2006

Compiler Optimization Techniques for Scheduling and Reducing Overhead

Tong-Chai Wang
Louisiana State University and Agricultural and Mechanical College

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations

Part of the Electrical and Computer Engineering Commons

Recommended Citation
https://digitalcommons.lsu.edu/gradschool_dissertations/1407

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please contact gradetd@lsu.edu.
COMPILER OPTIMIZATION TECHNIQUES FOR
SCHEDULING AND REDUCING OVERHEAD

A Dissertation

Submitted to the Graduate Faculty of the
Louisiana State University and
Agricultural and Mechanical College
in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy

in

The Department of Electrical and Computer Engineering

by
Tong-Chai Wang
B.S. in Electronics Engineering, Feng-Chia University, Taiwan, 1987
M.S., University of Massachusetts–Lowell, USA, 1989
December 2006
ACKNOWLEDGMENTS

On completion of this dissertation, I would like to express my gratitude to Dr. J. Ramanujam for his guidance and significant help throughout the work. I thank the National Science Foundation for my support through grants 0073800, 0121706 and 0509442, won which Dr. Ramanujam is the Principal Investigator. I would also like to thank Dr. D. Carver for serving as my Minor Professor in my minor field in Computer Science. Thanks to Dr. J. Trahan, Dr. R. Vaidyanathan and Dr. J. Hoffman for serving on my committee and giving their valuable suggestions. I would like to thank my sisters and brothers for their support to my family and taking care of my things in Taiwan so that I can concentrate on my PhD work without any interference. I would also like to express my thanks to my wife, Wen-Hwa, who has graciously taken care of things that I should have, and my sons. Finally, I would like to thank all of my friends who have helped during these four years at LSU.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgments</td>
<td>ii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>v</td>
</tr>
<tr>
<td>Abstract</td>
<td>vii</td>
</tr>
<tr>
<td>1. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2. Address Code and Arithmetic Optimizations</td>
<td>5</td>
</tr>
<tr>
<td>2.1 Background And Motivation</td>
<td>6</td>
</tr>
<tr>
<td>2.1.1 Array Mappings</td>
<td>7</td>
</tr>
<tr>
<td>2.1.2 Relevant Terminology</td>
<td>7</td>
</tr>
<tr>
<td>2.1.3 Performance Issues</td>
<td>8</td>
</tr>
<tr>
<td>2.1.4 Motivating Example</td>
<td>9</td>
</tr>
<tr>
<td>2.2 Related Work on Address Overhead Reduction</td>
<td>10</td>
</tr>
<tr>
<td>2.3 A Pointer Approach to Array Accesses</td>
<td>12</td>
</tr>
<tr>
<td>2.3.1 Memory Access Patterns</td>
<td>12</td>
</tr>
<tr>
<td>2.3.2 The Algorithm</td>
<td>13</td>
</tr>
<tr>
<td>2.3.3 Experimental Results</td>
<td>14</td>
</tr>
<tr>
<td>2.4 Summary of the Experimental Results</td>
<td>17</td>
</tr>
<tr>
<td>2.5 Chapter Summary</td>
<td>19</td>
</tr>
<tr>
<td>3. Fine-Grain Scheduling of Nested Loops</td>
<td>26</td>
</tr>
<tr>
<td>3.1 Background</td>
<td>26</td>
</tr>
<tr>
<td>3.2 Related Work on Fine-Grain Scheduling</td>
<td>29</td>
</tr>
<tr>
<td>3.3 Statement-Level Rational Affine Schedules</td>
<td>30</td>
</tr>
<tr>
<td>3.4 What Does the LP Solution Mean?</td>
<td>35</td>
</tr>
<tr>
<td>3.5 Examples</td>
<td>35</td>
</tr>
<tr>
<td>3.6 Chapter Summary</td>
<td>42</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Commonly observed stencils</td>
</tr>
<tr>
<td>2.2</td>
<td>Storage pattern of arrays in memory</td>
</tr>
<tr>
<td>2.3</td>
<td>Motivating example: 7-point stencil</td>
</tr>
<tr>
<td>2.4</td>
<td>Access pattern for the motivating example</td>
</tr>
<tr>
<td>2.5</td>
<td>Results for the 9 point cross stencil.</td>
</tr>
<tr>
<td>2.6</td>
<td>Results for the 9 point cross stencil when compiled with <code>-fast</code> option.</td>
</tr>
<tr>
<td>2.7</td>
<td>Results for the 13 point star stencil.</td>
</tr>
<tr>
<td>2.8</td>
<td>Results for the 13 point star stencil when compiled with <code>-fast</code> option.</td>
</tr>
<tr>
<td>2.9</td>
<td>Results for the hexagonal stencil.</td>
</tr>
<tr>
<td>2.10</td>
<td>Results for the hexagonal stencil when compiled with <code>-fast</code> option.</td>
</tr>
<tr>
<td>2.11</td>
<td>Results for the 19 point asymmetric stencil.</td>
</tr>
<tr>
<td>2.12</td>
<td>Results for the 19 point asymmetric stencil when compiled with <code>-fast</code> option.</td>
</tr>
<tr>
<td>2.13</td>
<td>Results for the 14 point irregular stencil.</td>
</tr>
<tr>
<td>2.14</td>
<td>Results for the 14 point irregular stencil when compiled with <code>-fast</code> option.</td>
</tr>
<tr>
<td>2.15</td>
<td>Results for the 7 point array stencil when compiled with <code>-fast</code> option.</td>
</tr>
<tr>
<td>3.1</td>
<td>Statement level dependence graph for Example 3.1</td>
</tr>
<tr>
<td>3.2</td>
<td>Statement level dependence graph for Example 3.2</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>3.3</td>
<td>Statement level dependence graph for Example 3.3</td>
</tr>
<tr>
<td>4.1</td>
<td>Illustration of the uniform redundancy of the dependence ((1, 1)) for Example 4.1</td>
</tr>
<tr>
<td>4.2</td>
<td>Illustration of the non-uniform redundancy of the dependence ((1, 1)) for Example 4.2</td>
</tr>
<tr>
<td>4.3</td>
<td>2-dimensional iteration space and dependence vectors</td>
</tr>
<tr>
<td>4.4</td>
<td>Illustration of redundancy with multiple distance vectors.</td>
</tr>
<tr>
<td>5.1</td>
<td>Notation used in this chapter</td>
</tr>
</tbody>
</table>
Exploiting parallelism in loops in programs is an important factor in realizing the potential performance of processors today. This dissertation develops and evaluates several compiler optimizations aimed at improving the performance of loops on processors.

An important feature of a class of scientific computing problems is the regularity exhibited by their access patterns. Chapter 2 presents an approach of optimizing the address generation of these problems that results in the following: (i) elimination of redundant arithmetic computation by recognizing and exploiting the presence of common sub-expressions across different iterations in stencil codes; and (ii) conversion of as many array references to scalar accesses as possible, which leads to reduced execution time, decrease in address arithmetic overhead, access to data in registers as opposed to caches, etc.

With the advent of VLIW processors, the exploitation of fine-grain instruction-level parallelism has become a major challenge to optimizing compilers. Fine-grain scheduling of inner loops has received a lot of attention, little work has been done in the area of applying it to nested loops. Chapter 3 presents an approach to fine-grain scheduling of nested loops by formulating the problem of finding the minimum iteration initiation interval as one of finding a rational affine schedule for each statement in the body of a perfectly nested loop which is then solved using linear programming.

Frequent synchronization on multiprocessors is expensive due to its high cost. Chapter 4 presents a method for eliminating redundant synchronization for nested loops. In nested loops, a dependence may be redundant in only a portion of the iteration space. A charac-
Characterization of the non-uniformity of the redundancy of a dependence is developed in terms of the relation between the dependences and the shape and size of the iteration space.

Exploiting locality is critical for achieving high level of performance on a parallel machine. Chapter 5 presents an approach using the concept of affinity regions to find transformations such that a suitable iteration-to-processor mapping can be found for a sequence of loop nests accessing shared arrays. This not only improves the data locality but significantly reduces communication overhead.
CHAPTER 1
INTRODUCTION

Exploiting parallelism in loops in programs is an important factor in realizing the potential performance of processors, both general-purpose and embedded, today. Programming these machines remains a difficult problem. Much progress has been made resulting in a suite of techniques that extract coarse-grain parallelism from sequential programs [3, 59, 76, 79]. This dissertation addresses several problems in improving the performance of processors.

An important class of problems used widely in scientific computing and other application domains perform memory intensive computations on large data sets. These data sets get to be typically stored in main memory. The storage of these data sets in memory means that the compiler needs to generate the address of a memory location in order to store these data elements and generate the same address again when they are subsequently retrieved. This operation of memory address computation is quite resource-intensive and degrades the overall performance significantly if not performed efficiently. An important feature of the class of problems considered in this chapter is the regularity exhibited by their access patterns. In Chapter 2, we present an approach of optimizing the address generation of these stencil problems. Our approach makes use of the observation that in all these stencils, a significant fraction of the elements accessed are stored close to one other in memory. The main contributions of the proposed technique is an optimization technique that results in the following: (i) eliminating redundant arithmetic computation by recognizing and exploiting the presence of common sub-expressions across different iterations in stencil codes; and
(ii) conversion of as many array references to scalar accesses as possible, which leads to reduced execution time, decrease in address arithmetic overhead, access to data in registers as opposed to caches, etc.

With the advent of VLIW processors, the exploitation of fine-grain instruction-level parallelism has become a major challenge to parallelizing compilers [18, 63]. *Software pipelining* [1, 15, 42] has been proposed as an effective fine-grain scheduling technique that restructures the statements in the body of a loop subject to resource and dependence constraints such that one iteration of a loop can start execution before another finishes. The total execution time thus depends on the rate at which new iterations start executing. While software pipelining of inner loops has received a lot of attention, little work has been done in the area of applying it to nested loops. Chapter 3 presents an approach to fine-grain scheduling of nested loops by presenting a technique to find the minimum iteration initiation interval (in the absence of resource constraints). We formulate the problem as one of finding a rational affine schedule for each statement in the body of a perfectly nested loop which is then solved using linear programming. This framework allows for an integrated treatment of iteration-dependent statement reordering and multidimensional loop unrolling. In contrast to most work in scheduling nested loops, we treat each statement in the body as a unit of scheduling. Thus, the schedules derived allow for instances of statements from different iterations to be scheduled at the same time. Optimal schedules derived here subsume extant work on software pipelining of inner loops.

In order to achieve maximal parallel execution, a program must be decomposed into as many concurrent tasks as possible. The dependences in the original program must be preserved in concurrent execution to guarantee correctness, often through the use of synchronization instructions. Synchronization involves large overhead such as busy-waiting,
contention for shared access or message passing. Therefore, it is important to minimize the number of synchronization instructions while guaranteeing correct and (possibly) maximally parallel execution. Chapter 4 addresses the problem of elimination of redundant synchronizations in parallel execution of nested loops. The synchronization due to a dependence is redundant if it is enforced by synchronizations due to other dependences or by a combination of a collection of dependences and the control structure of the target machine. For two-level nested loops, we present a method to eliminate redundant dependences; our technique enforces the minimum number of the required dependences. In nested loops, a dependence may be redundant in only a portion of the iteration space. We characterize the non-uniformity of the redundancy of a dependence in terms of the relation between the dependences and the shapes of the iteration space and also in terms of the size of the iteration space in general convex 2-D iteration spaces. For higher dimensional iteration spaces, we present a method of determining the minimum required synchronizations.

In order to increase performance levels of a parallel machine, communication overhead has to be reduced along with increasing data locality. The access times to local data is usually much less than that for non-local accesses. If the elements frequently accessed by iterations in a given loop nest are local to the processor on which the iterations are executed, then communication overhead is greatly reduced. Moreover, if the same data elements are being accessed by iterations in the following loop nests, the communication overhead is minimized by scheduling iterations accessing the same elements in different loop nests to the same processor. Chapter 5 of this thesis presents a mathematical approach using the concept of affinity regions to find a transformation such that a suitable iteration-to-processor mapping can be found across a sequence of loop nests having the same shared arrays. This not only improves the data locality but significantly reduces communication
overhead. Since the concept of affinity regions is being used, the schedule of the first loop nest in the affinity region is saved and used by other nests in the affinity region. The iterations of the first loop nest can be scheduled by the compiler and the only overhead involved is in saving this schedule for subsequent loop nests in the affinity region. In this work we consider cases that include single as well as two shared arrays across loop nests, illustrated with examples, where the dimensionality of the shared array and the level of nesting in the loop nests are different.
CHAPTER 2
ADDRESS CODE AND ARITHMETIC OPTIMIZATIONS

An important class of problems used widely in both the embedded systems and scientific domains perform memory intensive computations on large data sets. These data sets get to be typically stored in main memory. The storage of these data sets in memory means that the compiler needs to generate the address of a memory location in order to store these data elements and generate the same address again when they are subsequently retrieved. As we shall see, this operation of memory address computation is quite resource intensive and degrades the overall performance significantly if not performed efficiently.

An important feature of the class of problems considered in this chapter is the regularity exhibited by their access patterns. A regular problem can be characterized by its corresponding stencil. Figure 2.1 illustrates some of the commonly found stencils.

In this chapter, we present an approach of optimizing the address generation of these stencil problems. Our approach makes use of the observation that in all these stencils, a significant fraction of the elements accessed are stored close to one other in memory. The main contributions of the proposed technique is an optimization technique that results in the following:

- eliminating redundant arithmetic computation by recognizing and exploiting the presence of common sub-expressions across different iterations in stencil codes; and

- conversion of as many array references to scalar accesses as possible, which leads to reduced execution time, decrease in address arithmetic overhead, access to data in registers as opposed to caches, etc.
2.1 Background And Motivation

Loop nests form an integral part of embedded codes. These basically consist of the same series of operations being performed on different sets of data elements. The data elements are usually declared as array data types. The main advantage of this is that they allow the programmer to concentrate on the functionality of the program instead of worrying about the storage pattern of these data in hardware and their subsequent retrieval. It is up to the compiler to provide the necessary support by retrieving the data elements from the memory locations where they may be stored. As we shall see this retrieval of data is not a trivial function. In most cases it is this part of the program that has the most bearing on its performance, especially on those programs that work with large data sets. The compiler has to perform some optimizations on the code if the performance of the program has to
improve. In the following pages, we look at one such optimization that will improve the performance of memory intensive programs.

2.1.1 Array Mappings

An array data type is typically stored in memory as a contiguous block of memory locations. For example a single dimensional array \(a[N] \) (array ‘a’ contains \(N \) elements) is stored as a single contiguous block of \(N \) memory locations. If the address of the first element is denoted by \(\text{BaseAddress}(a) \), the address of the last element is \(\text{BaseAddress}(a) + N - 1 \). For simplification of the discussion, we have assumed that each array element occupies one memory word, although this assumption is not necessary for our subsequent analysis.

A two-dimensional array \(b[ROW][COL] \) occupies \(ROW \times COL \) memory locations. Two popular approaches to mapping two dimensional arrays to hardware are Row-Major order and Column-Major Order. In the Row-Major method of storage, elements of the first row are placed in consecutive memory locations in order of increasing column index. This is followed by elements of the second row in the same order and so on. For the Column-Major method of storage, elements of the first column are stored in consecutive memory locations in order of increasing row index. Most high level languages impose a particular type of storage order on arrays. For example languages like C impose a Row-Major order of storage on all arrays while languages like FORTRAN impose a Column-Major order of storage. Figure 2.2 shows the different ways in which arrays are stored in memory.

2.1.2 Relevant Terminology

Access to an array is denoted by its name and a subscript. For example a single dimensional array ‘a’ can be accessed as \(a[0], a[1], \) etc., where ‘0’, ‘1’, etc. are the subscripts of the array. These subscripts are actually the positions of data inside the array, measured
from the beginning of the array. Thus the access \(a[i] \) is the access to a data at a distance of \(i \) elements from the start of the array. The memory address where \(a[i] \) is stored can be calculated as:

\[
BaseAddress(a) + i.
\] (2.1)

A two-dimensional array has both a length and a breadth and its access is denoted by \(b[i][j] \), where \(i \) is the row subscript and \(j \) is the column subscript. Again the memory address where \(b[i][j] \) is stored can be calculated as:

\[
BaseAddress(b) + (\text{number of columns in } b \times i) + j.
\] (2.2)

This method of address calculation assumes a row major order of memory storage. This assumption is followed throughout this chapter unless mentioned otherwise.

2.1.3 Performance Issues

Most memory intensive applications are characterized by some common features such as loop nests and the usage of large data blocks that are usually stored in memory as arrays.
The presence of these traits mean that the performance is dependent on the speed of retrieval and subsequent storage of data elements in memory. Most modern processors feature one or more levels of cache memory. These cache memories speed up data retrieval by storing frequently accessed data closer to the processor where they may be accessed at high speeds.

Another important performance bottleneck is the problem of memory address computation. As we have already seen, mapping a logical array to hardware means that the data values are stored at some pre-determined memory location. When ever this data has to be retrieved, the same address has to be generated. This is not a trivial problem and is quite computation intensive. For each access to the elements of the array the compiler has to generate an address according to Equation 2.2. It then has to generate a load instruction with this address. As the memory subsystem is slow when compared to the processor, it takes a significant amount of time before this load instruction may be serviced.

2.1.4 Motivating Example

Now, we examine an example memory intensive code segment and discuss the implications of this segment with respect to memory address computation. Consider the loop nest given below and its memory access pattern. Here N is the size of the array along its length.
for $i = 3$ to $N - 4$ do

$$b[i] = \frac{(a[i-3] + a[i-2] + a[i-1] + a[i] + a[i+1] + a[i+2] + a[i+3])}{7}$$

Such loop nests are called stencil codes because they compute values using neighboring array elements in a fixed stencil pattern. This stencil pattern of data accesses is then repeated for each element of the array. For instance, the above loop nest consists of a simple 7 point stencil in one dimension as shown in Figure 2.3. On each loop iteration, seven neighboring elements of the array are accessed and their sum calculated. As the computation progresses, the stencil pattern is repeatedly applied to array elements in the row, sweeping through the array. Such kind of loop nests are very popular in image processing applications.

At first glance, it is immediately obvious that we are trying to access 7 elements of the single dimensional array 'a', all at different locations, in successive iterations. Thus we need to perform 7 address computations to retrieve the data from the memory. Most traditional compilers tend to store the base address of array 'a' in a register. Access to different elements of this array means the computation of the memory addresses using Equation 2.1. The computation of the sum of these 7 elements is also not a trivial operation. Since these operations need to be performed for each iteration of the loop, the number of total computations to be performed for even small values of N is quite exhaustive and could degrade performance if not performed efficiently.

