
Louisiana State University Louisiana State University

LSU Digital Commons LSU Digital Commons

LSU Master's Theses Graduate School

2005

Fuzzifying [sic] Markov decision process Fuzzifying [sic] Markov decision process

Ahmed Syed Irshad
Louisiana State University and Agricultural and Mechanical College

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Irshad, Ahmed Syed, "Fuzzifying [sic] Markov decision process" (2005). LSU Master's Theses. 1373.
https://digitalcommons.lsu.edu/gradschool_theses/1373

This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has
been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital
Commons. For more information, please contact gradetd@lsu.edu.

https://digitalcommons.lsu.edu/
https://digitalcommons.lsu.edu/gradschool_theses
https://digitalcommons.lsu.edu/gradschool
https://digitalcommons.lsu.edu/gradschool_theses?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F1373&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F1373&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses/1373?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F1373&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu

FUZZIFYING MARKOV DECISION PROCESS

A Thesis
Submitted to the Graduate Faculty of the

Louisiana State University and
Agricultural and Mechanical College

in partial fulfillment of the
requirements for the degree of

Masters of Science in Electrical Engineering
in

The Department of Electrical and Computer Engineering

by
Syed Irshad Ahmed

B.E., Osmania University, 1999
May 2005

Table of Contents

ABSTRACT………………………………………………………………...…………IV

CHAPTER 1 INTRODUCTION……………………………………………...…….1

1.1 Background…………………………………………………......................1
1.2 Research Goal and Scope…………………………….................................2
1.3 Thesis Outline………………………………………..................................3

CHAPTER 2 MARKOV DECISION PROCESSES……………………………5
2.1 An Example………………………………………………….....................6
2.2 Finite State Controlled Markov Chain………………………………….....9

2.2.1 Dynamic Programming……………………..................................13
2.2.2 Algorithm……………………………………………...................18

2.3 Infinite Horizon…………………………………………………………..19
2.3.1 Stationary Markov Policy…………………..................................20
2.3.2 Value Iteration…………………………………………………...23

 2.3.3 Linear Programming……………………………..........................23

CHAPTER 3 FUZZY MATHEMATICS………………………………………...27

 3.1 Elements of Fuzzy Mathematics……………………………....................28
 3.2 Operations on Fuzzy Sets……………………………………………..….29
 3.3 Overview of Design………………………………………………….…..30

 3.3.1 Preprocessing…………………………………………………….31
 3.3.2 Fuzzification……………………………………………………..32
 3.3.3 Rule Base………………………………………………………...34
 3.3.4 Inference Engine…………………………………………………36
 3.3.5 Defuzzification…………………………………………………..39
 3.3.6 Post Processing…………………………………………………..41

CHAPTER4 FUZZYFYING MARKOV DECISION
 PROCESSES………………………………………………...………..42

4.1 Motivation…………………………………………………………….….44
4.2 Proposed Fuzzyfying Markov Decision Processes……………….……...45

4.2.1 Fuzzy Membership Function………………………………….…...45
4.3 Example………………………………………………………….……....51

CHAPTER 5 CONCLUSION…………………………………………………...…61
 5.1 Concluding Remarks………………………………………………..…....61
 5.2 Future Research ………………………………………….…...................62

 ii

REFERENCES………………………………………………………………………..63

VITA……………………………………………………………………………………64

 iii

Abstract

Markov decision processes have become an indispensable tool in applications as diverse

as equipment maintenance, manufacturing systems, inventory control, queuing networks

and investment analysis. Typically we have a controlled Markov chain on a suitable state

space in which transitional probabilities depend on the policy (or decision maker) which

comes from a set of possible actions. The main problem of interest would be to find an

optimal policy that minimizes the associated cost.

Linear Programming has been widely used to find the optimal Markov decision

policy. It requires solutions of large systems of simultaneous linear equations. By the fact

that the complexity in linear programming increases much faster with the increase in the

number of states which is often called curse of dimensionality, the linear programming

method can handle only small models.

This thesis presents a new method to lessen the curse of dimensionality. By

assuming certain monotonicity property for the transition probability, it is shown that a

fuzzy membership function can be used to reduce the number of states. The use of

membership functions help to reduce the number of the states. However all the states

remain intact through the use of the membership value. That is, those states eliminated

can be recovered through interpolation with the aid of membership functions. This new

proposed method is shown to be effective in coping with the curse of dimensionality.

 iv

Chapter 1
Introduction

1.1 Background

Since the introduction of optimal control, the subject of decision making under

uncertainty has grown into a ramified area with applications in several branches of

engineering and in those areas of social sciences concerned with policy analysis and

prescription. The theoretical approaches to the subject are based on the invention in the

1950s of dynamic programming and the rich body of research in statistical time series

analysis. Although theoretically appealing, these approaches found little practical use

since they demand a computing capacity that was to expansive.

 Markov decision processes, one of the main optimal decision making tools, have

become indispensable in applications as diverse as manufacturing systems, equipment

maintenance, inventory control, queuing networks and investment analysis. Typically we

have a controlled Markov chain on a suitable state space in which transitional

probabilities depend on the policy (or decision maker) which come from a set of possible

actions. The main problem of interest would be to find an optimal policy that minimizes

the associated cost.

 1

 Typically we have finite horizon and infinite horizon Markov decision processes.

Under finite planning horizon, the method of value iteration [ref 1] is perfect, but rarely

the planning horizon is well defined. Most often the process is assumed to operate over

an unknown period of time with no predetermined stage of termination. In such cases the

abstraction of an infinite planning horizon seems more relevant.

Another method is linear programming [ref 2]. The linear programming method

has almost the opposite characteristics of the value iteration method. Because of the more

complicated mathematical formulation involving solutions of large systems of

simultaneous linear equations, the method can handle rather small models with, for

example, a few hundred states. Complexity in linear programming increases much faster

with the increase in number of states which is often called curse of dimensionality. On

the other hand, the method is exact and very efficient in the sense of fast convergence.

The rewards are not allowed to depend on the stage except for a fixed rate of annual

increase or decrease. Due to these problems various industries are facing tremendous

difficulty in using Markov decision process when a large number of states is involved.

1.2 Research Goal and Scope

The objective of this research is to develop an approximate optimization technique. We

introduce the concept of fuzzy membership function into Markov decision processes.

Each state has a particular transitional probability. By the use of membership functions,

we can mathematically reduce the number of the states, but all the states eliminated can

be recovered through the use of membership values. This thesis is devoted to develop a

systematic procedure to accomplish the approximate optimal decision making. By an

application of the fuzzy principles to Markov decision processes we are able to cope with

 2

the “curse of dimensionality”, assuming that certain monotonicity property holds true for

the transition probability.

1.3 Thesis Outline

The remainder of the thesis is organized as follows.

Chapter 2 is based primarily on the existing literature. It reviews the basic results

of stochastic systems modeled as finite state controlled Markov chains and infinite state

controlled Markov chains. In the first section we present a basic stochastic problem using

a queuing system. We introduce the concept of finite state controlled chains and dynamic

programming in the second section. Then we extend the results to the case of infinite

horizon with stationary policy to find the optimal policy using linear programming.

The fuzzy theory is discussed in Chapter 3, which is again based on the existing

literature. The chapter is divided into three sections. In the first section preliminary

elements on fuzzy mathematics are discussed. In the second section we discuss some

operations on fuzzy sets. In the third section we give an introduction to fuzzy control

design. We introduce the concept of fuzzy membership functions which will be used in

the fourth chapter to reduce the number of states in a Markov decision processes.

In Chapter 4 we introduce a new optimization technique for Markov decision

processes called Fuzzified Markov decision processes. This chapter is also divided into

three sections. In the first section we give a brief introduction to the problem in hand and

present an example to motivate the importance of the problem to be studied. In the

second section we propose a Fuzzyfied Markov decision processes technique, and

develop an approximate optimization procedure. The effectiveness of the proposed

technique is illustrated by simulations examples with applications in the third section.

 3

Chapter 5 concludes the thesis together with some ideas presented for the future

directions of research along the line of this thesis.

 4

Chapter 2
Markov Decision Processes

This chapter is based primarily on the existing literature, and is divided into three

sections. It presents the basic results for stochastic systems modeled as finite state

controlled Markov chains and infinite state controlled Markov chains. In the first section

we present a basic stochastic problem using a queuing system. We introduce the concept

of finite state controlled chains and dynamic programming in the second section. Then

we extend the results to the case of infinite horizon with stationary policy to seek the

optimal policy using the linear programming.

Consider a system being observed over a finite or infinite time horizon split up

into period or stages. At each stage, the state of the system is observed, and a decision (or

an action) concerning the system has to be made. The decision influences the state to be

observed at the next stage, and depending on the state and the decision made, an

immediate reward is gained. The expected total rewards from the present stage until the

end of the planning horizon is expressed by a value function. The relation between the

value function at the present stage and the one at the following stage is expressed by the

functional equation. Optimal decisions depending on stage and state are determined

 5

backwards step by step as those maximizing the right hand side of the functional

equation. This way of determining an optimal policy is based on the Bellman principle of

optimality which says: “An optimal policy has the property that whatever the initial state

and initial decision are, the remaining decisions must constitute an optimal policy with

regard to the state resulting from the first decision”.

Consider a discrete time Markov decision process with a finite state space

and a finite action set U. a policy g is a map assigning to each state i an

action . Let be the transition probability from state i to state j and be the

transition probability from state i to state j if action a is taken.

},.......2,1{ xX =

Uig ∈)(ijP a
ijP

 An optimal policy is defined as a policy that maximizes or minimizes some

predefined objective function. The optimization technique depends on the form of the

objective function or in other words on the criterion of optimality. The choice of criterion

depends on whether the planning horizon is finite or infinite. Let us proceed with an

example.

