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Abstract 
 

Markov decision processes have become an indispensable tool in applications as diverse 

as equipment maintenance, manufacturing systems, inventory control, queuing networks 

and investment analysis. Typically we have a controlled Markov chain on a suitable state 

space in which transitional probabilities depend on the policy (or decision maker) which 

comes from a set of possible actions. The main problem of interest would be to find an 

optimal policy that minimizes the associated cost.  

Linear Programming has been widely used to find the optimal Markov decision 

policy. It requires solutions of large systems of simultaneous linear equations. By the fact 

that the complexity in linear programming increases much faster with the increase in the 

number of states which is often called curse of dimensionality, the linear programming 

method can handle only small models. 

This thesis presents a new method to lessen the curse of dimensionality. By 

assuming certain monotonicity property for the transition probability, it is shown that a 

fuzzy membership function can be used to reduce the number of states. The use of 

membership functions help to reduce the number of the states. However all the states 

remain intact through the use of the membership value. That is, those states eliminated 

can be recovered through interpolation with the aid of membership functions. This new 

proposed method is shown to be effective in coping with the curse of dimensionality. 
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Chapter 1 
Introduction 
 
 

1.1 Background 

Since the introduction of optimal control, the subject of decision making under 

uncertainty has grown into a ramified area with applications in several branches of 

engineering and in those areas of social sciences concerned with policy analysis and 

prescription. The theoretical approaches to the subject are based on the invention in the 

1950s of dynamic programming and the rich body of research in statistical time series 

analysis. Although theoretically appealing, these approaches found little practical use 

since they demand a computing capacity that was to expansive.  

 Markov decision processes, one of the main optimal decision making tools, have 

become indispensable in applications as diverse as manufacturing systems, equipment 

maintenance, inventory control, queuing networks and investment analysis. Typically we 

have a controlled Markov chain on a suitable state space in which transitional 

probabilities depend on the policy (or decision maker) which come from a set of possible 

actions. The main problem of interest would be to find an optimal policy that minimizes 

the associated cost. 
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 Typically we have finite horizon and infinite horizon Markov decision processes. 

Under finite planning horizon, the method of value iteration [ref 1] is perfect, but rarely 

the planning horizon is well defined. Most often the process is assumed to operate over 

an unknown period of time with no predetermined stage of termination. In such cases the 

abstraction of an infinite planning horizon seems more relevant. 

Another method is linear programming [ref 2]. The linear programming method 

has almost the opposite characteristics of the value iteration method. Because of the more 

complicated mathematical formulation involving solutions of large systems of 

simultaneous linear equations, the method can handle rather small models with, for 

example, a few hundred states. Complexity in linear programming increases much faster 

with the increase in number of states which is often called curse of dimensionality. On 

the other hand, the method is exact and very efficient in the sense of fast convergence. 

The rewards are not allowed to depend on the stage except for a fixed rate of annual 

increase or decrease. Due to these problems various industries are facing tremendous 

difficulty in using Markov decision process when a large number of states is involved. 

1.2 Research Goal and Scope 

The objective of this research is to develop an approximate optimization technique. We 

introduce the concept of fuzzy membership function into Markov decision processes. 

Each state has a particular transitional probability. By the use of membership functions, 

we can mathematically reduce the number of the states, but all the states eliminated can 

be recovered through the use of membership values. This thesis is devoted to develop a 

systematic procedure to accomplish the approximate optimal decision making. By an 

application of the fuzzy principles to Markov decision processes we are able to cope with 
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the “curse of dimensionality”, assuming that certain monotonicity property holds true for 

the transition probability.  

1.3 Thesis Outline 

The remainder of the thesis is organized as follows. 

Chapter 2 is based primarily on the existing literature. It reviews the basic results 

of stochastic systems modeled as finite state controlled Markov chains and infinite state 

controlled Markov chains. In the first section we present a basic stochastic problem using 

a queuing system. We introduce the concept of finite state controlled chains and dynamic 

programming in the second section. Then we extend the results to the case of infinite 

horizon with stationary policy to find the optimal policy using linear programming. 

The fuzzy theory is discussed in Chapter 3, which is again based on the existing 

literature. The chapter is divided into three sections. In the first section preliminary 

elements on fuzzy mathematics are discussed. In the second section we discuss some 

operations on fuzzy sets. In the third section we give an introduction to fuzzy control 

design. We introduce the concept of fuzzy membership functions which will be used in 

the fourth chapter to reduce the number of states in a Markov decision processes. 

In Chapter 4 we introduce a new optimization technique for Markov decision 

processes called Fuzzified Markov decision processes. This chapter is also divided into 

three sections. In the first section we give a brief introduction to the problem in hand and 

present an example to motivate the importance of the problem to be studied. In the 

second section we propose a Fuzzyfied Markov decision processes technique, and 

develop an approximate optimization procedure. The effectiveness of the proposed 

technique is illustrated by simulations examples with applications in the third section. 
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Chapter 5 concludes the thesis together with some ideas presented for the future 

directions of research along the line of this thesis. 
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Chapter 2 
Markov Decision Processes 
 
 
This chapter is based primarily on the existing literature, and is divided into three 

sections. It presents the basic results for stochastic systems modeled as finite state 

controlled Markov chains and infinite state controlled Markov chains. In the first section 

we present a basic stochastic problem using a queuing system. We introduce the concept 

of finite state controlled chains and dynamic programming in the second section. Then 

we extend the results to the case of infinite horizon with stationary policy to seek the 

optimal policy using the linear programming. 

Consider a system being observed over a finite or infinite time horizon split up 

into period or stages. At each stage, the state of the system is observed, and a decision (or 

an action) concerning the system has to be made. The decision influences the state to be 

observed at the next stage, and depending on the state and the decision made, an 

immediate reward is gained. The expected total rewards from the present stage until the 

end of the planning horizon is expressed by a value function. The relation between the 

value function at the present stage and the one at the following stage is expressed by the 

functional equation. Optimal decisions depending on stage and state are determined 
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backwards step by step as those maximizing the right hand side of the functional 

equation. This way of determining an optimal policy is based on the Bellman principle of 

optimality which says: “An optimal policy has the property that whatever the initial state 

and initial decision are, the remaining decisions must constitute an optimal policy with 

regard to the state resulting from the first decision”. 

Consider a discrete time Markov decision process with a finite state space 

and a finite action set U. a policy g is a map assigning to each state i an 

action . Let  be the transition probability from state i to state j and  be the 

transition probability from state i to state j if action a is taken. 

},.......2,1{ xX =

Uig ∈)( ijP a
ijP

 An optimal policy is defined as a policy that maximizes or minimizes some 

predefined objective function. The optimization technique depends on the form of the 

objective function or in other words on the criterion of optimality. The choice of criterion 

depends on whether the planning horizon is finite or infinite. Let us proceed with an 

example. 

2.1 An Example  

Consider a machine whose condition at time k is described by the state which can take 

the values 1 or 2 with the interpretation that 

kx

1=kx or 2=kx depending on whether the 

machine is in operational or failed condition. For the moment there is no control actions 

allowed so that the machine behavior is autonomous. Suppose the machine is operational 

at time k, so , and there is a probability that it will fail in next period, 

so ; with probability 

1=kx 0>q

21 =+kx q−1 it will continue to remain operational, so 11 =+kx . 

Suppose further that q does not depend upon previous values . Finally, suppose 01 ,.....xxk−
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that a failed machine continues to remain failed, so that 21 =+kx  with probability 1, 

if . Then is a Markov chain whose transition probabilities are described 

by the matrix 

2=kx }0,{ ≥kxk

⎥
⎦

⎤
⎢
⎣

⎡ −
=

10
1 qq

P                                                                                                 (2.1.1) 

The Markov property is expressed by 

,011 },....,/{ ijkkk Pxxixjxpro === −+                }2,1{, ∈ji                               (2.1.2) 

  We now introduce two control actions. Let denote the intensity of machine use 

at time k. it takes on values accordingly as machine is not used, is in light 

use, or in heavy use. Suppose that the greater the intensity of use, the larger the likelihood 

of machine failure. Let  denote the intensity of machine maintenance effort. Suppose it 

takes only two values 0 or 1, the higher values denoting greater maintenance. The idea is 

that maintenance reduces the likelihood of machine failure and permits a failed machine 

to become operational. 

1
ku

21,01 oruk =

2
ku

The effects of these two control actions, intensity of machine use and 

maintenance, can be modeled as a controlled transition probability matrix as follows 

⎥
⎦

⎤
⎢
⎣

⎡

−
−+−

=
)(1)(

)()()()(1
),( 2

2
2

2

2
2

1
1

2
2

1
121

uquq
uquququq

uuP                                         (2.1.3) 

The values of q are such that )2()1()0( 111 qqq <<  and )1()0( 22 qq <  because a lightly 

used or better maintained machine is less likely to fail than a heavily used or less 

maintained machine. 