2.2 Related Work on Address Overhead Reduction

Specialized hardware has been used for reducing address arithmetic overheads [37], but this leads to increased design complexity and cost. In addition, several authors have addressed the problem of laying out scalar variables to make effective use of address generation units in embedded processors [45]. The IMEC group has used several transformations and ad-
vocated the use of special hardware for reducing the effect of address arithmetic overhead [11, 14, 53, 54]. Gupta et al. [23] have used induction variable analysis and optimization to improve the performance of address arithmetic.

Callahan et al. [9] (and Liu’s group [48, 49]) present a technique for register allocation of subscripted variables. They argue that most compilers do not allocate array elements to registers because standard data-flow analysis make it difficult to analyze the definitions and uses of individual array elements. They then discuss an approach of replacing subscripted variables by scalars to effect reuse. The subsequent code is then modified to use the data elements stored in these scalars. The advantage of this approach is that all array variables are replaced by scalars that are then mapped to registers. In successive iterations, those variables which are reused can be accessed from registers directly. This improves performance because it eliminates the address calculation overhead. Replacing array variables by scalars means that the cache configuration does not degrade performance significantly. This is because all variables that are reused are present in registers and reused data is no longer accessed via the cache mechanism. This approach does improve the performance to a large extent. However the arithmetic overhead involving the actual data elements still remains. Another problem is that of register pressure. By mapping the scalars to registers, we use up a lot of registers. If the amount of reuse is large, the register pressure builds up and can significantly degrade the performance.

In contrast to these works, we have proposed a technique that

- eliminates redundant arithmetic computation by recognizing and exploiting the presence of common sub-expressions across different iterations in stencil codes; and
- converts as many array references to scalar accesses as possible, which leads to a significant improvement.
2.3 A Pointer Approach to Array Accesses

As seen earlier, the overheads involved in stencil codes involve both the pure arithmetic overhead and the address overhead. The pure arithmetic overhead involves the actual computation using the data elements. The address overhead involves computing the memory location where each data element is stored. In this section, we take a look at our approach to improve the performance of stencil codes. We take a look at how our approach decreases the overheads and finally we present some results to justify the validity of our approach.

2.3.1 Memory Access Patterns

Let us again consider the loop nest and the memory access pattern described in the previous section. Figure 2.4 shows the access pattern. From this figure, it is clear that there are a number of data elements that are reused. Callahan et al. [9] make use of this feature to replace these array accesses by scalars. This means that in successive iterations, we can directly use the values stored in these scalars instead of accessing the array again. However for new data elements that are needed, we still use array accesses. The effective
goal of the code segment described in the previous section is to calculate the sum of seven
data elements, the elements moving along the array across successive iterations. From
Figure 2.4, another thing that can be seen is that as many as six data elements are reused
across any two iterations. This means that the sum of these six elements is a common
sub-expression in the arithmetic computation across any two successive iterations. If we
were to store the value of the common sub-expression in a register, then across iterations
the amount of arithmetic computation needed would be greatly decreased. Storing the
common sub-expression in a register also decreases the number of scalars that we operate
with. This correspondingly means that there is almost no register pressure unlike the other
approaches that we described. In each iteration, we also access the new data elements
that we need using pointers instead of array accesses. This helps a lot in improving the
performance because the memory address computation overhead that we described has
now been eliminated.

2.3.2 The Algorithm

Here is the algorithm and it consists of the following steps:

1. From the access pattern of the loop, find the common sub-expression (CSE) across
 any two successive iterations.

2. Initialize the CSE at the beginning of the loop body.

3. Modify the loop body to use the value of this CSE.

4. In each iteration, update the value of the CSE.

5. Replace all array accesses by pointer dereferences.

Given a loop nest, the algorithm first looks at the access pattern of the array elements
involved. From this access pattern, we pick out the common sub-expression that exists
between any two successive iterations. This common sub-expression is effectively a scalar variable that has been mapped to a register. This scalar is initialized at the beginning of the code segment. The rest of the code is then modified to use the value of the common sub-expression. Using this value means that the amount of arithmetic computation involved is decreased significantly. The common sub-expression is also updated in each iteration. New data elements that are needed in each iteration are accessed by pointer dereferences. Using pointers to access data elements improves the performance by reducing the memory address computation overhead. This approach to stencil codes makes full utilization of the spatial locality exhibited by these stencil codes.

2.3.3 Experimental Results

We made the modifications as determined by our algorithm on several scientific problems exhibiting regular computational patterns. Most of these patterns are given in Section 2.1. We also modified the loop nests by using Callahan et al.’s approach [9]. The loop nests were then compiled using the ’cc’ compiler and we ran the executables on the Ultra SPARC workstations. The compiler options that we used were cc and cc -fast. Compiling the code using only the default compiler options generates executables, where the main goal of the compiler is to reduce the cost of compilation. Compiling using the ’-fast’ option selects the optimum combination of compiler options for speed. This provides close to the best performance for most realistic applications.

The original and modified codes were then timed over 100 runs and averaged. We increased the array dimensions over a wide range of values and measured performance over this range. We plotted graphs for the original code and the modified codes using both Callahan et al.’s approach and ours. This helps us to compare the performance improvements on the original code as a result of the optimizations using both the approaches. On the X-axis
we plotted the array dimension and on the Y-axis we plotted the time taken in seconds to fully execute the code segment for that value of array dimension. In the following pages, we show the performance graphs that we plotted. On the top of each page, we also show the stencil pattern over which the performance was evaluated. This shows the performance improvements attained by using Callahan et al.’s approach [9] and our approach over the original code segment.

Figure 2.5 shows the performance of both the original and the modified 9 point 2D stencil codes over a wide range of array dimensions. The performance improvements for both Callahan et al.’s optimizations [9] and ours are about 100 percent for most array dimensions. When the code is compiled using the default compiler options, the compiler performs almost no optimizations on its own. The arithmetic and the address computation
overheads are quite huge and have a large impact on the performance. The optimized codes on the other hand, perform much better because the overheads have been reduced to a large extent. We can see that our approach at optimizing the code results in an improvement of about 10% to 20% for most array dimensions. This is because, we have reduced the pure arithmetic overhead to a larger extent than that was done by the other approach.

Figure 2.6 shows the performance when the code is compiled using the '-fast' option. Using this option generates the best possible performance for any code on the target machine. The compiler performs some optimizations on its own with a view of improving the overall performance. Hence, here we can see that the time taken to execute the stencil codes has improved for even the naive code. Here too our approach performs better than
Callahan et al.’s approach by about 10 - 20 percent. The overheads that we have reduced are the major factors that are responsible for this vast improvement in performance.

In the rest of the pages (Figures 2.7–2.15), we show the results of our approach on most of the regular stencil patterns shown in Section 2.1. Again for all these stencil patterns too, we analyze the performance using both the default and the best compiler options available. The graphs show clearly that our approach at optimization is better than the one proposed by Callahan et al. [9].

2.4 Summary of the Experimental Results

The graphs plotted in the previous pages show the performance of the naive code using the default and the best compiler options. These options are selected by the compiler so
Our Approach.

Callahan Approach.

Original Code.

1000 1500 2000 2500 3000 3500 4000

0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8

Array Dimension
Time in seconds

Figure 2.8: Results for the 13 point star stencil when compiled with `-fast’ option.

that the resulting application performs at its best. The graph of the naive code provides us with a benchmark to compare results. We then used Callahan et al.’s approach [9] to optimize the naive code further. This again was compiled using the default and the best compiler options. The resulting code performed much better than the naive code. This was because it succeeded in reducing some of the overheads that we had described. We then used our approach to optimize the naive code, again with a view of reducing the overheads. We also plotted the graphs for our approach. Plotting the graphs for all the approaches on the same page gives us an effective way of comparing the performance improvements. As expected the optimized code performs much better than the naive code. Also we can see that our approach at optimizing the code performs much better than the approach proposed
by Callahan et al. The performance improvement between these two approaches is as much as 10-20 percent for most array dimensions.

2.5 Chapter Summary

In this chapter, we focused on optimizing codes that exhibit regular access patterns. These codes are called stencil codes. These code segments have two major overheads: (i) the pure arithmetic computation overhead and (ii) the memory address computation overhead. These overheads determine the performance of these code segments. Callahan et al. [9] propose an approach to optimize these stencil codes and thereby improve their performance. They replace all subscripted array variables by scalars, thereby effecting reuse of these scalar variables. These scalar variables are then mapped to registers. Subsequent reuse
of these data elements means that they can be directly accessed from registers instead of through the cache mechanism. This means that loads of all reused data elements can be serviced at processor speed instead of having to deal with cache conflicts and subsequent loads from secondary memory. This approach results in a good improvement in performance because the memory address computation overhead has been reduced. However the major disadvantage with this approach is that because of the large number of data elements that might be reused, the number of scalars that will be needed is also large. This creates a lot of register pressure which then starts to degrade performance. Also this approach does not seek to reduce the pure arithmetic computation overhead.

Figure 2.10: Results for the hexagonal stencil when compiled with '-fast' option.
We have presented an approach to optimize stencil codes with a view of reducing both the arithmetic and the address computation overhead. The regularity of the access pattern and the reuse of data elements between successive iterations of the loop body means that there is a common sub-expression between any two successive iterations. If we were to store the value of the common sub-expression in a scalar, then for the successive iteration, the value in this scalar could be used instead of performing the computation all over again. This greatly reduces the arithmetic overhead. Since we store only one scalar in a register, there is almost no register pressure. Also all array accesses are now replaced by pointer dereferences. This reduces the address computation overhead. These optimizations helped to improve the performance of the stencil codes to a large extent. We also compared the
performance with some other popular approaches. The results in Section 2.3 demonstrate conclusively that our approach is better than the one proposed by Callahan et al. [9].
Figure 2.13: Results for the 14 point irregular stencil.
Figure 2.14: Results for the 14 point irregular stencil when compiled with ’-fast’ option.
Figure 2.15: Results for the 7 point array stencil when compiled with ‘-fast’ option.
CHAPTER 3
FINE-GRAIN SCHEDULING OF NESTED LOOPS

With the advent of embedded VLIW digital signal processors, the exploitation of fine-grain instruction-level parallelism has become a major challenge to parallelizing compilers [18, 63]. Software pipelining [1, 15, 42] has been proposed as an effective fine-grain scheduling technique that restructures the statements in the body of a loop subject to resource and dependence constraints such that one iteration of a loop can start execution before another finishes. The total execution time thus depends on the iteration initiation interval. While software pipelining of inner loops has received a lot of attention, little work has been done in the area of applying it to nested loops. This chapter presents an approach to fine-grain scheduling of nested loops by presenting a technique to find the minimum iteration initiation interval (in the absence of resource constraints). We formulate the problem as one of finding a rational affine schedule for each statement in the body of a perfectly nested loop which is then solved using linear programming. This framework allows for an integrated treatment of iteration-dependent statement reordering and multidimensional loop unrolling. In contrast to most work in scheduling nested loops, we treat each statement in the body as a unit of scheduling. Thus, the schedules derived allow for instances of statements from different iterations to be scheduled at the same time. Optimal schedules derived here subsume extant work on software pipelining of inner loops.

3.1 Background

Good and thorough parallelization of a program critically depends on how precisely a compiler can discover the data dependence information [3, 8, 75, 76, 79]. These dependences
imply precedence constraints among computations which have to be satisfied for a correct execution. In this chapter, we mainly consider perfectly nested loops of the form:

\[
\begin{align*}
&\text{for } I_1 = L_1 \text{ to } U_1 \text{ do} \\
&\quad \cdots \\
&\quad \text{for } I_n = L_n \text{ to } U_n \text{ do} \\
&\quad \quad S_1(\overline{I}) \\
&\quad \quad \cdots \\
&\quad \quad S_r(\overline{I}) \\
&\quad \text{endfor} \\
&\quad \cdots \\
&\text{endfor}
\end{align*}
\]

where \(L_j \) and \(U_j \) are integer-valued affine expressions involving \(I_1, \ldots, I_{j-1} \) and \(\overline{I} = (I_1, \ldots, I_n) \). Each \(I_j \) \((j = 1, \ldots, n)\) is a loop index; \(S_1, \ldots, S_r \) are assignment statements of the form \(X_o = E(X_1, \ldots, X_K) \) where \(X_o \) is defined \((i.e., \ written)\) in expression \(E \), which is evaluated using some variables \(X_1, X_2, \ldots, X_K \). We assume that the increment of each loop is \(+1 \). Each computation is denoted by an index vector \(\overline{I} = (I_1, \ldots, I_n) \).

A loop instance is the loop iteration where the indices take on a particular value, \(\overline{I} = \overline{i} = (i_1, i_2, \ldots, i_n) \). The instance of statement \(S_k \) executed in iteration vector \(\overline{I} \) is denoted \(S_k(\overline{I}) \).

The iteration set is a collection of iteration vectors and constitutes the iteration space. With the assumption on loop bound linearity, the sets of computations considered are finite convex polyhedra of some iteration space in \(\mathbb{Z}^n \), where \(n \) is the number of loops in the nest which is also the dimensionality of the iteration space. The iteration set of a given nested loop is described as a set of integer points (or, vectors) whose convex hull \(\mathcal{I} \) is a non-degenerate (or, full dimensional) convex polyhedron. The loop iterations are executed in lexicographic ordering during sequential execution. Any vector \(\overline{x} = (x_1, x_2, \ldots, x_n) \) is a positive vector, if its first (leading – read from left to right) non-zero component is positive \([8]\). We say that \(\overline{i} = (i_1, \ldots, i_n) \) precedes \(\overline{j} = (j_1, \ldots, i_n) \), written \(\overline{i} \prec \overline{j} \), if \(\overline{j} - \overline{i} \) is a
positive vector. Positive vectors capture the lexicographic ordering among iterations of a nested loop. A loop nest where the loop limits are constants is said to have a rectangular iteration space associated with it.

Let X and Y be two p-dimensional arrays; and let f_i and g_i ($i = 1, \ldots, p$) be two sets of integer functions such that $X(f_1(I), \ldots, f_p(I))$ is a “defined” (i.e., written) variable and $Y(g_1(I), \ldots, g_p(I))$ is a “used” (i.e., read) variable. Let $F(I) = f_1(I), \ldots, f_p(I)$ and $G(I) = g_1(I), \ldots, g_p(I)$. Given two statements $S_k(I_1)$ and $S_l(I_2)$, $S_l(I_2)$ is dependent on $S_k(I_1)$ (with distance vector $d_{k,l}$) iff [8, 59, 75, 76]:

- $(I_1 \prec I_2)$ or $(I_1 = I_2$ and $k < l)$ and $f_i(I_1) = g_i(I_2)$ for $i = 1, \ldots, p$;
- Either $X(F(I_1))$ is written in statement $S_k(I_1)$ or $X(G(I_2))$ is written in statement $S_l(I_2)$.

A flow dependence exists from statement S_k to statement S_l if S_k writes a value that is subsequently, in sequential execution, read by S_l. An anti-dependence exists from S_k to S_l if S_k reads a value that is subsequently modified by S_l. An output dependence exists between S_k and S_l if S_k writes a value which is subsequently written by S_l.

If $I_1 = I_2$, the dependence is called a loop-independent dependence; otherwise, it is called a loop-carried dependence. Many dependences that occur in practice have a constant distance in each dimension of the iteration space. In such cases, the vector $d = I_2 - I_1$ is called the distance vector. We limit our discussion to distance vectors in this chapter.

Dependence relations are often represented in Statement Level Dependence Graphs (SLDG’s). For a perfectly n-nested loop with index set (i_1, i_2, \ldots, i_n) whose body contains statements S_1, \ldots, S_r, the SLDG has r nodes, one for each statement. For each dependence from statement S_k to S_l with a distance vector $d_{k,l}$, the graph has a directed edge from node S_k to S_l labeled with the distance vector $d_{k,l}$. A dependence from a node to itself is
called a *self-dependence*. In addition to the three types of dependence mentioned above, there is another type of dependence known as *control dependence*. A control dependence exists between a statement with a conditional jump and another statement if the conditional jump statement controls the execution of the other statement. Control dependences can be handled by methods similar to data dependences [3]. In our analysis, we treat the different types of dependences uniformly. Methods to calculate data dependence vectors can be found in [3, 8, 75, 76, 79].

3.2 Related Work on Fine-Grain Scheduling

Fine-grain scheduling of inner loops has been considered by several authors [1, 15, 19, 42, 77]. All of these studies search for the minimum iteration initiation interval by unrolling the loop several times. This is inadequate in situations where the minimum iteration initiation interval is non-integral. Moreover, these approaches use an ad hoc method to decide on the degree of loop unrolling, and are unacceptable in cases where the optimal solution can be found only after a very large amount of unrolling.

Aiken and Nicolau [2], describe a procedure which yields an optimal schedule for inner sequential loops. The procedure works by simulating the execution of the loop body until a pattern evolves. The technique does not guarantee an upper bound on the amount of time it needs to find a solution. Zaky and Sadayappan [77] present a novel approach that is based on eigenvalues of matrices that arise path algebra. Their algorithm has polynomial time complexity; their algorithm exploits the connectivity properties of the loop dependence graph. While the algorithm of [2] requires unrolling to detect a pattern, the algorithm in [77] does not require any unrolling. Iwano and Yeh [30] use network flow algorithms for optimal loops parallelization. fine-grain scheduling of sequential loops on limited resources is discussed in [1, 42].
While fine-grain scheduling of inner loops has received a lot of attention, very few authors have addressed fine-grain scheduling of nested loops. Cytron [12, 13] presents a technique for DOACROSS loops that minimizes the delays between initiating successive iterations of a sequential loop with no reordering of statements in its body. Cytron [12, 13] does not explicitly attempt to exploit fine-grain parallelism. Munshi and Simmons [55] study the problem of minimizing the iteration initiation interval which considers statement reordering. They show that a close variant of the problem is NP-complete. Both these papers separate the issues of iteration initiation and the scheduling of operations within an iteration. In general, such a separation does not result in the minimum iteration initiation interval.