2.1 An Example

Consider a machine whose condition at time k is described by the state which can take

the values 1 or 2 with the interpretation that

kx

1=kx or 2=kx depending on whether the

machine is in operational or failed condition. For the moment there is no control actions

allowed so that the machine behavior is autonomous. Suppose the machine is operational

at time k, so , and there is a probability that it will fail in next period,

so ; with probability

1=kx 0>q

21 =+kx q−1 it will continue to remain operational, so 11 =+kx .

Suppose further that q does not depend upon previous values . Finally, suppose 01 ,.....xxk−

 6

that a failed machine continues to remain failed, so that 21 =+kx with probability 1,

if . Then is a Markov chain whose transition probabilities are described

by the matrix

2=kx }0,{ ≥kxk

⎥
⎦

⎤
⎢
⎣

⎡ −
=

10
1 qq

P (2.1.1)

The Markov property is expressed by

,011 },....,/{ ijkkk Pxxixjxpro === −+ }2,1{, ∈ji (2.1.2)

 We now introduce two control actions. Let denote the intensity of machine use

at time k. it takes on values accordingly as machine is not used, is in light

use, or in heavy use. Suppose that the greater the intensity of use, the larger the likelihood

of machine failure. Let denote the intensity of machine maintenance effort. Suppose it

takes only two values 0 or 1, the higher values denoting greater maintenance. The idea is

that maintenance reduces the likelihood of machine failure and permits a failed machine

to become operational.

1
ku

21,01 oruk =

2
ku

The effects of these two control actions, intensity of machine use and

maintenance, can be modeled as a controlled transition probability matrix as follows

⎥
⎦

⎤
⎢
⎣

⎡

−
−+−

=
)(1)(

)()()()(1
),(2

2
2

2

2
2

1
1

2
2

1
121

uquq
uquququq

uuP (2.1.3)

The values of q are such that)2()1()0(111 qqq << and)1()0(22 qq < because a lightly

used or better maintained machine is less likely to fail than a heavily used or less

maintained machine.

Equation (2.1.3) is illustrated in the state transition diagram below

 7

1 2

2q

21 qq −

1- 2q][1 21 qq −−

Fig. 2.1.1 State transition diagram

The values of q are such that)2()1()0(111 qqq << and)1()0(22 qq < because a lightly

used or better maintained machine is less likely to fail than a heavily used or less

maintained machine. Suppose the state is observed and consider a feedback policy

which is time invariant, that is,,.....},{ 10 gg ggk ≡ and let)(kk xgu = . This results in

transition probability matrix where }{ g
ij

g PP =

)),((: igPP ij
g

ij = }2,1{, ∈ji

For example, if g (1) = (2, 0), and g (2) = (0, 1), then

⎥
⎦

⎤
⎢
⎣

⎡
−
−+−

=
)2(1)1(

)0()2()0()2(1

22

2121

qq
qqqq

P g

The resulting process is a Markov chain with stationary transition probability}{ kx gP .

The probability distribution of can be written as a row vector kx

})2{},1{(: === kkk xprobxprobp .

By the Markov property

 , (2.1.4) mg
kmk Ppp][=+ 0≥m

 8

And, in particular , where is the initial distribution of . kg
k Ppp][0= 0p 0x

Often as , converges to a probability distribution that does not depend on the

initial distribution . We then say that it is an ergodic chain. The limiting probability

distribution is called the steady state distribution. It is the solution of the linear equations

∞→k kp

0p

gpPp = , (2.1.5) 1)2()1(=+ pp

Equation 2.1.5 always has a solution. In the ergodic case the solution is unique and the

limiting distribution has the following interpretation:

∑
=

∞→
==

n

k
kn

ixI
n

ip
1

)(1lim)((2.1.6) 1wp

where I is the indicator function and stand for probability. wp

From (2.1.5) it is evident that the steady state probability p depends on the

feedback law g. So by changing the policy g, that is, by changing the use and

maintenance of the machine, we can alter the number of times it fails. Now the question

is which policy leads to the best probability distribution. We will examine this in the next

section.

2.2 Finite State Controlled Markov Chain

The preceding example generalizes to the case of an arbitrary finite state controlled

Markov chain whose state takes values in . The control takes values in a

prespecified setU . U may be finite or infinite. The transition probability are specified by

the

kx },....2,1{ I ku

II × matrix valued function onU ,

},1,1),({:)(, ≥≥=→ jiuPuPu ji (2.1.7)

With the interpretation that

 9

)(},.....,,.....,,/{ 0011 kijkkkk uPuuxxixjxprob === −+ (2.1.8)

Suppose the state is observed. Let ,.....},{ 10 ggg = be a feedback policy such that

depends only on the current state . We call such g a stationary Markov policy. kg kx

 Let g be a Markov policy and let be the resulting state process. Denote the

probability distribution of by I dimensional row vector.

kx

kx

}){},.....,1{(: Ixprobxprobp kk
g
k === ,

Some basic concepts are introduced, understanding of which is essential to determine the

optimal Markov policy

Lemma 1: When a Markov policy is employed, the resulting state process is Markov

process. Its one step transition probability at time k is given by the matrix

kx

},1,1)),((:){(: ≥≥== jiigPPP kijij
g

k
g

k

Its m-step transition probability at time k is given by the matrix

,1..... −+mk
g

k PP

So its ijth element is the probability that the state will be j at time k+m given that it is I at

time k. Hence

...... 1
g

mk
g

kkmk PPpp −++ =

In particular,

 ,..... 100
g

k
g

k PPpp −=

where is the probability distribution of the initial state 0p 0x .

Proof: The proof is immediate from the Markov property (2.1.8)

 10

Since the transition probability matrix depends on the time k. we say that is a

Markov chain with nonstationary transition probability. □

g
kP kx

A Markov policy g determines the probability distribution of the state process

and the control process . Different policies will lead to different probability

distribution. In optimal control problems one is interested in finding the best or optimal

policies. This is done by specifying a cost function. This is a sequence of real valued

functions of the state and control,

kx

)}(kkk xgu =

),(uiCk , , , Ii ≤≤1 Uu∈ 0≥k

The interpretation is that is the cost to be paid if at time k,),(uiCk ixk = and uuk =

If the policy is fixed then the cost over a horizon “N” is , which a random

variable. The expected cost is given by

∑
=

N

k
kkk uxC

0

),(

⎭
⎬
⎫

⎩
⎨
⎧

= ∑
=

N

k
kkk

g uxCEgJ
0

),()(

 (2.1.9)
⎭
⎬
⎫

⎩
⎨
⎧

= ∑
=

N

k
kkkk

g xgxCE
0

))(,(

 { }∑
=

=
N

k
kkkk xgxCE

0

))(,(

[]∑∑
= =

==
N

k
kk

N

i
k igiCixp

0 1
))(,(

 = { } { }[]
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

==∑
=

)(,(
.
.

)1(,1(

.............1
0

IgIC

gC

Ixpxp

kk

kk

N

k
kk

 11

 ∑
=

=
N

k

g
kk Cp

0

 ∑
=

−=
N

K

g
k

g
k

gg Cpppp
0

1100).....(

The best policy is the one that minimizes the expected cost. The solution approach is

dynamic programming. Dynamic programming will be discussed in detail in the next

section. Central to dynamic programming is a recursive technique for calculating the cost

of a Markov policy g.

Since the technique depends only on the fact that the state process corresponding to g is

Markov, we introduce it here. For each time Nk ≤≤1 , and state , let

denote the expected cost incurred during k………N when

Ii ≤≤1

)(iV g
k ixk = . That is,

 (21.10) ∑
=

==
N

kl
kllll

gg
k ixxgxcEiV }./))(,({:)(

Lemma 2: The functions can be calculated by the backward recursion,)(iV g
k

 ∑
=

++=
I

j

g
kij

g
kkk

g
k jVPigiciV

1
1),()))(,()(,0 Nk <≤ (2.1.11)

Starting with the final condition

 (2.1.12)))(,()(igiciV NN
g

N =

Proof: From the definition we immediately get (2.1.12). Next

 ∑
=

==
N

kl
kllll

gg
k ixxgxcEiV }/))(,({)(

 +))(,(igic kk= }

}

/},/))(,({{
1

1 ixixxxgxcEE k

N

kl
kkllll

gg ==∑
+=

+

 /)({))(,(11 ixxVEigic kk
g

k
g

kk =+= ++

 12

 (2.1.13) □ ∑
=

++ ==+=
I

j
kk

g
kkk ixjxobjVigic

1
11 }/{Pr)())(,(

2.2.1 Dynamic Programming

We consider the problem of selecting a feedback control so as to minimize the expected

cost. The optimality conditions are obtained by dynamic programming. Consider the

stochastic system described by the state space model

),,,(1 kkkkk wuxfx =+

),,(kkkk vxhy = ,........1,0=k

Suppose that for each k, the control value is to be selected from a prespecified control

set . A feasible control law is any sequence

ku

mRU ⊂ ,....},{ 10 ggg = such that

 or all . Uygu k
kk ∈=)(f ky

 Let G denote the set of all feasible control laws. Suppose that we are given a cost

function

 ∑
−

=

+
1

0

)(),(
N

k
NNkkk xcuxc

where is called the immediate or one-period cost, and is the terminal

cost. Since , a control law is now specified by the finite

sequence .

),(kkk uxc)(NN xc

∞<N

},....,{ 110 −= Ngggg

Let g be a feasible law. Let , and denote the processes corresponding to

it. By definition the cost associated with g is

gx gy gu

∑
−

+=
1

0
)(),(

N
g
NN

g
k

g
kk

g xcuxcC (2.1.14)

 13

Definition 1: A Markov policy in G is optimal if

Thus J* is called the minimum expected cost. Our aim is

to characterize the optimal control laws using dynamic programming.

