
Louisiana State University Louisiana State University

LSU Digital Commons LSU Digital Commons

LSU Master's Theses Graduate School

2007

Optimization for software release and crash Optimization for software release and crash

Tanvir Khan
Louisiana State University and Agricultural and Mechanical College

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses

 Part of the Engineering Science and Materials Commons

Recommended Citation Recommended Citation
Khan, Tanvir, "Optimization for software release and crash" (2007). LSU Master's Theses. 1344.
https://digitalcommons.lsu.edu/gradschool_theses/1344

This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has
been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital
Commons. For more information, please contact gradetd@lsu.edu.

https://digitalcommons.lsu.edu/
https://digitalcommons.lsu.edu/gradschool_theses
https://digitalcommons.lsu.edu/gradschool
https://digitalcommons.lsu.edu/gradschool_theses?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F1344&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/279?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F1344&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses/1344?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F1344&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu

OPTIMIZATION FOR SOFTWARE RELEASE AND CRASH

A Thesis

Submitted to the Graduate Faculty of the
Louisiana State University and

Agricultural and Mechanical College
in partial fulfillment of the

requirements for the degree of
Master of Science in Engineering Science

in

The Interdepartmental Program in Engineering Science

by
Tanvir Khan

B.S., Louisiana State University – Baton Rouge, 2004
May, 2007

ii

ACKNOWLEDGEMENTS

I would like to thank my dad Abu Haniff Khan, mom Nazmun A. Khan, sister Sharmin

Khan, and fiancé Zariat Afrin, for their help, guidance, and support throughout my educational

career. It would not have been possible for me to achieve this academic accomplishment without

them.

I would also like to thank Dr. David Constant, Vicki Hannan, and other staffs of the

College of Engineering Dean’s Office and the Graduate School for their exceptional

administrative assistance and guidance.

Thanks to Dr. Donald L. Crumbley for helping me gain valuable experience in the field

of forensic and investigative accounting, Dr. Gerald M. Knapp for his teaching of the most recent

computer languages and advanced technologies, and Dr. Xiaoyue Jiang for introducing me to the

area of reliability engineering, and giving me the opportunity to conduct research in that field.

Their valuable teachings, advices, and cooperation have truly made my graduate school

experience skillful, and memorable.

Lastly, and of course most importantly, I would like to specially thank Dr. Junfang Yu,

and Dr. Dan B. Rinks, for their time, patience, and extraordinary support as committee members.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS…………………………………………………………………. ii

LIST OF FIGURES………………………………………………………………………….. iv

ABSTRACT…………………………………………………………………………………. v

1. INTRODUCTION………………………………………………………………………. 1
 1.1 Software Reliability…………………………………………………………………. 1
 1.2 Software Reliability Growth Models…………………………………….………….. 2
 1.3 Optimal Stopping Problem………………………………………………………….. 4

2. PROBLEM FORMULATION…………………………………………………………... 6
 2.1 Notations ……………………………………………………………………………. 6
 2.2 Mathematical Model………………………………………………………………… 7
 2.3 The Cost Process…………………………………………………………………….. 8
 2.4 Problem Reduction………………………………………………………………...... 11

3. STRUCTURAL PROPERTY OF THE OPTIMAL POLICY…………………………... 13
 3.1 Dynamic Equation…………………………………………………………………... 13
 3.2 Optimal Release Policy……………………………………………………………… 14
 3.3 Optimal Crash Policy………………………………………………………………... 16
 3.4 Computational Algorithm…………………………………………………………… 18

4. NUMERICAL EXAMPLE..…………………………………………………………….. 20

5. CONCLUSION………………………………………………………………………….. 26

REFERENCES………………………………………………………………………………. 28

APPENDIX: MATLAB CODE……………………………………………………………… 31

VITA…………………………………………………………………………………………. 36

iv

LIST OF FIGURES

Figure 1 - Optimal crash policy……………………………………………………………. 17

Figure 2 - Total cost over a fixed release time (under sub-optimal policies).….……. 22

Figure 3 - (dots connected): Total cost over a fixed release time (under sub-optimal
 policies)………………………………………………………………………...… 22

Figure 4 - Crash and release thresholds under sub-optimal policies.………………………. 23

Figure 5 - Total cost under the optimal policies.….…………………………………. 23

Figure 6 - (dots connected): Total cost under the optimal policies.….………………. 24

Figure 7 - Crash threshold using the optimal policies.………………………………………. 24

Figure 8 - Release threshold using the optimal policies..……………………………………. 25

Figure 9 - Optimal crash and release thresholds..............……………………………………. 25

v

ABSTRACT

Software testing is a process to detect faults in the completeness and quality of developed

computer software. Testing is a key process in assuring quality by identifying defects in

software, and possibly fixing them, before it is delivered to end-users. A major decision to make

during this software testing is, to determine whether to continue testing and eventually releasing

the software, or when to stop the test and ‘crash’ it. Such a decision needs to be made to

optimally balance the tradeoff between the cost of development and the reliability of the

software. In this paper, a new optimal strategy is developed based on a conditional non-

homogeneous Poisson process (Conditional-NHPP) on a continuous time horizon to determine

when the optimal time is to release or crash the software.

1

1. INTRODUCTION

With the dawn of a new era, the computer age, computers and the software running on

them are playing an essential role in our daily lives. Almost all analog, mechanical appliances

that we used to operate have been replaced by digital equipments, run by CPUs and software.

From cars to critical defense equipments, virtually everything uses sophisticated electrical

systems and smart chips today. Unlike in the past when mechanical components were primarily

used, electrical systems now use embedded software. With the advancement in web technology,

many hardware based systems are substituted by software applications. The growth of software

development and web technology has been enormous since the Internet revolution. As Microsoft

CEO Steve Ballmer (2006) puts it, we have now entered “a new software era”.

Software applications are used in many critical devices – airplanes, heart pace-makers,

radiation therapy machines, etc. A software error in such machines can claim people’s lives.

With processors and software saturating the safety critical embedded world, the reliability of

software is simply a matter of life and death (Pan (1999)).

1.1 Software Reliability

Software reliability is the likelihood of successful operation of software for a

predetermined period of time in a specified environment. Software is considered to have

performed a successful operation, when it functions completely as expected, without any failure.

Software that fails less often is considered to have higher quality than software that fails

frequently.

Software unreliability is a consequence of unexpected results of software operations.

Even comparatively small software programs can have a large combination of inputs and states

that are impracticable to test thoroughly. Software reliability engineering must take into account

that restoring software to its original state only works until the same combination of inputs and

2

states results in the same inadvertent result (Wikipedia (2007)). For two identical copies of the

same software, the reliability may be different if they are used under different operational

conditions (Musa and Okumoto (1984)). These factors essentially exhibit the characteristic of

randomness in software reliability engineering.

1.2 Software Reliability Growth Models

The objective of software reliability testing is to determine probable problems with the

software design and implementation as early as possible to assure that the system meets its

reliability requirements. Several hundreds of statistical models used in software reliability testing

have been developed over the years. Among the models, software reliability growth models, also

knows as SRGMs (Lyu (1996), Xie (1991), Tohma et. al (1989), Musa et. al. (1987), Ohba

(1984), Yamada et. al. (1984), and Goel and Okumoto (1979)), are most widely used.

A SRGM is a useful mathematical tool to describe the failure-occurrence or fault-

detection phenomena in the software testing phase, and to assess software reliability

quantitatively (Inoue and Yamada (2007)). SRGMs can be used to characterize the dynamics of

the testing process (e.g., number of initial faults, the software reliability, etc.), and to predict

possible failure pattern (e.g., failure intensity, meantime-interval between failures, etc.) (Huang

et. al. (2003)).

