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ABSTRACT 

Software testing is a process to detect faults in the completeness and quality of developed 

computer software. Testing is a key process in assuring quality by identifying defects in 

software, and possibly fixing them, before it is delivered to end-users. A major decision to make 

during this software testing is, to determine whether to continue testing and eventually releasing 

the software, or when to stop the test and ‘crash’ it. Such a decision needs to be made to 

optimally balance the tradeoff between the cost of development and the reliability of the 

software. In this paper, a new optimal strategy is developed based on a conditional non-

homogeneous Poisson process (Conditional-NHPP) on a continuous time horizon to determine 

when the optimal time is to release or crash the software.  
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1. INTRODUCTION 

With the dawn of a new era, the computer age, computers and the software running on 

them are playing an essential role in our daily lives. Almost all analog, mechanical appliances 

that we used to operate have been replaced by digital equipments, run by CPUs and software. 

From cars to critical defense equipments, virtually everything uses sophisticated electrical 

systems and smart chips today. Unlike in the past when mechanical components were primarily 

used, electrical systems now use embedded software. With the advancement in web technology, 

many hardware based systems are substituted by software applications. The growth of software 

development and web technology has been enormous since the Internet revolution. As Microsoft 

CEO Steve Ballmer (2006) puts it, we have now entered “a new software era”. 

Software applications are used in many critical devices – airplanes, heart pace-makers, 

radiation therapy machines, etc. A software error in such machines can claim people’s lives. 

With processors and software saturating the safety critical embedded world, the reliability of 

software is simply a matter of life and death (Pan (1999)). 

1.1 Software Reliability 

Software reliability is the likelihood of successful operation of software for a 

predetermined period of time in a specified environment. Software is considered to have 

performed a successful operation, when it functions completely as expected, without any failure. 

Software that fails less often is considered to have higher quality than software that fails 

frequently. 

Software unreliability is a consequence of unexpected results of software operations. 

Even comparatively small software programs can have a large combination of inputs and states 

that are impracticable to test thoroughly. Software reliability engineering must take into account 

that restoring software to its original state only works until the same combination of inputs and 
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states results in the same inadvertent result (Wikipedia (2007)). For two identical copies of the 

same software, the reliability may be different if they are used under different operational 

conditions (Musa and Okumoto (1984)). These factors essentially exhibit the characteristic of 

randomness in software reliability engineering. 

1.2 Software Reliability Growth Models 

The objective of software reliability testing is to determine probable problems with the 

software design and implementation as early as possible to assure that the system meets its 

reliability requirements. Several hundreds of statistical models used in software reliability testing 

have been developed over the years. Among the models, software reliability growth models, also 

knows as SRGMs (Lyu (1996), Xie (1991), Tohma et. al (1989), Musa et. al. (1987), Ohba 

(1984), Yamada et. al. (1984), and Goel and Okumoto (1979)), are most widely used. 

A SRGM is a useful mathematical tool to describe the failure-occurrence or fault-

detection phenomena in the software testing phase, and to assess software reliability 

quantitatively (Inoue and Yamada (2007)). SRGMs can be used to characterize the dynamics of 

the testing process (e.g., number of initial faults, the software reliability, etc.), and to predict 

possible failure pattern (e.g., failure intensity, meantime-interval between failures, etc.) (Huang 

et. al. (2003)). 

De-eutrophication Model 

The de-eutrophication model developed by Jelinski and Moranda in 1972 is one of the 

first SRGMs for assessing software reliability, that has become the basis for much of the research 

thereafter. The model is based on a hypothesis that software contains a finite number of bugs, 

and the inter-failure time is exponential with intensity proportional to the number of remaining 

bugs. Each bug in the software causing a failure is instantly removed, and therefore the number 

of bugs remaining is reduced by one. Schick and Wolverton in 1978 examined its applicability to  
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the error-finding process with actual data. 

Several methods that determine the parameters of the de-eutrophication model have 

demonstrated that the maximum likelihood count of the defects in the software is a favorable 

approach for software testing (Forman and Singpurwalla (1977)). 

The de-eutrophication model has been used in decision making. In (Shanthikumar and 

Tufekci (1983)), termination of software testing occurs when the detected number of defects 

exceeds a limit, which is based on the rationale that the detection of a large number of defects 

reduces the number of remaining defects in the software.  

Further modifications of the de-eutrophication model include a randomized initial 

number of defects mapped to a Poisson distribution with another random parameter ߣ, 

characterized by a gamma distribution (Dalal and Mallows (1988)). Termination is triggered 

when the number of defects falls considerably below the initially estimated number (Zheng 

(2002)). 

A software reliability model has been studied by (Ross (1985)), where a fixed number of 

bugs (or failure) is considered, and that each of these bugs independently causes failure of 

software following an exponential distribution. The number of bugs in software and the rate of 

failure occurrence are both primarily unknown. The optimal stopping time is obtained when the 

failure rate is less than an acceptable predetermined failure rate. The model has further been 

modified (Yamada and Osaki (1985)) by evaluating the total average cost and software reliability 

simultaneously. The total cost in this model was minimized within the constraint of software 

reliability. 

Models assessing the effects of reliability and cumulative costs of software testing have 

demonstrated that expected average costs of software testing can be reduced by restricting the 

scope of testing procedures (Thayer et. al. (1976)). 
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In this research, a generalization of the de-eutrophication model, double Bayesian 

method, will be used, where the number of bugs is a Poisson random variable with a random 

parameter. The resulting model is known as a conditional non-homogeneous Poisson process 

(Conditional-NHPP). 

1.3 Optimal Stopping Problem 

The use of SRGMs to depict software reliability provides a statistical foundation to 

establish optimal stopping time for software testing, which is a key decision problem in software 

engineering. One of the major issues leading to software maintenance cost overruns and 

customer rejection is due to insufficient testing time (Humphrey (1989)). The software testing 

process is both time-consuming and costly. However, much more time and cost could be spent in 

maintenance of software later due to fixes of bugs not discovered during the testing phase. 

