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ABSTRACT 

For a wide range of application areas such as medical instruments, defense, 

communication networks, industrial equipment, and consumer electronics, microscanners have 

been a vibrant research topic. Among various fabrication methodologies, MEMS 

(microelectromechanical system) stands out for its small size and fast response characteristics. In 

this thesis, piezoelectric actuation mechanism is selected because of its low voltage and low 

current properties compared with other mechanisms, which are especially important for the 

target application of biomedical imaging. Although 1- and 2-dimensional microscanners with 

piezoelectric actuators have been studied by several other groups, this thesis introduces 

innovative improvements in design of the piezoelectric MEMS microscanner. A novel T-shaped 

hinge geometry is proposed, which is flexible in whole six directions and also free from the 

crosstalk issue found in the earlier designs by other groups. 

The piezoelectric actuator of the microscanner is comprised of five layers; a top 

electrode, a piezoelectric layer (lead zirconate titanate or PZT), a bottom electrode, a dielectric 

layer, and a mechanical support. The microscanners were analyzed using both analytical 

formulas and numerical simulations. Based on the analysis, the microscanners were designed and 

fabricated with four mask levels―top electrodes, bottom electrodes, bonding pads, and substrate 

etching windows. During the silicon substrate wet etching process in KOH, ProTEK
@

 B3 was 

coated in the front to protect the devices. 

Polarization-voltage (P-V) measurement of deposited PZT was performed using RT66B. 

Actuation of the piezoelectric cantilevers were observed under a microscope by applying 

voltage.   
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CHAPTER 1. INTRODUCTION 

With a number of advantages including small size, light weight, and fast speed compared 

to conventional bulky scanners, MEMS (microelectromechanical system)-based optical 

microscanners have been drawing attention for a wide range of applications such as microscopes 

[1.1-1.2], display systems [1.3-1.4], and barcode readers [1.5]. They are particularly interesting 

for biomedical imaging applications with the aforementioned merits, and one of the best 

examples is a probe head for the Endoscopic Optical Coherence Tomography (EOCT) [1.6-1.8]. 

This thesis covers the development of a MEMS-based piezoelectric microscanner with novel T-

shaped hinges (figure 1.1) for the EOCT application. 

To have a sufficient angular range, most of the MEMS microscanners reported so far 

require either high voltage or high current both of which are hazardous and dangerous for in vivo 

biomedical imaging applications. High voltage or high current electric signal also has the 

potential to cause electromagnetic interference (EMI) to affect other medical equipment. 

Therefore, the aim of this thesis is to develop MEMS microscanners operated by low voltage as 

well as low current without sacrificing the scan range. 

This chapter is organized as follows. Introduction to optical coherence tomography (OCT) 

is provided in section 1.1. Then, review on the various MEMS actuation mechanisms is 

presented in section 1.2. Finally, piezoelectric effect and the related phenomenon are discussed 

in section 1.3. 

1.1 Optical Coherence Tomography 

Optical coherence tomography is an emerging technology for biomedical imaging, first 

reported to be used in medicine in 1990 [1.9-1.13]. Because of its micrometer-resolution both in 
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axial and transversal directions, minimal invasiveness, and real time imaging capability, OCT is 

considered to be one of the most prominent imaging techniques for a wide range of applications 

such as ophthalmology, endoscopy, functional imaging, and guided surgery.  

 

Figure 1.1. Schematic diagram of the proposed piezoelectric microscanner with T-shaped hinges. 
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Similar to ultrasound imaging, OCT is based on reflectometry, i.e. backscattering due to 

index mismatch. However, instead of using acoustic waves, it utilizes light waves and measures 

the backscattered intensity from a sample as a function of depth. A diagram of the OCT imaging 

system is shown in figure 1.2. Its basic structure resembles the Michelson interferometer. Light 

from the source is divided into two paths―one path is called a sample arm and the other a 

reference arm―by a 2 x 2 coupler. Light traveling in the sample arm is reflected from the sample 

and that in the reference arm from a mirror at its end. When the reflected light signals are 

recombined at the same 2 x 2 coupler, interference may occur. A low coherence light source is 

used so that strong interference occurs only when the lengths of two optical paths are very close 

to each other. By changing the path length at the reference arm with a delay scanning device, the 

index changes of the specimen along the depth direction can be observed. Transversal 

information, either 1- or 2-dimensional, can be achieved by lateral scanning of the optical beam 

in the sample arm. In this thesis, a MEMS scanner is developed for this lateral scanning function. 

 

Figure 1.2. Schematic diagram of an OCT system [1.14]. 
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1.2 MEMS Scanner Actuation Methods  

Several actuation mechanisms have been used to rotate MEMS microscanners, such as 

electrostatic, electromagnetic, electro-thermal, and piezoelectric methods [1.15-1.25]. 

Electrostatic actuation [1.15-1.18] requires low standing power consumption and is relatively 

easy to be integrated with electronic integrated circuits. However, it requires high actuation 

voltage, typically over 100 V.  Electromagnetic actuation [1.19-1.21] requires low actuation 

voltage and is also easily integrable with electronic circuits.  However, it requires high actuation 

current, typically over 100 mA, and hence high standing power consumption. It also needs either 

a permanent magnet or an external coil to generate the magnetic field. Although electro-thermal 

actuation [1.22] provides larger rotation angles compared to the two aforementioned 

mechanisms, it is slower than those methods, and it also requires large standing power 

consumption.  

On the other hand, piezoelectric actuation [1.3],[1.23] requires low voltage, low current, 

and low standing power consumption, which makes it the most attractive method for in vivo 

biomedical devices. However, most of the piezoelectric microscanners reported so far have not 

demonstrated a sufficient scanning range. The reason behind this will be discussed in the 

following chapter. Qualitative comparison among different actuator mechanisms is summarized 

in table 1.1.  

1.3 Piezoelectricity  

Piezoelectricity is a property of certain non-conductive materials, which couples between 

mechanical stress or strain and electric polarization. The direct piezoelectric effect, i.e. electricity 

generated by applied stress was discovered in 1880 by Pierre and Jacques Curie. However, they 
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did not predict that crystals exhibiting the direct piezoelectric effect would also exhibit the 

converse piezoelectric effect, i.e. strain generated in response to applied electric field. 

Table 1.1. Comparison of different MEMS actuation methods 

 Electromagnetic Electrostatic Electro-thermal Piezoelectric 

Driving type Current Voltage Current Voltage 

Speed Fast Fast Slow Fast 

Force High Low High High 

Standing Power 

Consumption 

High Very low High Very low 

 

In 1881, the converse effect was mathematically predicted by Lippmann from 

fundamental thermodynamic principles, and experimentally proved by the Curie brothers. Until 

1920, this phenomenon was just a laboratory curiosity. From 1920 to 1940, first generation 

applications were demonstrated with natural crystals, such as microphones and accelerometers. 

From 1940 to 1965, the second generation applications were realized with piezoelectric 

ceramics, such as the ceramic audio tone transducer and relay. Then, several types of piezo 

ceramic signal filters were developed for television, radio, and communication equipment 

markets [1.24].  

1.3.1 Piezoelectric Materials 

Piezoelectric materials in the microfabrication field can be divided into three categories. 

The first group is piezoelectric substrates that include quartz (SiO2), lithium niobate (LiNbO3), 

and gallium arsenide (GaAs). Another group is thin-film piezoelectrics such as zinc oxide (ZnO), 



6 

 

aluminum nitride (AlN), and lead zirconate titanate (Pb(Zr,Ti)O3 or PZT). The last group is 

polymer-film piezoelectrics such as polyvinylidene fluoride (PVDF). Among these materials, 

PZT has the largest piezoelectric coefficients (table 1.2), which is desirable for most applications. 

All crystals can be divided into 32 classes or point groups. Among them, 21 classes do 

not possess a center of symmetry, and within those 21, 20 groups are piezoelectric. The lack of 

center of symmetry means that a net movement of the positive and negative ions with respect to 

each other as a result of stress produces an electric dipole. Most of the piezoelectric materials 

have the perovskite crystal structure (figure 1.3), and it is found that materials with this crystal 

structure, especially lead zirconate titanate (PZT) have the best piezoelectric properties [1.25]. 

Table 1.2. Piezoelectric coefficients of selected piezoelectric materials. 

Material Piezoelectric coefficients 

 

Quartz d11 = −2.3 pm/V, d14 = 0.7 pm/V 

Barium titanate d33 = 85.6 pm/V; d31 =-34. 5 pm/V 

Lithium niobate d33 = 6 pm/V, d15 = 68 pm/V 

Lead zirconate titanate d31 = −180 pm/V, d33 = 360 pm/V 

Aluminum nitride d
33 

= −0.2 ~ −4.5 pm/V 

Zinc oxide d
33

 =12.4 pm/V  

Gallium arsenide d
33

 =18 pm/V 

Polyvinylidene fluoride d31 = 20 pm/V, d33 = 30 pm/V 
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Figure 1.3. Perovskite structure, example with PZT. 

The perovskite structure may transform into two crystallographic forms. Above a critical 

temperature, the Curie point, each perovskite crystal in a fired ceramic element exhibits a simple 

cubic symmetry with no dipole moment (figure 1.4a). At temperatures below the Curie point, 

however, each crystal has tetragonal or rhombohedral symmetry and a dipole moment (figure 

1.4b).  

 

(a) 

Figure 1.4. Transformation of the perovskite crystal structure due to temperature change. (a) 

Above Curie point, cubic symmetry with no dipole moment. (b) Below Curie point, tetragonal or 

rhombohedral symmetry with dipole moment. (Figure continued on next page) 



8 

 

 

(b) 

Adjoining dipoles which form regions of local alignment are called domains in which the 

alignment gives a net dipole moment to the domain, or a net polarization. The directions of 

polarization among neighboring domains are random; therefore, the ceramic element has no 

overall polarization (figure 1.5a). The domains in a ceramic element can be aligned by exposing 

the element to a strong and sufficiently high electric field, usually at a temperature slightly below 

the Curie point (figure 1.5b), such that the domains rotate and switch in the direction of the 

electric field. During this poling process, there is a small expansion of the material along the 

poling axis and a contraction in both directions perpendicular to it. When the electric field is 

removed most of the dipoles are locked into a configuration of near alignment (figure 1.5c). The 

element now has a permanent polarization, i.e. the remanent polarization, and is permanently 

elongated. 