De-eutrophication Model

The de-eutrophication model developed by Jelinski and Moranda in 1972 is one of the

first SRGMs for assessing software reliability, that has become the basis for much of the research

thereafter. The model is based on a hypothesis that software contains a finite number of bugs,

and the inter-failure time is exponential with intensity proportional to the number of remaining

bugs. Each bug in the software causing a failure is instantly removed, and therefore the number

of bugs remaining is reduced by one. Schick and Wolverton in 1978 examined its applicability to

3

the error-finding process with actual data.

Several methods that determine the parameters of the de-eutrophication model have

demonstrated that the maximum likelihood count of the defects in the software is a favorable

approach for software testing (Forman and Singpurwalla (1977)).

The de-eutrophication model has been used in decision making. In (Shanthikumar and

Tufekci (1983)), termination of software testing occurs when the detected number of defects

exceeds a limit, which is based on the rationale that the detection of a large number of defects

reduces the number of remaining defects in the software.

Further modifications of the de-eutrophication model include a randomized initial

number of defects mapped to a Poisson distribution with another random parameter ߣ,

characterized by a gamma distribution (Dalal and Mallows (1988)). Termination is triggered

when the number of defects falls considerably below the initially estimated number (Zheng

(2002)).

A software reliability model has been studied by (Ross (1985)), where a fixed number of

bugs (or failure) is considered, and that each of these bugs independently causes failure of

software following an exponential distribution. The number of bugs in software and the rate of

failure occurrence are both primarily unknown. The optimal stopping time is obtained when the

failure rate is less than an acceptable predetermined failure rate. The model has further been

modified (Yamada and Osaki (1985)) by evaluating the total average cost and software reliability

simultaneously. The total cost in this model was minimized within the constraint of software

reliability.

Models assessing the effects of reliability and cumulative costs of software testing have

demonstrated that expected average costs of software testing can be reduced by restricting the

scope of testing procedures (Thayer et. al. (1976)).

4

In this research, a generalization of the de-eutrophication model, double Bayesian

method, will be used, where the number of bugs is a Poisson random variable with a random

parameter. The resulting model is known as a conditional non-homogeneous Poisson process

(Conditional-NHPP).

1.3 Optimal Stopping Problem

The use of SRGMs to depict software reliability provides a statistical foundation to

establish optimal stopping time for software testing, which is a key decision problem in software

engineering. One of the major issues leading to software maintenance cost overruns and

customer rejection is due to insufficient testing time (Humphrey (1989)). The software testing

process is both time-consuming and costly. However, much more time and cost could be spent in

maintenance of software later due to fixes of bugs not discovered during the testing phase.

The optimal stopping problem includes three possible actions that can be chosen at any

time: continue testing, release or crash the software. Releasing the software means that the

software being tested is reliable enough for the testing procedure to be stopped, and that it can be

made available to users. Crashing the software means simply to stop the testing process and

abandon the software if it is found to be too unreliable to be released. The optimal stopping

problem can consequently be used to determine the most favorable time to end testing, and crash

or release the software. In addition to the optimal releasing problem (also refer to (Forman and

Singpurwalla (1979), Okumoto and Goel (1980), Koch and Kubat (1983), Yamada et. al. (1984),

Kapur and Garg (1989), and Dalal and Mallows (1990))), whether software should be released at

all can be incorporated with the decision process.

The terminology of “crashing” in different contexts may possess different meanings. For

example, in project management, crashing refers to a strategy of accelerating the process by

adding new resources to the development (Biafore (2006)). In another context, software crash

5

refers to an unexpected or a sudden failure of a software program or operating system. The term

“crash” used in this research signifies abandonment, i.e., during software testing, crashing

software means terminating the test and abandoning the software.

Release policies can be classified into two categories: static or dynamic. In case of static

release policies, the release time of software is determined before testing has begun, and is kept

unchanged throughout the testing phase. The release time is independent of any discrepancy due

to data collected during the testing phase (Jiang et. al (2005)). Under dynamic release policies,

there is no preset release time. The release time is dynamically determined from failure statistics

obtained during testing.

Crash policy can be stated as such that if the software during testing is found to be

exceedingly unreliable to release, then abandoning it instead of continuing to test is a cost-

effective option. Since time is a critical factor in today’s competitive software industry, in many

cases, the crashing option over prolonged testing is a more economical and realistic preference.

In this research, integrated optimal release/crash policies for software testing will be

developed, based on a conditional non-homogeneous Poisson process on a continuous time

horizon. The optimal policies will include crash and release options based on monotonicity, cost

structure and number of bugs detected during testing.

6

2. PROBLEM FORMULATION

The decision when is the best time to stop software testing can be derived from the

optimal crash and release policies. A mathematical model is proposed in this section to

determine the optimal crash and release strategies for computer software testing, based on

optimal stopping formulation. The model is an enhancement of a previous research (Jiang et. al

(2005)), where the release time for software was predetermined, and kept constant throughout

the testing phase.

2.1 Notations

The following is a list of notations used in the formulation of the mathematical model:

ܰ Number of bugs detected.
ܰሺݐሻ Number of bugs detected within ሾ0, .ሿݐ
ܺ Random parameter in the intensity function of debugging process.
 .ܺ The sample space of ߗ
݃ሺݐሻ Probability density function of debugging time; ܩሺݐሻ ൌ ݃ሺݐሻ݀ݐ௧

 , ሺܺ ܷሻ.
 .ܺ ሻ Probability density function ofݔሺ
ேܶ Deadline time for releasing the software.
ܶ Crashing threshold for the occurrence of the ith bug.
ܵ Time of the detection of the ith bug.
௧࣠ Completed filtration of debugging process.

݂ሺݐሻ Cost of testing during period ሾ0, .ሻ is differentiableݐሿ. Assume ݂ሺݐ
 . Penalty cost for not delivering software by the deadlineܥ
 . Cost of fixing one bug before releaseܥ
 .ோ Cost of fixing one bug after releaseܥ
 .ݐ ሻ Total expected cost when software is released atݐሺܥܶ
 .ݐ ሻ Total expected cost of fixing all remaining bugs after released atݐሺܥܴ
ሻݐሺܺ|ܰሺܧ ሻݐሺܺܧ ൌ ݊ሻ: Mean of ܺ given the number of bugs by ݐ is ݊.
߮ሺݐሻ ܥோܺܧሺݐሻܩҧሺݐሻ: Expected cost after release.
 .ሻ: Rate of bug occurrenceݐሻ݃ሺݐሺ݊ܺܧ ሻݐሺߛ
ሻ exp ሼെݐതሺܨ ሽݏሻ݀ݏሺߛ

௧
 : Survival function of the next failure time.

 .ሻ: Survival function of the residual failure timeݏതሺܨ/ሻݐതሺܨ ሻݏ|ݐതሺܨ
ܸሺݐሻ Total cost if the optimal policy is chosen, starting at ሺ݊, .ሻݐ
ܹሺݐሻ Difference between the total cost and the expected cost after release, or savings

ሾ ܸሺݐሻ – ߮ሺݐሻሿ.
ܷ Uniform distribution with parameters ሾܷெூே, ܷெሿ.

7

2.2 Mathematical Model

The following mathematical model is proposed to establish the optimal release and crash

policies, based on optimal stopping formulation:

1. Time horizon:

The system runs on a continuous time horizon ሾ0,∞ሿ.

2. Dynamics:

The dynamics of the testing process is a conditional non-homogeneous Poisson process

(NHPP) such that,

i. the detection times of individual bugs are randomly distributed with probability

density function ݃ሺݐሻ, which is assumed to decrease over time,

ii. ܺ is an unobservable random variable with distribution ሺݔሻ,

iii. conditioning on ܺ ൌ ,the number of bugs detected in ሾ0 ,ݔ ሻ, follows aݐሿ, ܰሺݐ

NHPP with intensity ߛሺݐሻ ൌ .ሻݐሺ݃ݔ

3. Action set:

There are three possible actions available to choose from at any time: continue testing,

release or crash the software.