The optimal stopping problem includes three possible actions that can be chosen at any 

time: continue testing, release or crash the software. Releasing the software means that the 

software being tested is reliable enough for the testing procedure to be stopped, and that it can be 

made available to users. Crashing the software means simply to stop the testing process and 

abandon the software if it is found to be too unreliable to be released. The optimal stopping 

problem can consequently be used to determine the most favorable time to end testing, and crash 

or release the software. In addition to the optimal releasing problem (also refer to (Forman and 

Singpurwalla (1979), Okumoto and Goel (1980), Koch and Kubat (1983), Yamada et. al. (1984), 

Kapur and Garg (1989), and Dalal and Mallows (1990))), whether software should be released at 

all can be incorporated with the decision process. 

The terminology of “crashing” in different contexts may possess different meanings. For 

example, in project management, crashing refers to a strategy of accelerating the process by 

adding new resources to the development (Biafore (2006)). In another context, software crash 
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refers to an unexpected or a sudden failure of a software program or operating system. The term 

“crash” used in this research signifies abandonment, i.e., during software testing, crashing 

software means terminating the test and abandoning the software. 

Release policies can be classified into two categories: static or dynamic. In case of static 

release policies, the release time of software is determined before testing has begun, and is kept 

unchanged throughout the testing phase. The release time is independent of any discrepancy due 

to data collected during the testing phase (Jiang et. al (2005)). Under dynamic release policies, 

there is no preset release time. The release time is dynamically determined from failure statistics 

obtained during testing. 

Crash policy can be stated as such that if the software during testing is found to be 

exceedingly unreliable to release, then abandoning it instead of continuing to test is a cost-

effective option. Since time is a critical factor in today’s competitive software industry, in many 

cases, the crashing option over prolonged testing is a more economical and realistic preference. 

In this research, integrated optimal release/crash policies for software testing will be 

developed, based on a conditional non-homogeneous Poisson process on a continuous time 

horizon. The optimal policies will include crash and release options based on monotonicity, cost 

structure and number of bugs detected during testing. 
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2. PROBLEM FORMULATION 

The decision when is the best time to stop software testing can be derived from the 

optimal crash and release policies. A mathematical model is proposed in this section to 

determine the optimal crash and release strategies for computer software testing, based on 

optimal stopping formulation. The model is an enhancement of a previous research (Jiang et. al 

(2005)), where the release time for software was predetermined, and kept constant throughout 

the testing phase. 

2.1 Notations 

The following is a list of notations used in the formulation of the mathematical model: 

ܰ Number of bugs detected. 
ܰሺݐሻ Number of bugs detected within ሾ0,  .ሿݐ
ܺ Random parameter in the intensity function of debugging process. 
 .ܺ The sample space of ߗ
݃ሺݐሻ Probability density function of debugging time; ܩሺݐሻ ൌ ׬ ݃ሺݐሻ݀ݐ௧

଴ , ሺܺ ൑ ܷሻ.  
 .ܺ ሻ Probability density function ofݔሺ݌
ேܶ Deadline time for releasing the software. 
௜ܶ Crashing threshold for the occurrence of the ith bug. 
௜ܵ Time of the detection of the ith bug. 
௧࣠ Completed filtration of debugging process. 

݂ሺݐሻ Cost of testing during period ሾ0,  .ሻ is differentiableݐሿ. Assume ݂ሺݐ
 .௣ Penalty cost for not delivering software by the deadlineܥ
 .௥ Cost of fixing one bug before releaseܥ
 .ோ Cost of fixing one bug after releaseܥ
 .ݐ ሻ Total expected cost when software is released atݐሺܥܶ
 .ݐ ሻ Total expected cost of fixing all remaining bugs after released atݐሺܥܴ
ሻݐሺܺ|ܰሺܧ ሻݐ௡ሺܺܧ ൌ  ݊ሻ: Mean of ܺ given the number of bugs by ݐ is ݊. 
߮௡ሺݐሻ ܥோܺܧ௡ሺݐሻܩҧሺݐሻ: Expected cost after release. 
 .ሻ: Rate of bug occurrenceݐሻ݃ሺݐሺ݊ܺܧ ሻݐ௡ሺߛ
׬ሻ exp ሼെݐത௡ሺܨ ሽݏሻ݀ݏ௡ሺߛ

௧
଴ : Survival function of the next failure time. 

 .ሻ: Survival function of the residual failure timeݏത௡ሺܨ/ሻݐത௡ሺܨ ሻݏ|ݐത௡ሺܨ
௡ܸሺݐሻ Total cost if the optimal policy is chosen, starting at ሺ݊,  .ሻݐ
௡ܹሺݐሻ Difference between the total cost and the expected cost after release, or savings 

ሾ ௡ܸሺݐሻ – ߮௡ሺݐሻሿ. 
ܷ Uniform distribution with parameters ሾܷெூே, ܷெ஺௑ሿ. 
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2.2 Mathematical Model 

The following mathematical model is proposed to establish the optimal release and crash 

policies, based on optimal stopping formulation: 

1. Time horizon: 

The system runs on a continuous time horizon ሾ0,∞ሿ. 

2. Dynamics: 

The dynamics of the testing process is a conditional non-homogeneous Poisson process 

(NHPP) such that, 

i. the detection times of individual bugs are randomly distributed with probability 

density function ݃ሺݐሻ, which is assumed to decrease over time, 

ii. ܺ is an unobservable random variable with distribution ݌ሺݔሻ, 

iii. conditioning on ܺ ൌ ,the number of bugs detected in ሾ0 ,ݔ  ሻ, follows aݐሿ, ܰሺݐ

NHPP with intensity ߛሺݐሻ ൌ  .ሻݐሺ݃ݔ

3. Action set: 

There are three possible actions available to choose from at any time: continue testing, 

release or crash the software. 

4. Cost structure: 

 ሻ represent the penalty cost for crashing the software, cost of fixingݐோ, and ݂ሺܥ ,௥ܥ ,௣ܥ

one bug during testing, cost of fixing one bug after releasing, and the cost of testing during 

the period ሾ0,  ,ሿ, respectively. Assume, for the optimal policyݐ

݂ሺݐሻ ൌ ݄ሺܩሺݐሻሻ, 

where h is convex. 