*g

}./)({**)(GggJInfJgJ ∈==

Lemma 3: Let be a Markov policy. Define recursively the functions },....,{ 110 −= Ngggg

),(:)(xcxV N
g

N = (2.1.15)

)]),(,()[))(.(:)(1 kkk
g

kwkk
g

k wxgxfVExgxcxV
k ++= (2.1.16)

Then the random variable satisfies)(g
k

g
k xV

∑
−

=

=+=
1

,.....0},/)(),({)(
N

KL

g
k

g
NN

g
l

g
ll

g
k

g
k NkxxcuxcExV (2.1.17)

The proof is very simple and hence it is not discussed here. Since is a Markov, we

also have

}{ kx

 (2.1.18)□
⎭
⎬
⎫

⎩
⎨
⎧

+= ∑ },....,/)(),()(g
o

g
k

g
NN

g
l

g
ll

g
k

g
k xxxcuxcExV

Definition 2: Let . The random variable Gg ∈

 (2.1.19) ∑ += },....,/)(),({ 0
g
k

gg
NN

g
l

g
ll

g
k xxxcuxcEJ

is called the cost-to-go at k corresponding to g.

From definition (2.1.19) we see that

 (2.1.20) },/{ 0xCEJ gg
o = g

oEJgJ =)(

While lemma (3) is valid only for Markov policies, the comparison principle below holds

for arbitrary feedback policies

 14

Lemma 4(Comparison Principle): Let),(xVk ,0 Nk ≤≤ be any functions such that

 (2.1.21)),()(xcxV NN ≤

 (2.1.22))],,,([),()(1 kkkwkk wuxfVEuxcxV
k ++≤

for all x and for all u. Let be arbitrary. Then, w.p.1 Gg ∈

 Nk (2.1.23) ,)(g
k

g
kk JxV ≤ ,.....0=

Proof: We proceed by induction. From (2.1.19) to (2.1.21)

),()(},.....,/({ g
NN

g
NN

g
N

g
o

g
NN

g
N xVxcxxxcEJ ≥==

so that (2.1.23) is true for k=N. Suppose it is true for k+1. Then by (2.1.22)

 },....,/)],,([),({)(1
g
k

g
ok

g
k

g
kk

g
k

g
k

g
kk

g
kk xxwuxfVuxcExV ++≤

 ∑
−

+
+++≤

1

1
1 },....,/},....,/)(),({),({

N

k

g
k

g
o

g
k

g
o

g
NN

g
l

g
ll

g
k

g
kk xxxxxcuxcEuxcE

 ∑
−

=+=
1

,},....,/)(),({
N

k

g
k

g
k

g
o

g
NN

g
l

g
ll JxxxcuxcE

and so (2.1.23) holds for k. □

We get an immediate corollary.

Corollary1

Let be a function satisfying (2.1.21, (2.1.22). Then Hence if)(xVk).(* 0xEVJ o≥ Gg ∈ is

such that , then g is optimal.)(0xVJ O
G
O =

Proof: For any g in G we have by (2.1.23). Taking

expectation and . Finally, if

then , so that g must be optimal and

)(oO
G
O xVJ ≥

)()(oo xEVgJ ≥)(* oo xEVJ ≥),(oo
g
o xVJ =

*)()(JxEVgJ oo ≤= *)(JgJ = □

 15

The two preceding lemmas can be combined to obtain the fundamental result of dynamic

programming.

Theorem: Define recursively the functions

 (2.1.24))()(xcxV NN =

 (2.1.25)))],,((),([)(1 kkkWk
Uu

k wuxfVEuxcInfxV
K +

∈
+=

1. Let g in G is arbitrary. Then w.p.1; in particular, g
k

g
kk JxV ≤)().()(oO xEVgJ ≥

2. A Markov policy in is optimal if the infimum in (2.1.24) is

achieved at , and then w.p.1 and

},....,{ 110 −= Ngggg MG

)(xgk
g
k

g
kk JxV =)().()(* 00 xEVgJJ ==

3. A Markov policy in is optimal if for each k, the infimum

at in (2.1.24) is achieved by i.e

},....,{ 110 −= Ngggg MG

g
kx)(g

kk xg ,

)],),(,([))(,()(1 k
g
kk

g
kkkw

g
kk

g
kk

g
kk wxgxfVExgxcxV

k ++=

w. p. 1.

Proof: The functions defined by (2.1.24) and (2.1.25) clearly satisfy (2.1.21) and

(2.1.22) and so part (1) follows from lemma. To prove the sufficiency in part (2), let

be a Markov policy that achieves the infimum in (2.1.25), so

)(xVk

}{ kgg =

)]),(,([))(,()(1 kkkkwkkk wxgxfVExgxcxV
k ++=

By lemma it follows that for all k and in particular By

corollary, g is optimal and

g
k

g
kk JxV =)().(oo

g
O xVJ =

).()(* oo xEVgJJ ==

 To prove the necessity in part (3) suppose the Markovian policy g is optimal. We

prove by induction that achieves the infimum in (2.1.25) at with probability 1.)(g
kk xg g

kx

 16

Consider k=N-1. Suppose the assertion is false. Then there exist another function

such that URg n
N →− :' 1

)]),(,([))(,(111111111 1 −−−−−−−−− −
+ N

g
NN

g
NNNwNNNN wxgxfVEgxgxc

n

)]),(',([))(',(111111111 1 −−−−−−−−− −
+≥ N

g
NN

g
NNNwNNNN wxgxfVEgxgxc

n

w.p.1; moreover, the inequality is strict with positive probability. Hence taking

expectations on both sides and using (2.1.24) gives

))]),(,(())(,([111111111 −−−−−−−−− + N
g
NN

g
NNNNNNN wxgxfcgxgxcE

 (2.1.26)))]),(',(())(',([111111111 −−−−−−−−− +> N
g
NN

g
NNNNNNN wxgxfcgxgxcE

Consider the Markov policy . Evidently , }',,......,{' 12 −−= NNo gggg 'g
k

g
k xx = 10 −≤≤ Nk

and so , , .It follows that 'g
k

g
k uu = 10 −≤≤ Nk)(' 11

'
1

g
NN

g
N xgu −−− =

),,(),('' g
k

g
kk

g
k

g
kk uxEcuxEc = 20 −≤≤ Nk (2.1.27)

Adding (2.1.26) and (2.1.27) gives and so g cannot be optimal contrary to

the hypothesis. Thus does achieve the infimum in (2.1.25) for , and

so .

)'()(gJgJ >

)(11
g
NN xg −− 1−N

)(111
g
NN

g
N xVJ −−− =

 Now suppose by induction that achieves the infimum and

that . We prove this for k. Indeed, otherwise there is a function

such that

)(11
g
kk xg ++

)(111
g
kkk xVgJ +++ =

URg n
k →:'

)]),(,([))(,(1 k
g
kk

g
kkkw

g
kk

g
kk wxgxfVExgxc

k ++

)]),(',([))(',(1 k
g
kk

g
kkkw

g
kk

g
kk wxgxfVExgxc

k ++≥

w.p.1. This inequality is strict with positive probability so that taking expectations gives

 17

)())(,(11
g
kkw

g
kk

g
kk xVExgxEc

k +++

 (2.1.28)))).(',(())(',(1 k
g
kk

g
kkk

g
kk

g
kk wxgxfEVxgxEc ++>

Consider the policy . Then certainly },.....,.',,.....,{' 1110 −+−= Nkkk gggggg

),,(),('' g
l

g
ll

g
l

g
ll uxEcuxEc = ,1,.....0 −= kl (2.1.29)

Also, by the induction hypothesis, achieve the infimum in (2.1.28), and so

by lemma 4

11,...... −+ Nk gg

 , and)()(1111
g
kk

g
k

g
k xEVxEJ ++++ =

) (2.1.30) ()('
11

'
1

'
1

g
kk

g
k

g
k xEVxEJ ++++ =

From (2.1.28), (2.1.29), and (2.1.30) it follows that

 ∑ ++++=)(),(),()(11
g
kk

g
k

g
kk

g
l

g
ll xVuxEcuxcEgJ

 ∑ ++++>)(),(),('
11

' g
kk

g
k

g
kk

g
l

g
ll xVuxEcuxcE

)'(gJ=

and so g cannot be optimal contrary to hypothesis. Thus must achieve the

infimum in (2.1.28) and the result follows by induction. □

)(g
kk xg

2.2.2 Algorithm

First, define ,)()(xCxV NN =

Then find the function by URg n
N →− :1

],/)),,((),(inf[arg)(1111 1
UuwuxfVEuxCxg NNNwNN N

∈+= −−−− −

and denote the resulting value)(1 xVN−

 18

Second, find the function by URg n
N →− :2

],/)),,((),(inf[arg)(2222 2
UuwuxfVEuxCxg NNNwNN N

∈+= −−−− −

and call this resulting value . Proceeding in this way we

obtain .

)(2 xVN−

0011 ,.,,........., VgVg NN −−

2.3 Infinite Horizon

Let us consider when time horizon N is infinite. This is not an immediate extension, since

if one simply sets in (2.1.9), in most cases one gets ∞=N ∞=)(gJ for every g. The

notion of best g becomes meaningless. There are two ways to treat the infinite horizon

problem. The first approach is to introduce a discount factorβ , 10 << β and define the

expected discounted cost.

