solid surface metal blocks, nylon coils or 

mesh, cryoloops and recently, Katayama et al. (2003) has recently introduced a new 

device, the CryoTop (for a review see Liebermann et al., 2002). 

Besides the use of ultra-rapid cooling rates, the vitrification process employs high 

concentrations of CPAs.  Vitrification uses a 10 fold higher concentration of both 

permeating (e.g., glycerol, dimethylsulfoxide and ethylene glycol) and nonpermeating 

(e.g., sucrose, glucose, trehalose) cryoprotectants.  High CPAs depress ice crystal 

formation (Luyet and Gehenio, 1952).  Because of the high concentrations of CPAs used 

in the vitrification procedures, rapid warming rates as well as rapid cooling rates are also 

important to avoid osmotic shock to the cells.   
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Methods used to minimize the toxic effects of CPAs include substitution of an 

amino group for a hydroxyl group in the CPAs to increase the ability of the solution to 

undergo vitrification, increasing the hydrostatic pressure of the solution to reduce the 

temperature at which nucleation occurs and reducing the amount of the CPA to its lowest 

effective concentration (Liebermann et al., 2002).  The latter can be achieved either by 

using a nonpermeating CPA, such as a saccharide, or by using a combination of two 

CPAs, each of which will be at a lower concentration with the combined concentration 

will remain effective.   

3.2.3 Current Status of Oocyte and Embryo Vitrification 

The first report of successful vitrification of mammalian gametes was done using 

mouse embryos (Rall and Fahy, 1985).  It was not for another decade that this technique 

was first successfully used on bovine oocytes (Martino et al., 1996) and early stage-

embryos (Vajta et al., 1997).  Human oocyte vitrification resulting in a live birth was 

achieved shortly after that (Kuleshova et al., 1999).  To date, embryos at various stages of 

development have been vitrified in the mouse (Rall, 1987; Nakao et al., 1997; Uechi et 

al., 1999; Kito et al., 2003; for a review see Shaw and Jones, 2003), rat (Han et al., 2003; 

Kono et al., 1988), rabbit (Silvestre et al., 2003; Cai et al., 2005), cat (Crichton et al., 

2003), a mustelid (Piltti et al., 2004), pig (Dobrinsky et al., 2000; Gajda and Smorag, 

2000; Berthelot et al., 2000; 2001; Gajda and Smorag, 2002; Esaki et al., 2004), sheep 

(Naitana et al., 1997; Papadopoulos et al., 2002; Dattena et al., 2004), goat (El-Gayar and 

Holtz, 2001; Begin et al., 2003), several bovid species (cattle: Massip et al., 1986; Rizos 

et al., 2003; buffalo: Hufana-Duran et al., 2004), llama (Aller et al., 2002), horse 

(Oberstein et al., 2001; Moussa et al., 2005), a nonhuman primate (Yeoman et al., 2001) 
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and the human (Son et al., 2002; 2005).  Although this list does not contain all of the 

publications for each species, it demonstrates the large number of studies involving 

embryo vitrification. 

Oocyte vitrification has, however, been for less successful.  Oocytes at different 

maturational stages (GV, MI or MII) have been successfully vitrified in the mouse (van 

der Elst et al., 1992; Wood et al., 1993; Hotamisligil et al., 1996; Isachenko and Nayudu, 

1999; Chen et al., 2000; 2001b; Lane and Gardner, 2001), hamster (Lewin et al., 1990; 

Wood et al., 1993; Lane et al., 1999b), pig (Park et al., 2005), cat (Murakami et al., 

2004), sheep (Isachenko et al., 2001b), goat (Begin et al., 2003), a few bovid species 

(cattle: Vajta et al., 1998; Le Gal et al., 2000; Rho et al., 2002; Men et al., 2003a,b; Chian 

et al., 2004; Modina et al., 2004; buffalo: Dhali et al., 2000; Wani et al., 2004), horse 

(Maclellan et al., 2002) and the human (Kuleshova et al., 1999; Wu et al., 2001a; 

Kuwayama et al., 2005).  Although there has been some success in preserving oocytes 

and embryos of domestic species, very few exotic or endangered species have been 

preserved using vitrification.  This is likely due to the limited genetic material available 

to determine efficient methods of vitrification in these species. 

3.2.4 Components of the Vitrification Medium 

Various chemicals and solutions are used to prepare the vitrification medium.  All 

media begin with a similar basic solution with buffering capability, usually either a 

phosphate-buffered saline or a HEPES-buffered medium (Liebermann et al., 2002).  Both 

of these allow the manipulations to be done at the bench without experiencing a pH shift 

whereas, a bicarbonate-buffered medium must be gassed to maintain a proper pH 

throughout the protocol.   
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The next major component is the CPA used to confer protection during the 

cooling process.  High concentrations of CPAs are used to allow the intracellular and 

extracellular environments to solidify into a vitreous state when cooled to subzero 

temperatures.  One common CPAs used in vitrification is ethylene glycol (EG).  It 

appears to be less toxic to both oocytes and embryos and rapidly diffuses across the cell 

membranes (Emiliani et al, 2000).  Other commonly used CPAs are 1,2-propanediol 

(PrOH), glycerol and dimethylsulfoxide (DMSO).   

In addition, sugars such as sucrose, glucose, fructose, raffinose and most recently 

trehalose, are often an important part of the vitrification solution.  Sugars with high 

molecular weights, like disaccharides, do not permeate the cell and can, therefore, help in 

the dehydration of cells during freezing by increasing the extracellular solute 

concentration (Muldrew et al., 2004).  However, the components and their concentrations 

used to make up the vitrification solution vary from species to species.   

Most current vitrification solutions contain sodium.  Recent studies have 

demonstrated the detrimental effects of sodium on mouse oocytes during freezing 

(Stachecki et al., 1998a,b).  It has been proposed that a high electrolyte concentration 

may occur during cooling (Lovelock, 1954).  During freezing, the sodium/hydrogen 

exchange system is impaired and salt loading can occur.  This creates a hypertonic 

intracellular environment resulting in cell lysis (Acker and McGann, 2003).  Stachecki et 

al. (1998a,b) proposed the use of choline as a substitute cation for sodium and have 

reported that significantly higher blastocyst rates resulted from oocytes frozen in the 

choline-substituted medium (CJ2) compared with those frozen in standard 

cryopreservation media.  Choline is an organic osmolyte that is thought to confer 
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protection to cellular membranes during freezing (Stachecki et al, 2002).  Unlike sodium, 

choline is thought not to cross the cell membrane and would therefore not disrupt the 

intracellular ion load.  However, CJ2 medium has only been employed using 

conventional freezing methods and has not been used in conjunction with vitrification to 

date. 

3.3 Materials and Methods 

All compounds unless otherwise stated were purchased from Sigma Chemical 

Company, St. Louis, MO. 

3.3.1 Experimental Design 

In this experiment, MII-stage bovine oocytes were allotteded to one of the 

following nine treatment groups: Control oocytes (n = 251) subjected to standard in vitro 

production (IVP) (Control IVP), MII-stage oocytes (n = 116) vitrified using mTCM 

(mTCM-MII), MII-stage oocytes (n = 114) vitrified using mCJ2 (mCJ2-MII), IVF 

derived presumptive zygotes (n = 131) vitrified after 13 to 15 hours of IVF (Zygote), IVF 

derived 2-cell embryos (n = 122) vitrified after IVF and cultured for 28 to 29 hours (2-

Cell) and with each treatment listed oocytes and embryos were used as controls by 

subjecting them to these same solutions without vitrification: mTCM-MII CPA (n = 116), 

mCJ2-MII CPA (n = 107), Zygote CPA (n = 89) and 2-cell CPA (n = 70).  These MII-

stage bovine oocytes were used as controls to assess the effect of the vitrification 

solutions alone on embryonic development.  They were subjected to the vitrification and 

warming process omitting the loading onto the CryoTop and plunging into liquid 

nitrogen.  There were four treatment replications in this experiment. 
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3.3.2 Oocyte Collection, Fertilization and Culture 

Bovine cumulus-oocyte-complexes (COCs) were collected by a commercial 

company (BoMed; Madison, WI) from ovaries harvested from mature cows at an 

abbatoir.  The COCs were then shipped overnight by express courier in maturation 

medium, in a portable incubator (temperature 37°C - 39°C) to the laboratory at the 

Audubon Research Center in New Orleans, Louisiana.  Maturation medium consisted of 

TCM-199 (12340-030; Gibco, Grand Island, NY) with 0.5 M L-glutamine (G-8540), 1% 

fetal bovine serum (FBS) (SH30070.02; Hyclone Laboratories Inc., Logan, UT), 10 

µg/ml of bovine LH (Luteinizing Hormone) (L-9773), 0.7 IU/ml of FSH (Follicle 

Stimulating Hormone) (F-2293), 0.01 mg/ml of estradiol (E-2758) and 0.1% penicillin/ 

streptomycin (15140-122; Gibco).  In four replicate runs, COCs were randomly allocated 

to one of nine treatment groups.  COCs in the control in vitro production group (Control 

IVP; n = 251), were subjected to standard in vitro fertilization (IVF) and then cultured in 

CR1aa medium (Rosenkrans and First, 1994) in a humidified atmosphere of 5% O2, 5% 

CO2 and 90% N2 at 38°C for up to 9 days.   

The vitrification treatment groups consisted of COCs vitrified at the presumptive 

MII stage (in two different media), or COCs inseminated and then vitrified either as 

presumptive zygotes or as 2-cell embryos.  MII-stage oocytes were subjected to 

vitrification in mTCM or mCJ2 medium (n = 116 and n = 114, respectively) after 20 to 

21 hours of IVM and then fertilized by IVF.  TCM-199 was modified by adding 10% 

FBS (mTCM) and CJ2 medium was also modified by the addition of 10% FBS (mCJ2).  

These modified solutions were used to prepare both the vitrification and warming media 

for each of theses groups of oocytes, as described below.  Presumptive zygotes (n = 131) 
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were vitrified after 13 to 15 hours of insemination.  The 2-cell embryos (n = 122) 

resulting from IVF that were cultured for 28 to 29 hours before vitrification.   

For in vitro embryo production, COCs were removed from in vitro maturation 

(IVM) at 22 hours of maturation, washed twice in Brackett-Oliphant medium (BO 

medium) (Brackett and Oliphant, 1975) supplemented with 3% bovine serum albumin 

Fraction V (BSA) (A-4503) (BSA-BO, medium used in the insemination droplet) and 

then transferred to insemination droplets.  Insemination droplets were prepared using a 

0.5 ml straw of cryopreserved Holstein bull (7H5188; GeneX, Baton Rouge, LA) sperm 

in all replicates.  One straw was thawed in air for 30 seconds, then placed in a water bath 

(38ºC to 40ºC) for 1 minute.  The spermatozoa were mixed with 10 ml of BO medium 

supplemented with 1 mM caffeine sodium benzoate (BO-Caff) (C-4144) and centrifuged 

for 6 minutes at 500 x g in a 15 ml microcentrifuge tube.  The supernatant discarded and 

the pellet re-suspended in another 10 ml of medium and re-centrifuged.  The final pellet 

was re-suspended in an equal volume of BO-caffeine and 0.6% BSA-BO media.  The 

volume of medium to resuspend the sperm was adjusted so that the insemination droplets 

contained ~1 x 106 sperm/ml.   

Groups of 25 to 30 COCs were placed into each 100 µl droplet of the sperm 

suspension in a 35 mm dish and covered with 2 to 3 ml of mineral oil (M-5310) and 

incubated for 12 hours at 38°C in 5% CO2 in humidified air.  After insemination, the 

presumptive zygotes were stripped of their cumulus cells by vortexing them for 3 minutes 

in TCM-199 supplemented with 2.2% hyaluronidase (H-3506).  Zygotes were washed in 

two 35 mm dishes each containing 2 to 3 ml CR1aa day 0 to 3 medium (CR1aa day 0-3) 

and then placed into 80 µl droplets of CR1aa day 0-3 (10 to 15 zygotes/droplet) in a 35 
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mm petri dish, covered with mineral oil and incubated.  CR1aa day 0-3 medium consisted 

of CR1aa stock solution (Rosenkrans and First, 1994) supplemented with 2% BME 

amino acids (B-6766), 1% MEM nonessential amino acids (11140-050; Gibco - 

Invitrogen), 50 µg/ml of gentamicin solution (15750-060; Gibco - Invitrogen), 0.01 M L-

glutamine (G-5763) and 3% BSA Fraction V (A-7511).  The dish was then placed into a 

sealed bag (0181216; Kapak sealpak pouches - Fisher Scientific, Pittsburg, PA) and filled 

with 5% CO2, 5% O2 and 90% N2 gas and incubated at 38°C.   

On day 3, dividing embryos were transferred to 80 µl droplets of CR1aa day 3 to 

7 medium (CR1aa day 3-7) in a 35 mm dish covered in oil, bagged and incubated further 

as previously described.  CR1aa day 3-7 medium consisted of CR1aa stock solution 

supplemented with 2% BME amino acids, 1% MEM nonessential amino acids, 50 µg/ml 

of gentamicin solution, 0.01 M L-glutamine, 0.5% FBS and 3% BSA Fraction V. 

3.3.3 Oocyte and Embryo Vitrification 

The vitrification solution for all treatment groups, with the exception of those 

oocytes that were to be vitrified in the CJ2 solution, consisted of mTCM containing 20% 

EG (E-9129) + 20% DMSO (D-4540) + 0.65 M trehalose (T-5251).  Only in the mCJ2 

MII-stage oocyte treatment group, was the TCM-199 replaced by a choline-based 

solution (CJ2) (Stachecki et al., 1998a).   

Vitrification of oocytes and embryos was completed using the same protocol.  

Briefly, groups of 6 to 12 oocytes or embryos were rinsed in mTCM or mCJ2, transferred 

into a 35 mm dish containing 5% EG + 5% DMSO prepared in mTCM or mCJ2 for 45 

seconds, then transferred into a 35 mm dish containing 10% EG + 10% DMSO in the 

appropriate diluent for 45 seconds and then transferred into the vitrification solution.  
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Once in the vitrification solution, the oocytes or embryos were pipetted in <0.1 µl volume 

of vitrification medium onto the surface of a thin polypropylene strip attached to a plastic 

handle, called a CryoTop (Katayama et al., 2003).  The entire CryoTop was immediately 

plunged directly into liquid nitrogen (LN2).  Protective sheaths were affixed to the 

CryoTops to protect the oocytes and embryos and then they were loaded onto canes and 

stored in LN2 for ~2 hours (Figure 3.1).   

3.3.4 Oocyte and Embryo Warming 

Before being warmed, the protective sheath was removed.  Then, the vitrified 

samples were warmed and liquefied by rapidly transferring one CryoTop at a time 

directly from LN2 into a 35 mm dish containing ~2 to 3 ml of 0.25 M trehalose prepared 

in mTCM or mCJ2 at 37°C.  Oocytes or embryos were then sequentially transferred at 1-

minute intervals into 0.19 M and 0.13 M trehalose also prepared in either diluent.  They 

were washed in mTCM medium and then transferred to the appropriate culture medium 

and incubated at 38°C.  This process was repeated until all oocytes or embryos were 

recovered.  All embryos were cultured as previously described for control IVP embryos.  

Cleavage was evaluated on day 3 post-insemination and blastocyst development was 

assessed on days 7 and 9 post-insemination.  

3.3.5 Controls for the Effect of the Media on Embryonic Development 

To determine the effect on embryonic development of the media alone, COCs and 

embryos were processed as described previously for each treatment, but they were not 

placed onto the CryoTop or plunged into LN2 (nonvitrified).  For all CPA controls, COCs 

were sequentially moved through the vitrification CPAs and then were immediately 

placed directly into the warming solutions in decreasing concentrations.   
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Figure 3.1 Photographs of the CryoTop used for oocyte and embryo vitrification.  (a) 

Bovine oocytes loaded onto the tip of a CryoTop in minimal volume, (b) 
CryoTop with oocytes being placed into its protective sheath and (c) Lower 
magnification of CryoTop showing holder (yellow) and protective sheath with 
plug (blue). 
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After being rinsed in the last warming solution, the oocytes or embryos were placed into 

mTCM medium until all oocytes were processed.  In the case of the CPA control oocytes, 

this step was followed by insemination and then culture.  In the case of the presumptive 

zygotes and 2-cell embryos, they were placed into culture and assessed as previously 

described. 

3.3.6 Statistical Analysis 

Cleavage and blastocyst rates across treatment groups and culture intervals were 

analyzed for statistical significance by use of Chi-square tests (P≤0.05 statistically 

different) (Instat Graphpad Version 3.0, San Diego, CA). 

3.4 Results 

3.4.1 Controls for Vitrification Media and Procedures 

To determine the effect of the cryoprotectants alone on the embryonic 

development oocytes, presumptive zygotes and 2-cell embryos were exposed to the 

vitrification and warming solutions without vitrification.  Oocytes exposed to vitrification 

and warming solutions prepared in either mTCM (mTCM-MII; n = 116) or mCJ2 

medium (mCJ2-MII; n = 107) and the presumptive zygotes (n = 89) had similar cleavage 

(65%, 62% and 74%, respectively) and blastocyst rates (13%, 8% and 15%, respectively).  

Cleavage rates of oocytes or presumptive zygotes exposed to vitrification and warming 

solutions were not significantly different from those of the Control IVP oocytes (71%).  

In contrast, blastocyst development on day 9 post-insemination of oocytes (13% and 8%) 

and of presumptive zygotes (15%) exposed to vitrification and warming solutions was 

significantly lower than the Control IVP oocytes (29%).  Although 2-cell embryos (n = 

70) had a significantly higher cleavage rate (84%) (≥4-cell development) compared with 
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all other treatment groups (mTCM-MII, mCJ2-MII and Zygotes), they exhibited 

blastocyst rates on day 9 (33%) similar to those of the Control IVP oocytes (Figure 3.2).   

3.4.2 Oocyte and Embryo VitrificationIn this study, the development of vitrified 

oocytes and embryos was examined.  All treatments were compared with oocytes 

subjected to standard IVF procedures.  Two vitrification solutions were used for oocytes, 

mTCM (mTCM-MII) and mCJ2 medium (mCJ2 MII).  Photographs of cleavage-stage 

and blastocyst-stage embryos produced from control oocyte groups and vitrified oocytes 

and embryo groups are shown in Figures 3.3 and 3.4.  Of the vitrified-warmed oocytes, 

54% of those vitrified using mTCM (n = 116) and 48% of those vitrified using mCJ2 (n = 

114) cleaved by day 3 post-insemination.  These cleavage rates were significantly lower 

than the 71% cleavage rate of the control IVP oocytes (n = 251).  The vitrified oocytes 

also exhibited a decrease in blastocyst rates (4% each, respectively) and none hatched by 

day 9 post-insemination compared with 29% blastocysts and with 3% that hatched in the 

control IVP oocytes.   

Vitrified-warmed presumptive zygotes (n = 131) responded like the vitrified-

warmed oocytes, with 53% cleavage and only 7% of them forming blastocysts.  There 

was no statistical difference between the cleavage and blastocyst rates of vitrified oocytes 

and those of presumptive zygotes.  However, the vitrified-warmed 2-cell embryos had 

significantly higher cleavage and blastocyst rates than the vitrified-warmed oocytes and 

the presumptive zygotes.  Of the vitrified-warmed 2-cell embryos (n = 122), 69% cleaved 

(≥4-cell development) and 28% developed into blastocysts by day 9 post-insemination, 
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Figure 3.2 Average cleavage (day 3) and blastocyst rates (day 7) of control in vitro 

produced (IVP) and oocytes and embryos exposed to vitrification and 
warming solutions alone (CPA controls). BLST = Blastocyst. 

 

 81



 

 
 

Figure 3.3 Photographs of cleavage-stage embryos produced from vitrified oocytes and 
embryos and control IVP embryos on day 3 post-insemination.  (a) Control 
IVP embryos, (b) Vitrified-warmed MII-stage oocytes prepared in mTCM and 
(c) mCJ2, (d) Vitrified-warmed presumptive zygote and (e) Vitrified-warmed 
2-cell embryo.  Magnification photographed with a 40X objective. 
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Figure 3.4 Photographs of blastocyst-stage embryos produced from vitrified oocytes and 
embryos and control IVP oocytes on day 9 post-insemination.  (a) Control 
IVP embryo, (b) Vitrified-warmed MII-stage oocytes prepared in mTCM and 
(c) mCJ2, (d) Vitrified-warmed presumptive zygote and (e) Vitrified-warmed 
2-cell embryo.  Magnification photographed with a 20X objective. 
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and 2% of them hatched.  These results were not significantly different from the 

development rates obtained for the control IVP oocytes (Figure 3.5 and Table 3.1).   

3.5 Discussion 

Although there have been numerous studies of vitrification of bovine embryos, 

the majority of these have been with late-stage embryos.  Only one study to date used 

OPS vitrification to cryopreserve zygotes and early cleavage-stage bovine embryos 

(Vajta et al., 1998).  Recently, a new tool called the CryoTop was developed to allow for 

an even smaller volume of vitrification medium to be used and therefore yields quicker 

cooling and warming rates for embryos (Katayama et al., 2003).  The OPS methods of 

vitrification uses a 1.5 µl volume compared with a <0.1 µl volume using the CryoTop.  