Equation (2.1.3) is illustrated in the state transition diagram below 
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1 2 

2q

21 qq −

1- 2q  ][1 21 qq −−  

Fig. 2.1.1 State transition diagram 

The values of q are such that )2()1()0( 111 qqq <<  and )1()0( 22 qq <  because a lightly 

used or better maintained machine is less likely to fail than a heavily used or less 

maintained machine. Suppose the state is observed and consider a feedback policy 

which is time invariant, that is,,.....},{ 10 gg ggk ≡  and let )( kk xgu = . This results in 

transition probability matrix where  }{ g
ij

g PP =

)),((: igPP ij
g

ij =   }2,1{, ∈ji

For example, if g (1) = (2, 0), and g (2) = (0, 1), then  

⎥
⎦

⎤
⎢
⎣

⎡
−
−+−

=
)2(1)1(

)0()2()0()2(1

22

2121

qq
qqqq

P g  

The resulting process is a Markov chain with stationary transition probability}{ kx gP . 

The probability distribution of can be written as a row vector  kx

})2{},1{(: === kkk xprobxprobp . 

By the Markov property 

 ,                                                          (2.1.4) mg
kmk Ppp ][=+ 0≥m
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And, in particular , where is the initial distribution of . kg
k Ppp ][0= 0p 0x

Often as , converges to a probability distribution that does not depend on the 

initial distribution . We then say that it is an ergodic chain. The limiting probability 

distribution is called the steady state distribution. It is the solution of the linear equations  

∞→k kp

0p

gpPp = ,                                                                                (2.1.5) 1)2()1( =+ pp

Equation 2.1.5 always has a solution. In the ergodic case the solution is unique and the 

limiting distribution has the following interpretation: 

∑
=

∞→
==

n

k
kn

ixI
n

ip
1

)(1lim)(                                                                           (2.1.6) 1wp

where I is the indicator function and  stand for probability. wp

From (2.1.5) it is evident that the steady state probability p depends on the 

feedback law g. So by changing the policy g, that is, by changing the use and 

maintenance of the machine, we can alter the number of times it fails. Now the question 

is which policy leads to the best probability distribution. We will examine this in the next 

section. 

2.2 Finite State Controlled Markov Chain 

The preceding example generalizes to the case of an arbitrary finite state controlled 

Markov chain whose state takes values in . The control takes values in a 

prespecified setU . U may be finite or infinite. The transition probability are specified by 

the 

kx },....2,1{ I ku

II × matrix valued function onU , 

},1,1),({:)( , ≥≥=→ jiuPuPu ji                                                                     (2.1.7) 

With the interpretation that  
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 )(},.....,,.....,,/{ 0011 kijkkkk uPuuxxixjxprob === −+                                     (2.1.8) 

Suppose the state is observed. Let ,.....},{ 10 ggg = be a feedback policy such that 

depends only on the current state . We call such g a stationary Markov policy. kg kx

 Let g be a Markov policy and let be the resulting state process. Denote the 

probability distribution of  by I dimensional row vector. 

kx

kx

}){},.....,1{(: Ixprobxprobp kk
g
k === , 

Some basic concepts are introduced, understanding of which is essential to determine the 

optimal Markov policy 

Lemma 1: When a Markov policy is employed, the resulting state process is Markov 

process. Its one step transition probability at time k is given by the matrix 

kx

},1,1)),((:){(: ≥≥== jiigPPP kijij
g

k
g

k  

Its m-step transition probability at time k is given by the matrix  

,1..... −+mk
g

k PP  

So its ijth element is the probability that the state will be j at time k+m given that it is I at 

time k. Hence  

...... 1
g

mk
g

kkmk PPpp −++ =  

In particular, 

  ,..... 100
g

k
g

k PPpp −=

where  is the probability distribution of the initial state  0p 0x .

Proof: The proof is immediate from the Markov property (2.1.8) 
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Since the transition probability matrix depends on the time k. we say that  is a 

Markov chain with nonstationary transition probability.                                                   □ 

g
kP kx

A Markov policy g determines the probability distribution of the state process  

and the control process . Different policies will lead to different probability 

distribution. In optimal control problems one is interested in finding the best or optimal 

policies. This is done by specifying a cost function. This is a sequence of real valued 

functions of the state and control, 

kx

)}( kkk xgu =

),( uiCk , , ,  Ii ≤≤1 Uu∈ 0≥k

The interpretation is that is the cost to be paid if at time k, ),( uiCk ixk = and  uuk =

If the policy is fixed then the cost over a horizon “N” is , which a random 

variable. The expected cost is given by  

∑
=

N

k
kkk uxC

0

),(

⎭
⎬
⎫

⎩
⎨
⎧

= ∑
=

N

k
kkk

g uxCEgJ
0

),()(  

                                                                              (2.1.9) 
⎭
⎬
⎫

⎩
⎨
⎧

= ∑
=

N

k
kkkk

g xgxCE
0

))(,(

            { }∑
=

=
N

k
kkkk xgxCE

0

))(,(

[ ]∑∑
= =

==
N

k
kk

N

i
k igiCixp

0 1
))(,(  

  =  { } { }[ ]
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

==∑
=

)(,(
.
.

)1(,1(

.............1
0

IgIC

gC

Ixpxp

kk

kk

N

k
kk
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   ∑
=

=
N

k

g
kk Cp

0

   ∑
=

−=
N

K

g
k

g
k

gg Cpppp
0

1100 ).....(

The best policy is the one that minimizes the expected cost. The solution approach is 

dynamic programming. Dynamic programming will be discussed in detail in the next 

section. Central to dynamic programming is a recursive technique for calculating the cost 

of a Markov policy g. 

Since the technique depends only on the fact that the state process corresponding to g is 

Markov, we introduce it here. For each time Nk ≤≤1 , and state , let 

denote the expected cost incurred during k………N when

Ii ≤≤1

)(iV g
k ixk = . That is, 

                                                          (21.10) ∑
=

==
N

kl
kllll

gg
k ixxgxcEiV }./))(,({:)(

Lemma 2: The functions can be calculated by the backward recursion,  )(iV g
k

   ∑
=

++=
I

j

g
kij

g
kkk

g
k jVPigiciV

1
1 ),()))(,()( ,0 Nk <≤                                       (2.1.11) 

Starting with the final condition 

                                                                                       (2.1.12) ))(,()( igiciV NN
g

N =

Proof: From the definition we immediately get (2.1.12). Next 

 ∑
=

==
N

kl
kllll

gg
k ixxgxcEiV }/))(,({)(  

  +  ))(,( igic kk= }

}

/},/))(,({{
1

1 ixixxxgxcEE k

N

kl
kkllll

gg ==∑
+=

+

   /)({))(,( 11 ixxVEigic kk
g

k
g

kk =+= ++
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                            (2.1.13) □ ∑
=

++ ==+=
I

j
kk

g
kkk ixjxobjVigic

1
11 }/{Pr)())(,(

2.2.1 Dynamic Programming 

We consider the problem of selecting a feedback control so as to minimize the expected 

cost. The optimality conditions are obtained by dynamic programming. Consider the 

stochastic system described by the state space model 

  ),,,(1 kkkkk wuxfx =+

    ),,( kkkk vxhy = ,........1,0=k

Suppose that for each k, the control value is to be selected from a prespecified control 

set . A feasible control law is any sequence 

ku

mRU ⊂ ,....},{ 10 ggg = such that  

 or all . Uygu k
kk ∈= )(   f ky

 Let G denote the set of all feasible control laws. Suppose that we are given a cost 

function  

  ∑
−

=

+
1

0

)(),(
N

k
NNkkk xcuxc

where  is called the immediate or one-period cost, and is the terminal 

cost. Since , a control law is now specified by the finite 

sequence . 

),( kkk uxc )( NN xc

∞<N

},....,{ 110 −= Ngggg

Let g be a feasible law. Let ,  and denote the processes corresponding to 

it. By definition the cost associated with g is  

gx gy gu

∑
−

+=
1

0
)(),(

N
g
NN

g
k

g
kk

g xcuxcC                                                                         (2.1.14) 
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Definition 1: A Markov policy in G is optimal if 

Thus J* is called the minimum expected cost. Our aim is 

to characterize the optimal control laws using dynamic programming. 