4. Cost structure:

 ሻ represent the penalty cost for crashing the software, cost of fixingݐோ, and ݂ሺܥ ,ܥ ,ܥ

one bug during testing, cost of fixing one bug after releasing, and the cost of testing during

the period ሾ0, ,ሿ, respectively. Assume, for the optimal policyݐ

݂ሺݐሻ ൌ ݄ሺܩሺݐሻሻ,

where h is convex.

5. Objective criterion:

The objective is to minimize the total cost of software associated with testing, debugging

(1)

8

and/or crashing.

The rationale behind the assumptions in the formulation of the mathematical model is

that, the number of bugs detected within ሾ0, ሻ, forms a conditional NHPP with intensityݐሿ, ܰሺݐ

function ݃ݔሺݐሻ when ܺ ൌ This is the case when the number of initial bugs follows a Poisson .ݔ

distribution with parameter ܺ. Each failure is followed by one bug, and the times at which

individual bugs are detected are independent, and identically distributed with the probability

density function ݃ሺݐሻ. The detected bug is corrected or removed, no new bugs are introduced,

and the correction of a bug takes an insignificant amount of time (Kuo and Yang (1996)).

In (Zheng (2002)), the detection time follows an exponential distribution with parameter

ሻݐwhere ݃ሺ ,ߤ ൌ ఓ௧. Another variation of the model has been investigated (Dalal andି݁ߤ

Mallows (1988)), where ܺ is gamma distributed with parameter ሺߙ, .ሻߚ

2.3 The Cost Process

The software testing process can be lengthy and expensive. It can involve additional

testing time, leading to increased cost in software maintenance, if a large number of bugs are not

discovered during testing to ensure the reliability of the software. It is thus imperative that

optimal policies be applied to attain the best possible time to cost effectively crash or release the

software. The following cost process model characterizes the total cost of the testing process.

In this model, a system being considered is tested for a duration t days. Suppose, the total

number of bugs detected within ሾ0, ,ሻ, and ଵܵݐሿ is ܰሺݐ . . . , ܵ, . .. are the arrival times of the

detected bugs. The bug detection process ሼ ଵܵ, . . . , ܵேሺ௧ሻሽ

generates a filtration, denoted by ௧࣠. The

total cost, ܶܥሺݐሻ, for the software system being tested for the duration t and to be released at ݐ,

has the following expression:

ሻݐሺܥܶ ൌ ݂ሺݐሻ ሻݐܰሺܥ ሻݐҧሺܩሻݐሺܺܧோܥ

In (2), ݂ሺݐሻ is the cost of testing related to the duration, ܥܰሺݐሻ is the cost of testing

(2)

9

(product of the cost of fixing one bug before release and the total number of bugs found during

testing) related with repairing of the bugs, and ܥோܺܧሺݐሻܩҧሺݐሻ is the expected cost of fixing the

remaining bugs after release.

If the testing is stopped at time ݐ, the expected cost due to the unknown number of bugs

remaining in the software needs to be added. Let ܴܥሺݐሻ denote the probable cost of fixing all

residual bugs after release. Then,

ሻݐሺܥܴ ൌ .ሻݐҧሺܩሻݐሺܺܧோܥ

From here on, ܧሾܺ|ܰሺݐሻ ൌ ݊ሿ will be denoted as ܺܧሺݐሻ, ܴܥሺݐሻ as ߮ሺݐሻ, and the failure

intensity ܺܧሺݐሻ݃ሺݐሻ as ߛሺݐሻ.

The minimization problem as an optimal stopping problem is to find ሼ ௧࣠ሽ – stopping time

 if exists, such that ,כ߬

ሻ൯כሺ߬ܥ൫ܶܧ ൌ ݅݊ ఛ݂ሺܧ൫ܶܥሺ߬ሻ൯ሻ.

In order to portray the total cost function, ܶܥሺݐሻ explicitly, the stopping time ߬ needs to

be characterized first. The stopping time of jumping process ߬ (Jiang and Makis (2003)) can be

denoted as

߬ ൌ ሺ ܵାଵ ר ܶ െ ܵሻෑ ൛ௌೕశభழ்ೕൟܫ
ିଵ

ୀ

ఙିଵ

ୀ

ؠ ߬ఙ ר ்߬.

In (5), ߪ is a stopping time with respect to the discrete filtration

 ؠ ௌ࣠,

߬ఙ ൌ ܵఙ

is the ሼ ௧࣠ሽ – stopping time at jump points, and

்߬ ൌ ሺ ܵାଵ ר ܶ െ ܵሻෑ ሼௌೕశభழ்ೕሽܫ
ିଵ

ୀ

∞

ୀ

(3)

(4)

(5)

(7)

(6)

10

is the ሼ ௧࣠ሽ – stopping time between jump points with probability one. Here, ሼ ܶ ܵሽ is adapted

to ௦࣠.

From the monotonicity of the releasing cost ߮ሺݐሻ, notice that it is unreasonable to crash

between jumps or to release at jumps. From this observation, the following restriction can be

applied.

Restriction A

The crash option is associated with ߬ఙ, and the release option with ்߬, for any stopping

time τ. In other words, release is not considered at jumps, and crash is not considered between

jumps.

 Using the restriction above, the total cost for the system stopped at ߬, ܶܥሺ߬ሻ can be

represented by the following expression.

Lemma 2.1

ሺ߬ሻܥܶ ൌ ߮ሺ0ሻ ෑܣ ሼௌೕశభழ்ೕሽܫ
ିଵ

ୀ

ఙ

ୀ

where for ݅ ൏ ,ߪ

ܣ ൌ െ߮ሺ ܵሻ ߮ሺ ܵାଵר ܶሻ ܥሼௌశభழ்ሽሾܫ ߮ାଵሺ ܵାଵሻ െ ߮ሺ ܵାଵሻሿ

 ݂ሺ ܵାଵר ܶሻ െ ݂ሺ ܵሻ.

For ݅ ൌ ,ߪ

ఙܣ ൌ ൫ܥ െ ሼఙவሽ൯ܫܥ െ ߮ఙሺܵఙሻ.

Proof.

Using Restriction A, for all possible sample paths, when ߪ ൌ 0,

ሺ߬ሻܥܶ ൌ ߮ሺ0ሻ ܣ

ൌ ߮ሺ0ሻ ൫ܥ െ வሽ൯ܫܥ െ ߮ሺܵሻ

ൌ . ܥ

(8)

(9)

(10)

(11)

11

ߪ ሺ߬ሻ atܥܶ ൌ 0 coincides with the cost of crashing the system at ܵ ൌ 0.

When system testing stops at ܵ ൏ ݐ ൏ ܵାଵ for releasing, the total cost is

ሻݐሺܥܶ ൌ ݂ሺݐሻ ሻݐܰሺܥ ߮ሺݐሻ.

This situation relates to the case where ߪ ݊, ܶ ൌ and ܵାଵ ,ݐ ܶ.

Recall, from (17), the total cost for the system stopped at ߬, ܶܥሺ߬ሻ,

ሺ߬ሻܥܶ ൌ ߮ሺ0ሻ ෑܣ ሼௌೕశభழ்ೕሽܫ
ିଵ

ୀ

ఙ

ୀ

Then,

ሺ߬ሻܥܶ ൌ ߮ሺ0ሻ ܣ
ିଵ

ୀ

ൌ ߮ሺ0ሻ ሾെ߮ሺ ܵሻ ߮ାଵሺ ܵାଵሻ ܥ ݂ሺ ܵାଵሻ െ ݂ሺ ܵሻሿ
ିଵ

ୀ

ሾെ߮ሺܵሻ ߮ሺ ܶሻ ݂ሺ ܶሻ െ ݂ሺܵሻሿ

ൌ ܥ݊ ߮ሺ ܶሻ ݂ሺ ܶሻ.