Cooling and warming rates are also increased from ~16,000ºC/minute to 

23,000ºC/minute for cooling and 14,000ºC/minute to 42,000ºC/minute for warming 

(Kuwayama et al., 2005).  This new instrument has been used to improve the efficiency 

of successful vitrification of human oocytes (Kuwayama et al., 2005).  Those 

investigators obtained a maximum of 50% blastocyst development using this technique 

on embryos compared with 0% using standard equilibrium freezing.   

The objective of the experiment described herein was to use the CryoTop as a 

device for the vitrification of early cleavage-stage bovine embryos, as assessed by their 

embryonic development in vitro.  The development rate of presumptive zygotes after 

vitrification was not significantly different from that of vitrified oocytes.  This is not 

surprising as the zygotes are still unicellular and have a similar surface-area to volume  
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Figure 3.5 Average cleavage and blastocyst rates of control and vitrified oocytes and 

embryos.  BLST = Blastocyst. 
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Table 3.1 Summary of embryonic development of control and vitrified bovine oocytes,  
   presumptive zygotes and 2-cell embryos 
 

Oocytes/embryos developing 

 No. of 

Treatment   oocytes CLVG (d 3) BLST (d 7) BLST (d 9) HBLST 

 
Control IVP 251 71 21 29 3 
 
mTCM-MII 116 54* 4* 8* 0 
 
mCJ2-MII 114 48* 4* 6* 0 
 
Presumptive Zygotes 131 53* 5* 7* 0 
 
2-Cell Embryos 122 69 19 28 2 
 
 

mTCM-MII = mature oocytes vitrified in mTCM and then fertilized by IVF, mCJ2-MII = 
mature oocytes vitrified in mCJ2 and then fertilized by IVF, CLVG = Cleavage, BLST = 
Blastocysts, HBLST = Hatched blastocysts. 

*Statistical difference P<0.05; Chi-square analysis of each treatment was compared with 
IVP controls (Control IVP) within columns. 
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ratio as the unfertilized oocyte.  However, the presence of the meiotic spindle in oocytes 

is usually thought to make them more susceptible to damage compared with that of 

zygotes.  Also, the percentage of oocytes that were not mature before IVF and thus, could 

not have been fertilized is similar to that in the vitrified oocyte group (~20%).   

In contrast, the 2-cell embryos are only selected after their first cleavage and 

therefore should have higher developmental rates, since they have been selected.  These 

embryos had a similar or higher developmental rates compared with the IVP controls.  

Higher survival of 2-cell embryos may also result from their ability to dehydrate quicker 

due to their higher surface-area to volume ratio of the cell membranes compared with the 

unicellular zygote.  Having been fertilized and having cleaved, the 2-cell embryos were 

much more resistant to the deleterious effects of cryoprotectants and vitrification.  A 

similar result has also been reported with early and later stages of cleaved bovine 

embryos that were vitrified with the OPS method (Vajta et al., 1998).  However, these 

investigators found a higher blastocyst rate for zygotes (30%) compared with the 

blastocyst rate found for presumptive zygotes in this study (7%). 

The increased cooling and warming rates obtained using the CryoTop yields 

significantly higher survival and developmental rates of mature bovine oocytes compared 

with other vitrification methods, such as the OPS (Kuwayama et al., 2005).  The results 

for cleavage of vitrified oocytes in mTCM vs. mM2 (60% vs. 54%) noted by other 

investigators (Kuwayama et al., 2005) were similar to those obtained in this study, 

however, blastocyst development rate was lower (23% vs. 8%).  This decrease may be 

due to the quality of the oocytes used or the season in which the experiments were 

conducted.  The cleavage (range: 22% to 76%) and blastocyst (range: 3% to 15% ) rates 
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observed in this experiment were not different from previous reports using different 

instruments for oocyte and embryo vitrification (Martino et al., 1996; LeGal et al., 2000; 

Rho et al., 2002; Modina et al., 2004).   

Currently, most cell handling and cryopreservation media contain sodium salts 

(Stachecki et al., 1998b).  However, several studies have mentioned that sodium toxicity 

is the major factor in cell damage during cryopreservation.  This toxicity has been 

attributed to alteration of cellular function and disruption of the cell membrane.  Thus a 

suitable replacement for sodium was examined and choline was chosen.  Using a choline-

based medium, Stachecki et al. (1998a,b) compared the embryonic development of 

mouse oocytes post-vitrification, using two different diluents including the standard 

carbonate-buffered medium, TCM-199 containing sodium and this choline-substituted 

medium, CJ2.   

With the sodium-free medium, Stachecki and colleagues obtained a blastocyst 

rate greater than 50% (Stachecki et al., 1998b; Stachecki and Willadsen, 2000) compared 

with 9% using a sodium-based medium.  However, in the present study, no significant 

difference was found in the cleavage and blastocyst rates of bovine oocytes that were 

vitrified in either mTCM or mCJ2.  There was also no difference in the effect of either 

medium on development of oocytes exposed to the media alone (CPA Controls).  Thus, 

this study demonstrates that CJ2 is a suitable alternative medium for bovine oocyte 

vitrification.  Although there was no significant increase in development, embryos 

derived from vitrified oocytes using a choline-substitute medium seemed to develop 

faster and they were of better quality, as judged by blastomere size and lack of 

fragmentation.   
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Due to the high concentrations of CPAs used in vitrification protocols, the effect 

of the vitrification and warming solutions must be examined separately to determine 

whether the decreased survival is due to the vitrification process or to the toxicity of the 

medium used.  In this study, each treatment group was exposed to the vitrification and 

warming solutions but without being vitrified and were then placed into culture.  There 

was no effect of the solutions on the cleavage rates, but there was a decrease in blastocyst 

development of the vitrified oocytes and zygotes compared with control IVP oocytes.  

These results suggest that there was no block to fertilization due to changes in the zona 

pellucida or plasma membrane as a result of the media.  However, the decrease at the 

blastocyst rate may be due to detrimental effects on the chromosomes that are activated  

at the 8- to 16-cell stage in cattle.  Other organelles and cytoskeletal components may 

also be affected by the high concentrations of cryoprotectants used during the vitrification 

process.   

In summary, more than 50% of vitrified oocytes and presumptive zygotes cleaved 

after vitrification, but this rate was significantly lower when compared with control IVP 

oocytes.  Vitrified 2-cell embryos had greater cleavage and blastocyst rates compared 

with vitrified oocytes and zygotes and were not different from the control IVP oocytes.  

Exposure to vitrification and warming solutions had little effect on cleavage rates 

compared with control IVP oocytes but did have an effect on blastocyst development.  In 

this study, 2-cell embryos were more resistant to the deleterious effects of cryoprotectants 

and vitrification. 
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3.6 Conclusions 

Bovine oocytes and early-cleavage stage embryos can be vitrified using the 

CryoTop device.  Using this technique, 2-cell embryos are more resistant to damage 

caused by the vitrification and warming media as well as to the vitrification process.  

Unfertilized oocytes behaved similarly to presumptive zygotes in both their ability to 

survive vitrification and their susceptibility to these high concentrations of 

cryoprotectants.  It may be beneficial to decrease the concentration of CPAs used in their 

vitrification so as to increase their blastocyst rates.  In this study, use of a choline-

substituted medium was as efficient for the use in bovine oocyte vitrification as TCM-

199, the standard bovine embryo handling medium.  Although all stages of oocytes and 

embryos evaluated in this study cleaved after subsequent culture post-vitrification, further 

study is needed to improve the efficiency of this procedure before it can be made 

commercially available to the livestock industry.   
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CHAPTER 4 
THE EFFECT OF VOLUMETRIC CHANGES OF FELINE OOCYTES 

DEHYDRATED WITH TWO SACCHARIDES 
 
4.1 Introduction 

Cryopreservation of feline oocytes and embryos would allow assisted 

reproductive techniques (ART) to be applied to domestic as well as to endangered feline 

species.  All of the feline species, with the exception of the domestic cat, are listed as 

either endangered or threatened by the Convention on International Trade in Endangered 

Species of Wild Flora and Fauna (CITES).  Although embryo cryopreservation has been 

successfully applied to both domestic and a few nondomestic species, oocyte 

cryopreservation has been more problematic.  To date, successful oocyte 

cryopreservation resulting in blastocyst formation has only been reported in one study 

(Murakami et al, 2004), and no live young were born.   

4.2 Literature Review 

4.2.1 Oocyte Dehydration in Other Species 

Numerous studies have been completed to determine the effect of water 

movement in various cell types exposed to anisotonic solutions.  Membrane permeability 

is a fundamental property of cells, which is specific for each cell type (Leibo, 1980).  

Previous studies have demonstrated that osmotic shock is lethal to cells and needs to be 

considered when preparing a cryopreservation protocol (Oda et al, 1992; Agca et al., 

2000).  Osmotic shock may occur when a cell is rapidly transferred from a hypertonic 

solution into an isotonic solution.  The cell will expand beyond its original isotonic 

volume as water enters rapidly and this can cause cell lysis.  The physiological response 

of cells to anisotonic solutions is to undergo volume changes.  During cryopreservation, 
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volume changes occur during the exposure to the cryoprotectant additives (CPAs), during 

freezing, during warming and during CPA removal.  If these changes are large and 

abrupt, cell membranes are damaged causing cell lysis.   

Numerous studies have examined the osmotic behavior of mammalian oocytes 

and embryos.  To date, most reports have been on either the mouse (e.g., Leibo, 1980; 

Toner et al., 1991; Oda et al., 1992; Pedro et al., 1997) or the cow (e.g., Ruffing et al., 

1993; Agca et al., 2000).  In these studies, the effect of osmotic stress on fertilization and 

embryonic development was examined on immature and mature oocytes.  In the mouse, 

unfertilized mouse oocytes and zygotes were reported to behave as ideal osmometers 

(Leibo, 1980).  To determine the osmotic behavior of a cell, it is placed into increasingly 

hypertonic solutions and its volume is measured at equilibrium.  The results are plotted as 

the cell volume relative to the isotonic volume as a function of the reciprocal of the 

solution’s osmolality in a Boyle van’t Hoff plot.  Extrapolation of the linear regression 

line for a cell in an infinitely concentrated solution represents the solids volume of the 

cell.  Nonosmotic volumes of oocytes range from 18% in the mouse to 32% in the cow, 

respectively (Leibo, 1980; Ruffing et al., 1993).   

4.2.2 Effects of Cryoprotectants on Embryonic Development 

 Besides the injury of volume excursions, oocytes and ova must tolerate exposure 

to high concentrations of CPAs generally used in cryopreservation.  Detrimental effects 

of CPAs depend on three factors: their concentration, the temperature at which the cells 

are exposed and the duration of CPA exposure.  Adding to the problem is the fact that 

there are differences in sensitivity of oocytes among species to various CPAs.  For 

example, rabbit oocytes exposed to propanediol (PrOH) and dimethylsulfoxide (DMSO) 
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exhibit depolymerization of their microtubules and disruption of the actin microfilaments 

(only PrOH) (Vincent et al., 1989).  In the mouse, PrOH and DMSO cause disruption of 

actin microfilaments and at low concentrations of PrOH caused disorganization of the 

microtubules (Johnson and Pickering, 1987; Vincent et al., 1990a; Joly et al., 1992).   

These effects are temperature dependant as during cooling.  Also, exposure of 

bovine oocytes to ethylene glycol (EG) at room temperature resulted in abnormal spindle 

morphology greater than with cooling alone (Saunders and Parks, 1999).  There have 

been few studies of the effects of various CPAs on feline oocytes.  One study examined 

the effects of PrOH and EG on mature cat oocytes and found that all concentrations used 

(except 1.5 M PrOH) caused disruption of the meiotic spindle (Comizzoli et al., 2004).  

The effects of DMSO and that of a combination of CPAs have not yet been reported to 

date in the cat.  Therefore, the choice of CPAs needs to be examined for each species 

before an appropriate protocol can be established.   

4.2.3 Effect of Dehydration on the Oocyte 

 Dehydration can cause detrimental effects to the cell by altering the structure of 

the cytoskeleton and displacing the chromosomes.  This effect is thought to be more 

severe in metaphase-II (MII) oocytes because of the presence of the meiotic spindle.  If 

the spindle is disrupted, normal fertilization does not occur because the chromosomes are 

dispersed.  This results in disjunction during syngamy and the resulting embryos are most 

often aneuploid.  As in the case of CPAs, severe dehydration can disrupt the actin 

microfilaments and the microtubule arrangement of the meiotic spindle.  Besides the 

disruption of cytoskeleton, the cell membranes may also be affected by severe 

dehydration.  There is potential loss of membrane so that when the cell is returned to 
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isotonic conditions, the cell can no longer expand to its original volume and lysis occurs.  

This loss of membrane is thought to result from the fusion of membranes in plant cells 

(Wolfe and Bryant, 1999).  This theory has been disputed on the grounds that the 

hydrostatic forces of the lipid bilayers would make this impossible unless all water of 

hydration was removed (Mazur, 2004).  Overall, many factors affect the survival of 

oocytes during the dehydration process of preservation using cryoprotectants.  The 

objective of this experiment was to determine the effect of volumetric changes on the 

subsequent embryonic development after in vitro fertilization of dehydrated feline 

oocytes. 

4.3 Materials and Methods 

All chemicals were obtained from Sigma Chemical Co., St. Louis, MO, unless 

otherwise stated. 

4.3.1 Experimental Design 

In the first experiment (Experiment 1), feline oocytes were allotted to one of three 

treatments for dehydration as follows: MII-stage oocytes (n = 10) were exposed to 

mM199 alone (0 M saccharide) (Control mM199), MII-stage oocytes (n = 17) exposed to 

increasing concentrations of sucrose (0.15, 0.30, 0.50, 0.65 and 0.99 M) prepared in 

mM199 and MII-stage oocytes (n = 18) exposed to trehalose prepared in mM199 (0.13, 

0.25, 0.35, 0.55 and 0.65 M).  This mM199 medium was prepared using M199 Earle’s 

salt solution supplemented with 10% fetal bovine serum. 

In the second experiment (Experiment 2), MII-stage feline oocytes were allotted 

to three treatment groups as follows: Control MII-stage oocytes (n = 38) exposed to 

mM199 alone, fertilized in vitro, and then cultured to assess embryonic development, 
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MII-stage oocytes (n = 15) exposed to sucrose prepared in mM199 and MII-stage oocytes 

(n = 14) exposed to trehalose prepared in mM199, as in the first experiment, and then 

fertilized in vitro to assess the effects of dehydration on their embryonic development.   

4.3.2 Oocyte Collection and Maturation 

 Ovaries were collected by local veterinary clinics during standard 

ovary/hysterectomies of queens at various stages of their reproductive cycle and 

transported in a 100 ml plastic sample vial (9853Q47; Thomas Scientific, Swedesboro, 

NJ) containing 50 ml of TL HEPES (04-616F; Cambrex Bio Science, Walkersville, MD) 

supplemented with 50 µg/ml of gentamicin (G-1397) in a cooler at room temperature to 

the laboratory at the Audubon Center for Research on Endangered Species in New 

Orleans, Louisiana.  Fresh ovaries were processed within 6 hours post-collection as 

previously described by Gómez et al. (2000), with only minor modifications.  Briefly, 

ovaries were separated from their connective tissue and tract remnants using scissors, 

washed in two 35 mm petri dishes (351029; Falcon - Becton Dickinson, Franklin Lakes, 

NJ) containing 2 to 3 ml of oocyte holding medium (He199) and then held in the same 

medium until processed.   

The holding medium consisted of Medium 199 (M-3769) supplemented with 71 

mM sodium bicarbonate (S-5761), HEPES buffer (H-6147), 0.4% BSA (A-8412) and 1 

mM L-glutamine (G-8540), 0.36 mM pyruvic acid (P-4562), 2.22 mM L(+)lactic acid (L-

4388) and 50 µg/ml of gentamicin sulfate (G-1264) (pH = 7.7-7.9; osmolality = 285 - 295 

mOsm).  A few ovaries at a time were transferred into a 60 mm petri dish containing 2 to 

3 ml of He199.  Each ovary was held with a pair of serrated, curved forceps in a 35 mm 

petri dish (351008; Falcon - Becton Dickinson) containing He199, the ovary was bisected 
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along its longitudinal axis using a scalpel blade (# 10).  Each half was then scrapped with 

the blade to puncture all follicles.  This caused cumulus-oocyte-complexes (COCs) to be 

released into the medium.   

COCs were collected and transferred into another 35 mm dish containing He199.  

The ovaries were minced a second time and again COCs were collected.  Once the COCs 

had been collected, they were washed in another 35 mm dishes containing He199 and 

then washed through two successive dishes containing in vitro maturation (IVM) 

medium.  The IVM medium consisted of M199 Earle’s salts solution (9102; Irvine 

Scientific, Santa Ana, CA) supplemented with 100 IU/ml of human chorionic 

gonadotropin (hCG) (CG-10), 200 IU/ml of equine chorionic gonadotropin (eCG) (G-

4877), 100 IU/ml of Epidermal Growth Factor (EGF) (E-9644), 0.3% BSA Fraction V 

(81-068-2; Serological Proton, Kankakee, IL), 2 mM L-glutamine, 0.36 mM pyruvic 

acid, 2.22 mM lactic acid, 1.12 mM L-cysteine (C-6852) and 50 µg/ml of gentamicin (pH 

= 7.7 - 7.9; osmolality = 285 - 295 mOsm).  All solutions were filtered using a 0.2 µm 

pore acrodisk. 

Oocytes were graded based on the number of cumulus cell layers.  Oocytes with 

two or more layers of cumulus cells and an even dark cytoplasm were assigned quality 

grade scores of Grade A & B.  Oocytes with fewer than one layer of cumulus cells and/or 

an uneven lipid distribution or light cytoplasm were assigned a score of Grade C.  Groups 

of 20 to 30 oocytes were transferred to 800 µl of IVM medium in a 4-well culture dish 

(176740; Nunclon - VWR International, West Chester, PA).  These dishes were placed  
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into a humidified, gassed (5% O2, 5% CO2 and 90% N2) sealed in a plastic bag (0 

181216; Kapak sealpak pouches - Fisher Scientific, Pittsburg, PA) in an incubator at 

38°C for 24 hours. 

4.3.3 Dehydration of Oocytes 

Solutions used for dehydration consisted of a saccharide (sucrose or trehalose) 

prepared in mM199.  This mM199 medium was prepared using M199 Earle’s salt 

solution supplemented with 10% fetal bovine serum (FBS) (SH30070.02; Hyclone 

Laboratories Inc., Logan, UT).  The osmolality of the solutions was determined in 

triplicate with a freezing-point osmometer (Model # 3W2; Advanced Instruments Inc., 

Needham Heights, MA).  The average osmolality of each solution was calculated and 

was considered to be the osmotic pressure of the solution.  Cumulus cells were removed 

from mature oocytes.  Briefly, oocytes were transferred into a 1.5 ml microcentrifuge 

tube containing 0.05% hyaluronidase (H-4272) in IVM medium and then vortexed for 75 

seconds.  The contents of tube were transferred into a 35 mm dish and quickly rinsed 

with mM199 to recover denuded oocytes.  Denuding was completed by mechanical 

stripping with a 200 µm-diameter pulled micropipette.  The denuded oocytes were 

transferred into a fresh 35mm dish containing mM199 and incubated at 38°C in 5% CO2 

in air for 30 minutes before being assigned to treatment groups. 

All steps were executed in a warm room (28°C to 30°C).  Oocytes dehydrated in 

mM199 medium, a bicarbonate-buffered solution, were placed in an incubator (38ºC) in a 

humidified atmosphere of 5% CO2 in air.  For the volumetric analysis, the denuded 

oocytes were transferred into mM199 alone and allowed to equilibrate.  These oocytes in 

mM199 were considered to be controls (Control mM199).  In each solution, the oocytes 
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were allowed to equilibrate for ~10 minutes after which images were recorded with a 

digital camera attached to a Nikon inverted microscope.   

The oocytes were then sequentially rinsed in 2 to 3 ml of medium with increasing 

concentrations of either sucrose (S-1888) or D(+)trehalose (T-5251) diluted in M199 

medium.  For the sucrose treatments, 0.15, 0.30, 0.50, 0.65 and 0.99 M solutions 

(Sucrose) were used and for the trehalose treatments, 0.13, 0.25, 0.35, 0.55 and 0.65 M 

(Trehalose) were used (Table 4.1).  The oocytes were allowed to equilibrate for ~10 

minutes in each saccharide solution and digital images were recorded.  After being 

suspended in the highest concentration of saccharide, dehydrated oocytes were 

transferred back through the saccharide solution in order of decreasing concentrations, 

allowing them to equilibrate for 10 minutes at each step.  The rehydrated oocytes were 

then transferred to mM199 medium and placed into an incubator for ~30 minutes until 

they were exposed to in vitro fertilization (IVF) (Experiment 2). 

4.3.4 Volumetric Measurements 

In Experiment 1, the volumes of oocytes exposed to each saccharide solution and 

the diluents were calculated assuming the oocytes to be spherical.  Calibrated digital 

imaging software (Spot Advanced, Version 3.5.5 for Windows; Diagnostic Instruments 

Inc., Sterling Heights, MI) was used to measure the diameter of each oocyte.  Volume 

was calculated using the formula for a sphere V = 4/3π(d/2)3.  The mean relative volumes 

were calculated by taking the average volume of an oocyte for a particular diluent and 

dividing it by the average volume for oocytes exposed to the diluent alone and expressed  
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Table 4.1 The osmolarities and osmotic pressures of sucrose and trehalose solutions  
   prepared in mM199 medium 
 
 Concentration Osmolarity  Osmotic pressure 
Saccharide (M) (mOsm)  (1/mOsm) 
 
Sucrose 0.00 0.30 3.36 
 0.15 0.46 2.17 
 0.30 0.63 1.60 
 0.50 0.86 1.16 
 0.65 1.05 0.95 
 0.99 1.47 0.68 
 
Trehalose 0.00 0.30 3.36 
 0.13 0.42 2.37 
 0.25 0.56 1.78 
 0.35 0.68 1.47 
 0.55 0.90 1.11 
 0.65 1.01 0.99 
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as a percentage.  This basic method of determining the relative volumes of oocytes was 

previously reported with only minor modifications (Jackowski et al., 1980; Leibo, 1980; 

Oda et al., 1992; McWilliams et al., 1995).   