*g

}./)({**)( GggJInfJgJ ∈==

Lemma 3: Let be a Markov policy. Define recursively the functions },....,{ 110 −= Ngggg

),(:)( xcxV N
g

N =                                                                               (2.1.15) 

)]),(,()[))(.(:)( 1 kkk
g

kwkk
g

k wxgxfVExgxcxV
k ++=                                        (2.1.16) 

Then the random variable satisfies  )( g
k

g
k xV

∑
−

=

=+=
1

,.....0},/)(),({)(
N

KL

g
k

g
NN

g
l

g
ll

g
k

g
k NkxxcuxcExV                                              (2.1.17) 

The proof is very simple and hence it is not discussed here. Since is a Markov, we 

also have  

}{ kx

                                    (2.1.18)□ 
⎭
⎬
⎫

⎩
⎨
⎧

+= ∑ },....,/)(),()( g
o

g
k

g
NN

g
l

g
ll

g
k

g
k xxxcuxcExV

Definition 2: Let . The random variable Gg ∈

                                                  (2.1.19) ∑ += },....,/)(),({ 0
g
k

gg
NN

g
l

g
ll

g
k xxxcuxcEJ

is called the cost-to-go at k corresponding to g. 

From definition (2.1.19) we see that 

                                                                       (2.1.20) },/{ 0xCEJ gg
o = g

oEJgJ =)(

While lemma (3) is valid only for Markov policies, the comparison principle below holds 

for arbitrary feedback policies 
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Lemma 4(Comparison Principle): Let  ),(xVk ,0 Nk ≤≤ be any functions such that 

                                                                                               (2.1.21) ),()( xcxV NN ≤

                                                        (2.1.22) )],,,([),()( 1 kkkwkk wuxfVEuxcxV
k ++≤

for all x and for all u. Let be arbitrary. Then, w.p.1  Gg ∈

  Nk                                                                              (2.1.23) ,)( g
k

g
kk JxV ≤ ,.....0=

Proof: We proceed by induction. From (2.1.19) to (2.1.21) 

  ),()(},.....,/({ g
NN

g
NN

g
N

g
o

g
NN

g
N xVxcxxxcEJ ≥==

so that (2.1.23) is true for k=N. Suppose it is true for k+1. Then by (2.1.22) 

  },....,/)],,([),({)( 1
g
k

g
ok

g
k

g
kk

g
k

g
k

g
kk

g
kk xxwuxfVuxcExV ++≤

   ∑
−

+
+++≤

1

1
1 },....,/},....,/)(),({),({

N

k

g
k

g
o

g
k

g
o

g
NN

g
l

g
ll

g
k

g
kk xxxxxcuxcEuxcE

   ∑
−

=+=
1

,},....,/)(),({
N

k

g
k

g
k

g
o

g
NN

g
l

g
ll JxxxcuxcE

and so (2.1.23) holds for k.                                                                                                 □ 

We get an immediate corollary. 

Corollary1 

Let be a function satisfying (2.1.21, (2.1.22). Then  Hence if )(xVk ).(* 0xEVJ o≥ Gg ∈ is 

such that , then g is optimal. )( 0xVJ O
G
O =

Proof: For any g in G we have by (2.1.23). Taking 

expectation  and . Finally, if  

then , so that g must be optimal and 

)( oO
G
O xVJ ≥

)()( oo xEVgJ ≥ )(* oo xEVJ ≥ ),( oo
g
o xVJ =

*)()( JxEVgJ oo ≤= *)( JgJ =                               □ 
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The two preceding lemmas can be combined to obtain the fundamental result of dynamic 

programming.                                                                                                      

Theorem:  Define recursively the functions 

                                                                                                (2.1.24) )()( xcxV NN =

                                         (2.1.25) ))],,((),([)( 1 kkkWk
Uu

k wuxfVEuxcInfxV
K +

∈
+=

1. Let g in G is arbitrary. Then w.p.1; in particular,  g
k

g
kk JxV ≤)( ).()( oO xEVgJ ≥

2. A Markov policy in is optimal if the infimum in (2.1.24) is 

achieved at , and then w.p.1 and 

},....,{ 110 −= Ngggg MG

)(xgk
g
k

g
kk JxV =)( ).()(* 00 xEVgJJ ==  

3. A Markov policy  in is optimal if for each k, the infimum 

at in (2.1.24) is achieved by  i.e  

},....,{ 110 −= Ngggg MG

g
kx )( g

kk xg ,

)],),(,([))(,()( 1 k
g
kk

g
kkkw

g
kk

g
kk

g
kk wxgxfVExgxcxV

k ++=  

w. p. 1. 

Proof: The functions defined by (2.1.24) and (2.1.25) clearly satisfy (2.1.21) and 

(2.1.22) and so part (1) follows from lemma. To prove the sufficiency in part (2), let 

be a Markov policy that achieves the infimum in (2.1.25), so  

)(xVk

}{ kgg =

  )]),(,([))(,()( 1 kkkkwkkk wxgxfVExgxcxV
k ++=

By lemma it follows that for all k and in particular By 

corollary, g is optimal and 

g
k

g
kk JxV =)( ).( oo

g
O xVJ =

).()(* oo xEVgJJ ==  

 To prove the necessity in part (3) suppose the Markovian policy g is optimal. We 

prove by induction that  achieves the infimum in (2.1.25) at with probability 1. )( g
kk xg g

kx
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Consider k=N-1. Suppose the assertion is false. Then there exist another function 

such that URg n
N →− :' 1

)]),(,([))(,( 111111111 1 −−−−−−−−− −
+ N

g
NN

g
NNNwNNNN wxgxfVEgxgxc

n
 

  )]),(',([))(',( 111111111 1 −−−−−−−−− −
+≥ N

g
NN

g
NNNwNNNN wxgxfVEgxgxc

n

w.p.1; moreover, the inequality is strict with positive probability. Hence taking 

expectations on both sides and using (2.1.24) gives   

))]),(,(())(,([ 111111111 −−−−−−−−− + N
g
NN

g
NNNNNNN wxgxfcgxgxcE  

                (2.1.26) ))]),(',(())(',([ 111111111 −−−−−−−−− +> N
g
NN

g
NNNNNNN wxgxfcgxgxcE

Consider the Markov policy . Evidently , }',,......,{' 12 −−= NNo gggg 'g
k

g
k xx = 10 −≤≤ Nk  

and so , , .It follows that  'g
k

g
k uu = 10 −≤≤ Nk )(' 11

'
1

g
NN

g
N xgu −−− =

  ),,(),( '' g
k

g
kk

g
k

g
kk uxEcuxEc = 20 −≤≤ Nk                                                  (2.1.27) 

Adding (2.1.26) and (2.1.27) gives and so g cannot be optimal contrary to 

the hypothesis. Thus does achieve the infimum in (2.1.25) for , and 

so . 

)'()( gJgJ >

)( 11
g
NN xg −− 1−N

)( 111
g
NN

g
N xVJ −−− =

 Now suppose by induction that  achieves the infimum and 

that . We prove this for k. Indeed, otherwise there is a function 

such that  

)( 11
g
kk xg ++

)( 111
g
kkk xVgJ +++ =

URg n
k →:'

   )]),(,([))(,( 1 k
g
kk

g
kkkw

g
kk

g
kk wxgxfVExgxc

k ++

    )]),(',([))(',( 1 k
g
kk

g
kkkw

g
kk

g
kk wxgxfVExgxc

k ++≥

w.p.1. This inequality is strict with positive probability so that taking expectations gives  
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  )())(,( 11
g
kkw

g
kk

g
kk xVExgxEc

k +++

                                         (2.1.28) ))).(',(())(',( 1 k
g
kk

g
kkk

g
kk

g
kk wxgxfEVxgxEc ++>

Consider the policy . Then certainly  },.....,.',,.....,{' 1110 −+−= Nkkk gggggg

  ),,(),( '' g
l

g
ll

g
l

g
ll uxEcuxEc = ,1,.....0 −= kl                                                   (2.1.29) 

Also, by the induction hypothesis,  achieve the infimum in (2.1.28), and so 

by lemma 4 

11,...... −+ Nk gg

 , and )()( 1111
g
kk

g
k

g
k xEVxEJ ++++ =

 )                                                                              (2.1.30) ()( '
11

'
1

'
1

g
kk

g
k

g
k xEVxEJ ++++ =

From (2.1.28), (2.1.29), and (2.1.30) it follows that 

  ∑ ++++= )(),(),()( 11
g
kk

g
k

g
kk

g
l

g
ll xVuxEcuxcEgJ

   ∑ ++++> )(),(),( '
11

' g
kk

g
k

g
kk

g
l

g
ll xVuxEcuxcE

   )'(gJ=

and so g cannot be optimal contrary to hypothesis. Thus  must achieve the 

infimum in (2.1.28) and the result follows by induction.                                                    □ 

)( g
kk xg

2.2.2 Algorithm 

First, define ,  )()( xCxV NN =

Then find the function   by  URg n
N →− :1

],/)),,((),(inf[arg)( 1111 1
UuwuxfVEuxCxg NNNwNN N

∈+= −−−− −
 

and denote the resulting value  )(1 xVN−
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Second, find the function  by URg n
N →− :2

],/)),,((),(inf[arg)( 2222 2
UuwuxfVEuxCxg NNNwNN N

∈+= −−−− −
 

and call this resulting value . Proceeding in this way we 

obtain . 

