Compact Inverses of Differential Operators.

Robert Mackenzie Kauffman

Louisiana State University and Agricultural & Mechanical College

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses

Recommended Citation

https://digitalcommons.lsu.edu/gradschool_disstheses/1495

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact gradetd@lsu.edu.
KAUFFMAN, Robert MacKenzie, 1941-
COMPACT INVERSES OF DIFFERENTIAL
OPERATORS.

Louisiana State University and Agricultural and
Mechanical College, Ph.D., 1968
Mathematics

University Microfilms, Inc., Ann Arbor, Michigan
COMPACT INVERSES OF DIFFERENTIAL OPERATORS

A Dissertation

Submitted to the Graduate Faculty of the
Louisiana State University and
Agricultural and Mechanical College
in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy

in

The Department of Mathematics

by

Robert MacKenzie Kauffman
B.A., University of the South, 1963
M.S., Louisiana State University, 1965
August, 1968
Acknowledgment

The author wishes to express his appreciation to Dr. Anton Zettl, for his advice and encouragement on this project.
Table of Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgment</td>
<td>ii</td>
</tr>
<tr>
<td>Abstract</td>
<td>iv</td>
</tr>
<tr>
<td>Introduction</td>
<td>vi</td>
</tr>
<tr>
<td>0 Background Material in Functional Analysis</td>
<td>1</td>
</tr>
<tr>
<td>I Compact Inverses of Differential Operators</td>
<td>6</td>
</tr>
<tr>
<td>II Formal Differential Expressions</td>
<td>31</td>
</tr>
<tr>
<td>Bibliography</td>
<td>55</td>
</tr>
<tr>
<td>Vita</td>
<td>57</td>
</tr>
</tbody>
</table>
The property that the essential spectrum of an ordinary differential operator on an Lp space be null is analyzed in this paper in terms of the compactness of the inverse of the minimal operator on intervals of the type \([a, \infty)\). We show that if the associated differential expression is self adjoint, and the space is \(L^2[a, \infty)\), the essential spectrum is null if and only if the minimal operator has compact inverse. (The inverse is defined on a closed subspace of \(L^2[a, \infty)\).) Sufficiency holds in the Lp case, whether or not the expression is self adjoint.

To show that the property occurs widely, we then develop a general example of a type of differential operator which has the compact inverse property on \(L^2[a, \infty)\). Our main example is as follows: Let \(\mathcal{T}\) be a classically self adjoint differential expression with first coefficient 1. Let \(\mathcal{T}^i\) be the formal product of \(\mathcal{T}\) with itself \(i\) times, where \(i\) is a positive integer. Let \(f_1\) be bounded for \(i > 0\), and let

\[
\lim_{x \to \infty} \text{Re}(f_0(x)) = \infty.
\]

Then \(\mathcal{T}^{2k} + \sum_{i=1}^{2k-1} f_1 \mathcal{T}^i + f_0\) is a differential expression on \([a, \infty)\) such that the associated minimal operator has compact inverse defined on a closed subspace of \(L^2[a, \infty)\).

In addition, we show that the compactness property is stable under certain types of perturbations and formal products, even in the Lp case. We also discuss the case when
only a restriction of the minimal operator is compact, and finally extend our results about the essential spectrum to \((-\infty, \infty)\).
 Introduction

In this paper we study the following question: Given a differential expression \mathcal{T}, what properties of the coefficients of \mathcal{T} will assure that operators generated by \mathcal{T} on appropriate Hilbert or Banach space have null essential spectrum? We show that for this to happen on the Hilbert space $L^2[a,\infty)$ it is sufficient, and if \mathcal{T} is classically self adjoint, necessary that the minimal operator generated by \mathcal{T} have compact inverse. (We assume that we are working in an interval $[a,b)$ to assure l-ness of the minimal operator.) In the Banach space case, the sufficiency still holds. These results relate to the study by Hartman and Wintner of the essential spectrum of differential operators. (See, for example, Hartman and Wintner (1).)

We thus wish to know general conditions on the coefficients of an operator to assure compactness of the inverse of the minimal operator. If we are on an interval $[a,b]$ or $[a,b)$, with b finite, general theorems about integral operators usually ensure compactness, but if the interval is $[a,\infty)$ the infinite measure makes things much harder. However, a rather wide class of operators have this property.

Since most inverses of differential operators on finite intervals are compact, a limiting process using uniform operator convergence is suggested for infinite intervals. This is our basic tool for showing that particular examples of minimal operators have compact inverse. We find in this manner that $\mathcal{T}^{2n} + f(x)$, with \mathcal{T} classically self adjoint,
generates a minimal operator with compact inverse on $L_2[a,\infty)$ if \[\lim_{x \to \infty} \text{Re}(f(x)) = \infty. \] Then we use perturbation methods to show that \[\tau^{2n} + \sum_{i=1}^{2n-1} f_i \tau^i + f_0 \] has the same property, if in addition to the above hypotheses about \(\tau \) and \(f_0 \), we assume all \(f_i \) are bounded functions. \(\tau^i \) is the \(i \)th power of \(\tau \) under the formal product. We assume all necessary differentiability here.

In studying the stability of the property under changes of coefficients, we show that the property is preserved under formal products of differential expressions provided one generates a minimal operator with closed range and the other generates a minimal operator with compact inverse. Also the preservation of the property under certain types of perturbations holds even in the $L_p - L_q$ situation. Thus given one example we can find many more.

In existing literature the compactness property seems to only have been observed for the case when all solutions of $\tau f = 0$ are in $L_p[a,\infty)$ and all solutions of $\tau^+ f = 0$ are in $L_q[a,\infty)$, where we consider the differential operator from L_p to L_q. Several authors, notably Weyl in the second order and Glazman in higher orders, have observed this case, which can be found in a modified form in section XIII.4 of Dunford and Schwartz (2) and also in Naimark (1). Bellman (1) studies the case when $P \neq 2$.

The property that the essential spectrum is void has received wider attention. Theorem 9 on page 1440 of Dunford and Schwartz (2) seems to be the most general theorem on this
subject, and it is new in Dunford and Schwartz. Theorem 2.18 generalizes the theorem in Dunford and Schwartz. There is a great deal of literature on the essential spectrum, and an excellent survey of the results can be found in Dunford and Schwartz (2). The theorem—which characterizes the essential spectrum of a self adjoint operator is apparently new in Dunford and Schwartz, but was used as the defining property by Hartman and Wintner.

Besides considering the whole minimal operator, we consider the general question of when an operator from a reflexive Banach space to an Lp space is compact. This could perhaps be useful in the following situation: Let H be self adjoint on \(L^2[a,\infty) \). Suppose \(H = \int_{-\infty}^{\infty} \lambda \, dp \lambda \), and let \(0 \notin [c,b] \).

Let \(P = P_b - P_c \). PHP is compact \(\iff \) there are no cluster points \(\lambda \) of the spectrum of \(H \) with \(\lambda \in [c,b] \). Therefore it seems useful to discuss compactness of a restriction of a differential operator, even when the whole operator is not compact.

Along this line we use a criterion for weak compactness in \(L_1 \) to deduce the fact that if an operator from a reflexive Banach space to a space of bounded, continuous, \(L_1 \) functions on a locally compact space is continuous with the \(L_p \) topology on the space of functions (\(p \geq 1 \)), it is compact with the \(L_q \) topology on the space of functions for every \(q \in [1,\infty) \).

(Certain hypotheses are needed about the measure here.)

The last part of the paper is concerned with showing that \(\lambda \) is in the essential spectrum of the minimal operator
on \((-\infty, \infty)\) if and only if it is in the essential spectrum as \((-\infty, 0]\) or \([0, \infty)\). This extends our results to \((-\infty, \infty)\).

Many of the theorems about differential operators on Lp spaces used in this paper are due to Rota (1). The book by Goldberg (1) also contains much of the background material used in this paper.
0. Background Material in Functional Analysis

0.0 Definition: Let X be a normed linear space. Let X' be the set of continuous linear functionals on X. A sequence \(\{x_n\} \) in X is said to converge weakly to $x \in X$ if for any $x' \in X'$, $\langle x_n, x' \rangle \to \langle x, x' \rangle$. This is written $x_n \xrightarrow{w} x$.

0.1 Definition: The natural map, denoted by J_X, of a normed linear space X into its second conjugate space X'' (the Banach space of bounded linear functionals on X', where X' has the norm topology $|x'| = \sup_{\|x\|=1} \langle x', x \rangle$) is defined by

$$J_X(x') = x''$$

for every $x' \in X'$. If the range of J_X is all of X'', then X is called reflexive.

0.2 Theorem: Every bounded sequence in a reflexive space X contains a weakly convergent subsequence to some element $x \in X$.

Proof: This is theorem 1.6.15, Goldberg (1), page 30.

0.3 Theorem: Let (S, Σ, μ) be a positive measure space, which is the union of countably many sets of finite μ-measure. Then $[L^p(S, \Sigma, \mu)]' = L^{p'}(S, \Sigma, \mu)$, where $\frac{1}{p} + \frac{1}{p'} = 1$ if $\infty > p > 1$, and $p' = \infty$ if $p = 1$.

Proof: The proof may be found in Dunford and Schwartz (1), pages 286-290.

0.4 Corollary: If $\infty > p > 1$, $L^p(S, \Sigma, \mu)$ is reflexive. Note that the dual of L_∞ is not L_1, but is in general a set which properly contains L_1. The containment is proper for Lebesgue measure on the real line, which is the case we deal with in the sequel.
We now consider differential expressions for the form
\[T = a_n D^n + a_{n-1} D^{n-1} + \cdots + a_1 D + a_0, \]
where \(D = \frac{d}{dt} \) and the coefficients \(a_k \) are complex valued functions of a real variable. We further assume each \(a_k \) to be infinitely differentiable, for the sake of simplicity, and assume \(a_n(x) \neq 0 \) on the interval being considered.

A differential expression \(T \) may give use to many operators \(T \) which have their domains in \(L_p(I) \) and ranges in \(L_q(I) \), where \(1 \leq p \leq \infty, 1 \leq q \leq \infty \) and \(I \) is an interval of real numbers. We define the maximal operator \(T_{\cdot, p, q} \) corresponding to \(T_{\cdot, p, q} \) and \(I \) as follows:

0.5 Definition: Let \(X \) and \(Y \) be normed linear spaces. Let \(K \) be a linear operator with domain in \(X \) and range in \(Y \). Let \(S = \{ x \in X \mid \|x\| \leq 1 \} \). If \(KS \) is compact in \(Y \), \(K \) is said to be compact.

0.6 Definition: \(D(T_{\cdot, p, q}) = \{ f \mid f \in A_n(I) \cap L_p(I), T f \in L_q(I) \} \) where \(A_n(I) \) is the set of complex valued functions for which \(f^{(n-1)} = D^{n-1} f \) exists and is absolutely continuous on every compact subinterval of \(I \). For \(f \in D(T_{\cdot, p, q}) \) we define \(T_{\cdot, p, q} f = T f = \sum_{k=0}^{n} a_k D^k f \).

0.7 Definition: The operator \(T_{\cdot, p, q}^R \) is defined to be the restriction of \(T_{\cdot, p, q} \) to those \(f \in D(T_{\cdot, p, q}) \) which have compact support in the interior of \(I \).

0.8 Definition: The minimal operator \(T_{0, \cdot, p, q} \) corresponding to \((T_{\cdot, p, q}) \) is defined to be the minimal closed extension of \(T_{\cdot, p, q}^R \) where \(1 \leq p < \infty, 1 \leq q < \infty \). (When \(p \) or \(q = \infty \) we use another definition, but this case is not
important to us.)

Note: We know such an extension exists because of the following theorem.

0.9 Theorem: $T_{p,q}$ is closed when $1 < p < \infty$, $1 < q < \infty$.

Proof: This is corollary VI.3.2, Goldberg (1), page 145.
(Also may be found in Rota (1).)

0.10 Theorem: Let $I = [a,b]$ be compact and let T be as above. Suppose T is 1-1 closed operator which is a restriction of the maximal operator corresponding to

$(T_{p,q}): 1 < p < \infty$, $1 < q < \infty$. Then T^{-1} is compact.

Proof: The above theorem is theorem VI.3.3, Goldberg, page 145.

0.11 Theorem: Let I contain one of its endpoints and let (p,q) be admissible. (i.e. $1 < p < \infty$, $1 < q < \infty$ or $1 < p \leq \infty$, $1 < q \leq \infty$.) Then

i) The minimal operator corresponding to $(T_{p,q})$ is 1-1.

ii) The maximal operator corresponding to $(T_{p,q})$ has range dense in $L^q(I)$, where $1 < p < \infty$, $1 < q < \infty$.

Proof: This is theorem VI.2.10, Goldberg, page 139.
(Also found in Rota (1).)

0.12 Lemma: If $\dim \frac{X}{M} = n$, where X is a vector space and M is a vector subspace of X, and if $H \supseteq M$, then $\dim \frac{X}{H} \leq n$.

[Note: in other words, if M has finite deficiency in X, and $H \supseteq M$, then H has finite deficiency in X.]

0.13 Theorem: If $\dim \frac{X}{M} = N_1$, and $\dim \frac{X}{H} = N_2$, where $H \supseteq M$, then $\dim \frac{H}{M} = N_1 - N_2$.

Proof: First $\dim \frac{H}{M} \leq N_1 - N_2$, for suppose we have
\(n_1 \cdots n_{N_1-2}+1 \) being members of \(\frac{H}{M} \). Then let \(x_1 \in n_1', \ldots x_{N_1-2}+1 \in n_{N_1-N_2+1} \), where the \(x_i \) are members of \(X \).

We show that the \(x_i \) are linearly dependent modulo \(M \). For if not, we could select \(N_2 \) vectors in \(X \) which are linearly independent modulo \(H \), and combine them with the \(x_i \), and get a set of \(N_1+1 \) vectors in \(X \), linearly independent modulo \(M \).

This is a contradiction.

Reversing the process, we see that \(\dim \frac{H}{M} \geq N_1 - N_2 \).

Note: \(\dim \frac{X}{M} = N \) if and only if there is an \(N \) dimensional space \(Q \) such that \(M \oplus Q = N \).

\[**\|\] **

Theorem: If \(M \) is a closed subspace of a Banach space, and \(Q \) is finite dimensional, then \(M \oplus Q \) is closed.

Proof: Suppose \(x_n \in M \oplus Q, x_n \rightarrow x \). Show \(x \in M \oplus Q \).

We do this by extracting a subsequence of \(\{x_n\} \) which converges to a member of \(M \oplus Q \).

If \(x_n = y_n + z_n \) with \(y_n \in M, z_n \in Q \); and if \(\{z_n\} \) have a bounded subsequence, then the theorem is proved. First, the \(z_n \) would have a convergent subsequence, \(\{z_{nk}\} \). Then if \(z_{nk} \rightarrow z \), then \(z \in Q \) and \(x_{nk} - z_{nk} \rightarrow x - z \). Therefore \(x - z \in M \), so \(x \in M \oplus Q \).