4.3.5 In Vitro Fertilization and Culture 

In Experiment 2, ejaculated sperm was collected from toms housed at the 

Audubon Center for Research of Endangered Species using a teaser female and an 

artificial vagina (AV) as approved by the Audubon’s Institutional Animal Care and Use 

Committee.  The AV consisted of a small glass bottle filled with ~40 ml of warm water 

(42°C to 45°C), with a balloon with the tip cut out in which was inserted a small plastic 

cup (Figure 4.1).  A small amount of K-Y lubricant was applied to the balloon edge to 

ease penetration.  Using a teaser female in estrus, the tom was allowed to mount her and 

his penis was guided into the AV, holding the bottle at a 45°angle.  Once the ejaculate 

was produced, the AV was gently removed and the sperm sample was transferred to a 1.5 

ml microcentrifuge tube and held in a 500 ml water bottle at ~30°C until processed.   

The sperm sample was then mixed (1:1) with refrigeration medium (90129; Irvine 

Scientific) and placed into a 500 ml bottle filled with water and refrigerated for 24 hours 

before use.  Insemination droplets were prepared by adding 2 µl of the refrigerated pellet 

into 400 µl of pre-warmed HEPES-Tyrode’s solution (HeTY) medium.  This HeTY 

medium consisted of a Tyrode’s salt solution and contained 1.5% M199 HEPES, 7.5% 

BSA (pH = 7.3 - 7.4; osmolality = 285 - 295 mOsm).  Sperm progressive motility and 

concentration were assessed using a hemocytometer to determine the amount of sperm to 

be added to the IVF droplets (50 x 104 sperm/ml).   
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Figure 4.1 The artificial vagina (AV) used for semen collection from domestic toms.  The 

AV consisted of a small glass bottle filled with 40 ml of water (42°C to 45°C), 
and a balloon (yellow) was placed into the bottle and the top was stretched 
over the neck of bottle.  The tip of the balloon was cut out and a small plastic 
cup (white arrow) was inserted.  The plastic cup was the bottom of a 1.5 
microcentrifuge tube that had been cut off ~5 cm from the bottom.  The 
ejaculated sperm was deposited in the bottom of this cup. 
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After being allowed to equilibrate in various solutions, oocytes were washed in 

two 35 mm dishes containing IVF medium and then placed into 100 µl droplets of sperm 

suspension under warmed mineral oil (4008-5; Sage Biopharma, Pasadena, CA) in an 

incubator at 38°C in 5% CO2 in air for ~12 hours.  The IVF medium consisted of a 

Tyrode’s salt solution (T-2397) supplemented with 0.3% BSA, 0.1% sodium bicarbonate, 

1 mM L-glutamine, 0.36 mM pyruvic acid, 2.22 mM L(+)lactic acid, 100 IU/ml of 

penicillin G (P-3032) and 100 mg/ml of streptomycin sulfate (S-9137) (pH = 7.7 - 7.9; 

osmolality = 285 - 295 mOsm).   

After being fertilized, presumptive zygotes were washed with in vitro culture-1 

(IVC-1) medium.  IVC-1 medium consisted of Tyrode’s salt solution supplemented with 

0.3% BSA, 0.1% sodium bicarbonate, 1 mM L-glutamine, 0.36 mM pyruvic acid, 2.22 

mM L(+)lactic acid, 1% MEM nonessential amino acids (M-7145), 50 µg/ml of 

gentamicin sulfate and 1 µl/ml of amphotericin B (A-2942) (pH = 7.7 - 7.9; osmolality = 

285 - 295 mOsm).  These zygotes were then transferred to a fresh well containing 800 µl 

of IVC-1 medium in a 4-well culture dish.  These dishes were placed into a humidified, 

gassed (5% O2, 5% CO2 and 90% N2) sealed bag in an incubator (38°C) for 2 days.   

On day 2 post-insemination, fertilization rates were determined by evaluating for 

cleavage.  Embryos not dividing were removed from culture and cleaved embryos were 

incubated in IVC-1 + EAA (IVC-1 supplemented with 1% MEM essential amino acids; 

M-5550) for an additional 2 days.  On day 5, embryos were washed twice with in vitro 

culuture-2 (IVC-2) medium.  IVC-2 medium consisted of Tyrode’s salt solution 

supplemented with 10% FBS, 0.1% sodium bicarbonate, 1 mM L-glutamine, 0.36 mM 

pyruvic acid, 2.22 mM L(+)lactic acid, 1% MEM nonessential amino acids, 1% MEM 
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essential amino acids, 50 µg/ml of gentamicin sulfate and 1 µl/ml of amphotericin B (pH 

= 7.7 - 7.9; osmolality = 285 - 295 mOsm).  Embryos were then transferred into 800 µl  

of IVC-2 and incubated 38ºC for an additional 2 days.  On days 7 and 8 post-

insemination, blastocyst development was assessed.  Blastocyst hatching and expansion 

were recorded.  Embryo development was further monitored for an additional 2 days. 

4.3.6 Statistical Analysis 

In Experiment 1, a linear regression was calculated on the average relative 

volumes of oocytes exposed to each saccharide solution prepared in mM199, as a 

function of the average osmotic pressure of the solution.  In Experiment 2, cleavage and 

blastocyst rates of Control IVP and saccharide-treated (Sucrose and Trehalose) oocytes 

were compared using a Chi-square analysis (P≤0.05 statistically different) (Instat 

Graphpad, Version 3.0, San Diego, CA). 

4.4 Results 

4.4.1 Volumetric Response to Dehydration 

In the first experiment, the effects of dehydration were examined using two 

saccharides, sucrose and trehalose, prepared in mM199.  Oocytes exposed to sucrose and 

trehalose solutions behaved osmotically when transferred from an isotonic solution into 

increasingly concentrated solutions of saccharides.  A total 17 oocytes were exposed to 

sucrose solutions (0.15, 0.30, 0.50, 0.65 and 0.99 M) and 18 oocytes were exposed to 

trehalose solutions (0.13, 0.25, 0.35, 0.55 and 0.65 M).  Each of these oocytes was first 

suspended in isotonic solution (mM199 alone) and its image was recorded.  The effect of 

increasingly concentrated saccharide solutions is shown in Figures 4.2 and 4.3.   
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Figure 4.2 Photomicrographs of feline oocytes at various concentrations of trehalose 

prepared in mM199 medium.  (a) Oocyte exposed to mM199 medium alone 
for 10 minutes at room temperature in air, (b) 0.13 M trehalose, (c) 0.25 M, 
(d) 0.35 M, (e) 0.55 M and (f) 0.65 M.  Note the increasing perivitelline space 
between the oocyte and the zona pellucida.  Images were obtained using a 
digital camera attached to an inverted Nikon microscope with 20X objective.  
Images were adjusted for brightness and contrast using Adobe Photoshop 
Version 6.0. (Scale bar = 100 µm, set for all images). 
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Figure 4.3 Photomicrographs of feline oocytes at various concentrations of sucrose 

prepared in mM199 medium.  (a) Oocyte exposed to mM199 medium alone 
for 10 minutes at room temperature in air, (b) 0.15 M sucrose, (c) 0.30 M, (d) 
0.55 M, (e) 0.65 M and (f) 0.99 M.  Note the increasing perivitelline space 
between the oocyte and the zona pellucida.  Images were obtained using a 
digital camera attached to an inverted Nikon microscope with 20X objective.  
Images were adjusted for brightness and contrast using Adobe Photoshop 
Version 6.0. (Scale bar = 100 µm, set for all images). 
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The results of the dehydration are presented in Figure 4.4, a Boyle van’t Hoff plot 

for feline oocytes exhibiting a linear decrease in volume as a function of the reciprocal of 

osmolality.  The osmolality of the mM199 was 297 mOsm.  Extrapolation of the values 

to the x-intercept determines the nonosmotic volume for the oocytes in each saccharide 

solution.  For trehalose this value was 32% and it was 22% for sucrose prepared in M199 

medium.  Both sucrose and trehalose in solution resulted in a reasonably good fit to the 

linear regression, with high R2 values of 0.94 for each.  There was some lysis in both 

groups of dehydrated oocytes (sucrose = 2 oocytes; trehalose = 4 oocytes).  Only intact 

oocytes were placed into culture. 

4.4.2 In Vitro Fertilization of Dehydrated Oocytes 

In the second experiment, feline oocytes equilibrated with either sucrose or 

trehalose were placed into in vitro insemination and then cultured to determine the effect 

of the saccharide on subsequent embryonic development.  Of the 14 trehalose-treated 

oocytes, 29% cleaved compared with 20% of those treated in sucrose (n = 15).  Of the 28 

control oocytes remaining in mM199 for the duration of the experiment, 25% cleaved and 

25% developed into blastocysts.  The cleavage rates of the dehydrated oocytes were not 

significantly different from that of control oocytes.  No blastocysts resulted from oocytes 

that had been exposed to saccharides.   

4.5 Discussion 

Oocytes and embryos of all animal species studied to date are known to behave 

osmotically when exposed to increasing concentrations of hypertonic solutions, such as  
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Figure 4.4 Boyle van’t Hoff plots of feline oocytes exposed to various solutions of 

trehalose or sucrose prepared in mM199 medium.  The points represent the 
mean relative volumes of oocytes.  The correlation coefficients (R2) for 
trehalose and sucrose prepared in mM199 medium were both 0.94. 
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the mouse (Leibo, 1980; Oda et al., 1992), cow (Mazur and Schneider, 1986; Ruffing et 

al., 1993; Agca et al., 1998), goat (Le Gal et al., 1994), nonhuman primates (Songsasen et 

al., 2002b) and fish (Valdez et al., 2005).  When the osmotic response of a cell occurs the 

relative volume of a cell decreases in relation to the reciprocal of the osmolality of the 

solution to which it is exposed (Ruffing et al., 1993).  Oocytes are very sensitive to 

volume excursions, which occur during cryopreservation as the cell is exposed to CPAs, 

freezing, warming and removal of CPAs (Oda et al., 1992).  If the cell cannot withstand 

these volume changes, the cellular membranes often rupture and cell lysis will occur.  

Therefore, careful consideration should be made in preparing protocols for oocyte 

preservation so that these permutations are minimized. 

 In the first experiment of this study, volumetric measurements of feline oocytes 

were made during their dehydration when exposed to two saccharides prepared in 

mM199.  Oocytes undergo dehydration by a loss of water in an attempt to restore the 

osmotic pressure between intracellular and extracellular compartments.  The efflux of 

water from the cell reaches a maximum when the cell is dehydrated to 13% to 23% of 

their isotonic volume, as reported in mouse and human oocytes (McWilliams et al., 

1995). This maximal level of dehydration refers to the nonosmotic volume of an oocyte 

that is made up of cellular components and solutes.   

In the cat oocyte, a nonosmotic volume of 22% to 32% was determined using two 

different saccharides.  This is similar to the nonosmotic volumes of bovine oocytes (24% 

to 32%) and Rhesus monkey oocytes (23%) and only slightly higher than that reported 

for mouse and goat oocytes (18% and 20%, respectively).  These values are calculated by 

extrapolating the cell volume exposed to an infinitely concentrated solution.   
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In the second experiment, dehydrated oocytes were subjected to in vitro 

fertilization and cultured to assess their development.  This experiment was done to 

determine the effects of the vitrification and warming solutions on the ability of oocytes 

to be fertilized and subsequently to develop in vitro.  No significant difference was 

detected in cleavage rates among all treatment groups (control oocytes, sucrose -treated 

oocytes and trehalose-treated oocytes).  Based on cleavage rates, there is no direct 

evidence of an effect of either of the cryoprotectants (sucrose or trehalose) on the in vitro 

fertilization process.  However, blastocyst development was severely impaired when 

oocytes were exposed to these cryoprotectants compared with that of the control oocytes.  

Although the low rates of cleavage were similar for all treatments, events occurring 

during the fertilization process can not be ruled out as a potential cause of the subsequent 

embryo development in vitro.  Furthermore, one can not overlook that some oocytes may 

have become parthenogenetically activated in this study. 

Studies designed to determine the sensitivity of feline oocytes to CPA exposure 

have been limited.  Comizzoli et al. (2004) examined the resumption of meiosis, 

fertilization and embryonic development of immature feline oocytes.  It was observed 

that high concentrations of PrOH and EG decreased the ability of feline oocytes to mature 

in vitro.  Of those oocytes that did mature (47% to 70%, respectively), they contained 

disrupted meiotic spindles.  Cleavage, however, was not affected, similar to the results 

obtained in the current experiment.  In the cow, oocytes exposed to CPAs alone 

demonstrated chromosome dispersal and clumping, microtubule depolymerization and 

discontinuities in the actin cytoskeleton (Saunders and Parks, 1999).  This is in contrast to 

mouse oocytes that exhibit little or no spindle disruption after exposure to either PrOH or 
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DMSO (van der Elst et al., 1992).  Unfortunately, due to the limited availability of feline 

oocytes and the Hurricane Katrina, this experiment could not be repeated. 

4.6 Conclusions 

 Feline oocytes behave osmotically when exposed to increasingly concentrated 

solutions.  There was no difference in the effect on feline oocytes of being exposed to 

sucrose or trehalose at the concentrations evaluated in this study.  Embryonic 

development of these dehydrated oocytes was also assessed and it was found that 

cleavage rates were not affected by exposure of feline MII-stage oocytes to 

cryoprotectants, although blastocyst development was adversely affected and when 

compared with control oocytes.  To date, very few studies have examined the effects of 

various permeating and nonpermeating cryoprotectants on feline oocytes.  Further study 

is needed to determine the source of the detrimental effects noted on blastocyst 

development.   
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CHAPTER 5 
EMBRYO DEVELOPMENT FOLLOWING IVF OF VITRIFIED FELINE 

OOCYTES WITH TWO DIFFERENT DILUENTS 
 
5.1 Introduction 

 Assisted reproductive techniques (ART), such as artificial insemination, in vitro 

fertilization, embryo transfer, gamete preservation, intracytoplasmic sperm injection and 

nuclear transfer have been used in both domestic and nondomestic species in an effort to 

increase genetically valuable animals.  Although often used routinely in various 

commercial settings for domestic species, the use of ART for endangered species has 

been less effective.  Genome resource banking is a valuable resource for endangered 

species but necessitates the ability to preserve sperm, oocytes and/or embryos.  This 

resource can then be used to ensure representation of each individual in the genetic pool, 

thus preventing inbreeding due to small, fragmented animal populations.   

Currently, all species of felines, with the exception of the domestic cat, are 

considered either threatened or endangered within some part of their range.  To preserve 

their genetics, sperm and oocyte cryopreservation techniques need further examination.  

Although a number of studies of feline sperm cryopreservation have been reported, very 

few studies of feline oocyte cryopreservation have been published to date.  Therefore, the 

objective of this experiment was to determine the ability of vitrified domestic cat oocytes 

to undergo fertilization and embryonic development after warming. 

5.2 Literature Review 

5.2.1 Current Status of Feline Oocyte Preservation 

 The first report of live offspring produced using ART in domestic felids used 

cryopreserved sperm in conjunction with artificial insemination (AI) (Platz et al., 1978).  
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Since then, a few of the nondomestic species such as, the ocelot (Swanson et al, 1996a), 

jaguar (Swanson et al, 1996b), cheetah (Swanson et al, 1996b, Howard et al, 1997), tiger 

(Donoghue et al., 1996) and the Clouded leopard (Howard et al, 1997) have produced 

offspring after being inseminated surgically with cryopreserved sperm (for a review see 

Howard, 1999).  However, oocyte cryopreservation has been much less successful.  Only 

two studies to date have reported in vitro development from either cryopreserved or 

vitrified-warmed domestic cat oocytes (Luvoni and Pellizzari, 2000; Murakami et al., 

2004).  There have been no reports found on oocytes of endangered felids being 

successfully cryopreserved and offspring produced.   

The relatively low success of felid oocyte preservation methods may be due to the 

high lipid content and the decreased permeability of the oocytes plasma membrane to 

various cryoprotectants (Luvoni, 2000).  In contrast, cryopreservation of cleavage-stage 

embryos has had greater success in the domestic cat and to some extent in one 

nondomestic species (tiger) (Crichton et al., 2003; Gómez et al., 2003).  In an attempt to 

increase the low success in feline oocyte preservation, Comizzoli et al. (2004) evaluated 

the effect of cryoprotectant additives (CPAs) on feline oocytes.  Exposure to both 

ethylene glycol (EG) and propanediol (PrOH) was found to cause a high incidence of 

abnormal spindle morphologies and decreased blastocyst development, with the 

exception of 1.5 M PrOH at 25ºC.  Luvoni et al. (1997) and Luvoni (2000) also reported 

detrimental effects of both CPAs and the cryopreservation process on feline oocytes.   

5.2.2 Use of Cryoprotectants and Diluents 

 Various components that make up the vitrification solution for oocytes includes 

the base medium that is composed of a buffered-saline solution, usually TCM-199 or 
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phosphate-buffered saline (PBS).  These solutions contain sodium, which is detrimental 

to embryonic development in mouse oocytes during cryopreservation due to the increased 

cation load during the dehydration and cooling process (Stachecki et al., 1998b).  To 

reduce this detrimental effect, Stachecki et al. (1998a) have developed a choline-based 

medium (CJ2) where the sodium was replaced by choline.  A 40% increase in blastocyst 

development was found with choline compared with the sodium-based medium.  This 

choline-based medium has also been successfully used to preserve human oocytes 

(Quintans et al., 2002).   

Besides the base medium, vitrification solutions often contain CPAs, such as EG, 

PrOH, dimethylsulfoxide (DMSO) and propylene glycol (PG).  In addition to the 

permeating CPAs, nonpermeating CPAs such as sucrose, glucose or trehalose have been 

used in the cryopreservation/vitrification medium.  In the cat, 40% EG and 0.3 M sucrose 

were used to vitrify oocytes but only a 4% blastocyst rate was obtained by Murakami et 

al. (2004).  These researchers used a two-step dilution beginning with only 20% EG 

followed by the vitrification solution containing 40% EG and 0.3 M sucrose.  Two-step 

dilutions allow the oocyte to dehydrate slowly avoiding osmotic shock due to the high 

concentrations of CPAs used.  It should be noted that Luvoni et al. (1997) found no 

significant difference in the resumption of meiosis of feline oocytes that were 

cryopreserved in either DMSO or EG solution.   

5.2.3 Instruments Used for Vitrification 

Various instruments have been used for oocyte cryopreservation.  For slow-

cooling, standard 0.25 ml straws are used and loaded into a controlled rate freezer.  

Different instruments have been used for vitrification, such as open pulled straws (OPS) 
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Vajta et al., 1998), electron microscope grids (Martino et al., 1996), cryoloops (Lane et 

al., 1999a) and CryoTops (Kuwayama et al., 2005).   

Cryoloops and the CryoTops markedly improved the success of embryonic 

development post-vitrification by decreasing the minimum volume required and 

subsequently increasing the cooling rates in mouse and human oocytes and embryos 

(Lane et al., 199a,b; Kuwayama et al., 2005).  For example, the OPS method makes use 

of a 1.5 µl volume whereas, the CryoTop method uses a <0.1 µl volume during the 

proceedure.  This volume difference is due to the instrument surface area, the vitrification 

solution and type of cells used in the process.  Pulled straws have a larger surface area to 

fill whereas, the slender tip of the CryoTop allows a much smaller volume to be used 

during the process.  Consequently, the cooling and warming rates increase from 

~16,000ºC/minute to 23,000ºC/minute for cooling and 14,000ºC/minute to 

42,000ºC/minute for warming, respectively (Kuwayama et al., 2005).  Only 0.25 ml 

French plastic straws have been reported to date for oocyte vitrification in the domestic 

cat (Murakami et al., 2004).   

5.3 Materials and Methods 

All chemicals were obtained from Sigma Chemical Co., St. Louis, MO, unless 

otherwise stated. 

5.3.1 Experimental Design 

In the first experiment (Experiment 1), oocytes were graded and then randomly 

divided into one of two treatments groups: Control metaphase-II (MII) stage oocytes (n = 

102) that were subjected to standard IVP (Control IVP) and MII-stage oocytes (n = 214) 

that were vitrified using a choline-based medium CJ2 (Vitrified MII).  Control IVP and 
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Vitrified MII treatments were classified into two oocyte quality treatment groups (Grade 

A & B and Grade C).  After vitrification all oocytes were fertilized and cultured to assess 

their embryonic development.  There were five replicates used in this experiment. 

In the second experiment (Experiment 2), oocytes were again graded and then 

randomly divided into one of three treatments groups: Control MII-stage oocytes (n = 

204) that were subjected to standard IVP (Control IVP), MII-stage oocytes (n = 548) that 

were vitrified using a standard oocyte maturation medium, M199 Earle’s salts solution 

(Vitrified MII) and MII-stage oocytes (n = 86) subjected to the vitrification solution alone 

and then fertilized and cultured (CPA Control).  Control IVP and Vitrified MII treatments 

were classified into two oocyte quality treatment groups (Grade A & B and Grade C).  As 

in Experiment 1, all oocytes were fertilized in vitro and cultured to assess their 

embryonic development.  There were eight replicates of this experiment. 