5. Objective criterion: 

The objective is to minimize the total cost of software associated with testing, debugging  

(1)
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and/or crashing. 

The rationale behind the assumptions in the formulation of the mathematical model is 

that, the number of bugs detected within ሾ0,  ሻ, forms a conditional NHPP with intensityݐሿ, ܰሺݐ

function ݃ݔሺݐሻ when ܺ ൌ  This is the case when the number of initial bugs follows a Poisson .ݔ

distribution with parameter ܺ. Each failure is followed by one bug, and the times at which 

individual bugs are detected are independent, and identically distributed with the probability 

density function ݃ሺݐሻ. The detected bug is corrected or removed, no new bugs are introduced, 

and the correction of a bug takes an insignificant amount of time (Kuo and Yang (1996)). 

In (Zheng (2002)), the detection time follows an exponential distribution with parameter 

ሻݐwhere ݃ሺ ,ߤ ൌ  ఓ௧. Another variation of the model has been investigated (Dalal andି݁ߤ

Mallows (1988)), where ܺ is gamma distributed with parameter ሺߙ,  .ሻߚ

2.3 The Cost Process 

The software testing process can be lengthy and expensive. It can involve additional 

testing time, leading to increased cost in software maintenance, if a large number of bugs are not 

discovered during testing to ensure the reliability of the software. It is thus imperative that 

optimal policies be applied to attain the best possible time to cost effectively crash or release the 

software. The following cost process model characterizes the total cost of the testing process. 

In this model, a system being considered is tested for a duration t days. Suppose, the total 

number of bugs detected within ሾ0, ,ሻ, and ଵܵݐሿ is ܰሺݐ . . . , ܵ௡, . .. are the arrival times of the 

detected bugs. The bug detection process ሼ ଵܵ, . . . , ܵேሺ௧ሻሽ
 
generates a filtration, denoted by ௧࣠. The 

total cost, ܶܥሺݐሻ, for the software system being tested for the duration t and to be released at ݐ, 

has the following expression: 

ሻݐሺܥܶ ൌ ݂ሺݐሻ ൅ ሻݐ௥ܰሺܥ ൅  ሻݐҧሺܩሻݐ௡ሺܺܧோܥ

In (2),  ݂ሺݐሻ  is  the cost  of  testing  related  to  the  duration, ܥ௥ܰሺݐሻ is the cost of testing  

(2)
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(product of the cost of fixing one bug before release and the total number of bugs found during 

testing) related with repairing of the bugs, and ܥோܺܧ௡ሺݐሻܩҧሺݐሻ is the expected cost of fixing the 

remaining bugs after release. 

If the testing is stopped at time ݐ, the expected cost due to the unknown number of bugs 

remaining in the software needs to be added. Let ܴܥሺݐሻ denote the probable cost of fixing all 

residual bugs after release. Then, 

ሻݐሺܥܴ ൌ  .ሻݐҧሺܩሻݐ௡ሺܺܧோܥ

From here on, ܧሾܺ|ܰሺݐሻ ൌ ݊ሿ will be denoted as ܺܧ௡ሺݐሻ, ܴܥሺݐሻ as ߮௡ሺݐሻ, and the failure 

intensity ܺܧ௡ሺݐሻ݃ሺݐሻ as ߛ௡ሺݐሻ. 

The minimization problem as an optimal stopping problem is to find ሼ ௧࣠ሽ – stopping time 

 if exists, such that ,כ߬

ሻ൯כሺ߬ܥ൫ܶܧ ൌ ݅݊ ఛ݂ሺܧ൫ܶܥሺ߬ሻ൯ሻ. 

In order to portray the total cost function, ܶܥሺݐሻ explicitly, the stopping time ߬ needs to 

be characterized first. The stopping time of jumping process ߬ (Jiang and Makis (2003)) can be 

denoted as 

߬ ൌ෍ ሺ ௜ܵାଵ ר ௜ܶ െ ௜ܵሻෑ ൛ௌೕశభழ்ೕൟܫ
௜ିଵ

௝ୀ଴

ఙିଵ

௜ୀ଴
 

ؠ ߬ఙ ר ்߬. 

In (5), ߪ is a stopping time with respect to the discrete filtration  

࣢௡ ؠ ௌ࣠೙, 

߬ఙ ൌ ܵఙ 

is the ሼ ௧࣠ሽ – stopping time at jump points, and 
 

்߬ ൌ෍ ሺ ௜ܵାଵ ר ௜ܶ െ ௜ܵሻෑ ሼௌೕశభழ்ೕሽܫ
௜ିଵ

௝ୀ଴

∞

௜ୀ଴
 

(3)

(4)

(5)

(7)

(6)
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is the ሼ ௧࣠ሽ – stopping time between jump points with probability one. Here, ሼ ௜ܶ ൒ ௜ܵሽ is adapted 

to ௦࣠೔.  

From the monotonicity of the releasing cost ߮௡ሺݐሻ, notice that it is unreasonable to crash 

between jumps or to release at jumps. From this observation, the following restriction can be 

applied. 

Restriction A 

The crash option is associated with ߬ఙ, and the release option with ்߬, for any stopping 

time τ. In other words, release is not considered at jumps, and crash is not considered between 

jumps. 

 Using the restriction above, the total cost for the system stopped at ߬, ܶܥሺ߬ሻ can be 

represented by the following expression. 

Lemma 2.1 

ሺ߬ሻܥܶ ൌ ߮଴ሺ0ሻ ൅෍ ௜ෑܣ ሼௌೕశభழ்ೕሽܫ
௜ିଵ

௝ୀ଴

ఙ

௜ୀ଴
 

where for ݅ ൏  ,ߪ

௜ܣ    ൌ  െ߮௜ሺ ௜ܵሻ ൅ ߮௜ሺ ௜ܵାଵר ௜ܶሻ ൅ ௥ܥሼௌ೔శభழ்೔ሽሾܫ ൅ ߮௜ାଵሺ ௜ܵାଵሻ െ ߮௜ሺ ௜ܵାଵሻሿ 

  ൅݂ሺ ௜ܵାଵר ௜ܶሻ െ ݂ሺ ௜ܵሻ. 