Suppose then that \(\{z_n\} \) diverge in norm to \(\infty \), then

\[
\left\{ \frac{x_n}{\|z_n\|} \right\} \text{ converges to } 0. \text{ Therefore } \frac{y_n}{|z_n|} - \frac{z_n}{|z_n|} \text{ converges to } 0. \text{ Now } \left\{ \frac{z_n}{|z_n|} \right\} \text{ have a convergent}
\]
subsequence to $z_0 \in Q$. Let \(\frac{z_{nk}}{|z_{nk}|} \rightarrow z_0 \). Then \\
\(\frac{y_n}{|z_n|} \rightarrow -z_0 \). So $z_0 \in M \cap Q$, a contradiction of the fact
that the sum is direct.
I. Compact Inverses of Differential Operators

We now consider differential expressions \(\mathcal{T} \) of the type discussed in section 0, on the interval \([a, \infty)\) where \(a \neq -\infty\), and where \([a, \infty)\) is given Lebesgue measure. Given \(y \in [a, \infty)\), we let \(f_1 \cdots f_n\) be a set of solutions of \(\mathcal{T}f = 0\) defined in \([a, \infty)\), (with no assumptions as to whether the \(f_i\) are in any Lp space), such that

\[
\begin{pmatrix}
 f_1(y) \\
 f'(y) \\
 f''(y) \\
 \vdots \\
 f^{n-1}(y)
\end{pmatrix}
= \begin{pmatrix}
 1 \\
 0 \\
 0 \\
 \vdots \\
 0
\end{pmatrix}
\quad \text{and} \quad
\begin{pmatrix}
 f_2(y) \\
 f'(y) \\
 f''(y) \\
 \vdots \\
 f^{n-1}(y)
\end{pmatrix}
= \begin{pmatrix}
 0 \\
 1 \\
 0 \\
 \vdots \\
 0
\end{pmatrix}

\]

and so on. These are a basis for the solution space of \(\mathcal{T}\), though it is to be noted that none of these need be in the domain of a maximal operator \(\mathcal{T}_{\mathcal{A}, p, q}\). If however there is some \(g\) such that \(\mathcal{T}_{\mathcal{A}, p, q}(g) = 0\), then \(g\) is a linear combination of the \(f_i\). Also, since all the coefficients of \(\mathcal{T}\) are infinitely differentiable, each \(f_i\) is infinitely differentiable on \([a, \infty)\).

The function \(x \rightarrow \begin{pmatrix}
 f_1(x) \\
 f'_1(x) \\
 \vdots \\
 f^{n-1}_1(x)
\end{pmatrix}\) is a

\[
\begin{pmatrix}
 f_1(x) & \cdots & f_n(x) \\
 f'_1(x) & \cdots & f'_n(x) \\
 \vdots & \ddots & \vdots \\
 f^{n-1}_1(x) & \cdots & f^{n-1}_n(x)
\end{pmatrix}
\]

function from \([a, \infty)\) to the set of \(n \times n\) complex valued matrices. This function of course depends on \(y\), in that for a different \(y\) we get a different function. If we consider the function from \([a, \infty)\) to the \(n \times n\) matrices constructed as above with respect to the point \(y\), for each \(y \in [a, \infty)\), we obtain a function in \([a, \infty) \times [a, \infty)\) defined by \((x, y) \rightarrow \phi(x)\)

where \(\phi(x) = \begin{pmatrix} f_1(x) & \cdots & f_n(x) \\ f'_1(x) & \cdots & f'_n(x) \\ 1 & \cdots & n \\ \vdots & & \vdots \\ f_{n-1}^n(x) & \cdots & f_{n-1}^n(x) \\ 1 & \cdots & n \end{pmatrix}\) and the \(f_i\) have

and the property that

\[
\begin{pmatrix} f_1(y) & \cdots & f_n(y) \\ f'_1(y) & \cdots & f'_n(y) \\ 1 & \cdots & n \\ \vdots & & \vdots \\ f_{n-1}^n(y) & \cdots & f_{n-1}^n(y) \\ 1 & \cdots & n \end{pmatrix} = I
\]

solutions of \(Tf = 0\). (I is the identity matrix.) We write this function \((x, y) \rightarrow M(x, y)\). It is a fact that \(M(x, x) = I\), \(M(x, y) M(y, z) = M(x, z)\).

Let \(C^n[a, \infty)\) be the set of all \(n\)-times continuously differentiable functions on \([a, \infty)\). If \(g\) is continuous on \([a, \infty)\), there is a unique \(f \in C^n[a, \infty)\) such that \(Tf = g\),

Further it follows

\[
\begin{pmatrix}
 f(a) \\
 f'(a) \\
 \vdots \\
 f^{n-1}(a)
\end{pmatrix}
= \begin{pmatrix}
 0 \\
 0 \\
 \vdots \\
 0
\end{pmatrix}
\]

from variation of constants that

\[
f(x) = \int_a^x M_{ln}(x,y) a^{-1}(y) g(y) dy.
\]

1.0 Theorem: Suppose \(f \in A_n([a, \infty)) \) (see definition 0.6), and \(T^f = 0 \) a.e. with \(0 = f(a) = f'(a) \cdots f^{n-1}(a) \). Then \(f \) is identically 0.

Proof: This is standard.

A corollary of the above theorem is that for a finite interval \(I \), the solution space of \(T_{\tau, p, q} \) is \(n \)-dimensional and thus all solutions are infinitely differentiable, so we get no new solutions besides the classical ones.

1.1 Theorem: Let \(g \in L^q[a, x_1] \) where \(x_1 \) is finite, \(a \) is finite as always and where \(1 \leq q < \infty \). Then there is a unique \(f \) in \(L^p[a, x_1] \) such that \(T_{\tau, p, q} f = g \), and \(f(a) = f'(a) = \cdots = f^{n-1}(a) = 0 \). For this \(f \),

\[
f(x) = \int_a^x M_{ln}(x,y) a^{-1}(y) g(y) dy.
\]

Proof: Uniqueness follows from theorem 1.0. Existence could be proved by quoting theorems, but we will prove existence and establish the formula at the same time.

We note that the maximal operator \(T_{\tau, p, q} \) on \(L^p[a, x_1] \) is closed. Let \(g_k \rightarrow g \) in \(L^q[a, x_1] \) with \(g_k \) continuous on \([a, x_1] \). Then \(f_k(x) = \int_a^x M_{ln}(x,y) a^{-1}(y) g_k(y) dy \) converges uniformly on \([a, x_1] \) to \(f(x) = \int_a^x M_{ln}(x,y) a^{-1}(y) g(y) dy \). The
reason for this is that $M_{\ln}(x,y)$ is continuous and therefore uniformly bounded by B on $[a,x_1] \times [a,x_1]$. Therefore for each $x, M_{\ln}(x,\cdot) a_{n}^{-1}(\cdot) \in L^{p'}[a,x_1]$, and
\[||M_{\ln}(x,\cdot)||_p \leq B |x_1 - a|^{\frac{1}{p}} \sup_{x \in [a,a_n]} |a_{n}^{-1}(x)|, \]
where $p' = 1 - \frac{1}{q}$. Since the dual of $L^q[a,x_1] = L^{p'}[a,x_1]$, it follows that f_k converges uniformly to f and incidentally that $f = \int_a^x M_{\ln}(x,y) a_{n}^{-1}(y)g(y)dy$ is uniformly bounded and continuous, and hence is in $L^{p}[a,N]$. Since $\{f_k\}$ converges uniformly to f, it also converges in $L^{p}[a,N]$. Also each f_k is in the domain of the maximal operator, and $T f_k = g_k$. Now we use the fact that the maximal operator is closed to say that f is in the domain of the maximal operator, and
\[T_{p',q} f = g. \]
Now we note that $f_k'(x) = \int_a^x M_{\ln}(x,y) a_{n}^{-1}(y)g(y)dy$, so the f_k' converge uniformly on $[a,x_1]$. If we knew that $\{f_k\} \xrightarrow{unif} f'$, we would know that $f'(a) = 0$. But $f(x) = \int_a^x f'(y)dy + f(a)$, and $f(a) = 0$, so $f(x)$
\[= \int_a^x f'(y)dy. \] f is the uniform limit of the f_k', so $f(x)$
\[= \lim_{k \to \infty} \int_a^x f_k'(y)dy \text{ uniformly on } [a,x_1] \text{ and so } f(x)
\[= \int_a^x \lim_{k \to \infty} f_k'(y)dy. \] But this implies that $f'(y) = \lim_{k \to \infty} f_k(y)$ for every y, and thus $f'(a) = 0$. Repeating the argument, we see that $f^j = 0$ for every $j \leq n - 1$. The theorem is proved.

We now consider the minimal operator T_0, T, p, q corresponding to T, noting that if $T_0, T, p, q f = g$, we have
\[f(x) = \int M(x,y) a_n^{-1}(y) g(y) \, dy. \]

When it is clear which \(\tau, p, \) and \(q \) we mean, we shall abbreviate the minimal operator as \(T_0 \), and the maximal operator as \(T \). Unless it is stated otherwise, we assume that \(1 \leq p < \infty \), and \(1 \leq q < \infty \).

Since the minimal operator on a finite interval is an integral operator with continuous kernel, theorem 0.10 is obviously true for it. Our job is to analyze what happens on the finite interval.

The following theorem is an important special case. It is exercise 52, page 518, Dunford and Schwartz (1).

1.2 Theorem: Let \(1 < p < \infty \), \(1 \leq q < \infty \). Let \(S \) be an interval of real numbers, \(\mu \) be Lebesgue measure and suppose \(K \) is a complex valued measurable function on \(S \times S \) such that

\[
\left[\int_{S \times S} |K(s,t)|^p \mu(ds) \right]^{\frac{1}{p'}} = M < \infty. \]

Let \(g = Tf \) be defined by \(g(s) = \int S K(s,t) f(t) \, dt \). Then \(T \) is a compact operator in \(L^p(S \times S, \mu) \) whose norm is at most \(M \).

If \(p = 2 \), this condition reduces to \(K \) being in \(L^2(S \times S) \).

When \(S = [a, \infty) \) with Lebesgue measure, and \(K(s,t) = M_{ln}(x,y) a_n^{-1}(y) \), we may use theorem 1.2 to get some information about the minimal operator. In order to do this, we first examine more closely the make-up of \(M_{ln}(x,y) \).

Consider a formal differential expression \(\tau \) with \(a_n \equiv 1 \), i.e. \(\tau = D^n + a_{n-1} D^{n-1} \ldots + a_0 \). Let \(F \) be the matrix
A fundamental matrix Φ for F is a solution of $\Phi' = F\Phi$ with the property that $|\Phi(x)| = \det \Phi(x)$ is never 0 for any x in $[a, \infty)$. Let Φ be a fundamental matrix for F. Then (see chapter 3 of Coddington and Levinson (1) for a discussion of these points) $M(x,y) = \Phi(x)\Phi^{-1}(y)$, where $M(x,y)$ is related to T as previously. Now if Φ is a fundamental matrix for F, Φ^{*-1} is a fundamental matrix for $-F^*$, where $*$ denotes taking the conjugate transpose. But if we have a fundamental matrix for $-F^*$, its bottom row is a set of n linearly independent solutions of the adjoint equation $T^*f = 0$. (T^* is the classical adjoint of T, its definition is in Coddington and Levinson (1), chapter 3.)

Now $M(x,y) = \Phi(x)\Phi^{-1}(y) = \Phi(x) \left[\Phi^{*-1}(y)\right]^*$. The bottom row of $\Phi^{*-1}(y)$ is moved up to the last column under the operation of transposition, so $\Phi^{-1}(y)$ has the property that its nth column is a set of conjugate of linearly independent solutions of $T^*f = 0$. Now $M_{ln}(x,y)$ is the inner product of the first row of $\Phi(x)$ with the nth column of
\(\widehat{\Phi}(y) \). Therefore \(M_{ln}(x,y) = \sum_{i=1}^{n} f_i(x) \overline{\psi}_i(y) \), there \(\{f_i\} \) are \(n \)
linearly independent solutions of \(\mathcal{T} f = 0 \), and the \(\psi_i \) are \(n \)
linearly independent solutions of \(\mathcal{T}^+ \psi = 0 \).

We now use these results to prove a theorem. This theorem, for \(\mathcal{T} = \mathcal{T}^+ \), is equivalent to theorem XIII.4.1, page 1330, Dunford and Schwartz (2).

1.3 Theorem: If \(\mathcal{T} = \sum_{n=0}^{\infty} a_n D^{n-1} + \cdots + a_0 \), and every
solution \(f \) of \(\mathcal{T} f = 0 \) is in \(L^2[a,\infty) \), and further every
solution \(\psi \) of \(\mathcal{T}^+ \psi = 0 \) is in \(L^2[a,\infty) \), then the minimal
operator \(T_0, \mathcal{T}, 2,2 \) is compact.

Proof: Define \(K(x,y) = M_{ln}(x,y) \) \(\begin{cases} x \geq y \\ = 0 \end{cases}\) \(y > x \).

\(K \) is obviously in \(L^2[a,\infty) \times [a,\infty) \), using the equation
for \(M_{ln}(x,y) \). We now use theorems 1.1 and 1.2, and the
result follows.

Remark: We can use theorems 1.1 and 1.2 to get the
following stronger theorem.

1.3a Theorem: If \(\mathcal{T} \) is as above, every solution of \(\mathcal{T} f = 0 \)
is in \(L^p[a,\infty) \) \(1 < p < \infty \), and every solution of \(\mathcal{T}^+ \psi = 0 \) is
in \(L^{p'}[a,\infty) \), where \(\frac{1}{p'} = 1 - \frac{1}{p} \), then the minimal operator
\(T_0, \mathcal{T}, p, p \) is compact.

1.4 Definition: We define a linear operator \(C_x^y \) on the set
of functions defined on \([a,\infty) \) as follows:

\[
\begin{align*}
[c_x^y f](z) &= f(z) & z &\in [x,y] \\
[c_x^y f](z) &= 0 & z &\notin [x,y]
\end{align*}
\]

Let us consider the minimal operator T_0, \mathcal{T}, p,q on $[a,\infty)$, with $1 \leq p < \infty$, $1 \leq q < \infty$, and abbreviate this operator by T_0.

1.5 Lemma: If x and y are finite, $C_y^{T^{-1}}$ is a compact operator from $L^q[a,\infty)$ into $L^p[a,\infty)$.

Proof: $C_y^{T^{-1}}(g) = C_x^f$, where $f = T_0^{-1}(g)$. $[C_x^f](z) = \int_a^\infty M_n(z,t)a_n^{-1}(t)g(T)dT$ if $z \in [x,y]$. Otherwise $[C_x^f](z) = 0$.

Thus $[C_x^f](z) = \int_a^\infty K(z,t)g(t)dt$ for $z \in [x,\infty)$ where

$\begin{cases} K(z,t) = 0 & \text{when } z \notin [a,y] \\ K(z,t) = 0 & \text{when } z < t \\ K(z,t) = M_n(z,t)a_n^{-1}(t) & \text{elsewhere} \end{cases}$

and $[C_x^f]z = 0$ for $z \in [a,x]$.

Consider the operator T' defined by $[T'g](z) = \int_a^\infty K(z,t)g(t)dt$ where $g \in L^q[a,\infty)$, $T'g \in L^p[a,\infty)$. Using theorem 1.2, we see that T' is compact from L^q into L^p.

1.6 Theorem: T_0^{-1} is compact (defined on range T_0) if and only if the sequence $T_n = C_n^{T_0^{-1}}$ converges to T_0^{-1} in the normed operator topology ($\| T \| = \sup \| Tf \|$).