 ∑
∞

=

=
0

),()(
k

kkk
kg uxcEgJ β

Observe that if is bounded, and then will be finite. Since the cost incurred at time

k is weighted by , present cost is more important than future cost. In an economic

context, where r>0 is the interest rate. With this interpretation, is

present value of cost. From (2.1.9) it follows that

kc)(gJ

k

β

1)1(−+= rβ)(gJ

 ∑
∞

=
−=

0
1100).....()(

K

g
k

g
k

ggk CppppgJ β

Define

 ∑
∞

=

==
kl

kllll
lgg

k ixxgxcEiV }/)(,({:)(β

The second approach is followed when discounting is inappropriate. A policy is then

evaluated according to its average cost per unit time,

 19

 ∑
−

=
∞→

=
1

0
))(,(1lim)(

N

k
kkkk

g

N
xgxcE

N
gJ (2.1.31)

Using (2.1.9) this equals

 ∑
−

=
−∞→

1

0
10)........(1lim

N

k

g
k

g
k

g
oN

cPPp
N

 (2.1.32)

From this expression we see that if varies with k, then the limit above need not exist. g
kP

2.3.1 Stationary Markov Policy

A Markov policy is stationary or time invariant if,.....},{ 10 ggg = ggg ≡≡≡10 ,

with a slight abuse of notation. Let g be stationary; then the transition probability matrix

is stationary, . Suppose the cost functions are also time invariant, . Fix a

discount

gg
k PP ≡ cck ≡

10 << β . Then

 ∑
∞

=

==
kl

kll
lgg

k ixxgxxEiV }/))(,({)(β

 }

)

/))(,({
0

0∑
∞

=

==
l

ll
lgk ixxgxcE ββ

 (iV g
o

kβ=

In vector notation or in matrix notation, ,1 g
o

gkgkg
o

k VPcV ++= βββ

 gg
o

g cVPI =−][β

Next we study the average cost when policy and cost are stationary. The next three

lemmas are stated without proof.

Lemma 5: If P is the transition probability matrix, then the Cesaro limit

 Π=∑
−

=
∞→

:1lim
1

0

N

k

k

N
P

N
,

 20

always exists. The matrix is a stochastic matrix and it satisfies the equationΠ PΠ=Π .

Thus for stationary g and time invariant cost, the average cost per unit time (2.1.31) and

(2.1.32), is

 ∑
−

=
∞→

Π==
1

0
0))(,(1lim)(

N

k

g
kk

g

N
cpxgxcE

N
gJ (2.1.33)

Let π be one of the rows of . Then Π Pππ =

Moreover since Π is a stochastic matrix, π can be regarded as a probability distribution.

This has an interpretation that if Markov chain has initial probability distribution given

by π , then the probability distribution of the state remains at π for all time. Thus π is

said to be an invariant probability distribution.

Lemma 5: If P is an irreducible transition probability matrix, then there is a unique

row vector π such that

 ππ =P , ∑ . (2.1.34)
=

=
I

i
i

1
1π

Moreover 0>iπ , for all i. finally, the matrix Π in (1.33) has all rows equal to π □

Lemma 6: If P is irreducible and aperiodic, then

 (2.1. 35) Π=
∞→

k

k
Plim

Where Π is a matrix with all rows equal to π □

Consider first the problem of minimizing the finite horizon cost

 (2.1.36) ∑
−

=

1

0

),(
N

k
kk

kg uxxE β

 21

with 10 << β . We have the optimal value function satisfying the dynamic

programming equations,

)(iVk

 , (2.1.37) 0)(=iVn

 (2.1.38) ∑
=

+
∈

+=
I

j
ijk

k

Uu
k uPjVuicInfiV

1
1)}()(),({)(β

)(iVk is the minimum value of starting in state i at time k. it is more

convenient to work not with , but the related quantity,

∑
−

=

1

),(
N

kn
nn

ng uxxE β

)(iVk

) ,(:)(iViW nN
Nn

N −
−= β Nn ≤≤0 , Ii ≤≤1 (2.1.39)

The index n is the time to go. It can be shown that

 0 , (2.1.40) :)(=iWo

 (2.1.41) ∑
=

−∈
+=

I

j
ijnUun uPjWuiciW

1
1)}()(),({inf:)(β

Lemma 7: Let . Then satisfies (2.1.40) and

(2.1.41)

}/),(min:)(0

1

0
ixuxxEiW

n

k
kk

kg

gn == ∑
−

=

β)(iWn

 For the discounted cost it is natural to expect that its minimum

value starting in state , denoted by , will satisfy (2.1.41) with replacing n.

so it is plausible that will satisfy

∑
−

=

1

0
),(

N

k
kk

kg uxxE β

ix =0)(iW∞ ∞

∞W

 , for all i (2.1.42) □)}()(),({inf)(
1

uPjWuiciW ij

I

jUu ∑
=

∞∈∞ += β

This is the dynamic programming equation for the discounted cost criterion. Equation

(2.1.42) is a system of I equations with I unknowns . Next we examine)(),.......1(IWW ∞∞

 22

the existence and uniqueness of solutions to these equations, and show that the solution

indeed gives the value function.

2.3.2 Value Iteration

In value iteration method optimal policies are determined sequentially using the

functional equations

⎭
⎬
⎫

⎩
⎨
⎧

−+= ∑
=

n

j
j

a
ij

a
iai nfprnf

1
)1(max)(β

where the action a maximizing the right hand side is optimal for state i at the stage in

question. The function is the total expected discounted rewards from the process

when it starts from state i and will operate for n stages before termination. Thus is

the salvage value of the system when it is in state i. At each stage an optimal value is

chosen using the above equation. The value iteration method is identical to what is

usually referred to as successive iteration or successive approximation. We are not going

to discuss this method in detail since the value iteration method is not exact and the

convergence is slow.

)(nfi

)0(if

2.3.3 Linear Programming

In infinite horizon case we have to use linear programming instead of dynamic

programming. Therefore to find the optimal policy, we can convert the problem into a

linear program and solve it using simplex method.

It can be shown that if u is a bounded function on the state space satisfying:

 (2.1.43) ⎥
⎦

⎤
⎢
⎣

⎡
≤ ∑

i
ija

juaPaiciu)()(),(min)(

 then Vu ≤ with V the optimal value function.

 23

Because the optimal value function V satisfies the inequality, as well as the equality, it

follows that it is the largest function that satisfies (2.1.43). Hence, letting iβ be such

that 10 << iβ , it follows that V will be the unique solution of the linear program.

 ⎥
⎦

⎤
⎢
⎣

⎡∑
=

m

i
iu

iu
0

)(max β

subject to

⎥
⎦

⎤
⎢
⎣

⎡
+≤ ∑

j
ij juaPaiciu)()(),(min)(α , for all i.

We can take iβ as 1 for all i as iβ is chosen to prevent the objective function from

becoming infinite. After this assumption, our linear problem takes this form

 (2.1.44) ⎥
⎦

⎤
⎢
⎣

⎡∑
=0

)(max
iu

iu

 subject to

 , for all i and all ⎥
⎦

⎤
⎢
⎣

⎡
+≤ ∑

j
ij jraPaiciu)()(),(min)(α Uu∈ (2.1.45)

Objective function (2.1.44) and constraint (2.1.45) allows the use of first linear program

to calculate optimal policy. This model is called short term or action selection model.

Solving this problem would give the optimal values of)()(iViu = for all i, with the

requirement that u is the optimal action associated with the state if and only if the

corresponding constraint in (2.1.45) holds as equality.

 After the solution to the linear program (2.1.44)-(2.1.45) has been obtained, we

calculate the shadow costs of the actions. These costs are calculated by substituting the

optimal values of into the right hand side of the constraints (2.1.45):)(iu

 24

 (2.1.46) ∑+=
j

ij juaPaicaiV)()(),(),(α

The optimal action in each state is chosen from the condition: *a

 (2.1.47))],([min*),(aiVaiV
a

=

The difference that the shadow cost of the optimal action makes with the shadow cost of

the do-nothing action is interpreted as the unit shadow benefit of taking the optimal

action:

 (2.1.48) *),()0,(*),(aiViVaiB −=

It follows from (2.1.48) that when the optimal action is do-nothing, its shadow benefit

becomes zero.

The above model specifies a stationary policy that is optimal and can be used

immediately, whether the process is stationary or not, and hence it is the model, with

which we can determine the recommended actions for each condition state of every

element. However, this model would not directly give the long term conditions of the

elements. To calculate the interest another model is used;

∑∑
i a

ia aigw),(min (2.1.49)

subject to (2.1.50) ∑∑ =
i a

iaw 1

 , for all ∑ ∑∑=
a i

ij
a

iaja apww)(j (2.1.51)

where denote the limiting probability that the element will be in state i and action a is

chosen when policy g is followed

iaw

 0 (2.1.46) ≥iaw

 25

Thus for any policy g, there is a vector iaww = which satisfies (2.1.49), (2.1.50) and

(2.1.51) with the interpretation that equals the steady state probability of being in

state i and choosing action a if g is employed.

iaw

 The values of can be interpreted as the proportion of time that the unit element

is in condition state i and action a is taken, or alternatively, the proportion of units for

which action a is taken in condition state i. The linear problem defined above is called

long-term or steady state model.

iaw

 26

Chapter 3
Fuzzy Mathematics

In this chapter we will discuss basic results in Fuzzy theory, from the existing literature.

This chapter is divided into three sections. In the first section we discuss preliminary

elements of fuzzy mathematics. In the second section we discuss some operations on

fuzzy sets. In the third section we give an introduction to fuzzy control design. Here we

introduce concept of fuzzy membership functions which will be used in the next chapter

to reduce the number of states in a Markov decision process.

The field of fuzzy systems and control has been well developed about one decade

ago. Motivated by the practical success of fuzzy control in consumer products and

industrial process control, there has been an increasing amount of work on the rigorous

theoretical studies of fuzzy systems and fuzzy control. Researchers are trying to explain

why the practical results are good, to systematize the existing approaches, and to develop

more powerful design tools.