5.3.2 Oocyte Collection and Maturation 

 Ovaries were collected at local veterinary clinics during regular ovary/ 

hysterectomies of queens at various stages of their reproductive cycle.  The ovaries were 

placed in a plastic 100 ml sample vial (9853Q47; Thomas Scientific, Swedesboro, NJ) 

containing 50 ml of TL HEPES (04-616F; Cambrex Bio Science, Walkersville, MD) 

supplemented with 50 µg/ml of gentamicin (G-1397) and transported at room 

temperature to the laboratory at the Audubon Center for Research of Endangered Species 

in New Orleans, Louisiana.  Fresh ovaries were processed within 2 to 8 hours post-

collection or were stored at 4°C overnight (refrigerated ovaries) and processed the next 

morning.  Oocytes collected from refrigerated ovaries, matured in vitro, have been  
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reported to produce blastocysts and live young in the domestic cat (Wolfe and Wildt, 

1996; Pope et al., 2003).  Both fresh and refrigerated ovaries were processed as described 

by (Gómez et al., 2000), with only minor modifications.   

Ovaries were separated from their connective tissue and tract remnants using fine 

scissors, washed through two 60 mm petri dish (351029; Falcon - Becton Dickinson, 

Franklin Lakes, NJ,) containing 2 to 3 ml of oocyte holding medium (He199) and then 

held in the same medium until processed.  He199 consisted of Medium 199 (M-3769) 

supplemented with 71 mM sodium bicarbonate (S-5761), HEPES buffer (H-6147), 0.4% 

BSA (A-8412) and 1 mM L-glutamine (G-8540), 0.36 mM pyruvic acid (P-4562), 2.22 

mM L(+)lactic acid (L-4388) and 50 µg/ml of gentamicin sulfate (G-1264) (pH = 7.7 - 

7.9; osmolality = 285 - 295 mOsm).  A few ovaries at a time were transferred to a 60 mm 

petri dish containing 2 to 3 ml of He199, where they were measured and the number of 

visible follicles assessed and recovered.  Each ovary was held with a pair of serrated, 

curved forceps in a 35 mm petri dish (351008; Falcon - Becton Dickinson) containing 

He199 and bisected along its longitudinal axis using a (# 10) scalpel blade.  Each half 

was then scrapped with the blade to puncture all follicles.  This caused cumulus-oocyte-

complexes (COCs) to be released into the medium.  COCs were collected and transferred 

to a new 35 mm dish containing He199.  The ovaries were minced a second time and 

COCs again collected.   

After the COCs had been collected, they were washed in another 35 mm dish 

containing He199 and then washed through two successive dishes containing in vitro 

maturation (IVM) medium.  The IVM medium consisted of M199 Earle’s salts solution 

(9102; Irvine Scientific, Santa Ana, CA) supplemented with 100 IU/ml of human 
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chorionic gonadotropin (hCG) (CG-10), 200 IU/ml of equine chorionic gonadotropin 

(eCG) (G-4877), 100 IU/ml of Epidermal Growth Factor (EGF) (E-9644), 0.3% BSA 

Fraction V (81-068-2, Serological Proton, Kankakee, IL), 2 mM L-glutamine, 0.36 mM 

pyruvic acid, 2.22 mM lactic acid, 1.12 mM L-cysteine (C-6852) and 50 µg/ml of 

gentamicin (pH = 7.7 - 7.9; osmolality = 285 - 295 mOsm).  All solutions were filtered 

through a 0.2 µm pore acrodisk.   

Oocytes were graded based on the number of cumulus cell layers.  Oocytes with 

two or more layers of cumulus cells and an even dark cytoplasm were assigned a quality 

score of Grade of A & B.  Oocytes with less than one layer of cumulus cells and/or an 

uneven or light distribution of cytoplasm were assigned a score of Grade of C.   

Groups of 20 to 30 oocytes were transferred to 800 µl of IVM medium in a 4-well 

dish for culture (176740; Nunclon - VWR International, West Chester, PA).  These 

dishes were placed into a humidified, gassed (5% O2, 5% CO2 and 90% N2) in a sealed 

plastic bag (0181216; Kapak sealpak pouches - Fisher Scientific, Pittsburg, PA) in an 

incubator at 38°C for 22 to 24 hours.   

5.3.3 Oocyte Vitrification 

 MII-stage oocytes were processed for vitrification by one of two protocols.  In the 

first experiment, the vitrification protocol used was modified from a protocol that used a 

choline-substitute medium (CJ2) for bovine oocytes.  In the second experiment, this 

protocol was further modified by using M199 Earle’s salts solution to prepare the 

vitrification and warming solutions.  All solutions and steps of oocyte vitrification and 

warming were conducted at 28 ºC to 30ºC.  For the first experiment, oocytes (n = 214)  
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were removed from the maturation medium and placed into mCJ2 medium (CJ2 prepared 

as described in Stachecki et al., 1998a) then supplemented with 10% FBS (osmolality = 

290; pH = 7.4).   

The vitrification solutions were prepared by adding increasing concentrations of 

EG (E-9129) and DMSO (D-4540) to the prepared mM199 and mCJ2.  Vitrification was 

done using a three-step dilution.  The first vitrification solution consisted of 5% EG + 5% 

DMSO, the second contained 10% EG + 10% DMSO and the final solution contained 

20% EG + 20% DMSO plus 0.65 M trehalose D(+)trehalose (T-5251).  In the second 

experiment, the vitrification solutions were prepared as described in Experiment 1 except 

the diluent used was mM199 (Medium 199 Earle’s salts solution supplemented with 10% 

FBS) instead of mCJ2.   

In the first experiment, 7 to 10 oocytes were transferred into a 35 mm dish 

containing the first vitrification solution and allowed to equilibrate for 75 seconds.  The 

oocytes were then sequentially transferred through the second and final vitrification 

solutions and equilibrated for 75 seconds each time.  Once equilibrated in the final 

vitrification solution, the oocytes were picked up in minimal medium (<0.1 µl) using a 

pulled glass micropipette (i.d. 200 µm) and transferred onto a film created on the 

cryoloop (HR4-963; Hampton Research, Aliso Vieho, CA) (Figure 5.1).   

The cryoloop was immediately plunged into a LN2 bath and placed into a plastic 

holder submerged in LN2 until all cryoloops were loaded.  Another group of 7 to 10 

oocytes was then transferred to the first vitrification solution and moved through the next 

two solutions and then loaded onto cryoloops.  Once all oocytes had been plunged, the  
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cryoloops were placed into cryovials (HR4-911; Hampton Research).  The cryovials 

containing the cryoloops were then placed onto canes and then transferred into a LN2 

storage tank.   

In the second experiment, oocytes (n = 548) were vitrified as described for 

Experiment 1 with the following differences.  The medium used was mM199 for all 

solution preparations and after equilibration in the final vitrification solution, the oocytes 

were picked up in minimal medium (<0.1 µl) and transferred onto the tip of a CryoTop 

(provided by Dr. Masashige Kuwayama, Kato Ladies Clinic, Tokyo, Japan).  The 

CryoTop was then immediately plunged into LN2.  The rest of the oocytes were 

processed in a similar manner until all of the oocytes had been vitrified.  To protect the 

oocytes from damage during storage, protective sheaths were affixed onto CryoTops 

using large forceps being careful to keep the entire CryoTop submerged in LN2 (Figure 

5.1).  The CryoTops with sheaths were placed onto canes and transferred into a LN2 

storage tank until needed. 

5.3.4 Controls for the Effect of the CPAs 

 To determine the effect of the vitrification and warming solutions alone on 

embryonic development, feline MII-stage oocytes (n = 86) were processed for 

vitrification.  These oocytes were subjected to the vitrification solutions (but not vitrified) 

and then subjected to IVF and cultured in vitro (CPA Control).  Briefly, oocytes were 

sequentially moved through the vitrification and warming solutions.  After being exposed 

to the final warming solution of the vitrification proceedure, the oocytes were placed into 

mM199 and then inseminated (IVF) and cultured in vitro as described for the Control 

IVP group.   
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Figure 5.1 The cryoloop and CryoTop instruments used for feline oocyte vitrification.  (a) 

Feline oocytes loaded onto a film created on a nylon loop attached to a metal 
holder, (b) Close-up of oocytes loaded onto the cryoloop, (c) Oocytes loaded 
onto the tip of a CryoTop in minimal volume, (d) CryoTop with oocytes being 
placed into its protective sheath, (e) Cryovial and cap in which the cryoloop is 
placed before storage in liquid nitrogen and (f) Lower magnification of 
CryoTop showing holder (yellow) and protective sheath with plug (blue). 
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5.3.5 Oocyte Warming 

The same diluent used for oocyte vitrification media preparation was used for the 

warming solution (mCJ2 or mM199).  The three warming solutions were prepared by the 

addition of trehalose to the modified diluent previously prepared.  The first warming 

solution contained 0.25 M trehalose, the second warming solution contained 0.19 M 

trehalose and the final warming solution contained 0.13 M trehalose.  Each of these 

solutions was filtered through a 0.2 µm pore acrodisk.  In the first experiment, the 

cryovial caps were unscrewed one at a time and the cryoloop placed directly into a 35 

mm dish containing ~2 ml of the first warming solution (0.25 M trehalose).  In the second 

experiment, the plastic sheaths were removed and one at a time, the CryoTops containing 

oocytes were placed directly into a 35 mm dish containing ~2 ml of the first warming 

solution (0.25 M trehalose).  The rest of the protocol was the same for both Experiments 

1 and 2.  The oocytes were equilibrated for 1 minute in the first warming solution.   

The recovered oocytes were transferred to the second solution (0.19 M trehalose) 

and allowed to equilibrate for 1 minute.  The oocytes were then transferred to the final 

warming solution (0.13 M trehalose) and equilibrated for 1 minute.  The oocytes were 

transferred to mM199, where they remained until all the oocytes were recovered.  The 

second cryoloop or CryoTop was then warmed as described above and repeated until all 

oocytes were recovered and placed into mM199.  The number of oocytes lysed was 

counted and the intact oocytes were incubated for ~1 hour before in vitro fertilization 

(IVF).   
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5.3.6 Collection and Processing of Sperm 

 Ejaculated sperm was collected from toms (n = 3) housed at the Audubon Center 

for Research of Endangered Species using a teaser female and artificial vagina (AV).  

The animal handeling procedures used in this study were pre-approved by the Audubon’s 

Institutional Animal Care and Use Committee.  The AV consisted of a small glass bottle 

filled with 40 ml of warm water (42°C to 45°C), with a balloon with the tip cut out and a 

small plastic cup was inserted.  The balloon was placed into the bottle and the top was 

stretched over the neck of bottle.  A small amount of K-Y lubricant was applied to the 

balloon edge to ease penetration.  A teaser female in natural estrus was used to collect the 

sperm sample.  Briefly, the tom was allowed to mount her and his penis was guided into 

the AV while a technician held the bottle at a 45°angle.  Once the tom had ejaculated, the 

AV was gently removed and the sperm sample was transferred into a 1.5 ml 

microcentrifuge tube and held in a 500 ml water bottle at ~30°C until processed.   

The motility and sperm concentration of each ejaculate were assessed by use of a 

hemocytometer.  The volume of each ejaculate ranged from 22 µl to 130 µl.  The sperm 

were diluted to the desired concentration of ~ 50 x 104 sperm/ml with sperm washing 

medium (HeTy) consisting of Tyrode’s salt solution (T-2397) containing 1.5% M199 

HEPES, 0.4% BSA, 1 mM L-glutamine (G-8540), 0.36 mM pyruvic acid (P-4562), 2.22 

mM L(+)-lactic acid, 50 µg/ml of gentamicin sulfate (G-1264) and 1.12 mM L-cysteine 

(C-6852) (pH = 7.3 - 7.4; osmolality = 285 - 295 mOsm).  

Fresh or refrigerated ejaculates were used for IVF.  The sample to be refrigerated 

was placed into a 500 ml bottle filled with water at ~30°C and then placed into a 

refrigerator (4°C) where it was held for use for up to 1 week.  The desired volume of the 
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sample to be refrigerated was transferred to a 1.5 ml microcentrifuge tube and an equal 

volume (1:1) of standard refrigeration medium (90129, Irvine Scientific) was added drop-

wise with gentle agitation. 

5.3.7 In Vitro Fertilization and Embryo Culture 

For Control IVP oocytes, (n = 102 for Experiment 1; n = 204 for Experiment 2) 

COCs were removed from maturation at 22 hours evaluated and assigned an oocyte 

quality score of Grade A & B or Grade C.  They were then assigned by grades to the IVF 

procedure.  The oocytes were then washed twice in 35 mm dishes containing IVF 

medium and then placed into 100 µl droplets of sperm suspension under warmed mineral 

oil (4008-5; Sage Biopharma, Pasadena, CA) in an incubator at 38°C in 5% CO2 in air for 

12 hours.  IVF medium consisted of Tyrode’s salt solution supplemented with 0.3% BSA, 

0.1% sodium bicarbonate, 1 mM L-glutamine, 0.36 mM pyruvic acid, 2.22 mM L(+)-

lactic acid, 100 IU/ml of penicillin G (P-3032) and 100 mg/ml of streptomycin sulfate (S-

9137) (pH = 7.7 - 7.9; osmolality = 285 - 295 mOsm).   

Vitrified-warmed oocytes in Experiments 1 and 2 were transferred from mM199 

into a 35 mm dish containing IVF medium and then were placed into 100 µl droplets of 

sperm suspension for ~18 hours.  After fertilization, presumptive zygotes were washed 

once in IVC-1 medium and any remaining cumulus cells were removed manually using a 

200 µm glass micropipette and then transferred into a fresh well containing 800 µl of 

IVC-1 medium in a 4-well dish for culture.  IVC-1 medium consisted of Tyrode’s salt 

solution supplemented with 0.3% BSA, 0.1% sodium bicarbonate, 1 mM L-glutamine, 

0.36 mM pyruvic acid, 2.22 mM L(+)-lactic acid, 1% MEM nonessential amino acids 

(M-7145), 50 µg/ml of gentamicin sulfate and 1 µl/ml of amphotericin B (A-2942) (pH = 
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7.7 - 7.9; osmolality = 285 - 295 mOsm).  These dishes were placed into a humidified, 

gassed (5% O2, 5% CO2 and 90% N2) in a sealed bag in an incubator (38°C) for 2 days.   

On day 2 post-insemination, fertilization was determined by cleavage rates.  

Nondividing embryos were removed and dividing embryos were incubated in IVC-1 + 

EAA (IVC-1 supplemented with 1% MEM essential amino acids; M-5550) for an 

additional 2 days.  On day 5, embryos were washed twice in IVC-2 and then transferred 

into a well containing 800 µl of IVC-2 and incubated again for 2 days.  IVC-2 medium 

consisted of a Tyrode’s salt solution supplemented with 10% FBS, 0.1% sodium 

bicarbonate, 1 mM L-glutamine, 0.36 mM pyruvic acid, 2.22 mM L(+)-lactic acid, 1% 

MEM nonessential amino acids, 1% MEM essential amino acids, 50 µg/ml of gentamicin 

sulfate and 1 µl/ml of amphotericin B (pH = 7.7 - 7.9; osmolality = 285 - 295 mOsm).  

On days 7 and 8 post-insemination, blastocyst development was evaluated.  The number 

of embryos that had developed into blastocysts and the number that had hatched were 

recorded and the embryos were cultured in vitro for an additional 2 days. 

5.3.8 Statistical Analysis 

Cleavage and blastocyst rates were analyzed for statistical significance across 

treatment groups using Chi-square analysis and P≤0.05 was considered statistically 

different in this study (Instat Graphpad Version 3.0, San Diego, CA). 

5.4 Results 

5.4.1 Vitrification of Oocytes in CJ2 as Diluent 

 In the first experiment, the choline-based medium CJ2 used for bovine oocytes 

was used to prepare the vitrification and warming solutions for feline oocyte vitrification.  

Embryonic development was compared with oocytes subjected to a standard IVF and in 
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vitro cultured (IVP controls) (Table 5.1).  Cleavage rates of Control IVP oocytes was 

27% (Grades A & B; n = 75) and 41% (Grade C; n = 27).  There was no cleavage or 

embryonic development in any of the vitrified-warmed oocytes (Grades A & B; n = 144 

and Grade C; n = 70) using CJ2.  Although five replicates of this experiment were 

performed, no signs of embryonic development were observed in the vitrified-warmed 

treatment group. 

5.4.2 Vitrification of Oocytes with M199 Medium as the Diluent 

 In the second experiment, M199 Earle’s salts medium was used to prepare the 

vitrification and warming solutions for feline oocyte vitrification.  Since this medium is 

used to prepare the IVM medium for cats it was selected for oocyte manipulations.  The 

results of Experiment 2 are listed in Table 5.2.  In this experiment, the cleavage rate of 

Control IVP oocytes (22%) was not significantly different from vitrified MII-stage 

oocytes (24%) for the higher quality oocytes Grades A & B.  Although these rates were 

not significantly different, blastocysts were only produced in the Control IVP groups (4% 

and 3%) and none in the Vitrified MII groups.  Vitrified oocytes cleaved after 

insemination (24% and 11%), however, no blastocysts were produced up to 8 days of 

culture.  Cleavage and blastocyst development of oocytes exposed to the vitrification and 

warming solutions alone (CPA Control) were not significantly different from IVP 

controls.  This suggests that the M199 medium had no detrimental effect on embryonic 

development. 

5.5 Discussion 

The preservation of genetic material in genome resource banks and frozen zoos is 

a valuable tool guarding against extinction of endangered species (Karow and Critser,  

 125



Table 5.1 Summary of embryonic development of control and vitrified feline oocytes  
   using mCJ2 
 

  Oocytes/embryos developing (%) 

Treatment Oocyte grade No. of oocytes Cleavage (d 2) Blastocysts (d 8) 

Control IVP A & B  75 27 0 
 
Control IVP    C  27 41 0 
 
Vitrified MII A & B 144  0 0 
 
Vitrified MII    C  70  0 0 
 
Values were not significantly different at P≤0.05. 
 
Table 5.2 Summary of embryonic development of control and vitrified feline oocytes 
   using mM199 
 

  Oocytes/embryos developing (%) 

Treatment Oocyte grade No. of oocytes Cleavage (d 2) Blastocysts (d 8) 

Control IVP A & B  74 22 4 
 
Control IVP    C 130 28 3 
 
Vitrified MII A & B 216 24 0 
 
Vitrified MII    C 332 11 0 
 
CPA Control A & B  19 37 5 
 
CPA Control    C  67 19 3 
 
Values were not significantly different at P≤0.05. 
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1997; Watson and Holt, 2001; Holt et al., 2003).  This material can be used to re-

introduce a nonrepresented individual to a population, help avoid inbreeding by 

introducing new genetics into a fragmented population and to re-establish a small 

population after a disease outbreak or environmental disaster.  In the future, the use of 

ART procedures may be useful in re-establishing these populations.   

Sperm cryopreservation has been relatively successful in many domestic and 

nondomestic species, but oocyte cryopreservation has been less successful.  In any 

genome bank, both the male and female of a species must be represented and therefore 

embryo cryopreservation has been used as an alternative to oocyte preservation in many 

species.  To date, oocyte vitrification has been achieved in at least 10 species but most 

with relatively low efficiency.  Therefore, the objective of this experiment was to attempt 

to derive an efficient method of feline oocyte vitrification that could be used to preserve 

oocytes of endangered felines.   

In the first experiment, no embryonic development was observed using the CJ2 

medium as the diluent for the vitrification and warming solutions.  This was unexpected 

because CJ2 medium has been successful in the vitrification of mice (Stachecki et al., 

1998a), human (Quintans et al., 2002) and bovine oocytes.  One possible cause is the 

increased cytoplasmic lipid content of the cat oocyte compared with the other species, 

such as the pig and cow (Fujihira et al., 2004).  There was a significant increase in 

blastocyst development with CJ2 medium found in the mouse and human (Quintans et 

al., 2002; Stachecki et al., 2002) whereas, there was no increase in blastocyst 

development noted in the cow.  This may also be due to its higher oocyte lipid content 

(Kim et al., 2001).  Oocyte quality may also be one of the reasons for the poor results 
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observed in the cat because the several replicates were done using different sets of 

ovaries obtained from cats of various ages and at various stages of their reproductive 

cycle.  Due to the lack of success in embryo development of the CJ2 medium in the cat, 

no further replications were done.   

In the second experiment, M199 Earle’s salts solution was used instead of CJ2 as 

the diluent for the vitrification and warming solutions.  Compared with the results 

obtained using CJ2 medium in the first experiment, the use of M199 for feline oocyte 

vitrification was substantially improved.  With high quality oocytes (Grade A & B), 24% 

of these cleaved after vitrification using M199 medium and 11% of the lower quality 

oocytes cleaved (Grade C) compared with 0% (all Grades combined) using CJ2.  Also, in 

Experiment 2, the CryoTop was used for vitrification instead of the cryoloop, which 

reduced the amount of vitrification solution required and subsequently, increased the 

cooling rate of the proceedure.  This may also be a factor in the increased oocyte survival 

post-warming.  However, no blastocysts were produced from the oocytes vitrified using 

M199 compared with ~ 4% blastocysts in the Control IVP group.  Luvoni et al. (1997)  

observed no resumption in meiosis after vitrification of immature cat oocytes using 

DMSO or EG as the CPA, but did report some resumption of meiosis if oocytes were 

cryopreserved using standard slow-cooling proceedure.   