Proof: First, we note that for each g in range T_0, $T_n g \to g$ in $L^q[a,\infty)$. So $T_n \to T_0^{-1}$ pointwise always, whether the convergence holds in operator norm or not.

If $T_n \to T_0^{-1}$ in operator norm, it is clear that T_0^{-1} is
compact since the compact operators are a closed set under this norm. (See chapter III, Goldberg for all necessary information on compact operators.)

Conversely, suppose T^{-1}_0 is compact. Then, if B is the unit ball in $L^q[a,\infty)$, T^{-1}_0B is compact in $L^p[a,\infty)$. Therefore given $\varepsilon > 0$, there is a finite set \{f_1 \cdots f_n\} in $T^{-1}_0(B)$ such that for every f in T^{-1}_0B, there is a j such that $\|f_j - f\|_p < \varepsilon$. Pick N_1 so large that for each i, $(i = 1 \cdots n)$, $\|c^n_{a}f_i - f_i\| \leq \varepsilon$ for all $n > N_1$. We may do this since $\lim_{n \to \infty} c^n_{a}f_i = f_i$ in p norm for each i. (Note that this would not be true if $p = \infty$.)

Now, if $f \in T^{-1}_0(B)$, $\|c^n_{a}f - f\|_p \leq \|c^n_{a}f_i - f_i\|_p + \|f_i - f\|_p \leq 2\varepsilon$ for all $n > N_1$. So, for $g \in B \cap R(T_0)$, we have $\|T^{-1}_0(g) - T^{-1}_n(g)\|_p = \|c^n_{a}T^{-1}_0(g) - T^{-1}_0(g)\|_p \leq 2\varepsilon$. So T_n converges to T^{-1}_0 in operator norm.

*** *** ***

Remark: The following theorem is really a special case of the well known theorem: "Finite dimensional extensions of compact operators are compact."

1.7 Theorem: If T^{-1}_0, T, p, q is compact, where as usual $1 \leq p < \infty$, $1 \leq q < \infty$, then every extension T of this operator to an operator from $L^q[a,\infty)$ into $L^p[a,\infty)$ is compact. [We do not necessarily assume $D(T)$ is all of $L^q[a,\infty)$. When we say T is compact from $L^q[a,\infty)$, we mean T is a compact operator from its domain $D(T)$ (which is
necessarily closed) into $L^p[a, \infty)$, where $D(T)$ has the $L^q[a, \infty)$ topology.]

Proof: Since $T_0^{-1} = T_0$, T^*_p,q has the property that T_0^{-1} is compact, then T_0^{-1} is continuous and thus range $T_0 = D(T_0^{-1})$ is closed, due to the fact that T_0 is closed. But $T^* = T_0^*,q'_p$ where T^* means the adjoint of T_0. (This is theorem VI.1.9, Goldberg, page 130.) Therefore the kernel of T^* is finite dimensional. But $\text{range } T_0 = I [\ker T^*]$ (Goldberg (1), page 59). Also if N is finite dimensional and X is any linear space containing N, $\dim \frac{X}{N} \leq \dim N$. (Goldberg (1), page 59, equation 1.) Therefore the deficiency of the range T_0 in $L^p[a, \infty)$ is finite, since $\text{range } T_0 = \text{range } T_0^{-1}$. Therefore domain T is equal to $[\text{domain } T_0^{-1}] \oplus Q$, where Q is a finite dimensional subspace of $L^q[a, \infty)$. By theorem II.1.11, page 48, Goldberg, we see that Q, being finite dimensional, admits a projection, so there is a positive real number C such that $\|x + y\| \geq C \|x\|$ for $x \in \text{range } T_0$, $y \in Q$. Therefore if B is the unit ball in $L^q[a, \infty)$, the set of all x such that $x \in \text{range } T_0$ and $x + y \in B$ has the property that $\|x\|_p \leq \frac{1}{C}$.

Now let $\{z_n\} = \{x_n + y_n\}$ be a sequence in $B \cap D(T)$, where $x_n \in \text{range } T_0$, $y_n \in Q$. $T(x_n + y_n) = T(x_n) + T(y_n) = T_0^{-1}x_n + T_0^{-1}y_n$. By compactness of T_0^{-1}, $\{T_0^{-1}x_n\}$ has a convergent subsequence, since $\{x_n\}$ is bounded (by the preceding paragraph). Call this subsequence $\{T_0^{-1}(x_{n_k})\}$. Now
similarly \(\{ y_{n_k} \} \) are bounded, and since any operator on a finite dimensional space is compact, \(\{ Ty_{n_k} \} \) have a convergent subsequence, \(\{ Ty_{n_k} \} \). Then \(\{ Tz_{n_k} \} \) converge.

\[\text{***} \]

1.8 Lemma: Let \(T_1 \) and \(T_2 \) be operators from a Banach space \(X \) to a Banach space \(Y \) such that \(T_2 \) is continuous and defined on all of \(X \), and \(T_1 \) is closed. Then \(T_1 + T_2 \) is closed.

Proof: We show \(\text{graph} \ (T_1 + T_2) = \text{graph} \ (T_1 + T_2) \). Let \((x_n, y_n) \in \text{graph} \ (T_1 + T_2) \), \((x_n, y_n) \to (x, y) \). (i.e. \(x_n \to x, y_n \to y \)). Then \(y_n = T_1 x_n + T_2 x_n \). So \(y_n - T_2 x_n = T_1 x_n \). Now since \(T_2 \) is continuous, \(T_2 x_n \) converges to \(T_2 x \). Therefore, since \(y_n \) converges, \(T_1 x_n \) converges to \(y - T_2 x \). Therefore \((x_n, T_1 x_n) \in \text{graph} \ T_1 \) and \(x_n \) and \(T_1 x_n \) converge. Since \(T_1 \) is closed, \((x, T_1 x) \in \text{graph} \ T_1 \). Therefore \(x \in \text{domain} \ T_1 + T_2 \), and \((T_1 + T_2)x = y - T_2 x + T_2 x = y \).

\[\text{***} \]

1.9 Theorem: If \(T_0 \), \(T, p, q \) is compact, then for any bounded operator \(B \), and any extension \(T \) of \(T_0 \), \(T, p, q \) such that \(T \leq T, p, q \), \(T + B \) has closed range.

Proof: Any finite dimensional extension of a closed operator is closed, so \(T \) is closed. Therefore \(T + B \) is closed, by lemma 1.8. We show that the range of \(T + B \) is closed.

Suppose it is not closed. Then by corollary III.1.10, page 81, Goldberg (1), there is an infinite dimensional
closed subspace S in $D(T + B)$ such that $(T + B)$ restricted to S is compact. Let $\{y_n\}$ be a sequence in S such that
$\|y_n - y_j\| \geq \varepsilon$ for $j \neq n$ and some fixed $\varepsilon > 0$, and
$\|y_i\| = 1$ for every i. $\{(T + B)y_n\}$ is a bounded set, since $T + B$ is bounded (because compact) on S.

Now $D(T) = D(T_0) \oplus \ker T \oplus Q$, where $\ker T = \{f | Tf = 0\}$. (This is true because $\ker T$ is linearly independent modulo $D(T_0)$, and T is a finite dimensional extension of T_0.)

Now let $y_n = r_n + s_n + v_n$, $r_n \in D(T_0)$, $s_n \in \ker T$, $v_n \in Q$. Since $(T + B)y_n$ is a bounded set, and By_n is a bounded set, we have Ty_n is a bounded set. Therefore $\{T_0 r_n\}$ is a bounded set, because range T_0 admits a projection, since it is closed and of finite deficiency. Therefore $\{r_n\}$ have a convergent subsequence, because T_0^{-1} is compact. But T restricted to Q is a bounded 1-1 linear operator onto $T(Q)$, and since every operator from a finite dimensional space to another is compact, and since $T_0 v_n$ is bounded because $T(Q)$ admits a projection, we have in particular that $\{v_n\}$ has a convergent subsequence. Call it $\{v_{n_k}\}$. $\{r_{n_k}\}$ is a subsequence of $\{r_n\}$ and so is convergent. Now $y_{n_k} = r_{n_k} + v_{n_k} + s_{n_k}$. But $\{r_{n_k}\}$ and $\{v_{n_k}\}$ are bounded, so $\{s_{n_k}\}$ is bounded. Therefore it has a convergent subsequence, $\{s_{w_{n_k}}\}$.

Now $\{y_{w_{n_k}}\} = \{r_{w_{n_k}} + s_{w_{n_k}} + v_{w_{n_k}}\}$ is a convergent subsequence of $\{y_n\}$. This contradicts the assumption that $\|y_n - y_j\| \geq \varepsilon$ for $n \neq j$.

*** ***
1.10 Definition: Let T be a linear operator with domain and range contained in a normed space X. The essential spectrum of T, written $\sigma_e(T)$, is defined by $\sigma_e(T) = \{ \lambda | R(\lambda I - T) \text{ is not closed} \}$.

Note: If $T - \lambda I$ is 1-1 and closed and X is complete, and $\lambda \notin \sigma_e(T)$, the Banach open mapping theorem says $(T - \lambda I)^{-1}$ is continuous.

1.11 Corollary: If T_0, \mathcal{T}, p, p' is compact, where $1 < p < \infty$, and $T_0 \mathcal{T}, p \supseteq T \supseteq T_0, \mathcal{T}, p, p'$, and B is bounded linear operator from $L^p[a, \infty)$ to $L^p[a, \infty)$, then $\sigma_e(T + B)$ is empty.

Proof: Let $B_1 = B - \lambda I$, and use theorem 1.8.

1.12 Theorem: Let T be a self adjoint operator on a Hilbert space. Then the essential spectrum $\sigma_e(T)$ is the set of non isolated points of the spectrum of T.

Proof: This is theorem XIII.6.5, Dunford and Schwartz (2), page 1395. (It should be noted that when \mathcal{T} is classically self adjoint, and we are working in $L^2[a, \infty)$, most of the previous theorems can be extracted from section XIII.6, and XIII.7 of Dunford and Schwartz (2).)

1.13 Corollary: If T is as in theorem 1.12, and $\sigma_e(T)$ is empty, then every point of the spectrum of T is an eigenvalue of T corresponding to some eigenvector.

Theorem 1.9 has a partial converse. First, we need a few lemmas.

Note: This lemma is deducible from the proof of XIII.6.28,
1.14 Lemma: Let T be a formal differential operator, given by $T = \sum_{i=0}^{n} a_i D^i$. Define $T + f$ to be the differential expression $\sum_{i=1}^{n} a_i D^i + (a_0 + f)$. Let f be continuous and bounded. Then $T_0, T + f, p, p = T_0, T, p, p + B_f$, where B_f is the bounded linear transformation defined by $B_f g = f \cdot g$. Also $T + f, p, p = T, p, p + B_f$.

Proof: To prove (a) we need only to show the domains are equal. The same is true for (b). In the case of (b), $g \in D(T, p, p) \implies g$ is $n - 1$ times differentiable and D^{n-1} is absolutely continuous, $g \in L^p[a, \infty)$, $Tg \in L^p[a, \infty)$. But $Tg \in L^p[a, \infty)$, $\implies Tg + fg \in L^p[a, \infty)$, since $fg \in L^p[a, \infty)$. Thus the domains are equal.

In the case of (a), $g \in$ domain of the minimal operator corresponding to T $\implies g$ is $\in D(T, p, p)$ and there is a sequence $\{g_n\}$ of compact support functions in (a, ∞) which are in $D(T, p, p)$ and have the property that $g_n \to g$ and $T g_n$ converges, both in $L^p[a, \infty)$. In this case, $(T + f)g_n$ also converges, so $g \in D(T_0, T + f, p, p)$. The converse is proved the same way.

1.15 Lemma: Let $T, p, p \supseteq T \supseteq T_0, T, p, p$ (where $1 \leq p < \infty$). Then $\sigma_e(T) = \sigma_e(T_0)$.

Proof: If $\lambda \in \sigma_e(T - \lambda I)$, $\lambda \in \sigma_e(T_0)$. For if not, $T_0 - \lambda I$ has closed range. Therefore $T_0, T - \lambda, p, p$ has closed range. But $T, p, p - \lambda I = T, p, p \supseteq T - \lambda I \supseteq T_0 - \lambda I$.

*** ***

1.15 Lemma: Let $T, p, p \supseteq T \supseteq T_0, T, p, p$ (where $1 \leq p < \infty$). Then $\sigma_e(T) = \sigma_e(T_0)$.

Proof: If $\lambda \in \sigma_e(T - \lambda I)$, $\lambda \in \sigma_e(T_0)$. For if not, $T_0 - \lambda I$ has closed range. Therefore $T_0, T - \lambda, p, p$ has closed range. But $T, p, p - \lambda I = T, p, p \supseteq T - \lambda I \supseteq T_0 - \lambda I$.
Therefore, since range $T - \lambda, p, p'$ is a finite dimensional extension of range $T_0, T - \lambda, p, p'$, we have by theorem 0.13 that range $T - \lambda I$ is a finite dimensional extension of range $T_0 - \lambda I$ and is therefore closed by theorem 0.14.

Conversely, if $\lambda \in \sigma_e(T_0 - \lambda I)$, suppose $\lambda \notin \sigma_e(T - \lambda I)$. Then, since range $T_0 - \lambda I$ has finite deficiency in $L^p[a, \infty)$, (see theorem IV.2.3, Goldberg, coupled with the fact that $(T_0)' = T, T_{\lambda^+}, p, p$), we have that range $T - \lambda I$ has finite deficiency in $L^p[a, \infty)$. Therefore range $T - \lambda, p, p'$ has finite deficiency in $L^p[a, \infty)$, and so is closed by theorem IV.1.12, Goldberg, page 100. This contradicts the fact that range $T_0, T - \lambda, p, p'$ is not closed, using theorem VI.2.7, Goldberg, page 137. (Also found in Rota(1).)

Note: A minimal operator has a continuous inverse iff its range is closed, by the Banach open mapping theorem. Thus $\lambda \notin \sigma_e(T_0, T, p, p')$ iff $T_0, T_2, p, p' - \lambda I$ has continuous inverse on its range.

The following is a partial converse of 1.8

1.16 Theorem: Suppose $\sigma_e(T_0, T, p, p')$ is empty, where T is classically self adjoint. Then T_0^{-1}, T_2, p, p' is compact.

Proof: Let T be a self adjoint extension of T_0, T_2, p, p' such that $T \subseteq T, T_2, p, p'$ (There is one by theorem XIII.6.10, Dunford and Schwartz, page 1400.) By 1.15, $\sigma_e(T)$ is empty. By 1.12, the spectrum of T consists only of isolated points.
Therefore the spectral decomposition of T is $T = \sum \lambda_k P_k$, where \{\lambda_k\} do not cluster and P_k is the projection on the space of eigenvectors corresponding to the eigenvalue λ_k.

If $f \in \text{D}(T)$, $\| Tf \| = \sqrt{\sum \lambda_k^2 (P_k f, f)}$.

Now since $T - \lambda I \subseteq T_{1,2} - \lambda I = T_{1,2}$ by 1.14, we have $\ker(T - \lambda I)$ is finite dimensional for every λ.

Therefore P_k is a projection on a finite dimensional subspace for every k.