Nicolau [57] suggests loop quantization as a technique for multidimensional loop unrolling in conjunction with tree-height reduction and percolation scheduling. He does not consider the problem of determining the optimal initiation interval for each loop. Loop quantization as described in [1, 57] deals with the problem at the iteration level rather than at the statement level. Recently, Gao et al. [20] present a technique that works for rectangular loops but requires all components of all distance vectors to be positive. While unimodular transformations could be used to convert all distance vectors to have non-negative entries, the transformed iteration spaces are no longer rectangular; this limits the applicability of the results in [20]. The technique developed in this chapter does not have the restriction on non-negativity and hence is more general.

3.3 Statement-Level Rational Affine Schedules

In this section, we formulate the problem of optimal fine grain scheduling of nested loops in the absence of resource constraints as a Linear Programming (LP) problem [65] which admits polynomial time solutions and is extremely fast in practice. This chapter generalizes
the hyperplane scheduling technique of scheduling iterations of nested loops pioneered by Lamport [44] by deriving optimal schedules at the statement level rather than at the iteration level. The solutions derived give the minimum iteration initiation interval for each level of an \(n \)-nested loop. Let \(G \) denote the statement level dependence graph. If \(G \) is acyclic, then list scheduling and tree height reduction can be used to optimally schedule the computation [1]. If \(G \) is cyclic, we use Tarjan’s algorithm [76, 79] to find all the strongly connected components and schedule each strongly connected component separately. For now, we discuss the optimal scheduling of a single strongly connected component in \(G \). We plan to explore the interleaving of the schedules of strongly connected components.

Given a number \(x \), \(\lfloor x \rfloor \) is the largest integer that is less than or equal to \(x \) and is called the floor of \(x \). Let \([q_k(T)] \) denote the time at which statement \(S_k(k = 1, \ldots, r) \) in iteration \(T = (i_1, \ldots, i_n) \) (denoted \(S_k(T) \)) is scheduled which is the time at which execution starts. Let \(t_k \) be the time taken to execute statement \(S_k \). We assume that \(t_k \geq 1 \) and is an integer. \(q_k(T) \) is a rational function, i.e., it is written as

\[
q_k(T) = h_{k,1}i_1 + h_{k,2}i_2 + \cdots + h_{k,n}i_n + \delta_k.
\]

Let \(\overline{h}_k = (h_{k,1}, h_{k,2}, \ldots, h_{k,n}) \) for each \(k \); the elements of the vector \(\overline{h}_k \) and \(\delta_k \) are rational. Note that we could also use \(\lceil q_k(T) \rceil \) as the time at which \(S_k(T) \) is scheduled. We choose to use the floor function throughout. We use a single \(\overline{h} \) vector for each strongly connected component, i.e.,

\[
q_k(T) = \overline{h} \cdot \overline{I} + \delta_k \quad k = 1, \ldots, r.
\]

The schedule should satisfy all the dependences in the loop. A schedule is a tuple \(\langle \overline{h}, \overline{\delta} \rangle \) where \(\overline{h} = (h_1, \ldots, h_n) \) is an \(n \)-vector and \(\overline{\delta} = (\delta_1, \ldots, \delta_r) \) is an \(r \)-vector. A schedule \(\langle \overline{h}, \overline{\delta} \rangle \) is legal if for each edge from statement \(S_k \) to \(S_l \) with a distance vector \(\overline{d}^{k,l} \) in \(G \),

\[
q_l(T) \geq q_k(T - \overline{d}^{k,l}) + t_k
\]
This states that statement S_i in iteration \mathcal{I} can be scheduled only after statement S_k in iteration $(\mathcal{I} - \overline{d}_{k,l})$ has completed execution. Since $S_k(\mathcal{I} - \overline{d}_{k,l})$ starts execution at $q_k(\mathcal{I} - \overline{d}_{k,l})$, $S_i(\mathcal{I})$ can start at the earliest at time $q_k(\mathcal{I} - \overline{d}_{k,l}) + t_k$. Thus,

$$\overline{h} \cdot \mathcal{I} + \delta_l \geq \overline{h} \cdot (\mathcal{I} - \overline{d}_{k,l}) + \delta_k + t_k$$

$$\overline{h} \cdot \overline{d}_{k,l} \geq \delta_k - \delta_l + t_k$$

for all dependences in G. If $\overline{d}_{k,k}$ is a self dependence on S_k this condition translates to

$$\overline{h} \cdot \overline{d}_{k,k} \geq t_k$$

For an n-nested loop with a schedule $\langle \overline{h}, \overline{\delta} \rangle$, the execution time, E is given by the expression,

$$E = \max_{\mathcal{I}, \mathcal{J} \in \mathcal{I} \cap k, l \in [1, r]} \{ q_k(\mathcal{I}) - q_l(\mathcal{J}) \}$$

The optimal execution time is the minimum value of the expression E:

$$E \approx \max_{\mathcal{I}, \mathcal{J} \in \mathcal{I}} \{ \overline{h} \cdot (\mathcal{I} - \mathcal{J}) \} + \max_{k \in [1, r]} (\delta_k) - \min_{k \in [1, r]} (\delta_k)$$

We assume that the number of iterations at each level of the loop nest is large; hence, we ignore the contribution from the term: $\max_{k \in [1, r]} (\delta_k) - \min_{k \in [1, r]} (\delta_k)$. The expression $\max_{\mathcal{I}, \mathcal{J} \in \mathcal{I}} \{ \overline{h} \cdot (\mathcal{I} - \mathcal{J}) \}$ can be approximated by $\max_{\mathcal{I} \in \mathcal{I}} \overline{h} \cdot \mathcal{I} - \min_{\mathcal{I} \in \mathcal{I}} \overline{h} \cdot \mathcal{I}$. With the assumption that loop bounds are affine functions of outer loop variables, the iteration space is a convex polyhedron. The extrema of affine functions over \mathcal{I}, therefore occur at the corners of the polyhedron [65]. If the iteration space is rectangular, i.e., L_j and U_j ($j = 1, \ldots, n$) are integer constants, we can find an expression of the optimal value of E using Banerjee’s inequalities [8] as discussed below.

Definition 3.1 [8]: Given a number h, its positive part, $h^+ = \max(h, 0)$; and its negative part, $h^- = \max(-h, 0)$. Some properties are given below:
1. $h^+ \geq 0$ and $h^- \geq 0$

2. $h = h^+ - h^-$ and $\text{abs}(h) = h^+ + h^-$ (abs(h) is the absolute value of h.)

3. $-h^- \leq h \leq h^+$

For rectangular loops, we assume that $L_j \leq i_j \leq U_j$ for $j = 1, \ldots, n$ and L_j and U_j are constants. Using Banerjee’s inequalities,

$$\max_{I \in \mathcal{I}} h \cdot T = \sum_{j=1}^{n} \{h_j^+ U_j - h_j^- L_j\}$$

and

$$\min_{I \in \mathcal{I}} h \cdot T = \sum_{j=1}^{n} \{h_j^+ L_j - h_j^- U_j\}$$

Therefore,

$$\mathcal{E} \approx \sum_{j=1}^{n} \{(h_j^+ U_j - h_j^- L_j) - (h_j^+ L_j - h_j^- U_j)\}$$

$$\mathcal{E} \approx \sum_{j=1}^{n} \{(h_j^+ + h_j^-) (U_j - L_j)\}$$

From the properties in definition 3.1, this is equal to

$$\mathcal{E} \approx \sum_{j=1}^{n} \{\text{abs}(h_j) (U_j - L_j)\}$$

Thus, we can formulate the problem of finding the optimal schedule for an n-nested loop (with a rectangular iteration space and the size of each level in the iteration space is the same) with r-statements as that of finding a schedule $\langle \bar{h}, \bar{\delta} \rangle$, i.e., h_1, \ldots, h_n and $\delta_1, \ldots, \delta_r$ that minimizes $\sum_{j=1}^{n} \text{abs}(h_j) (U_j - L_j)$ subject to dependence constraints:

Minimize $\sum_{j=1}^{n} \text{abs}(h_j) (U_j - L_j)$

subject to

$$\bar{h} \cdot d^{k,l} \geq \delta_k - \delta_l + t_k \quad k, l \in [1, r]$$
for every edge in G.

In many cases, the loop limits, though constants, are not known at compile time. In such cases, we aim at finding optimal schedules independent of the loop limits. We assume rectangular iteration spaces, where the size of each loop $U_j - L_j + 1$ is the same for all values of j; in such cases, the optimal value of the expression E is a function of $\sum_{j=1}^{n} \text{abs}(h_j)$.

Thus, the execution time depends on the loop limits, whereas the schedule, $\langle h, \delta \rangle$, does not depend on L_j and $U_j (j = 1, \ldots, n)$. If the size, i.e., the value of $U_j - L_j + 1 (j = 1, \ldots, n)$, are different for different loop levels, then the technique developed in this chapter is suboptimal. With unknown loop limits, our problem then is that of finding a schedule $\langle h, \delta \rangle$ that minimizes $\sum_{j=1}^{n} \text{abs}(h_j)$ subject to dependence constraints:

$$\text{Minimize } \sum_{j=1}^{n} \text{abs}(h_j)$$

subject to

$$\overline{t} \cdot d_k, l \geq \delta_k - \delta_l + t_k \quad k, l \in [1, r]$$

for every edge in G.

The above formulation is not in standard linear programming form for two reasons:

1. Lack of non-negativity constraints on $\langle \overline{h}, \overline{\delta} \rangle$

2. Absolute values of variables in the objective function

The first problem is handled by writing each variable $h_j (j = 1, \ldots, n)$ and $\delta_i (i = 1, \ldots, r)$ as the difference of two variables, which are constrained to be non-negative, e.g., replace h_j with $h_j^1 - h_j^2$ with the constraint that $h_j^1 \geq 0$ and $h_j^2 \geq 0$. The second problem is handled by adding a set of variables $\theta_j, j = 1, \ldots, n$; the new objective function is $\sum_{j=1}^{n} \theta_j$. For each variable h_j, we add two constraints, $\theta_j - h_j \geq 0$ and $\theta_j + h_j \geq 0$. With these modifications,
the problem is now in standard Linear Programming (LP) form:

\[
\text{Minimize } \sum_{j=1}^{n} \theta_j \\
\text{subject to } \\
\theta_j - h^1_j + h^2_j \geq 0 \quad j = 1, \ldots, n \\
\theta_j + h^1_j - h^2_j \geq 0 \quad j = 1, \ldots, n \\
\sum_{j=1}^{n} \left((h^1_j - h^2_j) d^{k,l}_j \right) - (\delta^1_k - \delta^2_k) + (\delta^1_l - \delta^2_l) \geq t_k
\]

where \(k, l \in [1, r] \) \(\land (k, l) \in \text{edges}(G) \).

The formulation has \(2n + m \) constraints with \(3n + 2r \) variables where \(m \) is the number of edges in \(G \) for an \(n \)-nested loop with \(r \) statements. In practice, our implementation obtains solutions very quickly.

3.4 What Does the LP Solution Mean?

The value of \(\text{abs}(h_j) \) denotes the iteration initiation interval for the \(j \)th loop in the nest. If \(h_j > 0 \), then the next loop iteration initiated at level \(j \) is numbered higher than the currently executing iteration at level \(j \). On the other hand \(h_j < 0 \) means that the next iteration initiated has an iteration number less than the currently executing iteration, i.e., the loop at level \(j \) is unrolled in the reverse direction. If \(h_j = \frac{a_j}{b_j} \) where \(a_j \) and \(b_j \) are integers and \(\gcd(a_j, b_j) = 1 \), in every \(\text{abs}(a_j) \) time units, \(\text{abs}(b_j) \) iterations at level \(j \) are unrolled; the unrolling is in reverse direction if \(h_j < 0 \). If \(h_j = 0 \), the minimum iteration initiation interval is zero, i.e., the loop is a parallel loop. Thus \(\frac{1}{\text{abs}(h_j)} \) denotes the initiation or unrolling rate of the \(j \)th loop.

3.5 Examples

In this section, we show the effectiveness of our approach through examples. First, we show an example of a two-level nested loop with four statements for which the optimal initiation
rate (with no bound on resources) is determined using the LP formulation described in this paper. Consider the following loop:

Example 3.1:

for $i = 1$ to N
 for $j = 1$ to N
 S_1: $A[i, j] = B[i - 1, j - 3] + D[i - 1, j + 3]$
 S_2: $B[i, j] = C[i - 1, j + 4] + X[i, j]$
 endfor
endfor

The statement level dependence graph is shown in Figure 3.1. We assume that each statement takes one unit of time to execute, \(i.e., t_1 = t_2 = t_3 = t_4 = 1 \). The linear
programming problem for this example is:

\[
\text{Minimize } \theta_1 + \theta_2
\]

subject to

\[
\begin{align*}
\theta_1 - h_1^1 + h_1^2 & \geq 0 \\
\theta_1 + h_1^1 - h_1^2 & \geq 0 \\
\theta_2 - h_2^1 + h_2^2 & \geq 0 \\
\theta_2 + h_2^1 - h_2^2 & \geq 0 \\
2h_2^1 - 2h_2^2 - \delta_1^1 + \delta_2^1 + \delta_3^1 - \delta_3^2 & \geq 1 \\
h_1^1 - h_1^2 - 4h_2^1 + 4h_2^2 - \delta_1^3 + \delta_3^3 + \delta_2^1 - \delta_2^2 & \geq 1 \\
h_1^1 - h_1^2 + 3h_2^1 - 3h_2^2 - \delta_1^3 + \delta_2^1 + \delta_1^2 - \delta_1^2 & \geq 1 \\
h_2^1 - h_2^2 - \delta_1^3 + \delta_2^2 + \delta_1^4 - \delta_4^2 & \geq 1 \\
h_1^1 - h_1^2 - 3h_2^1 + 3h_2^2 - \delta_4^1 + \delta_4^2 + \delta_1^1 - \delta_1^2 & \geq 1
\end{align*}
\]

The optimal solution to this problem is: \(h_1 = \frac{8}{5}, h_2 = \frac{-1}{5}, \delta_1 = 0, \delta_2 = 0, \delta_3 = \frac{7}{5}, \delta_4 = \frac{6}{5} \).

This means that

- \(S_1(i, j) \) is scheduled at \(\lfloor \frac{8i}{5} - \frac{j}{5} \rfloor \)
- \(S_2(i, j) \) is scheduled at \(\lfloor \frac{8i}{5} - \frac{j}{5} \rfloor \)
- \(S_3(i, j) \) is scheduled at \(\lfloor \frac{8i}{5} - \frac{j}{5} + \frac{7}{5} \rfloor \)
- \(S_4(i, j) \) is scheduled at \(\lfloor \frac{8i}{5} - \frac{j}{5} + \frac{9}{5} \rfloor \)

In every 8 units of time, 5 new iterations of the outer loop are initiated. In every unit of time, 5 new iterations of the inner loop are initiated in the reverse direction. The optimal
execution time is $\approx \frac{9N}{6}$. The best execution time that can be derived using only the iteration space distance vectors is $\approx 6N$ for the schedule $5i + j$. The fine grained solution runs 3.3 times faster than the best solution that can be obtained using hyperplane technique [44].

The method presented here is equally applicable to inner loops. Consider the following example from page 45 in [22].

Example 3.2:

for $i = 1$ to N do

S1: $A[i] = C[i - 1]$

S2: $B[i + 1] = A[i]$

S3: $C[i] = B[i]$

endfor

The statement level dependence graph for Example 3.2 is shown in Figure 3.2. We assume that each statement takes one unit of time to execute, i.e., $t_1 = t_2 = t_3 = 1$. The
linear programming problem for this example is:

\[
\text{Minimize } \theta \\
\text{subject to}
\]

\[
\theta - h^1 + h^2 \geq 0 \\
\theta + h^1 - h^2 \geq 0 \\
0 - \delta_1^1 + \delta_1^2 + \delta_2^1 - \delta_2^2 \geq 1 \\
h^1 - h^2 - \delta_2^1 + \delta_2^2 + \delta_3^1 - \delta_3^2 \geq 1 \\
h^1 - h^2 - \delta_3^1 + \delta_3^2 + \delta_1^1 - \delta_1^2 \geq 1
\]

The optimal solution to this problem is: \(h = \frac{3}{2}, \delta_1 = 0, \delta_2 = 1, \) and \(\delta_3 = \frac{1}{2}. \)

- \(S_1(i) \) is scheduled at \(\lfloor \frac{3i}{2} \rfloor \)
- \(S_2(i) \) is scheduled at \(\lfloor \frac{3i}{2} + 1 \rfloor \)
- \(S_3(i) \) is scheduled at \(\lfloor \frac{3i}{2} + \frac{1}{2} \rfloor \)

In every 3 units of time, 2 new iterations of the loop are initiated. The optimal iteration initiation interval is \(\frac{3}{2} \). The optimal execution time is \(\approx \frac{3N}{2} \). The best execution time that can be derived using only the iteration space distance vectors is \(\approx 3N \) for sequential execution (which is the only possibility because of the loop carried dependence of distance 1). The fine grained solution runs 2 times faster than the best solution that can be obtained using the hyperplane technique [44].

Earlier we had mentioned that we schedule strongly connected components separately. Next, we show an example that illustrates how we can interleave strongly connected components; we use the following example from page 124 in [1]:

39
Example 3.3:

\[
\begin{align*}
\text{for } i = 1 \text{ to } N \text{ do} \\
A : & \quad A[i] = f_1(B[i]) \\
B : & \quad B[i] = f_2(A[i], D[i - 1]) \\
C : & \quad C[i] = f_3(A[i], D[i - 1]) \\
D : & \quad D[i] = f_4(B[i], C[i])
\end{align*}
\]

endfor

The statement level dependence graph is shown in Figure 3.3. We assume that each statement takes one unit of time to execute, i.e., \(t_1 = t_2 = t_3 = t_4 = 1 \). The SLDG in Figure 3.3 has two strongly connected components, one consisting of just the node \(A \) and the other made up of nodes \(B, C, \) and \(D \). We use the same value of \(h \) for all statements in the loop; this allows for interleaving of different strongly connected components. The
linear programming problem for this example is:

Minimize θ

subject to

\[\theta - h^1 + h^2 \geq 0 \]
\[\theta + h^1 - h^2 \geq 0 \]
\[0 - \delta^1_1 + \delta^2_1 + \delta^1_2 - \delta^2_2 \geq 1 \]
\[0 - \delta^1_1 + \delta^2_1 + \delta^1_3 - \delta^2_3 \geq 1 \]
\[0 - \delta^1_2 + \delta^2_2 + \delta^1_4 - \delta^2_4 \geq 1 \]
\[0 - \delta^1_3 + \delta^2_3 + \delta^1_4 - \delta^2_4 \geq 1 \]
\[h^1 - h^2 - \delta^1_4 + \delta^2_4 + \delta^1_2 - \delta^2_2 \geq 1 \]
\[h^1 - h^2 - \delta^1_4 + \delta^2_4 + \delta^1_3 - \delta^2_3 \geq 1 \]

The optimal solution to this problem is: $h = 2$, $\delta_1 = 0$, $\delta_2 = 1$, $\delta_3 = 1$, and $\delta_4 = 2$.