When the system testing stops at ݐ ൌ ܵ , ݊ 0 for crashing,

ሺ߬ሻܥܶ ൌ ߮ሺ0ሻ ሾെ߮
ିଵ

ୀ
ሺ ܵሻ ߮ାଵሺ ܵାଵሻ

ܥ ݂ሺ ܵାଵሻ െ ݂ሺ ܵሻሿ ሾ൫ܥ െ ൯ܥ െ ߮ሺܵሻሿ

ൌ ሺ݊ െ 1ሻܥ ܥ ݂ሺܵሻ.

The debugging cost is ሺ݊ െ 1ሻܥ instead of ݊ܥ as the last detected bug, which need not

be if the software is crashed immediately.

2.4 Problem Reduction

The original optimal stopping problem can be further simplified from the above

representation of TC(τ) using semi-martingale decomposition method.

ሺ߬ሻܥܶ ൌ ߮ሺ0ሻ ෑܣ ሼௌೕశభழ்ೕሽܫ
ିଵ

ୀ

ఙ

ୀ

(12)

(13)

(14)

12

ൌ ߮ሺ0ሻ หܣ൫ܧ ௌ࣠൯
ఙ

ୀ
ෑ ൛ௌೕశభழ்ೕൟܫ ఛܯ

ିଵ

ୀ

where ܯఛ is the martingale part with respect to stopping time ߬ with ܯ ൌ 0.

The Optional Stopping Theorem (Elliot (1982)) can be applied, due to the boundedness

of ߬:

ሺ߬ሻሻܥሺܶܧ ൌ ߮ሺ0ሻ หܣ൫ܧ ௌ࣠൯
ఙ

ୀ
ෑ ൛ௌೕశభழ்ೕൟܫ ఛܯܧ

ିଵ

ୀ

where, ܯܧఛ ൌ 0. This implies the optimal stopping time for the progressive part without the loss

of optimality.

Therefore, the cost process

ሺ߬ሻ൯ܥ൫ܶܧ ൌ ߮ሺ0ሻ |ܣ൫ܧ ௌ࣠൯ෑ ൛ௌೕశభழ்ೕൟܫ
ିଵ

ୀ

ఙ

ୀ

defines a dynamic system (Jiang and Makis (2003)) with initial state ሺ݊, ሻݐ ൌ ሺ0,0ሻ:

ሺ߬ሻ൯ܥ൫ܶܧ ൌ ߮ሺݐሻ න |ݏതሺܨ ܵሻሾߛାሺݏሻሺܥ െ ோሻܥ ݂Ԣሺݐሻሿ݀ݏ
்

ௌ

ఙିଵ

ୀ

ෑ ൛ௌೕశభழ்ೕൟܫ
ିଵ

ୀ
െ ሺ߮ାఙሺܵఙሻ െ ൫ܥ െ ሼఙவሽ൯ሻෑܫܥ ሼௌೕశభழ்ೕሽܫ

ఙିଵ

ୀ

Then, the optimal expected total cost, ܸሺݐሻ for the system with initial state (n, t) becomes

ܸሺݐሻ ൌ ݅݊ ሼ݂ఙ|்శሽሼ߶ሺtሻ െ න ԋതା ሺݏ| ܵሻ ሾߛା ሺݏሻ ሺܥோ െ ሻܥ െ ݂ᇱሺݐሻሿ

Tశ

ௌרTశ

ఙିଵ

ୀ

ݏ݀

െ ሾ߶ାఙ ሺܵఙሻ െ ൫ܥ െ ௌಬܫ ሼఙவሽ൯ሿܫܥ ்ሽ

This system holds the Markov property with respect to its initial state ሺ݊, ሻ, and henceݐ

dynamic programming approach can be applied to solve the optimization problem. The solution

to the dynamic programming problem consequently becomes the optimal policy among the

whole ௧࣠- stopping time class.

(15),

(16),

(17)

(18)

.

13

3. STRUCTURAL PROPERTY OF THE OPTIMAL POLICY

During software testing, any of the three decisions need to be taken: to terminate testing

and to crash the software, to continue testing for a longer period, or to release the software after

sufficient testing. Since cost and time are critical in today’s software business, it is important to

optimally make a decision whether to crash or release the software once the most favorable time

is reached. The optimal time is determined by failure statistics such that, if an increasing number

of bugs are detected within a specified testing period, the crash option is considered optimal.

Conversely, if fewer bugs are detected over the continuous time horizon, the software is

considered reliable enough to be released.

The time that defines when it is most advantageous to crash or release the software is

based on optimal policies. In this section, dynamic programming method will be used to derive

such policies.

3.1 Dynamic Equation

For a dynamic system that allows both crash and release options between jumps, we can

denote the cost function ܹሺݐሻ with initial state ሺ݊, ሻ (18), the cost if the optimalݐሻ. Recall ܸሺݐ

policy is chosen starting at ሺ݊, ሻ. Then, the savings (or gain) can be represented asݐ

ܹሺݐሻ ൌ ܸሺݐሻ െ ߮ሺݐሻ.

For ܸሺݐሻ ,ܥ

ܸሺݐሻ െ ߮ሺݐሻ ൌ ሼെ்݊݅ܯ
1

ሻݐതሺܨ
න ோܥሻሺݏሺߛሻ൛ሾݏതሺܨ െ ሻܥ െ ݂ᇱሺݏሻሿ
்

௧

െ ߛሺݏሻൣ ܸାଵሺݏሻר ൫ܥ െ ൯ܥ െ ߮ାଵሺݏሻ൧ൟ݀ݏሽ

ܹሺݐሻ ൌ ሼെන்݊݅ܯ ோܥሻሺݏሺߛሻሼሾݐ|ݏതሺܨ െ ሻܥ െ ݂ᇱሺݏሻሿ
்

௧

െߛሺݏሻሾ ܹାଵሺݏሻר ሺܥ െ ܥ െ ߮ାଵሺݏሻሻሿሽ݀ݏሽ

(20)

(21)
.

.

(19)

14

Since ܹ 0 always, we consider

| ܹሺݐሻ| ൌ න ோܥሻሺݏሺߛሻሼሾݐ|ݏതሺܨ െ ܥ | ܹାଵሺݏሻ| ש
்
כ

௧
 ሺ߮ାଵሺݏሻ െ ൫ܥ െ ൯ሻሻܥ െ ݂ᇱሺݏሻሿ

The monotonicity of ܹሺݐሻ and | ܹሺݐሻ| determines the forms of optimal crash and

release policies.

3.2 Optimal Release Policy

Intuitively, the optimal release policy represents the most favorable time to release the

software. The policy is simply to release the software at the optimal release time, denoted by ܶ
 .כ

By assumption from (1), the cost structure ݂ሺݐሻ ൌ ݄ሺܩሺݐሻሻ, where ݄ is convex.

Therefore,

݂ᇱሺݐሻ ൌ ݄ᇱ൫ܩሺݐሻ൯݃ሺݐሻ

and

݂ᇱሺݐሻ
ሻݐሺߛ

ൌ
݄ᇱ൫ܩሺݐሻ൯݃ሺݐሻ
ሻݐሻ݃ሺݐሺܺܧ

ൌ
݄ᇱ൫ܩሺݐሻ൯
ሻݐሺܺܧ

is increasing as t.