Suppose $T^{-1}_{0,1,2} = I$ is not compact. Then there is a set

\[
\{f_n\} \subset \text{D}(T_0, T_{1,2}) \text{ with } \| T_0 f_n \| \leq 1, \text{ and with } \| f_n - f_m \| \geq \varepsilon \text{ for } n \neq m. \text{ (}\varepsilon\text{ is fixed.) This is true because } T_0^{-1} B \text{ has no finite } \varepsilon \text{ net for some } \varepsilon, \text{ where } B \text{ is the unit ball.}
\]

Now for every integer N, $\sum_{k=1}^{K} P_k$ is a projection on a finite dimensional subspace, since, if $k \neq m$, $P_k \perp P_m$.

For every N, there is an n_1 such that $n > n_1$

\[
\implies \| \sum_{k=1}^{N} P_k f_n - f_n \| > \frac{\varepsilon}{4}. \text{ This is true because } \{f_n\} \text{ is a bounded set since } T_0^{-1}, T_{1,2} \text{ is continuous, and our statement were false, then there would be a subsequence } \{f_{n_j}\} \text{ of } \{f_n\} \text{ such that } \| \sum_{k=1}^{N} P_k f_{n_j} - f_{n_j} \| \leq \frac{\varepsilon}{4}. \text{ However } \sum_{k=1}^{N} P_k f_{n_j} = s_j \text{ is a bounded sequence in a finite dimensional space. Therefore there are two terms, } s_n \text{ and } s_m, \text{ such that } \| s_n - s_m \| < \frac{\varepsilon}{4}.
\]

We then have $\| f_n - f_{n_0} \| \leq \| f_n - s_n \| + \| s_n - f_{n_0} \| + \| s_m - s_n \| + \| s_m - f_{n_0} \| \leq \frac{3\varepsilon}{4}$. This is a contradiction of the choice
of \{f_n\}, and establishes the statement.

Pick N so large that \(k > N \implies |\lambda_k| > \frac{8}{\epsilon} \). (This is possible since \(T \) is unbounded.) Pick \(n_1 \) such that

\[n > n_1 \implies \| \sum_{k=1}^{N} p_k f_n - f_n \| > \frac{\epsilon}{4}. \quad \| T f_n \|^2 \]

\[
> \sum_{k=N+1}^{\infty} \lambda_k^2 (p_k f_n, p_k f_n) \geq \frac{64}{\epsilon^2} \sum_{k=N+1}^{\infty} (p_k f_n, p_k f_n)
\]

\[
= \frac{64}{\epsilon^2} \| \sum_{k=1}^{N} p_k f_n - f_n \|^2 \quad (\sum_{k=1}^{\infty} p_k f_n = f_n^*).
\]

Therefore (\| T f_n \|^2 \geq \frac{64}{\epsilon^2} \cdot \frac{\epsilon^2}{16} = \frac{4}{4} = 4). Therefore (\| T f_n \| > 2)

This contradicts the choice of \{f_n\}.

*** *** ***

Remark: There is a good deal of literature about when the essential spectrum of \(\tau_0, \tau_2, 2 \) is empty. (See chapter XIII.7, Dunford and Schwartz (2), for example.) Thus we have a large class of non trivial examples where theorem 1.16 holds.

1.17 Theorem: If \(\tau_0, \tau_2, 2 \) has compact inverse, then \(\tau_0, \tau_2, 2 + \lambda I \) has compact inverse for each \(\lambda \in \mathbb{C} \) complex.

Proof: First, \(\tau_0, \tau_2, 2 + \lambda I = \tau_0, \tau_2, 2 + \lambda, 2 \) and is therefore 1-1. Also, we know that range \(\tau_0, \tau_2, 2 + \lambda I \) is closed, so that \((\tau_0 - \lambda I)^{-1}\) is continuous. (See theorem 1.9.)

If \(\tau_0^{-1} \) is not compact, then there is a sequence \(x_n \in \text{range} \tau_0 - \lambda I \) such that \(\| x_n \| \leq 1 \), \(x_n = (\tau_0 - \lambda I)y_n \), and \(\| y_n - y_k \| \geq \epsilon \) for \(n \neq k \). But \(\{y_n\} \subseteq D(\tau_0) \), so that by compactness of \(\tau_0^{-1} \) we have \(\| \tau_0 y_n \| \not\to \infty \). However, since
{x_n} are in the unit ball of Lp[a,\infty), we see by continuity of T_0^{-1} that \{y_n\} are uniformly bounded. i.e. There is a k > 0 such that \|y_n\| \leq k for every n. Therefore \|A y_n\| \leq k \|A\| for every n. So that since \|(T_0 - \lambda I)y_n\| \geq |\| T_0 y_n\| - \|A y_n\| |, we have \|(T_0 - \lambda I)y_n\| \rightarrow \infty as n \rightarrow \infty.

However we assumed that \|(T_0 - \lambda I)y_n\| = 1 for each n.

This contradiction establishes the theorem.

1.18 Theorem: Let T_0, T, p, q be a minimal operator from Lp[a,\infty) to Lq[a,\infty), with 1 \leq p < \infty, 1 < q < \infty. Let T be a restriction of T_0, T, p, q such that range T is closed, and D(T) \subseteq L_1(a,\infty) \cap L_\infty(a,\infty). Then T^{-1} is a compact operator from its range into Lp[a,\infty), where range T has the topology of Lq[a,\infty).

Proof: (a) Let T_o be the operator from domain T with L_\infty topology to range T with the Lq topology, such that T_o f = T f. In other words, T_o is algebraically T, but not topologically. We claim that T_o is closed.

Proof of claim: The proof is in several steps. First, range T is closed, and \overline{T} is l-1 since \overline{T} \subseteq T_0, T, p, q, so \overline{T} = T and thus T is closed from Lp[a,\infty) to Lq[a,\infty).

Second, if \{x_n\} \subset D(T_o) and \|x_n - x\|_\infty \rightarrow 0, \|T o x_n - y\|_q \rightarrow 0, then by the closed graph theorem \|T^{-1}(T_o x_n) - T^{-1}(y)\| \rightarrow 0. We need to show that x = T^{-1}(y). But T^{-1}(T_o x_n) = x_n, and since \|T^{-1}(T_o x_n) - T^{-1}(y)\| \rightarrow 0, we have x_nk \rightarrow T^{-1}(y) pointwise a.e. on [a,\infty). But by assumption, \{x_nk\} converge uniformly to f on
[a,\infty), \text{ so } f = T^{-1}(y) \text{ a.e. But both functions are continuous, so the equality holds everywhere. Therefore } T_\infty \text{ is closed.}

Now we define } T_1 \text{ to be an operator from } D(T) \text{ with the } L_1 \text{ topology to range } T \text{ with the } L_\infty \text{ topology by } T_1(f) = T(f). \text{ We claim } T_1 \text{ is closed.}

In fact, suppose } \{x_n\} \subset D(T_1), \text{ and } \|x_n - x\|_1 \rightarrow 0, \text{ and suppose } \|T_1x_n - y\|_q = 0. \text{ Then, since } T_\infty \text{ is a closed operator with closed range, } T^{-1}_\infty \text{ is continuous and so } \|T^{-1}_\infty(x_n - y)\|_\infty \rightarrow 0. \text{ Now there is a subsequence } x_{nk} \text{ such that } x_{nk} \rightarrow x \text{ a.e. But } \{x_{nk}\} \rightarrow T^{-1}_\infty(y) \text{ uniformly, so } x = T^{-1}_\infty y \text{ and } x \in D(T_\infty) = D(T_1). \text{ So } T_1 \text{ is closed. By the closed graph theorem, } T^{-1}_1 \text{ is bounded.}

We now come to the main part of the proof. It can best be motivated by a few pictures:

\begin{align*}
\text{Consider the sequence } f_1, f_2, f_3, \text{ etc. illustrated above. It will be weakly convergent to 0 in } L_p(a,\infty) \text{ for } p > 1, \text{ because everything in the dual of } L_p \text{ "gets small" outside compact sets. However, since the dual of } L_1 \text{ is } L_\infty, \text{ a}
\end{align*}
sequence in L_1 which looks like the above will not be weakly convergent to 0, intuitively because L_∞ functions do not have to get small outside compact sets. By theorem 1.6, if we have a sequence $\{x_n\}$ such that $\{x_n\}$ has no cluster points in L_p and $\|Tx_n\|_q = 1$, the x_n look somewhat like the f_n in the picture. (At least they do not get small outside compact sets.) However we shall show that the x_n have an L_1-weakly convergent subsequence, so that it has to get small outside compact sets. This will be a contradiction. We use the hypothesis about L_∞ to show that if the subsequence gets small in L_1 norm outside compact sets, then it gets small in L_p norm outside compact sets. With this somewhat shaky navigational guide, we attempt the proof.

Suppose T^{-1} is not compact. Since $C_0^{N^{-1}}$ is compact, for each N (since it is a restriction of $[C_0^{N^{-1}}]$), this means that $C_0^{N^{-1}}$ does not approach T^{-1} in operator norm as $N \to \infty$. (\{N\} contained in the positive integers.) Therefore, there is a set $\{y_n\}$ such that $\|y_n\|_q = 1$ for each n, and $\|C_0^{N^{-1}}y_n - T^{-1}y_n\|_p > \varepsilon$. For some fixed ε.

Now range T is a reflexive Banach space since it is a closed subspace of the reflexive Banach space $L_q[a,\infty)$. (See theorem 1.6.12, Goldberg (1), page 29.) Therefore $\{y_n\}$ has a subsequence $\{y_{nk}\} \to y$ weakly, $y \in$ range T. Note that T_1^{-1} is continuous from $L_q[a,\infty)$ to $L_1[a,\infty)$, and therefore is weakly continuous and thus takes weakly convergent sequences onto weakly convergent sequences. Therefore $T_1^{-1}(y_{nk}) \to T_1^{-1}(y)$ weakly in $L_1[a,\infty)$. Therefore
\{ |T^{-1}_{1}(y_{nk})| \} \cup \{ |T^{-1}_{1}(y)| \} \text{ is weakly sequentially compact in } L_{1}[a,\infty). \quad (| | \text{ indicates absolute value, and the statement is deduced from corollary IV.8.10, page 293, Dunford and Schwartz (1).}) \text{ Therefore, given } \varepsilon_1 > 0, \text{ there is a positive integer } N \text{ such that } \int_{a}^{\infty} |[T^{-1}_{1}y_{nk}](x)| \text{ d}x < \varepsilon_1, \text{ by theorem IV.6.9, Dunford and Schwartz (1), page 292.} \text{ (Taking the sets } E_n \text{ at the bottom of page 292 to be } [n,\infty).} \text{ Now }

|[T^{-1}_{\infty}(y_{nk})](x)| < B \text{ for every } x \in [a,\infty) \text{ and every } y_{nk}, \text{ due to the fact that } T^{-1}_{\infty} \text{ is continuous from } L_{q} \text{ to } L_{\infty}. \text{ (Note that since } y_{nk} \text{ is continuous, } ||y_{nk}|| = \sup_{x \in [a,\infty)} |y_{nk}(x)|.)\n
Therefore \int_{a}^{\infty} |T^{-1}_{1}(y_{nk})|^p \text{ d}x \leq B^{p-1} \int_{a}^{\infty} |[T^{-1}_{1}(y_{nk})](x)| \text{ d}x. \text{ Let } \varepsilon_1 = \frac{\varepsilon p}{4^{p}B^{p-1}}, \text{ where } \varepsilon \text{ is the number such that }

||C_{0}^{n}T^{-1}_{1}(y_{n}) - T^{-1}_{1}(y_{n})||p > \varepsilon. \text{ Then let } N \text{ correspond to } \varepsilon_1 \text{ as above. Let } n_{k} > N. \text{ Then } ||C_{0}^{n_{k}}T^{-1}_{1}(y_{nk}) - T^{-1}_{1}(y_{nk})||p = \int_{a}^{\infty} |[T^{-1}_{1}(y_{nk})](x)|^p \text{ d}x \leq \frac{\varepsilon}{4^{p}}. \text{ This is a contradiction.}

*** ******

We note that with } p = 1, \text{ the hypothesis about } L_{\infty} \text{ is unnecessary for the above argument. }

Note also that for } f \in D(T_{0}, T_{p}, q), \text{ f' } \in L_{1}[a,\infty) \text{ implies } f \in L_{\infty}[a,\infty).

1.19 Corollary \text{ T}_{0, T_{p}, q}^{-1} \text{ is compact if and only if there is a sequence of restrictions } T_{n} \text{ of } T_{0, T_{p}, q} \text{ (} l \leq p < \infty, \ l < q < \infty \text{) such that } 1 \text{ for each } n,
$D(T_n) \subset L_1[a,\infty) \cap L_\infty[a,\infty)$, \(2\) for each \(n\), range \(T_n\) is closed \(3\) If \(\epsilon > 0\), then for some \(N\), there is a bounded set \(S_N\) in range \(T_N\) such that if \(f \in D(T_0, T, p, q)\),
\[
\| T f \| q = 1, \text{ then } d(f, T^{-1}_N S_N) \leq \epsilon. \text{ (i.e. } \text{glb}\{\| f - g \|\} \leq \epsilon, \text{ where } g \text{ ranges over } T^{-1}_N S_N.)
\]

Proof: Suppose \(T^{-1}_0, T, p, q\) is not compact. Then there is a set \(\{x_j\} \in D(T_0, T, p, q)\) such that \(\| T_0, T, p, q(x_j) \| = 1\) for each \(n\), and \(\| x_j - x_k \| \geq \epsilon_1\) for some \(\epsilon_1 > 0\). Let \(\epsilon = \frac{\epsilon_1}{3}\), and pick \(n\) as guaranteed in \(3\). Pick \(y_j\) such that
\[
y_j \in T^{-1}_N S_N, \| y_j - x_j \| < \frac{\epsilon_1}{4}. \text{ Now } \{y_0\} \text{ have a cluster point. So we can find } j_1 \text{ and } j_2 \text{ such that } \| y_{j_1} - y_{j_2} \| \leq \frac{\epsilon_1}{4}.
\]
Then \(\| x_{j_1} - x_{j_2} \| \leq \| x_{j_1} - y_{j_1} \| + \| y_{j_1} - y_{j_2} \| \leq \frac{\epsilon_1}{4} + \frac{\epsilon_1}{4}\).
This is a contradiction of the choice of \(x_n\).