- Statement A is scheduled at $2i$
- Statement B is scheduled at $2i + 1$
- Statement C is scheduled at $2i + 1$
- Statement D is scheduled at $2i + 2$

This is the optimal solution for this example. In addition, our technique produces the optimal solution for codes such as the ones on pages 131 and 138 of [1], both of which require interleaving of strongly connected components in scheduling.
3.6 Chapter Summary

Software pipelining is an effective fine-grain scheduling technique that restructures the statements in the body of a loop subject to resource and dependence constraints such that one iteration of a loop can start execution before another finishes. The total execution time of a software-pipelined loop depends on the interval between two successive initiation of iterations. While software pipelining of single loops has been addressed in many papers, little work has been done in the area of software pipelining of nested loops. In this chapter, we have presented an approach to software pipelining of nested loops. We formulated the problem of finding the minimum iteration initiation interval for each level of a nested loop as one of finding a rational affine schedule for each statement in the body of a perfectly nested loop; this is then solved using linear programming. This framework allows for an integrated treatment of iteration-dependent statement reordering and multidimensional loop unrolling. Unlike most work in scheduling nested loops, we treat each statement in the body as a unit of scheduling. Thus, the schedules derived allow for instances of statements from different iterations to be scheduled at the same time. Optimal schedules derived here subsume extant work on software pipelining of non-nested loops. Work is in progress in deriving near-optimal multidimensional loop unwinding in the presence of resource constraints and conditionals.
CHAPTER 4
ON REDUNDANT SYNCHRONIZATION IN NESTED LOOPS

In order to achieve maximal parallel execution, a program must be decomposed into as many concurrent tasks as possible. The dependences in the original program must be preserved in concurrent execution to guarantee correctness, often through the use of synchronization instructions. Synchronization involves large overhead such as busy-waiting, contention for shared access or message passing. Therefore, it is important to minimize the number of synchronization instructions while guaranteeing correct and (possibly) maximally parallel execution. This chapter addresses the problem of elimination of redundant synchronizations in parallel execution of nested loops. The synchronization due to a dependence is redundant if it is enforced by synchronizations due to other dependences or by a combination of a collection of dependences and the control structure of the target machine. Please note that, in this chapter, we use the phrase “redundant dependence” to mean “redundant synchronization due to a dependence.”

The main contributions of this chapter are:

1. identification of the relation between the nature of the dependences and the size and shape of the iteration space for nested loops.

2. a method to determine the essential set of dependences that need to be enforced, in the case of loop nests.

The work is relevant to shared memory as well as message-passing distributed memory machines.
4.1 Background

Good and thorough parallelization of a program critically depends on how precisely a compiler can discover the data dependence information. These dependences imply precedence constraints among computations which have to be satisfied for a correct execution. Many algorithms exhibit regular data dependences, \textit{i.e.}, certain dependence patterns occur repeatedly over the duration of the computation. We assume familiarity with the notion of dependence.

4.1.1 Iteration Space Graph (ISG)

Dependence relations are often represented in \textit{Iteration Space Graphs} (ISG’s); for an \(d \)-nested loop with index set \((I_1, I_2, \ldots, I_d)\), the nodes of the ISG are points on a \(d \)-dimensional discrete Cartesian space and a directed edge exists between the iteration defined by \(\vec{I}_1 \) and the iteration defined by \(\vec{I}_2 \) whenever a dependence exists between statements in the loop constituting the iterations \(\vec{I}_1 \) and \(\vec{I}_2 \). Many dependences that occur in practice have a constant distance in each dimension of the iteration space. In such cases, the vector \(\vec{d} = \vec{I}_2 - \vec{I}_1 \) is called the \textbf{distance vector}. An algorithm has a number of such distance vectors; the distance vectors of the algorithm are written collectively as a \textbf{dependence matrix} \(D = [\vec{d}_1, \vec{d}_2, \ldots, \vec{d}_n] \). In addition to the three types of dependence mentioned above, there is one more type of dependence known as \textbf{control dependence}. A control dependence exists between a statement with a conditional jump and another statement if the conditional jump statement controls the execution of the other statement. Control dependences can be handled by methods similar to data dependences [51, 78]. In our analysis, we treat the different types of dependences uniformly. Researchers have developed an array of methods to calculate data dependence vectors, which exhibit different levels of accuracy, speed and generated information [3, 8, 75, 76].
4.1.2 Dependence Cone

Based on results in number theory and integer programming [6, 29, 65], given a set of \(N \) distinct distance vectors \((N \geq K)\), one can find a subset of \(M \) distance vectors \((1 \leq K \leq M \leq N)\) say \(\vec{d}_1, \ldots, \vec{d}_M \) such that any dependence vector \(\vec{d}_i, i = 1, \ldots, N \) can be expressed as a non-negative integer linear combination of the distance vectors \(\vec{d}_1, \ldots, \vec{d}_M \)

\[
\vec{d}_i = \sum_{j=1}^{M} a_{i,j} \vec{d}_j
\]

where \(i = 1, \ldots, N \) and \(a_{i,j} \geq 0 \) and at \(\sum_{j=1}^{M} a_{i,j} > 0 \). The set of vectors \(\vec{d}_1, \ldots, \vec{d}_M \) are referred to as minimal distance vectors.

These are related to extreme vectors defined in [61]. Given a set of \(N \) distinct dependence vectors \((N \geq K)\), one can find a set of \(K \) vectors (not necessarily distance vectors) say \(\vec{e}_1, \ldots, \vec{e}_K \) such that any dependence vector \(\vec{d}_i, i = 1, \ldots, N \) can be expressed as a non-negative linear combination of vectors \(\vec{e}_1, \ldots, \vec{e}_K \), i.e.

\[
c_i \vec{d}_i = \sum_{j=1}^{K} a_{i,j} \vec{e}_j
\]

where \(i = 1, \ldots, N \) and \(a_{i,j} \geq 0 \) and \(c_i > 0 \) [29]. Note that if \(c_i = 1 \), then \(\vec{d}_i \) is a transitive dependence, i.e., there is a path from the source of the dependence to the sink of that dependence that does not involve \(\vec{d}_i \). The set of vectors \(\vec{e}_1, \ldots, \vec{e}_K \) are referred to as extreme vectors. We note that in the case of minimal distance vectors, \(a_{i,j} \) have to be integers as opposed to possibly rational in the case of extreme vectors. Consider three dependence vectors \((0, 2), (2, 0), \) and \((1, 1)\). In this case, the vectors \((0, 2)\) and \((2, 0)\) are the extreme vectors, and \((1, 1)\) can be written as \(\frac{1}{2}(0, 2) + \frac{1}{2}(2, 0) \). Note that \((1, 1)\) cannot be written as a non-negative integer linear combination of vectors \((0, 2)\) and \((2, 0)\).
4.1.3 Redundant Synchronization Due to a Dependence

A distance vector \vec{d}_i from I_1 to I_2 is redundant if and only if there is a path in the iteration space graph (ISG) from I_1 to I_2 which does not involve \vec{d}_i. A distance vector \vec{d}_i is uniformly redundant if and only if it is redundant at all points in the iteration space. We illustrate these definitions using the following example:

Example 4.1:

for $i = 1$ to 2
 for $j = 1$ to 5
 endfor
endfor

This loop has three distance vectors $(0, 3)$, $(1, -2)$ and $(1, 1)$. The distance vector $(1, 1)$ is redundant since it is the sum of the distance vectors $(1, -2)$ and $(0, 3)$. The distance vector $(1, 1)$ exists at the points in the iteration space of the form $(1, x)$ where $1 \leq x \leq 4$. From all those points $(1, x)$ there exists a path through the iteration space to the points $(2, x + 1)$ as shown in Figure 4.1. For this example, $(1, 1)$ is uniformly redundant.

Now consider a variant of the loop in Example 4.2, where the loop limits of the j are 1 and 4 as in:

Example 4.2:

for $i = 1$ to 2
 for $j = 1$ to 4
 endfor
endfor

The distance vector $(1, 1)$ is redundant since it is the sum of the distance vectors $(1, -2)$ and $(0, 3)$. The distance vector $(1, 1)$ exists at the points in the iteration space of the form $(1, x)$
Figure 4.1: Illustration of the uniform redundancy of the dependence $(1, 1)$ for Example 4.1

Figure 4.2: Illustration of the non-uniform redundancy of the dependence $(1, 1)$ for Example 4.2
where $1 \leq x \leq 3$. From the points $(1, 1)$ and $(1, 3)$, there exist an alternate path through the iteration space (which does not involve the vector $(1, 1)$) to the points $(2, 2)$ and $(2, 4)$ respectively as shown in figure 4.2. But from the point $(1, 2)$ there is no alternate path through the iteration space. Therefore, the distance vector $(1, 1)$ is not redundant at all points in the iteration space i.e., it is not uniformly redundant.

4.1.4 Related Work

Eliminating redundant synchronization has been previously studied by Krothapalli and Sadayappan [39], Li and Abu-Sufah [47], Midkiff and Padua [50, 51, 52] and Shafer [66].

Li and Abu-Sufah [47] characterized situations in single loops where a dependence renders some other dependence redundant. On the contrary, in the context of non-nested loops with constant dependence vectors, Midkiff and Padua [50, 51] address the identification of all possible combinations of dependence vectors that make some other dependence redundant. They exploit the regular nature of the dependence vectors at each point of the iteration space and determine all redundant dependences by computing transitive closures of small subgraphs of size one more than the magnitude of the largest dependence distance among the dependence edges.

In [50, 51], the transitive closure is generated m times, for m dependences in the loop each time removing the edge to be tested from the initial adjacency matrix. As pointed out by Jayasimha [31] and Shafer [66], it is not necessary to generate m transitive closures to determine all transitive edges in a directed graph. Krothapalli and Sadayappan [39] use transitive reduction in the general case; with constant dependence vectors, they further exploit the regularity of the dependences to efficiently deduce all the redundant edges through a variant of depth-first search and altogether avoid computing either a transitive reduction or closure. Unlike with single loops, in the case of nested loops, a particular dependence
may be redundant at some iterations but not redundant at some other iterations, so that the redundancy of a dependence may not be uniform over the entire iteration space. In addition, [39] develop sufficient conditions for a dependence to be uniformly redundant in rectangular 2-dimensional iteration spaces.

Midkiff and Padua [52] point out that the techniques in [39] are applicable only to single statement nested loops; they then present a general algorithm which uses Control Path Graph to eliminate redundant synchronization. Our work differs from and builds upon these to provide a characterization of redundancy in arbitrary two and multiple nested loops relating redundancy to the dependence vectors and size and shape of the iteration space. In addition, since we use dependence cones (extreme vectors), our techniques are applicable to cases with nonconstant dependence distance vectors as well although at the cost of reduced parallelism.

4.1.5 Definitions

An \((n \times n)\) matrix \(H\) is said to be **unimodular** if it has integer entries and its determinant equals ±1. Given an \((n \times m)\) matrix \((m \geq n)\) \(D\) of rank \(r\), there exist two unimodular matrices \(U\) of size \((n \times n)\) and \(V\) of size \((m \times m)\) such that

\[
S = UDV = \begin{bmatrix}
 s_1 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
 0 & s_2 & \cdots & 0 & 0 & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \cdots & s_r & 0 & \cdots & 0 \\
 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \cdots & 0 & 0 & \cdots & 0
\end{bmatrix}
\]

The matrix \(S\) is called the Smith Normal Form (SNF) of the matrix \(D\). \(s_i\)'s are positive integers and \(s_i\) divides \(s_{i+1}\) for \(i = 1, \ldots, r - 1\); also \(S\) is unique. The vector \((s_1, \ldots, s_r)\) is referred to as the principal diagonal of \(S\). An \((n \times m)\) matrix \((m \geq n)\) \(D\) is to be general unimodular (or g-unimodular) if the Smith Normal Form (SNF) [65] of \(D\) (which is an
equivalent integer diagonal matrix containing zeros on the off-diagonal) has only 1 on its principal diagonal. Equivalently, the product of the entries along the principal diagonal of the Smith Normal Form of D is 1. More details and algorithms to compute Smith Normal Form can be found in [56, 65].

4.2 Redundancy in Doubly-Nested Loops

4.2.1 Computing the Extreme Vectors in 2-D Iteration Spaces

Here, we present an $O(n)$ algorithm for computing the extreme vectors, where n is the number of distance vectors and we assume that $n \geq 2$. It is based on the fact that in two dimensional iteration spaces, the first non-zero component in any distance vector must be non-negative and there are exactly two components to deal with. Therefore, distance vectors in 2-D iteration spaces are of one of the two following forms: $(0, \oplus)$ and $(+, \ast)$ where 0 stands for zero, + represents positive integers, \ast stands for all integers and \oplus stands for non-negative integers. The distance vectors, therefore belong to the first and fourth quadrants (where the usual X-axis corresponds to the outer loop index variable i and the inner loop variable j is represented by the Y-axis). See Figure 4.3. The extreme vectors are the two vectors which have the maximum span from among all the dependence vectors i.e. every other dependence vector lies in the cone of the extreme vectors.

Let the components of each distance vector d_i be $(d_{i,1}, d_{i,2})$ where $d_{i,1}$ is the distance along the outer loop and $d_{i,2}$ is the distance along the inner loop. Find the ratio $r_i = \frac{d_{i,2}}{d_{i,1}}$ for all the dependence vectors (including the signs). The vectors with the highest and lowest values (one vector for each) are the extreme vectors. Note that if $d_{i,1} = 0$ for any d_i, then that vector is an extreme vector. If there is more than one vector with $d_{i,1} = 0$, we choose the vector with the smallest value of $d_{i,2}$ from among those. The largest and the smallest values among the r_i can be found in $O(n)$ time.
4.2.2 Extreme Vectors Can Not Be Redundant

In the case of two-level nested loops, with dependence distances \vec{d}_i ($i = 1, \ldots, n$), we can always find two vectors say \vec{d}_1 and \vec{d}_2 (which are themselves dependence vectors) using which \vec{d}_i can be expressed as

$$\vec{d}_i = q_{i,1}\vec{d}_1 + q_{i,2}\vec{d}_2$$

where $q_{i,1}$ and $q_{i,2}$ are non-negative rational numbers and both $q_{i,1}$ and $q_{i,2}$ are not zero. The vectors \vec{d}_1 and \vec{d}_2 are referred to as the extreme vectors. We show next that extreme vectors cannot be redundant.

Theorem 4.1 Extreme vectors in 2-D iteration spaces cannot be redundant dependence vectors.

Proof: Let us assume that, one of the extreme vectors, say \vec{d}_1 (without loss of generality) is redundant. We also assume that \vec{d}_1 and \vec{d}_2 are not collinear. Since \vec{d}_1 is redundant, it can
be expressed as a nonnegative linear combination of say \(\vec{d}_2 \) and some dependence vector \(\vec{d}_k \), (i.e.)

\[
\vec{d}_1 = \alpha \vec{d}_2 + \beta \vec{d}_k
\]

where \(\alpha \) and \(\beta \) are greater than zero. We assume that none of the vectors \(\vec{d}_k \) is a scalar multiple of either \(\vec{d}_1 \) or \(\vec{d}_2 \). Since \(\vec{d}_k \) is not an extreme vector,

\[
\vec{d}_k = a_{k,1} \vec{d}_1 + a_{k,2} \vec{d}_2
\]

where \(a_{k,1}, a_{k,2} > 0 \).

Therefore, it follows that

\[
\vec{d}_1 = \alpha \vec{d}_2 + \beta \left(a_{k,1} \vec{d}_1 + a_{k,2} \vec{d}_2 \right)
\]

Since \(\vec{d}_1 \) and \(\vec{d}_2 \) are not collinear

\[
\beta a_{k,1} = 1
\]

and

\[
\alpha + \beta a_{k,2} = 0 \implies \alpha = -\beta a_{k,2}.
\]

Since \(\alpha, \beta, a_{k,i} \) are all non-negative this is not possible, resulting in a contradiction. \(\square \)

Let \(E \) refer to the matrix whose columns are the extreme vectors \(\vec{d}_1 \) and \(\vec{d}_2 \). If the matrix \(E \) is unimodular, then all dependences are redundant, i.e., all the dependences (\(\vec{d}_3 \) thru \(\vec{d}_n \)) can be written in the form:

\[
\vec{d}_i = a_{i,1} \vec{d}_1 + a_{i,2} \vec{d}_2
\]

where \(a_{i,1} \) and \(a_{i,2} \) are non-negative integers both not zero, (i.e.\) all dependence vectors have a non-negative integral decomposition on \(\vec{d}_1 \) and \(\vec{d}_2 \); in other words \(\vec{d}_1 \) and \(\vec{d}_2 \) form a basis for a lattice [65]. A geometric interpretation for this is that, if you draw a parallelogram at the origin \((0,0)\) of integer space whose sides are \(\vec{d}_1 \) and \(\vec{d}_2 \), there will be no points
in the integer space belonging to the interior of this parallelogram (note that the interior excludes the points \(\vec{0}, \vec{d}_1, \vec{d}_2 \) and \(\vec{d}_1 + \vec{d}_2 \)); the interior excludes the vertices but not the sides of the parallelogram.

We have so far assumed that we do not have multiple dependence vectors along the extreme vector directions. If this is the case, it suffices to enforce only the vector along that direction, the \(\gcd \) of whose components is 1. We have assumed that the iteration space is connected. This is equivalent to assuming the iteration space dependence graph is weakly connected, i.e., the undirected graph that results from omitting directions on dependence edges is a connected graph. This constraint is satisfied if the dependence matrix \(D \) is \(g \)-unimodular; if the matrix \(E \) is not unimodular, then it is not sufficient to enforce only the extreme vectors. Essentially, we need to enforce additional dependences to synchronize those integer vectors in the interior of the parallelogram generated by the extreme vectors \(\vec{d}_1 \) and \(\vec{d}_2 \). For example, consider a parallelogram whose sides are \((2, -1)\) and \((0, 1)\). The vector \((1, 0)\) lies inside this parallelogram. It is easy to see that the vector \((1, 0)\) can not be written as a non-negative integral linear combinations of \((2, -1)\) and \((0, 1)\). Also, the matrix whose columns are \((2, -1)\) and \((0, 1)\) has a determinant of 2.