)(2 xVN−

0011 ,.,,........., VgVg NN −−

2.3 Infinite Horizon 

Let us consider when time horizon N is infinite. This is not an immediate extension, since 

if one simply sets  in (2.1.9), in most cases one gets ∞=N ∞=)(gJ for every g. The 

notion of best g becomes meaningless. There are two ways to treat the infinite horizon 

problem. The first approach is to introduce a discount factorβ , 10 << β and define the 

expected discounted cost. 

  ∑
∞

=

=
0

),()(
k

kkk
kg uxcEgJ β

Observe that if is bounded, and then will be finite. Since the cost incurred at time 

k is weighted by , present cost is more important than future cost. In an economic 

context,  where r>0 is the interest rate. With this interpretation, is 

present value of cost. From (2.1.9) it follows that  

kc )(gJ

k

β

1)1( −+= rβ )(gJ

  ∑
∞

=
−=

0
1100 ).....()(

K

g
k

g
k

ggk CppppgJ β

Define   

  ∑
∞

=

==
kl

kllll
lgg

k ixxgxcEiV }/)(,({:)( β

The second approach is followed when discounting is inappropriate. A policy is then 

evaluated according to its average cost per unit time, 
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 ∑
−

=
∞→

=
1

0
))(,(1lim)(

N

k
kkkk

g

N
xgxcE

N
gJ                                                               (2.1.31) 

Using (2.1.9) this equals  

 ∑
−

=
−∞→

1

0
10 )........(1lim

N

k

g
k

g
k

g
oN

cPPp
N

                                                                        (2.1.32) 

From this expression we see that if varies with k, then the limit above need not exist.  g
kP

2.3.1 Stationary Markov Policy 

A Markov policy  is stationary or time invariant if,.....},{ 10 ggg = ggg ≡≡≡ ..........10 , 

with a slight abuse of notation. Let g be stationary; then the transition probability matrix 

is stationary, . Suppose the cost functions are also time invariant, . Fix a 

discount

gg
k PP ≡ cck ≡

10 << β . Then  

  ∑
∞

=

==
kl

kll
lgg

k ixxgxxEiV }/))(,({)( β

   }

)

/))(,({
0

0∑
∞

=

==
l

ll
lgk ixxgxcE ββ

   (iV g
o

kβ=

In vector notation  or in matrix notation, ,1 g
o

gkgkg
o

k VPcV ++= βββ

  gg
o

g cVPI =− ][ β

Next we study the average cost when policy and cost are stationary. The next three 

lemmas are stated without proof. 

Lemma 5: If P is the transition probability matrix, then the Cesaro limit  

 Π=∑
−

=
∞→

:1lim
1

0

N

k

k

N
P

N
, 
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always exists. The matrix  is a stochastic matrix and it satisfies the equationΠ PΠ=Π . 

Thus for stationary g and time invariant cost, the average cost per unit time (2.1.31) and 

(2.1.32), is    

 ∑
−

=
∞→

Π==
1

0
0))(,(1lim)(

N

k

g
kk

g

N
cpxgxcE

N
gJ                                                   (2.1.33) 

Let π be one of the rows of . Then Π Pππ =  

Moreover since Π  is a stochastic matrix, π  can be regarded as a probability distribution. 

This has an interpretation that if Markov chain has initial probability distribution given 

by π , then the probability distribution of the state remains at π for all time. Thus π is 

said to be an invariant probability distribution. 

Lemma 5: If P is an irreducible transition probability matrix, then there is a unique 

row vector π such that 

 ππ =P , ∑ .                                                                                        (2.1.34) 
=

=
I

i
i

1
1π

Moreover 0>iπ , for all i. finally, the matrix Π  in (1.33) has all rows equal to π         □ 

Lemma 6: If P is irreducible and aperiodic, then  

                                                                                                    (2.1. 35) Π=
∞→

k

k
Plim

Where Π  is a matrix with all rows equal to π                                                             □  

 

Consider first the problem of minimizing the finite horizon cost  

                                                                                          (2.1.36) ∑
−

=

1

0

),(
N

k
kk

kg uxxE β
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with 10 << β . We have the optimal value function satisfying the dynamic 

programming equations, 

)(iVk

 ,                                                                                                        (2.1.37) 0)( =iVn

                                                       (2.1.38) ∑
=

+
∈

+=
I

j
ijk

k

Uu
k uPjVuicInfiV

1
1 )}()(),({)( β

)(iVk is the minimum value of starting in state i at time k. it is more 

convenient to work not with , but the related quantity, 

∑
−

=

1

),(
N

kn
nn

ng uxxE β

)(iVk

 ) ,(:)( iViW nN
Nn

N −
−= β Nn ≤≤0 , Ii ≤≤1                                                    (2.1.39) 

The index n is the time to go. It can be shown that  

 0 ,                                                                                                     (2.1.40) :)( =iWo

                                                       (2.1.41)  ∑
=

−∈
+=

I

j
ijnUun uPjWuiciW

1
1 )}()(),({inf:)( β

Lemma 7: Let . Then satisfies (2.1.40) and 

(2.1.41) 

}/),(min:)( 0

1

0
ixuxxEiW

n

k
kk

kg

gn == ∑
−

=

β )(iWn

 For the discounted cost it is natural to expect that its minimum 

value starting in state , denoted by , will satisfy (2.1.41) with  replacing n. 

so it is plausible that will satisfy 

∑
−

=

1

0
),(

N

k
kk

kg uxxE β

ix =0 )(iW∞ ∞

∞W

 , for all i                                       (2.1.42) □ )}()(),({inf)(
1

uPjWuiciW ij

I

jUu ∑
=

∞∈∞ += β

This is the dynamic programming equation for the discounted cost criterion. Equation 

(2.1.42) is a system of I equations with I unknowns . Next we examine )(),.......1( IWW ∞∞
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the existence and uniqueness of solutions to these equations, and show that the solution 

indeed gives the value function. 

2.3.2 Value Iteration 

In value iteration method optimal policies are determined sequentially using the 

functional equations  

  
⎭
⎬
⎫

⎩
⎨
⎧

−+= ∑
=

n

j
j

a
ij

a
iai nfprnf

1
)1(max)( β

where the action a maximizing the right hand side is optimal for state i at the stage in 

question. The function is the total expected discounted rewards from the process 

when it starts from state i and will operate for n stages before termination. Thus is 

the salvage value of the system when it is in state i. At each stage an optimal value is 

chosen using the above equation. The value iteration method is identical to what is 

usually referred to as successive iteration or successive approximation. We are not going 

to discuss this method in detail since the value iteration method is not exact and the 

convergence is slow.  

)(nfi

)0(if

2.3.3 Linear Programming 

In infinite horizon case we have to use linear programming instead of dynamic 

programming. Therefore to find the optimal policy, we can convert the problem into a 

linear program and solve it using simplex method. 

It can be shown that if u is a bounded function on the state space satisfying: 

                                                          (2.1.43) ⎥
⎦

⎤
⎢
⎣

⎡
≤ ∑

i
ija

juaPaiciu )()(),(min)(

 then Vu ≤  with V the optimal value function. 
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Because the optimal value function V satisfies the inequality, as well as the equality, it 

follows that it is the largest function that satisfies (2.1.43). Hence, letting iβ  be such 

that 10 << iβ , it follows that V will be the unique solution of the linear program. 

     ⎥
⎦

⎤
⎢
⎣

⎡∑
=

m

i
iu

iu
0

)(max β

subject to  

⎥
⎦

⎤
⎢
⎣

⎡
+≤ ∑

j
ij juaPaiciu )()(),(min)( α , for all i. 

We can take iβ  as 1 for all i as iβ  is chosen to prevent the objective function from 

becoming infinite. After this assumption, our linear problem takes this form 

                                                                                                 (2.1.44) ⎥
⎦

⎤
⎢
⎣

⎡∑
=0

)(max
iu

iu

 subject to  

 , for all i and all ⎥
⎦

⎤
⎢
⎣

⎡
+≤ ∑

j
ij jraPaiciu )()(),(min)( α Uu∈                         (2.1.45) 

Objective function (2.1.44) and constraint (2.1.45) allows the use of first linear program 

to calculate optimal policy. This model is called short term or action selection model. 

Solving this problem would give the optimal values of )()( iViu = for all i, with the 

requirement that u is the optimal action associated with the state if and only if the 

corresponding constraint in (2.1.45) holds as equality.  