The optimal release time for the ݊-th bug ܶ
 satisfies כ

݂ᇱሺݏሻ ൌ ோܥሻሺݏሺߛ െ ܥ െ ሾ ܹାଵሺݏሻרሺܥ െ ܥ െ ߮ାଵሺݏሻሻሿሻ

ൌ ߛሺݏሻሺܥோ െ ܥ | ܹାଵሺݏሻ| ש ሾ൫߮ାଵሺݏሻ െ ൫ܥ െ .൯൧ܥ

Once we show that | ܹାଵሺݐሻ| ՝ has a unique solution. Notice that with the uniqueness of (25) ,ݐ

ܶ
ݐ we know that the release time for the ݊-th bug is independent to ,כ ൌ ܵ, when the ݊-th bug is

detected.

The monotonicity | ܹሺݐሻ| ՛ ݊ ՝ guarantees that the optimal releasing policy is a ݐ

control-limit policy with ܶ ՛ for any ݊. Hence, the following lemma is established to prove that

| ܹሺݐሻ| ՛ ݊ ՝ .ݐ

(22)

(23)

(24)

(25)

,

15

Lemma 3.1 | ܹሺݐሻ| ՛ ݊ ՝ .ݐ

Proof.

To prove that | ܹሺݐሻ| ՛ ݊ ՝ we need the following result from stochastic comparison ,ݐ

(Zheng (2002)):

Let ܺ ௦.௧. ܻ, and ݄ሺݔሻ decreasing. Then,

ሾ݄ሺܺሻܧ .ሾ݄ሺܻሻሿܧ

The above result is applied to prove | ܹሺݐሻ| ՛ ݊, and | ܹሺݐሻ| ՝ Based on mathematical .ݐ

induction, the following assumptions are made:

| ܹାଵሺݐሻ| ՛ ݊, and | ܹାଵሺݐሻ| ՝ .ݐ

1. Proof of |ࢃሺ࢚ሻ| ՛ .

a) Let ݄ሺݏሻ ൌ ൬ܥோ െ ܥ | ܹାଵሺܵሻ|ש ቀ߮ାଵሺݏሻ െ ൫ܥ െ ൯ቁ൰ܥ െ ݂ᇱሺݏሻ/ߛሺݏሻ if

 ݏ ܶ
and ݄ ,כ ൌ 0 otherwise. It is decreasing as ݏ and increases as ݊, given the

induction assumption from ሺ݊ 1ሻ.

b) ܺ ௦.௧. ܺାଵ.

By (a) and (b), together with the stochastic comparison result, we have

| ܹሺݐሻ| ൌ න ݂ሺݐ|ݏሻ݄ሺݏሻ݀ݏ
்
כ

௧

 න ሻݐሺ݄ሺݏሻ݀ݏሻ݄ାଵሺݐ|ݏതሺܨ ՛ ݊ሻ
்
כ

௧

 න ݂ାଵሺݐ|ݏሻ݄ାଵሺݏሻ݀ݏ
்
כ

௧

 න ݂ାଵሺݐ|ݏሻ݄ାଵሺݏሻ݀ݏ
்శభ
כ

௧

ൌ ሼන்ݔܽܯ ோܥሻሺݏାଵሺߛሻሼሾݐ|ݏതାଵሺܨ െ ܥ
்

௧

(26)

(27)

16

| ܹାଶሺݏሻ|שሺ߮ାଶሺݏሻ െ ൫ܥ െ ൯ሻሻܥ െ ݂ᇱሺݏሻሿሽ݀ݏሽ

 ൌ | ܹାଵሺݐሻ|.

Since | ܹሺݐሻ| | ܹାଵሺݐሻ|, | ܹሺݐሻ| ՛ ݊.

2. Proof of |ࢃሺ࢚ሻ| ՝ .࢚

For ݐଵ ൏ ଶሻݐଶ, clearly, ܺሺݐ ܺሺݐଵሻ.

| ܹሺݐଶሻ| ൌ න ݂ሺݐ|ݏଶሻ݄ሺݏሻ݀ݏ
்
כ

௧

ൌ න ݂ሺݏ െ ݏଶሻ݄ሺݐ|ଶݐ ݏଶሻ݀ݐ
்
௧మିכ

 න ݂ሺݏ െ ݏଶሻ݄ሺݐ|ଶݐ ݏଶሻ݀ݐ
்
௧భିכ

(longer integration interval, and positive integrand)

 න ݂ሺݏ ݏଶሻ݄ሺݐ|ଶݐ ሻݐሺ݄ሺݏଵሻ݀ݐ ՝ ሻݐ
்
௧భିכ

 න ݂ሺݏ ݏଵሻ݄ሺݐ|ଵݐ ݏଵሻ݀ݐ
்
௧భିכ

ൌ න ݂ሺݐ|ݏଵሻ݄ሺݏሻ݀ݏሺܺሺݐଶሻ ܺሺݐଵሻ
்
כ

௧భ

ൌ | ܹሺݐଵሻ|.

Since | ܹሺݐଶሻ| | ܹሺݐଵሻ|, | ܹሺݐሻ| ՝ .ݐ

As all the monotonicity properties of | ܹሺݐሻ| have been proved, we have control-limit

form of the optimal release policy with { ܶ
 .݊ increases in {כ

3.3 Optimal Crash Policy

The optimal crash policy is determined by the dynamic equation (20). In fact, based on

the optimal stopping for Markov processes (Chow et. al. (1991)), the optimal crash

(28)

17

decision is made for ܵఙ, ߪ being the optimal crashing policy, if and only if the optimal cost

function

ఙܸሺܵఙሻ െ ሺܥ െ ሼఙவሽሻܫܥ 0.

Based on (29), the optimal crash policy can then be interpreted as the following:

At the jump point ݐ ൌ ܵ, ݊ 1, the remaining system has a minimal cost ܸሺݐሻ. When

the cost is higher than ሺܥ െ , and continuing to testܥ ሻ, fixing the current defect with costܥ

will cost more than simply crashing the software. When ߪ ൌ 0, the software should not enter the

testing stage if ܸሺݐሻ ൌ .. The optimal crash policy can be illustrated as in Figure 1ܥ

The structure of the optimal crash policy relies on the monotonicity property of ܸሺݐሻ.

Therefore, the following lemma that ܸሺݐሻ ՛ ݊ ՝ .needs to be proved ݐ

Lemma 3.2 ܸሺݐሻ ՛ ݊ ՝ .ݐ

Proof.

From the dynamic equation of ܸሺݐሻ (18), for ܸାଵሺݐሻ and ܸሺݐ, כାଵݐ ሻ, where

ܸሺݐ, כାଵݐ ሻ ൌ න ሻݐ|ݏതሺܨ
௧శభכ

௧
ሾߛሺݏሻሺሺ ܸାଵሺݏሻ ሻܥרሻܥ ݂ᇱሺݐሻሿ݀ݏ כାଵݐതሺܨ כାଵݐሻ߮ሺݐ| ሻ

we have the following differential equations

ܸାଵ
ᇱ ሺݐሻ ൌ െߛାଵሾሺ ܸାଶሺݐሻ ሻܥרሻܥ െ ܸାଵሺݐሻሿ െ ݂ᇱሺݐሻ

ܸ
ᇱሺݐ, כାଵݐ ሻ ൌ െߛሾ ܸାଵሺݐሻ ሻܥרሻܥ െ ܸሺݐ, כାଵݐ ሻሿ െ ݂ᇱሺݐሻ

ሺܥ െ ሻܥ

ܸሺݐሻ ܸାଵሺݐሻ

כݐ כାଵݐ

Figure 1: Optimal crash policy.

(29)

(30),

,

18

and we have

ܸାଵ
ᇱ ሺݐሻ െ ܸ

ᇱሺݐ, כାଵݐ ሻ െ ߛାଵሾ ܸାଵሺݐሻ െ ܸሺݐ, כାଵݐ ሻሿ.