For ݅ ൌ  ,ߪ

ఙܣ ൌ ൫ܥ௣ െ ሼఙவ଴ሽ൯ܫ௥ܥ െ ߮ఙሺܵఙሻ. 

Proof. 

Using Restriction A, for all possible sample paths, when ߪ ൌ 0, 

ሺ߬ሻܥܶ ൌ ߮଴ሺ0ሻ ൅  ଴ܣ

ൌ ߮଴ሺ0ሻ ൅ ൫ܥ௣ െ ଴வ଴ሽ൯ܫ௥ܥ െ ߮଴ሺܵ଴ሻ 

ൌ  . ௣ܥ

(8)

(9)

(10)

(11)
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ߪ ሺ߬ሻ atܥܶ ൌ 0 coincides with the cost of crashing the system at ܵ଴ ൌ 0. 

When system testing stops at ܵ௡ ൏ ݐ ൏ ܵ௡ାଵ for releasing, the total cost is  

ሻݐሺܥܶ ൌ ݂ሺݐሻ ൅ ሻݐ௥ܰሺܥ ൅ ߮௡ሺݐሻ. 

This situation relates to the case where ߪ ൐ ݊, ௡ܶ ൌ and ௜ܵାଵ ,ݐ ൐ ௜ܶ. 

Recall, from (17), the total cost for the system stopped at ߬, ܶܥሺ߬ሻ, 

ሺ߬ሻܥܶ ൌ ߮଴ሺ0ሻ ൅෍ ௜ෑܣ ሼௌೕశభழ்ೕሽܫ
௜ିଵ

௝ୀ଴

ఙ

௜ୀ଴
 

Then, 

ሺ߬ሻܥܶ ൌ ߮଴ሺ0ሻ ൅෍ ௜ܣ
௡ିଵ

௜ୀ଴
 

ൌ ߮଴ሺ0ሻ ൅෍ ሾെ߮௜ሺ ௜ܵሻ ൅ ߮௜ାଵሺ ௜ܵାଵሻ ൅ ௥ܥ ൅ ݂ሺ ௜ܵାଵሻ െ ݂ሺ ௜ܵሻሿ
௡ିଵ

௜ୀ଴
 

൅ሾെ߮௡ሺܵ௡ሻ ൅ ߮௡ሺ ௡ܶሻ ൅ ݂ሺ ௡ܶሻ െ ݂ሺܵ௡ሻሿ 

ൌ ௥ܥ݊ ൅ ߮௡ሺ ௡ܶሻ ൅ ݂ሺ ௡ܶሻ. 

When the system testing stops at ݐ ൌ ܵ௡ , ݊ ൐ 0 for crashing, 

ሺ߬ሻܥܶ ൌ ߮଴ሺ0ሻ ൅෍ ሾെ߮௜
௡ିଵ

௜ୀ଴
ሺ ௜ܵሻ ൅ ߮௜ାଵሺ ௜ܵାଵሻ 

൅ܥ௥ ൅ ݂ሺ ௜ܵାଵሻ െ ݂ሺ ௜ܵሻሿ ൅ ሾ൫ܥ௣ െ ௥൯ܥ െ ߮௡ሺܵ௡ሻሿ 

ൌ ሺ݊ െ 1ሻܥ௥ ൅ ௣ܥ ൅ ݂ሺܵ௡ሻ. 

The debugging cost is ሺ݊ െ 1ሻܥ௥ instead of ݊ܥ௥ as the last detected bug, which need not 

be if the software is crashed immediately. 

2.4 Problem Reduction 

The original optimal stopping problem can be further simplified from the above 

representation of TC(τ) using semi-martingale decomposition method. 

ሺ߬ሻܥܶ ൌ ߮଴ሺ0ሻ ൅෍ ௜ෑܣ ሼௌೕశభழ்ೕሽܫ
௜ିଵ

௝ୀ଴

ఙ

௜ୀ଴
 

(12)

(13)

(14)
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ൌ ߮଴ሺ0ሻ ൅෍ ௜หܣ൫ܧ ௌ࣠೔൯
ఙ

௜ୀ଴
ෑ ൛ௌೕశభழ்ೕൟܫ ൅ ఛܯ

௜ିଵ

௝ୀ଴
 

where ܯఛ is the martingale part with respect to stopping time ߬ with ܯ଴ ൌ 0. 

The Optional Stopping Theorem (Elliot (1982)) can be applied, due to the boundedness 

of ߬: 

ሺ߬ሻሻܥሺܶܧ ൌ ߮଴ሺ0ሻ ൅෍ ௜หܣ൫ܧ ௌ࣠೔൯
ఙ

௜ୀ଴
ෑ ൛ௌೕశభழ்ೕൟܫ ൅ ఛܯܧ

௜ିଵ

௝ୀ଴
 

where, ܯܧఛ ൌ 0. This implies the optimal stopping time for the progressive part without the loss 

of optimality. 

Therefore, the cost process 

ሺ߬ሻ൯ܥ൫ܶܧ ൌ ߮଴ሺ0ሻ ൅෍ |௜ܣ൫ܧ ௌ࣠೔൯ෑ ൛ௌೕశభழ்ೕൟܫ
௜ିଵ

௝ୀ଴

ఙ

௜ୀ଴
 

defines a dynamic system (Jiang and Makis (2003)) with initial state ሺ݊, ሻݐ ൌ ሺ0,0ሻ: 

ሺ߬ሻ൯ܥ൫ܶܧ ൌ ߮௡ሺݐሻ ൅෍ න |ݏത௜ሺܨ ௜ܵሻሾߛ௡ା௜ሺݏሻሺܥ௥ െ ோሻܥ ൅ ݂Ԣሺݐሻሿ݀ݏ
்೔

ௌ೔

ఙିଵ

௜ୀ଴
 

 