The cleavage rate from vitrified feline oocytes in Experiment 2 was higher (24%) 

than the 1% cleavage rate reported by Murakami et al. (2004).  No blastocysts were 

obtained in their experiment until these researchers subjected vitrified oocytes to 0.5 M 

sucrose post-liquefaction.  In the later case, Murakami et al (2004) reported 19% 

cleavage, which is comparable with the 24% in the present study.  However, these 
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researchers also obtained a 2% blastocyst rate per 200 oocytes while we did not obtain 

any blastocyst development from the vitrified oocytes.  It is possible that with further 

research, our proceedure may also produce blastocysts.   

To attempt to address this lack of blastocyst production, a group of oocytes was 

vitrified using EG only (following the protocol described in Experiment 2), by increasing 

its concentration to that of EG and DMSO together.  In this trial, one blastocyst was 

produced from 93 cat oocytes (~1%) vitrified and warmed compared with 4% blastocyst 

for IVP controls.  Further experiments are required to determine if this technique could 

significantly improve the rates of embryonic development in the vitrified oocytes. 

To further investigate the effect of the medium on the oocytes without 

vitrification, control oocytes were exposed to the vitrification and warming solutions 

alone.  No significant differences in the cleavage and blastocyst rates between these CPA 

Control and IVP Control oocytes suggest that M199 and the CPAs used did not have any 

detrimental effect on the ability of the oocytes to be fertilized and develop.  The 

permeating CPAs used in this experiment were EG and DMSO.  Both of these have been 

used in various concentrations for cat oocyte vitrification previously (Luvoni et al., 2000; 

Murakami et al., 2004).  Also, a short period of exposure to the CPAs, especially to the 

high concentration of a saccharide, has been shown to be less detrimental to subsequent 

embryonic development (Murakami et al., 2004).  These investigators found that a 1-

minute exposure of cat oocytes to 0.5 M sucrose was less toxic than 5 minutes of 

exposure.  For this reason, the time of equilibration in each vitrification solution was set 

at 75 seconds and the time for equilibration in the warming solution was 1 minute each.  

Also, we used trehalose instead of sucrose in both experiments.  Trehalose is a 
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nonreducing saccharide that is thought to confer protective properties to the cellular 

membranes by stabilizing the membrane bound proteins (Crowe et al., 2001).  Also, 

because it is a dissacharide and not a monosaccharide, it is less likely to leak through the 

cell membranes, which would increase the likelihood of cell lysis or toxicity.   

5.6 Conclusions 

 In the present study, M199 was a better medium than CJ2 medium for the 

preparation of oocyte vitrification medium.  It appears that CJ2 is not an acceptable 

alternative.  Also, the CryoTop is a useful instrument for feline oocyte vitrification.  The 

method used for bovine oocyte vitrification was successful in the cat, as assessed by their 

ability to cleave post-vitrification.  However, further study is needed to determine an 

optimal protocol that would allow blastocyst development of vitrified-warmed feline 

oocytes before this methodology can be transferred to nondomestic feline species. 
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CHAPTER 6 
BLASTOCYST DEVELOPMENT FROM FELINE OOCYTES INJECTED WITH 

DEHYDRATED FELINE SPERMATOZOA 
 
6.1 Introduction 

 In an effort to maintain the genetic diversity of endangered species, genome 

resource banks containing sperm, ova and embryos have been established in recent years 

(Karow and Critser, 1997; Watson and Holt, 2001; Holt et al., 2003).  Maintaining a large 

group of samples requires space to house numerous liquid nitrogen (LN2) tanks  

Furthermore, these containers must be monitored for leaks and filled regularly to make up 

for LN2 evaporation loss.  Recently, sperm dehydration has been proposed as an 

alternative to sperm cryopreservation as a more costeffective means of preserving the 

many transgenic strains of mice produced for research (Kusakabe et al., 2001).   

Desiccation would allow sperm to be stored at room temperature or in a 

refrigerator, rather than at ultra-low temperatures.  Also, dehydration does not require the 

use of cryoprotectants and, therefore, avoids any toxic effects due to these additives 

commonly used in cryopreservation protocols.  In addition, because the technique of 

dessication does not require controlled rate freezers, this may be a more practical 

technique for field work, where access to such instruments is not usually possible.   

Since the first report of live young produced using freeze-dried sperm in mice 

using intracytoplasmic sperm injection (ICSI) (Wakayama and Yanagimachi, 1998), 

dehydration of sperm in rats (Hirabayashi et al., 2005), rabbits (Liu et al., 2004), pigs 

(Kwon et al., 2004) and cattle (Keskintepe et al., 2002) has been examined.  Therefore,  
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the objective of the present study was to determine whether the dehydration methodology 

might be applied to feline sperm.  The approach was to determine the capability of 

dehydrated domestic cat sperm to fertilize oocytes after ICSI.   

6.2 Literature Review 

6.2.1 History of Sperm Dehydration 

Natural dehydration of organisms, by removal of water, was first described by 

Antoine van Leeuwenhoek in 1702 when he observed that adding water could rehydrate 

tiny organisms that he called “animalcules” (McGinnis et al., 2005).  The technique of 

dehydration of sperm was first attempted by Polge et al. (1949) using fowl sperm.  They 

exposed sperm to a 20% or 30% glycerol solution and cooled the samples to -79°C, 

warmed them to -25°C, attached the sample to a freeze-dryer, rehydrated and warmed the 

sample to 40°C before they assessed motility.  A maximum of 50% motility was reported 

although the fertility of the sperm was not assessed at that time.   

There have been a few reports of offspring in rabbits (Yushchenko, 1957 as stated 

in Wakayama and Yanagimachi, 1998) and pregnancies in cattle (Meryman and Kafig, 

1963; Larson and Graham, 1976) after AI using freeze-dried sperm, but these studies 

have not been repeatable by others.  The earlier reports of successful freeze-drying of 

sperm have been considered suspect because the freeze-drying process normally renders 

the sperm immotile (Wakayama and Yanagimachi, 1998).   

It was not until the advent of intracytoplasmic sperm injection (ICSI) that viability 

of immotile, dried sperm was re-examined.  Uehera and Yanagimachi (1976) reported the 

first embryonic development in hamsters by directly injecting a single fresh epididymal 

sperm into a mature oocyte.  After more than two decades later, the first widely accepted 
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report of live young produced using freeze-dried sperm was reported using ICSI in mice 

(Wakayama and Yanagimachi, 1998).  Since this report, there have been only a few 

studies involving the use of freeze-dried or air-dried sperm.  Most of the studies to date 

have been done in the mouse (e.g., Kusakabe et al., 2001; Pangestu et al., 2002; 

Bhowmick et al., 2003; Kaneko et al., 2003a,b; Ward et al., 2003).  Embryonic 

development has also been achieved in the cow (Keskintepe et al., 2002) and pig (Kwon 

et al., 2004) and live young have been produced after fertilization with freeze-dried 

sperm in the rabbit (Liu et al., 2004) and the rat (Hirabayashi et al., 2005). 

6.2.2 Types of Sperm Dehydration 

There two main categories of sperm dehydration are convective or evaporative 

drying and freeze-drying.  Convective drying is a simple procedure of drying a liquid 

sample at room temperature.  In convective or evaporative drying, the sample is placed 

onto a surface across where an inert gas (e.g., nitrogen) is passed (forced convection) or 

the sample is left out in the open (passive convection or air-drying) (Bhowmick et al., 

2003).  In contrast, freeze-drying involves a three-step process including freezing, 

sublimation and diffusion/desorption (for a review see Acker et al, 2004).  In both cases, 

as long as the vapor pressure of the surrounding environment is less than that at the 

surface of the sample, water evaporates, drying the sample.  Although natural convection 

is a simple technique, it has a much slower drying rate compared with other drying 

methods, because it is dependent upon the relative humidity level of the sample 

environment.   

The major disadvantage of this type of drying is that the final moisture level is 

unknown and there is always humidity left in both open and closed environments.  
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Forced convection can provide more rapid drying rates than the former by blowing dry 

air or a gas over the sample.  The rate of drying depends on the temperature, velocity of 

gas flow and the shape and size of the container holding the sample (Bhowmick et al., 

2003).  Because of the continuous gas flow over the sample, a greater level of 

dehydration occurs compared with natural convection, because the moisture released 

from the sample is immediately removed from the environment.   

Freeze-drying involves the freezing of the sample to separate the unbound water 

from the cells (~80% of water in the original solution) in the form of ice (Meyers, 2006).  

The removal of frozen water from the system by sublimation is called the primary drying 

phase.  Usually the container in which the sample is placed is kept below 0ºC and at a 

high vacuum (<100 mbar pressure).  This drying occurs until the sample undergoes the 

glass phase transition at which point diffusion or desoption will occur (Crowe et al., 

1990).  The temperature of the container is then raised above the glass transition point to 

allow removal of the bound water (20% water of hydration) during the last phase of 

drying.  This phase allows the remaining water to be removed by desorption (for a review 

see Acker et al., 2004).  This last step is very sensitive to permutations, since the 

temperature must be raised in a controlled manner and not exceed the critical temperature 

at which the sample looses its ability to rehydrate properly.  The resulting product is a 

lyophilized sample that can be stored by refrigeration or at room temperature. 

6.2.3 Advantages and Dissadvantages of Sperm Dehydration 

There are advantages but also disadvantages of preserving sperm by various types 

of dehydration.  Evaporative or convective drying has the advantage of being simple and 

requires less expensive instruments than does freeze-drying, since all steps can be 
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performed at room temperature.  The main disadvantage of this method of dehydration is 

unequal drying rates of the sample within the container.  To minimize this effect, the flow 

rate can be increased and the container size decreased.  With the freeze-drying process, 

the removal of the water of hydration by desorption enables a much higher level of 

dehydration compared with evaporative or convective drying.  The rate of drying is 

dependant on the sample temperature and the vacuum pressure produced by the freeze-

drying apparatus.  The major problem with this type of drying it that it is very time 

consuming, since drying may take from several hours to a few days to complete.  

Although this technique does require the use of LN2 for the freezing process, it is still 

more efficient than standard cryopreservation because the dried samples can be stored at 

~20ºC or at 4ºC. 

6.2.4 Previous Studies of Sperm Dehydration 

Since the first offspring were produced from dehydrated sperm (Wakayama and 

Yanagimachi, 1998), various methods of sperm drying have been attempted.  Although 

simple methods of sperm desiccation, such as convective drying (Bhowmick et al., 2003) 

and evaporative drying (Pangestu et al., 2000) have been reported, the most common 

method of sperm dehydration is the freeze-drying approach (e.g., Kusakabe et al., 2001; 

Keskintepe et al., 2002; Bhowmick et al., 2003; Kaneko et al., 2003a,b; Ward et al., 

2003; Kusakabe and Kamiguchi, 2004; Kwon et al., 2004; Liu et al., 2004; Hirabayashi et 

al., 2005).  Briefly, a 100 µl volume of sperm suspension is transferred into a glass 

ampule (or microcentrifuge tube) that is immediately plunged into LN2 (20 to 30 seconds 

up to 10 minutes).  The ampule is then connected to a freeze-dryer unit for 4 hours 

(Kusakabe et al., 2001) to 18 hours (Wakayama and Yanagimachi, 1998; Keskintepe et 
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al., 2002) and then the ampule sealed.  The inlet pressure of the drying unit reported 

varies for each study (e.g., 32 - 40 x 10-3 mbar; 1 to 30 mbar; 190 x 103 mbar), which 

likely depends on the manufacturer’s specifications of the freeze-drying apparatus used.  

In one case, a much higher value (190 x 10-3 mbar) is reported than all the other studies 

(Keskintepe et al., 2002).   

To date, only two species, the rabbit (Liu et al., 2004) and the rat (Hirabayashi et 

al., 2005), have successfully produced live young by fertilizing oocytes with dehydrated 

sperm.  In several other species, various levels of embryonic development have been 

observed, such as blastocyst development of 30% in the cow (Keskintepe et al., 2002) 

and 10% blastocysts development in the pig (Kwon et al., 2004).  There has been no 

report of feline sperm dehydration and embryo development to date. 

6.2.5 Fertilization with Dehydrated Sperm 

In all species examined to date, the dehydration of sperm causes the loss of 

motility, not allowing in vitro fertilization to occur.  Thus, it was not until ICSI was used 

that embryo production from dehydrated sperm was successful in mice (Wakayama and 

Yanagimachi, 1998).  In this study and others, the sperm heads of mice are separated 

from the tails to facilitate the microinjections.  In species other than laboratory rodents 

(mouse and rat), the microtubule organizing centers needed for pronuclear formation are 

provided by the mid-piece of the sperm (Schatten et al., 1991, Palmero et al., 1997).  In 

the mouse, microtubule organizing centers are provided by the oocyte and therefore, only 

the sperm head is necessary for fertilization.   

Briefly, ICSI is performed by selecting a single sperm and injecting it directly into 

the cytoplasm of a mature oocyte.  The injection bypasses the early processes of 
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fertilization, including the acrosome reaction and membrane fusion.  These reactions are 

usually necessary to initiate pathways responsible for oocyte activation.  Activation is 

needed for the oocyte to resume meiosis and allow extrusion of the second polar body.  In 

some species, such as the mouse (Kimura and Yanagimachi, 1995), hamster (Uehara and 

Yanagimachi, 1976), rabbit (Keefer, 1989), pig (Kolbe and Holtz, 1999), cat (Pope et al., 

1998) and the human (Palmero and Joris, 1992), the mechanical damage to the oocyte is 

sufficient to induce activation.  Other species (e.g., sheep and cattle), not properly 

activated by the mechanical injury of the injection, require chemical or electrical 

activation protocols (Gómez et al., 1998; Ock et al., 2003).   

6.2.6 Types of Oocyte Activation 

In all mammals studied to date, proper oocyte activation is critical for fertilization 

to occur.  Oocyte activation is the process by which a metabolically quiescent oocyte is 

converted into a metabolically active embryo, which can undergo DNA synthesis, RNA 

translation and cell division (for a review see Ozil and Huneau, 2001).  Activation can be 

attained naturally, as in normal fertilization (in vivo or in vitro) or due to oocyte ageing.  

Alternatively, oocytes can be artificially activated by subjecting them to mechanical, 

chemical or electrical stimulation.  In artificially activated oocytes, the normal sperm-

oocyte interactions, including sperm-zona binding, the acrosome reaction, plasma 

membrane binding, are bypassed.  In this case, oocyte activation needs to be initiated by 

another factor(s).  The resulting cascade of oocyte events mimics those that occur in 

natural fertilization (for a review see Williams, 2002). 

Although much has been learned in the past decade about oocyte activation, the 

complete signaling pathway is not yet known.  Natural activation begins with a trigger 
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when the spermatozoon binds to an oolema.  This initiates a cascade of events involving 

the release of intracellular calcium stores and an increase in pH, which leads to the 

exocytosis of cortical granules from within the ooplasm and the resumption of meiosis 

(for a review see Williams, 2002).  A few candidates that may act in the triggering 

process are a tyrosine kinase receptor on the sperm membrane or a cytosolic sperm factor 

within the sperm (Swann and Parrington, 1999).  During normal fertilization, a 

spermatozoon binds to the zona pellucida of an oocyte, undergoes an acrosome reaction 

and then binds to the oolema.  The contents of the sperm enter the ooplasm and activation 

occurs (Williams, 2002).   

Oocytes that have remained unfertilized for a prolonged period of time are 

referred to as ‘aged oocytes’.  These oocytes can undergo spontaneous activation, or if 

fertilized, they will become activated and cleave.  However, the resulting embryos exhibit 

fragmentation, apoptosis and poor embryonic development (Fissore et al., 2002).   

Activation protocols are used in conjunction with reproductive techniques 

including the use of ICSI, nuclear transfer and parthenogenesis.  All three types of 

activation, mechanical, chemical and electrical are used in conjunction with ICSI.  The 

most common type of mechanical activation is the damage occurs during ICSI.  It should 

be noted that improper handling of the oocytes can also induce activation.  Chemical 

activation is achieved with a variety of chemicals that promote the release of internal 

calcium stores, such as calcium ionophores, strontium chloride, phorbol esthers, ethanol 

and ionomycin followed by 6-dimethylaminopurine (DMAP) (Alberio et al., 2001).  

Also, an electrical DC pulse although not used much today, has also been reported to 

induce oocyte activation (Ozil, 1990).   
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6.3 Materials and Methods 

All chemicals were obtained from Sigma Chemical Co., St. Louis, MO, unless 

otherwise stated. 

6.3.1 Experimental Design 

 In this experiment, matured feline oocytes were randomly assigned to one of five 

treatments as follows: Control oocytes (n = 36) subjected standard in vitro fertilization 

(IVF) and cultured in vitro (Control IVP), oocytes (n = 74) injected with fresh or 

refrigerated sperm and cultured in vitro (Control ICSI), oocytes (n = 57) injected with air-

dried sperm and cultured in vitro (Air-Dried Sperm ICSI) and oocytes (n = 45) injected 

with freeze-dried sperm and cultured in vitro (Freeze-Dried Sperm ICSI).  Six replicates 

of this experiment were performed.  All inseminated or injected oocytes were then placed 

into culture and embryonic development was assessed. 

6.3.2 Collection and Processing of Sperm 

 Ejaculated sperm were collected from toms housed at the Audubon Center for 

Research of Endangered Species by the use of a teaser female and artificial vagina (AV) 

as prior approved by the Audubon’s Institutional Animal Care and Use Committee.  The 

AV consisted of a small glass bottle filled with 40 ml of warm water (42°C to 45°C), and 

then a balloon with the tip cut out and a small plastic cup was inserted.  A small amount 

of K-Y lubricant was applied to the balloon edge to ease penetration.  The tom was 

allowed to mount a teaser female in estrus and his penis was guided by a technician into 

the AV, holding the bottle at a 45°angle.  Once the tom had ejaculated, the AV was 

removed and the sperm sample was transferred to a 1.5 ml microcentrifuge tube and held  
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in a 500 ml water bottle at ~30°C until processed.  Sperm motility and concentration were 

assessed using a hemocytometer.  Samples with little or no sperm or motility below 40% 

were not used in this study. 

6.3.3 Sperm Dehydration Procedure 

 Ejaculated sperm samples were collected and processed individually twice a 

week.  A 30 µl volume of sample was gently pipetted into the bottom of a 1.5 ml 

microcentrifuge tube containing 1 ml of HeTy + EGTA.  This medium was prepared 

from a sperm washing medium (HeTy) consisting of Tyrode’s salt solution (T-2397) and 

containing 1.5% M199 HEPES, 0.4% BSA, 1 mM L-glutamine (G-8540), 0.36 mM 

pyruvic acid (P-4562), 2.22 mM L(+)-lactic acid, 50 µg/ml of gentamicin sulfate (G-

1264) and 1.12 mM L-cysteine (C-6852) (pH = 7.3 - 7.4; osmolality = 285 - 295 mOsm).  

To this HeTY medium, 50 mM EGTA (ethylene glycol-bis [β-animoethyl ether]-

N,N,N’,N’-tetraacetic acid) (03778; Fluka) to was added and the pH was adjusted to 

between 8.2 to 8.4 (HeTY + EGTA; osmolality = ~400 mOsm).  The solution was then 

sterile filtered using a 0.2 µm pore acrodisk syringe filter.   

The sperm sample in the microcentrifuge tube was allowed to swim-up for 12 

minutes at 38°C, then the top 600 µl of sperm suspension was collected and transferred to 

a new 1.5 ml microcentrifuge tube.  The sperm motility and concentration were assessed.  

Each sample was then divided into four 100 µl aliquots for freeze-drying and 4 to 12 

aliquots (10 µl each) for air-drying.  For freeze-drying, 100 µl aliquots of the collected 

sample were transferred into 2 ml glass ampules (12-009-36; Wheaton - Fisher Scientific, 

Pittsburg, PA).  Ampules were fixed to canes and plunged into LN2 for transportation to 

the Department of Biological Sciences in Baton Rouge, Louisiana.  Once the freeze-dryer 
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(Labconco, Kansas City, MO) was set, one ampule at a time was quickly removed from 

the LN2 and placed into a rack submerged in a LN2 bath until all ampules were in the 

rack.  The rack was then placed inside the machine and the vacuum was re-initiated.  The 

temperature of the chamber was between -43ºC to -45ºC with an internal pressure 

between 44 and 76 x 10-3 mBar.  Samples were dried for 4 hours.   

The ampules were then filled with an inert gas (N2) to avoid continued drying and 

then quickly sealed using silicone corks and then flame sealed to avoid rehydration and 

transported cool back to the Audubon Center in New Orleans where they were stored at 

4°C (Figure 6.1). 

For air-dried samples, 10 µl of sperm suspension was placed on a glass 

microscope slide (12-544-15; Superfrost - Fisher Scientific) and allowed to dry at room 

temperature in the dark for 30 minutes.  The slides were then transferred to a desiccator 

and stored at room temperature and in the dark until use (Figure 6.2).  The desiccator was 

sealed by applying a vacuum for 1 minute. 