Ferroelectricity is a subgroup of piezoelectricity; all ferroelectric materials also have 

piezoelectricity but not all piezoelectric materials show ferroelectricity. Therefore examining 

ferroelectricity of a material is an indirect way of probing piezoelectricity. In fact, the material 

constants expressing the two phenomena are interrelated.  
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(a) 

 

(b) 

 

(c) 

Figure 1.5. Domains. (a) Neighboring domains are randomly oriented. (b) The domains in a 

ceramic element are aligned by exposing it to electric field. (c) After the electric field is removed. 
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The basic equation representing the ferroelectricity is  

D E P  ,                                                                                                                                (1.1) 

where D, , E, and P are electrical displacement, permittivity of the material, external electric 

field, and polarization, respectively. Similar to the hysteresis of magnetic materials, in the case of 

ferroelectric materials, application of the electric field causes the domains to reorient so that a net 

polarization is obtained, which gives rise to hysteresis in the relation between them as depicted in 

figure 1.6.  

 

Figure 1.6. Ferroelectric hysteresis loop. 

From this figure, it can be seen that applying low electric field yields a linear response as 

the field is not sufficient to reorient the domains. Applying electric field beyond the positive 

coercive field Ec “switches” the domains into the direction of the field. At some extent, switching 



11 

 

decreases as the number of un-switched domains is depleted and the material reaches the highest 

point at which all the domains have switched (saturation). As the field is decreased to zero, most 

of the domains retain their new orientations while a few of the domains switch back to their 

original orientations. Ps is named as saturation polarization, and Pr is called as the remanent 

polarization of the material. To invert the orientation of the domains, electric field has to be 

applied in the reverse direction, and the field required to make the net polarization zero is the 

coercive field (-Ec). Further increase of the reverse field will cause the domains to continue to 

switch to the opposite direction until saturation in this direction is reached. Upon reducing the 

applied reverse electric field to zero, some of the domains will switch back to their original 

orientations, but most of the domains retain their orientations creating a negative remanent 

polarization (-Pr), which should be equivalent in magnitude to the positive remanent polarization 

Pr. Increasing the field once again causes the domains to switch back into the initial direction of 

polarization. The positive coercive field Ec should be equivalent in magnitude to the negative 

coercive field -Ec. The area inside the loop represents the energy dissipated within the sample as 

heat. 

In the piezoelectric materials, the coupling between electric field and stress can be 

expressed in constitutive equations as follows [1.26]:  

𝜖𝐼 =  𝑆𝐼𝐽
𝐸

𝐽 𝜎𝐽 +  𝐸𝑗𝑑𝑗𝐼𝑗                                            (1.2) 

𝐷𝑖 =  𝑑𝑖𝐽𝜎𝐽 +  휀𝑖𝑗
𝜎𝐸𝑗𝑗𝐽                                                                                                             (1.3) 

where i, j є[1,2,3] are indices of electric constituents, I, J є[1,…,6] are indices of mechanical 

constituents, єI the mechanical strain, 𝑆𝐼𝐽
𝐸  the compliance matrix at constant electric field, ζJ the 

mechanical stress, Ej the applied electric field, εij the dielectric permittivity, and diJ the strain-
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electric-field piezoelectric coupling coefficient. Detailed discussion can be found in [1.27]. The 

relation between the piezoelectric constant d31 and the remanent polarization Pr is expressed by 

the following equation [1.28]: 

𝑑31 = 2𝑄12휀0휀𝑟𝑃𝑟                                                                                                                       (1.4) 

where Q12 is the electrostrictive constant (-0.03 m
4
/C

2
 for PZT), ε0 the vacuum permittivity 

(8.85×10
-12 

F/m), and εr the relative dielectric constant. Since the magnitude of d31 is 

proportional to Pr, high value of Pr  is desirable. 

It is a well-known fact that within PZT material, (111) dominated PZT shows the highest 

d31. It is also reported that when the PZT has a composition of 48% Ti and 52% Zr, a 

morphotropic phase boundary occurs where the tetragonal (easy poling axis is oriented in the 

<100> direction) and rhombohedral (easy poling axis is oriented in the <111> direction) phases 

co-exist resulting in the largest piezoelectric coefficients. A bottom electrode plays a crucial role 

in formation of (111) dominated PZT layer because it has high influence on nucleation of the 

PZT film. (111) platinum is preferred because its lattice constant is very close to that of (111) 

PZT―only 4% mismatch. Besides, it has high thermal conductivity and good stability in high-

temperature oxidizing ambient. In addition, it may prevent interfacial chemical reactions and Pb-

Si inter-diffusion during PZT layer deposition in strongly oxidizing conditions and at elevated 

temperature conditions between 500°C and 700°C. To achieve good adhesion between Pt and the 

underlying silicon dioxide layer, a titanium layer is inserted in-between.    

The structure of this thesis is as follows. In chapter 2, design of microscanners including 

simulation results with ANSYS™ is provided, followed by mask layout design. Chapter 3 is 

dedicated for the fabrication of the device. Chapter 4 presents the experiment results. Finally, the 
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thesis is summarized and future works are presented in chapter 5. 
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CHAPTER 2. TWO-DIMENSIONAL MICROSCANNER DESIGN 

In this chapter, design of the MEMS-based microscanners is presented. There have been 

several groups who demonstrated one- and two-dimensional (1- and 2D) microscanners with 

piezoelectric actuators [1.7], [1.23], [2.1]. Schroth et al demonstrated 2D scanning with four PZT 

actuators [1.23]. They obtained scan angles of 2.5º and 6.5º at resonance but DC operation was 

not reported. They reported a problem of the actuator deformation caused by residual stress, 

which changed the behavior of the actuators.  Tsaur et al reported a novel double layer PZT 

actuator design which can double the deflection for the given actuation voltage and compensate 

the residual stress of PZT [1.7]. The drawback of this design is the complexity in fabrication.  

Yee et al utilized a gimbal structure which can minimize the crosstalk between rotations about 

two axes [2.1]. However, the tilt angles of the mirror were smaller than ±0.75º at 15 V.  

The common problem of the microscanners utilizing piezoelectric actuators reported so 

far is the inefficient conversion of deflection to rotation due to bending, tensile, and torsion 

constraints. In this thesis, the proposed microscanner is featured with novel T-shaped hinges to 

address this problem. Because the T-shaped hinge is flexible in whole six directions (three 

translational and three rotational), it can considerably improve the conversion efficiency, and 

hence can widen the scan range and reduce the required actuation voltage.   

ANSYS™, a multiphysics finite-element-method (FEM) simulation software is used to 

analyze the actuation of piezoelectric microscanners. For a single piezoelectric cantilever, a basic 

constituent of the microscanner, the simulation result is compared to that from simple analytic 

formulas, which will be described in 2.1. In 2.2, because of the complexity, only numerical 

simulation is used to analyze the microscanners with T-shaped hinge structures. In 2.3, the mask 

layout design will be illustrated.  
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2.1 Theoretical Analysis of the Piezoelectric Cantilever Structure 

Figure 2.1 shows the schematic diagram of the proposed microscanner. Dimensions of 

the microscanners are given in both tables 2.1 and 2.2. The structure of the microscanner is 

designed to have four piezoelectric actuators connected to a mirror in the center through T-

shaped hinges. By applying various combinations of voltages (positive and/or negative) to V1 

through V4, rotation in two dimensions and out-of-plane translation can be obtained. Details of 

the operation principle will be presented in section 2.2. In this section, actuation of the 

piezoelectric cantilever as the basic constituent of the microscanner will be discussed based on 

both calculation using analytic formulas and simulation using ANSYS™.   

Figure 2.2 shows the cross-sectional view of the piezoelectric cantilever which is 

comprised of a piezoelectric layer (PZT) and a mechanical supporting layer (silicon). When a 

voltage is applied across the piezoelectric layer so that it contracts in y-direction―since PZT has 

strong d31 (negative value), i.e. when electric field is applied in the  3
rd

 dimension, strain is 

generated in the 1
st
 dimension, eventually, the cantilever bends upward in z-direction because the 

supporting layer tries to hold it back. When a voltage of opposite polarity is applied so that the 

piezoelectric layer stretches, the cantilever bends downward for the same reason. The 

relationship among structural parameters ( – tip deflection,  – tilt angle at the tip, v – displaced 

volume of the entire cantilever), electrical parameters (Q – charge on the surface of the 

piezoelectric layer, V – applied voltage), and mechanical loads (M – moment, F – force, p – 

pressure) of the piezoelectric cantilever can be expressed as in equation (2.1) [2.2]. 
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Figure 2.1. Schematic diagram of the mircoscanner with geometric parameters and definitions of 

the voltage application, V1 through V4. 
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The equation is as follows: 
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S11
si
 and S11

p
 are the (1,1) entries of the compliance tensors of silicon and PZT, 

respectively. hsi and hp are the thicknesses of silicon and PZT, respectively. 

Given                       𝑆11
𝑠𝑖 =

1

𝐸𝑠𝑖
= 5.92 × 10−12𝑚2/𝑁  

                               𝑆11
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= 8.33 × 10−11𝑚2/𝑁  
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Figure 2.2. A piezoelectric bimorph with external and internal parameters. [2.3] 
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                               ℎ𝑝 = 1 × 10−6𝑚 

                               𝐿𝑎𝑐𝑡 = 3.9 × 10−4𝑚 

                               𝑑31 = −171.12 pC/N 
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= 3.25 × 10−6 𝐶/𝑁 × 𝑉 = 3.25[µ𝑚/𝑉] × 𝑉                                                                         (2.5) 

For example, for the applied voltage of 30 V, the deflection δ is 97.35 µm. The values of 

d31, S11
si
 and S11

p
 were obtained from the literature. 