 After the solution to the linear program (2.1.44)-(2.1.45) has been obtained, we 

calculate the shadow costs of the actions. These costs are calculated by substituting the 

optimal values of  into the right hand side of the constraints (2.1.45): )(iu
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                                                                    (2.1.46) ∑+=
j

ij juaPaicaiV )()(),(),( α

The optimal action  in each state is chosen from the condition: *a

                                                                                    (2.1.47) )],([min*),( aiVaiV
a

=

The difference that the shadow cost of the optimal action makes with the shadow cost of 

the do-nothing action is interpreted as the unit shadow benefit of taking the optimal 

action: 

                                                                             (2.1.48) *),()0,(*),( aiViVaiB −=

It follows from (2.1.48) that when the optimal action is do-nothing, its shadow benefit 

becomes zero. 

The above model specifies a stationary policy that is optimal and can be used 

immediately, whether the process is stationary or not, and hence it is the model, with 

which we can determine the recommended actions for each condition state of every 

element. However, this model would not directly give the long term conditions of the 

elements. To calculate the interest another model is used; 

∑∑
i a

ia aigw ),(min                                                                                       (2.1.49) 

subject to                                                                                              (2.1.50)       ∑∑ =
i a

iaw 1

      , for all ∑ ∑∑=
a i

ij
a

iaja apww )( j                                                           (2.1.51) 

where  denote the limiting probability that the element will be in state i and action a is 

chosen when policy g is followed        

iaw

 0                                                                                                           (2.1.46) ≥iaw
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Thus for any policy g, there is a vector iaww = which satisfies (2.1.49), (2.1.50) and 

(2.1.51) with the interpretation that equals the steady state probability of being in 

state i and choosing action a if g is employed. 

iaw

 The values of can be interpreted as the proportion of time that the unit element 

is in condition state i and action a is taken, or alternatively, the proportion of units for 

which action a is taken in condition state i. The linear problem defined above is called 

long-term or steady state model. 

iaw
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Chapter 3 
Fuzzy Mathematics 
 
 

In this chapter we will discuss basic results in Fuzzy theory, from the existing literature. 

This chapter is divided into three sections. In the first section we discuss preliminary 

elements of fuzzy mathematics. In the second section we discuss some operations on 

fuzzy sets. In the third section we give an introduction to fuzzy control design. Here we 

introduce concept of fuzzy membership functions which will be used in the next chapter 

to reduce the number of states in a Markov decision process. 

The field of fuzzy systems and control has been well developed about one decade 

ago. Motivated by the practical success of fuzzy control in consumer products and 

industrial process control, there has been an increasing amount of work on the rigorous 

theoretical studies of fuzzy systems and fuzzy control. Researchers are trying to explain 

why the practical results are good, to systematize the existing approaches, and to develop 

more powerful design tools. 

Fuzzy systems are knowledge–based or rule based systems. The heart of the fuzzy 

system is a knowledge base consisting of the so called fuzzy IF-THEN rule. A fuzzy IF-

THEN rule is an IF-THEN statement in which some words are characterized by 

continuous membership functions. For example the following is a fuzzy IF –THEN rule: 
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“IF the speed of a car is high, THEN apply less force to the accelerator” 

 A fuzzy system is constructed from collection of fuzzy IF-THEN rules. The basic 

configuration of a pure fuzzy system is shown in the Fig.2.1. The “Fuzzy Rule Based” 

represents the collection of fuzzy IF-THEN rules. The fuzzy inference engine combines 

these fuzzy IF-THEN rules into a mapping from fuzzy sets in the input space  to 

fuzzy sets in the output space  based on fuzzy logic principles. If the dashed 

feedback line in Fig.3.1.1 exists, the system becomes the so called fuzzy dynamic 

systems. 

nRU ⊂

RV ⊂

 
Fuzzy Rule Base 

Fuzzy Inference 
Engine 

Figure 3.1.1. Basic configuration of pure fuzzy system. 

Fuzzy sets  
In U 

Fuzzy sets 
 In V 

3.1 Elements of Fuzzy Mathematics 

Fuzzy Set: A fuzzy set in a universe of discourse U is characterized by a membership 

function )(xAμ  that takes values in the interval [0, 1]. Therefore, a fuzzy set is a 

generalization of a classical set by allowing the membership function to take any value in 

the interval [0, 1]. A fuzzy set A in U may be represented as a set of ordered pairs of a 

generic element x and its membership value, that is, 
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}/))(,{( UxxxA A ∈= μ  

Support: The support of a fuzzy set A in the universe of discourse U is a crisp set that 

contains all the elements of U that have nonzero membership values in A, that is, 

}0)(/{)( >∈= xUxASupp Aμ  

Center: If the mean value of all points at which the membership function of the fuzzy set 

achieves its maximum value is finite, then define this mean value as the center of the 

fuzzy set. 

Height:  The height of a fuzzy set is the largest membership value attained by any point. 

If the height of a fuzzy set equals one, it is called a normal fuzzy set. 

α -cut: An α -cut of a fuzzy set A is a crisp set that contains all the elements in U 

that have membership values in A greater than or equal to 

αA

α , that is, 

})(/{ αμα ≥∈= xUxA A  

3.2 Operations on Fuzzy Sets 

Complement: Let c: [0 1] → [0 1] be a mapping that transform the membership function 

of fuzzy set A into the membership function of the complement of A, that is, 

)(1)()]([ xxxc A
A

A μμμ −== −  

Union: Let s:[0 1]× [0 1] → [0 1] be a mapping that transforms the membership functions 

of fuzzy sets  A and B into the membership function of the union of A and B, that is, 

)()](),([ xxxs BABA ∪= μμμ  

In order for the function to be qualified as a union, it must satisfy at least the following 

four requirements:  

Axiom 1: s (1, 1) =1, s (0, a) =s (a, 0) =a. 
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Axiom 2: s (a, b) =s (b, a) 

Axiom 3: if a≤   and b , then s (a, b)   'a 'b≤ ),( '' bas≤

Axiom 4: s (s (a, b), c) =s (a, s (b, c) 

Intersection: Let  be a function that transforms the membership 

functions of fuzzy sets A and B into the membership function of the intersection of A and 

B, that is , 

]1,0[]1,0[]1,0[: →×t

)()](),([ xxxt BABA ∩= μμμ  

In order for the function t to be qualified as an intersection, it must satisfy at least the 

following four requirements: 

Axiom 1: aatatt === ),1()1,(;0)0,0(  

Axiom 2: t (a, b) =t (b, a) 

Axiom 3: If  and , then t (a, b) ) 'aa ≤ 'bb ≤ '' ,( bat≤

Axiom 4:  )],(,[]),,([ cbtatcbatt =

3.3 Overview of Design 

There are specific components characteristics of a fuzzy controller to support a design 

procedure. In the block diagram in Fig.3.1.2 the controller is between a preprocessing 

block and post processing block. The fuzzy controller consists of a fuzzification block, 

rule base, inference engine and defuzzification block. Fuzzy membership function is used 

in fuzzification block. The fuzzy membership function is the heart of the fuzzy controller.  

We have a set of rules in rule base, which are used by inference engine. The 

defuzzification block converts the output to membership form. Scaling is done in 

preprocessor and post processor. The following explains the diagram block by block. 
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3.3.1 Preprocessing 

Pre-
processin
g 

Fuzzifica
tion 

De-
fuzzific
ation 

Post-
process
ing 

Rule base

Inference 
engine 

Fuzzy controller 

Fig.3.1.2 Blocks of a fuzzy controller 

The inputs are most often hard or crisp measurements from some crisp measuring 

equipment, rather then linguistic. A Preprocessor, conditions the measurements before 

they enter the controller. Examples of preprocessors are 

• Quantization in connection with sampling or rounding to integers; 

• Normalization or scaling onto a particular, standard range; 

• Filtering in order to remove noise; 

• Averaging to obtain short term or long term tendencies; 

• A combination of several measurements to obtain key indicators; and  

• Differentiation or integration or they discrete equivalent 

A quantizer is necessary to convert the incoming values in order to find the best level in 

discrete universe. Quantization is a means to reduce data, but if the quantization is to 

course the controller may oscillate around the reference or even become unstable. 

When the input to the controller is error, the control strategy is static mapping between 

input and control signal. A dynamic controller would have additional inputs, for example 
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derivatives, integrals, or previous values of measurement backward in time. These are 

created in preprocessor thus making the controller multidimensional, which requires 

many rules and makes it more difficult to design. The preprocessor then passes the data 

on to the controller. 

3.3.2 Fuzzification 

The first block inside the controller is fuzzification, which converts each piece of input 

data to degrees of membership function by a lookup in one or several membership 

functions. The fuzzification block thus matches the input data with the conditions of the 

rule to determine how well the condition of each rule matches that particular instance. 

There is a degree of membership for each linguistic term that applies to that input 

variable. 