Therefore, the boundary condition is now at ݐାଵכ , where

ܸାଵሺݐାଵכ ሻ ൌ ߮ାଵሺݐାଵכ ሻ ߮ሺݐାଵכ ሻ ܸሺݐାଵכ ሻ.

Thus, ݐ ߳ ݐ ାଵכ ,

ሻ൫ݐതାଵሺܨൣ ܸାଵሺݐሻ െ ܸሺݐ, כାଵݐ ሻ൯൧ᇱ 0,

(ܸାଵሺݐሻ െ ܸሺݐ, כାଵݐ ሻሻ ሺ߮ାଵሺݐାଵכ ሻ െ ߮ሺݐାଵכ ሻሻ 0, and

ܸାଵሺݐሻ ܸሺݐ, כାଵݐ ሻ ܸሺݐሻ.

From the solution to the differential equations, we can see that ܸ
ᇱሺݐሻ ൏ 0. Thus, ܸሺݐሻ ՝ ݐ ՛ ݊

can be observed directly from the differential equations.

The optimal crash policy is a control-limit policy with respect to the arrival time of each

detected bug. There exists a series of increasing values of ሼݐכሽ for any ݊ 0 such that the

optimal crash is carried out at the first period when the ݊-th arrival time ܵ ൏ . If ܶݐ ൌ כݐ ,

then the system is crashed at time 0.

As ܸሺݐሻ ՛ ݊ ՝ ,ݐ

כݐ ൌ ݅݊ ௧݂൛ݐห ܸሺݐሻ ൫ܥ െ ሼவሽ൯ൟܫܥ

is unique when exists.

3.4 Computational Algorithm

Based on the optimal policy and the boundary conditions, a computational algorithm has

been developed. The algorithm is divided into four steps as below:

Step 1.

Let ݉ݎ݂ܷ݅݊ ~ ݔ ሾܷெூே, ܷெሿ. Starting from ܸכ with ߛಾಲ ൌ ܷெ݃ሺݐሻ, the optimal

policy is to release at age ܶכ such that

(31)

(32)

(33)

(34)

(35)

(36)

19

݂ᇱሺܶכሻ ൌ ோܥሻሺכಾಲ݃ሺܶߛ െ .ሻܥ

Therefore, there exists ܶכܵ ,כ, such that

for ݐ ൏ ሻݐሺכܸ ,כܵ ൌ ;, crash immediatelyܥ

for ܵכ ൏ ݐ ൏ solution to differential equation ,כܶ

൫ܸכሺݐሻ൯ᇱ ൌ െߛಾಲሺݐሻൣሺܸכሺݐሻ ሻܥ ר ܥ െ ሻ൧ݐሺכܸ െ ݂ᇱሺݐሻ;

for ܶכ ൏ ሻݐሺכܸ ,ݐ ൌ ሻݐሺכ߮ ൌ .ሻݐҧሺܩܷெܥ

ܺ ሻ is the optimal cost function of a degenerated system withݐሺכܸ ؠ ܷெ. For such a

system, the optimal policy is either to crash at starting time t for ݐ or to release the system ,כܵ

at ܶכ for ݐ .כܵ

Step 2.

For a large N, let ேܸ
ேሺݐሻ ൌ ሻݐሺכܸ

ேܹ
ேሺݐሻ ൌ ሻݐሺכܸ െ ߮ಾಲሺݐሻ

Step 3.

For ݊ ൌ ሺܰ െ 1ሻ:െ1: 1,

(1) The optimal release time

ܶ
כ ൌ inf ሼݐ|݂ᇱሺݐሻ ൌ ሻݐሺߛ ቀሺܥோ െ ሻܥ | ܹାଵሺݐሻ| ש ൣ߮ାଵሺݐሻ െ ൫ܥ െ ൯൧ቁሽܥ

(2) ܸ
ே is computed by differential equation

ܸାଵ
ᇱ ሺݐሻ ൌ െߛାଵሾሺ ܸାଶሺݐሻ ሻܥרሻܥ െ ܸାଵሺݐሻሿ െ ݂ᇱሺݐሻ

(3) The optimal crash time

כݐ ൌ inf ሼݐ| ܸேሺݐכሻ ܥ െ ሼவሽሽܫܥ

(4) ܹ
ேሺݐሻ ൌ ܸ

ேሺݐሻ െ ߮ሺݐሻ

Step 4.

Stop after ݊ ൌ 0.

(37)

(38)

(39)

(40)

(41)

(42)

20

4. NUMERICAL EXAMPLE

The computational algorithm developed in the previous section is based on optimal

policy and the boundary conditions. In this section, the algorithm is illustratively demonstrated

by a numerical example, implemented in Matlab (See Appendix for Matlab Code). The

numerical example assumes the following parameters:

• Crashing Penalty Cost, ܥ ൌ 2000.

• Cost of fixing a bug after release, ܥோ ൌ 200.

• Cost of fixing a bug before release, ܥ ൌ 15.

• Cost of testing during period ሾ0, ሻݐሿ, ݂ሺݐ ൌ .ݐ20

• Number of iteration, ܰ ൌ 200.

• Probability density function ݃ሺݐሻ of bug occurrence time follows an exponential

distribution with parameter μ ൌ 0.1.

• The Random parameter ܺ is considered to be uniformly distributed between 0 ሺܷெூேሻ

and 200 ሺܷெሻ.

The above parameters have been used in the demonstration of both sub-optimal and

optimal policies. The first two plots (Figures 2 and 3) illustrate the expected total cost ܸሺݐሻ over

time, which is the value function under a fixed release time. The set of curves start from ܸ, and

follows a similar pattern until ܸ is reached.

The difference between the penalty cost ܥ and the cost of fixing each bug before release

 is ሺ2000ܥ െ 15 ൌሻ 1985. The intersection of the ሺܥ – ܥሻ line and each of the ܸሺݐሻ plots

furnishes the crash threshold, shown in Figure 4 (blue curve). The crash threshold, plotted as the

emergence of the number of bugs over time (days), represents the optimal crash times, ݐכ . The

region on the left side of the crash threshold curve is simply the crash zone. This means, the

21

software is crashed if the number of bugs is too high, and the sample test path enters the crash

threshold.

The lower bound of ܸሺݐሻ defines the release policy, which is to release the software at

time (days) 40.94. The release threshold, also shown in Figure 4 (red line), represents the

optimal release times, ܶ
 .The area on the right side of the release threshold is the release zone .כ

The region between the crash and release thresholds represents the testing zone. A sample path is

shown in Figure 4 (green line) (also shown in Figure 9) to demonstrate the occurrences of bugs

during testing. It should be noted that only one bug occurs at a time.

Figures 5 and 6 illustrate the expected total cost ܸሺݐሻ over time (days), under the optimal

policies. The cost function in this case indicates a wider range of release times. Again, the

intersection of the ሺܥ – ܥሻ line and each of the ܸሺݐሻ plots provides the crash threshold

(represents the optimal crash times, ݐכ), shown in Figure 7. Similar to Figure 4, the region on the

left side of the threshold in Figure 7 is the crash zone.

The release policy is defined at the lower bound of ܸሺݐሻ. The release threshold, shown in

Figure 8, represents the optimal release times, ܶ
 The crash and release thresholds (from Figures .כ

7 and 8) are compared in Figure 9. Here, the area between the crash and release thresholds also

represents the testing zone.

22

To
ta
l c
os
t V

n(
t)

Time (days)

Figure 2: Total cost ܸሺݐሻ over a fixed release time (under sub-optimal policies).