ෑ ൛ௌೕశభழ்ೕൟܫ
௜ିଵ

௝ୀ଴
െ ሺ߮௡ାఙሺܵఙሻ െ ൫ܥ௣ െ ሼఙவ଴ሽ൯ሻෑܫ௥ܥ ሼௌೕశభழ்ೕሽܫ

ఙିଵ

௝ୀ଴
 

Then, the optimal expected total cost, ௡ܸሺݐሻ for the system with initial state (n, t) becomes 
 

௡ܸሺݐሻ ൌ ݅݊ ሼ݂ఙ|்೙శ೔ሽሼ߶௡ሺtሻ െ ෍ න ԋത௡ା௜ ሺݏ| ௜ܵሻ ሾߛ௡ା௜ ሺݏሻ ሺܥோ െ ௥ሻܥ െ ݂ᇱሺݐሻሿ

T౤శ౟

ௌ೔רT౤శ౟

 
ఙିଵ

௜ୀ଴

ݏ݀

െ ሾ߶௡ାఙ ሺܵఙሻ െ ൫ܥ௣ െ ௌ഑ಬܫ ሼఙவ଴ሽ൯ሿܫ௥ܥ ೙்ሽ 

This system holds the Markov property with respect to its initial state ሺ݊,  ሻ, and henceݐ

dynamic programming approach can be applied to solve the optimization problem. The solution 

to  the  dynamic  programming   problem consequently  becomes  the  optimal  policy  among the  

whole ௧࣠- stopping time class. 

(15), 

(16), 

(17)

(18)

.
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3. STRUCTURAL PROPERTY OF THE OPTIMAL POLICY 

During software testing, any of the three decisions need to be taken: to terminate testing 

and to crash the software, to continue testing for a longer period, or to release the software after 

sufficient testing. Since cost and time are critical in today’s software business, it is important to 

optimally make a decision whether to crash or release the software once the most favorable time 

is reached. The optimal time is determined by failure statistics such that, if an increasing number 

of bugs are detected within a specified testing period, the crash option is considered optimal. 

Conversely, if fewer bugs are detected over the continuous time horizon, the software is 

considered reliable enough to be released. 

The time that defines when it is most advantageous to crash or release the software is 

based on optimal policies. In this section, dynamic programming method will be used to derive 

such policies. 

3.1 Dynamic Equation 

For a dynamic system that allows both crash and release options between jumps, we can 

denote the cost function ௡ܹሺݐሻ with initial state ሺ݊,  ሻ (18), the cost if the optimalݐሻ. Recall ௡ܸሺݐ

policy is chosen starting at ሺ݊,    ሻ. Then, the savings (or gain) can be represented asݐ

௡ܹሺݐሻ ൌ ௡ܸሺݐሻ െ ߮௡ሺݐሻ. 

For ௡ܸሺݐሻ ൑  ,௣ܥ 
 

௡ܸሺݐሻ െ ߮௡ሺݐሻ ൌ ሼെ்݊݅ܯ
1

ሻݐത௡ሺܨ
න ோܥሻሺݏ௡ሺߛሻ൛ሾݏത௡ሺܨ െ ௥ሻܥ െ ݂ᇱሺݏሻሿ
்

௧

െ ߛ௡ሺݏሻൣ ௡ܸାଵሺݏሻר ൫ܥ௣ െ ௥൯ܥ െ ߮௡ାଵሺݏሻ൧ൟ݀ݏሽ 
 

௡ܹሺݐሻ ൌ ሼെන்݊݅ܯ  ோܥሻሺݏ௡ሺߛሻሼሾݐ|ݏത௡ሺܨ െ ௥ሻܥ െ ݂ᇱሺݏሻሿ
்

௧
 

െߛ௡ሺݏሻሾ ௡ܹାଵሺݏሻר ሺܥ௣ െ ௥ܥ െ ߮௡ାଵሺݏሻሻሿሽ݀ݏሽ 

(20)

(21)
. 

. 

(19)
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Since ௡ܹ ൑ 0 always, we consider 
 

| ௡ܹሺݐሻ| ൌ  න ோܥሻሺݏ௡ሺߛሻሼሾݐ|ݏത௡ሺܨ െ ௥ܥ ൅ | ௡ܹାଵሺݏሻ| ש
೙்
כ

௧
 ሺ߮௡ାଵሺݏሻ െ ൫ܥ௣ െ ௥൯ሻሻܥ െ ݂ᇱሺݏሻሿ 

The monotonicity of ௡ܹሺݐሻ and | ௡ܹሺݐሻ| determines the forms of optimal crash and 

release policies. 

3.2 Optimal Release Policy 

Intuitively, the optimal release policy represents the most favorable time to release the 

software. The policy is simply to release the software at the optimal release time, denoted by ௡ܶ
 .כ

By assumption from (1), the cost structure ݂ሺݐሻ ൌ ݄ሺܩሺݐሻሻ, where ݄ is convex. 

Therefore, 

݂ᇱሺݐሻ ൌ ݄ᇱ൫ܩሺݐሻ൯݃ሺݐሻ 

and 

݂ᇱሺݐሻ
ሻݐ௡ሺߛ

ൌ
݄ᇱ൫ܩሺݐሻ൯݃ሺݐሻ
ሻݐሻ݃ሺݐ௡ሺܺܧ

ൌ
݄ᇱ൫ܩሺݐሻ൯
ሻݐ௡ሺܺܧ

 

is increasing as t. 

The optimal release time for the ݊-th bug ௡ܶ
 satisfies כ

݂ᇱሺݏሻ ൌ ோܥሻሺݏ௡ሺߛ  െ ௥ܥ െ ሾ ௡ܹାଵሺݏሻרሺܥ௣ െ ௥ܥ െ ߮௡ାଵሺݏሻሻሿሻ 

ൌ ߛ௡ሺݏሻሺܥோ െ ௥ܥ ൅ | ௡ܹାଵሺݏሻ| ש ሾ൫߮௡ାଵሺݏሻ െ ൫ܥ௣ െ  .௥൯൧ܥ

Once we show that | ௡ܹାଵሺݐሻ| ՝  has a unique solution. Notice that with the uniqueness of (25) ,ݐ

௡ܶ
ݐ we know that the release time for the ݊-th bug is independent to ,כ ൌ ܵ௡, when the ݊-th bug is 

detected. 