6.3.4 Oocyte Collection and Maturation 

 Ovaries were collected from ovary/hysterectomies at veterinary clinics located in 

the Baton Rouge and New Orleans areas.  The ovaries were obtained from queens of 

various ages and at various stages of their reproductive cycle.  The ovaries were 

transported in a cooler at room temperature in a 100 ml plastic sample vial (9853Q47; 

Thomas Scientific, Swedesboro, NJ) containing 50 ml of TL HEPES (04-616F, Cambrex 

Bio Science, Walkersville, MD) supplemented with 50 µg/ml of gentamicin (G-1397) to 

the laboratory at the Audubon Center for Research on Endangered Species in New 

Orleans, Louisiana.   
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Figure 6.1 Feline sperm being processed for freeze-drying. (a) glass ampules inside the 

manifold of a freeze-dryer held in a plastic centrifuge tube rack, (b) front view 
of the freeze-dryer while running and (c) heat sealed glass ampule containing 
lyophilized feline spermatozoa. 
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Figure 6.2 (a) A glass microscope slide with feline air-dried sperm and (b) the dessicator 

for storing the air-dried samples.   
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Both fresh and refrigerated ovaries were used in this study.  Fresh ovaries were processed 

within 6 hours post-collection while ovaries for cool storage were placed in a refrigerator 

once at the laboratory and processed the next morning for in vitro production (IVP) as 

described, with only minor modifications, by Gómez et al. (2000).   

Ovaries were separated from their connective tissue using a fine pair of scissors 

and then washed in two 60 mm petri dish (351029; Falcon - Becton Dickinson, Franklin 

Lakes, NJ) containing 2 to 3 ml of oocyte holding medium (He199) and then held in the 

same medium until processed.  The holding medium consisted of Medium 199 (M-3769) 

supplemented with 71 mM sodium bicarbonate (S-5761), HEPES buffer (H-6147), 0.4% 

BSA (A-8412) and 1 mM L-glutamine (G-8540), 0.36 mM pyruvic acid (P-4562), 2.22 

mM L(+)lactic acid (L-4388) and 50 µg/ml of gentamicin sulfate (G-1264) (pH = 7.7 - 

7.9; osmolality = 285 - 295 mOsm).   

The ovaries were transferred to a 60 mm petri dish containing 2 to 3 ml of He199 

where they were measured and the number of visible follicles was recorded.  Then each 

ovary was held with a pair of serrated, curved forceps in a 35 mm petri dish (351008; 

Falcon - Becton Dickinson) containing He199 and then bisected along its longitudinal 

axis using a scalpel blade (# 10).  Each half was then scraped with the blade to puncture 

all follicles.  This caused the cumulus-oocyte-complexes (COCs) to be released into the 

medium.   

COCs were collected and transferred to a new 35 mm dish containing He199.  

The ovaries were minced a second time and COCs again collected.  After the COCs had 

been collected, they were washed in another 35 mm dish containing He199 and then 

washed in two successive dishes containing in vitro maturation (IVM) medium.  The 
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IVM medium consisted of M199 Earle’s salts solution (9102; Irvine Scientific, Santa 

Ana, CA) supplemented with 100 IU/ml of human chorionic gonadotropin (hCG) (CG-

10), 200 IU/ml of equine chorionic gonadotropin (eCG) (G-4877), 100 IU/ml of 

Epidermal Growth Factor (EGF) (E-9644), 0.3% BSA Fraction V (81-068-2; Serological 

Proton, Kankakee, IL), 2 mM L-glutamine, 0.36 mM pyruvic acid, 2.22 mM lactic acid, 

1.12 mM L-cysteine (C-6852) and 50 µg/ml of gentamicin (pH = 7.7 - 7.9; osmolality = 

285 - 295 mOsm).   

Oocytes were graded based on the number of cumulus cell layers.  Oocytes with 

two or more layers of cumulus cells and an even dark cytoplasm were given a quality 

score of Grade A & B.  Oocytes with less than one layer of cumulus cells and/or a light or 

uneven distribution of cytoplasm were given a quality score of Grade C.   

Groups of 20 to 30 oocytes were transferred to 800 µl of IVM medium in a 4-well 

culture dish (176740; Nunclon - VWR International, West Chester, PA).  These dishes 

were placed into a humidified, gassed with 5% O2, 5% CO2 and 90% N2 and placed in a 

humidified sealed bag (0181216; Kapak sealpak pouches - Fisher Scientific) in an 

incubator at 38°C for 24 hours.  All media were filtered through a 0.2 µm pore acrodisk. 

6.3.5 Re-Suspension of Dried Sperm 

Just prior to use, all dried sperm samples were rehydrated by adding an equal 

volume of water to the dehydrated samples (10 µl/slide or 100 µl/ampule).  The sample 

was mixed and then transferred to a 1.5 ml microcentrifuge tube and kept at room 

temperature until needed.  
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6.3.6 Oocyte Fertilization by Intracytoplasmic Sperm Injection (ICSI) 

After 24 hours of maturation, feline COCs were ramdomly assigned to one of 

three treatment groups as follows: Control ICSI (n = 74), Freeze-Dried Sperm ICSI (n = 

45) and Air-Dried Sperm ICSI (n = 57).  All COCs to be injected were stripped of their 

cumulus cells by transferring them into a 1.5 ml microcentrifuge tube containing 0.05% 

hyaluronidase (H-4272) prepared in IVM medium.  The tube was vortexed for 75 seconds 

and then the contents were transferred to a 35 mm petri dish to recover the denuded 

oocytes in a heated room at 28ºC to 30ºC.  Manually stripping of coronal cells was done 

using a 200 µm micropipette, if needed.  Oocytes were washed through two 35 mm 

dishes containing ~3 ml of He199.   

Oocytes were then transferred into a 35 mm petri dish containing ~3 ml of He199 

and incubated at 38°C (5% CO2 in air) for at least 30 minutes before performing ICSI.  

The injection preparation in shown in Figure 6.3.  Holding pipettes were hand made from 

borosilicate glass (B100-50-10; Sutter Instruments Co., Novato, CA).  Pipettes were 

pulled and cut (i.d. 180 µm) at a 20ºangle was made using a microforge (Model # MI-9; 

Narishige, Tokyo, Japan).  The injection pipettes were obtained commercially (4-6 µm 

with a spike and a 20ºangle, # IC-SP-20; Conception Technologies, San Diego, CA).   

First, a single spermatozoon was immobilized in the sperm suspension droplet and 

then it was aspirated tail-first into the tip of the microinjection pipette.  The injection 

pipette was then moved to the oocyte droplet where the oocyte maturity was assessed.  

Only metaphase-II (MII) stage oocytes were used for injection.  The oocyte was held by 

the holding pipette with the polar body in the 12 o’clock or the 6 o’clock position by  
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50 X 9 mm Petri 
Dish Lid 

Culture Oil  
(~3 ml) 

HeTY + 0.5 % 
PVP + 1 µl Sperm 
Suspension (25 µl) 10 % PVP (10 µl) 

He199 (1 Oocyte/5 µl 
Droplet) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.3 Plate preparation for the injection of feline oocytes (ICSI).  Sperm were 

immobilized in the HeTY + PVP + Sperm suspension (orange) droplet.  The 
injections took place in the He199 droplets containing a single oocyte each.  
The center mineral oil droplet was used to clean the pipette between injections 
and load the injection pipette before starting to give better control.  A new 
dish was prepared for each group of 6 oocytes to be injected. 
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applying suction.  The injection pipette was then inserted into the oocyte and the suction 

was increased to aspirate the ooplasm until the membrane ruptured.  The ooplasm and the 

sperm were then slowly injected back into the oocyte with minimal volume.  The 

injection pipette was gently withdrawn and the suction on the holding pipette released.  

The injection pipette was returned to the sperm suspension droplet and another sperm 

was selected.  The injections were repeated in groups of 6 oocytes.   

Once all of the injections were completed, the presumptive zygotes were washed 

in two 35 mm dishes containing ~3 ml IVC-1 and then transferred into 800 µl of IVC-1 

in a 4-well dish.  The dish was then placed into a plastic bag filled with a gas mixture of 

5% CO2, 5% O2 and 90% N2 and incubated at 38°C as described for standard feline IVP 

(day 0).   

Sham injections were also preformed in a preliminary study to assess the level of 

parthenogenetic development associated with the injection alone.  These injections were 

done as previously described by injecting only a small amount of medium and no sperm 

into the oocyte. 

6.3.7 In Vitro Fertilization and Culture 

For standard IVP control (Control IVP), COCs (n = 36) were processed by the 

procedure described by Gómez et al. (2004) with only minor modifications.  COCs were 

washed in two 35 mm dishes containing in vitro fertilization (IVF) medium and then 

placed into 100 µl insemination droplets under warmed mineral oil (4008-5, Sage 

Biopharma, Pasadena, CA) in an incubator at 38°C in 5% CO2 in air for 12 hours.  To 

prepare insemination microdrops, 2 µl of the refrigerated pellet were resuspended in 400 

µl of pre-warmed HEPES-Tyrode’s solution (HeTY) medium.   
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Sperm progressive motility and concentration were determined using a 

hemocytometer to determine the amount of sperm to be added to the IVF droplets (50 x 

104 sperm/ml).  The IVF medium consisted of Tyrode’s salt solution (T-2397) 

supplemented with 0.3% BSA, 0.1% sodium bicarbonate, 1 mM L-glutamine, 0.36 mM 

pyruvic acid, 2.22 mM L(+)lactic acid, 100 IU/ml of penicillin G (P-3032) and 100 

mg/ml of streptomycin sulfate (S-9137) (pH = 7.7 - 7.9; osmolality = 285 - 295 mOsm).   

After fertilization, presumptive zygotes were washed once in IVC-1 medium and 

then transferred to a fresh well containing 800 µl of in vitro culture-1 (IVC-1) medium in 

a 4-well culture dish.  IVC-1 medium consisted of Tyrode’s salt solution supplemented 

with 0.3% BSA, 0.1% sodium bicarbonate, 1 mM L-glutamine, 0.36 mM pyruvic acid, 

2.22 mM L(+)lactic acid, 1% MEM nonessential amino acids (M-7145), 50 µg/ml of 

gentamicin sulfate and 1 µl/ml of amphotericin B (A-2942) (pH = 7.7 - 7.9; osmolality = 

285 - 295 mOsm).  These dishes were placed into a humidified, gassed (5% O2, 5% CO2 

and 90% N2) sealed bag in an incubator (38°C) for 2 days.  On day 2 post-insemination, 

fertilization rates were determined based on cleavage rates.  Nondividing ova were 

removed and dividing embryos were incubated in IVC-1 + EAA (IVC-1 supplemented 

with 1% MEM essential amino acids; M-5550) for another 2 days (day 5 of culture).   

On day 5, embryos were washed twice with in vitro culture-2 (IVC-2) medium 

and then transferred to a well containing 800 µl of IVC-2 and incubated for an additional 

2 days.  IVC-2 medium consisted of Tyrode’s salt solution supplemented with 10% FBS, 

0.1% sodium bicarbonate, 1 mM L-glutamine, 0.36 mM pyruvic acid, 2.22 mM 

L(+)lactic acid, 1% MEM nonessential amino acids, 1% MEM essential amino acids, 50 

µg/ml of gentamicin sulfate and 1 µl/ml of amphotericin B (pH = 7.7-7.9; osmolality = 
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285-295 mOsm).  On days 7 and 8 post-insemination, blastocyst development was 

assessed and blastocyst hatching and expansion were noted.  Further development was 

monitored for an additional 2 days. 

6.3.8 Calcium Ionophore Activation 

One replicate of activation was performed on injected oocytes (n = 18) 2.5 hours 

post-injection using freeze-dried sperm.  Briefly, oocytes were processed as described for 

ICSI and placed into IVC-1 for 2.5 hours.  The injected oocytes were then transferred 

into a 4-well culture dish containing 400 µl of 10 µM calcium ionophore (C-7522) 

prepared in He199 without BSA and placed in an incubator for 5 minutes.  The oocytes 

were removed from the activation medium and washed twice in IVC-1 before being 

placed back into in vitro culture.  Embryonic development was assessed as previously 

described. 

6.3.9 Statistical Analysis 

Cleavage and blastocyst rates of control and injected feline oocytes across 

treatment groups were analyzed for statistical significance using Chi-square analysis 

(P≤0.05 statistically different) (Instat Graphpad Version 3.0, San Diego, CA). 

6.4 Results 

In a preliminary study, sham injections were completed on feline oocytes (n = 45) 

with fresh cat sperm and subsequent embryonic development was noted during in vitro 

culture. In this trial, 40% of the injected oocytes cleaved in culture, however, none of 

these embryos produced blastocysts.  All of the sham-produced early stage embryos  
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exhibited fragmentation and had unequal blastomere size after the first two divisions.  

The sham injections were conducted to assess the oocyte activation protocol for feline 

oocytes prior to the main experiment. 

In the main experiment, embryonic development of feline oocytes injected with 

sperm was assessed in six replications.  Cleavage rates on day 2 of in vitro culture were 

56% for the Control IVP, 59% for the Control ICSI groups, 35% for the Air-Dried Sperm 

ICSI and 60% for the Freeze-Dried Sperm ICSI groups, respectively (Table 6.1).  The 

embryo cleavage rates for the Control IVP, Control ICSI and the ICSI with freeze-dried 

sperm (Freeze-Dried Sperm ICSI) groups were significantly higher (P≤0.05) than the 

cleavage rate obtained after ICSI with air-dried sperm (Air-Dried Sperm ICSI).   

Blastocyst development on day 8 of in vitro culture in all the oocyte injected 

groups (Control ICSI, Air-dried ICSI and Freeze-dried ICSI) was lower (9%, 2% and 

0%) (P≤0.05) than that obtained in the Control IVP group at 25%.  Only one blastocyst 

was produced using air-dried sperm and no blastocysts resulted in the freeze-dried 

injected oocytes (Figure 6.4).   

In an attempt to increase the potential for blastocyst development using freeze-

dried sperm, an oocyte activation protocol using calcium ionophore was evaluated in a 

subsequent experiment.  In this study, feline MII-stage oocytes (n = 18) were injected 

with freeze-dried sperm or these oocytes (n = 42) were subjected to the standard IVP 

protocol.  The cleavage rate of freeze-dried sperm was higher (61%) than that for the 

control IVP group (24%) (data not shown).  Also, one hatching blastocyst (6%) was  
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Table 6.1 Embryonic development resulting from feline oocytes subjected to standard 

   IVP and oocytes injected with fresh, freeze-dried or air-dried spermatozoa  
 

 Oocytes/embryos developing (%) 

Treatment  No. of oocytes Cleavage (d 2) Blastocysts (d 8) 

Control IVP   36 20 (56) 9 (25) 
 
Control ICSI   74 44 (59) 7 (9)* 
 
Freeze-Dried Sperm ICSI  45 27 (60) 0 (0)* 
 
Air-Dried Sperm ICSI  57 20 (35)* 1 (2)* 
 
*Values with an astericks within columns are statistically different from the remaining 
values (P≤0.05; Chi-square analysis). 
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produced when oocytes obtained from one pair of ovaries were exposed to calcium 

ionophore and injected with freeze-dried sperm (Figure 6.4).  No blastocysts were 

obtained from the IVP control oocytes.   

6.5 Discussion 

In this study, we found that air-dried and freeze-dried feline sperm can fertilize in 

vitro matured oocytes using ICSI and could result in embryonic development to the 

blastocyst stage.  Previous reports have demonstrated that, although the sperm resulting 

from dehydration are immotile or ‘dead’ in conventional terms and that they retain their 

ability to undergo decondensation, pronuclear formation and syngamy when injected into 

mature oocytes (Wakayama and Yanagimachi, 1998, Kwon et al., 2004, Liu et al., 2004).  

This has been attributed to a sperm-specific factor located within the sperm that is 

maintained during the drying process (Ward et al., 2003).   

This sperm-specific factor was initially reported in mammals by Stice and Robl 

(1990), when they injected mouse oocytes with rabbit sperm.  This factor is known to be 

a protein and to induce calcium oscillations in mammalian oocytes (releases Ca2+ from 

intracellular stores in the oocyte) across species (Wu et al., 1997).  Numerous candidates 

for this sperm-specific factor have been identified including: oscillin (Parrington et al., 

1996), a truncated c-kit receptor (tr-kit) (Sette et al., 1997), Src-like tyrosine kinase 

(Parrington et al., 2002) and sperm-specific phospholipase C (PLCζ) (Saunders et al., 

2002).  The latter protein is currently thought to be the most likely candidate because it 

most closely imitates the normal sequence of events that lead to syngamy during  
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Figure 6.4 Blastocysts (day 9) produced by injecting (a) air-dried sperm or (b) freeze-

dried sperm into matured feline oocytes.  (a) Air-dried sperm. Note the thin 
trophectoderm overlying the blastocoel.  (b) Freeze-dried sperm. Note the 
mass of cells hatching from the zona pellucida and thick trophectoderm.  
Photographs were taken at the same magnification using an inverted Nikon 
microscope with a 20X objective. 
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fertilization.  This sperm factor has been found in all species examined thus far, 

including, fish, lower vertebrates and mammals (for a review see Swann et al., 2004).   

Freeze-dried sperm has been used to produce live offspring in mice, rabbits and 

rats when combined with the ICSI procedure (Wakayama and Yanagimachi, 1998, Liu et 

al., 2004, Hirabayashi et al., 2005).  In this study, feline freeze-dried and air-dried sperm 

injected into in vitro mature feline oocytes cleaved at rates of 60% and 35%, respectively.  

These cleavage rates are less than those obtained when freeze-dried sperm was injected 

into mouse oocytes (80% to 99%) (Kaneko et al., 2003b) and rabbit oocytes (70%) (Liu 

et al., 2004).  However, the results of this study were comparable to the cleavage rates 

obtained in the cattle at 44% to 63% (Keskintepe et al., 2002) and in the pig at 50% to 

52% (Kwon et al., 2004) when injected with freeze-dried sperm.  In the rat, Hirabayashi 

et al. (2005) reported only an 8% cleavage rate, yet they obtained live young after 

embryo transfer.  Therfore, although the cleavage rate was low, these developing 

embryos were still competent.   

Blastocyst rates of oocytes injected with dried feline sperm (2%) were low in our 

study compared with 10% to 69% in mice (Kaneko et al., 2003b), 11% to 30% in cattle 

(Keskintepe et al., 2002), 24% in rabbits (Liu et al., 2004) and 11% in the pig (Kwon et 

al., 2004).  In the present study, however, no blastocysts were derived from feline oocytes 

injected with freeze-dried sperm without chemical activation.  One possible reason for 

this is that the oocytes may not have been properly activated.  This is not uncommon as 

the oocytes of those species must be artificially activated in conjunction with ICSI to 

induce the resumption of meiosis (Ock et al., 2003).  With freeze-dried rabbit and pig 

sperm, oocyte activation can be accomplished by exposing injected oocytes to 10 µM 
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calcium ionophore or 10 µM ionomycin with and without DMAP (Kwon et al., 2004; Liu 

et al., 2004).   

In the present study, the effect of activation was examined using the same 

concentration of calcium ionophore reported in the rabbit and pig studies using freeze-

dried sperm.  No marked increase in cleavage rates resulted, however, the first feline 

blastocyst was obtained only after oocyte activation with calcium ionophore was used.  

This finding is similar to that for the pig, where no blastocyst development was observed 

until an oocyte activation protocol was established (Kwon et al., 2004).  However, the 

ultimate test of sperm function is its ability to fertilize an oocyte and the resulting 

transferred embryo that produces a viable offspring.  To date, no transfers of feline 

embryos produced using freeze-dried or air-dried sperm have been attempted. 

The ability to compare and contrast the results of this experiment to those of 

others has been limitated due to variables involved during the sperm drying process.  

These variables include the sperm type, the medium used for dehydration, the type of 

dehydration used, the time of drying, storage and temperature of all of these processes.  

Two types of sperm have been used for freeze-drying studies, ejaculated and epididymal.  

The level of maturation on the sperm head membranes likely affects their stability during 

the dehydration process.  The types of dehydration used are freeze-drying and air-drying.  

Freeze-drying has been the only type that has successful resulted in embryonic 

development and live young (Wakayama and Yanagimachi, 1998, Liu et al., 2004, 

Hirabayashi et al., 2005).  In the present study, the only embryo to completely hatch was 

produced from freeze-dried sperm.  The freeze-drying process results in a lower level of 

humidity remaining in the dried sample compared with the air-drying approach.   
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Inconsistencies in reporting the vacuum pressure exerted on the samples and 

differences in time allowed to dry have lead to ambiguities relating to the best approach 

to sperm dehydration.  Most reports indicate that dehydrated sperm have ~5% humidity 

and that levels below 5% can result in chromosomal damage or embryonic abberations 

(Jeyendran et al., 1981; Bhowmich et al., 2003).  However, this humidity issue has not 

yet been fully evaluated.  Finally, storage time has varied from a few hours to a year but 

further confusion matters is the various storage temperature and their affect on genetic 

integrity. 

6.6 Conclusions 

 This experiment shows that feline sperm (both air-dried and freeze-dried) can 

maintain their ability to fertilize in vitro matured feline oocytes that can undergo early 

stage embryonic development in vitro.  To date, this is the first report of successful 

preservation of domestic cat sperm using freeze-dried and air-dried sperm dehydration.  