Conversely, if \(T^{-1}_0, T, p, q\) is compact, then consider \(\{x\}\) such that \(\| T^{-1}_0, T, p, q x \| = 1\) and \(x\) has compact support in \((a,\infty)\). This set has compact closure, so there is a finite \(\epsilon\) net in the set for every \(\epsilon > 0\). Given \(\epsilon\), let the \(\epsilon\) net be \(\{x_i\}^n_i\). Pick an interval \(J\) such that support \(x_i \subset J\) for every \(i\). Define our sequence \(B_n = T_0, T, p, q\) restricted to
\[
\{f | \text{support } f \subset (a,\infty)\}. \text{ Let } T_n = B_n^-\text{. Clearly range } T_n \text{ is closed. Now suppose } (f_1, T f_1) \in \text{graph } B_n^-\text{. Then support } f_1 \subset (a,\infty). \text{ This is proved as follows. If } (f_1, T f_1) \text{ is in graph } B_n^-, \text{ there is a sequence } \{g_i, T g_i\} \text{ such that } g_i \to f_1, T g_i \to T f_1, \text{ and } g_i \in D(B_n)\). \text{ Thus support } f_1 \text{ is}
contained in \((a,n]\), since \(f_1\) is continuous and vanishes almost everywhere outside \((a,n]\). (If it didn't, \(\|f_1 - f_1\| \not\to 0\).) So since \(D(T_n)\) consists of a set of continuous functions on \([a,N]\), \(D(T_n) \subseteq L_1 \cap L_\infty\). Now pick \(N\) such that \((a,N] \supseteq J\). Then each \(\{x_i\}_1^n\) is in \(D(T_n)\). Thus if \(x\) is of compact support, and \(\|T_0, \tau, p, q x\| = 1\),

\[
\exists x_i \in D(T_n) \text{ such that } \|x_i - x\| < \varepsilon, \text{ and } \|\mathcal{T} x_i\|_q = 1.
\]

Thus, if \(f\) is any element of \(T_0, \tau, p, q\), with

\[
\|T_0, \tau, p, q f\|_q = 1, \text{ then there is an } i \text{ such that } \|x_i - f\|_p < 2\varepsilon.
\]

Corollary: Suppose \(\delta_e(T_0, \tau, p, p)\) is not the complete set of complex numbers and suppose \(D(T_0, \tau, p, p) \subseteq L_1(a, \infty) \cap L_\infty(a, \infty)\), where \(1 < p < \infty\). Then \(T_0, \tau, p, p\) is compact.

Proof: \(D(T_0, \tau, p, p - \lambda I) = D(T_0, \tau, p, p)\). However, if \(\lambda \notin \delta_p(T_0, \tau, p, p)\), then \(T_0, \tau, p, p - \lambda I = T_0, \tau - \lambda, p, p\) has closed range and thus we use theorem 1.18 to get \(T_0, \tau, p, p - \lambda I\), and thus \(T_0, \tau, p, p\) compact.

Corollary: Suppose \(\delta_e(T_0, \tau, p, p)\) is not the complete set of complex numbers and suppose \(D(T_0, \tau, p, p) \subseteq L_1(a, \infty) \cap L_\infty(a, \infty)\), where \(1 < p < \infty\). Then \(T_0, \tau, p, p\) is compact.

Note: From the construction of the inverse of \(T_0, \tau, p, p\) the conditions of corollary 1.20 will hold if \(\frac{1}{a_n} \in L_\infty\), where \(\tau = \sum_{i=1}^n a_i D^i\), and also \(1\) each solution of \(\tau f = 0\) is in \(L_1(a, \infty) \cap L_\infty(a, \infty)\), and \(2\) each solution of \(\tau^* f = 0\) is in \(L_p'(a, \infty)\), where \(\frac{1}{p} + \frac{1}{p'} = 1\). Compactness has already been noticed (theorem 1.6) in this case, however.
The next theorem follows from the proofs above. The proof is relatively easy, using the Dunford-Pettis theorem. In our context, we need only the special cases above. In the theorem, let S be a locally compact Hausdorff space and let μ be a measure generated by a positive linear functional on the set of continuous compact support functions in S.

1.22 Theorem: Suppose T is a map from a reflexive Banach space B to a space R of bounded continuous functions on S. Suppose $R \subseteq L_1(S, \mu)$. Suppose finally that T is continuous from B to R_p, where R_p is R with the L_p topology, for some $1 \leq p \leq \infty$. Then T is compact from B to R_q where q is any number $1 \leq q < \infty$.

Proof: Let us pick any compact set $K \subseteq S$, and show C_kT is compact, where $C_kf = f|_K$. (i.e. $[C_kf](x) = f(x)$ if $x \in K$, $[C_kf](x) = 0$ if $x \notin K$.)

Let $\{y_n\} \subseteq B_1$ so $\|y_n\| = 1$ for each n. We show that $\{C_kT(y_n)\}$ has a cluster point in $L_q(S, \mu)$. To do this we will need to develop a few facts.

First, letting R_∞ be R with the L_∞ topology, we note that T is a closed map from B to R_∞. In fact, if $g_n \rightarrow g$ in B and $\|T(g_n) - h\|_\infty \rightarrow 0$, where h is a continuous bounded function on S, then $\|T(g_n) - T(g)\|_q \rightarrow 0$ by hypothesis, so as above $T(g) = h$. Thus T is closed from B to R_∞ and therefore continuous.

The same argument as before shows T is closed from B to R_1 and therefore continuous from B to R_1.

Now C_kT is a continuous map from B into $R|_K$ where $R|_K$
has the sup norm. It is thus compact to \(R_q |k(\mathbb{R}|k) \) with \(L_q \) norm) by several theorems (ex. 56, page 519, Dunford and Schwartz (1)), but we include a proof.

Since \(C_k \) is weakly continuous, then it takes weakly convergent sequences to weakly convergent sequences. Now \(\{y_n\} \) chosen above has a weakly convergent subsequence \(\{y_{nk}\} \). Thus \(\{Ty_{nk}\} \) has a weakly convergent subsequence in \(R_\infty \).

Define \(F_x(f) = f(x) \), for \(x \in S \) and \(f \in R \). \(F_x \) is a continuous linear functional on \(R_\infty \). Thus \([Ty_{nk}](x) \to [Ty](x) \) for every \(x \), if \(y_{nk} \overset{\text{w}}{\to} y \) in \(B \). Also, since \(T \) is bounded from \(B \) to \(R_\infty \), \(\{y_{nk}\} \) are a uniformly bounded set of functions in \(R \). Thus \(\{y_{nk}|k\} \) converge in \(L_q(S,\mu) \) by the Lebesgue dominated convergence theorem. So \(C_k T \) is compact from \(B \) to \(L_q(S,\mu) \).

However, \(\{Ty_{nk}\} \) is also weakly convergent in \(L_1(S,\mu) \). Suppose that \(\{Ty_{nk}\} \) has no convergent subsequence in \(L_q(S,\mu) \). Then there is an \(\varepsilon_1 > 0 \) such that \(||Ty_{nk}\|_q \neq \varepsilon_1 \) for \(k_1 \neq k_2 \). Pick \(k \) so large that

\[
\int_{S-k} |[Ty_{nk}](s)|^q \mu(s) < \frac{\varepsilon^q_1}{4^q Q^{q-1}} \quad \text{where } Q = \text{l.u.b. } \{||Ty_{nk}||_\infty \}.
\]

We can do this, as above in the proof of 1.18, by theorem IV.8.11, Dunford and Schwartz (1), page 294. Now \(\{Ty_{nk}\} \) restricted to \(k \) has a cauchy subsequence in \(L_q(S,\mu) \), and

\[
\int_{S-k} |[Ty_{nk}](s)|^q \mu(s) \frac{1}{q} < \frac{\varepsilon}{4}.
\]

This is a contraction, as above.

II. Formal Differential Expressions

Unless we say otherwise, in this section we work with differential expressions τ. We first discover several algebraic operations which preserve the compact inverse property, and use these to give large classes of examples.

2.0 Definition: Let T_0, τ, p, q be a minimal operator, $1 \leq p < \infty$, $1 \leq q < \infty$. We say T_0, τ, p, q is n-bounded if $f \in D(T_0, \tau, p, q)$ implies $\| D^nf \| q < \infty$. (For this definition, τ is not necessarily of order n.)

2.1 Theorem: If T_0, τ, p, q is N-bounded and has closed range, then there is a $c > 0$ such that $\| T_0, \tau, p, q f \| q \geq c \| D^Nf \| q$ for each $f \in D(T_0, \tau, p, q)$.

Proof: Consider the linear operator Q which maps $T_0 f$ to D^Nf. It is closed, for if $T_0 f_n \to g$ and $D^Nf_n \to h$, then since T_0^{-1} is continuous, $\{f_n\} \to f$ in $L^p[a, \infty)$, and thus $f \in D(T_0)$ and $T_0 f = g$. But since D^N, f, q is closed, we have $D^Nf = h$. Therefore $Q(g) = h$.

Furthermore, $D(Q) = \text{range } T_0$ and is closed in L^q. Therefore Q is a continuous linear mapping by the closed graph theorem, and the theorem is proved.

The following theorem can be extracted from the proof of theorem VI.8.1, Goldberg (1), page 166.

2.2 Theorem: Let T_0, τ, p, p be N-bounded with closed range. Let $v = \sum_{i=0}^{N-1} b_i D^i$, where each b_i is infinitely differentiable
and \(\sup_{a \leq s < \infty} \int_s^{s+1} |b_k(t)|^p \, dt < \infty, \ 0 \leq k \leq N - 1 \). Let

\[D(B) = \{ f \mid f \in L^p[0, \infty) \text{ and } v f \in L^p[0, \infty) \} \]

If \(f \in D(B) \), let

\[B f = v f \]

Then \(T_0, T + v, p, p = T_0, T, p, p + B \), and

\[D(B) \supseteq D(T_0, T, p, p) \]

Proof: We note that by theorem VI.811, Goldberg, page 166, \(v \) is \(T \) bounded, and for any \(\varepsilon > 0 \) there is a \(k \) such that \(\| B f \| \leq k \| f \| + \varepsilon \| T^{N-p} f \| \). Thus

\[D(B) \supseteq D(T_0, T, p, p) \]

Now if \(f \in D(T_0, T, p, p) \) then by theorem 2.1, \(\| T_0, T, p, p f \| \leq c \| T^{N-p} f \| \). Therefore if

\[f \in D(T_0, T, p, p), \| B f \| \leq k \| f \| + \varepsilon \| T_0, T, p, p f \| \]

Therefore \(\| B f \| \leq k \| f \| + \varepsilon (\| (T_0, T, p, p + B)f \| + \| B f \|) \). Pick \(\varepsilon \) so small that \(\varepsilon c < 1 \). Then \(\| B f \| (1 - \varepsilon c) \leq k \| f \|

+ \varepsilon c \| (T_0, T, p, p + B)f \| \), or

\[\| B f \| \leq \frac{k}{1 - \varepsilon c} \| f \| + \frac{\varepsilon c}{1 - \varepsilon c} \| (T_0, T, p, p + B)f \| \cdot \]

Now suppose \(\{ f_n \} \) are of compact support, and \(\{ f_n \} \) are Cauchy in \(L^p[0, \infty) \), and also \((T + v)f_n \) are Cauchy. Then by inequality \(\| B f \| \leq \frac{k}{1 - \varepsilon c} \| f \| + \frac{\varepsilon c}{1 - \varepsilon c} \| (T_0, T, p, p + B)f \| \).

Therefore \(\{ (T + v)f_n \} \) are Cauchy. Thus if \(f_n \rightarrow h \), then \(h \in D(T_0, T, p, p) \), and if \(\{ v f_n \} \rightarrow g_1 \) and \(\{ T f_n \} \rightarrow g_2 \), \(T_0, T + v, p, p(h) = g_1 + g_2 \). Now since \(T_0, T, p, p \) is closed, \(T h = g_2 \). But also \(v h \) is \(g_1 \), because of the following two facts. First, \(h \in D(T_0, T, p, p) \), and since \(\{ T_0, T, p, p f_n \} \) is Cauchy then...
\{D^n_{f_n}\} is Cauchy, so \(D^n_{f_n} \rightarrow D^n_h\) because \(D^n, p, p\) is closed.

(We don't know that \(B\) is closed.) Second, this fact implies by theorem VI.8.1 in Goldberg (1) that \(h \in D(B)\), and

\[||B(f_n - h)|| \leq k_1 ||f_n - h|| + \epsilon||D^n_{f} - h||, \]

so \(Bf_n \rightarrow B(h)\).

So \(h \in D(T_0, \mathcal{T}, p, p + B)\), and \(T_0, \mathcal{T}, p, p h + Bh = \mathcal{T} h + vh\)

\[= T_0, \mathcal{T} + v, p, p h. \]

Thus we have showed that \(T_0, \mathcal{T} + v, p, p \subseteq T_0, \mathcal{T}, p, p + B\). However, suppose \(f \in D(T_0, \mathcal{T}, p, p + B)\).

Then \(f \in D(T_0, \mathcal{T}, p, p)\). Thus there is a set \(\{f_n\}\) each of compact support in \([a, \infty)\) with \(\{f_n\} \rightarrow f\) and \(\{T f_n\} \rightarrow Tf\).

Thus \(D^n_{f_n} \rightarrow D^n f\), and so \(vf_n \rightarrow vf\). Therefore

\[f \in D(T_0, \mathcal{T} + v, p, p). \]

2.3 Theorem: Let \(\mathcal{T}\) and \(v\) be as in theorem 2.2 with \(T_0, \mathcal{T}, p, p^N\) bounded. Suppose \(T_0, \mathcal{T}, p, p\) is compact. Then \(T_0, \mathcal{T} + v, p, p\) is compact.

Proof: Suppose not. Then there is a set \(\{x_n\}\)

\(\subseteq D(T_0, \mathcal{T} + v, p, p)\) such that \(||T_0, \mathcal{T} + v, p, p x_n||\) is 1 for each \(n\), and \(||x_n - x_m|| > \epsilon\) for \(n \neq m\). Now by theorem 2.2, \(\{x_n\}\)

\(\subset D(T_0, \mathcal{T}, p, p)\). Since \(T_0, \mathcal{T}, p, p\) is compact, we have \(\|T x_n\| \not\rightarrow \infty\).

We now temporarily assume \(T_0, \mathcal{T} + v, p, p\) is continuous. Then \(\{x_n\}\) is a bounded set.

Suppose \(\{D^n x_n\}\) is a bounded set. Since \(\|vf\|p \leq k||f||p + \epsilon||D^n f||p\) for each \(f\) in \(D(T_0, \mathcal{T}, p, p)\), we have \(\{vx_n\}\) is a bounded set. However, since \(\|T x_n\| \not\rightarrow \infty\),

\(\{D^n x_n\}\) is a bounded set, and \(\|(T + v)x_n\| \geq \|T x_n\| - \|vx_n\|,\)
therefore \(\| (\mathcal{T} + v)x_n^k \| \) \(\to \infty \). But we assumed
\(\| (\mathcal{T} + v)x_n^k \| = 1 \) for each \(n \), a contradiction.

Suppose, however that \(\| D_n^N x_n^k \| \) is not a bounded set.

Then there is a set \(\{x_{nk}\} \) with \(\| D_n^N x_{nk} \| \to \infty \). Let \(\epsilon_1 < \frac{c}{2} \)
where \(c \) is as in 2.1 and \(\| v\| \leq k \| f \| + \| D_n^N f \| \) for each
\(f \) such that \(\| f \| \) and \(\| D_n^N f \| \) are both finite. Then

\[1 \quad \| vx_n^k \| \leq k \| x_n^k \| + \epsilon_1 \| D_n^N x_n^k \|. \]

Since \(\| (\mathcal{T} + v)x_{nk} \| = 1 \), we have \((\mathcal{T} + v) \frac{x_{nk}}{\| D_n^N x_{nk} \|} \to 0 \).

By 1, \(\exists N_1 \geq \frac{\| vx_{nk} \|}{\| D_n^N x_{nk} \|} \leq \epsilon_1 + \frac{\epsilon_1}{4} \) for \(n_k > N_1 \).