Fuzzy systems are knowledge–based or rule based systems. The heart of the fuzzy

system is a knowledge base consisting of the so called fuzzy IF-THEN rule. A fuzzy IF-

THEN rule is an IF-THEN statement in which some words are characterized by

continuous membership functions. For example the following is a fuzzy IF –THEN rule:

 27

“IF the speed of a car is high, THEN apply less force to the accelerator”

 A fuzzy system is constructed from collection of fuzzy IF-THEN rules. The basic

configuration of a pure fuzzy system is shown in the Fig.2.1. The “Fuzzy Rule Based”

represents the collection of fuzzy IF-THEN rules. The fuzzy inference engine combines

these fuzzy IF-THEN rules into a mapping from fuzzy sets in the input space to

fuzzy sets in the output space based on fuzzy logic principles. If the dashed

feedback line in Fig.3.1.1 exists, the system becomes the so called fuzzy dynamic

systems.

nRU ⊂

RV ⊂

Fuzzy Rule Base

Fuzzy Inference
Engine

Figure 3.1.1. Basic configuration of pure fuzzy system.

Fuzzy sets
In U

Fuzzy sets
 In V

3.1 Elements of Fuzzy Mathematics

Fuzzy Set: A fuzzy set in a universe of discourse U is characterized by a membership

function)(xAμ that takes values in the interval [0, 1]. Therefore, a fuzzy set is a

generalization of a classical set by allowing the membership function to take any value in

the interval [0, 1]. A fuzzy set A in U may be represented as a set of ordered pairs of a

generic element x and its membership value, that is,

 28

}/))(,{(UxxxA A ∈= μ

Support: The support of a fuzzy set A in the universe of discourse U is a crisp set that

contains all the elements of U that have nonzero membership values in A, that is,

}0)(/{)(>∈= xUxASupp Aμ

Center: If the mean value of all points at which the membership function of the fuzzy set

achieves its maximum value is finite, then define this mean value as the center of the

fuzzy set.

Height: The height of a fuzzy set is the largest membership value attained by any point.

If the height of a fuzzy set equals one, it is called a normal fuzzy set.

α -cut: An α -cut of a fuzzy set A is a crisp set that contains all the elements in U

that have membership values in A greater than or equal to

αA

α , that is,

})(/{ αμα ≥∈= xUxA A

3.2 Operations on Fuzzy Sets

Complement: Let c: [0 1] → [0 1] be a mapping that transform the membership function

of fuzzy set A into the membership function of the complement of A, that is,

)(1)()]([xxxc A
A

A μμμ −== −

Union: Let s:[0 1]× [0 1] → [0 1] be a mapping that transforms the membership functions

of fuzzy sets A and B into the membership function of the union of A and B, that is,

)()](),([xxxs BABA ∪= μμμ

In order for the function to be qualified as a union, it must satisfy at least the following

four requirements:

Axiom 1: s (1, 1) =1, s (0, a) =s (a, 0) =a.

 29

Axiom 2: s (a, b) =s (b, a)

Axiom 3: if a≤ and b , then s (a, b) 'a 'b≤),('' bas≤

Axiom 4: s (s (a, b), c) =s (a, s (b, c)

Intersection: Let be a function that transforms the membership

functions of fuzzy sets A and B into the membership function of the intersection of A and

B, that is ,

]1,0[]1,0[]1,0[: →×t

)()](),([xxxt BABA ∩= μμμ

In order for the function t to be qualified as an intersection, it must satisfy at least the

following four requirements:

Axiom 1: aatatt ===),1()1,(;0)0,0(

Axiom 2: t (a, b) =t (b, a)

Axiom 3: If and , then t (a, b)) 'aa ≤ 'bb ≤ '' ,(bat≤

Axiom 4:)],(,[]),,([cbtatcbatt =

3.3 Overview of Design

There are specific components characteristics of a fuzzy controller to support a design

procedure. In the block diagram in Fig.3.1.2 the controller is between a preprocessing

block and post processing block. The fuzzy controller consists of a fuzzification block,

rule base, inference engine and defuzzification block. Fuzzy membership function is used

in fuzzification block. The fuzzy membership function is the heart of the fuzzy controller.

We have a set of rules in rule base, which are used by inference engine. The

defuzzification block converts the output to membership form. Scaling is done in

preprocessor and post processor. The following explains the diagram block by block.

 30

3.3.1 Preprocessing

Pre-
processin
g

Fuzzifica
tion

De-
fuzzific
ation

Post-
process
ing

Rule base

Inference
engine

Fuzzy controller

Fig.3.1.2 Blocks of a fuzzy controller

The inputs are most often hard or crisp measurements from some crisp measuring

equipment, rather then linguistic. A Preprocessor, conditions the measurements before

they enter the controller. Examples of preprocessors are

• Quantization in connection with sampling or rounding to integers;

• Normalization or scaling onto a particular, standard range;

• Filtering in order to remove noise;

• Averaging to obtain short term or long term tendencies;

• A combination of several measurements to obtain key indicators; and

• Differentiation or integration or they discrete equivalent

A quantizer is necessary to convert the incoming values in order to find the best level in

discrete universe. Quantization is a means to reduce data, but if the quantization is to

course the controller may oscillate around the reference or even become unstable.

When the input to the controller is error, the control strategy is static mapping between

input and control signal. A dynamic controller would have additional inputs, for example

 31

derivatives, integrals, or previous values of measurement backward in time. These are

created in preprocessor thus making the controller multidimensional, which requires

many rules and makes it more difficult to design. The preprocessor then passes the data

on to the controller.

3.3.2 Fuzzification

The first block inside the controller is fuzzification, which converts each piece of input

data to degrees of membership function by a lookup in one or several membership

functions. The fuzzification block thus matches the input data with the conditions of the

rule to determine how well the condition of each rule matches that particular instance.

There is a degree of membership for each linguistic term that applies to that input

variable.

1. Singleton Fuzzifier: The singleton fuzzifier maps a real valued point into a

fuzzy singleton A’ in U, which has membership value 1 at and 0 at all other points in

U; that is,

Ux ∈*

*x

0
1

)(' =xAμ If x=x*
otherwise

Example: Suppose the thermostat output temperature is , singleton fuzzifier maps it as

°45

0 45 t

1

Fig 3.1.3 singleton fuzzifier

 32

2. Gaussian fuzzifier: The Gaussian fuzzifier maps x* U∈ into a fuzzy set A’ in U,

which has the following Gaussian membership function:

2*2

1

*
11

...............)('
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−

⊗⊗= n

nn

a
xx

a
xx

A eexμ

Where , are positive parameters and the t-norm ia ⊗ is usually chosen as algebraic

product or min.

3. Triangular Fuzzifier: the triangular fuzzifier maps x* U∈ into a fuzzy set A’ in U,

which has the following triangular membership function

⎪⎭

⎪
⎬

⎫

⎪⎩

⎪
⎨

⎧
=≤−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
−⊗⊗⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
−=

otherwise

nibxxif
b

xx
b

xx
x iii

n

nn

A

0

,....2,1,1.........1)(
*

*

1

*
11

'μ

Where , are positive parameters and the t-norm ib ⊗ is usually chosen as algebraic

product or min.Some other fuzzifier

Fig 3.1.4 (a) s-function, (b) pi-function, (c) z-functions, (d-f)triangular
versions, (g- i)trapezoidal versions, (j) flat pi-function, (k)rectangle,(l)
singleton

 33

3.3.3 Rule Base

The rules may use several variables both in condition and conclusion of the rules. The

controllers can therefore be applied to both MIMO and SISO problems. The typical SISO

problem is to regulate control signal based on an error signal. The controller may actually

need the error, change in error, and the accumulated error as the inputs, but we will call it

single loop control, because in principle all three are formed from the error measurement.

Basically a linguistic controller contains rules in the IF THEN format, but they can be

represented in different formats. In many systems, the rules are presented to the end user

in the format similar to the one below,

Table 3.1.1 Table based control

Error Change in error Output

Negative Positive Zero

Negative Zero Negative medium

Negative Negative Negative big

Positive Positive Positive medium

Positive Zero Zero

Positive Negative Negative medium

Zero Positive Positive big

Zero Zero Positive medium

Zero Negative Zero

 34

Because the fuzzy propositions are interpreted as fuzzy relations, the key question

remaining is how to interpret the IF-THEN operation. In classical propositional calculus,

the expression IF p THEN q is written as p q with the implication → regarded as a

connective defined by the following table, where p and q are propositional variables

whose values are either truth (T) or false (F). p q is equivalent to

→

→

qp ∨

and pqp ∨∧)(

p q p q→

T T T

T F F

F T T

F F T

Table 3.1.2. Truth table for p q→

Because fuzzy IF-THEN rules can be viewed as replacing the p and q with fuzzy

propositions, we can interpret the fuzzy IF-THEN rules by replacing the and

operators with fuzzy complement, fuzzy union, and fuzzy intersection respectively.