Cp ‐ Cr

To
ta
l c
os
t V

n(
t)

Time (days)

Figure 3 (dots connected): Total cost ܸሺݐሻ over a fixed release time
(under sub-optimal policies).

Cp ‐ Cr

23

N
um

be
r o

f b
ug
s

Time (days)

Figure 4: Crash and release thresholds under sub-optimal policies.

Crash threshold Release threshold

To
ta
l c
os
t V

n(
t)

Time (days)

Figure 5: Total cost ܸሺݐሻ under the optimal policies.

Cp ‐ Cr

Testing Zone

Sample path

24

To
ta
l c
os
t V

n(
t)

Time (days)

Figure 6 (dots connected): Total cost ܸሺݐሻ under the optimal policies.

Cp ‐ Cr

N
um

be
r o

f b
ug
s

Time (days)

Figure 7: Crash threshold using the optimal policies.

Crash zone

Crash threshold

Testing zone

25

N
um

be
r o

f b
ug
s

Time (days)

Figure 8: Release threshold using the optimal policies.

N
um

be
r o

f b
ug
s

Time (days)

Figure 9: Optimal crash and release thresholds.

Crash threshold Release thresholdTesting Zone

Testing zone

Release threshold

Release zone

Sample path

26

5. CONCLUSION

In this research, an enhanced software reliability model has been developed to

demonstrate the optimal stopping time for software testing. The new optimal stopping

formulation suggests the most favorable time to discontinue testing. The model exhibits both

crash and release options that can be chosen at any time during the software testing phase, in

order to avoid wasting effort in the development process.

The optimal crash policy contains a simple control limit structure with monotonicity

properties. This enables early termination of testing, if the reliability of the software is low. The

optimal release policy also contains a control limit structure with monotonicity properties, which

allows the release option to be considered immediately if the software is found to be reliable

enough. The dynamic policies have been shown to reduce testing time, which consequently

minimizes the cost of testing.

The policies established in this research can be applied to any individual or integrated

software modules. This means, smaller modules can be independently tested for reliability before

they are incorporated into a complete package. The integrated package of many small modules

can again be tested using the optimal policies to ensure completeness and better quality of the

developed software.

The optimal policies will allow software developers to crash unreliable software before

major costs have been incurred, or to release sufficiently reliable software prior to initially

projected deadline. In a competitive software industry nowadays, implementing the optimal

policies will give software developing companies a competitive advantage, by allowing them to

cut down on developmental cost and to release the product before their competitors in the

market.

Many industrial and commercial processes are governed by innovative software these

27

days, and it is becoming increasingly important for software companies to develop reliable

software. Future research could be directed toward the development of further general debugging

models, where self-generating processes are of great interest, and optimal stopping formulation is

likely to be applicable.

28

REFERENCES

1. Ballmer, S., (2006), “The new IT investments powering productivity and growth”, Gartner
Symposium/ ITxpo; http://www.gartner.com.

2. Biafore, B., (2006), "About project crashing (shortening a project schedule)", Microsoft

Office Online, Microsoft Press; http://office.microsoft.com/en-us/help/HA100364
161033.aspx.

3. Chow, Y-S., Robbins, H., and Siegmund, D., (1991), “Great expectations: The theory of
optimal stopping”, Mineola, NY: Dover.

4. Dalal, S. R., and Mallows, C. L., (1988), “When should one stop testing software”, Journal

of the American Statistical Association, 83(403), 872-879.

5. Dalal, S. R., and Mallows, C. L., (1990), “Some graphical aids for deciding when to stop

testing software”, IEEE Journal of Selected Areas in Communications, 8(2), 169–175.

6. Elliot, R. J., (1982), “Stochastic calculus and applications”, Springer, New York.

7. Forman, E. H., and Singpurwalla, N. D., (1977), “An empirical stopping rule for debugging

and testing computer software”, Journal of the American Statistical Association, 72(360),
750-757.

8. Forman, E. H., and Singpurwalla, N. D., (1979), “Optimal time intervals for testing on
computer software errors”, IEEE Transactions on Reliability, 28, 250–253.

9. Goel, A. L., and Okumoto, K., (1979), “Time-dependent error detection rate model for

software reliability and other performance measures”, IEEE Transactions on Reliability,
28(3), 206–211.

10. Huang, C., Lyu, M. R., and Kuo, S., (2003), “A unified scheme of some nonhomogenous

Poisson process models for software reliability estimation”, IEEE Transactions on Software
Engineering, 29(3), 261-269.

11. Humphrey, W. S., (1989), “Managing the software process”, Addison-Wesley, Reading, MA.

12. Inoue, S., and Yamada, S., (2007), “Generalized discrete software reliability modeling with

effect of program size”, IEEE Transactions on Systems, Man, and Cybernetics – Part A:
Systems and Humans, 37(2), 170-179.

13. Jelinski, Z., and Moranda, P., (1972), “Software reliability research”, Statistical Computer

Performance Evaluation, W. Freiberger (ed.), Academic Press, 465-484.

14. Jiang, X., Knapp, G., and Barkman, M., (2005), “A dynamic software testing model with

release and crash options”, Louisiana State University.

29

15. Kapur, P. K., and Garg, R. B., (1989), “Cost–reliability optimum release policies for a
software system under penalty cost”, International Journal of Systems Science, 20, 2547–
2562.

16. Koch, H. S., and Kubat, P., (1983), “Optimal release time of computer software”, IEEE
Transactions on Software Engineering, 9(3), 323–327.

17. Kuo, L., and Yang, T. Y., (1996), “Bayesian computation for nonhomogeneous Poisson
process in software reliability”, Journal of the American Statistical Association, 91(434),
206-211.

18. Lyu, M. R., (1996), “Handbook of software reliability engineering”, McGraw-Hill.

19. Makis, V., and Jiang, X., (2003), “Optimal replacement under partial observations”,

Mathematics of Operations Research, 28(2), 382-394.

20. Musa, J. D. and Okumoto, K., (1984), “A logarithmic Poisson execution time model for

software reliability measurement”, Proceeding 7th International Conference on Software
Engineering, Orlando, Florida, 230-238.

21. Musa, J. D., Iannino, A., and Okumoto, K., (1987), “Software reliability – Measurement,
prediction, application”, New York: McGraw-Hill.

22. Ohba, M., (1984), “Software reliability analysis models”, IBM Journal of Research and
Development, 28(4), 428–443.

23. Okumoto, K., and Goel, A. L., (1980), “Optimum release time for software systems based on
reliability and cost criteria”, Journal of System Software, 1(4), 315–318.

24. Pan, J., (1999), “Software reliability”, Dependable Embedded Systems, Carnegie Mellon
University; http://www.ece.cmu.edu/~koopman/des_s99/sw_reliability.

25. Ross, S. M., (1985), “Software reliability: The stopping problem”, IEEE Transactions on
Software Engineering, 11(12), 1472–1476.

26. Schick, G. J., and Wolverton, R. W., (1978), “An analysis of competing software reliability
models,” IEEE Transactions on Software Engineering, SE-4, 104-120.

27. Shanthikumar, J. G., and Tufekci, S., (1983), “Application of a software reliability model to
decide software release time”, Microelectronics and Reliability, 23(1), 41-59.

28. Thayer, T. A., Lipow, M., and Nelson, E. C., (1976), “Software reliability study”, Rep.
RADC-TR-76-238.

29. Tohma, Y., Tokunaga, K., Nagase, S., and Murata, Y., (1989), “Structural approach to the

estimation of the number of residual software faults based on the hyper-geometric
distribution”, IEEE Transactions on Software Engineering, 15(3), 345–355.

30

30. Wikipedia, the free encyclopedia, (2007), “Software reliability”, Reliability Engineering;
http://en.wikipedia.org/wiki/Reliability_engineering.