So there is an \(N_2 \) such that

\[\left\| (\mathcal{T} + v) \frac{x_{nk}}{\| D_n^N (x_{nk}) \|} - \frac{v(x_{nk})}{\| D_n^N x_{nk} \|} \right\| \leq \epsilon_1 + \frac{\epsilon_1}{2} \] for
\(n_k > N_2 \). But \(\left\| \mathcal{T} \frac{x_{nk}}{\| D_n^N x_{nk} \|} \right\| \geq \frac{c}{\| D_n^N x_{nk} \|} = c \) for
each \(n_k \). Since \(\epsilon_1 < \frac{c}{2} \), this is a contradiction. So under
the hypothesis that \(T_0^{-1}, \mathcal{T} + v, p, p \) is a continuous, we have
completed the proof.

Now suppose \(T_0^{-1}, \mathcal{T} + v, p, p \) is not continuous. Then its
range is not closed, so by corollary III.1.10, page 61,
Goldberg (1), there is an infinite dimensional closed
subspace \(s \) contained in \(D(T_0, \mathcal{T} + v, p, p) \) such that \(T_0, \mathcal{T} + v, p, p \)
is compact on \(s \). Now the unit ball in \(s \) is not compact.
Pick \(\{x_n\} \) such that \(\|x_n\| = 1 \), and \(\|x_n - x_m\| > \varepsilon \). Since \(T_0, \mathcal{T} + v, p, p \) restricted to s is compact, then it is continuous. So \(\{T_0, \mathcal{T} + v, p, p x_n\} \) is a bounded set. Let \(\|T_0, \mathcal{T} + v, p, p x_n\| \leq M \) for each \(n \). We now repeat the argument above.

Pick \(\varepsilon_1 < \frac{\varepsilon}{2} \), and let \(\|v f\| p \leq k \|f\| p + \varepsilon_1 \|D^N f\| p \) for each \(f \) such that both \(\|f\| \) and \(\|D^N f\| \) are finite. Then take two cases. First, if \(\{D^N x_n\} \) is a bounded set, then \(\{v x_n\} \) is a bounded set. But \(\|T x_n\| \rightarrow \infty \), since \(T_0, \mathcal{T}, p, p \) is compact. This \(\|(T + v)x_n\| \rightarrow \infty \), and this contradicts the fact that \(\|T_0, \mathcal{T} + v, p, p x_n\| \leq M \) for each \(n \).

However, if \(\{D^N x_n\} \) is not a bounded set, then there is a subsequence \(\{x_{n_k}\} \) with \(\|D^N x_{n_k}\| \rightarrow \infty \). Now

\[
\left\| \left(\mathcal{T} + v \right) \frac{x_{n_k}}{\|D^N x_{n_k}\|} \right\| \leq \frac{M}{\|D^N x_{n_k}\|} \rightarrow 0 \quad \text{as} \quad n_k \rightarrow \infty.
\]

Therefore as above

\[
\left\| \mathcal{T} \frac{x_{n_k}}{\|D^N x_{n_k}\|} \right\| = \left\| \left(\mathcal{T} + v \right) \frac{x_{n_k}}{\|D^N x_{n_k}\|} \right\| - \frac{v(x_{n_k})}{\|D^N x_{n_k}\|} \leq \varepsilon_1 + \frac{\varepsilon_1}{2} \quad \text{for} \quad n_k > N.
\]

But \(\frac{T x_{n_k}}{\|D^N x_{n_k}\|} \geq c \).

This is a contradiction.

\[\text{***} \quad \text{***} \]

We note that as a result of theorem 2.2, the domain of an \(N \)-bounded operator is preserved under adding of the operator \(v \), so \(T_0, \mathcal{T} + v, p, p \) is \(N \)-bounded.
We now prove a few more theorems before generating examples.

Theorem 2.4: Let \(T_1 \) be a formal differential expression such that \(T_0^{-1}, T_1, p, q \) is continuous. Let \(T_2 \) be a differential expression such that \(T_0^{-1}, T_2, q, r \) is compact. Let \(T_1 T_2(f) = \tilde{T}_1(T_2(f)) \) for \(f \) sufficiently differentiable.

Then \(T_0^{-1}, T_1 T_2, p, r \) is compact, where \(1 \leq p < \infty, 1 \leq q < \infty, \) and \(1 \leq r < \infty. \)

Proof: We first note that \(T_1 T_2 \) is a differential expression with nowhere vanishing leading coefficient. Now suppose \(T_0^{-1}, T_1 T_2, p, r \) is not compact. Then there is a set \(\{f_n\} \subset D(T_0, T_1 T_2, p, r) \) such that \(\|f_n - f_m\|_p > \varepsilon \) for \(r \neq m \), and \(\|T_1 T_2 f_n\| = 1. \)

We show first that \(D(T_0, T_1 T_2, p, r) \) \(\subset \{f|f \in D(T_0, T_2, p, q) \text{ and } T_2 f \in D(T_0, T_1, q, r)\}. \) In fact, if \(h \in D(T_0, T_1 T_2, p, r) \) then there is a sequence \(h_n \rightarrow h \) and \(T_2 T_2(h_n) \rightarrow T_1 T_2(h) \). Therefore since \(T_2 h_n \) is of compact support for each \(n \), and \(T_1 T_2 h_n \) is in \(L_r[a, \infty) \),

\[T_2 h_n \in D(T_0, T_1 T_2, p, r). \]

But since \(\{T_1 T_2(h_n)\} \) converge in \(L_r[a, \infty), \) and \(T_0^{-1}, T_1 T_2, q, r \) is continuous, then \(\{T_2 h_n\} \) converge in \(L_q[a, \infty) \). Thus \(h \in D(T_0, T_2, p, q) \) and \(T_2 h \in D(T_0, T_1, q, r) \).

Now consider \(\{f_n\} \) chosen above. \(\|T_2 f_n\|_q \rightarrow \infty \) since \(T_0^{-1}, T_2, p, q \) is compact. Therefore \(\|T_1 T_2 f_n\|_p \rightarrow \infty \) since
\(T_0, \mathcal{T}_1, q, r \) is continuous. This contradicts the possibility that \(\| \mathcal{T}_1 \mathcal{T}_2 f_n \|_r = 1 \).

2.5 Theorem: If \(T_0, \mathcal{T}_2, p, q \) is continuous, and \(T_0, \mathcal{T}_1, q, r \) is compact, then \(T_0, \mathcal{T}_1 \mathcal{T}_2, p, r \) is compact.

Proof: As above, if \(f \in D(T_0, \mathcal{T}_1 \mathcal{T}_2, p, r) \) then \(f \in D(T_0, \mathcal{T}_2, p, q) \) and \(\mathcal{T}_2 f \in D(T_0, \mathcal{T}_1, q, r) \). Now if \(\| f_n - f_m \|_p > \varepsilon \) for \(r \neq m \), and \(\| \mathcal{T}_1 \mathcal{T}_2 f_n \|_r = 1 \), then there is an \(\varepsilon \) such that \(\| \mathcal{T}_2 f_n - \mathcal{T}_2 f_m \|_q \geq \varepsilon_1 \) for \(r \neq m \), since \(T_0, \mathcal{T}_2, p, q \) is continuous. Thus, since \(T_0, \mathcal{T}_1, q, r \) is compact, \(\| \mathcal{T}_1 (\mathcal{T}_2 f_n) \|_r \rightarrow \infty \).

2.6 Theorem: If \(T_0, \mathcal{T}_1, p, p \) is n bounded and \(T_0, \mathcal{T}_1, p, p \) is continuous, and \(\mathcal{T}_2 \) is a constant coefficient operator of order \(m \), then \(T_0, \mathcal{T}_1 \mathcal{T}_2, p, p \) is \(n + m \) bounded.

Proof: First, we show that \(D(T_0, \mathcal{T}_1 \mathcal{T}_2, p, p) \) \(\subset \{ f | f \in D(T_0, \mathcal{T}_2, p, p) \) and \(\mathcal{T}_2 f \in D(T_0, \mathcal{T}_1, p, p) \). For if \(\| f_n \|_p \rightarrow 0 \) and \(f_n \) is of compact support for each \(n \) and \(\| \mathcal{T}_1 \mathcal{T}_2 f_n - g \|_p \rightarrow 0 \), then \(\mathcal{T}_2 f_n \) is of compact support for each \(n \), \(\mathcal{T}_1 (\mathcal{T}_2 f_n) \in \text{Lp}(a, \infty) \), so \(\mathcal{T}_2 f_n \in D(T_0, \mathcal{T}_1, p, p) \). But since \(T_0, \mathcal{T}_1, p, p \) is continuous, then \(\mathcal{T}_2 f_n \rightarrow T_0, \mathcal{T}_1, p, p(g) \), so \(f \in D(T_0, \mathcal{T}_2, p, p) \) and
\[T^2 f \in D(T_0, T_1, \mathcal{P}, p). \]

Now since \(f \in D(T_0, T^1_1, T^2, p, p) \) implies that
\[T^2 f \in D(T_0, T^1_1, p, p), \]
and since \(T_0, T^1_1, p, p \) is \(n \) bounded, we have \(\langle D^n T^2 \rangle f \in L^p(a, \infty) \). However \(D^n T^2 \) is itself a constant coefficient differential expression of order \(n + m \).

Therefore by theorem VI.6.2, Goldberg (1), page 160, \(f^{n+m} \in L^p(a, \infty) \) and so \(T_0, T^1_1, T^2, p, p \) is \(h + m \) bounded.

2.7 Theorem: If \(T^{-1}_0, T^1_1, p, q \) is continuous, and \(T^2 \) has \(r \)th coefficient 1, (i.e. \(T^2 = D^n + a_{n-1} D^{n-1} + \ldots + a_0 \)) then
\[D(T_0, T^1_1, T^2, r, q) = \{ f | f \in D(T_0, T^2, r, p) \} \]
and
\[T^2 f \in D(T_0, T^1_1, p, q) \]
where \(1 \leq p < \infty, 1 \leq q < \infty, 1 \leq r < \infty \).

Proof: Let \(f \) have compact support. If \(f \in D(T_0, T^1_1, T^2, r, q) \) then \(f^{n+m-1} \) is absolutely continuous and \(T^1_T^2 \in L^q(a, \infty) \). (\(n = \text{degree} \quad T^1_T^2, m = \text{degree} \quad T^1_1 \))
Thus \(f^n \in L^p(a, \infty) \) since it is continuous and of compact support.

Now if \(f \in D(T_0, T^1_1, T^2, r, q) \) then there is a sequence
\[\| f_j - f \|_r \rightarrow 0, \| (T^1_T^2) f_j - T^1_T^2 f \|_q \rightarrow 0, \]
where \(f_j \) is of compact support in \([a, \infty)\) for each \(j \). Since the \(T^2 f_n \)
are also of compact support, then \(T^2 f_n \in D(T_0, T^1_1, p, q) \) for each \(n \). But \(\| T^1_T^2 f_n \|_r \rightarrow T^1_T^2 f \|_q \rightarrow 0 \) implies that
\(\{ T^2 f_n \} \) is a Cauchy sequence in \(L^p(a, \infty) \), since \(T^{-1}_0, T^1_1, p, q \) is continuous. Now since \(T_0, T^1_1, r, p \) is closed, this means that
$f \in D(T_0, \mathcal{T}_1, r, p)$ and $\| \mathcal{T}_2 f_n - \mathcal{T}_2 f \|_p \to 0$.

2.3 **Corollary:** If T_0, \mathcal{T}_2, p, p is N-bounded, for some N, then if $T_0^{-1}, \mathcal{T}_1, p, p$ is continuous, $T_0, \mathcal{T}_1, \mathcal{T}_2, p, p$ is N-bounded.

Remark: Theorem VI.6.2, page 160, Goldberg tells us that if

$\mathcal{T} = D^n + a_{n-1}D^{n-1} + \cdots + a_0$, where all a_i are in L_∞, then T_0, \mathcal{T}, p, p is n bounded.

2.9 **Theorem:** If $\mathcal{T} = D^n + a_{n-1}D^{n-1} + \cdots + a_0$, where all a_i are in L_∞, then $T_0^{-1}, \mathcal{T}, p, p$ is not compact on $L_p[a, \infty)$.

Proof: Let ϕ be any function which is n-times continuously differentiable, and has compact support in $[a + 1, \infty)$. Suppose support $\phi(x) \subseteq [a, N]$. Let

$\phi(x) = \phi_j(x + 3jN)$ define a sequence of functions ϕ_j. Domain $\phi_j = [a + 3jN, \infty]$.

Let $Q_j(x) = \phi_j(x)$ for $x \in [a + 3jN, \infty]$ and

$Q_j(x) = 0$ for $x \in [a, a + 3jN]$.

Now $\| Q_i - Q_j \|_p = 2 \| \phi \|$ if $i \neq j$, but Q_j is n times continuously differentiable and $\| \mathcal{T}(Q_j) \|_p \leq L_0 \| Q_j \|_p$ + $L_1 \| DQ_j \|_p + L_2 \| D^2Q_j \|_p + \cdots + L_n \| D^nQ_j \|_p$, where $L_i = \| a_i \|_\infty$. But $\| Q_j \|_p = \| \phi \|_p$, $\| D(Q_j) \|_p = \| D\phi \|_p$, and $\| D^n\phi_j \|_p = \| D^n\phi \|_p$. Therefore $\{ \| \mathcal{T} Q_j \|_p \}$ is a bounded set of real numbers, so $T_0^{-1}, \mathcal{T}, p, p$ is not compact.
2.10 Corollary: If $\mathcal{T} = D^N + \sum_{i=0}^{N-1} a_i D^i$, then there is at least one non L_2 solution of $\mathcal{T}f = 0$ or $\mathcal{T}^+f = 0$ on $[a, \infty)$.

Proof: If all solutions were L_2, the minimal operator would have compact inverse.

We now have the theorems to generate examples. Given one \mathcal{T} such that T_0^{-1}, $\mathcal{T}_{p,q}$ is compact, we can multiply on the right or left by differential expressions whose minimal operators have closed range in the appropriate topologies, and get more compact inverse minimal operators. Further, if T_0, $\mathcal{T}_{p,p}$ is n bounded and has compact inverses, we can add coefficients of form $\sum_{i=0}^{n-1} a_i D^i$ where

$$\sup_{a \leq s < \infty} \int_s^{s+1} |b_k(t)|^p dt < \infty$$

and preserve the compact inverse property. If T_0^{-1}, $\mathcal{T}_{p,p}$ is compact, we can multiply on the right by any \mathcal{T}_1 with T_0^{-1}, $\mathcal{T}_1^{-1} p, p$ continuous and where $\mathcal{T}_1 = D^N + a_{n-1} D^{n-1} \cdots + a_0$ with all a_i bounded, and get T_0, \mathcal{T}_1, \mathcal{T}_2, p, p n-bounded with compact inverse.

To generate an example to use as a starting point is easy when $p = 2$. We shall give a general example below. We have several lemmas below which will allow us to get compact inverse minimal operators T_0, $\mathcal{T}_{p,q}$ from an L_2 example, where $p \geq 2$, $q \leq 2$.

The essential spectrum of constant coefficient operators from $L^p[0, \infty)$ into $L^p[0, \infty)$ is completely known (see Goldberg (1), theorem VI.7.2, page 163, and also Balslev and
Gamelin (1).) Thus we have no difficulty in constructing continuous inverse minimal operators of this type. Also perturbation theorems such as VI.8.1, page 167, Goldberg, allow us to proceed to non constant coefficient minimal operators with continuous inverse.

In the case of L^2, we can improve the n-boundness theorems in certain situations. We shall do this in the last theorem to get an extremely general class of examples in L^2.