Since there are a wide variety of fuzzy complement, fuzzy union, and fuzzy intersection

operators, a number of different interpretations of fuzzy IF-THEN rules were proposed in

the literature. We list some of them below

∨−,

∧

Zadeh Implication: Here the fuzzy IF-THEN rule ><>< 21 FPTHENFPIF is

interpreted as a fuzzy relation in ZQ VU × with the membership function

 35

)](1)),(),(max[min(),(
121

xyxyxQ FPFPFPz μμμμ −=

Godel Implication: The Gödel implication is a well-known implication formula in

classical logic. By generating it to fuzzy propositions, we obtain the following: the fuzzy

IF-THEN rule ><>< 21 FPTHENFPIF is interpreted as a fuzzy relation

in with the membership function GQ VU ×

otherwisey
yxif

yxQ
FP

FPFP
G)(

)()(1
),(

2

21

μ
μμ

μ
≤

=

 Mamdani Implication: The fuzzy IF-THEN rule is interpreted as a fuzzy relation

 or in with the membership function MMQ MPQ VU ×

)](),(min[),(
21

yxyxQ FPFPMM μμμ =

)()(),(
21

yxyxQ FPFPMP μμμ =

Mamdani implications are the most widely used implications in fuzzy systems and fuzzy

control. They are supported by the argument that fuzzy IF-THEN rule are local

3.3.4 Inference Engine

In a fuzzy inference engine, fuzzy logic principles are used to combine the fuzzy IF-

THEN rules in the fuzzy rule base into a mapping from a fuzzy set A’ in U to fuzzy set

B’ in V. There are two ways to infer with a set of rules: composition based inference and

individual –rule based inference.

1. Composition Based Inference: In composition based inference, all rules in the fuzzy

rule base are combined into a single fuzzy relation in VU × , which is then viewed as a

single fuzzy IF-THEN rule. So the key question is how to perform this combination. We

 36

should first understand what as set of rules mean intuitively, and then we can use

appropriate logic operators to combine them.

 There are two opposite arguments for what a set of rules should mean. The first

one views the rules as independent conditional statements. If we accept this point of

view, then the reasonable operator for combining the rules is union. The second one

views the rules as strongly coupled conditional statements such that the conditions of all

the rules must be satisfied in order for the whole set of rules to have an impact. If we

adapt this view, then we should use the operator intersection to combine the rules

 Let) be a fuzzy relation in(lRu VU × , which represents the fuzzy IF-THEN rule;

that is, . ll
n

ll BAARu →××=1
)(

)(..........)(),......(...... 1111 n
l
n

l
n

l
n

l xAxAxxAA μμμ ⊗⊗=××

Where represents any t-norm operator. The implication is defined according to

various implications defined in the previous section. If we accept the first view of a set of

rules, then the M rules are interpreted as a single fuzzy relation in defined by

⊗ →

MQ VU ×

U
M

l

l
M RuQ

1

)(

=

=

This combination is called Mamdani implication. For the second view of set of rules, the

M fuzzy rules are interpreted as a fuzzy relation inGQ VU × , which is defined as

I
M

l

l
G RuQ

1

)(

=

=

Let A’ be any arbitrary fuzzy set in U and be the input to the fuzzy inference engine.

Then by viewing or as a single fuzzy IF-THEN rule and using generalized modus

ponens, we obtain the output of the fuzzy inference engine as

MQ GQ

 37

)],(),([)(' 'sup yxxtyB
MQA

UX

μμμ
∈

=

If we use the Mamdani combination

)],(),([)('' sup yxxty
GQA

UX
B μμμ

∈

=

If we use the Gödel combination.

Algorithm

• For the M fuzzy IF-THEN rules, determine the membership

functions .)(..........)(),......(...... 1111 n
l
n

l
n

l
n

l xAxAxxAA μμμ ⊗⊗=××

• View as the and l
n

l AA ××1 1FP lB as the in the implication and

determine for

2FP

ll
n

ll BAARu →××=1
)(Ml ,........2,1= according any one

of these implications.

• Determine),(yxQMμ or),(yxQGμ

• For any input A’, the fuzzy inference engine gives output B’

2. Individual-Rule Based Inference: In individual-rule based learning, each rule in the

fuzzy rule base determines an output fuzzy set and the output of the whole fuzzy

inference engine is the combination of the M individual fuzzy sets. The combination can

be taken either by union or intersection.

The computational procedure of the individual based inference is summarized as follows.

• For the M fuzzy IF-THEN rules, determine the membership

functions .)(..........)(),......(...... 1111 n
l
n

l
n

l
n

l xAxAxxAA μμμ ⊗⊗=××

 38

• View as the and l
n

l AA ××1 1FP lB as the in the implication and

determine for

2FP

ll
n

ll BAARu →××=1
)(Ml ,........2,1= according any one

of these implications.

• For given input fuzzy set A’ in U, compute the output fuzzy set in V for each

individual rule according to the generalized modus ponens ,i.e.

1
lB

)(lRμ

)],(),([)(' 'sup yxRuxtyB l
A

UX

μμμ
∈

= For Ml ,........2,1=

• The output of the fuzzy inference engine is the combination of the M fuzzy

sets{ }l
M

l BB1 either by union, i.e.

)(..........)()(' 1 yByByB l
M

l μμμ ++=

or by intersection, that is

)(...........)()(' 1 yByByB l
M

l μμμ ⊗⊗=

3.3.5 Defuzzification

 To convert the output in membership form the Inference engine to a crisp control we use

a defuzzifier.

There are several Defuzzification methods

1. Centre of Gravity

2. Centre of Gravity method for singleton

3. Bisector of Area

4. Mean of Maxima

5. Left most maximum, and right most Maximum.

6. Centre average

 39

1. Centre of Gravity: The centre of gravity defuzzifier specifies the y* as the centre of

the area covered by the membership function of B’.

∫

∫
=

V

V

dyyB

dyyBy
y

)('

)('
*

μ

μ

∑
∑

=

i
i

i
ii

x

xx

)(

)(

μ

μ

 Fig 3.1.5
V

2. Centre Average Defuzzifier: Because the fuzzy set B’ id the union or intersection of M

fuzzy sets, a good approximation is the weighted average of the centers of the M fuzzy sets

21

2
2

1'*
ww

wywyy
+
+

=

3. Bisector of Area: This method picks the abscissa of the vertical line that divides the

area under the curve in two equal halves. In the continuous case,

⎭
⎬
⎫

⎩
⎨
⎧

== ∫ ∫
x

x

dxxdxxxu
min

max

)()(/ μμ

Here x is the running point in the universe,)(xμ is its membership function, min is the

left most value of the universe, and max is the right most value. Its computational

complexity is relatively high and it can be ambiguous.

 40

3.3.6 Post Processing

Output scaling is also relevant. In case the output is defined in standard universe this

must be scaled to engineering units, for instance volts, meters, or tons per hour. An

example is the scaling form standard universe [-1, 1] to the physical units [-10, 10] volts.

The post processing block often contains an output gain that can be tuned, and sometimes

also an integrator.

 41

Chapter 4
Fuzzyfying Markov Decision Processes

This chapter is divided into three sections. In the first section we give a brief introduction

to the problem in hand and an example to illustrate the problem of optimization. In the

second section we proposed a Fuzzyfying Markov decision processes technique. It is

illustrated using many examples and applications. In the third section we give simulation

results.

Markov decision processes have become an indispensable tool in applications as

diverse as equipment maintenance, manufacturing systems, inventory control, queuing

networks and investment analysis. Typically we have a controlled Markov chain on a

suitable state space in which transitional probabilities depend on the policy (or decision

maker) which comes from a set of possible actions. The main problem of interest would

be to find an optimal policy that minimizes the associated cost.

 Typically we have finite horizon Markov decision processes and infinite horizon

Markov decision process. Under finite planning horizon, the value iteration is perfect, but

rarely the planning horizon is well defined. Most often the process is assumed to operate

over an unknown period of time with no predetermined stage of termination. In such

cases the abstraction of an infinite planning horizon seems more relevant.

 42

 The value iteration method is not exact, and the convergence is rather slow. On

the other hand, the mathematical formulation is very simple, and the method makes it

possible to handle very large models with thousands of states. Further it is possible to let

the reward and the physical output depend on the stage number in some predefined way.

This method has been used in many applications as an approximation to infinite stage

optimum.

 Another method is linear programming method. The linear programming method

has almost the opposite characteristics of the value iteration method. Because of the more

complicated mathematical formulation involving solutions of large systems of

simultaneous linear equations, the method can handle rather small models with, say, a

few hundred states. Complexity in linear programming increases much faster with the

increase in number of states which is often called curse of dimensionality. On the other

hand, the method is exact and very efficient in the sense of fast convergence. The rewards

are not allowed to depend on the stage except for a fixed rate of annual increase or

decrease.

 An advantage of the linear programming method is that the equations are general.

Under any policy g we are able to calculate directly the economic consequences by

following the policy by solution of the equations. This makes it possible to compare the

economic consequences of various non-optimal policies to those of the optimal. Linear

programming method has been successfully used, but the models were very small.

 In order to remove the problem of large number of states in linear programming

method, we introduce a concept of fuzziness. By application of the fuzzy principles to

Markov decision processes we are able to reduce the number of states thereby eliminate

 43

the “curse of dimensionality”. Although the combination of fuzzy mathematics and

Markov decision process introduces approximation in computing the optimal decision

policy, the gain in reduction of the size of linear programming outweighs the

approximation error, which will be demonstrated in this chapter.

4.1 Motivation

In order to illustrate how the curse of dimensionality arises, we shall examine a simple

dairy model. For any dairy cow it is relevant to consider at regular intervals whether it

should be kept for an additional period or it should be replaced by a heifer. If the line of

figure 1 represents time, the markers indicate where we consider replacing. The time

interval between two markers is called a stage and in this example we assume the stage

length to be one year, which for convenience is assumed always to be equal to a lactation

period. At the beginning of each stage, we observe the state of the animal in production.

The state space must be defined in such a way that all relevant information is given by

the state. In this very simple example we assume, that the only relevant information is

whether the cow is low, average or high yielding. Thus we have one state variable and

three states. Thus if the cow remains high yielding it will never be replaced according to

the optimal policies. This is certainly not realistic, and furthermore, the milk yield also

depends on the lactation number. In order to account for age we shall introduce an

additional state representing the lactation number of the cow. For convenience, we shall

assume that the new variable may take the values 1, 2, 3 or 4 indicating that the

maximum age of cow in this model is assumed to be 4 lactations. Now suppose that in

addition to lactation and milk yield we also want to take the genetic merit into account.