However, at this stage the efficiency of this technique is low.  Molecular-based analyses 

are needed in the future studies to eliminate the possibility that the resulting embryos 

from this process were parthenogenetic.  Further study is recommended to optimize this 

methodology before it may be used as a tool for the preservation of sperm from 

domestics and endangered cats. 
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CHAPTER 7 
ASSESSMENT OF DNA INTEGRITY OF DEHYDRATED FELINE 

SPERMATOZOA USING THE COMET ASSAY 
 
7.1 Introduction 

Recently, Wakayama and Yanagimachi (1998) discovered that mouse 

spermatozoa can be dehydrated, stored at temperatures above 0ºC and produce live 

offspring (n = 14) when injected into mouse oocytes.  Since this first offspring produced 

with freeze-dried intracytoplasmic sperm injection (ICSI) in the mouse, two other 

species, the rabbit (Liu et al., 2004) and the rat (Hirabayashi et al., 2005), have also been 

used to produce live young with freeze-dried sperm in conjuction with ICSI.   

The freeze-drying technique is more cost efficient than standard cryopreservation 

that requires storage at ultra-low temperatures.  In addition, standard cryopreservation 

may induce sperm DNA damage (Lindford and Meyers, 2002).  It is also possible that 

severe dehydration (e.g., freeze-drying) may also cause damage to the sperm nuclear 

material.  Therefore, the objective of this study was to determine the effect of two types 

of dehydration (freeze-drying and air-drying) on the DNA integrity of feline 

spermatozoa. 

7.2 Literature Review 

7.2.1 Applications of Sperm Dehydration 

Freeze-drying (lyophilization) is commonly used in the food and drug industries.  

It has also been used to preserve bacteria and other microrganisms, but only recently has 

this technique been applied to mammalian cells and tissues.  Because one first must 

determine optimal freezing protocols for freeze-drying, tissue preservation using this 

approach has not been very successful to date.  However, erythrocytes and human 
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fibroblast cells have been successfully freeze-dried and rehydrated (Goodrich et al., 1992; 

Puhlev et al., 2001).  With the success of Wakayama and Yanagimachi (1998), using 

freeze-dried mouse sperm, this technique has been proposed as a cost-effective means of 

preserving the numerous transgenic strains of mice produced for biomedical research 

(Kusakabe et al., 2001).   

This technique may provide an effective method to preserve sperm of inbred 

mouse strains that, with conventional freezing, exhibit poor post-thaw recovery.  

Desiccation might allow for sperm to be stored at room temperature instead of at ultra-

low temperatures as in the case for cryopreserved sperm samples.  Dessication would 

result in a drastic decrease in the cost of maintaining large storage facilities of liquid 

nitrogen (LN2) tanks.  Furthermore, sperm dehydration might also be more practical for 

field work, where access to cooling units and LN2 is limited or unavailable.  Transport of 

dried genetic material is also far less expensive and would require less special handling, 

allowing for easier movement of specimens between different locations. 

7.2.2 Media Used for Dehydration 

 Various types of media have been used to preserve the cells during dehydration.  

In the original publication by Wakayama and Yanagimachi (1998), they used two types 

of media; CZB medium without EDTA and DMEM supplemented with 10% fetal bovine 

serum (FBS).  For bovine sperm, Keskintepe et al. (2002) also used DMEM 

supplemented with 10% FBS but added glutamine, sodium pyruvate, nonessential amino 

acids and nucleosides.  The most common medium used to protect spermatozoa during 

desiccation was originally published for mouse sperm by Kusakabe et al. (2001).  It 

consists of a 10 mM Tris-HCl buffer containing 50 mM EGTA (ethylene glycol-bis [β-
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animoethyl ether]-N,N,N’,N’-tetraacetic acid) in 50 mM NaCl with a high pH (8.0 - 8.4).  

In that study, the authors compared the effects of CZB medium with the Tris-HCl buffer 

and found that the latter resulted in a higher percentage of karyotypically normal 

embryos.   

High concentrations of a calcium-chelating agent, such as EGTA, are used 

routinely to help maintain chromosome integrity in DNA preparations from eukaryotic 

cells.  This Tris-HCl solution has subsequently been used in various studies for sperm 

dehydration from a variety of different species (Bhowmick et al., 2003; Kaneko et al., 

2003a,b; Ward et al., 2003; Liu et al., 2004).  Other solutions used for sperm dehydration 

include distilled water (Hoshi et al., 1994).  Chemical agents used to cause sperm 

desiccation are 100% ethanol, dithiothreitol (DTT), methanol, acetone or a chloroform-

methanol (2:1) mixture (Katayose et al., 1992).  The rehydration procedures of sperm 

samples used in all dehydration studies to date has been very similar.  The samples are 

rehydrated by simply adding an equal volume of ultra-pure water to the volume of the 

sample of dried sperm (Wakayama and Yanagimachi, 1998).  It has been reported that an 

increase in the time of injection after rehydration is correlated to a decrease in activation 

and fertilization in mice (Wakayama and Yanagimachi, 1998).   

7.2.3 Storage of Dried Sperm Samples 

 The length of storage and the temperature at which the dried sperm samples are 

stored vary.  For freeze-dried rabbit sperm, the longest period of storage reported has 

been for more than 2 years at ambient temperature (Liu et al., 2004).  Storage time (up to 

1 year) was not shown to have a deleterious effect on the genetic integrity of freeze-dried  
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samples of mouse sperm (Ward et al., 2003).  Various temperatures used for storage of 

dehydrated sperm have been at room temperature (22°C to 25°C), in the refrigerator 

(4°C), in a -80°C freezer or in LN2 (-196°C).   

By applying the theory of accelerated degradation kinetics on freeze-dried sperm, 

it has been estimated that samples stored above -80°C for >10 years would result in a 0% 

blastocyst rate in mice (Kawase et al., 2005).  However, in the short term (<1 year), there 

were no significant differences if freeze-dried sperm were stored at 4°C or -80°C 

(Kawase et al., 2005).  Until sperm samples have been stored for many years at various 

temperatures, the real effects on genetic integrity will not be known. 

7.2.4 Assessment of DNA Integrity 

In addition to studies on embryonic development, investigators have examined the 

effect of sperm dehydration on DNA integrity and/or cell ploidy.  It is well known that 

freeze-drying causes severe damage to the acrosome and plasma membranes.  The 

deleterious effect of drying on spermatozoa has been examined by use of chromosomal 

spreads of zygotes (Kaneko et al., 2003a,b; Ward et al., 2003; Kaneko and Nakagata, 

2005) and most recently, using the comet assay (Kawase et al., 2005).   

Briefly, chromosome spreads are made on zygotes because oocyte chromosomes 

seldom show chromosomal aberrations at the metaphase-II (MII) stage, and any abnormal 

chromosomes are considered to be of paternal origin (Kaneko et al., 2003b).  In the 

mouse, when freeze-dried sperm samples were stored at 4ºC for up to 5 months the 

amount of abnormal sperm was not significantly different from that of control sperm 

(56% to 76%) (Kaneko et al., 2003b; Kaneko and Nakagata, 2005).  However, Ward et 

al., (2003) found a similar percentage of chromosomal abnormalities in freeze-dried 
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mouse sperm but it was significantly lower than the abnormalities noted in the control 

samples.  The number of chromosomal abnormalities found in mouse embryos produced 

by using freeze-dried sperm was found not to be significantly different than that of fresh 

sperm used with ICSI (Kusakabe et al., 2001).   

The comet assay, is a single-cell gel electrophoresis procedure that is used to 

examine the comet ‘tails’ produced by the sperm heads in the presence of unbound or 

fragmented DNA (for a review see Collins, 2004).  It was developed by Ostling and 

Johanson in 1984 to assess DNA damage incurred in somatic cells after irradiation 

(Fairbairn et al., 1995).  Since then, many reports have used the comet assay to assess 

damage in a variety of cell and tissue types (for a review see Fairbairn et al., 1995).   

This technique requires that the chromosomes first be decondensed after the cells 

are embedded in an agarose matrix and then the cells are lysed to allow for unbound 

DNA to migrate away from the sperm head when exposed to a weak electrical current 

(for a review see Olive, 2002).  The presence of comet tails has been observed in samples 

of freeze-dried sperm stored at 4ºC for several months but not found when samples were 

fresh or freeze-dried and stored at -80ºC (Kawase et al., 2005).   

Most recently, the comet assay has been used in human fertility clinics as a 

predictor of male infertility (Morris et al., 2002).  The biggest problem associated with 

this comet assay results is the inability to directly compare results from different 

laboratories due to the numerous image analysis programs and varied protocols.  DNA 

integrity is an important but sometimes forgotten a factor that needs to be examined to 

ultimately determine the success of any desiccation protocol.   
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7.3 Materials and Methods 

All chemicals were obtained from Sigma Chemical Co., St. Louis, MO, unless 

otherwise stated. 

7.3.1 Experimental Design 

In the first experiment (Experiment 1), evaporation rates of a medium (HeTy + 

EGTA) used for dehydration and of feline sperm suspensions prepared in the same 

medium (HeTY + EGTA + Sperm) prepared in this solution were examined.  Three 

samples of HeTY + EGTA (a, b, c) were evaluated as well as two samples of feline 

sperm suspensions, HeTY + EGTA + Sperm (a, b).   

In the second experiment (Experiment 2), four treatments for feline sperm were as 

follows: Fresh sperm (n = 9), sperm exposed to HeTy + EGTA only (n = 9), sperm 

exposed to HeTy + EGTA and then vitrified (n = 4) (LN2 only), air-dried (n = 4) and 

freeze-dried sperm (n = 4).  In this experiment, membrane integrity, or viability, of these 

sperm samples was assessed.  

In the third experiment (Experiment 3), sperm DNA damage was assessed using 

the comet assay.  The five treatments were: Fresh ejaculated sperm (n = 8) (Fresh 

Sperm), sperm exposed to HeTy + EGTA and then vitrified (n = 10) (LN2 only), sperm 

processed for air-drying and then rehydrated (n = 9) (Air-Dried), ejaculated and 

epididymal sperm processed for freeze-drying and then rehydrated (n = 16 and n = 12) 

(Freeze-Dried EJ and Freeze-Dried EP). 

7.3.2 Sperm Collection and Processing for Drying 

 Both epididymal and ejaculated feline sperm were compared in Experiment 3.  

Only ejaculated feline sperm was evaluated in Experiments 1 and 2.  Epididymal sperm 
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were collected from testes obtained from local veterinary clinics and transported in a 

cooler in a plastic 100 ml sample vial (9853Q47; Thomas Scientific, Swedesboro, NJ) 

containing 50 ml of TL HEPES (04-616F; Cambrex Bio Science, Walkerville, MD) 

supplemented with 50 µg/ml of gentamicin (G-1397) and transported at room 

temperature to the laboratory at the Audubon Center for Research of Endangered Species, 

New Orleans, Louisiana.  Testes were kept at room temperature and processed within 2 to 

4 hours after being surgically removed.  The testes were recovered from the sample vials 

and rinsed twice in Dulbecco’s phosphate-buffered saline (PBS) (D-8662) in a 35 mm 

petri dish.  One testis at a time was transferred to a new 35 mm dish containing ~3 ml of 

sperm washing medium (HeTy) consisting of a Tyrode’s salt solution (T-2397) and 

containing 1.5% M199 HEPES, 0.4% BSA, 1 mM L-glutamine (G-8540), 0.36 mM 

pyruvic acid (P-4562), 2.22 mM L(+)lactic acid, 50 µg/ml of gentamicin sulfate (G-1264) 

and 1.12 mM L-cysteine (C-6852) (pH = 7.3 - 7.4; osmolality = 285 - 295 mOsm).   

The epididymis was carefully dissected free from the testis and placed into a new 

35 mm dish containing HeTy plus EGTA.  The dehydration medium (HeTy + EGTA) 

was prepared by adding 50 mM EGTA (03778; Fluka) to HeTy medium and adjusting the 

pH between 8.2 to 8.4 (osmolality = ~400 mOsm).  The solution was filter-sterilized 

through a 0.2 µm pore acrodisk syringe filter.  A longitudinal opening was cut into the 

epididymis with a scalpel blade (# 10) and then it was placed on a slide warmer for 10 

minutes, allowing the sperm to swim into the medium.  The sperm suspension was 

collected and then transferred to a 1.5 ml microcentrifuge tube.  Motility and sperm 

concentration were assessed and then the sample was processed for drying. 
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Ejaculated sperm were collected from healthy toms of known fertility housed at 

the Audubon Center in New Orleans.  Samples were collected by use of a teaser female 

and an artificial vagina (AV) twice a week.  Ejaculates volumes ranged from 23 µl to 130 

µl.  All procedures were pre-approved by the Audubon’s Institutional Animal Care and 

Use Committee.  The AV consisted of a small glass bottle filled with 40 ml of warm 

water (42°C to 45°C).  In this bottle, a balloon with the tip cut out was inserted and a 

small plastic cup was placed at the tip to hold the sample.  The tom was allowed to mount 

the teaser female and his penis was guided into the AV by the investigator, holding the 

bottle at a 45°angle.  Once the sample was produced, the AV was removed and the sperm 

sample was transferred to a 1.5 ml microcentrifuge tube and held in a 500 ml water bottle 

at ~30°C until processed.   

 Both ejaculated and epididymal sperm were processed for dehydration as follows.  

For ejaculated sperm, a volume of ~30 µl of each individual ejaculate was gently pipetted 

into the bottom of a 1.5 ml microcentrifuge tube containing 1 ml of HeTy + EGTA.  The 

sample was allowed to swim-up for 12 minutes at 38°C and then the top 600 µl of sperm 

suspension were collected and transferred to a new 1.5 ml microcentrifuge tube.  For 

epididymals sperm, 800 µl of the sperm suspension was collected after the swim-out and 

then transferred to a 1.5 ml microcentrifuge tube.  The sperm progressive motility and 

concentration were then assessed.  The sample from each tom was then divided with four 

100 µl aliquots for freeze-drying and four to twelve 10 µl aliquots for air-drying.   

For freeze-drying, 100 µl aliquots of the collected sample were transferred into a 

2 ml glass ampules (12-009-36; Wheaton - Fisher Scientific, Pittsburg, PA) with a sterile, 

glass Pasteur pipette.  Ampules were fixed to canes and plunged into LN2 for 
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transportation to the Department of Biological Sciences in Baton Rouge, Louisiana.  One 

ampule at a time was quickly removed from the LN2 and placed into a rack submerged in 

a LN2 bath until all ampules were in the rack.  The rack was then placed inside the freeze-

dryer (Labconco, Kansas City, MO) and the vacuum was initiated.  The temperature of 

the chamber was between -43ºC and -45ºC with an internal pressure between 44 and 76 x 

10-3 mBar.  Samples were then dried for 4 hours.  The ampules were filled with an inert 

gas (N2) to avoid rehydration and then quickly sealed with silicone corks.  The ampules 

were then flame-sealed to prevent the samples from being rehydrated and transported 

back to the Audubon Center in New Orleans where the dried samples were stored at 4°C 

until use. 

For air-dried samples, 10 µl of sperm suspension for each male was placed on a 

glass microscope slide (12-544-15; Superfrost - Fisher Scientific) and allowed to dry at 

room temperature in the dark for 30 minutes.  The slides were then transferred to a 

desiccator and stored at room temperature and in the dark until use.  The desiccator was 

sealed by applying a vacuum for 1 minute.   

Just prior to use, freeze-dried and air-dried sperm samples were rehydrated by 

adding an equal volume of ultra-pure water to the dehydrated samples (10 µl/slide or 100 

µl/ampule, respectively).  The rehydrated sample was then transferred to a 1.5 ml 

microcentrifuge tube and kept at room temperature until needed.  

7.3.3 Measurement of Evaporation Rates 

 Evaporation rates of various media, as well as sperm suspensions, were examined 

to determine the appropriate drying time required for air-dried sperm samples.  Briefly, a 

10 µl sample was placed on a glass microscope slide and the total was weighed (time = 
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0).  The slide was left on the balance (± 0.0001) and the weight was recorded every 10 

minutes until two successive identical weights were recorded (dried sample).  This was 

done three times for each sample analyzed. 

7.3.4 Viability Assessment of Sperm 

In Experiment 2, viability of feline spermatozoa was assessed at various stages of 

the drying process to determine the stage at which the membranes were being disrupted.  

A commercially available kit (541-465-8300; Live/Dead Sperm Viability Kit - Molecular 

Probes, Eugene, OR) containing propidium iodide (PI) and Syber 14 (SYB14) was used 

to make this determination.  Briefly, a 1:50 dilution of SYB14 in HeTy was prepared.  

Then, 10 µl of the sperm sample were diluted with 5 µl of the SYB14 + HeTY (1:50) and 

placed in a 38°C water bath for 5 minutes.  After this, 5 µl of PI were added to the 

sample, mixed and the sample was placed onto a clean glass microscope slide.  The slides 

were examined immediately with a long pass filter block (B-2A; Ex 450-490 DM 505 BA 

520) attached to a Nikon fluorescence microscope.  For each sample, 200 sperm cells 

were counted in randomly selected microscopic fields, being careful to avoid clumps of 

sperm cells.  Spermatozoa that fluoresce red were designated as ‘dead’ while those that 

fluoresce green were designated as ‘live’. 

7.3.5 DNA Analysis Using the Comet Assay 

In Experiment 3, the protocol used for the comet assay was slightly modified from 

that of Kawase et al. (2005).  Dried sperm samples were individually rehydrated as 

previously described (100 µl of ultra-pure water for freeze-dried and 10 µl for air-dried 

samples; no water was added to samples that had only been frozen).  Sperm samples that 

were processed for freeze-drying that were not placed in the drying machine were 
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designated as frozen only.  They remained frozen in liquid nitrogen until use as controls 

(LN2 Only) for the medium and the freezing process alone.   

Samples were centrifuged and the sperm were re-suspended in 100 µl of chilled 

phosphate-buffered saline (PBS without Ca2+ and Mg2+) (D-8537).  Pellets of sperm were 

re-suspended in either 800 µl of PBS (Fresh Sperm) or in 100 µl of PBS (Freeze-Dried, 

Air-Dried and LN2 Only).  Then, the sperm suspension was combined with the Comet 

LMAgarose (LMA) (4250-050-02; Trevigen Inc., Gaithersburg, MD) at a ratio of 1:10 

(v/v).  A 25 µl of sample was evenly spread onto a Trevegen HT Comet slide (4252-200-

01; Trevigen Inc.).  Each sample, including a control sample was placed in duplicate on 

each comet slide to be analyzed.   

The slides were refrigerated for 15 minutes and then immersed in a large jar 

containing chilled lysis solution (4250-050-01; Trevigen, Inc.) at 4°C for 1 hour.  To the 

299 ml of lysis solution, 32.5 ml of 20 mM DTT (15508-013; Invitrogen, Carlsbad, CA) 

were added and incubated at 4°C for 30 minutes and then 32.5 ml of 8 mM lithium 

diiodosalicylate (D-3635) was added to the previous solution and further incubated at 

room temperature for 90 minutes.  The slides were then transferred to an alkaline solution 

(pH>13) for 1 hour at room temperature in the dark.  The alkaline solution consisted of 

1.5 ml of 200 mM EDTA, pH 10 (4250-050-04; Trevigen, Inc.) and 0.03 M NaOH (S–

8045) prepared in water.  The slides were rinsed twice in 1X TBE buffer (15581-044; 

Invitrogen) and then subjected to electrophoresis in 1X TBE buffer at 25 v for 15 minutes 

(1v/cm).  Then, the slides were fixed in 70% ethanol for 8 minutes and air-dried at room 

temperature for ~30 minutes.   
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Staining was done by adding 25 µl of a 1:1000 dilution of SYBR Green I nucleic 

acid gel stain diluted in TE Buffer (10 mM Tris (pH 7.5), 1 mM EDTA) solution and 5 µl 

of antifade solution (S-2828; Component B - Molecular Probes) on each slide.  Slides 

were examined with an inverted Nikon microscope and images were captured using video 

cassette and a computer.   

7.3.6 Assessment of Comet Lengths 

 Comet tail lengths were measured by first video taping a micrometer scale with 

the same objective used to visualize the sperm cells.  Then, this scale was recorded on a 

piece of tape by playing the video of the micrometer on a 28-inch television set.  Each 

experiment was analyzed using this scale in micrometers.  At least 50 sperm were 

counted per treatment per male and each treatment was recorded twice.  Both comet tail 

length and width (halos) were recorded for each sperm.  Comets near the edges of the 

wells of the slide and in clumps were not analyzed.   

7.3.7 Statistical Analysis 

The mean tail length of fresh, frozen only, freeze-dried and air-dried sperm 

samples was recorded and t-tests were used to compare comet tail lengths.  In this study, 

P≤0.05 was considered as statistically different (Instat Graphpad Version 3.0, San Diego, 

CA). 

7.4 Results 

7.4.1 Evaporation Time of Sperm Solutions 

In the first experiment, feline sperm samples were weighed to assess the time 

required for them to reach a constant weight (evaporation rates) at room temperature.  All 

samples in each treatment group had completely dried to a constant weight within 40 
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minutes (Figure 7.1).  The effects of two sperm mixtures in HeTY were also assessed and 

the maximum amount of time required for drying was 40 minutes for each of these 

samples.  From these data it was determined that the desired time for air-drying should be 

≥30 minutes. 

7.4.2 Viability of Sperm During and After Drying 

To determine the stage at which the feline ejaculated sperm membranes were 

disrupted, membrane integrity tests were performed in the second experiment.  Three 

replicates were performed on each individual male sperm sample.  There was little 

membrane disruption (decreased membrane integrity) noted when sperm were exposed to 

the HeTY + EGTA solution alone (n = 9 individual male samples).  After 120 minutes of 

exposure at 30ºC, all samples examined retained membrane integrity of 57% to 68%.  