The actuation of the piezoelectric cantilever was simulated with ANSYS™ as well. 

Figure 2.3 shows the simulated deformation of the cantilever when 30 V is applied across the 

PZT layer. The dimension of the cantilever is the same as the one used in the analytical 

calculation. The simulation result shows that the tip deflection is 77.0 µm. This is about 19% 

smaller than the result from the analytical formulas. One of the reasons is considered to be the 

difference between full 3-dimensional simulation and analysis with one-dimensional slender 

beam approximation. Material parameters used in the simulation, d the piezoelectric tensor, and 

S the compliance tensor are given below. The ANSYS™ simulation code is provided in 

APPENDIX A. 
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2.2 ANSYS Simulation of Microscanners: Model and Results  

The definitions of x- and y-axis, and V1 through V4 are given in figure 2.1. Figure 2.4 
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shows the simulation results illustrating the operation principle of the proposed microscanner. It 

shows the correlation between the voltage assignments to the four piezoelectric actuators and the 

two-dimensional rotation of the mirror. Taking the case A of figure 2.4b for an example, 

applying positive voltages (V/2) to V2 and V4, and equal-but-negative voltages (-V/2) to V1 and V3 

will make the microscanner to rotate about the x-axis counterclockwise (seen from the center of 

the mirror, and hence marked as positive on x-axis in figure 2.4a).  

 

 

Figure 2.3. Deformed shape of a piezoelectric cantilever, simulation result by ANSYS™. Top 

layer: PZT, 1 µm. Bottom layer: silicon, 3 µm. Cantilever width: 100 µm. Cantilever length: 390 

µm. Unit of the color code for deflection: µm. 

 Applying positive voltages (V/2) to V1 and V2, and equal-but-negative voltages (-V/2) to 

V3 and V4 will make it rotate about y-axis counterclockwise so that this case is marked as positive 

on y-axis. If positive voltage (V) is applied to V2, equal-but-negative voltage (-V) is applied to V3, 

and V1 and V4 are remained zero, it rotates counterclockwise both about x-axis and y-axis (point 



23 

 

B in figure 2.4a). In this manner, by applying appropriate voltages to V1 through V4, continuous 

two-dimensional rotation of the mirror is possible, which has been verified by simulation. 

Figures 2.4c, 2.4d, and 2.4e show the ANSYS simulation results of mirror rotation about x-axis 

(case E), y-axis (case C), and both axes (case D), respectively. The ANSYS simulation program 

code is provided in APPENDIX B. More than ±7° of mechanical tilt angles were demonstrated 

about both axes through the simulation with the maximum applied voltage of 30 V. 

 
                    (a)                                                                            (b) 

 

 
(c)                                                         (d)      

 

Figure 2.4. Operation principle of the proposed microscanner and ANSYS™ simulation results 

(microscanner 1 in table 2.1). (a) Map illustrating directions of mirror rotation in relation to the 

voltage assignments summarized in (b). Counterclockwise rotation is defined as positive and 

clockwise as negative. All seen from the center of the mirror. (c-e) Simulation results of rotation 

about (c) x-axis; case E, (d) y-axis; case C, and (e) both x- and y- axes; case D.(Figure to be 

continued on next page)                                       
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 (e) 

For comparison, two previously reported microscanners with different designs were 

simulated with ANSYS™―one with four-side-actuators design [2.4] and the other with gimbal-

type design [2.5]. For fair comparison, the same values were used for most of the microscanner 

dimensions such as the thickness of each layer, size of the mirror, width and length of hinges, 

width and length of actuators, as the proposed design. The simulated deformation of the four-

side-actuators type microscanner is presented in figure 2.5.  In this example, -30 V is applied to 

the top actuator and 30 V to the bottom actuator while the left and right actuators are left without 

voltage applied. The tilt angle about x-axis is 7.68° which is comparable to that of the proposed 

microscanner. However, the mirror also rotates about y-axis by 1.09°, which is undesirable and 

makes the control of the microscanner complicated.  The simulated deformation of the gimbal 

type microscanner is presented in figure 2.6. The figure shows an example of the simulation 

when 30 V is applied to the outside top actuators and -30 V to the outside bottom actuators while 

inside actuators are left without voltage applied. The simulation results show that the 

microscanner can rotate ±3.25° about x-axis and ±9° about y-axis when the maximum voltage of 

30 V is applied, which are not sufficient for many applications.  



25 

 

 

Figure 2.5. Simulated deformation of the four-side-actuators type microscanner [2.4]. Unit of the 

color code for deflection: µm. 
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Figure 2.6. Simulated deformation of the gimbal type microscanner [2.5]. Unit of the color code 

for deflection: µm. 

To study the effects of dimension change in various parts of the microscanner on the 

scanning performance, simulation was performed for various dimensions. Based on the 

simulation, twelve different microscanners were included in the mask layout as summarized in 

table 2.2 with the microscanner 1 as a reference whose geometries are given in table 2.1. The 

simulation results in terms of tilt angles for those twelve designs are provided in table 2.2 as well 

when maximum voltage of 30 V is applied. 
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Table 2.1. Geometric parameters of microscanner 1 (unit: µm). Definitions of the parameters are 

given in figure 2.1. 

Lmirror Wmirror Lbridge Wbridge Lact Wact Lmid Wmid Lh Wh 

700 500 100 10 390 100 38 38 120 18 

 

Table 2.2. Simulation results of various microscanner designs. 

 
Tilt angles (±°) Difference from microscanner 1. 

(unit: µm) About x-axis About y-axis 

Microscanner 1 7.62 7.55  

Microscanner 2 7.16 6.91 Wact = 60, Wh = 10 

Microscanner 3 8.71 8.62 Wact = 160, Wh = 26 

Microscanner 4 4.49 2.81 Lact = 195 

Microscanner 5 2.79 1.62 Lact = 390 

Microscanner 6 6.25 19.07 Lact = 780 

Microscanner 7 5.42 7.00 Meander turns of hinge: 0.5 

Microscanner 8 9.14 8.32 Meander turns of hinge: 1.5  

Microscanner 9 10.01 8.84 Meander turns of hinge: 2  

Microscanner 10 6.53 6.01 Wact = 20, Lmid = 20, Wmid = 20, Wh = 4 

Microscanner 11 6.41 7.36 Lbridge = 100 , Lh = 60, Wh = 18 

Microscanner 12 6.79 7.06 Lbridge = 160, Lh = 240, Wh = 18 
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First, by comparing the microscanners 1, 2, and 3 (table 2.2 and figure 2.7), it can be 

deduced that Wact and Wh do not have significant influence upon the tilt angles. Second, by 

comparing the microscanners 1, 4, 5, and 6 (table 2.2 and figure 2.8), it can be learned that the 

tilt angle about y-axis is strongly dependent on the actuator lengths (Lact) while its effect on the 

angle about x-axis is not as distinct. Third, by comparing the microscanners 1, 7, 8, and 9, it can 

be concluded that increasing number of meander turns helps to increase the tilt angles. Finally, 

from the results of the microscanners 10, 11, and 12, it can be understood that other parameters 

like Lbridge, Lmid, Wmid, and Wh do not have much of an effect on the tilt angles.  

 

Figure 2.7. Simulated mechanical tilt angles vs. Wact. Maximum applied voltage is 30 V. 
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Figure 2.8. Simulated mechanical tilt angles vs. Lact. Maximum applied voltage is 30 V. 

2.3 Mask Layout Design 

Figure 2.9 shows the images of the designed mask layout with all layers overlaid 

together―individual layers can be found in APPENDIX C1-C4. It is composed of 4 levels: top 

electrodes, bottom electrodes, bonding pads, and substrate etching windows. The usage of each 

mask level will be described in chapter 3. Total twelve different microscanner designs were 

included in a 1 inch × 1 inch chip area as listed in table 2.2 to find a design that performs best. In 

addition, test structures such as free-standing piezoelectric cantilevers, piezoelectric actuators 

connected by T-shaped hinges, and simple cantilevers are also included. Metal-PZT-metal 

capacitors for polarization-voltage (P-V) measurements and thickness monitoring patterns are 

included as well.  
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The fourth mask level is used to produce an etching window for each microscanner to 

etch a silicon substrate from the back, to make the release step much simpler, and to give a 

mirror sufficient room for rotation. Silicon will be etched in KOH anisotropically, and different 

crystal planes have different etch rates which also depend on the concentration and temperature 

of KOH. Etch rates of (100) and (110) planes are much faster than that of (111) plane in silicon 

anisotropic etching. If a square etching window is opened on the (100) plane and its sides are 

aligned to [110] directions, the resulting etched cavity has an inverted pyramidal shape. If the 

square is tilted off from [110] directions with some angle, a bigger cavity results because the 

etched cavity is eventually determined by the (111) planes. The survived (111) planes have an 

angle of 54.74° with the (100) surfaces as depicted in figure 2.10.  

 

Figure 2.9. Image of the designed mask layout with all four layers overlaid. 
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(a) 

 

 

 

(b) 

 

 

(c) 

Figure 2.10. Silicon anisotropic etching to form an inverted pyramidal cavity (a) before etching 

(top view), (b) after etching (top view), and (c) after etching (cross-section view). 
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According to [2.6], the etch depth h has a relationship with the widths of the etching 

window W1 and W2 as  

𝑊2 = 𝑊1 −  2ℎ                                                                                                         (2.6) 

Difference between the opening of etching window at the backside and the resulted 

opening in the front is calculated to be 2 × (283 ± 10µm) by (2.6) when the thickness of the 

silicon substrate is 400 ± 15µm as shown in figure 2.11. 