We shall assume that the genetic merit of the cow is either “good”, “average” or “bad”.

 44

The total size of the state space then becomes 36443 =×× . The transition matrices of

this 36- state model are now very large, compared to the beginning.

Stage 1 Stage 2 Stage 3 Stage 4

Fig 4.1.1: Number of stages

The stepwise extension of the model clearly illustrates that each time a new state

variable at n levels is added to the model, the size of the state space is increased with a

factor of n. When in real model, several traits are represented by state variable at a

realistic number of levels; the size of the state space very soon reaches prohibitive

dimensions (millions of states). As an example consider the dairy cow replacement

model. The traits considered, when a decision was made were

• The age of the cow (240 levels).

• Milk yield in present lactation (15 levels).

• Milk yield in previous lactation (15 levels).

• Time interval between two successive calving (8 levels).

• Clinical mastitis- an infectious disease in the udder (2 levels).

• Accumulated number of mastitis cases in present lactation (4 levels).

• Accumulated number of mastitis cases in previous lactation (4 levels).

In principle the size of the state space is formed as the product of the number of levels

of all traits i.e. 400,750,1144281515240 =×××××× states. In practice it is smaller

because some combinations are impossible and because traits related to previous lactation

 45

are not considered during first lactation. Exclusion of such non-feasible states resulted in

the model with 6,821,724 states.

4.2 Proposed Fuzzyfying Markov Decision Processes

 The main problem associated with linear programming optimization technique is

the number of levels. As the number of levels increases, the size of the matrix increases

to the same order. This will increase the computational complexity of the Markov

Decision Processes. The main idea behind our FMDP is the use of fuzzy membership

function to reduce the number of levels.

4.2.1 Fuzzy Membership Function

 A membership function is a curve that defines how each point in the input space is

mapped to a membership value (or degree of membership) between 0 and 1. The input

space is referred to as the universe of discourse. A fuzzy set is a generalization of a

classical set by allowing the membership function to take any values in the interval [0, 1].

One of the most commonly used examples of a fuzzy set is a set of “tall” people. In this

case the universe of discourse is all potential heights, say from 3 feet to 9 feet, and the

word tall would correspond to a curve that defines the degree to which any person is tall.

If the set of tall people is given the well defined boundary of a classical set, we might say

all people taller than 6 feet are officially considered tall. But such a distinction is clearly

absurd it may make sense to consider the set of all real numbers greater then 6 because

numbers belong to an abstract plane, but when we want to talk about real people, it is

unreasonable to call one person short and another one tall when they differ in height by

the width of a hair. If we use an appropriate membership function then we can distinguish

between people in an appropriate way

 46

 Fig 4.1.2:Fuzzy membership function

The output axis is the known as the membership value between 0 and 1. The curve is

known as a membership function and is often given the designation ofμ . This curve

defines the transition from not tall to tall. Both people are tall to some degree, but one is

significantly less then the other.

 Now the main question arises for how to use the fuzzy membership function to

reduce the number of levels. Let us consider an example which has 2n states.

 n n+1 n+2……………2n………………………..3n

100

 Fig 4.1.3: Number of states

Each state has a particular transitional probability. By the use of membership function we

can mathematically reduce number of the states, but all the states remain through the use

 47

of membership value. That is we reduce the number of states but those states reduced still

exist. This is shown in one example as in Fig 4, where the states are all eliminated except

the state kn for integer k.

 n x 2n 3n

 1

0

)(xfn

)(2 xf n

)(3 xf n

Fig 4.1.4: Reduced states

The membership function indicates the fuzziness of x in relation to state

2n. If , then x is precisely the state 2n. If

)(2 xf n

1)(2 =xf n 1)(0 2 << xf n , then x is also close to

state n, or state 3n dependent on 0)(=xfn or 0)(3 =xf n . For instance in our case,

and . Because0)(3 =xf n 1)(0 2 << xf n 1)(0 << xfn . The state x must lie in between state

n, and state 2n, which can be interpolated as follows:

nxfnxfx nn 2)()(2+=

In our case, as shown in the Fig 4,
4

5nx = .

So
4
3)(=xfn ,

4
1)(2 =xf n and thus using the above equation gives

4
52

4
1

4
3 nnnx =+=

 48

This recovers exactly the true state value. In conclusion, the key condition to recover the

states that are eliminated is 1)()()1(=+ + xfxf nkkn if x is between state kn and state

 . nk)1(+

 Although the use of straight line as fuzzy membership function in the above

example works very well in recovering those states eliminated, straight line may not be

good choice for making optimal Markov decision. The main reason is that the dimension

of the stochastic matrix has also been reduced significantly. This degrades greatly the

fidelity of the model so the fuzzy membership function needs to play a role in recovering

the optimality of the Markov policy inspite of the reduction in the number of levels.

 We note first that although a state, say x in Fig.4 is eliminated, it still exist

through the representation of fuzzy membership function. Hence, its transition probability

to other states such as kn for ,1≠k 2≠k can be estimated through

)2/()()/()()/(2 nknpxfnknpxfxknp nn += (4.1.1)

Since , is indeed a transition probability. In addition, if1)()(2 =+ xfxf nn)/(xknp nx = ,

then , and1)(=xfn 0)(2 =xf n)/()/(nknpxknp = . Similarly, if nx 2= , then 0)(=xfn ,

and , we have1)(2 =xf n)2/()/(nknpxknp = . Hence (4.1.1) is consistent to the case

when x is a remaining state. However, straight line fuzzy membership function may not

approximate the true well.)/(xknp

 We would like to caution the use of (4.1.1): an assumption has to be made in

order for (4.1.1) to make sense. In this case, we assume certain monotonicity property

holds true for transition probability. That is, the true value of lies between

and as long as x is between that state n and 2n.

)/(xknp

)/(nknp)2/(nknp

 49

 In summary we propose to reduce the state levels by introducing the fuzzy

membership functions.

Now the main question is whether we can map transitional probabilities on a

fuzzy membership function. The minimum requirement of probabilities is the

complementary property; that is they should add together to one, or the integral of their

density curves should be one. Not all fuzzy membership functions sum up to one, so we

have to be very careful in selecting membership function exponential, triangular,

sine/cosine etc.

Let us continue with the example of dairy. Initially when we were using the model there

were 400,750,1144281515240 =×××××× states. When we use a fuzzy membership

function to reduce the number of states the total number of states can be reduce to,

• For the age of the cow we were using 240 levels, this can be reduced to 24 states

if we map 10 states using a membership function.

• Milk yield in present lactation can be reduced to 3 states.

• Milk yield in previous lactation can also be reduced to three states.

• Time interval between two successive calving can be reduced to a single state.

• Accumulated number of mastitis cases in previous lactation can be reduced to a

single state.

• Accumulated number of mastitis cases in current lactation can also be reduced to

a single state.

Therefore after using our technique for the model we have reduced the number of states

to from 11,750,400 states. 4321123324 =×××××

 50

4.3 Example

Let us consider the deterioration model of prestressed concrete deck. The model is taken

from LA-DOTD. They are 16 states and 8 possible action sets, that is n=16 and a=8;

Table 4.1.1Preservation model details

S.No Action Cost

1 Do-nothing 0

2 Minor-Minor
Maintenance

5

3 Minor
Maintenance

10

4 Minor-Major
Maintenance

15

5 Major-Minor
Maintenance

30

6 Major
Maintenance

60

7 Major-Major
Maintenance

90

8 Replacement 301

 51

 The transition probabilities for the eight possible actions is given by

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

100000000000000000
95.05.9900000000000000
071.3929.600000000000000
054.1325.3021.56000000000000
033.123.1526.3118.5200000000000
055.32.105.1423.2826.550000000000
015.35.45.47.1656.3102.51000000000
093.13.13.138.48.1225.2521.5400000000
07.9.1.165.145.252.1258.2719.530000000
005.7.88.2.136.258.1536.2607.52000000
005.7.8.12.153.205.1101.3121.5100000
041.53.57.6.65.75.9.3.11.172819.490000
03.4.7.11.15.36.4.5.85.8.154.2829.53000
00056.64.73.117.12.149.16.2182511.4900
0001.3.4.4.5.6.71.15.2142.2829.510
000002.02.03.04.06.15.57.1.18.121.163050

0p

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

100000000000000000
95.05.9900000000000000
071.3929.600000000000000
054.1325.3021.56000000000000
033.123.1526.3118.5200000000000
055.32.105.1423.2826.550000000000
015.35.45.47.1656.3102.51000000000
093.13.13.138.48.1225.2521.5400000000
07.9.1.165.145.252.1258.2719.530000000
005.7.88.2.136.258.1536.2607.52000000
000000000000010000
000000000000010000
000000000000010000
00056.64.73.117.12.149.16.2182511.4900
0001.3.4.4.5.6.71.15.2142.2829.510
000002.02.03.04.06.15.57.1.18.121.163050

1p

 52

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

100000000000000000
.9599.0500000000000000
039.7160.290000000000000
013.5430.2556.21000000000000
01.3315.2331.2652.1800000000000
0.551.3214.0528.2355.260000000000
0.15.35.4516.4731.5651.02000000000
0.931.131.34.3812.825.2554.2100000000
0.7.91.11.652.4512.5227.5853.190000000
000000000000100000
000000000000100000
000000000000100000
0.3.4.7.11.15.36.4.5.8515.828.453.29000
000.56.64.7311.171.21.492.6182549.1100
000.1.3.4.4.5.6.7112.51428.251.290
0000.02.02.03.04.06.15.571.11.816.213050