All the previous discussion ignored the size of the iteration space, or essentially assumed a semi-infinite iteration space where a redundant dependence is redundant everywhere in the iteration space. This need not be true in finite iteration spaces [39], which is the common case encountered.

4.2.3 Effect of the Size and Shape of the Iteration Space

Consider a two-level nested loop of the form:

\[
\text{for } i_1 = 0 \text{ to } n - 1 \text{ do }
\]
for $i_2 = e \times i_1 + x$ to $f \times i_1 + y$ do
\[\cdots \]
endfor
endfor

where n, e, x, f and y are constants. We also assume that $fi_1 + y \geq ei_1 + x$ for all values of i_1, i.e., $0 \leq i_1 \leq n - 1$. Essentially, the inner loop limits are affine functions of the outer loop variable. Let $\vec{I} = (i_1, i_2)$ and $\vec{J} = (j_1, j_2)$ be two points in the iteration space, such that $\vec{I} \prec \vec{J}$, i.e., \vec{I} executes before \vec{J} and $\vec{J} - \vec{I} = \vec{d}$, for some dependence vector \vec{d}. We say that the dependence vector \vec{d} exists at \vec{I}. Let the dependence vector \vec{d} be redundant, i.e., $\vec{d} = \vec{a} + \vec{b}$ where \vec{a} and \vec{b} are also dependence vectors.

We now present the conditions under which $\vec{d} = (d_1, d_2)$ may not be redundant at \vec{I}, i.e., cannot be enforced by \vec{a} and \vec{b} at \vec{I}. This is possible when both \vec{I} and $\vec{J} = \vec{I} + \vec{d}$ belong to the iteration space and neither $\vec{I} + \vec{a}$ nor $\vec{I} + \vec{b}$ belong to the iteration space. Since $\vec{I} = (i_1, i_2)$ belongs to the iteration space

\[0 \leq i_1 \]
(4.1)
\[i_1 \leq n - 1 \]
(4.2)
\[ei_1 + x \leq i_2 \]
(4.3)
\[i_2 \leq fi_1 + y \]
(4.4)

Since $\vec{J} = \vec{I} + \vec{d} = (i_1 + d_1, i_2 + d_2)$ belongs to the iteration space,

\[0 \leq i_1 + d_1 \]
(4.5)
\[i_1 + d_1 \leq n - 1 \]
(4.6)
\[e(i_1 + d_1) + x \leq i_2 + d_2 \]
(4.7)
\[i_2 + d_2 \leq f(i_1 + d_1) + y \]
(4.8)
Since \(\vec{I} + \vec{a} \) does not belong to the iteration space, at least one of the following 4 conditions must be true:

\begin{align*}
0 &> i_1 + a_1 \quad (4.9) \\
i_1 + a_1 &> n - 1 \quad (4.10) \\
e(i_1 + a_1) + x &> i_2 + a_2 \quad (4.11) \\
i_2 + a_2 &> f(i_1 + a_1) + y \quad (4.12)
\end{align*}

Similarly since \(\vec{I} + \vec{b} \) does not belong to the iteration space, at least one of the following 4 conditions should hold:

\begin{align*}
0 &> i_1 + b_1 \quad (4.13) \\
i_1 + b_1 &> n - 1 \quad (4.14) \\
e(i_1 + b_1) + x &> i_2 + b_2 \quad (4.15) \\
i_2 + b_2 &> f(i_1 + b_1) + y \quad (4.16)
\end{align*}

Lemma 4.1 Conditions 4.9, 4.10, 4.13 and 4.14 cannot be true.

Proof: Every dependence vector is a positive vector [8], i.e., the first nonzero component of a dependence vector has to be positive. Therefore, \(a_1 \geq 0, b_1 \geq 0, d_1 \geq 0 \). Since \(d_1 = a_1 + b_1 \), and since \((i_1, i_2)\) and \((i_1 + d_1, i_2 + d_2) = (i_1 + a_1 + b_1, i_2 + a_2 + b_2)\) belong to the iteration space, it follows that conditions 4.9, 4.10, 4.13 and 4.14 cannot be true. □

For \(\vec{d} \) not to be redundant i.e., non-redundant at \(\vec{I} \), at least one of the two conditions 4.11 and 4.12 must hold and at least one of the two conditions 4.15 and 4.16 must hold.

We will consider the possibility of each of the four combinations, namely 4.11 and 4.15, 4.11 and 4.16, 4.12 and 4.15, and 4.12 and 4.16. Before that we derive some useful additional results.
Result 4.1 If condition 4.11 is true, then $ea_1 > a_2$.

If condition 4.11 is true,

$$e(i_1 + a_1) + x > i_2 + a_2 \implies e(i_1 + a_1) + x \geq i_2 + a_2 + 1$$

Condition 4.3 states

$$ei_1 + x \leq i_2 \text{ or } i_2 \geq ei_1 + x$$

Adding these two, and canceling out common terms on the left and right sides, we have

$$ea_1 \geq a_2 + 1 \implies ea_1 > a_2$$

If $a_1 \neq 0$, $e > \frac{a_2}{a_1}$.

Result 4.2 If condition 4.12 is true, then $a_2 > fa_1$.

If condition 12 is true,

$$i_2 + a_2 > f(i_1 + a_1) + y \implies i_2 + a_2 \geq f(i_1 + a_1) + y + 1$$

Condition 4.4 states

$$fi_1 + y \geq i_2$$

Adding these two, and canceling out common terms on the left and right sides, we have

$$a_2 \geq fa_1 + 1 \implies a_2 > fa_1.$$

If $a_1 \neq 0$, $\frac{a_2}{a_1} > f$.

Result 4.3 If condition 4.15 is true, then $eb_1 > b_2$.

The derivation of this result is similar to the derivation of Result 4.1. For sake of brevity, we omit details here. If $b_1 \neq 0$, $e > \frac{b_2}{b_1}$.

56
Result 4.4 If condition 4.16 is true, then \(b_2 > fb_1 \).

The derivation of this result is similar to the derivation of Result 4.2. For sake of brevity, we omit details here. If \(b_1 \neq 0 \), \(\frac{b_2}{b_1} > f \).

Lemma 4.2 Conditions 4.11 and 4.15 cannot both be true simultaneously.

Proof: Assume that conditions 4.11 and 4.15 are true simultaneously. Therefore results 4.1 and 4.3 hold, *i.e.*,

\[
e a_1 > a_2 \quad \text{and} \quad e b_1 > b_2
\]

\[
\implies e(a_1 + b_1) > (a_2 + b_2) \implies ed_1 > d_2
\]

Conditions 4.3 and 4.7 are:

\[
e i_1 + x \leq i_2
\]

\[
e(i_1 + a_1 + b_1) + x \leq i_2 + a_2 + b_2
\]

From these two, we can derive

\[
e(a_1 + b_1) \leq a_2 + b_2 \implies ed_1 \leq d_2
\]

which is a contradiction. \(\square \)

Lemma 4.3 Conditions 4.12 and 4.16 can not both be true simultaneously.

Proof: The proof is similar to that of the previous lemma. \(\square \)

As a result, the only combinations left are: conditions 4.11 and 4.16, conditions 4.12 and 4.15. These combinations are symmetric. Therefore, we show the results only for one of these combinations, 4.11 and 4.16.
Theorem 4.2 A dependence $\vec{d} = \vec{a} + \vec{b}$ is not redundant at a point $\vec{I} = (i_1, i_2)$ in an arbitrary convex two dimensional iteration space if

$$(fi_1 + y) - (ei_1 + x) + 1 < (b_2 - fb_1) + (ea_1 - a_2).$$

Proof: Conditions 4.11 and 4.16 are:

$$e(i_1 + a_1) + x > i_2 + a_2 \implies e(i_1 + a_1) + x \geq i_2 + a_2 + 1$$

$$i_2 + b_2 > f(i_1 + b_1) + y \implies i_2 + b_2 \geq f(i_1 + b_1) + y + 1$$

Adding these we get,

$$(b_2 - a_2) \geq ((fi_1 + y) - (ei_1 + x) + 1) + (fb_1 - ea_1) + 1 \implies$$

$$(b_2 - a_2) > ((fi_1 + y) - (ei_1 + x) + 1) + (fb_1 - ea_1)$$

where $(fi_1 + y) - (ei_1 + x) + 1$ is size of the iteration space along the inner loop for a given value of the outer loop index. Therefore, the dependence is not redundant if

$$size < (b_2 - a_2) - (fb_1 - ea_1)$$

or,

$$size < (b_2 - fb_1) + (ea_1 - a_2)$$

The two quantities on the right hand side of the inequality are both positive. □

Corollary 4.1 A dependence $\vec{d} = \vec{a} + \vec{b}$ is not uniformly redundant at a point $\vec{I} = (i_1, i_2)$ in a rectangular two dimensional iteration space if the size of the iteration space along the innermost loops satisfies the condition:

$$size < (b_2 - a_2)$$

where $b_2 > 0$ and $a_2 < 0$. 58
Proof: For a rectangular iteration space $e = f = 0$ and size $= y - x + 1$. Substituting these values in the result in theorem 4.2, we get

$$b_2 - a_2 \geq (y - x + 1) + 1 \implies b_2 - a_2 > (y - x + 1).$$

Substituting these values in results 4.1 and 4.4 (from conditions 4.11 and 4.16), we also get $b_2 > 0$ and $a_2 < 0$. Therefore, for the dependence to be non-redundant, the iteration space along the innermost loop must be smaller than $(b_2 - a_2)$ where $b_2 > 0$ and $a_2 < 0$. □

This result is the same as that of [39].

4.2.4 Non-Constant Distance Vectors

Techniques presented in [39, 52] assume that the dependence vectors are distance vectors (constant distance vectors). With non-constant distance vectors, we use the dependence cone of the set of dependence vectors or the extreme vectors defined earlier. Thus, we need to enforce only a fixed number of synchronizations per point in the iteration space. In some cases, we need use extreme vectors which are not dependence vectors themselves resulting in a loss of parallelism.

4.2.5 Non-Redundancy with Several Distance Vectors in 2-D

Let a dependence \vec{r} be redundant through a set of dependences $\vec{d}_1, \ldots, \vec{d}_m$, i.e.,

$$\vec{r} = \vec{d}_1 + \vec{d}_2 + \cdots + \vec{d}_m$$

We assume that \vec{r} cannot be written as a non negative integral linear combination of a strict subset of the vectors $\{\vec{d}_1, \vec{d}_2, \cdots, \vec{d}_m\}$.

Assume a loop of the form:

```plaintext
for $i_1 = 0$ to $n_1 - 1$ do
  for $i_2 = 0$ to $n_2 - 1$ do
```

59
Let \(\vec{I} = (i_1, i_2) \) and \(\vec{J} = (j_1, j_2) = (i_1 + r_1, i_2 + r_2) \) be points in the iteration space. We approximate the non-redundancy relation as one where, for each dependence \(d_k \) (for \(k = 1, \cdots, m \) where \(d_{k,2} \neq 0 \)), the point \((i_1 + d_{k,1}, i_2 + d_{k,2})\) is not in the iteration space.

For each dependence at least one of the 4 conditions hold:

\[
\begin{align*}
0 &> i_1 + d_{k,1} & \quad & \text{(R.1)} \\
0 &> i_2 + d_{k,2} & \quad & \text{(R.3)} \\
i_1 + d_{k,1} &> n_1 - 1 & \quad & \text{(R.2)} \\
i_2 + d_{k,2} &> n_2 - 1 & \quad & \text{(R.4)}
\end{align*}
\]

Using reasoning similar to that in Section 4.2.3, none of the conditions \((R.1) \) and \((R.2) \) can not be true for all \(k = 1, \cdots, m \). It is also not possible that all the conditions \((R.3) \) are true for all \(k \) if the dependence is to be non-redundant at some point; the same holds for all \((R.4) \).

For dependence to be non-redundant, some proper subset of the conditions \((R.3) \) and some proper subset of the conditions \((R.4) \) should be true. Consider the subset of \((R.3) \) which are true; for all these \(k \),

\[i_2 + d_{k,2} < 0 \]

Since \((i_1, i_2)\) belongs to the iteration space,

\[i_2 \geq 0 \]
Combining these two, we get \(d_{k,2} < 0 \). Let \(\max^- (2) \) be the maximum among all these \(d_{k,2} \). We have

\[
i_2 + \max^- (2) < 0
\]

\[
\Rightarrow i_2 + d_{k,2} < 0 \quad \text{for all members of that set.}
\]

Similarly, consider the subset of (R.4) which are true; for all these \(k \),

\[
i_2 + d_{k,2} > n_2 - 1 \quad \text{or} \quad d_{k,2} > 0
\]

Let \(\min^+ (2) \) be the minimum among all these. Let \(\text{size} = n_2 \). We have

\[
i_2 + \min^+ (2) > n_2 - 1
\]

\[
\Rightarrow i_2 + d_{k,2} > n_2 - 1 \quad \text{for all members of that set.}
\]

Combining the inequalities (4.17) and (4.18) we get,

\[
\max^- (2) + i_2 \leq -1
\]

\[
n_2 - 1 \leq i_2 + \min^+ (2) - 1
\]

\[
\Rightarrow n_2 - 1 \leq \min^+ (2) - \max^- (2) - 2
\]

\[
\Rightarrow n_2 - 1 + 1 \leq \min^+ (2) - \max^- (2) - 1
\]

\[
\Rightarrow \text{size} < \min^+ (2) - \max^- (2)
\]

This is a much stronger sufficient condition for the multiple dependence vector case than the one presented in [39].

For a dependence to be uniformly redundant,

\[
\text{size} \geq \min^+ (2) - \max^- (2)
\]
or

\[\text{size} \geq \min^+(2) + |\max^-(2)|. \]

In addition to this, the size of the iteration space along the innermost loop must be large enough for all the dependences \(d_1, \ldots, d_m\) to occur. Therefore, for a dependence to be uniformly redundant, the following condition must hold:

\[\text{size} \geq \max \left\{ \left(\min^+(2) + |\max^-(2)| \right), \left(\max^+(2) + 1 \right), \left(|\min^-(2)| + 1 \right) \right\} \tag{4.20} \]

The result is illustrated through the following example. Consider a 2-nested loop with distance vectors \((0, 3), (1, -2), (1, -1)\) and \((2, 0)\). The distance vector \((2, 0)\) is redundant since it is the sum of the first three vectors. While, the result from this chapter, shows that \((2, 0)\) is uniformly redundant if the size of the inner loop is \(\geq 4\), the result from [39] would require that inner loop size be \(\geq 5\). In addition, our results are applicable for arbitrary shapes of the iteration space, while [39] works only for rectangular iteration spaces. See Figure 4.4.

4.3 Redundancy in K-D \((K > 2)\) Iteration Spaces

4.3.1 Computing the Extreme Vectors in K-D Iteration Spaces

In the case of higher dimensional iteration spaces, a subset of the dependence vectors need not themselves be the extreme vectors. This is illustrated through the following example:

Example 4.3:

\[
\begin{align*}
&\text{for } i = 2 \text{ to } N \\
&\text{for } j = 2 \text{ to } N \\
&\text{for } k = 2 \text{ to } N - 1 \\
\end{align*}
\]
Figure 4.4: Illustration of redundancy with multiple distance vectors.

The loop has 4 distance vectors $d_1 = (1, 0, 0)$, $d_2 = (0, 1, 0)$, $d_3 = (0, 0, 1)$ and $d_4 = (1, 1, -1)$. For any choice of three of the distance vectors as the extreme vector, the fourth vector cannot be expressed as a non-negative linear combination of the three vectors i.e., the fourth does not lie in the positive hull of the other three. In this case, the extreme vector set consists of the following vectors $(0, 0, 1)$, $(1, 0, -1)$ and $(0, 1, 0)$ of which only two are dependence (distance) vectors.

In order to derive extreme vectors in K-D iteration spaces, we refer to the following discussion on the equivalence of tiling planes [29, 61] and extreme vectors. Based on results in [61], it follows that the problem of finding the tiling planes can be formulated as...
(a linear programming problem) that of finding a transformation H such that
\[\sum_{k=1}^{K} H_{i,k} D_{k,j} \geq 0 \quad i = 1, \ldots, K \quad j = 1, \ldots, n \]
with the constraint that
\[H_{i,k} = 0 \text{ if } k > i \]
The rows of H are the normals to the tiling planes and the columns of H^{-1} are the spanning (extreme) vectors. (Recall that the dependence vectors are expressed as non-negative linear combinations of extreme vectors.) There may be an infinite number of sets of spanning extreme vectors. With respect to scheduling, we are interested in the minimal set of extreme vectors. A set of extreme vectors is minimal if it does not contain another set of spanning extreme vectors. Finding the minimal set of extreme vectors is related to minimizing the sum of the entries
\[\sum_{i=1}^{K} \sum_{j=1}^{n} \sum_{k=1}^{K} H_{i,k} D_{k,j}. \]
Thus the problem of finding the minimal set of extreme vectors reduces to the following linear programming problem: Find H such that
\[\sum_{i=1}^{K} \sum_{j=1}^{n} \sum_{k=1}^{K} H_{i,k} D_{k,j} \]
is minimized subject to the constraints that
\[\sum_{k=1}^{K} H_{i,k} D_{k,j} \geq 0 \quad i = 1, \ldots, K \quad j = 1, \ldots, n \]
\[H_{i,k} = 0 \text{ if } k > i \]
\[H_{i,k} = 1 \text{ if } k = i \]
Once we find H, we invert H. Given the restrictions we have used, H is unimodular; therefore H^{-1} is also unimodular. Since H^{-1} is unimodular, all dependences other than extreme vectors are redundant.
4.3.2 On Redundancy in Rectangular K-D Iteration Spaces

In K-nested loops, only the first component of the dependence vectors have to be non-negative; there are no such constraints on the remaining components as long as the vector is positive [8]. The discussion on non-uniformity of redundancy in two-level nested loops (from the previous section) apply directly as long as along only one loop nest, we have mixed distances, i.e., for at most one value of i ($2 \leq i \leq K$), $d_{i,j}$ ($j = 1, \ldots, m$ where m is the number of dependences) have negative and positive values. If dependences at a level are either all non-negative or all non-positive, then redundancy is uniform. If there are mixed distances at exactly one level, then the size of the iteration space along that nest level must be large enough. If all the components at the same level in all the distance vectors have the same sign, then redundancy is uniform in K-D iteration spaces, i.e., if $d_{i,j}$ has the same sign for all $j = 1, \ldots, m$ for any i ($1 \leq i \leq K$), then redundancy is uniform.