However, there was a rapid increase of membrane-disrupted sperm with increased drying 

times.  With air-dried sperm samples (n = 6), after only 5 minutes of drying, the sperm 

membrane integrity decreased from 95% intact sperm to less than 13%.  At 15 minutes of 

drying in air, there was 0% membrane intact cells in all sperm samples.   

Post-freezing, cryopreserved sperm (n = 4) had only 0.1% with intact membranes 

after storage in LN2 for 10 to 14 days as assessed by membrane integrity tests.  In 

addition, an examination of membrane integrity was made of both freeze-dried sperm (n 

= 4 samples) and air-dried sperm (n = 4 samples).  All samples had 0% intact 

membranes.  See Figure 7.2 for an example of intact and nonintact sperm samples. 
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Figure 7.1 Evaporation rates of the dehydration medium alone (HeTY + EGTA) and 

sperm suspensions prepared in HeTY + EGTA.  Each point on the graph 
represents a single weight measurement of medium or feline sperm suspension 
in medium.  Three different slides with HeTy + EGTA were measured per 
sample (a, b and c).  Two slides with sperm suspensions in HeTy + EGTA 
were also measured per sample (a and b).  The black and red points are 
identical and therefore overlap.   
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Figure 7.2 Photographs of feline sperm membrane integrity of fresh and freeze-dried 

samples.  (a) Fresh sperm with many viable sperm (green = intact) and only a 
few dead sperm (red = disrupted).  (b) Sperm assessed after 120 minute of 
exposure to HeTY + EGTA medium.  (c) Mainly disrupted sperm heads after 
sperm was processed for drying and vitrified-warmed (frozen only). (d) 
Freeze-dried sperm after rehydration demonstrating all disrupted sperm 
membranes.  Figures (a) and (b) were taken with a 40X objective and figures 
(c) and (d) were taken with a 20X objective for a larger field of view. 
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7.4.3 Comet Analysis of Dried Sperm 

 In the third experiment, comet tail lengths were calculated for: fresh sperm, frozen 

only sperm (vitrified but not dehydrated), freeze-dried (epididymal and ejaculated 

assessed separately) and air-dried cat sperm treatment groups.  At least eight replicates of 

the comet assay were completed.  For fresh sperm samples (total of 8 samples collected 

from 3 toms), the mean (± SE) comet tail length was 20 ± 4.9 µm (minimum = 10 µm 

and maximun = 61 µm).  Frozen only sperm samples (n = 10) had an average tail length 

of 35 ± 11.2 µm (minimum = 10 µm and maximun = 93 µm) (Figure 7.3).  After being 

freeze-dried, ejaculated sperm samples (n = 16) had a mean comet length of 110 ± 8.0 

µm (minimum = 33 µm and maximun = 167 µm) and epididymal sperm samples (n = 12) 

had a mean length of 134 ± 9.5 µm (minimum = 40 µm and maximum = 181 µm).  

Finally, air-dried sperm samples (n = 9) had no verifiable comet tails in any of the 

samples examined.  All measurments were ~10 µm (size of the feline sperm head).  

Representative images of comet tails are shown in Figure 7.4.  There was no significant 

difference in comet tail lengths of fresh and frozen only sperm samples, although both 

had significantly shorter tail lengths than both the freeze-dried ejaculated and epididymal 

sperm.   

7.5 Discussion 

 In this study, dehydration of feline sperm resulted in complete membrane 

disruption and DNA damage.  This finding appears to challenge the earliest reports of the 

successful use of artificial insemination of rabbits (Yushchenko, 1957 as cited by 

Wakayama and Yanagimachi, 1998) and cattle (Larson and Graham, 1976) with immotile 

freeze-dried sperm.  Without the use of ICSI, these sperm should not have been able to  
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Figure 7.3 Mean (± SE) comet tail lengths of fresh, frozen and dried feline sperm.  The 

numbers above the bars represent the number of sperm samples analyzed for 
each treatment.  LN2 Only = sperm processed for freeze-drying that were 
vitrified but not attached to the dehydration machine (frozen alone).  EJ = 
Ejaculated; EP = Epididymal.  Asterices indicate statistical significance 
between fresh sperm and all other treatments using t-tests, P≤0.05. 
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Figure 7.4 Digital images of comet tails of various types of fresh,freeze-dried and air-

dried feline sperm.  (a) Fresh sperm with no tails present.  (b) Frozen only 
sperm with no or little tails present.  (c) Freeze-dried ejaculated sperm 
demonstrating a very long comet tail trailing away from the sperm head 
region. (d) Air-dried sperm that did not decondense and therefore, exhibited 
no comet tails. 
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fertilize oocytes in vivo.  The first report to be widely accepted of the successful 

production of mice offspring resulting from freeze-dried sperm was that of Wakayama 

and Yanagimachi (1998).   

The ability to preserve sperm without cryoprotection and to store samples at 

higher temperatures than conventional techniques out-weighs the problem associated 

with the need for a technically demanding procedure, such as ICSI for fertilization.  

There are many strains of research mice where the sperm cannot currently be preserved 

using standard cryopreservation methodologies.  This is also the case for numerous exotic 

and endangered species.  With this simple sperm dehydration technique, there is potential 

for these endangered species to be successfully preserved for future generations.  

However, there remains a need to test the feasibility of preserving sperm by dehydration 

and examine the potential damage to the DNA incurred during storage.   

In the present study, it was also determined that the minimum drying time for air-

dried feline sperm samples to be 30 minutes or greater.  This information was then used 

in planning subsequent experiments.  The optimum drying time for freeze-dried sperm 

samples was previously reported to be 4 hours (Kwon et al., 2004).  Furthermore, the 

medium selected for sperm dehydration was modified from that described in previous 

reports where there was a supplementation of standard sperm handling medium with 50 

mM EGTA and the pH was adjusted to 8.2 to 8.4.  This high pH was reported in mice 

after examining the genetic integrity (DNA fragmentation) of the sperm used in ICSI 

with mouse oocytes (Kaneko et al., 2003b).  Sample size and rehydration conditions in 

the present study were also similar to those previously used in sperm dehydration studies 

(e.g., Kusakabe et al., 2001; Keskintepe et al., 2002; Bhowmick et al., 2003; Kaneko et 

 176



al., 2003a,b; Ward et al., 2003; Kusakabe and Kamiguchi, 2004; Kwon et al., 2004; Liu 

et al., 2004; Hirabayashi et al., 2005).   

Comet analyses on sperm are commonly used in human fertility clinics in an 

attempt to try to diagnose the cause of infertility in men.  In freeze-dried sperm studies, 

only one report has used the comet assay to evaluate the effects of dehydration on mouse 

sperm.  In that study, increased tail length was used as an indicator of sperm DNA 

damage.  Thus, the longer the comet tail length, the more damage has occurred.   

Other studies in humans have used sophisticated software to determine the tail 

length, tail moment (tail length X % tail DNA) and percent tail DNA (total DNA that 

migrates away for the nucleus into the comet tail).  Unfortunately, this requires expensive 

computer analysis systems and results in little more information.  In one study, it is 

suggested that simply using an eyepiece micrometer to measure the tail lengths was 

sufficient to make an assessment (Duty et al., 2002).  In our study, there was significant 

differences found in comet tail lengths.  Although percent tail DNA could be calculated 

using the halo sizes of sperm heads, the sperm halo sizes were so uniform in our 

treatments that this parameter was not included in this data set.   

Fresh and frozen only feline sperm samples had only a few or no comet tails, 

therefore, these sperm were considered to have suffered little or no DNA damage.  

However, freeze-dried feline sperm (epididymal and ejaculated) had significantly longer 

comet tails lengths than that of the fresh sperm controls.  These findings indicate that 

there were a number of DNA fragments or single stranded DNA present in the freeze-

dried sperm.  This level of sperm head DNA damage was 10 fold higher than their fresh 

sperm counterparts.  The lack of comet tails in the air-dried sperm samples was thought 
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to be due to a lack of sperm head decondensation.  Without decondensation of the tightly 

wound DNA in the sperm head, the fragmented chromosomes do not migrate away from 

the sperm head under the in vivo fertilization process.  Further study is needed to 

determine the true level of DNA damage in these freeze-dried and air-dried samples.  The 

sample stored for the longest time (13 weeks) at 4ºC was freeze-dried ejaculated sperm.  

This sample did not show an increase in DNA damage compared with freeze-dried sperm 

stored for only 2 weeks.  Therefore, it appears from this study that time of dry storage up 

to 13 weeks did not have an obvious effect on chromosomal damage in freeze-dried 

feline spermatozoa.   

The major component in all cells is water.  Cell membranes rely on the presence 

of water to maintain their structure and function therefore in most cases, dehydration 

leads to cell damage or even death (Puhlev et al., 2001). Yet, many plants and 

invertebrate animals can tolerate severe desiccation under natural conditions.  The ability 

to dehydrate mammalian cells (especially sperm) would increase the efficiency of storing 

biological samples.  The impact of dehydration on the food and drug industries, which 

rely on the ability to safely store a multitude of compounds, alone makes this prodeedure 

economically desirable.   

Recent improvements of the sperm medium to protect the genetic integrity of the 

sample and the ability to produce live offspring makes both freeze-drying and air-drying 

potentially efficient methods of sperm preservation.  However, the question relating to 

the gradual degradation of the sperm maintained for extended periods has yet to be 

answered.  One major factor involved in the loss of genetic stability is the temperature of  
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storage, which increases the possibility of free radicals in the sperm DNA (Puhlev et al., 

2001).  Before freeze-drying and air-drying procedures can be used for routine sperm 

preservation, further improvements must be made in methodologies. 

7.6 Conclusions 

 It was concluded that the freeze-drying and air-drying procedures can be done 

with cat sperm and that the comet assay can be used to assess cat sperm DNA damage.  

Also, freeze-drying and air-drying of feline sperm resulted in a marked increase in the 

level of sperm head DNA damage.  However, it appears as if dried feline sperm retain 

their ability to fertilize oocytes and these will undergo embryonic development.  This 

leads to the question of how much DNA damage can sperm endure and still maintain 

their physiological function.  Unfortunately, there is no simple way to evaluate this 

question.  Many replications of injecting dried sperm into oocytes followed by embryo 

transfer will be the only true test of the ability of these ‘damaged’ sperm to produce live 

offspring.   
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CHAPTER 8 
SUMMARY AND CONCLUSIONS 

 
8.1 Why Preserve Gametes and Embryos? 

 In recent years, people have become more aware of their effects on their 

environment.  Factors that have lead to the listing of hundreds of species on the 

endangered species list include increased human population worldwide, habitat 

destruction for timber, agriculture and mining industries.   Increased environmental 

pollution and over hunting have also contributed to the loss of species (Sunquist and 

Sunquist, 2002).  Because in situ conservation is very difficult and sometimes impossible, 

the ex situ conservation approach has become a primary focus area for animal 

conservation researchers.  One of the conservation strategies is the establishment of a 

genome resource bank for both plants and animals and initially these resource banks were 

created to store sperm, oocytes and embryos of mammalian species, with the initial focus 

to preserve endangered or threatened species (Karow and Critser, 1997; Watson and Holt, 

2001; Holt et al., 2003).  This genome bank would be a safeguard against disease, 

disaster or other factors that may destroy an animal population.  Maintaining valuable 

genomes would help provide protection against genetic drift and loss of genetics.   

 Cryobiology of living cells teeters on a fine line between cell injury and cell 

survival.  Two main causes of cryoinjury incurred by cells result from intracellular ice 

formation and osmotic shock or solute toxicity (Mazur et al., 1972).  The former can be 

avoided by inducing cell dehydration either by extracellular ice formation or by using 

nonpermeating compounds, such as saccharides.  The latter form of cryoinjury is not as  
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easy to define or even to avoid.  However, many cell types, including mammalian 

gametes of a host of species, have now been successfully cryopreserved using 

standardized protocols.   

The two main types of cryopreservation are equilibrium and nonequilibrium 

freezing procedures (Mazur, 1990).  Slow cooling (equilibrium freezing) was used in the 

first successful cryopreservation of male gametes and remains the most common method 

used today.  It has also been used to preserve embryos and to a lesser extent, oocytes of 

various species.  Nonequilibrium freezing requires that the cells be dehydrated before 

cooling occurs whereas, equilibrium cooling causes dehydration to occur during the 

cooling process.  This nonequilibrium approach has been successful for sperm 

preservation but not as effective for embryo cryopreservation.  In general, most 

cryopreservation protocols require the use of a cryoprotective agent and that the cell 

undergo dehydration.   

An alternative to standard cryopreservation is vitrification, which uses high 

concentrations of cryoprotectant agents and ultra-rapid cooling rates (Rall and Fahy, 

1985).  Vitrification also requires cell dehydration but avoids the damaging ice formation 

that occurs in standard cryopreservation techniques.  Furthermore, recent studies on 

sperm vitrification have demonstrated the ability to successfully preserve spermatozoa 

without the need for potentially harmful cryoprotective agents (Nawroth et al., 2002; for 

a review see Isachenko, 2003).   

In the present study, the ability to preserve both sperm and oocytes using 

alternative methods to standard cryopreservation was examined.  Both bovine and feline 

oocytes were preserved using vitrification (an ultra-rapid cooling process) to avoid the 
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formation of intracellular ice.  This is done by using high concentrations of 

cryoprotectant additives (CPAs) such as dimethylsulfoxide (DMSO), ethylene glycol 

(EG) and saccharides, as well as, using very small volumes of CPAs to achieve very 

rapid cooling and warming rates (Vajta and Kuwayama, 2006).  Together these factors 

allow the vitrification solution containing the oocytes to transform from the liquid state to 

a solid ‘glassy’ state.   

Sperm preservation in this study was achieved by dehydration either by air-drying 

or by freeze-drying.  Freeze-drying has successfully produced live young of three 

species: mouse (Wakayama and Yanagimachi, 1998), rabbit (Liu et al., 2004) and rat 

(Hirabayashi et al., 2005) and embryonic development to the blastocyst stage in cattle 

(Keskintepe et al., 2002) and pigs (Kwon et al., 2004).  Freeze-dried sperm samples may 

be stored at room temperature and do not need to be stored in large containers of liquid 

nitrogen.  However, when rehydrated, sperm are immotile and then ICSI can be used to 

fertilize oocytes.  Both sperm drying methods developed in our studies will likely have 

advantages over standard cryopreservation procedures in the future but need to be 

evaluated before they can be used to preserve gametes and embryos of endangered 

species. 

8.2 Volumetric Responses of Oocytes to Various Saccharide Solutions 

 In Chapters 2 and 4, volumetric measurements in response to increasing 

concentrations of solutes were made using bovine and feline oocytes.  Oocytes from both 

species behaved osmotically although the feline oocytes (R2 = 0.94) did not fit the linear 

regression as tightly as did the bovine oocytes (R2 = 0.98 to 0.99).  These results were 

considered good fits to the regression lines.  Lysis was observed in feline mature oocytes 
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at the highest concentration of saccharides examined, while no lysis was noted in the 

bovine matured oocytes.  This was likely due to the higher cytoplasmic lipid content of 

the feline oocyte or increased sensitivity of feline oocytes to osmotic permutations.   

Furthermore, the minimal volumes of feline oocytes from 32% to 22% calculated 

by extrapolation of the linear regression to an infinitely concentrated solution was very 

similar to that found in bovine oocytes from 32% to 18%.  This is not surprising as the 

nonosmotic volume of most cell types has been determined to be within this range.  It 

was concluded that bovine oocytes could serve as a prediction model for the effect of 

dehydration on feline oocytes.   

8.3 Vitrification of Bovine and Feline Oocytes 

 In Chapters 3 and 5, vitrification of oocytes and embryos was examined using a 

standard oocyte and embryo handling medium and a choline-substituted medium (CJ2).  

Both bovine and feline oocytes were vitrified-warmed, fertilized and cultured to assess 

subsequent embryonic development.  The cleavage rate following in vitro fertilization 

was significantly higher for the bovine oocytes (54%) when compared with the feline 

oocytes (22%).  The bovine blastocyst development rate was 4% compared with 0% for 

the feline oocytes.  This difference between bovine and feline oocytes may be due to 

differences in chilling sensitivity of the oocytes.  This can also be due to the differences 

in oocyte lipid content between the two species.  Another factor that may be involved in 

the low survival of feline oocytes post-vitrification was that the feline oocytes used were 

obtained from both young and old queens.  The age of the oocyte donor will have an 

effect on the quality of oocytes available whereas, the commercial source of bovine 

oocytes used does allow for more selection to be placed on the oocytes prior to treatment.   
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What was somewhat surprising was the difference in embryo development 

success rates using CJ2 for vitrification.  There was no significant difference between 

bovine oocytes vitrified using the standard handling medium (TCM-199) or CJ2 whereas, 

there was no survival of feline oocytes resulted following vitrification.  Although 

choline-based media have successfully been used for oocytes of mice, humans and now 

cattle, this type of medium apparently has a different effect on feline oocytes.  What 

causes this difference is not yet understood.  In our studies, bovine oocytes were 

relatively effective as models for feline oocyte vitrification, with the noted exception of 

the use of CJ2 medium for feline oocyte vitrification. 

8.4 Sperm Dehydration and Analyses 

In Chapters 6 and 7, feline sperm were dehydrated, their DNA integrity assessed 

and they were used to fertilize feline oocytes and embryonic development was evaluated 

in vitro.  In these experiments, freeze-dried and air-dried feline sperm injected into 

mature feline oocytes produced embryos with cleavage rates of 60% and 35%, 

respectively.  These cleavage rates were comparable to those reported in both cattle at 

44% to 63% (Keskintepe et al., 2002) and pigs at 50% to 52% (Kwon et al., 2004).  

However, the results from this present experiment were generally lower than the cleavage 

rates using freeze-dried sperm in mice (80% to 99%) (Kaneko et al., 2003b) and in 

rabbits (70%) (Liu et al., 2004).   

Blastocyst rates obtained for freeze-dried feline sperm (2%) were lower than 

those found using bull sperm (11% to 30%) and markedly lower than in the rat, mouse,  
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and rabbit evaluated to date.  It should be noted that there are morphological similarities 

of both feline and bovine sperm, such as their paddle-shaped heads and similar overall 

surface area.   

Another factor that may be similar in the two species is the need for activation 

after injection of dried sperm.  Although the cat oocyte is normally activated by the 

injection process alone, it may be beneficial to in vitro activate all injected oocytes.  It is 

important that the sperm activating factor needs be maintained in the sperm during 

drying.  It should be noted, however, that there was embryonic development to the 

blastocyst stage using dried feline sperm in our studies and this occurred without any in 

vitro chemical activation.  Therefore, we can conclude that the sperm activating factor 

was preserved in the air-dried feline sperm and that it was reduced during the freeze-

drying process.  This may explain why the feline oocytes had acceptable cleavage rates 

but the embryos became arrested soon after reaching the 8- to 16-cell stage.  Furthermore, 

the time of genomic activation of embryos has not been determined in the domestic cat.   

Although promising results were obtained in our studies using activation with 

freeze-dried feline sperm, further study is necessary to determine the efficiency of this 

technique.  Assessment of DNA integrity of freeze-dried and air-dried feline sperm 

indicates that the medium and vitrification process used in this study did not have 

obvious deleterious effects on the sperm, however, the freeze-drying procedure 

apparently created DNA strand breaks.   

It should be noted that no difference in cleavage rates has been found between 

both fresh and cryopreserved testicular sperm in humans (Thompson-Cree et al., 2003), 

however, there was a significant decrease in pregnancy rates that was attributed to the 
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higher level of DNA damage found in the cryopreserved sperm.  These results have a 

similar pattern to what was noted in this study, where cleavage rates were not affected by 

sperm dehydration, however, blastocyst development was impaired.  This likely indicates 

that although there was no effect of the increased level of DNA damage evident in early 

embryonic development, problems associated with such damage likely occurred at a later 

stage of embryonic development.  Any detrimental effect of this DNA damage can not be 

fully assessed, since freeze-dried and air-dried feline sperm were able to produce 

embryos that developed beyond the 8- to 16-cell stage following sperm injection.  In 

addition, this study demonstrates that the comet assay can be used as a tool to assess 

DNA damage in felid sperm. 

8.5 Conclusions 

In conclusion, bovine oocytes could be used as a model for studying the 

cryopreservation of feline oocytes.  Since bovine oocytes can be purchased 

commercially, they are more available to perform various experiments than could not be 

completed with the limited availability of feline oocytes.  Oocyte dehydration 

demonstrated that both bovine and feline oocytes behaved osmotically in solutions.  It 

should also be noted that the effects of the CPAs on the meiotic spindle and embryonic 

development after in vitro fertilization were only slightly disrupted.  Vitrified bovine and 

feline oocytes fertilized in vitro, cleaved and developed to the blastocyst stage.  Bovine 

oocytes and embryos were successfully vitrified with relatively adequate efficiency that 

could be used in a commercial environment.  However, the low efficiency of this 

technique in felids, will make oocyte vitrification remain a research technique, with 

emphasis on its use in endangered species.   
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It is proposed that freeze-drying and air-drying feline sperm could be an 

alternative method of sperm preservation in the future.  Blastocyst development rates 

with both freeze-dried and air-dried sperm indicate that further optimization is needed.  

Factors such as poor quality and aged oocytes, length of time sperm is rehydrated before 

injection, the medium used and storage temperature all can affect the optimization of the 

sperm drying procedure.  This study is the first report of blastocyst development in felids 

using freeze-dried and air-dried sperm.  It places the cat on the limited list of animal 

species to date to have sperm successfully dried, injected into mature oocytes and 

resulting embryos undergo development in vitro. 
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