\2p

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

100000000000000000
95.05.9900000000000000
071.3929.600000000000000
054.1325.3021.56000000000000
033.123.1526.3118.5200000000000
055.32.105.1423.2826.550000000000
015.35.45.47.1656.3102.51000000000
093.13.13.138.48.1225.2521.5400000000
000000000001000000
000000000001000000
000000000001000000
041.53.57.6.65.75.9.3.11.172819.490000
03.4.7.11.15.36.4.5.85.8.154.2829.53000
00056.64.73.117.12.149.16.2182511.4900
0001.3.4.4.5.6.71.15.2142.2829.510
000002.02.03.04.06.15.57.1.18.121.163050

3p

 53

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

100000000000000000
95.05.9900000000000000
071.3929.600000000000000
054.1325.3021.56000000000000
033.123.1526.3118.5200000000000
055.32.105.1423.2826.550000000000
015.35.45.47.1656.3102.51000000000
0000000000000000
000000000010000000
000000000010000000
005.7.8.12.153.205.1101.3121.5100000
041.53.57.6.65.75.9.3.11.172819.490000
03.4.7.11.15.36.4.5.85.8.154.2829.53000
00056.64.73.117.12.149.16.2182511.4900
0001.3.4.4.5.6.71.15.2142.2829.510
000002.02.03.04.06.15.57.1.18.121.163050

4p

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

100000000000000000
95.05.9900000000000000
071.3929.600000000000000
054.1325.3021.56000000000000
033.123.1526.3118.5200000000000
055.32.105.1423.2826.550000000000
000000000100000000
000000000100000000
000000000100000000
005.7.88.2.136.258.1536.2607.52000000
005.7.8.12.153.205.1101.3121.5100000
041.53.57.6.65.75.9.3.11.172819.490000
03.4.7.11.15.36.4.5.85.8.154.2829.53000
00056.64.73.117.12.149.16.2182511.4900
0001.3.4.4.5.6.71.15.2142.2829.510
000002.02.03.04.06.15.57.1.18.121.163050

5p

 54

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

100000000000000000
95.05.9900000000000000
071.3929.600000000000000
054.1325.3021.56000000000000
033.123.1526.3118.5200000000000
000000001000000000
000000001000000000
000000001000000000
07.9.1.165.145.252.1258.2719.530000000
005.7.88.2.136.258.1536.2607.52000000
005.7.8.12.153.205.1101.3121.5100000
041.53.57.6.65.75.9.3.11.172819.490000
03.4.7.11.15.36.4.5.85.8.154.2829.53000
00056.64.73.117.12.149.16.2182511.4900
0001.3.4.4.5.6.71.15.2142.2829.510
000002.02.03.04.06.15.57.1.18.121.163050

6p

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

100000000000000000
000000000000000100
000000000000000100
000000000000000100
000000000000000100
000000000000000100
000000000000000100
000000000000000100
000000000000000100
000000000000000100
000000000000000100
000000000000000100
000000000000000100
000000000000000100
000000000000000100
000000000000000100

7p

 55

Short Term

Optimization Results:

Table 4.1.2: Action selection policy

State Action Cost

1 0 211.90

2 0 217.34

3 0 225.32

4 0 223.72

5 0 222.98

6 1 225.82

7 2 229.25

8 3 233.52

9 4 251.30

10 0 267.80

11 0 274.16

12 0 286.78

13 0 295.49

14 0 304.43

15 0 320.07

 56

Long Term

Optimal limiting probability

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

01.00000000
000000011.0
00000000
00000000
00000000
000000001.0
00000000
00000000
00000000
00000000
00000000
0000001.00
00000004.0

1857.0000000
00000002342.
00000003801.

iaw

The probability that the element will be in state i and action a is chosen.

The states are reduced by using a straight line membership function. The number of states

is reduced to 6 states and the numbers of actions are reduced to 4 using singleton fuzzy

membership function.The reduced set of actions is given by

 Table 4.1.3: Reduced set of actions

S.No Action Cost

1 Do-nothing 0

2 Minor Maintenance 30

3 Major Maintenance 180

4 Replacement 301

 57

The transitional probabilities are given by

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

100000
09571.0000
00147.9853.000
00346.037.9284.00
0006.006.0010.9978.0
0000051.0667.9282.

0p

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

100000
09571.0000
00147.9853.000
000010
0006.006.0010.9978.0
0000051.0667.9282.

1p

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

100000
001000
000100
000010
0006.006.0010.9978.0
0000051.0667.9282.

2p

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

100000
000001
000001
000001
000001
000001

3p

 58

Short Term

Table 4.1.4: Fuzzified action selection policy

State Action Cost

1 0 96.1

2 0 121.53

3 1 149.1

4 0 127.81

5 2 305.26

 Long Term

The limiting probability that the element will be in state i and action a is chosen is given

by

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0000
0000
00020.
00005.
05.000
00070.

iaw

Comparing the results with the original 16 states gives us a very good approximation of

our results. When we reduced the number of states total cost is reduced, and cost obtained

is identical for six of the 15 states. That is we have been successful in reducing the

number of states to 9 from 16. If we do further study on fuzzy membership function we

might be able to reduce the number of states to 5. The long term limiting probability that

the element will be in state i and action a is chosen is similar to the original sixteen states

showing that the element will be in state 1 for most of the time. Thus we have obtained a

 59

result which is very good approximation of the original problem in hand, considering the

amount of data reduced. Thus this approximation technique can be used in decision

making when there are many states.

 60

Chapter 5
Conclusion

5.1 Concluding Remarks

Looking back at the initial problem in hand, where the number of states increases

multifoldly with the increase in levels, that is the “curse of dimensionality”. The optimal

decision making using linear programming method requires solutions of large systems of

simultaneous equations. Therefore it can handle rather small models with, say, a few

hundred states.

 In this thesis we have tried to eliminate the curse of dimensionality by using fuzzy

membership function. By the use of fuzzy membership function we mathematically

reduce the number of states, but all the states remain intact through interpolation of the

membership values. That is we reduce the number of states but those states eliminated

can still be recovered. The assumption is the monotonicity property for the transition

probability. One of the questions not answered here is what the best possible fuzzy

membership function is. Although the use of straight line as fuzzy membership function

works well in recovering those states eliminated, straight line may not be a good choice

for making optimal Markov decisions. The main reason is that the dimension of the

 61

stochastic matrix has also been reduced significantly. This degrades greatly the fidelity of

the model.

Although the combination of fuzzy mathematics and Markov decision processes

introduces approximation in computing the optimal decision policy, the gain in reduction

of the size of linear programming outweighs the approximation error. Therefore we

conclude that this method can be successfully implemented in practical problems where

there is a large number of states.

5.2 Future Research

Although some research has been carried out to cope with the curse of dimensionality,

there lack good results in this problem area. This thesis is the first effort to apply fuzzy

mathematics to lessen the curse of dimensionality problem. Despite some success, more

research is needed, which include

• Optimal choice of fuzzy membership function.

• How to eliminate the monotonivity assumption on the transitional probability,

because not all transitional probability matrices satisfy such an assumption .

The problem area is still in its early stage, and many problems need to be solved before

our proposed technique can be used successfully for manufacturing systems, equipment

maintenance, inventory control, queuing networks and investment analysis.

 62

References

1. S. Balaji, Markov Decision Processes.

2. P. R. Kumar, Pravin Varaiya, Stochastic Systems Estimation, Identification &

Adaptive Control, 1986.

3. G. R. Walsh, An Introduction to Linear Programming, 1985.

4. Sheldon M. Ross, Introduction to Stochastic Dynamic Programming, 1983.

5. Xioaduan Sun, Robert Wang, Zhongjie Zhang “Analysis of Past NBI Ratings to
Determine Future Bridge Preservation Needs,” Louisiana Transportation
Research, 2004.

6. American Association of State Highway and Transportation Officials (AASHTO)

Pontis Technical Manual.

7. Anders R. Kristensen, Dynamic Programming and Markov Decision Processes.

8. D.P. Bertsekas, Dynamic Programming and Optimal Control, 2000.

9. Li- Xin Wang, A Course in Fuzzy Systems & Control, 1997.

10. K. Golabi, P. D. Thomson and C.H. Jun, “Network Optimization System for
Bridge Improvements of Maintenance,” Interim report submitted to California
Department of Transportation, 1990.

11. K. M. Passino, Stephen Yurkovich, Fuzzy Control, 1997.

12. Greg Goebel, An Introduction to Fuzzy Control Systems, 2003.

13. Bart Kosko, Fuzzy Thinking.

14. Daniel McNeil & Paul Freiberger, Fuzzy Logic.

15. M. Jhamshidi, N. Vadiee, T. J. Ross, Fuzzy Logic and Control, 1993.

16. D. Dubois, L. Foulloy, G. Mauris, H. Prade, “Probability-Possibility

Transformation, Triangular Fuzzy Sets and Probabilistic Inequalities”, 10(2004),
pp.273-297.

17. A. Neumaier, “Clouds, Fuzzy Sets and Probability Intervals”, Reliable Computing

10: 249-272, 2004.

 63

Vita

Syed Irshad Ahmed was born in Hyderabad, Andhra Pradesh, India. He received his

schooling in St Georges Grammar School and Shadan Junior College in Hyderabad,

Andhra Pradesh, India. He received his Bachelor of Engineering from Osmania

University. His research interest is in fuzzy control, stochastic processes. He joined

Louisiana State University in 2003 and is expected to graduate the degree of Master of

Science in Electrical Engineering in May 2005.

 64

	Fuzzifying [sic] Markov decision process
	Recommended Citation

	tmp.1483774927.pdf.ISdKI