If there are mixed distances at more than one level, lack of redundancy is independent of the size of the iteration space. There are always certain points in the iteration space, where dependences are not redundant, even though at other points in the iteration space, they may be redundant. This is independent of the size of the iteration space.

4.4 Chapter Summary

This chapter addressed the problem of eliminating redundant synchronization (and communication) in the execution of nested loops on multiprocessors. The relatively high cost of synchronization in these machines renders frequent synchronization very expensive. So, it is of interest to enforce the minimum number of required synchronizations while preserving the parallelism in the computation. For two-level nested loops, we presented a method to eliminate redundant dependences; our technique enforces the minimum number of the required dependences. In nested loops, a dependence may be redundant in only a portion
of the iteration space. We characterized the non-uniformity of the redundancy of a dependence in terms of the relation between the dependences and the shapes of the iteration space and also in terms of the size of the iteration space in general convex 2-D iteration spaces. In K-D ($K \geq 3$) iteration spaces, we presented a method of determining the minimum required synchronizations by computing the minimal set of extreme vectors. We also discuss the non-uniformity that arises for a specific class of K-nested loops.
In order to achieve high levels of performance on parallel machines, it is essential to reduce communication overhead and increase locality of reference. The data access times on some shared memory multiprocessors neglecting the effects of caches is more or less the same [36]. In contrast, on most multiprocessors (in particular, distributed-memory message-passing machines), the access times to local data is significantly less than that for non-local accesses [71]; such systems are referred to as Non-Uniform Memory Access (NUMA) machines. On a NUMA machine, besides exploiting parallelism, one can indirectly control the movement of data and thus the network traffic by specifying the task distribution and scheduling.

Consider the KSR1 multiprocessor [71] which has no global shared memory; all data movement is supported in hardware unlike distributed memory multiprocessors which use software-controlled communication for non-local memory accesses. In order to improve the performance on such machines, locality of reference should be exploited and communication overhead must be reduced. Most parallel programs consist possibly of a sequence of loop nests that access common data arrays with similar access patterns. The programmer has the choice of using pre-scheduling or self-scheduling algorithms for scheduling loop iterations. Although self-scheduling results in proper load balancing, pre-scheduling, with proper knowledge of the program semantics can result in good locality of reference [79]. The concept of affinity regions as introduced by Appelbe and Lakshmanan [5], is defined as a sequential set of loop nests that share the same schedule in the hope that this increases
data locality. The loop nest that is first scheduled and executed in a given affinity region may be either pre-scheduled or self-scheduled and this schedule is then saved and later used by loop nests present in the same affinity region. This scenario is especially useful in optimizing accesses to locally stored data across loop nests in the same affinity region on a multiprocessor. The KSR1 multiprocessor supports the concept of affinity based scheduling by providing certain specifications and directives required in order to define affinity regions [35]. The notion of affinity regions is useful for most NUMA machines. The key issues involved in affinity-based scheduling that need to be addressed are:

- How do affinity regions perform in comparison to other alternatives such as loop fusion and parallel regions?

- What transformations can be applied in conjunction with affinity regions that optimize locality and parallelism?

This chapter presents a technique that determines the set of loop nests that can be placed in an affinity region. In addition, we present an analytical approach that produces a computation decomposition which maps iterations in loops onto processors of a parallel machine useful in preparing and maintaining schedules of iterations of different loop nests in the same affinity region. Loop nests of the same as well as different depths have been considered. This approach finds loop transformations that can be applied to loops in the affinity region resulting in a decomposition that tends to optimize locality in a given program without sacrificing parallelism.

Section 5.1 discusses the background material and related work. In Section 5.2, the actual techniques used are presented with examples. Section 5.3 examines more complex cases involving more than one common data array in two loop nests belonging to the same

68
affinity region and illustrate the techniques using some examples. Finally, Section 5.4 concludes with a summary and discusses further avenues of research.

5.1 Background

The need to maintain data locality and reduce the communication overhead for achieving high levels of performance on massively parallel machines has led to research that has resulted in several approaches [5, 4]. As described earlier, an affinity region is a set of loop nests that share the same schedule [5]. This concept of affinity region is described by Example 5.1 below:

Example 5.1.

forall \(j = 1, N \) do
 forall \(i = 1, N \) do
 \(S_1: \quad A(i, j) = 0 \)
 for \(k = 1, N \) do
 \(S_2: \quad A(i, j) = A(i, j) + B(k, i) * C(k, j) \)
 endfor
 endfor
forall \(i = 1, N \) do
 for \(k = 1, N \) do
 \(S_3: \quad D(i) = D(i) + B(k, i) \)
 endfor
endfor

In the above example, one can see that we have a common data array, \(B \), that is accessed both the loop nests. The objective here is to ensure data locality so that the two loop nests share the same schedule. What needs to be determined is, which iterations in both the loop nests should be allocated to the same processor so that locality of access to common data is maintained; in addition, transformations (loop interchange, loop reversal etc.) that need to be applied in one or both of the loop nests, are also to be determined.
Appelbe and Lakshmanan [5] have discussed other approaches to the problem of optimizing locality of reference across two loops by ensuring that they share the same schedule. Besides using the concept of affinity regions, *loop fusion* [75, 79] and *parallel regions* [5, 79] can also be used in increasing data locality across loops having common shared arrays; of course, all dependencies are preserved as well. In Example 5.1 we can see that no more transformations are needed to place the two loops in an affinity region since loop interchange has already been applied to the first loop. Let us now look at the approach of using loop fusion to the same above program (Example 5.1) and see how beneficial this method is. As mentioned by Zima and Chapman [79], two adjacent loops can be fused together to form one loop if there are no loop carried dependencies between them.

As we can see in Example 5.1, there are no loop carried dependencies in both loops [5]. The array B is accessed by columns in both cases and there are no dependencies from statements S_2 to S_3 or vice versa. Now the question arises as to whether any changes be need to be made in either or both the loops in order to fuse them together? From the structure of both loops, it is obvious that loop with index j has to be made the inner most loop in the first loop nest. Since the loop with index j is now the inner loop, the initialization of array A in the first loop nest (statement S_1) cannot be placed anywhere else since it has to be placed after loop with index j but before the loop with index k. Thus the initialization of array A has now to be moved out [5] and placed outside the first loop nest as shown in Example 5.2 below:

Example 5.2

```plaintext
for i = 1, N do
   forall j = 1, N do
      S1: A(i, j) = 0
   endfor
endfor
```

70
for $i = 1, N$ do
 for $k = 1, N$ do
 for all $j = 1, N$ do
 S_2: $A(i, j) = A(i, j) + B(k, i) \cdot C(k, j)$
 endfor
 S_3: $D(i) = D(i) + B(k, i)$
endfor
endfor

From the above program we see that the objective of using loop fusion has not been achieved, since it has created another nest for initializing the array A. Furthermore, data locality is reduced after fusion; and the problem of reduced locality can be solved only if the loop with index j is serialized and arrays A and C’s subscripts are interchanged [5]. Can these transformations be performed on the fused version in Example 5.2? It is not possible to change subscripts in the above example and thus we see that fusion of loops in this case has created more problems than providing a solution.

In using parallel regions, the part of the code that is enclosed in the region is executed in parallel on all processors except cases where one processor has to wait for another when they synchronize on loop iterations [79]. Parallel regions have been found to be not beneficial since mapping iterations to processors requires usage of parameters that the programmer has to use while specifying parallel regions [5]. Appelbe and Lakshmanan [5] also noted that even though the programmer has specified directives in defining parallel regions and has also mapped the iterations to processors, sometimes the same iteration is executed on some other processor not defined by the user due to automatic load balancing. If this happens, the locality of reference is lost and the communication overhead increases.

Affinity regions [5] are another approach to this problem and in using this method we have the ability to specify the set of loop nests that should share the same processor schedules. What we find by this approach is the set of iterations in each of the loop nests
that access the same elements of the array accessed. This can be found only if the loop nests have some common accesses to a particular data array. Once the set of iterations in each loop is found and the required transformations applied, it is then the job of the compiler to determine a suitable scheduling strategy to execute the iterations. The choice of the scheduling strategy is left to the compiler and not to the programmer, unlike parallel regions where the programmer has to specify the scheduling [5]. Some languages such as the KSR Parallel Fortran [33, 34] (used by Appelbe and Lakshmanan [5] in their study of affinity regions), include specific directives that are used to define affinity regions and tile sizes of the iteration space. But the loops that have been defined in the affinity region must have the same loop indices and their loop bounds must either be the same or should be overlapping.

5.1.1 Related Work

Appelbe and Lakshmanan [5] presented an algorithm based on affinity regions with the goal of accessing same elements of the shared array by the same processor across loop nests belonging to the same region. Their techniques examines which loops can be included in the same affinity region and under what conditions are they included. Appelbe and Lakshmanan [5] have stated that the loops being considered have to be parallelizable at some level of the nesting. They have also considered only cases where exists only one shared array across the loop nests. One of the key issues involved in having more than one shared array across the loops is as to which of the shared arrays is the dominant one of the shared arrays. What would happen if there are two shared arrays and the nesting level is the same in both loops in one case and different in the other? This chapter addresses these issues and approaches the problem of mapping iterations involving single shared arrays in a mathematical framework which produces the required transformations that need to be
applied to one or both the loops in order to schedule the iterations that involve accesses to
the same element of the common data array onto the same processor.

A mathematical approach has been presented by Anderson and Lam [4] that tries to
optimize data locality and parallelism. They developed a compiler algorithm based on pri-
marily three components, namely, partitioning, orientation and displacement that together
specify mapping of data and loop iterations to processors. The compiler algorithm [4] first
normalizes the loops and applies loop distribution. The decomposition algorithms [3] are
then applied before the compiler performs a loop fusion over the program to fuse compati-
ble loop nests [21, 79]. They consider parallel loops and their work is not aimed at affinity
scheduling.

A number of researchers have addressed this issue of iteration decomposition among
processors to improve locality of reference by reducing communication. Algorithms for in-
creasing parallelism and locality inside a single loop nest have been developed [36, 43, 72].
Some researchers have also looked at the problem of mapping iterations and corresponding
data accessed in a single loop nest onto parallel machines [27, 40, 41]. Several of them have
developed data decomposition algorithms through a fixed performs an exhaustive search of
all possible decompositions to produce a static data decomposition with least communi-
cation [24]. In contrast, the approach used in this chapter does not perform exhaustive
searches and is able to derive a computation decomposition of loop iterations of nested
loops belonging to a given affinity region. This chapter has also taken into consideration
multiple shared arrays across loop nests of equal and varied depths. It also looks at the
possibility of deriving an iteration decomposition that satisfies locality constraints for all
shared arrays involved, failing which it presents an approach to find the dominant array
among all the shared arrays being considered.
L_1: The first loop nest in consideration.
L_2: The second loop nest in consideration.
n: Depth of loop nest L_1.
m: Depth of loop nest L_2.
\vec{I}_1: The index vector representing loop indices of loop nest L_1.
\vec{I}_2: The index vector representing loop indices of loop nest L_2.
M_1: Mapping of iterations to processors in loop nest L_1.
M_2: Mapping of iterations to processors in loop nest L_2.
P_{1x}: Data decomposition of shared array X in L_1.
P_{2x}: Data decomposition of shared array X in L_2.
T_1: Transformation matrix for loop nest L_1.
T_2: Transformation matrix for loop nest L_2.
A_{1x}: Access matrix of array X in loop nest L_1.
A_{2x}: Access matrix of array X in loop nest L_2.
\vec{b}_{1x}: Constant vector that represents offset vector for the access matrix in L_1.
\vec{b}_{2x}: Constant vector that represents offset vector for the access matrix in L_2.
$\vec{\delta}_1$: Constant vector that represents offset for the iteration decomposition in L_1.
$\vec{\delta}_2$: Constant vector that represents offset for the iteration decomposition in L_2.
$\vec{\alpha}_1$: Constant vector that represents offset for the data decomposition in L_1.
$\vec{\alpha}_2$: Constant vector that represents offset for the data decomposition in L_2.
d: Dimensionality of the shared array.
p: Dimensionality of the processor array.

Figure 5.1: Notation used in this chapter

5.2 Single Shared Arrays

As we stated earlier, the objective of using affinity regions and the directives to specify them, is to map iterations across loops containing common data arrays onto processors such that the same processor accesses the same array elements in different loop nests. This results in increased data locality and reduces communication overhead.

In this section, the mathematical approach used and its basic concepts are described first, followed by an illustration of the technique and the conditions required by this approach in the implementation of affinity regions. This section considers only cases where
there is one common data array across loop nests. Loop nests with the same as well as
different nesting levels have also been considered in this section.

5.2.1 Basic Concepts

Let us consider the case of two adjacent loop nests that are to be placed in an affinity
region. The notation and symbols used in this mathematical approach are shown in
Figure 5.1.

Definition 5.1 [4]
The data decomposition of a d-dimensional array, X, onto a p-dimensional processor array
for each access index \vec{x} is a function defined by $P(\vec{x})$ as:

$$P(\vec{x}) = P\vec{x} + \vec{\alpha}$$ (5.1)

where P is a $p \times d$ dimensional matrix, $\vec{\alpha}$ is the constant offset vector and \vec{x} represents each
element in the array, $\vec{x} = (x_1, ..., x_d)$.

Definition 5.2 [4]
The iteration decomposition of the loop nest onto a p-dimensional processor array for each
iteration \vec{i} in the loop nest of depth n is defined by the function $C(\vec{i})$ as:

$$C(\vec{i}) = M\vec{i} + \vec{\delta}$$ (5.2)

where M is a $p \times n$ transformation matrix, $\vec{\delta}$ is a constant offset vector and $\vec{i} = (i_1, ..., i_n)$.

From Definition 5.1, one can say that for two elements \vec{x}_1 and \vec{x}_2 to be allocated to the
same processor when P represents the data decomposition, the following condition must hold:

$$P\vec{x}_1 = P\vec{x}_2 \implies P(\vec{x}_1 - \vec{x}_2) = \vec{0}.$$ (5.3)

Similarly, from Definition 5.2, it can be said that two iterations \vec{i}_1 and \vec{i}_2 are scheduled on
the same processor for execution with M as the iteration decomposition matrix if and only
if,

\[M \vec{i}_1 = M \vec{i}_2 \implies M(\vec{i}_1 - \vec{i}_2) = \vec{0}. \]

(5.4)

In order to relate the iteration and data decompositions, both the iterations and the data elements that they access must be allocated to the same processor. This ensures data locality.

Definition 5.3

For all iterations \(\vec{i} \) in loop nest \(L \), array elements and iterations that reference these elements will be local to a processor if and only if,

\[M_1 \vec{i}_1 + \vec{\delta}_1 = \bar{P}_1 x (A_{1x} \vec{i}_1 + \vec{b}_1) + \bar{\alpha}_1 \]

(5.5)

If we do not consider any offsets, the above equation becomes

\[M_1 \vec{i}_1 = \bar{P}_1 x A_{1x} \vec{i}_1 \]

(5.6)

Thus in order to maximize data locality, one has to find a decomposition \(P \) and an iteration mapping \(M \) and hence reduce communication. In the following subsection, we present the conditions under which loops can be placed in an affinity region. Loops that satisfy the criteria are placed in the affinity region and are called *affinity adjacent loops*. Data transfers arising from offsets degrades performance to a limited extent [4]; for the rest of this chapter, we will omit offsets in deriving the necessary relations.

5.2.2 Criteria for Affinity Adjacent Loops

The approach presented in this chapter first decide which loop nests can be placed in an affinity region; this decision is made subject to several conditions. The goal of placing loop nests in an affinity region is to improve locality and this is done by deriving a suitable computation decomposition. If such a decomposition is found then iterations in the first loop nest can be scheduled by the compiler using any strategy and the schedule is then
saved and used by the second loop nest in the affinity region. Our approach is based on the following assumptions:

(1) At each level in both loop nests, the subscripts of every array variable accessed should be an affine function of the loop indices in the corresponding loop nests.

(2) All the loops involved are for loops or forall loops; loops at any nesting level must have a fixed lower bound, upper bound and stride.

The conditions to be satisfied for loops to be placed in the affinity region are:

A. There should exist a dependence from a shared array in loop nest L_1 to same array in loop nest L_2 and the subscripts of the shared array in both loop nests must be functions of the loop indices.

B. The loop indices in the loop nests L_1 and L_2 must be the same; in addition, the loop bounds of corresponding loop indices must be the same or overlapping.

C. There should be no accesses to the shared array in the intervening code (if any) between the two loop nests.

Once the above three conditions are satisfied, we perform the following analysis. As seen from Definition 5.3, for iterations and data accessed by these iterations involving the shared array X, to be allocated to the same processor, we have the following equation for loop nest L_1:

$$M_1 \vec{I}_1 + \vec{\delta}_1 = P_{1x}(A_{1x} \vec{I}_1 + \vec{b}_1) + \vec{\alpha}_1.$$ \hspace{1cm} (5.7)

Similarly for loop nest L_2, we have,

$$M_2 \vec{I}_2 + \vec{\delta}_2 = P_{2x}(A_{2x} \vec{I}_2 + \vec{b}_2) + \vec{\alpha}_2.$$ \hspace{1cm} (5.8)
Since we are not considering offsets, the above equations are reduced to the following: In loop nest L_1,

$$M_1 \vec{I}_1 = P_{1x} A_{1x} \vec{I}_1, \quad (5.9)$$

and in loop nest L_2,

$$M_2 \vec{I}_2 = P_{2x} A_{2x} \vec{I}_2. \quad (5.10)$$

Now in both the loop nests, L_1 and L_2, there are accesses to the elements of the shared array X. Since the goal is to form a decomposition of iterations so that the same schedule is used by the next loop in the affinity region, the shared array should have the same data decomposition across both loop nests L_1 and L_2. Hence we can say that

$$P_{1x} = P_{2x} \quad (5.11)$$

Using 5.11 in equations 5.9 and 5.10, we get

$$M_1 (A_{1x})^{-1} = M_2 (A_{2x})^{-1}, \quad (5.12)$$

which can be written as:

$$M_1 (A_{1x}(T_1)^{-1})^{-1} = M_2 (A_{2x}(T_2)^{-1})^{-1}, \quad (5.13)$$

As seen in equation 5.13, access matrices A_{1x} and A_{2x} are known and M_1 and M_2 are the unknowns. T_1 and T_2 represent the transformations to be applied to loop nests L_1 and L_2. The transformation matrix is a unit matrix when no transformation is applied to the corresponding loop nest. There are two cases here which depend basically on the nesting levels in loop nests L_1 and L_2.