The monotonicity | ௡ܹሺݐሻ|   ՛ ݊  ՝  guarantees that the optimal releasing policy is a ݐ

control-limit policy with ௡ܶ ՛ for any ݊. Hence, the following lemma is established to prove that 

| ௡ܹሺݐሻ|   ՛ ݊  ՝  .ݐ

(22)

(23)

(24)

(25)

,
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Lemma 3.1 | ௡ܹሺݐሻ|   ՛ ݊  ՝  .ݐ

Proof. 

To prove that | ௡ܹሺݐሻ|   ՛ ݊  ՝  we need the following result from stochastic comparison ,ݐ

(Zheng (2002)):  

Let ܺ ൒௦.௧. ܻ, and ݄ሺݔሻ decreasing. Then, 

ሾ݄ሺܺሻܧ ൑  .ሾ݄ሺܻሻሿܧ

The above result is applied to prove | ௡ܹሺݐሻ|   ՛ ݊, and | ௡ܹሺݐሻ|   ՝  Based on mathematical .ݐ

induction, the following assumptions are made: 

| ௡ܹାଵሺݐሻ|   ՛ ݊, and | ௡ܹାଵሺݐሻ|   ՝  .ݐ

1. Proof of |࢔ࢃሺ࢚ሻ|   ՛  .࢔

a) Let ݄௡ሺݏሻ ൌ ൬ܥோ െ ௥ܥ ൅ | ௡ܹାଵሺܵሻ|ש  ቀ߮௡ାଵሺݏሻ െ ൫ܥ௣ െ ௥൯ቁ൰ܥ െ ݂ᇱሺݏሻ/ߛ௡ሺݏሻ if 

 ݏ ൑   ௡ܶ
and ݄௡ ,כ ൌ 0 otherwise. It is decreasing as ݏ and increases as ݊, given the 

induction assumption from ሺ݊ ൅ 1ሻ. 

b) ܺ௡ ൒௦.௧.   ܺ௡ାଵ. 

By (a) and (b), together with the stochastic comparison result, we have 

| ௡ܹሺݐሻ| ൌ  න ௡݂ሺݐ|ݏሻ݄௡ሺݏሻ݀ݏ
೙்
כ

௧
 

    

൑ න ሻݐሺ݄௡ሺݏሻ݀ݏሻ݄௡ାଵሺݐ|ݏത௡ሺܨ ՛ ݊ሻ
೙்
כ

௧
 

 

൑ න ௡݂ାଵሺݐ|ݏሻ݄௡ାଵሺݏሻ݀ݏ
೙்
כ

௧
 

൑ න ௡݂ାଵሺݐ|ݏሻ݄௡ାଵሺݏሻ݀ݏ
೙்శభ
כ

௧

 

ൌ ሼන்ݔܽܯ ோܥሻሺݏ௡ାଵሺߛሻሼሾݐ|ݏത௡ାଵሺܨ െ ௥ܥ
்

௧
 

(26)

(27)
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൅| ௡ܹାଶሺݏሻ|שሺ߮௡ାଶሺݏሻ െ ൫ܥ௣ െ ௥൯ሻሻܥ െ ݂ᇱሺݏሻሿሽ݀ݏሽ 

   ൌ | ௡ܹାଵሺݐሻ|. 

Since | ௡ܹሺݐሻ| ൑ | ௡ܹାଵሺݐሻ|, | ௡ܹሺݐሻ|   ՛ ݊. 

2. Proof of |࢔ࢃሺ࢚ሻ|   ՝  .࢚

For ݐଵ ൏ ଶሻݐଶ, clearly, ܺ௡ሺݐ ൒ ܺ௡ሺݐଵሻ. 

| ௡ܹሺݐଶሻ| ൌ න ௡݂ሺݐ|ݏଶሻ݄௡ሺݏሻ݀ݏ
೙்
כ

௧
 

ൌ න ௡݂ሺݏ െ ݏଶሻ݄௡ሺݐ|ଶݐ ൅ ݏଶሻ݀ݐ
೙்
௧మିכ

଴
 

 

൑ න ௡݂ሺݏ െ ݏଶሻ݄௡ሺݐ|ଶݐ ൅ ݏଶሻ݀ݐ
೙்
௧భିכ

଴
 

(longer integration interval, and positive integrand) 

൑ න ௡݂ሺݏ ൅ ݏଶሻ݄௡ሺݐ|ଶݐ ൅ ሻݐሺ݄௡ሺݏଵሻ݀ݐ   ՝ ሻݐ
೙்
௧భିכ

଴
 

൑ න ௡݂ሺݏ ൅ ݏଵሻ݄௡ሺݐ|ଵݐ ൅ ݏଵሻ݀ݐ
೙்
௧భିכ

଴
 

ൌ න ௡݂ሺݐ|ݏଵሻ݄௡ሺݏሻ݀ݏሺܺ௡ሺݐଶሻ ൒ ܺ௡ሺݐଵሻ
೙்
כ

௧భ

 

ൌ | ௡ܹሺݐଵሻ|. 

Since | ௡ܹሺݐଶሻ| ൑ | ௡ܹሺݐଵሻ|, | ௡ܹሺݐሻ|   ՝  .ݐ

As all the monotonicity properties of | ௡ܹሺݐሻ| have been proved, we have control-limit 

form of the optimal release policy with { ௡ܶ
 .݊ increases in {כ

3.3  Optimal Crash Policy 

The optimal crash policy is determined by the dynamic equation (20). In fact, based on 

the  optimal  stopping  for  Markov  processes (Chow et. al. (1991)),  the  optimal  crash  

(28)
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decision  is made for ܵఙ, ߪ being the optimal crashing policy, if and only if the optimal cost 

function  

ఙܸሺܵఙሻ െ ሺܥ௣ െ ሼఙவ଴ሽሻܫ௥ܥ ൑ 0. 