1. Singleton Fuzzifier: The singleton fuzzifier maps a real valued point  into a 

fuzzy singleton A’ in U, which has membership value 1 at and 0 at all other points in 

U; that is, 

Ux ∈*

*x

0
1

)(' =xAμ  If x=x*
otherwise

Example: Suppose the thermostat output temperature is , singleton fuzzifier maps it as 

 

°45

0 45 t

 
 
1 

Fig 3.1.3 singleton fuzzifier 
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2. Gaussian fuzzifier: The Gaussian fuzzifier maps x* U∈ into a fuzzy set A’ in U, 

which has the following Gaussian membership function: 

2*2

1

*
11

...............)('
⎟
⎟
⎠

⎞
⎜
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⎝

⎛ −
−⎟
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⎠
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⎜
⎜
⎝

⎛ −
−

⊗⊗= n

nn

a
xx

a
xx

A eexμ  

Where , are positive parameters and the t-norm ia ⊗ is usually chosen as algebraic 

product or min. 

3. Triangular Fuzzifier: the triangular fuzzifier maps x* U∈ into a fuzzy set A’ in U, 

which has the following triangular membership function  

⎪⎭

⎪
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Where , are positive parameters and the t-norm ib ⊗ is usually chosen as algebraic 

product or min.Some other fuzzifier 

 
Fig 3.1.4 (a) s-function, (b) pi-function, (c) z-functions, (d-f)triangular 
versions,    (g- i)trapezoidal versions, (j) flat pi-function, (k)rectangle,(l) 
singleton
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3.3.3 Rule Base 

The rules may use several variables both in condition and conclusion of the rules. The 

controllers can therefore be applied to both MIMO and SISO problems. The typical SISO 

problem is to regulate control signal based on an error signal. The controller may actually 

need the error, change in error, and the accumulated error as the inputs, but we will call it 

single loop control, because in principle all three are formed from the error measurement. 

Basically a linguistic controller contains rules in the IF THEN format, but they can be 

represented in different formats. In many systems, the rules are presented to the end user 

in the format similar to the one below, 

 
Table 3.1.1 Table based control

 

Error Change in error Output 

Negative Positive Zero 

Negative Zero Negative medium 

Negative Negative Negative big 

Positive Positive Positive medium 

Positive Zero Zero 

Positive Negative Negative medium 

Zero Positive Positive big 

Zero Zero Positive medium 

Zero Negative Zero 
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Because the fuzzy propositions are interpreted as fuzzy relations, the key question 

remaining is how to interpret the IF-THEN operation. In classical propositional calculus, 

the expression IF p THEN q is written as p  q with the implication → regarded as a 

connective defined by the following table, where p and q are propositional variables 

whose values are either truth (T) or false (F). p q is equivalent to  

→

→

qp ∨  

and                                                          pqp ∨∧ )(  

 

p q p q→

T T T 

T F F 

F T T 

F F T 

Table 3.1.2. Truth table for p  q→

 

Because fuzzy IF-THEN rules can be viewed as replacing the p and q with fuzzy 

propositions, we can interpret the fuzzy IF-THEN rules by replacing the   and 

operators with fuzzy complement, fuzzy union, and fuzzy intersection respectively. 

Since there are a wide variety of fuzzy complement, fuzzy union, and fuzzy intersection 

operators, a number of different interpretations of fuzzy IF-THEN rules were proposed in 

the literature. We list some of them below 

∨−,

∧

Zadeh Implication: Here the fuzzy IF-THEN rule  ><>< 21 FPTHENFPIF  is 

interpreted as a fuzzy relation  in ZQ VU × with the membership function 
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)](1)),(),(max[min(),(
121

xyxyxQ FPFPFPz μμμμ −=  

Godel Implication: The Gödel implication is a well-known implication formula in 

classical logic. By generating it to fuzzy propositions, we obtain the following: the fuzzy 

IF-THEN rule ><>< 21 FPTHENFPIF  is interpreted as a fuzzy relation 

in with the membership function GQ VU ×

otherwisey
yxif

yxQ
FP

FPFP
G )(

)()(1
),(

2

21

μ
μμ

μ
≤

=  

 Mamdani Implication: The fuzzy IF-THEN rule is interpreted as a fuzzy relation 

 or  in with the membership function MMQ MPQ VU ×

)](),(min[),(
21

yxyxQ FPFPMM μμμ =  

)()(),(
21

yxyxQ FPFPMP μμμ =  

Mamdani implications are the most widely used implications in fuzzy systems and fuzzy 

control. They are supported by the argument that fuzzy IF-THEN rule are local 

3.3.4 Inference Engine 

In a fuzzy inference engine, fuzzy logic principles are used to combine the fuzzy IF-

THEN rules in the fuzzy rule base into a mapping from a fuzzy set A’ in U to fuzzy set  

B’ in V. There are two ways to infer with a set of rules: composition based inference and 

individual –rule based inference. 

1. Composition Based Inference: In composition based inference, all rules in the fuzzy 

rule base are combined into a single fuzzy relation in VU × , which is then viewed as a 

single fuzzy IF-THEN rule. So the key question is how to perform this combination. We 
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should first understand what as set of rules mean intuitively, and then we can use 

appropriate logic operators to combine them. 

  There are two opposite arguments for what a set of rules should mean. The first 

one views the rules as independent conditional statements. If we accept this point of 

view, then the reasonable operator for combining the rules is union. The second one 

views the rules as strongly coupled conditional statements such that the conditions of all 

the rules must be satisfied in order for the whole set of rules to have an impact. If we 

adapt this view, then we should use the operator intersection to combine the rules 

 Let ) be a fuzzy relation in(lRu VU × , which represents the fuzzy IF-THEN rule; 

that is, .  ll
n

ll BAARu →××= .............1
)(

)(..........)(),......(...... 1111 n
l
n

l
n

l
n

l xAxAxxAA μμμ ⊗⊗=××  

Where  represents any t-norm operator. The implication  is defined according to 

various implications defined in the previous section. If we accept the first view of a set of 

rules, then the M rules are interpreted as a single fuzzy relation  in  defined by 

⊗ →

MQ VU ×

U
M

l

l
M RuQ

1

)(

=

=  

This combination is called Mamdani implication. For the second view of set of rules, the 

M fuzzy rules are interpreted as a fuzzy relation  inGQ VU × , which is defined as  

I
M

l

l
G RuQ

1

)(

=

=  

Let A’ be any arbitrary fuzzy set in U and be the input to the fuzzy inference engine. 

Then by viewing or as a single fuzzy IF-THEN rule and using generalized modus 

ponens, we obtain the output of the fuzzy inference engine as  

MQ GQ
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)],(),([)(' 'sup yxxtyB
MQA

UX

μμμ
∈

=  

If we use the Mamdani combination 

)],(),([)( '' sup yxxty
GQA

UX
B μμμ

∈

=  

If we use the Gödel combination. 

Algorithm 

• For the M fuzzy IF-THEN rules, determine the membership 

functions . )(..........)(),......(...... 1111 n
l
n

l
n

l
n

l xAxAxxAA μμμ ⊗⊗=××

• View  as the  and l
n

l AA ×× .............1 1FP lB  as the  in the implication and 

determine   for 

2FP

ll
n

ll BAARu →××= .............1
)( Ml ,........2,1= according any one 

of these implications. 

• Determine ),( yxQMμ  or ),( yxQGμ  

• For any input A’, the fuzzy inference engine gives output B’ 

2. Individual-Rule Based Inference: In individual-rule based learning, each rule in the 

fuzzy rule base determines an output fuzzy set and the output of the whole fuzzy 

inference engine is the combination of the M individual fuzzy sets. The combination can 

be taken either by union or intersection. 

The computational procedure of the individual based inference is summarized as follows. 

• For the M fuzzy IF-THEN rules, determine the membership 

functions . )(..........)(),......(...... 1111 n
l
n

l
n

l
n

l xAxAxxAA μμμ ⊗⊗=××
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• View  as the  and l
n

l AA ×× .............1 1FP lB  as the  in the implication and 

determine   for 

2FP

ll
n

ll BAARu →××= .............1
)( Ml ,........2,1= according any one 

of these implications. 

• For given input fuzzy set A’ in U, compute the output fuzzy set  in V for each 

individual rule  according to the generalized modus ponens ,i.e. 

1
lB

)(lRμ

)],(),([)(' 'sup yxRuxtyB l
A

UX

μμμ
∈

=  For Ml ,........2,1=  

• The output of the fuzzy inference engine is the combination of the M fuzzy 

sets{ }l
M

l BB ..................1  either by union, i.e. 