Case 1: $n = m$ Here we consider the case where the level of nesting is the same in both loop nests and hence the loop indices are the same as well. The loop bounds in both nests
are either the same or overlapping. Both the access matrices A_{1x} and A_{2x} have the same dimension. To obtain a computation decomposition that preserves the locality of reference equation 5.12 must be satisfied. When $n = m$, there are two possibilities.

(1) $A_{1x} = A_{2x}$

When the access matrices are the same, no transformations are required in either of the loop nests L_1 or L_2, and they can be placed in an affinity region as it is.

(2) $A_{1x} \neq A_{2x}$

When the access matrices are different we need to find a transformation that can be applied to either or both loops such that equation 5.12 is satisfied. Basically the transformations when applied to either or both the loop nests produces access matrices in both nests for the shared array X, such that $A_{1x} = A_{2x}$.

Case 2: $n \neq m$ Here we consider the case where the level of nesting is different in both the loop nests. Either $n > m$ or $n < m$. The loop indices of the loop nest with a smaller nesting level must be a subset of the loop indices of the loop nest which has the higher level of nesting. The loop bounds associated with the corresponding loop indices must be the same or overlapping. Lets consider the case of $n > m$. The following analysis is going to be the same for $n < m$. Since $n > m$, A_{1x} is a $d \times n$ matrix and A_{2x} is a $d \times m$ matrix. A transformation needs to be found and this can be done by changing access matrices in either or both access matrices such that a column subset of the transformed matrix A_{1x} of dimension $d \times m$, is equal to A_{2x} or the transformed A_{2x}. The chosen column subset of matrix A_{1x} must contain contiguous columns of the matrix A_{1x}. The all zero columns of the matrix A_{1x} that are not part of the chosen column subset must be pushed to form the
leftmost column in the A_{1x} matrix in order to maximize parallelization without affecting locality of reference. Next, we illustrate the approach used for both the above cases.

5.2.3 Illustration

Case 1: $n = m$

The following example is an illustration of two loop nests that have the same level of nesting.

Example 5.3

```
for i = 0, N do
  for j = 0, N do
    S1: $X(i, j) = X(i, j) + Y(i, j)$
  endfor
endfor

for i = 0, N do
  for j = 0, N do
    S2: $Y(j, i) = Z(i, j)$
  endfor
endfor
```

It is obvious that there is a shared dependence from statement S_1 in loop nest L_1 to S_2 in loop nest L_2. The loop indices and the loop bounds are also same in both the loop nests. Hence criteria A, B and C are satisfied. The two loops cannot be fused together since the value of $Y(i, j)$ will be modified in statement S_2 and the new value of $Y(i, j)$ will be used in the next iteration by statement S_1, instead of the previous value. The matrix representation of the access matrices of the two-dimensional shared array, Y, in both loop nests L_1 and L_2 is as follows:

$$
A_{1y} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad A_{2y} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}
$$

Since $A_{1y} \neq A_{2y}$, transformation that satisfies the equation following is required:
\[M_1(A_{1y})^{-1} = M_2(A_{2y})^{-1} \]

The transformation when applied should result in the access matrices being equal to each other. From \(A_{1y} \) and \(A_{2y} \), we can see that if the columns are interchanged in either of the matrices the access matrices become equal. Thus we can say that a loop interchange has to be applied in either loop nest \(L_1 \) or \(L_2 \). Also, using equation 5.12, we get,

\[
M_1 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = M_2 \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}
\]

Rearranging the above equation, we get,

\[
M_2 = M_1 \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}
\]

or,

\[
M_1 = M_2 \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}
\]

Thus we can place these loop nests in an affinity region by interchanging loops in one of the loop nests. Initially, array \(Y \) was accessed by rows in \(L_1 \) and by columns in \(L_2 \). Now after loop interchange, the shared array \(Y \) is accessed by columns in both loop nests as shown below. The transformed version of the program with loop interchange applied to the first loop nest is:

```plaintext
for j = 0, N do
    for i = 0, N do
        S_1: \( X(i, j) = X(i, j) + Y(i, j) \)
    endfor
endfor

for i = 0, N do
    for j = 0, N do
        S_2: \( Y(j, i) = Z(i, j) \)
    endfor
endfor
```
Had the transformation been applied to loop nest L_2, the elements of the array Y, would be then accessed by rows. Using the KSR directives, we can define the iteration tile space as $j: 0, i: N$ for loop nest L_1 and $i: 0, j: N$ for loop nest L_2.

Case 2: $n \neq m$

This is an example of the case where both loop nests have different levels of nesting and the example that has been presented has $n > m$.

Example 5.4

```plaintext
for $i = 1, N$  do
    for $j = 1, N$  do
        $S_1$: $A(i, j) = 0$
            for $k = 1, N$  do
                $S_2$: $A(i, j) = A(i, j) + B(k, i) \times C(k, j)$
            endfor
        endfor
    endfor
for $i = 1, N$  do
    for $k = 1, N$  do
        $S_3$: $D(i) = D(i) + B(k, i)$
    endfor
endfor
```

As it has been stated earlier the above program cannot be fused into one loop as loop j in nest L_1 will have to be moved to the innermost and so the initialization of array A in statement S_1 will have to be moved out. In effect, the above two loops will produce two loop nests even after fusion, one of them performing the initializing of array A as in S_1.

In Example 5.4 presented above, loop nest L_1 has a nesting level of three ($n = 3$) and loop nest L_2 has a nesting level of two ($m = 2$). Loop indices used in loop L_2, i and k, are a subset of loop indices, i, j and k, used in loop nest L_1. The bounds are same for all loop indices and there exists a shared array dependence from loop nest S_2 in L_1 to S_3 in L_2. The access matrices in every iteration for the array B in L_1 and L_2 is given by,
\[
A_{1b} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \quad A_{2b} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}
\]

and the index vectors are given by,
\[
\vec{I}_1 = \begin{bmatrix} i \\ j \\ k \end{bmatrix} \quad \vec{I}_2 = \begin{bmatrix} i \\ k \end{bmatrix}
\]

From the access matrices it is seen that \(A_{1b}\) and \(A_{2b}\) are not equal and differ in size too. \(A_{1b}\) is a \(2 \times 3\) matrix and \(A_{2b}\) is a \(2 \times 2\) matrix. Using equation 5.12, we will be dealing with rectangular matrices and their inverse. On observing both the access matrices, we can obtain a column subset from the access matrix \(A_{1b}\) that is the same as \(A_{2b}\). Since the chosen columns (in this case, columns 1 and 3) must be contiguous in the original access matrix we have to perform a transformation in loop nest \(L_1\). The transformation to be used is a loop interchange. Either loops \(j\) and \(k\) are interchanged or loops \(i\) and \(j\) are interchanged. Now the choice of which loops to be interchanged is to be made. Consider the access matrices:

1. Loops \(j\) and \(k\) are interchanged.

\[
A_{1b} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}
\]

2. Loops \(i\) and \(j\) are interchanged.

\[
A_{1b} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}
\]

It is seen that since there are no dependencies with respect to the \(j\) loop all iterations of \(j\) can be executed in parallel. From the scheduling point of view having \(j\) as the outer loop is more beneficial. Generally, zero columns that are present in the access matrices but are not a part of the column subset chosen, must be flushed to the left as much as possible. Since they form the outer loops, this improves the locality of data elements accessed. The transformed version of Example 5.4 is:
for \(j = 1, N \) do
 for \(i = 1, N \) do
 \(S_1: \quad A(i, j) = 0 \)
 for \(k = 1, N \) do
 \(S_2: \quad A(i, j) = A(i, j) + B(k, i) \ast C(k, j) \)
 endfor
 endfor
for \(i = 1, N \) do
 for \(k = 1, N \) do
 \(S_3: \quad D(i) = D(i) + B(k, i) \)
 endfor
endfor

The iteration tile space can be specified using the KSR directives as \(i: 1, k: N \) in loop nest \(L_1 \) and \(i: 1, k: N \) in loop nest \(L_2 \). The affinity region in the iteration space \(i: 1, N \) to \(k: 1, N \).

As mentioned in Section 5.2.2, condition B specifies that the loop indices in both loop nests must be the same or one set of loop indices must be a subset of the other. This is only a restriction for the KSR. On other multiprocessors, condition B need not be satisfied and the loop indices can be the same or different. For instance in Example 5.4, loop nest \(L_1 \) can have loop indices \(i_1, j_1, k_1 \) instead of \(i, j, k \) and loop nest \(L_2 \) can have indices \(i_2, k_2 \) instead of \(i \) and \(k \). All that needs to done is to specify the right indices while specifying the affinity regions or the index mapping from one loop nest to the other has to be specified. Thus, for Example 5.4, the iteration tile size in loop nest \(L_1 \) is \(i_1:1, k_1:N \) and \(i_2:1, k_2:N \) in loop nest \(L_2 \).

5.3 Two Shared Arrays

So far, we have presented a mathematical approach for placing loop nests that contain a single shared array across loop nests in an affinity region. In this section, we explore the possibility of having two data arrays that are common across the loop nests. The assump-
tions and conditions to be satisfied by loop nests to be placed in an affinity region, as stated in Section 5.2.2, hold good for multiple shared arrays as well. In this chapter, we have presented cases that involve two shared arrays only. The questions that arise when dealing with two shared arrays across loop nests are:

(1) Is it possible to place loop nests in an affinity region and find a suitable computation decomposition when more than one common data array is involved across the loop nests being considered?

(2) If the above is not possible, then which of the two shared arrays is the dominant one, that results in an iteration decomposition compatible to both the involving loop nests?

Let X and Y be the two shared arrays across loop nests L_1 and L_2. From Definition 5.3, for iterations and the data accessed by these iterations involving the shared array X to be allocated to the same processor, we have the following equation for loop nest L_1:

$$M_1 \vec{I}_1 + \vec{\delta}_1 = P_{1x}(A_{1x} \vec{I}_1 + \vec{b}_1) + \vec{\alpha}_1. \quad (5.14)$$

Similarly, for loop nest L_2, we have:

$$M_2 \vec{I}_2 + \vec{\delta}_2 = P_{2x}(A_{2x} \vec{I}_2 + \vec{b}_2) + \vec{\alpha}_2. \quad (5.15)$$

Removing offsets, Equations 5.14 and 5.15 reduce to,

$$M_1 \vec{I}_1 = P_{1x} A_{1x} \vec{I}_1, \quad (5.16)$$

and

$$M_2 \vec{I}_2 = P_{2x} A_{2x} \vec{I}_2. \quad (5.17)$$

Since we need a computation decomposition that preserves the locality of reference for both the shared arrays, X and Y, we can say that M_1, the mapping of iteration to processors
in loop nest L_1, and M_2 in loop nest L_2, should be the same for both the shared arrays. Hence the mapping for the shared array Y, without considering offsets can be represented as follows.

In loop nest L_1,

$$M_1 \vec{I}_1 = P_{1y} A_{1y} \vec{I}_1,$$ \hspace{1cm} (5.18)

and in loop nest L_2,

$$M_2 \vec{I}_2 = P_{2y} A_{2y} \vec{I}_2.$$ \hspace{1cm} (5.19)

Combining equations 5.16 and 5.18, we get,

$$M_1 \vec{I}_1 = P_{1x} A_{1x} \vec{I}_1 = P_{1y} A_{1y} \vec{I}_1$$ \hspace{1cm} (5.20)

and from equations 5.17 and 5.19, we have,

$$M_2 \vec{I}_2 = P_{2x} A_{2x} \vec{I}_2 = P_{2y} A_{2y} \vec{I}_2.$$ \hspace{1cm} (5.21)

Since the data decomposition of the shared arrays, X and Y across the loop nests must be the same, we can say that,

$$P_{1x} = P_{2x} = P_x \text{ and } P_{1y} = P_{2y} = P_y$$

Equations 5.20 and 5.21, further reduce to,

$$M_1 \vec{I}_1 = P_x A_{1x} \vec{I}_1 = P_y A_{1y} \vec{I}_1$$ \hspace{1cm} (5.22)

and,

$$M_2 \vec{I}_2 = P_x A_{2x} \vec{I}_2 = P_y A_{2y} \vec{I}_2.$$ \hspace{1cm} (5.23)

There are two cases to be considered, on the basis of the level of nesting and dimensionality of the arrays involved.
Case 1: $n = m$ and $d = n$ Here we consider that the nesting level is same in both the loop nests involved and the shared arrays, X and Y, have the same dimension d, which is equal to the level of nesting. If $A_{1x} = A_{2x}$ and $A_{1y} = A_{2y}$, then no transformations are required and the loops can be placed in an affinity region as it is. Under any other circumstance, some transformation is needed and we need to find a suitable mapping of iteration to processors. Since the loop indices are the same in both the loop nests and the level of nesting is also the same, we have,

$$\vec{I}_1 = \vec{I}_2 = \vec{I}$$ \hfill (5.24)

From equations 5.22, 5.23 and 5.24, we have,

$$M_2 \vec{I} = M_1 (A_{1x})^{-1} A_{2x} \vec{I},$$ \hfill (5.25)

and

$$M_2 \vec{I} = M_1 (A_{1y})^{-1} A_{2y} \vec{I}$$ \hfill (5.26)

The above equations lead to,

$$M_1 (A_{1x})^{-1} A_{2x} = M_1 (A_{1y})^{-1} A_{2y},$$ \hfill (5.27)

or

$$M_1 ((A_{1x})^{-1} A_{2x} - (A_{1y})^{-1} A_{2y}) = 0$$ \hfill (5.28)

Since the only variable is M_1 in the above equation, we can find a suitable iteration decomposition on to the processors such that communication is reduced and locality of reference is increased.

Case 2: $n = m$ and $d \neq n$ When the nesting level is not the same as d (the dimensionality of the array), it is difficult to use equation 5.28 since we would be dealing with
rectangular inverses. Thus out of the two shared arrays, the dominant array has to be found which maintains the locality of the other shared array. An array \(X \) is said to be dominant in comparison to another shared array \(Y \), if the iteration decomposition resulting from the shared array \(X \) results in better locality for all references made to array elements in the given loop nests. The access matrix of the dominant array is used in determining the iteration decomposition necessary to specify the iteration tile size in each of the loop nests.

Let \(X \) and \(Y \) be the two shared arrays. We know the access matrices \(A_{1x} \), \(A_{2x} \), \(A_{1y} \), and \(A_{2y} \) from the loop nests \(L_1 \) and \(L_2 \). Consider the first shared array, \(X \), and perform transformations on \(L_1 \) and \(L_2 \) such that \(A_{1x} = A_{2x} \). Now upon removing the zero columns from the access matrices \(A_{1y} \) and \(A_{2y} \), if,

\[
A_{1y} = A_{2y}
\]

then the shared array, \(X \), is the dominant array. If this is not the case, we should consider the access matrix of array \(Y \), and perform the same analysis. If a dominant array cannot be found, then it becomes the case of a single shared array, and either of the two shared arrays can be used.

We have considered cases where the nesting levels in both loop nests are the same, \(i.e., n = m \). When \(n \neq m \), and the dimension of the shared arrays \(X \) and \(Y \) is the same, the same approach as described in Case 2 above can be used to determine the dominant array. Additionally, \(\vec{I}_1 \neq \vec{I}_2 \), but one of them is a subset of the other.

5.3.1 Illustration

The following example is a program that has the same nesting level in both loop nests and both the shared arrays have the same dimension which is also equal to the nesting level.

Example 5.5
for $i = 0, N$ do
 for $j = 0, N$ do
 S_1: $X(i, j) = X(i, j) + Y(i, j)$
 endfor
endfor
for $i = 0, N$ do
 for $j = 0, N$ do
 S_2: $Y(j, i) = Y(j, i) + X(i, j)$
 endfor
endfor

It can be seen that all the conditions as specified in Section 5.2.2 are satisfied. Let's perform the analysis presented in Case 1 here.

$$A_{1x} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad A_{2x} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A_{1y} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad A_{2y} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

The inverse of the access matrices A_{1x} and A_{1y} are:

$$(A_{1x})^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad (A_{1y})^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

From equation 5.27, we have,

$$M_1 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = M_1 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix},$$

or

$$M_1 \left(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \right) = \vec{0},$$

or

$$M_1 \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} = \vec{0}.$$

If p, the dimension of the processor array is equal to one, then we have two choices for M_1. Either
\[M_1 = \begin{bmatrix} 1 & 1 \end{bmatrix} \quad \text{or} \quad M_1 = \begin{bmatrix} 0 & 0 \end{bmatrix} \]

Since \(M_1 \) cannot be all zeros, we take the other result and compute \(M_2 \), which is,

\[M_2 = M_1 \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \end{bmatrix} \]

In this case, where there are two shared arrays whose dimensions equal the level of nesting, we are able to find a computation decomposition that helps place both the loop nests of same depth in an affinity region.

The following example illustrates the case where the depth of nesting, is same in both the loop nests but the dimension of the shared arrays, even though they are the same, are not equal to the level of nesting.

Example 5.6

```plaintext
for i = 1, N do
    for j = 1, N do
        for k = 1, N do
            S_1: C(i, j) = A(i, k) \times B(k, j)
        endfor
    endfor
for i = 1, N do
    for j = 1, N do
        for k = 1, N do
            S_2: D(i, j) = A(i, k) \times B(j, k)
        endfor
    endfor
endfor
```

Loop nest \(L_1 \) in the above program computes \(C = A \times B \) and loop nest \(L_2 \) computes \(D = A \times B^T \). In the above program, one can see that \(d = 2 \) for array \(A \) as well as \(B \) and \(n = m = 3 \). It is seen that the loop indices and the corresponding bounds are the same and there exists not one but two shared dependencies from \(S_1 \) to \(S_2 \). There are two
shared arrays and we need to find which one is the dominant one. Let us derive their access matrices first.

\[A_{1a} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \text{and} \quad A_{2a} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \]

\[A_{1b} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \quad \text{and} \quad A_{2b} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \]

Consider the access matrices of the shared array \(A \). A transformation is required such that a subset of contiguous columns from both access matrices \(A_{1a} \) and \(A_{2a} \), are equal. In order to do this let us interchange the \(j \) and \(i \) loops in both the loop nests. The access matrices now become,

\[A_{1a} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \text{and} \quad A_{2a} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \]

\[A_{1b} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \quad \text{and} \quad A_{2b} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \]

We have achieved the desired result for the shared array \(A \). But removing the zero column from the access matrices for array \(B \) results in a \(2 \times 2 \) matrix; the two resulting matrices are not equal. We can say that the locality of the array \(B \) is not preserved and hence, the shared array \(A \), cannot be the dominant array.