Based on (29), the optimal crash policy can then be interpreted as the following: 

At the jump point ݐ ൌ ܵ௡, ݊ ൒ 1, the remaining system has a minimal cost ௡ܸሺݐሻ. When 

the cost is higher than ሺܥ௣ െ  ௥, and continuing to testܥ ௥ሻ, fixing the current defect with costܥ

will cost more than simply crashing the software. When ߪ ൌ 0, the software should not enter the 

testing stage if ଴ܸሺݐሻ ൌ  .௣. The optimal crash policy can be illustrated as in Figure 1ܥ

 

 

 

 

 

 
 
The structure of the optimal crash policy relies on the monotonicity property of ௡ܸሺݐሻ. 

Therefore, the following lemma that ௡ܸሺݐሻ   ՛ ݊  ՝  .needs to be proved ݐ

Lemma 3.2 ௡ܸሺݐሻ   ՛ ݊  ՝  .ݐ

Proof.  

From the dynamic equation of ௡ܸሺݐሻ (18), for ௡ܸାଵሺݐሻ and ௡ܸሺݐ, כ௡ାଵݐ ሻ, where 
 

௡ܸሺݐ, כ௡ାଵݐ ሻ ൌ  න ሻݐ|ݏത௡ሺܨ
௧೙శభכ

௧
ሾߛ௡ሺݏሻሺሺ ௡ܸାଵሺݏሻ ൅ ௣ሻܥר௥ሻܥ ൅ ݂ᇱሺݐሻሿ݀ݏ ൅ כ௡ାଵݐത௡ሺܨ כ௡ାଵݐሻ߮௡ሺݐ| ሻ 

we have the following differential equations 

௡ܸାଵ
ᇱ ሺݐሻ ൌ െߛ௡ାଵሾሺ ௡ܸାଶሺݐሻ ൅ ௣ሻܥר௥ሻܥ െ ௡ܸାଵሺݐሻሿ െ ݂ᇱሺݐሻ 

௡ܸ
ᇱሺݐ, כ௡ାଵݐ ሻ ൌ  െߛ௡ሾ ௡ܸାଵሺݐሻ ൅ ௣ሻܥר௥ሻܥ െ  ௡ܸሺݐ, כ௡ାଵݐ ሻሿ െ ݂ᇱሺݐሻ 

ሺܥ௣ െ  ௥ሻܥ

௡ܸሺݐሻ  ௡ܸାଵሺݐሻ

כ௡ݐ כ௡ାଵݐ

Figure 1: Optimal crash policy. 

(29)

(30),

, 
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and we have 

௡ܸାଵ
ᇱ ሺݐሻ െ ௡ܸ

ᇱሺݐ, כ௡ାଵݐ ሻ ൑  െ ߛ௡ାଵሾ ௡ܸାଵሺݐሻ െ  ௡ܸሺݐ, כ௡ାଵݐ ሻሿ. 

Therefore, the boundary condition is now at ݐ௡ାଵכ , where 

௡ܸାଵሺݐ௡ାଵכ ሻ ൌ  ߮௡ାଵሺݐ௡ାଵכ ሻ ൐  ߮௡ሺݐ௡ାଵכ ሻ ൒   ௡ܸሺݐ௡ାଵכ ሻ. 

Thus, ݐ ߳ ݐ ׊௡ାଵכ , 

ሻ൫ݐത௡ାଵሺܨൣ ௡ܸାଵሺݐሻ െ ௡ܸሺݐ, כ௡ାଵݐ ሻ൯൧ᇱ ൑ 0, 

( ௡ܸାଵሺݐሻ െ ௡ܸሺݐ, כ௡ାଵݐ ሻሻ ൒ ሺ߮௡ାଵሺݐ௡ାଵכ ሻ െ ߮௡ሺݐ௡ାଵכ ሻሻ ൐ 0, and 

௡ܸାଵሺݐሻ ൒ ௡ܸሺݐ, כ௡ାଵݐ ሻ ൒ ௡ܸሺݐሻ. 

From the solution to the differential equations, we can see that ௡ܸ
ᇱሺݐሻ ൏ 0. Thus, ௡ܸሺݐሻ ՝  ݐ ՛ ݊ 

can be observed directly from the differential equations. 

The optimal crash policy is a control-limit policy with respect to the arrival time of each 

detected bug. There exists a series of increasing values of ሼݐ௡כሽ for any ݊ ൒ 0 such that the 

optimal crash is carried out at the first period when the ݊-th arrival time ܵ௡ ൏ ௡. If  ଴ܶݐ ൌ כ௡ݐ , 

then the system is crashed at time 0. 

As ௡ܸሺݐሻ   ՛ ݊  ՝   ,ݐ

כ௡ݐ ൌ ݅݊ ௧݂൛ݐห ௡ܸሺݐሻ ൐ ൫ܥ௣ െ   ሼ௡வ଴ሽ൯ൟܫ௥ܥ

is unique when exists. 

3.4 Computational Algorithm 

Based on the optimal policy and the boundary conditions, a computational algorithm has 

been developed. The algorithm is divided into four steps as below: 

Step 1. 

Let  ݉ݎ݋݂ܷ݅݊ ~ ݔ ሾܷெூே, ܷெ஺௑ሿ. Starting from ܸכ with ߛ௎ಾಲ೉ ൌ ܷெ஺௑݃ሺݐሻ, the optimal  

policy is to release at age ܶכ such that  

(31)

(32)

(33)

(34)

(35)

(36)
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݂ᇱሺܶכሻ ൌ ோܥሻሺכ௎ಾಲ೉݃ሺܶߛ െ  .௥ሻܥ

Therefore, there exists ܶכܵ ,כ, such that 

for ݐ ൏ ሻݐሺכܸ ,כܵ ൌ  ;௣, crash immediatelyܥ

for ܵכ ൏ ݐ ൏  solution to differential equation ,כܶ

൫ܸכሺݐሻ൯ᇱ ൌ െߛ௎ಾಲ೉ሺݐሻൣሺܸכሺݐሻ ൅ ௥ሻܥ ר ௣ܥ െ ሻ൧ݐሺכܸ െ ݂ᇱሺݐሻ; 

for ܶכ ൏ ሻݐሺכܸ ,ݐ ൌ ሻݐሺכ߮ ൌ  .ሻݐҧሺܩ௥ܷெ஺௑ܥ 

ܺ ሻ is the optimal cost function of a degenerated system withݐሺכܸ  ؠ ܷெ஺௑. For such a 

system, the optimal policy is either to crash at starting time t for ݐ ൑  or to release the system ,כܵ

at ܶכ for ݐ ൐  .כܵ

Step 2. 