)(..........)()(' 1 yByByB l
M

l μμμ ++=  

or by intersection, that is  

)(...........)()(' 1 yByByB l
M

l μμμ ⊗⊗=   

3.3.5 Defuzzification 

 To convert the output in membership form the Inference engine to a crisp control we use 

a defuzzifier.  

There are several Defuzzification methods 

1. Centre of Gravity 

2. Centre of Gravity method for singleton 

3. Bisector of Area 

4. Mean of Maxima 

5. Left most maximum, and right most Maximum. 

6. Centre average  
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1. Centre of Gravity: The centre of gravity defuzzifier specifies the y* as the centre of 

the area covered by the membership function of B’. 

∫

∫
=

V

V

dyyB

dyyBy
y

)('
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μ

μ
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∑
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                             Fig 3.1.5 
V 

2. Centre Average Defuzzifier: Because the fuzzy set B’ id the union or intersection of M 

fuzzy sets, a good approximation is the weighted average of the centers of the M fuzzy sets 

21

2
2

1'*
ww

wywyy
+
+

=  

3. Bisector of Area: This method picks the abscissa of the vertical line that divides the 

area under the curve in two equal halves. In the continuous case, 

⎭
⎬
⎫

⎩
⎨
⎧

== ∫ ∫
x

x

dxxdxxxu
min

max

)()(/ μμ  

Here x is the running point in the universe, )(xμ is its membership function, min is the 

left most value of the universe, and max is the right most value. Its computational 

complexity is relatively high and it can be ambiguous. 
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3.3.6 Post Processing 

Output scaling is also relevant. In case the output is defined in standard universe this 

must be scaled to engineering units, for instance volts, meters, or tons per hour. An 

example is the scaling form standard universe [-1, 1] to the physical units [-10, 10] volts. 

The post processing block often contains an output gain that can be tuned, and sometimes 

also an integrator. 
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Chapter 4 
Fuzzyfying Markov Decision Processes 
 
This chapter is divided into three sections. In the first section we give a brief introduction 

to the problem in hand and an example to illustrate the problem of optimization. In the 

second section we proposed a Fuzzyfying Markov decision processes technique. It is 

illustrated using many examples and applications. In the third section we give simulation 

results. 

Markov decision processes have become an indispensable tool in applications as 

diverse as equipment maintenance, manufacturing systems, inventory control, queuing 

networks and investment analysis. Typically we have a controlled Markov chain on a 

suitable state space in which transitional probabilities depend on the policy (or decision 

maker) which comes from a set of possible actions. The main problem of interest would 

be to find an optimal policy that minimizes the associated cost. 

 Typically we have finite horizon Markov decision processes and infinite horizon 

Markov decision process. Under finite planning horizon, the value iteration is perfect, but 

rarely the planning horizon is well defined. Most often the process is assumed to operate 

over an unknown period of time with no predetermined stage of termination. In such 

cases the abstraction of an infinite planning horizon seems more relevant.  
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 The value iteration method is not exact, and the convergence is rather slow. On 

the other hand, the mathematical formulation is very simple, and the method makes it 

possible to handle very large models with thousands of states. Further it is possible to let 

the reward and the physical output depend on the stage number in some predefined way. 

This method has been used in many applications as an approximation to infinite stage 

optimum.  

 Another method is linear programming method. The linear programming method 

has almost the opposite characteristics of the value iteration method. Because of the more 

complicated mathematical formulation involving solutions of large systems of 

simultaneous linear equations, the method can handle rather small models with, say, a 

few hundred states. Complexity in linear programming increases much faster with the 

increase in number of states which is often called curse of dimensionality. On the other 

hand, the method is exact and very efficient in the sense of fast convergence. The rewards 

are not allowed to depend on the stage except for a fixed rate of annual increase or 

decrease.  

 An advantage of the linear programming method is that the equations are general. 

Under any policy g we are able to calculate directly the economic consequences by 

following the policy by solution of the equations. This makes it possible to compare the 

economic consequences of various non-optimal policies to those of the optimal. Linear 

programming method has been successfully used, but the models were very small. 

 In order to remove the problem of large number of states in linear programming 

method, we introduce a concept of fuzziness. By application of the fuzzy principles to 

Markov decision processes we are able to reduce the number of states thereby eliminate 

 43



the “curse of dimensionality”. Although the combination of fuzzy mathematics and 

Markov decision process introduces approximation in computing the optimal decision 

policy, the gain in reduction of the size of linear programming outweighs the 

approximation error, which will be demonstrated in this chapter. 

4.1 Motivation  

In order to illustrate how the curse of dimensionality arises, we shall examine a simple 

dairy model. For any dairy cow it is relevant to consider at regular intervals whether it 

should be kept for an additional period or it should be replaced by a heifer. If the line of 

figure 1 represents time, the markers indicate where we consider replacing. The time 

interval between two markers is called a stage and in this example we assume the stage 

length to be one year, which for convenience is assumed always to be equal to a lactation 

period. At the beginning of each stage, we observe the state of the animal in production. 

The state space must be defined in such a way that all relevant information is given by 

the state. In this very simple example we assume, that the only relevant information is 

whether the cow is low, average or high yielding. Thus we have one state variable and 

three states. Thus if the cow remains high yielding it will never be replaced according to 

the optimal policies. This is certainly not realistic, and furthermore, the milk yield also 

depends on the lactation number. In order to account for age we shall introduce an 

additional state representing the lactation number of the cow. For convenience, we shall 

assume that the new variable may take the values 1, 2, 3 or 4 indicating that the 

maximum age of cow in this model is assumed to be 4 lactations. Now suppose that in 

addition to lactation and milk yield we also want to take the genetic merit into account. 

We shall assume that the genetic merit of the cow is either “good”, “average” or “bad”. 
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The total size of the state space then becomes 36443 =×× . The transition matrices of 

this 36- state model are now very large, compared to the beginning. 

Stage 1         Stage 2          Stage 3         Stage 4      
 

Fig 4.1.1: Number of stages  

The stepwise extension of the model clearly illustrates that each time a new state 

variable at n levels is added to the model, the size of the state space is increased with a 

factor of n. When in real model, several traits are represented by state variable at a 

realistic number of levels; the size of the state space very soon reaches prohibitive 

dimensions (millions of states). As an example consider the dairy cow replacement 

model. The traits considered, when a decision was made were 

• The age of the cow (240 levels). 

• Milk yield in present lactation (15 levels). 

• Milk yield in previous lactation (15 levels). 

• Time interval between two successive calving (8 levels). 

• Clinical mastitis- an infectious disease in the udder (2 levels). 

• Accumulated number of mastitis cases in present lactation (4 levels). 

• Accumulated number of mastitis cases in previous lactation (4 levels). 

In principle the size of the state space is formed as the product of the number of levels 

of all traits i.e. 400,750,1144281515240 =××××××   states. In practice it is smaller 

because some combinations are impossible and because traits related to previous lactation 
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are not considered during first lactation. Exclusion of such non-feasible states resulted in 

the model with 6,821,724 states.  

4.2 Proposed Fuzzyfying Markov Decision Processes 

 The main problem associated with linear programming optimization technique is 

the number of levels. As the number of levels increases, the size of the matrix increases 

to the same order. This will increase the computational complexity of the Markov 

Decision Processes. The main idea behind our FMDP is the use of fuzzy membership 

function to reduce the number of levels. 

4.2.1 Fuzzy Membership Function 

 A membership function is a curve that defines how each point in the input space is 

mapped to a membership value (or degree of membership) between 0 and 1. The input 

space is referred to as the universe of discourse. A fuzzy set is a generalization of a 

classical set by allowing the membership function to take any values in the interval [0, 1]. 

One of the most commonly used examples of a fuzzy set is a set of “tall” people. In this 

case the universe of discourse is all potential heights, say from 3 feet to 9 feet, and the 

word tall would correspond to a curve that defines the degree to which any person is tall. 

If the set of tall people is given the well defined boundary of a classical set, we might say 

all people taller than 6 feet are officially considered tall. But such a distinction is clearly 

absurd it may make sense to consider the set of all real numbers greater then 6 because 

numbers belong to an abstract plane, but when we want to talk about real people, it is 

unreasonable to call one person short and another one tall when they differ in height by 

the width of a hair. If we use an appropriate membership function then we can distinguish 

between people in an appropriate way  
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                      Fig 4.1.2:Fuzzy membership function 

The output axis is the known as the membership value between 0 and 1. The curve is 

known as a membership function and is often given the designation ofμ . This curve 

defines the transition from not tall to tall. Both people are tall to some degree, but one is 

significantly less then the other. 

 Now the main question arises for how to use the fuzzy membership function to 

reduce the number of levels. Let us consider an example which has 2n states.  

    n             n+1            n+2……………2n………………………..3n  

100 
 
 
 
 
     
 

 

                                                 Fig 4.1.3: Number of states 

Each state has a particular transitional probability. By the use of membership function we 

can mathematically reduce number of the states, but all the states remain through the use 
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of membership value. That is we reduce the number of states but those states reduced still 

exist. This is shown in one example as in Fig 4, where the states are all eliminated except 

the state kn for integer k. 