Let us consider the array \(B \) now. If we perform a loop interchange in loop nest \(L_2 \) only between the \(j \) loop and the \(k \) loop, the new access matrices are:

\[A_{1a} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \text{and} \quad A_{2a} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \]

\[A_{1b} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \quad \text{and} \quad A_{2b} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \]

We have achieved the desired result for array \(B \). Now if we remove the zero column from the access matrices of array \(A \), we see that the resultant \(2 \times 2 \) matrices are equal.
Thus locality of array A is maintained. Thus the array A is accessed by rows even after the interchange has been performed. Since B is the dominant array we can specify both the affinity region and the computation decomposition based on the shared array B. The transformed version of the above program is as follows:

```
for $i = 1, N$ do
    for $j = 1, N$ do
        for $k = 1, N$ do
            $S_1$: $C(i, j) = A(i, k) \times B(k, j)$
        endfor
    endfor
endfor

for $i = 1, N$ do
    for $k = 1, N$ do
        for $j = 1, N$ do
            $S_2$: $D(i, j) = A(i, k) \times B(j, k)$
        endfor
    endfor
endfor
```

The above illustration depicts a case where only one of the shared arrays is the dominant array. The choice of the dominant array was easy in Example 5.6, since only array B was the dominant one. In a situation where both the shared arrays are dominant, we can not use the approach mentioned earlier in Case 2 of this section. Thus, the decision of which dominant array is used in deriving transformations and defining affinity regions has to be made. This is illustrated by the following example. Consider the following program:

Example 5.7

```
for $i = 1, N$ do
    for $j = 1, N$ do
        for $k = 1, N$ do
            $S_1$: $C(i, j) = A(i, k) \times B(k, j)$
        endfor
    endfor
endfor
```
for $i = 1, N$ do
 for $j = 1, N$ do
 for $k = 1, N$ do
 S_2: $D(i, j) = A(k, i) \times B(j, k)$
 endfor
 endfor
endfor

Loop nest L_1 in the above program computes $C = A \times B$ and loop nest L_2 computes $D = A^T \times B^T$. The above program satisfies all assumptions and conditions as specified in Section 5.2.2. It can be seen that there are two shared arrays A and B, across loop nests L_1 and L_2. The access matrices of arrays A and B are as follows:

$$A_{1a} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad A_{2a} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

$$A_{1b} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \quad A_{2b} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Let’s consider both the cases, one when array A is dominant and the other when array B is dominant.

Case 1: Array A as the dominant array

Consider the access matrices of array A first. For array A to be the dominant array, $A_{1a} = A_{2a}$ and upon removing the zero column(s) from access matrices of array B, $A_{1b} = A_{2b}$. This can be achieved in the above program by interchanging loops with indices k and i in loop nest L_2. The new access matrices of arrays A and B are:

$$A_{1a} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad A_{2a} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A_{1b} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \quad A_{2b} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
Case 2: Array B as the dominant array

Consider the access matrices of array B now. For array B to be the dominant array, $A_{1b} = A_{2b}$ and upon removing the zero column(s) from access matrices of array A, $A_{1a} = A_{2a}$. This can be achieved in the above program by interchanging loops with indices i and j in loop nest L_1 and then by moving loop k to be the outermost (keeping the relative order of the i and j loops inside the same as before) in loop nest L_2. The new access matrices of arrays A and B are:

$$A_{1a} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad A_{2a} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$A_{1b} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \quad A_{2b} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

From the above analysis, we conclude that both the shared arrays are dominant. We have two choices and one of them has to be used to find an appropriate iteration decomposition. In order to make this choice let us look at the transformed access matrices of both arrays in both the cases.

In Case 1, where array A is dominant, the access matrices A_{1a} and A_{2a} are the same. The array A is accessed by rows in both loop nests. Accesses to array B are by columns in both the loop nests. In loop nest L_1, for every iteration of the outer loop (index i), the entire B matrix is accessed by columns. In loop nest L_2, the access to array B is again by columns and for every iteration of the outer loop (index k), one column of array B is accessed.

In Case 2, where array B is dominant, the access matrices A_{1b} and A_{2b} are the same. The array B is accessed by columns in both the loop nests. Elements of array A are accessed by rows in both loop nests. In loop nest L_1 for every iteration of the outer loop (index j), the entire matrix A is accessed by rows. In loop nest L_2, the access to array A is again by rows and for every iteration of the outer loop (index k), one row of array A is accessed.
Thus, we can say that both the shared arrays are dominant and any one of the two cases can be considered since the overhead is the same in both cases. The choice could also be made if the preceding or succeeding loop nests to this program access the array \(A \) or \(B \).

The transformed version of Example 5.7 for both the cases are:

Case 1:

For \(i = 1, N \) do

 For \(j = 1, N \) do

 For \(k = 1, N \) do

 \(S_1 : \quad C(i, j) = A(i, k) \times B(k, j) \)

endfor
endfor
endfor

For \(k = 1, N \) do

 For \(j = 1, N \) do

 For \(i = 1, N \) do

 \(S_2 : \quad D(i, j) = A(k, i) \times B(j, k) \)

endfor
endfor

Case 2:

For \(j = 1, N \) do

 For \(i = 1, N \) do

 For \(k = 1, N \) do

 \(S_1 : \quad C(i, j) = A(i, k) \times B(k, j) \)

endfor
endfor
endfor

For \(k = 1, N \) do

 For \(i = 1, N \) do

 For \(j = 1, N \) do

 \(S_2 : \quad D(i, j) = A(k, i) \times B(j, k) \)

endfor
endfor

5.3.2 Multiple Loop Nests

So far, only two loop nests have been used in all cases and discussions. In this subsection, we look at affinity regions involving more than two loop nests. To begin with, consider Example 5.4 in Section 5.2.3. The program in that example has two loop nests that have one common data array. The question that now arises is that if there was an outer loop enclosing the two loop nests, can the loop nests be still placed in an affinity region without any variations?

Let us enclose the two nested loops by an outer loop. The program that we consider is shown in Example 5.8.

Example 5.8

\[
\begin{align*}
\text{for } l = 1, N \text{ do} \\
\text{for } j = 1, N \text{ do} \\
\text{for } i = 1, N \text{ do} \\
\text{for } k = 1, N \text{ do} \\
S_1: & \quad A(i, j) = A(i, j) + B(k, i) \times C(k, j) \\
\text{endfor} \\
\text{endfor} \\
\text{endfor} \\
\text{for } i = 1, N \text{ do} \\
\text{for } k = 1, N \text{ do} \\
S_2: & \quad D(i) = D(i) + B(k, i) \\
\text{endfor} \\
\text{endfor}
\end{align*}
\]

The access matrices for the shared array B are:

\[
A_{1b} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \quad A_{2b} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}
\]

As can be seen from the access matrices, the l loop does not have any effect on the placement of loop nests in an affinity region. Thus one can say that as long as a given set of
loop nests can be placed in an affinity region, an enclosing outer loop does not make any difference.

Consider the case when the shared array B in the above example is accessed in a third loop nest, between the loop nests L_1 and L_2 as shown below:

Example 5.9

```plaintext
for $l = 1, N$ do
  for $j = 1, N$ do
    for $i = 1, N$ do
      for $k = 1, N$ do
        $S_1$: $A(i, j) = A(i, j) + B(k, i) \times C(k, j)$
      endfor
    endfor
  endfor
endfor

for $i = 1, N$ do
  for $k = 1, N$ do
    $S_3$: $B(i, k) = B(i, k) + D(k, l)$
  endfor
endfor

for $i = 1, N$ do
  for $k = 1, N$ do
    $S_2$: $D(i) = D(i) + B(k, i)$
  endfor
endfor
```

Let the added loop nest be L_3. The access matrices of the shared array B is given by,

$$A_{1b} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}, \quad A_{2b} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}, \quad A_{3b} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

All the three loop nests can be placed in the same affinity region, only after loops k and i of loop nest L_3 are interchanged. The only overhead that is encountered is that of saving
the schedule. Thus, it is possible to place as many loop nests in the same affinity region as long as they satisfy all the criteria stated earlier in this subsection and in Section 5.2.2.

Consider the case where there are four sequential loop nests L_1, L_2, L_3 and L_4. Based on the analysis presented so far in this chapter, if nests L_1 and L_3 have a common data array X, and L_2 and L_4 also have a common data array Y, logically we should be able to place L_1 and L_3 in one affinity region and L_2 and L_4 in another affinity region. But since Y, the shared array in loop nest L_2 is different from the shared array X in loop nests L_1 and L_3, locality of reference would be destroyed. Thus, it is preferable to place loop nest L_2 in the same affinity region as L_1 and L_3; as a result, it cannot be placed in any other affinity region. Note that a loop nest can belong to only one affinity region.

5.4 Chapter Summary

This chapter has presented an approach using a mathematical framework for the problem of placing loop nests that have one or more data arrays in common, in an affinity region. As stated earlier, Appelbe and Lakshmanan [5] developed an algorithm for placing nests in an affinity region. Their algorithm described in Section 5.1, takes into consideration only cases where one shared array is involved. Anderson and Lam [4] have used a data decomposition approach which is more like affinity data regions, whereas this chapter has presented an approach based on affinity control regions.

We have found limitations in the usage of loop fusion and parallel regions. The approach used in this chapter is capable of handling more complex cases than single shared arrays across loop nests. There need not necessarily be a parallel loop in the nests. This chapter has also considered cases involving two shared arrays that extends easily to multiple shared arrays; in addition, we have presented different instances that depend on the array dimensionality and the depth of nesting in the loop nests involved. Throughout this
chapter, in our approach, we have had to satisfy the criteria that the loop indices of the loop
nests involved must be the same or one set of loop indices must be a subset of the other.
This is a restriction only for the KSR1 multiprocessor and can be ignored when compiling
for other multiprocessors.

Thus, one can see that affinity regions are more effective than other approaches such
as loop fusion and parallel regions in deriving a computation decomposition that maintains
locality and reduces communication. The approach used in this chapter is more beneficial
as it has considered many instances not explored in previous work. Work is in progress on
the problem of deciding the best grouping of adjacent loop nests for affinity-based schedul-
ing, in which data rearrangement between adjacent groups is allowed. This requires good
cost models of data accesses and data reorganization. Some of this work bears similarity to
work currently in progress on automatic data distribution for distributed memory machines.
CHAPTER 6
CONCLUSIONS

Exploiting parallelism in loops in programs is an important factor in realizing the potential performance of processors today. This work has developed and evaluated several compiler optimizations aimed at improving the performance of loops on processors.

6.1 Address Code Optimization

An important class of problems used widely in scientific computing and other application domains perform memory intensive computations on large data sets. An important feature of the class of problems (called stencil problems) considered in Chapter 2 is the regularity exhibited by their access patterns. In Chapter 2, we presented an approach of optimizing the address generation of these stencil problems.

These code segments have two major overheads: (i) the pure arithmetic computation overhead and (ii) the memory address computation overhead. These overheads determine the performance of these code segments. Callahan et al. [9] propose an approach to optimize these stencil codes and thereby improve their performance. They replace all subscripted array variables by scalars, thereby effecting reuse of these scalar variables. These scalar variables are then mapped to registers. Subsequent reuse of these data elements means that they can be directly accessed from registers instead of through the cache mechanism. This means that loads of all reused data elements can be serviced at processor speed instead of having to deal with cache conflicts and subsequent loads from secondary memory. This approach results in a good improvement in performance because the memory address computation overhead has been reduced. However the major disadvantage with
this approach is that because of the large number of data elements that might be reused, the number of scalars that will be needed is also large. This creates a lot of register pressure which then starts to degrade performance. Also this approach does not seek to reduce the pure arithmetic computation overhead.

We have presented an approach to optimize stencil codes with a view of reducing both the arithmetic and the address computation overhead. The regularity of the access pattern and the reuse of data elements between successive iterations of the loop body means that there is a common sub-expression between any two successive iterations. If we were to store the value of the common sub-expression in a scalar, then for the successive iteration, the value in this scalar could be used instead of performing the computation all over again. This greatly reduces the arithmetic overhead. Since we store only one scalar in a register, there is almost no register pressure. Also all array accesses are now replaced by pointer dereferences. This reduces the address computation overhead. These optimizations helped to improve the performance of the stencil codes to a large extent. We also compared the performance with some other popular approaches. The results in Section 2.3 demonstrate conclusively that our approach is better than the one proposed by Callahan et al. [9].

Future work could include integrating the effects of induction variable analysis and optimization, as well as in reducing storage overhead in non-stencil codes, and in combining these with data layout optimization techniques.

6.2 Fine-Grain Scheduling

Software pipelining is an effective fine-grain scheduling technique that restructures the statements in the body of a loop subject to resource and dependence constraints such that one iteration of a loop can start execution before another finishes. The total execution time of a software-pipelined loop depends on the interval between two successive initiation of
iterations. While software pipelining of single loops has been addressed in many papers, little work has been done in the area of software pipelining of nested loops.

In Chapter 3, we have presented an approach to software pipelining of nested loops. We formulated the problem of finding the minimum iteration initiation interval for each level of a nested loop as one of finding a rational affine schedule for each statement in the body of a perfectly nested loop; this is then solved using linear programming. This framework allows for an integrated treatment of iteration-dependent statement reordering and multidimensional loop unrolling. Unlike most work in scheduling nested loops, we treat each statement in the body as a unit of scheduling. Thus, the schedules derived allow for instances of statements from different iterations to be scheduled at the same time. Optimal schedules derived here subsume extant work on software pipelining of non-nested loops.

Possible avenues for further work includes deriving near-optimal multidimensional loop unwinding in the presence of resource constraints and conditionals.

6.3 Redundant Synchronization

In order to achieve maximal parallel execution, a program must be decomposed into as many concurrent tasks as possible. The dependences in the original program must be preserved in concurrent execution to guarantee correctness, often through the use of synchronization instructions. Synchronization involves large overhead such as busy-waiting, contention for shared access or message passing. Therefore, it is important to minimize the number of synchronization instructions while guaranteeing correct and (possibly) maximally parallel execution.

Chapter 4 addressed the problem of elimination of redundant synchronizations in parallel execution of nested loops. The synchronization due to a dependence is redundant if it is enforced by synchronizations due to other dependences or by a combination of a collection
of dependences and the control structure of the target machine. For two-level nested loops, we have presented a method to eliminate redundant dependences; our technique enforces the minimum number of the required dependences. In nested loops, a dependence may be redundant in only a portion of the iteration space. We characterized the non-uniformity of the redundancy of a dependence in terms of the relation between the dependences and the shapes of the iteration space and also in terms of the size of the iteration space in general convex 2-D iteration spaces. For K-D \((K \geq 3)\) iteration spaces, we presented a method of determining the minimum required synchronizations by computing the minimal set of extreme vectors. We also discussed the non-uniformity that arises for a specific class of \(K\)-nested loops.

Evaluating the tradeoff between synchronization overhead and loss of parallelism requires future work. Also, further work is required for the problem of detecting redundant synchronization in convex iteration spaces of dimension \(\geq 3\).

6.4 Global Transformations for Exploiting Locality

In order to increase performance levels of a parallel machine, communication overhead has to be reduced along with increasing data locality. The access times to local data is usually much less than that for non-local accesses. If the elements frequently accessed by iterations in a given loop nest are local to the processor on which the iterations are executed, then communication overhead is greatly reduced. Moreover, if the same data elements are being accessed by iterations in the following loop nests, the communication overhead is minimized by scheduling iterations accessing the same elements in different loop nests to the same processor. Chapter 5 presented a mathematical approach using the concept of affinity regions to find a transformation such that a suitable iteration-to-processor mapping can be found across a sequence of loop nests having the same shared arrays. This not only
improves the data locality but significantly reduces communication overhead. Since the concept of affinity regions is being used, the schedule of the first loop nest in the affinity region is saved and used by other nests in the affinity region. The iterations of the first loop nest can be scheduled by the compiler and the only overhead involved is in saving this schedule for subsequent loop nests in the affinity region.

Appelbe and Lakshmanan [5] developed an algorithm for placing nests in an affinity region. Their algorithm described in Section 5.1, takes into consideration only cases where one shared array is involved. Anderson and Lam [4] have used a data decomposition approach which is more like affinity data regions, whereas our work has presented an approach based on affinity control regions.

We have found limitations in the usage of loop fusion and parallel regions. The approach used in Chapter 5 is capable of handling more complex cases than single shared arrays across loop nests. There need not necessarily be a parallel loop in the nests. Chapter 5 has also considered cases involving two shared arrays that extends easily to multiple shared arrays; in addition, we have presented different instances that depend on the array dimensionality and the depth of nesting in the loop nests involved. Throughout Chapter 5, in our approach, we have had to satisfy the criteria that the loop indices of the loop nests involved must be the same or one set of loop indices must be a subset of the other. This is a restriction only for the KSR1 multiprocessor and can be ignored when compiling for other multiprocessors.

Thus, one can see that affinity regions are more effective than other approaches such as loop fusion and parallel regions in deriving a computation decomposition that maintains locality and reduces communication. The approach used in the fifth chapter is more beneficial as it has considered many instances not explored in previous work.
Further work is required in developing an estimate as to how useful affinity regions are and more work needs to be done when there are multiple shared arrays across loop nests. In addition, work needs to be done in deciding the best grouping of adjacent loop nests for affinity-based scheduling, which allows data rearrangement between adjacent groups. This requires good cost models of data accesses and data reorganization.
BIBLIOGRAPHY

Tong-Chai Wang is from Kaohsiung, Taiwan. He received his Bachelor of Engineering degree from Feng-Chia University in May, 1987. He worked at an electric appliances factory for seven months. He then came to the US for higher education and received his degree of Master of Science in Electrical and Computer Engineering from University of Massachusetts-Lowell in June 1989. On returning back to Taiwan, he worked in R&D department of an electronics company in Taiwan for over one year. After that he worked as an instructor in the College of Taiwan from 1990 through 2002. He joined the graduate program in the Department of Electrical and Computer Engineering at Louisiana State University in the Fall of 2002. He expects to receive the Doctor of Philosophy in December, 2006.