 

Figure 2.11. Design of etching windows on the fourth mask (substrate etching). 
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In summary, a new design of microscanners with T-shaped hinges and piezoelectric 

actuators has been proposed. The operation principle of the microscanner has been demonstrated 

through ANSYS™ simulation. Parametric simulation has been carried out to optimize the 

performance of the microscanner. Finally, the mask layout has been designed based on the 

simulation results. The fabrication process flow has been designed also as explained in the next 

chapter.  
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CHAPTER 3. FABRICATION 

In this chapter, the fabrication process flow of the microscanner is described in detail. It 

includes three critical steps: bottom seed metal layer deposition, PZT process, and front side 

protection during the silicon substrate etching process.  

To apply electric field through PZT, it needs to be sandwiched by two electrodes. 

However, PZT cannot be grown directly on silicon because of the interfacial chemical reactions 

and Pb-Si inter-diffusion as mentioned earlier in chapter 1. In formation of (111) orientation 

dominated PZT for the strong piezoelectric effect, a bottom seed layer plays a crucial role. (111) 

platinum is used as the seed layer because its lattice constant is very close to that of (111) PZT – 

only 4% mismatch. Detailed description will be provided in section 3.3.  

In the PZT thin film process, temperature control during pyrolysis and annealing is 

important to obtain a high quality PZT layer. The PZT layer will be pyrolyzed at 450°C to 

remove organics and annealed at 650°C to produce a perovskite structure. Failing to control the 

temperature in these processes will result in non-perovskite structure, and hence no piezoelectric 

effect. The detailed process will be explained in section 3.4. 

Front side protection during the silicon substrate etching process has never been trivial. 

Various methods such as wax and mechanical clamp were reported to protect the front side 

structures in the silicon wet etching process in KOH or TMAH [3.1]. However, wax residue is 

not easy to remove completely and the etchant penetrates along the interface sometimes. Manual 

labor of mechanical clamping method is complex and requires special care to implement. 

Recently, an alternative way was introduced, i.e. ProTEK® B3 (Brewer Science, inc) protection 
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layer coating. This method was selected, which will be detailed in section 3.9. 

The fabrication process flow is summarized in figure 3.1 and figure 3.2.  

     (a)     (b)     (c)     (d)   

     (e)     (f)     (g)    (h)   

        

       Si       SiO2         Si3N4       Ti/Pt         PZT          AZP4620 PR         Al        Protek B3 

Figure 3.1. The fabrication process flow. (a) SOI wafer cleaning with piranha solution. (b) 

Thermal oxidation. (c) Si3N4 deposition using LPCVD. (d) Removal of front side Si3N4 in hot 

phosphoric acid with S1813 as an etching mask on the backside. (e) Bottom Pt/Ti layer 

deposition by sputtering. (f) Spin coating and annealing of a PZT layer. (g) Top Pt/Ti electrode 

formation. Spin coating of S1813 photoresist, photolithography using the first mask level, 

descumming S1813 residues by O2 RIE, Pt/Ti deposition by sputtering, and lift-off process. (h) 

Wet etching PZT using top Pt/Ti as an etching mask. 

Microscanners were fabricated on a 1 inch × 1 inch substrate diced from a 6 inch Silicon-

On-Insulator (SOI) wafer (Shin-Etsu Handotai Co., Ltd). The specification of the SOI wafer is 

listed in table 3.1. The reason to use the SOI wafer in the current research is related to the non-

uniformity in silicon anisotropic etching to release MEMS structures. To make the last release 

step more controllable and reliable, an etch stop layer is necessary between the structural layer 
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and the substrate. The buried oxide layer of an SOI wafer is a perfect fit for this purpose. In 

addition, silicon is known to be a good mechanical material, and single crystalline silicon has a 

lower degree of residual stress compared to polycrystalline silicon. 

 

(i)     (j)      (k)   (l)      

(m)    (n)  

  

       

       Si       SiO2         Si3N4       Ti/Pt         PZT          AZP4620 PR          Al        Protek B3 

Figure 3.2. The fabrication process flow (continued). (i)  Photolithography (second mask level) 

and dry etching of the bottom Pt/Ti layer. (j) Photolithography (third mask level) and lift-off 

process to form bonding pads. (k) Front side protection with Protek™ B3, photolithography 

(fourth mask level), and consecutive wet etching of backside Si3N4 and SiO2 layers. (l) Silicon 

substrate etching in KOH. (m) Removal of Protek™ B3 and consecutive dry etching of top SiO2 

and silicon device layers from the front side. (n) Wet etching of buried SiO2 to release the device.  
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Table 3.1. Specification of an SOI wafer used. 

Thickness (µm) 

dev
1
/box

2
/sub

3 
Type 

dev
1
/sub

3 
Orientation 

dev
1
/sub

3 Diameter (mm) 
Resistance (Ωcm) 

dev
1
/sub

3 

3 ± 0.5 / 1 ± 0.1 / 

400 ± 15 
P / N <100> / <100> 150.00 ± 0.20 0.01~0.02 / 1.00~30.0 

 dev
1
: silicon device layer 

 box
2
: buried silicon dioxide layer 

 sub
3
: silicon substrate 

3.1 Wafer Cleaning (Figure 3.1a) 

The SOI wafer was cleaned in the following sequence: 

1. Piranha cleaning 

40% H2SO4 : 30% H2O2 = 4:1 at 90°C for 20 minutes. 

2. Acetone with ultrasonic agitation for 5 minutes, methanol with ultrasonic agitation for 5 

minutes, and DI water rinse. 

3. RCA cleaning 

   a. RCA1 – DI water : 27% NH4OH : H2O2 = 5:1:1 

i. In RCA1 solution at 70 ± 5°C for 15 minutes to remove particulate contaminants and 

desorb trace metals (Au, Ag, Cu, Ni, etc). 

ii. Rinse in DI water for 3 minutes. 

iii. 49% HF : DI water = 1:10 at room temperature for 5 minutes. 

iv. Rinse in DI water for 3 minutes. 
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b. RCA2  – DI water : 37% HCl : H2O2 = 6:1:1 

i. In RCA2 solution at 70 ± 5°C for 15 minutes to dissolve alkali ions and hydroxides of 

Al
3+

, Fe
3+

, Mg
3+

 and desorb complex residual metals. 

ii. Rinse in DI water for 5 minutes and dehydrate on a hot plate at 120˚C for 10 minutes.  

3.2 Growth of Isolation and Etching Mask Layers (Figure 3.1b-d) 

The cleaned SOI wafers were loaded into an oxidation furnace (Axcess Integrated Loader 

of MRL) to be thermally oxidized at 1000˚C for 20 hours with flow rate of 2.5 sccm. 400 nm 

silicon dioxide layers were grown on both sides.  

It has been reported that silicon nitride is a more reliable and robust etching mask in 

KOH etching than Cr, SU-8 photoresist, and silicon dioxide [2]. The etching selectivity of silicon 

over LPCVD silicon nitride is more than 1000 in KOH etching. Therefore, 150 nm LPCVD 

silicon nitride layers were grown on both sides of the wafer on top of the silicon dioxide layers at 

the Nano Fabrication Center of University of Minnesota. 

It has been also reported that PZT on Pt/Ti/SiO2 is more dominated by (111) orientation 

compared to that on Pt/Ti/Si3N4. Therefore, front side silicon nitride is preferred to be removed. 

It was reported that S1813 photoresist hard baked at 185˚C for 4.5 hours can protect the silicon 

nitride on the backside during the front side silicon nitride etching in phosphoric acid at 155 ± 

5˚C for 1 hour [3.3]. Details are described below. 

1. Coat S1813 on sample surface with the recipe in Appendix D. 

2. Bake in oven at 185°C for 4.5 hours. 
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3. Etch silicon nitride in 80% phosphoric acid at 160°C for 1 hour. Etch rate is 0.2 

μm/hour [3.4]. 

4. Rinse in DI water and dry with nitrogen. 

5. Strip backside S1813 photoresist by oxygen plasma (System VII) at 120 W for 1 hour. 

6. Clean in piranha solution (98% H2SO4 : 30% H2O2 = 1:1) at 90°C for 15 minutes to 

remove the S1813 photoresist residues.            

3.3 Bottom Platinum Deposition (Figure 3.1e) 

As mentioned earlier, piezoelectric material needs to be sandwiched by electrodes for 

operation. Pt is selected because of the lattice matching consideration with PZT. Ti is inserted to 

promote adhesion between Pt and the underlying SiO2 as well as to prevent the Pt silicide 

formation [3.5]. Two different methods were attempted to deposit Pt/Ti: thermal evaporation and 

sputtering. The former was only partially successful. 

3.3.1 Thermal Evaporation  

There have been reports of e-beam evaporation of Pt thin film from many research groups 

[3.6]. However, due to limitation of the e-beam evaporator in the lab, thermal evaporation was 

tried instead. The chamber base pressure was 1×10
-5

 Torr and the current applied was about 20 

A. Pt/Ti was deposited on the wafer with partial success. The major difficulty was the poor 

repeatability―the thickness of the deposited thin film varied too much from run to run for the 

similar amount of the source. The reason is thought to be too high boiling temperature of Pt, 

3825˚C, which makes it require high precision in terms of thermal energy supply.  
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3.3.2 Sputtering 

An alternative method to deposit Pt/Ti layer is sputtering. The chamber base pressure was  

~ 10
-6

 to 10
-5

 Torr, and working pressure was 1.3 mTorr. Deposition rate of Pt was 30 nm/min 

with 200 W DC, and that of Ti was 4 nm/min with 150 W RF when the samples were rotated 

inside the chamber. The target thicknesses were 150 nm for Pt and 10 nm for Ti. It is very 

important to obtain high base vacuum to achieve good quality of bottom seed Pt/Ti layer. 

Insufficient vacuum resulted in poor quality Pt/Ti which was delaminated during the PZT 

annealing process as shown in figure 3.3. 