Part b of the following theorem is generalized in theorem 2.18, but the proof is included because it motivates 2.18.

2.11 Theorem: Let $\lim_{x \to \infty} \Re(a_0(x)) = \infty$. Let

$$T = (-1)^n D^{2n} + a_0.$$ Then

(a) $T_0, T, 2, 2$ is n bounded;

(b) $T_0^{-1}, T, 2, 2$ is compact.

Proof: We select a number c such that $\Re[a_0(x) + c] > 1$ for every $x \in [a, \infty)$. By 1.8, the domain of $T_0, T, 2, 2 + cI$ is the same as the domain of $T_0, T, 2, 2$. By 1.13,

$$T_0, T + c, 2, 2 = T_0, T, 2, 2 + cI.$$ So that if we define

$$T_1 = (-1)^n D^{2n} + (a_0 + c),$$ we are finished if we can show that $T_0, T_1, 2, 2$ is n bounded.

Let $\|f\| = 1$, where f has compact support in the interior of $[a, \infty)$ and is in $D(T_0, T_1, 2, 2)$. Then

$$\|T_1 f\| \geq |(T_1 f, f)| = \frac{|(-1)^n (D^{2n} f, f) + ((a_0 + c) f, f)|}{\|f\|^2}.$$ Integrating by parts, we see that
\[(\mathcal{T}_1 f, f) = ||D^nf||^2 + \int a (a_0 + c) f \overline{f}. \text{ Now } |(\mathcal{T}_1 f, f)|\]
\[\geq \text{Re}(\mathcal{T}_1 f, f) = ||D^nf||^2 + \int a \text{Re}(a_0 + c) f \overline{f}. \text{ So }\]
\[||T_1 f|| \geq ||D^nf||^2.\]

If \(f\) is not of compact support, then by 0.8 there is a Cauchy sequence of compact support functions \(f_j\) such that \(\{f_j\} \rightarrow f\), and \(\{\mathcal{T}_1 f_j\} \rightarrow \mathcal{T}_1 f\). Thus \(\{D^nf_j\}\) form a Cauchy sequence, and since \(T_0, D^m_{1,2,2}\) is closed, \(D^nf \in L_2(a, \infty)\). Thus \(T_0, \mathcal{T}_1, 2, 2\) is \(n\)-bounded.

To show that \(T_0^{-1}, \mathcal{T}_1, 2, 2\) is compact, we note that it is sufficient, by theorem 1.17, to show that \(T_0^{-1}, \mathcal{T}_1, 2, 2\) is compact.

We first show that \(T_0^{-1}, \mathcal{T}_1, 2, 2\) is continuous. In fact, if \(||f|| = 1\) and \(f \in D(T_0, \mathcal{T}_1, 2, 2)\) and also \(f\) has compact support in \((a, \infty)\), we have as above \(|(\mathcal{T}_1 f, f)| \geq \text{Re}(\mathcal{T}_1 f, f)|\]
\[= ||D^nf||^2 + \text{Re}((a_0 + c)f, f) \geq ||D^nf||^2 + (f, f) \geq 1.\]
Therefore, passing to the closure, \(||T_0^{-1}, \mathcal{T}_1, 2, 2|| \leq 1\).

Now, if \(T_0^{-1}, \mathcal{T}_1, 2, 2\) is not compact, there is a sequence \(\{f_j\} \subset D(T_0, \mathcal{T}_1, 2, 2)\) such that \(||\mathcal{T}_1 f_j|| = 1\) and \(||c_{a_0} f_j - \overline{f}_{a_0}|| \geq \varepsilon_1\). Pick a subsequence \(\{f_{j_k}\}\) such that \(\text{Re}(a_0(x) + c) > k\) if \(x \geq j_k\). Then \(\text{Re}(a_0(x) + c)f, f_{j_k} > k \varepsilon_1^2\).
Thus \(\text{Re}(a_0(x) + c)f, f_{j_k} > k \varepsilon_2^1\).

Since, for \(f\) of compact support in \(D(T_0, \mathcal{T}_1, 2, 2)\) we have \(\text{Re}(\mathcal{T} f, f) \geq \text{Re}((a_0 + c)f, f)\), we may pass to the closure and see that this holds for all \(f \in D(T_0, \mathcal{T}_1, 2, 2)\). Thus
Re(\(T_{j_k}f_{j_k}, f_{j_k}\)) \to \infty. But since \(\|f_{j_k}\| = 1\), this means that \(\|T_{j_k}f_{j_k}\| \to \infty\), a contradiction of the definition of \(\{f_{j_k}\}\).

The similarity of this theorem with theorem XIII.7.9, page 11410, Dunford and Schwartz (2) should be observed. We shall eventually prove that for a somewhat more general \(T\) than the one in this theorem, \(T_{-1}^{-1}, T, 2, 2\) is compact. Thus theorem XIII.7.9 will be a corollary.

We use the example above to generate an example in the case \(p \neq 2\).

2.12 Lemma: Suppose Re(\(\lambda\)) > 0. Then if \(s \geq 2\), \(T_{-1}^{-1}, T, s, 2\) is continuous, where \(T = D - \lambda\), and the interval \(I = [0, \infty)\).

Proof: The solution to \((D - \lambda)f = 0\) is \(f(x) = e^{-\lambda x} = e^{-(\text{Re}\, \lambda)x} \cdot e^{-i(\text{Im}\, \lambda)x}\). Now \(e^{-\lambda x} \in L^p[0, \infty)\) for \(1 \leq p \leq \infty\). Also if \(g \in D(T_{0}, T, s, 2)\) and \(Tg = h\), then

\[
g(x) = \int_0^\infty e^{-\lambda (x-y)}h(y)dy = \int_{-\infty}^\infty e^{-\lambda (x-y)}h(y)dy = \int_{-\infty}^\infty \phi(x - y)h(y)dy, \text{ where } \phi(T) = 0 \quad T < 0
\]

\[
\phi(T) = e^{-\lambda T} \quad T > 0
\]

Note that \(\phi \in L^p(-\infty, \infty)\) for \(1 \leq p \leq \infty\). We now use exercise VI.11.6, Dunford and Schwartz (1), page 528, to get our conclusion. (Solving for \(p \geq 1\) such that \(\frac{1}{s} = \frac{1}{p} + \frac{1}{2} - 1\) and noting that \(\phi \in L^p[-\infty, \infty]\).)

2.13 Lemma: Suppose Re(\(\lambda\)) > 0. Then if \(r \leq 2\), \(T_{-1}^{-1}, T, 2, 2, r\) is continuous, where \(T = D - \lambda\), and the interval \(I = [0, \infty)\).
Proof: Exactly the same as 2.8, except here we solve for \(p \geq 1 \) such that \(\frac{1}{2} = \frac{1}{p} + \frac{1}{r} - 1 \). We can do this since \(r \leq 2 \).

2.14 Remark: These examples may be used in conjunction with theorem 2.11 and theorem 2.5 to generate differential expressions with compact inverse in the non \(L^2 \) case.

We now use the following sequence of lemmas to develop a very general example in the \(L^2 \) case.

2.15 Lemma: Let \(T \) be classically self adjoint. Let

\[T_1 = T^{2N} + a_0, \text{ where } \text{Re}(a_0(x)) \geq 1 \text{ for } x \in [a, \infty). \]

Suppose

\[\lim_{x \to \infty} \text{Re}[a_0(x)] = \infty. \]

Then, if \(\{f_n\} \) is a sequence in

\[D(T_0, T_1, 2, 2) \]

such that \(\| c_n f_n - f_n \|_2 > \varepsilon \), and such that each \(f_n \) is of compact support in \((a, \infty)\), then

\[\| (T_1 f_n, f_n) \| \to \infty. \]

Proof: By the generalized Green's formula (VI.1.8, page 130, Goldberg) we have

\[(T_1 f_n, f_n) = (T_1^{2N} f_n, T_1^{2N} f_n) + (a_0 f_n, f_n). \]

Now \(|(a_0 f_n, f_n)| \geq |\int_0^\infty (a_0 f_n, f_n)| \geq \left(\frac{\text{glb}}{x \in (n, \infty)} \text{Re}(a_0(x)) \right) \varepsilon. \) But the term on the right approaches infinity.

2.16 Lemma: Let \(T \) be a self adjoint operator on a Hilbert space \(H \). Suppose there is a sequence \(\{f_n\} \), each of norm 1, contained in \(D(T^{2k}) \), such that \(\frac{1}{(T^{2k} f_n, f_n)} \to 0 \). Then if \(k_1 < 2k \),

\[\frac{(T^{2k} f_n, f_n)}{(T^{2k} f_n, f_n)} \to 0. \]
Proof: Let \(T = \int_{-\infty}^{\infty} \lambda \, dP(\lambda) \). Then
\[
T^{2k} = \int_{-\infty}^{\infty} \lambda^{2k} \, dP(\lambda), \quad \text{and} \quad T^1 = \int_{-\infty}^{\infty} \lambda^1 \, dP(\lambda).
\]
Thus
\[
(T^{2k} f, f) = \int_{-\infty}^{\infty} \lambda^{2k} d(P(\lambda) f, f), \quad \text{and} \quad (T^1 f, f)
\]
\[
= \int_{-\infty}^{\infty} \lambda^1 d(P(\lambda) f, f), \quad \text{for} \ f \in D(T^{2k}).
\]
Now, if \(f \in D(T^{2k}) \),
\[
\left| \int_{-\infty}^{\infty} \lambda^1 \, d(P(\lambda) f, f) \right|
\]
\[
\leq \int_{-\infty}^{\infty} |\lambda|^1 \, d(P(\lambda) f, f). \quad \text{Also if} \ \lambda_1 > 0,
\]
\[
\int_{-\infty}^{\infty} |\lambda|^1 \, d(P(\lambda) f, f) = \int_{-\infty}^{\infty} |\lambda|^2k |\lambda|^{k_1-2k} d(P(\lambda) f, f).
\]
\[
\leq \sup_{\lambda \in (\lambda_1, \infty)} |\lambda|^{k_1-2k} \int_{-\lambda_1}^{\infty} \lambda^{2k} d(P(\lambda) f, f)
\]
\[
= \lambda_1^{k_1-2k} \int_{-\lambda_1}^{\infty} \lambda^{2k} d(P(\lambda) f, f).
\]
Also, \(\int_{-\lambda_1}^{\lambda_1} |\lambda|^1 \, d(P(\lambda) f, f) \leq |\lambda_1|^1 \).

Now let \(\lambda_n = (T^{2k} f_n, f_n) \). Then
\[
\int_{-\lambda_n}^{\lambda_n} |\lambda|^1 d(P(\lambda) f_n, f_n) + \int_{-\lambda_n}^{\lambda_n} |\lambda|^1 d(P(\lambda) f_n, f_n)
\]
\[
= \int_{-\lambda_n}^{\lambda_n} |\lambda|^1 d(P(\lambda) f_n, f_n) + \int_{-\lambda_n}^{\lambda_n} |\lambda|^2k d(P(\lambda) f_n, f_n)
\]
\[
\leq \int_{-\lambda_n}^{\lambda_n} |\lambda|^1 d(P(\lambda) f_n, f_n) \quad \text{and} \quad \int_{-\lambda_n}^{\lambda_n} |\lambda|^2k d(P(\lambda) f_n, f_n)
\]
\[
\int_{-\lambda_n}^{\lambda_n} |\lambda|^1 d(P(\lambda) f_n, f_n) + \int_{-\lambda_n}^{\lambda_n} |\lambda|^2k d(P(\lambda) f_n, f_n)
\]
\[
= \int_{-\lambda_n}^{\lambda_n} |\lambda|^1 d(P(\lambda) f_n, f_n) \quad \text{and} \quad \int_{-\lambda_n}^{\lambda_n} |\lambda|^2k d(P(\lambda) f_n, f_n)
\]
2.17 Lemma: Let T be as in lemma 2, and $\{f_n\}$ bounded. If $|T^{2k}f_n, f_n|$ is bounded, so is $|(T^2f_n, f_n)|$, for $k \leq 2k$.

Proof: $\int_{-\infty}^{\infty} \lambda^{2k}d(P(\lambda)f_n, f_n) \geq \int_{-\infty}^{\infty} \lambda^{k}d(P(\lambda)f_n, f_n)$. Also $\int_{-1}^{1} \lambda^{k}d(P(\lambda)f_n, f_n) \leq |f_n|$. Thus, since $|T^{2k}f_n, f_n|$ is bounded, and $\{f_n\}$ is bounded, the conclusion follows.

2.18 Theorem: Let $V = \sum_{i=1}^{2k-1} b_i T_i$, where T is classically self adjoint, and b_i is a bounded function for every i. Let $T_1 = T + \alpha_0$, $\Re(\alpha_0(x)) \geq 1$, $\lim_{x \to \infty} \Re(\alpha_0(x)) = \infty$. Then $T_{0, 1}^2, T_1 + V, 2, 2$ is compact.

Proof: Let T be a self adjoint extension of the symmetric, closed operator $T_0, T, 2, 2$, to a larger Hilbert space if necessary. Such an extension is guaranteed by exercise 25, page 1261, Dunford and Schwartz (2).

(Originally due to Naimark.) Then if f is of compact support in (a, ∞), and $f \in D(T_0, T_1^2 + V, 2, 2)$, $f \in D(T^{2k})$. In fact,
since $f \in D(T_0, \mathcal{T}_1, 2, 2)$, then f^{N-1} is absolutely continuous on $[a, \infty)$, where \mathcal{T}_1 is of order N. Since f is of compact support in (a, ∞), it follows that $f \in D([T_0, \mathcal{T}_1, 2, 2])$ for any $k_1 < 2k$. Therefore $f \in D(T^{2k-1})$. We now show that $T^{k-1}f \in D(T_0, \mathcal{T}_1, 2, 2)$. Since $T^{k-1}f$ has compact support in (a, ∞), we need only show that $T(T^{2k-1}f) \in L^2[a, \infty)$. We know, however, that if $K = \text{support } f$, $(\mathcal{T}_1 + Y)f \in L^2[a, \infty)$ and therefore $L^2(K)$. Now, using theorem VI.6.2, Goldberg (1), we see that for every $k \leq 2kn$, $f^{(k)} \in L^2(K)$. (Remember \mathcal{T} is of order N.) Thus $T^{2k}f \in L^2(K)$, and therefore $T^{2k}f \in L^2[a, \infty)$. So $f \in D(T^{2k})$.

Now we prove the theorem. Suppose $\{f_n\}$ is a norm bounded sequence in $D(T_0, \mathcal{T}_1 + Y, 2, 2)$ such that $\|C_{a_n}^{f_n} - f_n\| > \varepsilon$, and $\| (\mathcal{T}_1 + Y)f_n \| = 1$. Then we can get a norm bounded sequence of compact support functions $\{g_n\}$ such that $\|C_{a_n}^{g_n} - g_n\| > \frac{\varepsilon}{2}$ and $\| (\mathcal{T}_1 + Y)g_n \| < 2$. By lemma 2.14, $|(\mathcal{T}_1 g_n, g_n)| \to \infty$. Let $S = \{(T^{2k}g_n, g_n)\}$. If it is a bounded sequence, then by lemma 3 $\{(Y g_n, g_n)\}$ is a bounded sequence. But since $|(\mathcal{T}_1 f_n, f_n)| \to \infty$, we then see that $|(Y g_n, g_n)| \to \infty$. Since $\{g_n\}$ is assumed norm bounded this is a contradiction of the fact that $\| (\mathcal{T}_1 + Y)g_n \| < 2$.