31. Xie, M., (1991), “Software reliability modeling”, Singapore: World Scientific Publisher.

32. Yamada, S., Ohba, M. and Osaki, S., (1984), “S–shaped software reliability growth models
and their applications”, IEEE Transactions on Reliability, 33(4), 289–292.

33. Yamada, S., Narihisa, H., and Osaki, S., (1984), “Optimum release policies for a software
system with a scheduled delivery time”, International Journal of Systems Science, 15, 905–
914.

34. Yamada, S., and Osaki, S., (1985), “Cost-reliability optimal release policies for software
systems”, IEEE Transactions on Reliability, 34(5), 422-424.

35. Zheng, S., (2002), “Dynamic release policies for software systems with a reliability
constraint”, IIE Transactions, 34(3), 253-262.

31

APPENDIX: MATLAB CODE

Module 1: VntSolution_Alternative_Full.m - Computes ܸሺݐሻ under a fixed release time.

global N Cp CR Cr Ct mu UMax UMin t V N_Bugs TN

parameters_Uniform;

N=50;

TMax=40.9434;

N_Bugs=N+1;

gtd=mu*exp(-mu*TMax);
Gtd=1-gtd/mu;

for i = 1:N+1
 Vntd(i)= CR*FuncEXnt(i,TMax)*(1-Gtd);
end

hold on;

j=N_Bugs;
if j==N+1
 [t_n,V_n] = ode45('dVntdt_Alternative', [TMax 0.1], Vntd(j));
 V=V_n;
 t=t_n;
 plot(t, V,'r-')
 X=Cp-Cr;
 plot(t, X, 'b-')
end

for j=N:-1:1
 N_Bugs=j
 [t_n,V_n] = ode45('dVntdt_Alternative', [TMax 0.1], Vntd(j));
 for i=1:size(V)
 if V(i)<Cp
 else
 V(i)=Cp;
 end
 end

 V_temp1=zeros(size(t_n));
 V_temp2=zeros(size(t_n));

 for i=1:size(t_n)

32

 V_temp1(i)=V_n(i);
 V_temp2(i)=spline(t,V,t_n(i));
 end

 V=zeros(size(t_n));
 V=min(V_temp1, V_temp2);
 t=t_n;
 plot(t, V,'r-')
end

Module 2: VntSolution_Alternative_Full2.m - Computes ܸሺݐሻ under the optimal policies.

global N Cp CR Cr Ct mu UMax UMin t V N_Bugs TN

beginTime=clock;

parameters_Uniform;

N=50;

Crash_Times=zeros(1,N+1);

TMax=40.9434;

N_Bugs=N+1;

TN=zeros(1,N+1);

FindTN;

TN(N_Bugs)=min(TN(N_Bugs), TMax);

gtd=mu*exp(-mu*TN(N_Bugs));
Gtd=1-gtd/mu;

j=N_Bugs

 Vntd(j)= CR*FuncEXnt(j,TN(j))*(1-Gtd);

hold on;

if j==N+1
 [t_n,V_n] = ode45('dVntdt_Alternative', [TN(j) 0.1], Vntd(j));
 V=V_n;
 t=t_n;
 X=Cp-Cr;
 plot(t, X, 'r-')

33

 plot(t, V,'b-')
end

for j=N:-1:0
 N_Bugs=j
 FindTN;
 TN(N_Bugs)=min(TN(N_Bugs), TMax);
 gtd=mu*exp(-mu*TN(N_Bugs));
 Gtd=1-gtd/mu;
 Vntd(j)= CR*FuncEXnt(j,TN(N_Bugs))*(1-Gtd);
 [t_n,V_n] = ode45('dVntdt_Alternative', [TN(N_Bugs) 0.1], Vntd(j));
 for i=1:size(V)
 if V(i)<Cp
 else
 V(i)=Cp;
 end
 if V(i)<Cp-Cr
 Crash_Times(j)=t(i)*(V(i+1)-(Cp-Cr))/(V(i+1)-V(i))+t(i+1)*(1-(V(i+1)-(Cp-
Cr))/(V(i+1)-V(i)));
 end
 end
 V_temp1=zeros(size(t_n));
 V_temp2=zeros(size(t_n));
 for i=1:size(t_n)
 V_temp1(i)=V_n(i);
 V_temp2(i)=spline(t,V,t_n(i));
 end
 V=zeros(size(t_n));
 V=min(V_temp1, V_temp2);
 t=t_n;
L=min(V_n);
plot(t, V,'b-')
end

RunTime=clock-beginTime

Module 3: dVntdt_Alternative.m - Computes the derivative.

function y = dVntdt_Alternative(w,z)
global N Cp Cr Ct CR mu UMax t V N_Bugs

if N_Bugs==(N+1)
 y=-FuncEXnt(N_Bugs,w)*mu*exp(-mu*w)*(min(z+Cr,Cp)-z)-Ct;
else
 V_NPlus1=spline(t,V,w);
 y=-FuncEXnt(N_Bugs,w)*mu*exp(-mu*w)*(min(V_NPlus1+Cr,Cp)-z)-Ct;
end

34

Module 4: FuncEXnt.m - Computes ܧሺܺ|ܰሺݐሻ ൌ ݊ሻ.

function y=FuncEXnt(n, t)
global N Cp CR Cr Ct TD mu UMax UMin

Gt=1-exp(-mu*t);

y=(n+1)/Gt*(gammainc(UMax*Gt, n+2)-gammainc(UMin*Gt,
n+2))/(gammainc(UMax*Gt, n+1)-gammainc(UMin*Gt, n+1));

Module 5: FindTN.m - Computes the sub-optimal and optimal release/crash times.

global t V UMax Ct Cr CR mu N_Bugs TN TMax

xU=TMax;
xL=0;
x=xU;

Det=xU-xL;

for k=1:30

if N_Bugs==N+1
 y1=min(CR*FuncEXnt(N_Bugs+1,x)*exp(-mu*x), (Cp-Cr));
 y2=CR*FuncEXnt(N_Bugs+1,x)*exp(-mu*x); %

else
 y1=min(spline(t, V, x), (Cp-Cr));
 y2=CR*FuncEXnt(N_Bugs+1,x)*exp(-mu*x);
end

y=y2-y1+(CR-Cr);
Det=Det/2;
check=y*FuncEXnt(N_Bugs,x)*mu*exp(-mu*x)-Ct;

if check <0
 xU=xU-Det;
 x=xU;
else
 xU=xU+Det;
 x=xU;
end

end

if N_Bugs>0
 TN(N_Bugs)=x;

35

 y=y2-y1+(CR-Cr);
end

Module 6: parameters_Uniform.m – Defines the uniform parameters.

global Cp CR Cr Ct TD mu UMax UMin N

Cp=2000;
CR=200;
Cr=15;
Ct=20;
mu=0.1;
UMax=200;
UMin=0;
N=200;

36

VITA

Tanvir Khan is a native of Dhaka, Bangladesh. He has received a Bachelor of Science in

Electrical Engineering degree with minor in mathematics, from Louisiana State University –

Baton Rouge in 2004. During his undergraduate career, he has worked in the LSU Middleton

Library, and the Department of Computer Science, and has interned with IBM Bangladesh. Prior

to his completion of undergraduate studies, he has obtained the Louisiana Engineer Intern

License from Louisiana Professional Engineering and Land Surveying Board in 2004.

He is currently pursuing the Master of Science in Engineering Science degree, with

concentrations in information technology and engineering, and information systems and decision

sciences. During his graduate studies, he has worked as a Teaching and Graduate Assistant in the

Departments of Construction Management and Industrial Engineering, and Accounting, and has

interned with LSU Career Services as a Database Developer.

	Optimization for software release and crash
	Recommended Citation

	Microsoft Word - 03-30 Header v11