 

Figure 3.3. Delaminated films because of poor Pt/Ti quality. 
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 3.4 PZT Layer Formation (Figure 3.1f) 

Various techniques exist for PZT film deposition, such as sol-gel, RF planar magnetron 

sputtering, RF diode sputtering, electron beam evaporation, ion beam deposition, MOCVD, 

ECR, and laser ablation [3.4], with the first two methods being most commonly used. For its 

simple process and good film quality, the sol-gel method was selected for the current research. 

Since a single coating can only produce a film thickness of 100~200 nm from a purchased sol-

gel solution (Type B, Inostek Inc., Korea), multiple coating technique was used to achieve a 

target thickness of 1 µm. The detailed process sequence is summarized in figure 3.4. 

 

Figure 3.4. A PZT thin film process flow – multiple coating. 
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The freshness of the PZT solution is also fairly important. If the solution passes the shelf 

life or is exposed to air for too long, sedimentation appears in the solution, and the solution 

cannot be used any longer.  

The crystal orientation of the PZT film was examined by the X-ray diffraction (XRD) 

technique, and the results will be presented in section 4.1. It was reported that the grain size at 

the PZT film surface is around 0.1 µm with well-defined grain boundaries [3.7-3.8]. To examine 

the grain size of the grown PZT film, scanning electron microscopy (SEM) was tried but it was 

the beyond the capability of the equipment available on campus. 

3.5 Top Platinum Deposition and Patterning (Figure 3.1g) 

The next step is to deposit and pattern the top electrodes on the sample 

(PZT/Pt/Ti/SiO2/SOI/ SiO2/Si3N4) by the lift-off process. The process sequence is as follows.  

1. Photolithography using the first mask level (APPENDIX C1) and S1813 photoresist. The 

details are provided in APPENDIX D. It is important to align the mask to <110> 

direction of the substrate as explained in section 2.3. 

2. Descum S1813 photoresist in RIE with the following conditions: 

O2 plasma, 120 W RF, 250 mTorr, 3 minutes. 

3. Deposit Pt/Ti by sputtering. However, to avoid deposition on the sidewall, samples are 

not rotated during deposition. The samples are loaded right above the target. Deposition 

conditions: Ti (10 nm) – 150 W RF, 1 minute, and Pt (150 nm) – 200 W DC, 1.25 minute.  
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4. Dip the sample in acetone with ultrasonic agitation for 10 minutes to lift off and form the 

patterned Pt/Ti on the PZT layer. 

5. Dip the sample in methanol for 5 minutes, and then rinse with DI water for 3 minutes. 

Dry with N2. 

Special care needs to be taken in regards to photoresist residues that may cause failure in 

the lift-off process as shown in figure 3.5 (a). Well-lifted-off patterns are shown in figure 3.5 (b) 

for comparison. A microimage after lift-off process is shown in figure 3.6. 

     

(a)                                                  (b) 

Figure 3.5. Microimages of test patterns. (a) Failed lift-off and (b) successful lift-off. 

3.6 PZT Wet Etching (Figure 3.1h) 

PZT can be etched either by a dry [3.9] or by a wet method [3.10]. In this thesis, the wet 

method was selected to avoid using toxic gases required in dry etching. Using patterned top 

platinum layer as an etching mask, the PZT layer was etched by the following sequence: 

1. HCl (64%) + BOE (31%) + DI water (5%) for 5 minutes  

2. HNO3 : DI water = 2:1 for 2.5 minutes to remove PZT residues [3.10] 
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The etch rate in the step 1 is 0.25 µm/min at room temperature. Extra care needs to be 

given in terms of etching time because too much of over-etching may cause severe undercut in 

PZT and/or significant damage to the remaining PZT film.  

 

Figure 3.6. A microimage of top Pt/Ti electrodes. 

3.7 Bottom Electrode Patterning and Etching (Figure 3.1i) 

Pt can be etched either by a dry [3.11] or by a wet method [3.12]. Both methods were 

tried and the dry etching method was selected eventually. Since our facility does not have the 

capability to handle toxic gases, the samples were sent to an external facility for this step. 

3.7.1 Wet Etching 

Platinum is known to be very stable and highly resistant to most of the chemicals. It is 

also known that aqua regia (standard composition – 37% HCl : 70% HNO3 = 3:1) can etch Pt 
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[3.13, 3.14]. Etching of Pt in standard aqua regia was attempted at 85˚C while the temperature 

was controlled by a heated water bath. Samples with Pt/Ti (150 nm/10 nm) layers were 

immersed in the etching solution. However, the etching result was extremely unpredictable. In 

one case, the total 150 nm of Pt was completely etched in 2 hours. But in other case, no clear 

sign of etching was observed even for 6 hours―since Ti is etched in hot aqua regia in no time, 

this clearly indicates that Pt has not been etched. Various etching results are shown in figure 3.7. 

         Meanwhile, various etching masks were tried for Pt etching in aqua regia. It was reported 

that evaporated Cr is not etched in diluted aqua regia [3.15]. However, a 130 nm-thick Cr layer 

was completely etched in aqua regia at 85˚C within half an hour. It was also reported that SU-8 

can be used as an etching mask. However, partial delamination of SU-8 was observed in aqua 

regia (80˚C) in 40 minutes. In conclusion, no suitable Pt wet etching mask was found.   

3.7.2 Dry Etching 

Several Pt dry etching methods have been reported, including reactive ion etching (RIE) 

[3.16] and inductively-coupled plasma (ICP) RIE [3.9, 3.17]. Milkove et al. reported RIE etching 

of Pt using Cl2/Ar gas mix [3.16]. Even though increase of Ar concentration in the mix reduced 

the Pt etch rate, it was reported that even 100% Ar can etch Pt in RIE. Due to unavailability of 

Cl2 in the lab, Pt RIE was attempted with 100% Ar. However, no etching occurred.  

Therefore, Pt dry etching was pursued from an outside facility, the Nanolab facility at 

University of California at Los Angeles. The conditions of the ICP RIE are as follows. 

 BCl3 : Cl2 = 8:5, working pressure: 10 mTorr  

 RIE: 150 W and ICP: 800 W   
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(a) 

       

(b) 

 

(c) 

Figure 3.7. Pt etching in aqua regia. (a) Well etched. (b) Incomplete etching. (c) Incomplete 

etching. 



47 

 

Photolithography was performed using the second mask level (APPENDIX C2) and 

AZP4620 photoresist. The details are provided in APPENDIX E. With the patterned photoresist 

as an etching mask, the bottom Pt/Ti layer was etched. Figure 3.8 shows microscanners after 

bottom platinum etching. 

 

Figure 3.8. A microimage after bottom Pt/Ti etching by ICP RIE. 

3.8 Photolithography with Double-Side Alignment for Silicon Substrate Etching and 

Etching of Backside Silicon Nitride (Figure 3.1k) 

Backside silicon nitride was etched to create windows for silicon substrate etching. 

Double-side alignment was performed in the lithography to align the etching windows to the 

patterns on the front surface. For silicon nitride etching, both dry and wet methods were 

Top electrode

(Ti/Pt)

Bottom electrode

(Ti/Pt)

Top SiO2 surface
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considered. To avoid complication of front side protection, dry etching was chosen. Details are 

as follows. 

1. S1813 was spin-coated on both sides using the same conditions as the earlier processes. 

The fourth mask level was aligned to the front side bottom Pt patterns. Double side 

alignment configuration is drawn in figure 3.9. 

 

Figure 3.9. Double-side alignment lithography configuration. 

 

2. Si3N4 was etched in RIE with the following conditions. 

CF4 flow rate: 100sccm, RF: 200 W, working pressure: 250 mTorr. 

The estimated etch rate is 15 nm/min.   

3.9 Front Surface Passivation (Figure 3.1k) 

Front surface passivation is necessary to protect it from KOH during silicon substrate 
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etching. As mentioned earlier, ProTEK® B3 (Brewer Science Inc.) was selected and used. The 

process sequence recommended by the manufacturer is as follows. 

1. ProTEK® B3 Primer Coating: 

i. Static dispense, accelerate at 1000 rpm/sec to final spin speed of 1500 rpm and spin for 

60 seconds. 

ii. Bake at 205°C for 60 seconds on a hot plate. 

2. ProTEK® B3 Coating: 

i. Static dispense, acceleration at 1000 rpm/sec to final spin speed of 1500 rpm and spin 

for 60 seconds. 

ii. Bake at 140°C for 120 seconds and then a final bake at 205°C for 60 seconds on a hot 

plate. 

The coated film was inspected under a microscope and no apparent defect was discovered. 

However, the film was delaminated and/or had some pinholes (figure 3.10) after being dipped in 

30%wt KOH solution at 80°C for 2 hours.  

Two steps were taken to resolve this issue. The first was thorough cleaning. It was 

suspected that uncleanliness of the surface created pinholes in the Protek B3 material. The 

sample was cleaned by Trichloroethylene (TCE)-Acetone-Methanol-DI water cleaning process. 

Though there are other stronger cleaning processes available, due to the presence of metals, this 

metal cleaning process was selected. The second was double coating of ProTEK® B3―single 

ProTEK® B3 primer and double ProTEK® B3. Combination of these two methods helped to 

improve the quality of the protection layer. Delamination was limited to less than 3 mm from 

corners in 30%wt KOH solution at 80°C for 7 hours which is enough to etch 400 µm of Si. 

Images of the ProTEK® B3 after this step are shown in figure 3.11. 
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Figure 3.10. Pinhole-caused failure on a ProTEK® B3-coated silicon sample. 

 

(a) Delamination of ProTEK® B3 layer from a corner. 

Figure 3.11. Images of delamination of double-coated ProTEK® B3 after immersion in 

30%wt KOH solution at 80°C for 7 hours. (Figure to be continued on next page) 
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 (b) Delamination of ProTEK® B3 layer from an edge. 