If, however, $\{(T^{2k}g_n, g_n)\}$ is unbounded, there is a sequence $\{f_{n_j}\}$ such that $(T^{2k}g_{n_j}, g_{n_j}) \to \infty$. Since $\{g_{n_j}\}$ is
norm bounded, by assumption, we see that \(\frac{\langle t^{2k}f_n^i, f_n^j \rangle}{\|g_n^j\|^{2}} \to \infty \).

Let \(\phi_j = \frac{g_n^j}{\|g_n^j\|} \). \(\|\phi_j\| = 1 \) for each \(j \), and

\(\langle t^{2k}\phi_j, \phi_j \rangle \to \infty \). Now \(\{g_n^j\} \) does not converge to 0, because

\[\|c_n^j g_j - g_n^j\| > \frac{\epsilon}{2} \]. Therefore there is a subsequence \(\{g_{n_{j_1}}\} \) bounded away from 0, i.e. \(\|g_{n_{j_1}}\| > \epsilon \). Then \(\{(T_1 + \gamma)\phi_{j_1}\} \) is a bounded sequence, for since

\[\|T_1 + \gamma\|_n g_{n_{j_1}} \| < 2 \), we have \(\|(T_1 + \gamma)\phi_{j_1}\| < \frac{2}{\epsilon} \). We derive a contradiction from this.

By Green's formula,

\[|(T^{2k}\phi_{j_1}, \phi_{j_1})| = \left| \left(T^{k}\phi_{j_1}, \phi_{j_1}\right) + (a_0\phi_{j_1}, \phi_{j_1}) \right| \geq \text{Re}\left(\left(T^{k}\phi_{j_1}, \phi_{j_1}\right) \right) + (a_0\phi_{j_1}, \phi_{j_1}) \geq (T^{k}\phi_{j_1}, \phi_{j_1}) + 1 > (T^{2k}\phi_{j_1}, \phi_{j_1}) \].

Let \(\lambda_{j_1} = (T^{2k}\phi_{j_1}, \phi_{j_1}) \frac{((T_1 + \gamma)\phi_{j_1}, \phi_{j_1})}{\lambda_{j_1}} \to 0 \), since

\(\{\lambda_{j_1}\} \to \infty \), and \(\|\phi_{j_1}\| = 1 \), and \(\|(T_1 + \gamma)\phi_{j_1}\| < \frac{2}{\epsilon} \). But

\[\frac{(T_1\phi_{j_1}, \phi_{j_1})}{\lambda_{j_1}} = \frac{T_1\phi_{j_1}, \phi_{j_1}}{\lambda_{j_1}} + \frac{(\gamma\phi_{j_1}, \phi_{j_1})}{\lambda_{j_1}} \leq 1 \), by the above discussion. But we
shall show, using lemma 2.15, that \(\frac{(T_1 + \gamma)\phi_{j_1}, \phi_{j_1}}{\lambda_1} \to 0 \), and thus contradict the fact that \(\frac{(T_1 + \gamma)\phi_{j_1}, \phi_{j_1}}{\lambda_1} \to 0 \). Let

\[
\text{l.u.b. } |a_i(x)| = M_i. \quad (\forall \phi_{j_1}, \phi_{j_1}) \leq \sum_{r=1}^{2k-1} M_r |(T^{r\phi_{j_1}, \phi_{j_1}})|.
\]

Therefore, by lemma 2.15, \(\frac{(\forall \phi_{j_1}, \phi_{j_1})}{\lambda_1} \to 0 \). This is a contradiction. Therefore we have shown that there is no norm bounded sequence of functions \(\{f_n\} \subset D(T_0, T_1 + \gamma, 2, 2) \) such that \(\|C^n_{a_n} - f_n\| > \varepsilon \), and \(\|(T_1 + \gamma)f_n\| = 1 \). If we knew that \(T_0^{-1}, T_1 + \gamma, 2, 2 \) was continuous, we would be finished by theorem 1.6. As it is, however, we must prove continuity in order to guarantee that if \(T_0^{-1}, T_1 + \gamma, 2, 2 \) is not compact, there is such a norm bounded sequence \(\{f_n\} \).

If \(T_0^{-1}, T_1 + \gamma, 2, 2 \) is not continuous, then \(\exists \) is a sequence \(\{f_n\} \) such that \(\|f_n\| = 1 \), \(\|(T_1 + \gamma)f_n\| \to 0 \), and \(f_n \in D(T_0, T_1 + \gamma, 2, 2) \). Now there is a sequence of compact support functions \(\{g_n\} \) such that \(\|g_n - f_n\| < \frac{1}{2^n}, \)

\[
\|(T_1 + \gamma)g_n - (T_1 + \gamma)f_n\| < \frac{1}{2^n}. \quad \text{So}
\]

\[
\|(T_1 + \gamma)g_n\| \to 0, \quad \text{and } \{g_n\} \text{ is norm bounded. In the preceding argument we derived a contradiction from the existence of a norm bounded sequence } \{g_n\} \text{ of compact support functions supported in } (a, \infty) \text{ such that } \|C^n_{a_n} - g_n\| > \varepsilon,
\]
and \(\| (\mathcal{T}_1 + \mathcal{Y})g_n \| < 2 \). We thus see that in this case we must have that \(\forall \varepsilon > 0 \exists N \exists n > N \Rightarrow \| \mathcal{C}_{a}^{N}g_n - g_n \| < \varepsilon \).

For if not, then for every \(N \exists j_{N} > N \) such that \(\| \mathcal{C}_{a}^{N}g_{j_{N}} - g_{j_{N}} \| > \varepsilon \). Therefore \(\{g_{j_{N}}\} \) is a sequence of the type that has been shown not to exist. In particular, this must be true for \(\varepsilon = \frac{1}{16} \). So there is an \(N_{1} \) such that \(\| \mathcal{C}_{a}^{N_{1}}g_n - g_n \| < \frac{1}{16} \) for \(n > N_{1} \). But now we note that \(\{\mathcal{C}_{a}^{N_{1}}g_n\} \) is a sequence of functions in the domain of \(W \), where \(W \) is the maximal operator on \(L^2[a,N_{1}] \) generated by \((\mathcal{T}_1 + \mathcal{Y}) \).

Further \([D^{j}(g_n)](a) = 0 \) for \(0 \leq j \leq 2kN - 1 \). \(W \) is thus a \(l\)-extension of the minimal operator generated by \(\mathcal{T}_1 + \mathcal{Y} \) on \(L^2[a,N_{1}] \), so \(W^{-1} \) is compact, and thus certainly continuous.

However, since \(\| (\mathcal{T}_1 + \mathcal{Y})g_n \| \longrightarrow 0 \), then \(\| \mathcal{C}_{a}^{N_{1}}(\mathcal{T}_1 + \mathcal{Y})g_n \| \longrightarrow 0 \). Therefore, in other words, \(W(\mathcal{C}_{a}^{N_{1}}g_n) \longrightarrow 0 \). Therefore, \(\| \mathcal{C}_{a}^{N_{1}}g_n \| \longrightarrow 0 \). But \(\| g_n \| \longrightarrow 1 \) and for \(n > N_{1} \), \(\| \mathcal{C}_{a}^{N_{1}}g_n - g_n \| < \frac{1}{16} \). This is a contradiction, and at last the theorem is proved.

2.19 Corollary: Let \(\mathcal{T} \) be classically self adjoint with \(\sigma(e^{(T_0, \mathcal{T}_1, 2, 2)}) \not\subseteq \mathbb{R} \). Let \(\text{Re } a_0(x) \longrightarrow \infty \) as \(x \longrightarrow \infty \). Let \(\{a_i\}_{i=1}^{2k-1} \) be bounded functions. Let \(\mathcal{T}_1 = \mathcal{T}^{2k} + \sum_{i=1}^{2k-1} a_i \mathcal{T}_1^i + a_0 \). Then \(T_0, \mathcal{T}_1, 2, 2 \) is compact.

Proof: Use theorem 1.17 and the above theorems.
Theorem 1.17 is used to add λ to a_0 so that
$\text{Re}(a_0 + \lambda) \geq 1$.

2.20 Remark: Letting $\mathcal{T} = i \frac{d}{dx}$ in the above theorem we deduce a generalization of theorem 9, page 1449, Dunford and Schwartz (2).

We now wish to extend our results to $(-\infty, \infty)$. The next theorem is our tool. We extend the results about the spectrum rather than results about the compactness of the inverse of the minimal operator, since the minimal operator may not be $(1,1)$ in $(-\infty, \infty)$.

Let \mathcal{T} be a differential expression on $(-\infty, \infty)$. Let \mathcal{T}_1 be \mathcal{T} considered as an expression on $[a, \infty)$, and let \mathcal{T}_2 be \mathcal{T} considered as an expression on $(-\infty, a]$. Let \mathcal{T} be a differential expression on $(-\infty, \infty)$.

2.21 Theorem: $\lambda \in \sigma_e(\mathcal{T}_0, \mathcal{T}, p, q) \iff \lambda \in \sigma_{\mathcal{T}_0, \mathcal{T}_1, p, q}$ or $\lambda \in \sigma_{\mathcal{T}_0, \mathcal{T}_2, p, q}$.

Proof: \iff is clear.

But if $\lambda \in \sigma_e(\mathcal{T}_0, \mathcal{T}, p, q)$, then the range $\mathcal{T}_0, \mathcal{T} - \lambda, p, q$ is not closed. However, consider $f \in D(\mathcal{T}_0, \mathcal{T} - \lambda, p, q)$ with $f(0) = c_0$. Call the vector $\begin{pmatrix} c_0 \\ c_1 \\ \vdots \\ c_{n-1} \end{pmatrix}$ V. The set of all possible such V is an n dimensional vector space. Let $\{V_i\}$
be a basis. Select f_i of compact support with
\[
\begin{pmatrix}
 f_i(0) \\
 f'_i(0) \\
 \vdots \\
 f^{n-1}_i(0)
\end{pmatrix} = V_i.
\]
Then if $g \in D(T_0)$ is of compact support,
\[
S \text{elect } f^0 \text{ of compact support with } g = g_0 + \sum c_i f_i,
\]
where
\[
\begin{pmatrix}
 g_0(0) \\
 g'(0) \\
 \vdots \\
 g^{n-1}_0(0)
\end{pmatrix} = \begin{pmatrix}
 0 \\
 0 \\
 \vdots \\
 0
\end{pmatrix}
\]
and g_0 is of compact support. Let $R = \text{span } f_i, Q = \{g \mid g(0) = 0\}$.
Note that $\{f_i\}$ are linearly independent modulo Q.

By Lagrange's identity, any n-differentiable function h of compact support in $[0, \infty)$ with $h(0) = 0$ is in
\[
h'(0) = 0 \\
\vdots \\
h^{n-1}(0) = 0
\]
$D(T_0, \tau_2^\lambda; p, q)$. Similarly, any n-differentiable function h of compact support in $(-\infty, 0]$ with

$$
\begin{pmatrix}
 h(0) \\
 h'(0) \\
 \vdots \\
 h^{n-1}(0)
\end{pmatrix} = 0
$$

is in $D(T_0, \tau_2^\lambda; p, q)$.

Now since $\lambda \in \delta_e(T_0)$, then $\hat{T}_0^{-1}, \tau - \lambda; p, q$ is not continuous, where $\hat{T}_0, \tau - \lambda; p, q$ is the induced operator on L^p_K, with K the kernel of the minimal operator $T_0, \tau - \lambda; p, q$. Therefore $\exists \{h_n\}$ with $d(h_n, K) > 1$, such that $\| (\tau - \lambda)h_n \| \to 0$. We may assume each h_n is of compact support, since the map $L^p \to \frac{L^p_K}{K}$ is continuous. As above, decompose h_j into $h_j = q_j + r_j$, $q_j \in Q$, $r_j \in R$. Decompose R into $K \oplus S$, where $K = \text{kernel } T_0, \tau - \lambda; p, q$, and $r_j = k_j + s_j$. Now $\| q_j + s_j \| \geq 1$. Thus either $q_j \not\to 0$, or $s_j \not\to 0$.

Let $T = T_0, \tau - \lambda; p, q$.

If $s_j \not\to 0$, then $\| Ts_j \| \not\to 0$, since $T|S$ is finite dimensional with no kernel. However, if

$\lambda \in \delta_e(T_0, \tau_1; p, q)$ or $\delta_e(T_0, \tau_2; p, q)$, we see that $T(q_j) \not\to 0$ where $q_j \not\to 0$, because $q_j = q_{1j} + q_{2j}$, $q_{1j} \in D(T_0, \tau_1; p, q)$, $q_{2j} \in D(T_0, \tau_2; p, q)$. Therefore we must have $Ts_j \not\to 0$, $Tq_j \not\to 0$, but $Ts_j + Tq_j \to 0$.
\[\cdot \frac{Ts_{j_k}}{|| Ts_{j_k} ||} + \frac{Tq_{j_k}}{|| Ts_{j_k} ||} \rightarrow 0 \text{ for some subsequence} \]

Since \{Ts_j\} are contained in a finite dimensional subspace, there is a subsequence \(\left\{ \frac{Ts_{j_{k_i}}}{|| Ts_{j_{k_i}} ||} \right\} \rightarrow f \).

Then \(\frac{Tq_{j_{k_i}}}{|| Ts_{j_{k_i}} ||} \rightarrow s' \) for some \(s' \). But range \(T_0, T_1, p, q \oplus \text{range } T_0, T_2, p, q \) is closed, so

\(f \in \text{range } T_0, T_1, p, q \oplus \text{range } T_0, T_2, p, q \) (since each \(Tq_{j_{k_i}} \) is).

Also \(f \in T(S) \), and also \(f \neq 0 \). Therefore, since \(S \) is linearly independent mod \(Q \), we have \(f = Tf_1 = Tf_2 \), \(f_1 \in Q \), \(f_2 \in S \) and therefore \(f_1 = f_2 \). Now \(f_1 - f_2 \in \ker T \), but \(S \) is linearly independent mod \(\ker T \oplus Q \). This is a contradiction.

2.22 Corollary: If the essential spectra of \(T_0, T_1, p, p \) and \(T_0, T_2, p, p \) are both null, then the essential spectrum of \(T_0, T_1, p, p \) is null.
Bibliography

Vita

Robert M. Kauffman was born in Muskegon, Michigan on August 26, 1941. He was graduated from Crystal Lake Community High School, Crystal Lake, Illinois, in June, 1959. He then attended The University of the South, Sewanee, Tennessee, majoring in mathematics and physics and receiving his B.A. degree in June, 1963.

He received his M.S. degree from Louisiana State University in August, 1965. At present he is an assistant professor at Western Washington State College, and a candidate for the Doctor of Philosophy degree in the Department of Mathematics at Louisiana State University.
EXAMINATION AND THESIS REPORT

Candidate: Robert MacKenzie Kauffman

Major Field: Mathematics-Analysis

Title of Thesis: Compact Inverses of Minimal Differential Operators

Approved:

O. Parvelli
Major Professor and Chairman

R.D. Anderson
Dean of the Graduate School

EXAMINING COMMITTEE:

W. S. Britt

L. V. Wade

J. R. Dorroh

R. D. Anderson

Date of Examination: July 12, 1968