 

 

            n    x                        2n                               3n   

    1 
 
 
 
 

     
0 

)(xfn

)(2 xf n

)(3 xf n

Fig 4.1.4: Reduced states 

The membership function  indicates the fuzziness of x in relation to state 

2n. If , then x is precisely the state 2n. If

)(2 xf n

1)(2 =xf n 1)(0 2 << xf n , then x is also close to 

state n, or state 3n dependent on 0)( =xfn or 0)(3 =xf n . For instance in our case, 

and . Because0)(3 =xf n 1)(0 2 << xf n 1)(0 << xfn . The state x must lie in between state 

n, and state 2n, which can be interpolated as follows: 

nxfnxfx nn 2)()( 2+=  

In our case, as shown in the Fig 4,
4

5nx = . 

So
4
3)( =xfn , 

4
1)(2 =xf n and thus using the above equation gives 

4
52

4
1

4
3 nnnx =+=  
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This recovers exactly the true state value. In conclusion, the key condition to recover the 

states that are eliminated is 1)()( )1( =+ + xfxf nkkn if x is between state kn and state 

 . nk )1( +

 Although the use of straight line as fuzzy membership function in the above 

example works very well in recovering those states eliminated, straight line may not be 

good choice for making optimal Markov decision. The main reason is that the dimension 

of the stochastic matrix has also been reduced significantly. This degrades greatly the 

fidelity of the model so the fuzzy membership function needs to play a role in recovering 

the optimality of the Markov policy inspite of the reduction in the number of levels. 

 We note first that although a state, say x in Fig.4 is eliminated, it still exist 

through the representation of fuzzy membership function. Hence, its transition probability 

to other states such as kn for ,1≠k 2≠k  can be estimated through  

 )2/()()/()()/( 2 nknpxfnknpxfxknp nn +=                                                  (4.1.1) 

Since , is indeed a transition probability. In addition, if1)()( 2 =+ xfxf nn )/( xknp nx = , 

then ,  and1)( =xfn 0)(2 =xf n )/()/( nknpxknp = . Similarly, if nx 2= , then 0)( =xfn , 

and , we have1)(2 =xf n )2/()/( nknpxknp = . Hence (4.1.1) is consistent to the case 

when x is a remaining state. However, straight line fuzzy membership function may not 

approximate the true well. )/( xknp

 We would like to caution the use of (4.1.1): an assumption has to be made in 

order for (4.1.1) to make sense. In this case, we assume certain monotonicity property 

holds true for transition probability. That is, the true value of lies between 

and  as long as x is between that state n and 2n.  

)/( xknp

)/( nknp )2/( nknp

 49



 In summary we propose to reduce the state levels by introducing the fuzzy 

membership functions. 

Now the main question is whether we can map transitional probabilities on a 

fuzzy membership function. The minimum requirement of probabilities is the 

complementary property; that is they should add together to one, or the integral of their 

density curves should be one. Not all fuzzy membership functions sum up to one, so we 

have to be very careful in selecting membership function exponential, triangular, 

sine/cosine etc. 

Let us continue with the example of dairy. Initially when we were using the model there 

were 400,750,1144281515240 =×××××× states. When we use a fuzzy membership 

function to reduce the number of states the total number of states can be reduce to, 

• For the age of the cow we were using 240 levels, this can be reduced to 24 states 

if we map 10 states using a membership function. 

• Milk yield in present lactation can be reduced to 3 states. 

• Milk yield in previous lactation can also be reduced to three states. 

• Time interval between two successive calving can be reduced to a single state. 

• Accumulated number of mastitis cases in previous lactation can be reduced to a 

single state. 

• Accumulated number of mastitis cases in current lactation can also be reduced to 

a single state. 

Therefore after using our technique for the model we have reduced the number of states 

to  from 11,750,400 states.  4321123324 =×××××
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4.3 Example 

Let us consider the deterioration model of prestressed concrete deck. The model is taken 

from LA-DOTD. They are 16 states and 8 possible action sets, that is n=16 and a=8; 

 

Table 4.1.1Preservation model details 

 

S.No Action  Cost 

1 Do-nothing 0 

2 Minor-Minor
Maintenance 

5 

3 Minor 
Maintenance 

10 

4 Minor-Major 
Maintenance 

15 

5 Major-Minor 
Maintenance 

30 

6 Major 
Maintenance 

60 

7 Major-Major 
Maintenance 

90 

8 Replacement 301 
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   The transition probabilities for the eight possible actions is given by 
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Short Term  

Optimization Results: 

Table 4.1.2: Action selection policy 

 

 

 

 

 

 

 

 

                                                         

State Action Cost 

1 0 211.90 

2 0 217.34 

3 0 225.32 

4 0 223.72 

5 0 222.98 

6 1 225.82 

7 2 229.25 

8 3 233.52 

9 4 251.30 

10 0  267.80

11 0 274.16 

12 0 286.78 

13 0 295.49 

14 0 304.43 

15 0 320.07 
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Long Term 

Optimal limiting probability 
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00000000
000000001.0
00000000
00000000
00000000
00000000
00000000
0000001.00
00000004.0

1857.0000000
00000002342.
00000003801.

iaw

 

The probability that the element will be in state i and action a is chosen. 

The states are reduced by using a straight line membership function. The number of states 

is reduced to 6 states and the numbers of actions are reduced to 4 using singleton fuzzy 

membership function.The reduced set of actions is given by  

        Table 4.1.3: Reduced set of actions 

S.No Action Cost 

1 Do-nothing 0 

2 Minor Maintenance 30 

3 Major Maintenance 180 

4 Replacement  301 
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The transitional probabilities are given by 
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Short Term 

Table 4.1.4: Fuzzified action selection policy  

State Action Cost 

1 0 96.1 

2 0 121.53

3 1 149.1 

4 0 127.81

5 2 305.26

                                                               

 Long Term 

The limiting probability that the element will be in state i and action a is chosen is given 

by  

  

⎥
⎥
⎥
⎥
⎥
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⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0000
0000
00020.
00005.
05.000
00070.

iaw

Comparing the results with the original 16 states gives us a very good approximation of 

our results. When we reduced the number of states total cost is reduced, and cost obtained 

is identical for six of the 15 states. That is we have been successful in reducing the 

number of states to 9 from 16. If we do further study on fuzzy membership function we 

might be able to reduce the number of states to 5. The long term limiting probability that 

the element will be in state i and action a is chosen is similar to the original sixteen states 

showing that the element will be in state 1 for most of the time. Thus we have obtained a 
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result which is very good approximation of the original problem in hand, considering the 

amount of data reduced.  Thus this approximation technique can be used in decision 

making when there are many states. 
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Chapter 5 
Conclusion 
 
 
5.1 Concluding Remarks 

Looking back at the initial problem in hand, where the number of states increases 

multifoldly with the increase in levels, that is the “curse of dimensionality”. The optimal 

decision making using linear programming method requires solutions of large systems of 

simultaneous equations. Therefore it can handle rather small models with, say, a few 

hundred states. 

 In this thesis we have tried to eliminate the curse of dimensionality by using fuzzy 

membership function. By the use of fuzzy membership function we mathematically 

reduce the number of states, but all the states remain intact through interpolation of the 

membership values. That is we reduce the number of states but those states eliminated 

can still be recovered. The assumption is the monotonicity property for the transition 

probability. One of the questions not answered here is what the best possible fuzzy 

membership function is. Although the use of straight line as fuzzy membership function 

works well in recovering those states eliminated, straight line may not be a good choice 

for making optimal Markov decisions. The main reason is that the dimension of the 
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stochastic matrix has also been reduced significantly. This degrades greatly the fidelity of 

the model. 

Although the combination of fuzzy mathematics and Markov decision processes 

introduces approximation in computing the optimal decision policy, the gain in reduction 

of the size of linear programming outweighs the approximation error. Therefore we 

conclude that this method can be successfully implemented in practical problems where 

there is a large number of states.   

5.2 Future Research 

Although some research has been carried out to cope with the curse of dimensionality, 

there lack good results in this problem area. This thesis is the first effort to apply fuzzy 

mathematics to lessen the curse of dimensionality problem. Despite some success, more 

research is needed, which include 

• Optimal choice of fuzzy membership function. 

• How to eliminate the monotonivity assumption on the transitional probability, 

because not all transitional probability matrices satisfy such an assumption . 

The problem area is still in its early stage, and many problems need to be solved before 

our proposed technique can be used successfully for manufacturing systems, equipment 

maintenance, inventory control, queuing networks and investment analysis. 
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