3.10 Silicon Anisotropic Wet Etching (Figure 3.1l) 

Bulk silicon etching is a well-established process in MEMS technology. It can be done 

either by deep RIE or anisotropic wet etching. Comparison between these two methods is listed 

in table 3.2. 

The wet etching method was selected for the current work. Table 3.3 shows a comparison 

between two commonly used silicon anisotropic wet etching solutions, KOH and TMAH [3.18]. 

KOH was selected for the current work for its better selectivity between (100) and (111) planes. 

Table 3.4 summarizes the dependence of the etch rate on the concentration and temperature of 

KOH [3.19, 3.20]. Based on this, the etching condition of 30% KOH at 80°C was selected.  

3.11 Structure Release 

One of the most challenging steps in the current fabrication process is the structure 

release. Both wet release and dry release methods were considered. The former releases the 

structures by final wet etching of the buried oxide in the buffered oxide etch (BOE) solution (6  
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Table 3.2. Comparison between two bulk silicon etching methods. 

 Anisotropic wet etching Deep RIE (DRIE) 

Mechanism Pure chemical 
Physical (ion bombardment) and 

chemical 

Advantages 

1) Low cost, easy to implement 

2) High etch rate 

3) Several materials available as 

good etching masks 

1) Capability of vertical etching 

for any pattern shape, insensitive 

to wafer orientation 

2) High etch rate 

3) Several materials available as 

good etching masks  

Disadvantages 

1) Significant etching slope in 

(100) wafer, large footprint 

2) Potential of chemical handling 

hazards 

3) Complicacy in passivating the 

other surface. 

1) Requires expensive equipment 

2) Low throughput 
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Table 3.3. Comparison between TMAH and KOH as a silicon anisotropic wet etching solution. 

 KOH 

(34.0wt%, 70.9°C) 

TMAH 

(20.0wt%, 79.8°C) 

Etch rate  

(100) plane 

(110) plane 

(111) plane 

[µm/min] 

0.629 

1.292 

0.009 

[µm/min] 

0.603 

1.114 

0.017 

Etching selectivity 

(100)/(110) 

(100)/(111) 

(110)/(111) 

 

0.49 

74 

151 

 

0.54 

37 

68 

 

Table 3.4. Etch rate of (100) silicon in KOH (μm/min). 

Temperature 

(°C) 

KOH concentration 

20% 30% 40% 

20 0.025 0.024 0.02 

40 0.188 0.108 0.088 

60 0.45 0.41 0.33 

80 1.4 1.3 1.1 

100 4.1 3.8 3.1 

Comment The etch rate is the 

fastest. 

The surface is 

smoother than the 

lower concentration. 

The etch rate is higher 

than the higher 

concentration. 

 

parts 40% NH4F and 1 part 49% HF), and the latter by final dry etching of the silicon device 

layer. For the dry etching process of the top silicon dioxide layer and the silicon device layer, 

common to the both release methods, different mixture of CF4 and O2 were tested aiming the 
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best selectivity between SiO2 and Si. Based on the results as plotted in figure 3.12, 30% of the 

gas mixture was selected. 

 

Figure 3.12. Etch rate of Si and SiO2 with various combination of CF4 and O2. 

3.11.1 Wet Release (Figure 3.1m-n) 

Following steps were taken to wet-release the structures. 

1. Remove ProTEK® B3 with the following sequence [3.21]. 

i. Bath 1: ACT® XT-1100 at 23°C for 30 minutes. 

ii. Bath 2: ACT® 412 at 80°C for 20 minutes. 

iii.  IPA: 5 minutes. 

iv.  DI water: 2 minutes. 

v.  Air dry. 
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2. Remove the top silicon dioxide in BOE for 5 minutes.  

3. Dry etch the silicon device layer. 

 CF4 : O2 = 7:3, working pressure: 250 mTorr, and RF power: 200 W. 

4. Structure release by etching the buried oxide layer in BOE for 7 minutes, DI water rinse, 

immersing in methanol, and air dry.  

3.12 Dry Release (Figure 3.11a-d) 

The major advantage of the dry release method is that the so-called “stiction problem” 

that causes structural damage during or after wet release due to the surface tension of water, can 

be avoided. Following steps were taken to dry-release the structures (figure 3.13). 

1. Remove the buried silicon dioxide in BOE for 13 minutes. 

2. Remove ProTEK® B3. 

3. Remove the top silicon dioxide in BOE for 5 minutes. 

4. Dry etch the silicon device layer. 

 CF4 : O2 = 7:3, working pressure: 250 mTorr, and RF power: 200 W. 

 (a)     (b)   (c)    (d)  

Figure 3.13. Process flow of the dry release method. (a) After silicon substrate etching in KOH, 

with the front side double protection ProTEK® B3 layer. (b) Buried silicon dioxide layer 

removal, and the front side protection layer removal. (c) Etching top silicon dioxide. (d) Etching 

front side silicon in RIE to finish the dry release step.  
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Eventually, because of the uniformity issue of the RIE equipment in the lab for silicon 

etching, the wet release method was selected. The images of the fabricated microscanner from 

top (figure 3.13a) and from bottom (figure 3.13b) after final release steps are shown in figure 

3.13. Both images indicate that the released structure has non-negligible initial deformation due 

to significant residual stress. In the first fabrication trial, the connections between the hinges and 

mirrors were not strong enough to bear the weight of the mirrors, therefore, no intact 

microscanners were fabricated after the wet etch release process. Design changes were made to 

the connection parts in the second mask level, and many mirrors survived the release step in the 

second trial as shown in figure 3.14. 

  

(a) 

Figure 3.14. Images of the fabricated microscanner after final wet release viewed from (a) top 

and (b) bottom. (Figure continued on next page) 
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(b) 

In this chapter, the details of the fabrication process flow have been presented. The 

bottom and top Pt/Ti electrodes were deposited by sputtering. The PZT layer was formed by the 

sol-gel method. During the anisotropic etching of the silicon substrate, the front side devices 

were protected by the double-coated ProTEK® B3 film. A double-side alignment lithography 

method was used to align the substrate etching windows on the backside to the front side patterns. 

Finally, the microscanners were released by etching the buried oxide layer in HF. The 

measurement results of the fabricated devices will be provided in the following chapter. 
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CHAPTER 4. RESULTS 

4.1 Characterization of the Deposited PZT Thin Film 

Although the piezoelectric property of the deposited PZT thin film can be measured more 

accurately by direct methods such as pneumatic loading method, piezoresponse force microscopy 

(PFM), and laser double beam interferometry, indirect methods such as crystal orientation study 

and ferroelectricity measurement were used for qualitative study of the deposited film.  

4.1.1 Crystal Orientation Study 

To study crystal orientation of a substrate, X-ray diffraction (XRD) is commonly used. 

The principle of XRD measurement is based on Bragg’s Law. Diffraction occurs when waves 

interact with a regular structure whose period is about the same as the wavelength. XRD is used 

in the atomic arrangement study because X-rays have wavelengths on the order of a few 

angstroms, which is comparable to typical interatomic distances in crystalline solids. When the 

necessary geometric requirements are met, X-ray scattering from a crystalline material will 

constructively interfere, producing a diffracted beam. By Bragg’s law, the angle θ of this 

diffraction has the following relation with the interatomic spacing of the material d. 

nλ = 2dsinθ,                                                                                                                               (4.1) 

where λ is the wavelength of X-ray, and n is any integer. In XRD measurement, the intensity of 

the diffracted X-ray is recorded as a function of a 2θ, and the plot of this information is known as 

the diffraction pattern. Figure 4.1 shows the diffraction pattern of the deposited PZT film. It has 

a strong peak in 38.2 degree, which corresponds to (111) PZT. 
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Figure 4.1. X-ray diffraction pattern of a PZT film on Pt/Ti/SiO2/(100)Si. 

4.1.2 Polarization-Voltage (P-V) Measurement 

To examine ferroelectricity of the deposited PZT film, P-V measurement was performed. 

A schematic diagram of the measurement setup for the metal-PZT-metal capacitor is depicted in 

figure 4.2. It includes polarization measurement equipment, RT66B (Radiant Technologies, Inc.) 

The strong hysteresis shown in the measured P-V curve (figure 4.3) indicates that the deposited 

PZT film has the piezoelectric property. 

4.1.3 Breakdown Voltage Measurement 

Breakdown voltage of the PZT film was measured to determine the maximum voltage 

that can be applied across the film. Twenty PZT capacitors of which layers are Pt (150 nm)/Ti 

(10 nm)/PZT (1 µm)/Pt (150 nm)/Ti (10 nm) were tested. The average breakdown voltage was 

74.8 V, with the minimum being 58 V. Therefore, it is safe to apply less than 58 V to the 1 µm-

thick PZT layer. 
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Figure 4.2. Setup for P-V measurement. 

 

Figure 4.3. P-V hysteresis curve of a PZT film on Pt/Ti/SiO2/(100)Si. 
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4.2 Piezoelectric Cantilevers 

PZT cantilevers were actuated with AC voltage (10 Vpp, 6 Hz). Images of a cantilever 

before and during actuation are presented in figure 4.4.  

 

(a) 

                                                                      
(b) 

Figure 4.4. Images of a PZT cantilever, (a) before and (b) after applying AC voltage (10 Vpp, 6 

Hz). 
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Residual-stress-induced initial deformations of the PZT cantilever test structures were 

examined under a microscope. Deformation at the tip of the cantilever was roughly measured by 

adjusting the focus of the image, and using the known step height as a reference. Figure 4.5 

shows the tip deformations of two types of cantilevers measured by this method―one with Pt 

(150 nm)/Ti (10 nm)/SiO2 (400 nm)/Si (3 µm) and the other with Pt (150 nm)/Ti (10nm)/PZT (1 

µm)/Pt (150 nm)/Ti (10 nm)/SiO2 (400 nm)/Si (3 µm). This result indicates that increasing the 

silicon device layer will reduce the stress-induced initial deformation.  

 

 

Figure 4.5. Stress-induced initial deformation at the tip vs. length of the PZT cantilevers. 

Cantilever type a: Pt (150 nm)/Ti (10 nm)/SiO2 (400 nm)/Si (3 µm), and cantilever type b: Pt 

(150 nm)/Ti (10nm)/PZT (1 µm)/Pt (150 nm)/Ti (10 nm)/SiO2 (400 nm)/Si (3 µm). 
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In summary, both X-ray diffraction and P-V measurement results indicate the presence of 

strong piezoelectricity in the deposited PZT layer. The fabricated piezoelectric cantilevers were 

actuated by applying low-frequency ac voltages.  
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CHAPTER 5. SUMMARY AND FUTURE WORK 

In this thesis, two-dimensional microscanners with novel T-shaped hinges and 

piezoelectric actuators were proposed for optical coherence tomography applications. 

Incorporation of the T-shaped hinges is to improve the conversion efficiency from deflection of 

the piezoelectric actuators to two-dimensional rotation of the mirror attached to them. The 

microscanners have been designed and simulated using a finite-element-method-based numerical 

simulation program, ANSYS
TM

. It was estimated that more than ±7° of mechanical tilt angles 

can be achieved in two dimensions at the maximum voltage of 30 V by the simulation. PZT was 

selected as the piezoelectric material for its strong piezoelectric effect and the sol-gel method 

was used to produce 1 µm-thick PZT layer. Pt/Ti was used for the two (top and bottom) 

electrodes for the PZT actuation, which was deposited by sputtering system. X-ray diffraction 

was used to examine the crystal orientation of the deposited PZT film which showed strong (111) 

orientation that is desirable for good piezoelectric effect. RT66B was used to measure the P-V 

characteristics of the metal-PZT-metal capacitors. Strong hysteresis curves were observed from 

the fabricated capacitors. In the KOH silicon bulk etching step, silicon nitride was used as an 

etching mask, and ProTEK® B3 functioned as a protection layer of the front side.  

The entire fabrication process has been run several times. However, mechanical operation 

of the microscanners is yet to be demonstrated. One reason is considered to be insufficient 

piezoelectric constant of the coated PZT layer. It was reported that poling can enhance the 

piezoelectric effect [5.1-5.2]. The conditions of the poling process (figure 5.1) suggested by the 

maker of the sol-gel solution are  
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 DC voltage: 10-15V  

 Temperature and duration: 120ºC for 5 minutes.  

 

Figure 5.1. The poling setup. 
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APPENDIX A. ANSYS PROGRAM CODE FOR A PIEZOELECTRIC 

CANTILEVER STRUCTURE 

 

! Bimorph deformation calculation with PZT 

FINISH 

/CLE   

/TITLE,PZT Bimorph  

/PMETH,OFF,1 

KEYW,PR_SET,1    

KEYW,PR_STRUC,1  

KEYW,PR_THERM,0  

KEYW,PR_FLUID,0  

KEYW,PR_ELMAG,1  

KEYW,MAGNOD,0    

KEYW,MAGEDG,0    

KEYW,MAGHFE,0    

KEYW,MAGELC,1    

KEYW,PR_MULTI,0  

KEYW,PR_CFD,0  

 

/COM uMKS unit 

! Define design parameters 

l=390               ! Length of the bimorph 

w=100                                     ! Width of the bimorph 

t_si=3               ! Thickness of the lower layer (silicon) 
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t_pzt=1              ! Thickness of the upper layer (PZT) 

Y_si=169e3              ! Young's modulus of silicon = 169GPa 

V1=30 

 

! Drawing the structures 

/PREP7 

block, 0, w, 0, l, 0, t_si     ! Lower layer (silicon) 

block, 0, w, 0, l, t_si, t_pzt+t_si    ! Upper layer (PZT) 

vglue, 1, 2 

 

! Define material properties and element type 

ET, 1, 92      ! 3-D 10-Node tetrahedral structural solid 

ET, 2, 98, 3      ! 3-D tetrahedral coupled-field solid, ux, uy, 

uz, volt 

mp, ex, 1, Y_si     ! Material definition for silicon  

 

emunit, epzro, 8.854e-6 

 

Tb, anel, 2      ! Material definition for PZT 

Tbdata, 1, 11.96e4, 7.438e4, 7.451e4   ! Anisotropic elastic material stiffness 

Tbdata, 7, 11.96e4, 7.451e4 

Tbdata, 12, 11.04e4 

Tbdata, 16, 2.262e4 

Tbdata, 19, 2.105e4 

Tbdata, 21, 2.105e4 
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Tb, piez, 2      ! e matrix [C/m^2] = [pC/um^2] 

Tbdata, 1, 0, 0, -5.3096 

Tbdata, 4, 0, 0, -5.2028 

Tbdata, 7, 0, 0, 15.8153 

Tbdata, 10, 0, 0, 0 

Tbdata, 13, 0, 12.2947, 0 

Tbdata, 16, 12.2947, 0, 0 

 

mp, perx, 2, 918 

mp, pery, 2, 918 

mp, perz, 2, 827 

 

 

allsel 

vsel, s, volu, , 1 

vatt, 1, 1, 1 

 

vsel, s, volu, , 3 

vatt, 2, 1, 2 

 

allsel 

 

!Mesh 
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smrt, 10 

MSHKEY,0       ! free meshing (mapped meshing is 1) 

MSHAPE, 1, 3-D                ! tetrahedral for 3-D   

vmesh,all 

 

finish 

/solu 

/com voltage loading                                        ! Apply voltage on PZT layer 

nsel, s, loc, z, t_si 

d, all, volt, 0 

 

nsel, s, loc, z, t_si+t_pzt 

d, all, volt, V1 

 

allsel 

asel, s, loc, y, 0 

da, all, ux, 0     ! Fix the anchored surface in angle and translation 

da, all, uy, 0 

da, all, uz, 0 

 

/STATUS, SOLU 

SOLVE 

finish 
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/POST1 

set, last 

!/VSCALE,1,0.1,1  

/EFACET,1    

PLNSOL, U,Z, 0,1.0 
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APPENDIX B. ANSYS PROGRAM CODE FOR THE MICROSCANNER 

 

FINISH 

/CLE   

/TITLE,PZT scanner  

/PMETH,OFF,1 

KEYW,PR_SET,1    

KEYW,PR_STRUC,1  

KEYW,PR_THERM,0  

KEYW,PR_FLUID,0  

KEYW,PR_ELMAG,1  

KEYW,MAGNOD,0    

KEYW,MAGEDG,0    

KEYW,MAGHFE,0    

KEYW,MAGELC,1    

KEYW,PR_MULTI,1  

KEYW,PR_CFD,0  

 

/COM uMKS unit 

! Define design parameters 

L_mirror=700       ! Length of the mirror 

W_mirror=500      ! Width of the mirror 

L_bridge=100    ! Length of the bridge between the mirror and the T-hinge 

W_bridge=20       ! Width of the bridge 

L_act=390       ! Length of the actuator 

W_act=100       ! Width of the actuator 

L_mid=38     ! Length of the middle section of the T-hinge 
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W_mid=38     ! Width of the middle section of the T-hinge 

L_h=120     ! Length of the spring    

W_h=18     ! Width of the spring 

L_1=40         

L_2=L_mid/2+L_1 

L_3=L_2+5*W_h+L_1 

W_1=W_mirror/2+L_bridge+W_mid/2 

t_si=3      ! Thickness of the lower layer (silicon) 

t_pzt=1     ! Thickness of the upper layer (PZT) 

Y_si=169e3     ! Young's modulus of silicon = 169GPa 

V1=30     

V2=0   

V3=0 

V4=-30 

 

! Drawing the structures 

/PREP7 

/COM Left-hand-side actuators (1 and 2) 

block, -W_mid/2-W_1, W_mid/2-W_1, -L_mid/2, L_mid/2, 0, t_si             

block, -W_h/2-W_1, W_h/2-W_1, L_mid/2, L_2+W_h, 0, t_si   

block, -W_h-L_h/2-W_1, -W_h/2-W_1, L_2, L_2+W_h, 0, t_si   

block, -W_h-L_h/2-W_1, -L_h/2-W_1, L_2+W_h, L_2+3*W_h, 0, t_si    

block, -L_h/2-W_1, L_h/2-W_1, L_2+2*W_h, L_2+3*W_h, 0, t_si    

block, L_h/2-W_1, L_h/2+W_h-W_1, L_2+2*W_h, L_2+4*W_h, 0, t_si    

block, -W_h/2-W_1, L_h/2+W_h-W_1, L_2+4*W_h, L_2+5*W_h, 0, t_si    

block, -W_h/2-W_1, W_h/2-W_1, L_2+5*W_h, L_3, 0, t_si   
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block, -W_act/2-W_1, W_act/2-W_1, L_3, L_3+L_act, 0, t_si    

block, -W_act/2-W_1, W_act/2-W_1, L_3, L_3+L_act, t_si, t_si+t_pzt  

block, -W_h/2-W_1, W_h/2-W_1, -L_2-W_h, -L_mid/2, 0, t_si   

block, -W_h-L_h/2-W_1, -W_h/2-W_1, -L_2-W_h, -L_2, 0, t_si    

block, -W_h-L_h/2-W_1, -L_h/2-W_1, -L_2-3*W_h, -L_2-W_h, 0, t_si   

block, -L_h/2-W_1, L_h/2-W_1, -L_2-3*W_h, -L_2-2*W_h, 0, t_si    

block, L_h/2-W_1, L_h/2+W_h-W_1, -L_2-4*W_h, -L_2-2*W_h, 0, t_si   

block, -W_h/2-W_1, L_h/2+W_h-W_1, -L_2-5*W_h, -L_2-4*W_h, 0, t_si   

block, -W_h/2-W_1, W_h/2-W_1, -L_3, -L_2-5*W_h, 0, t_si   

block, -W_act/2-W_1, W_act/2-W_1, -L_3-L_act, -L_3, 0, t_si   

block, -W_act/2-W_1, W_act/2-W_1, -L_3-L_act, -L_3, t_si, t_si+t_pzt  

 

/COM Right-hand-side actuators (3 and 4) 

block, -W_mid/2+W_1, W_mid/2+W_1, -L_mid/2, L_mid/2, 0, t_si  

block, -W_h/2+W_1, W_h/2+W_1, L_mid/2, L_2+W_h, 0, t_si   

block, -W_h-L_h/2+W_1, -W_h/2+W_1, L_2, L_2+W_h, 0, t_si    

block, -W_h-L_h/2+W_1, -L_h/2+W_1, L_2+W_h, L_2+3*W_h, 0, t_si    

block, -L_h/2+W_1, L_h/2+W_1, L_2+2*W_h, L_2+3*W_h, 0, t_si    

block, L_h/2+W_1, L_h/2+W_h+W_1, L_2+2*W_h, L_2+4*W_h, 0, t_si    

block, -W_h/2+W_1, L_h/2+W_h+W_1, L_2+4*W_h, L_2+5*W_h, 0, t_si    

block, -W_h/2+W_1, W_h/2+W_1, L_2+5*W_h, L_3, 0, t_si   

block, -W_act/2+W_1, W_act/2+W_1, L_3, L_3+L_act, 0, t_si    

block, -W_act/2+W_1, W_act/2+W_1, L_3, L_3+L_act, t_si, t_si+t_pzt  

block, -W_h/2+W_1, W_h/2+W_1, -L_2-W_h, -L_mid/2, 0, t_si   

block, -W_h-L_h/2+W_1, -W_h/2+W_1, -L_2-W_h, -L_2, 0, t_si    

block, -W_h-L_h/2+W_1, -L_h/2+W_1, -L_2-3*W_h, -L_2-W_h, 0, t_si   
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block, -L_h/2+W_1, L_h/2+W_1, -L_2-3*W_h, -L_2-2*W_h, 0, t_si    

block, L_h/2+W_1, L_h/2+W_h+W_1, -L_2-4*W_h, -L_2-2*W_h, 0, t_si   

block, -W_h/2+W_1, L_h/2+W_h+W_1, -L_2-5*W_h, -L_2-4*W_h, 0, t_si   

block, -W_h/2+W_1, W_h/2+W_1, -L_3, -L_2-5*W_h, 0, t_si   

block, -W_act/2+W_1, W_act/2+W_1, -L_3-L_act, -L_3, 0, t_si   

block, -W_act/2+W_1, W_act/2+W_1, -L_3-L_act, -L_3, t_si, t_si+t_pzt  

 

/COM Mirror and the bridges 

block, -W_mirror/2, W_mirror/2, -L_mirror/2, L_mirror/2, 0, t_si   

block, -W_mirror/2-L_bridge, -W_mirror/2, -W_bridge/2, W_bridge/2, 0, t_si  

block, W_mirror/2, W_mirror/2+L_bridge, -W_bridge/2, W_bridge/2, 0, t_si  

        

vglue, all 

! Define material properties and element type 

ET, 1, 45      ! 3-D 10-Node tetrahedral structural solid 

ET, 2, 5, 3      ! 3-D tetrahedral coupled-field solid, ux, uy, 

uz, volt 

mp, ex, 1, Y_si     ! Material definition for silicon  

 

emunit, epzro, 8.854e-6 

 

Tb, anel, 2      ! Material definition for PZT 

Tbdata, 1, 11.96e4, 7.438e4, 7.451e4   ! Anisotropic elastic material stiffness 

Tbdata, 7, 11.96e4, 7.451e4 

Tbdata, 12, 11.04e4 

Tbdata, 16, 2.262e4 

Tbdata, 19, 2.105e4 
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Tbdata, 21, 2.105e4 

 

Tb, piez, 2      ! e matrix [C/m^2] = [pC/um^2] 

Tbdata, 1, 0, 0, -5.3096 

Tbdata, 4, 0, 0, -5.2028 

Tbdata, 7, 0, 0, 15.8153 

Tbdata, 10, 0, 0, 0 

Tbdata, 13, 0, 12.2947, 0 

Tbdata, 16, 12.2947, 0, 0 

 

mp, perx, 2, 918 

mp, pery, 2, 918 

mp, perz, 2, 827 

 

allsel 

 

vsel, s, volu, , 40, 49 

vsel, a, volu, , 54, 80 

vatt, 1, 1, 1 

allsel 

 

vsel, s, volu, , 50, 53 

vatt, 2, 1, 2       ! vatt, mat, real, type 

allsel 

 

lsel, s, loc, z, 0 
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lsel, a, loc, z, t_si 

lsel, r, loc, x, -W_mirror/2-1, W_mirror/2+1 

lsel, r, loc, y, -L_mirror/2-1, L_mirror/2+1 

lesize, all, , , 10 

 

allsel 

 

vsweep, all 

 

finish 

 

/solu 

 

/com voltage loading                                                        ! Apply voltage loading to each actuator 

nsel, s, loc, z, t_si 

nsel, r, loc, x, -W_1-W_act, -W_1+W_act 

nsel, r, loc, y, -L_3-L_act,-L_3 

d, all, volt, 0 

 

nsel, s, loc, z, t_si+t_pzt 

nsel, r, loc, x, -W_1-W_act, -W_1+W_act 

nsel, r, loc, y, -L_3-L_act,-L_3 

d, all, volt, V1 

 

nsel, s, loc, z, t_si 

nsel, r, loc, x, -W_1-W_act, -W_1+W_act 
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nsel, r, loc, y, L_3, L_3+L_act 

d, all, volt, 0 

 

nsel, s, loc, z, t_si+t_pzt 

nsel, r, loc, x, -W_1-W_act, -W_1+W_act 

nsel, r, loc, y, L_3, L_3+L_act 

d, all, volt, V2 

 

nsel, s, loc, z, t_si 

nsel, r, loc, x, W_1-W_act, W_1+W_act 

nsel, r, loc, y, -L_3-L_act, -L_3 

d, all, volt, 0 

 

nsel, s, loc, z, t_si+t_pzt 

nsel, r, loc, x, W_1-W_act, W_1+W_act 

nsel, r, loc, y, -L_3-L_act, -L_3 

d, all, volt, V3 

 

nsel, s, loc, z, t_si 

nsel, r, loc, x, W_1-W_act, W_1+W_act 

nsel, r, loc, y, L_3, L_3+L_act 

d, all, volt, 0 

 

nsel, s, loc, z, t_si+t_pzt 

nsel, r, loc, x, W_1-W_act, W_1+W_act 

nsel, r, loc, y, L_3, L_3+L_act 
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d, all, volt, V4 

 

allsel 

asel, s, loc, y, L_3+L_act   ! Fix the anchored surface in angle and translation 

asel, a, loc, y, -L_3-L_act  

da, all, ux, 0        

da, all, uy, 0 

da, all, uz, 0 

 

 

/STATUS, SOLU 

SOLVE 

 

finish 

 

/POST1 

 

set, last 

  

/EFACET,1    

PLNSOL, U,Z, 0,1.0 

 

allsel 

nsel, s, loc, x, 0 

nsel, r, loc, y, L_mirror/2 

nsel, r, loc, z, t_si 
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*get, n_top, node, 0, num, max 

*get, z_top, node, n_top, u, z 

 

allsel 

nsel, s, loc, x, 0 

nsel, r, loc, y, -L_mirror/2 

nsel, r, loc, z, t_si 

*get, n_bottom, node, 0, num, max 

*get, z_bottom, node, n_bottom, u, z 

 

allsel 

nsel, s, loc, x, -W_mirror/2 

nsel, r, loc, y, 0 

nsel, r, loc, z, t_si 

*get, n_left, node, 0, num, max 

*get, z_left, node, n_left, u, z 

 

allsel 

nsel, s, loc, x, W_mirror/2 

nsel, r, loc, y, 0 

nsel, r, loc, z, t_si 

*get, n_right, node, 0, num, max 

*get, z_right, node, n_right, u, z 

 

angle_i = 57.3* (z_bottom - z_top) / L_mirror ! Express the bending of mirror in degree 

angle_o = 57.3* (z_right - z_left) / W_mirror 
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/color, wbak, white 

/plopts, logo, off 

/replot 

 

*stat 
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APPENDIX C1. LEVER 1 MASK LAYOUT 
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APPENDIX C2. LEVER 2 MASK LAYOUT 
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APPENDIX C3. LEVEL 3 MASK LAYOUT 
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APPENDIX C4. LEVEL 4 MASK LAYOUT 
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APPENDIX D. PHOTOLITHOGRAPHY PROCESS CONDITIONS WITH 

THE POSITIVE PHOTORESIST, S1813 

 

1. Spin-coating of S1813 starts at 500 rpm for 10 seconds. 

2. Ramp up the spinning speed to 2500rpm and stay for 40 seconds. 

3. Soft bake at 115°C for 3 minutes. 

6. UV exposure for 12 seconds at room temperature (Quintel aligner). 

7. Develop in MF 319 for 40 seconds. 

8. Rinse in DI water for 3 minutes. 

9. Dry with N2.  
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APPENDIX E. PHOTOLITHOGRAPHY PROCESS CONDITIONS WITH 

THE POSITIVE PHOTORESIST, AZP 4620 

 

1. Spin-coating of AZP 4620 starts at 300rpm for 3 seconds. 

2. Ramp up the spinning speed to 2500rpm and stay for 60 seconds. 

3. Soft bake at 90°C for 2 minutes 45 seconds. 

4. UV exposure for 40 seconds at room temperature (Quintel aligner). 

5. Develop in AZ 400K : DI water = 1:3 for 1 minute. 

6. Rinse in DI water. 

7. Dry with N2. 
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