For a large N, let        ேܸ
ேሺݐሻ ൌ  ሻݐሺכܸ

ேܹ
ேሺݐሻ ൌ ሻݐሺכܸ െ ߮௎ಾಲ೉ሺݐሻ 

Step 3. 

For ݊ ൌ ሺܰ െ 1ሻ:െ1: 1, 

(1) The optimal release time 

௡ܶ
כ ൌ inf ሼݐ|݂ᇱሺݐሻ ൌ ሻݐ௡ሺߛ ቀሺܥோ െ ௥ሻܥ ൅ | ௡ܹାଵሺݐሻ| ש ൣ߮௡ାଵሺݐሻ െ ൫ܥ௣ െ  ௥൯൧ቁሽܥ

(2) ௡ܸ
ே is computed by differential equation 

௡ܸାଵ
ᇱ ሺݐሻ ൌ െߛ௡ାଵሾሺ ௡ܸାଶሺݐሻ ൅ ௣ሻܥר௥ሻܥ െ ௡ܸାଵሺݐሻሿ െ ݂ᇱሺݐሻ 

(3) The optimal crash time 

כ௡ݐ ൌ inf ሼݐ| ௡ܸேሺݐ௡כሻ ൒ ௣ܥ െ  ሼ௡வ଴ሽሽܫ௥ܥ

(4) ௡ܹ
ேሺݐሻ ൌ ௡ܸ

ேሺݐሻ െ ߮௡ሺݐሻ 

Step 4. 

Stop after ݊ ൌ 0. 

(37)

(38)

(39)

(40)

(41)

(42)
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4. NUMERICAL EXAMPLE 

The computational algorithm developed in the previous section is based on optimal 

policy and the boundary conditions. In this section, the algorithm is illustratively demonstrated 

by a numerical example, implemented in Matlab (See Appendix for Matlab Code). The 

numerical example assumes the following parameters: 

• Crashing Penalty Cost, ܥ௣ ൌ 2000. 

• Cost of fixing a bug after release, ܥோ ൌ 200. 

• Cost of fixing a bug before release, ܥ௥ ൌ 15. 

• Cost of testing during period ሾ0, ሻݐሿ, ݂ሺݐ ൌ  .ݐ20

• Number of iteration, ܰ ൌ 200. 

• Probability density function ݃ሺݐሻ of bug occurrence time follows an exponential 

distribution with parameter μ ൌ 0.1. 

• The Random parameter ܺ is considered to be uniformly distributed between 0 ሺܷெூேሻ 

and 200 ሺܷெ஺௑ሻ. 

The above parameters have been used in the demonstration of both sub-optimal and 

optimal policies. The first two plots (Figures 2 and 3) illustrate the expected total cost ௡ܸሺݐሻ over 

time, which is the value function under a fixed release time. The set of curves start from ௡ܸ, and 

follows a similar pattern until ௢ܸ is reached. 

The difference between the penalty cost ܥ௣ and the cost of fixing each bug before release 

௥ is ሺ2000ܥ െ 15  ൌሻ 1985. The intersection of the ሺܥ௣ – ܥ௥ሻ line and each of the ௡ܸሺݐሻ plots 

furnishes the crash threshold, shown in Figure 4 (blue curve). The crash threshold, plotted as the 

emergence of the number of bugs over time (days), represents the optimal crash times, ݐ௡כ . The 

region on the left side of the crash threshold curve is simply the crash zone. This means, the 
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software is crashed if the number of bugs is too high, and the sample test path enters the crash 

threshold. 

The lower bound of ௡ܸሺݐሻ defines the release policy, which is to release the software at 

time (days) 40.94. The release threshold, also shown in Figure 4 (red line), represents the 

optimal release times, ௡ܶ
 .The area on the right side of the release threshold is the release zone .כ

The region between the crash and release thresholds represents the testing zone. A sample path is 

shown in Figure 4 (green line) (also shown in Figure 9) to demonstrate the occurrences of bugs 

during testing. It should be noted that only one bug occurs at a time. 

Figures 5 and 6 illustrate the expected total cost ௡ܸሺݐሻ over time (days), under the optimal 

policies. The cost function in this case indicates a wider range of release times. Again, the 

intersection of the ሺܥ௣ – ܥ௥ሻ line and each of the ௡ܸሺݐሻ plots provides the crash threshold 

(represents the optimal crash times, ݐ௡כ ), shown in Figure 7. Similar to Figure 4, the region on the 

left side of the threshold in Figure 7 is the crash zone. 

The release policy is defined at the lower bound of ௡ܸሺݐሻ. The release threshold, shown in 

Figure 8, represents the optimal release times, ௡ܶ
 The crash and release thresholds (from Figures .כ

7 and 8) are compared in Figure 9. Here, the area between the crash and release thresholds also 

represents the testing zone. 
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Figure 2: Total cost ௡ܸሺݐሻ over a fixed release time (under sub-optimal policies). 
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Figure 3 (dots connected): Total cost ௡ܸሺݐሻ over a fixed release time  
(under sub-optimal policies). 
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Figure 4: Crash and release thresholds under sub-optimal policies. 
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Figure 6 (dots connected): Total cost ௡ܸሺݐሻ under the optimal policies. 
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Figure 7: Crash threshold using the optimal policies. 
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Figure 8: Release threshold using the optimal policies. 
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Figure 9: Optimal crash and release thresholds. 
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5. CONCLUSION 

In this research, an enhanced software reliability model has been developed to 

demonstrate the optimal stopping time for software testing. The new optimal stopping 

formulation suggests the most favorable time to discontinue testing. The model exhibits both 

crash and release options that can be chosen at any time during the software testing phase, in 

order to avoid wasting effort in the development process. 

The optimal crash policy contains a simple control limit structure with monotonicity 

properties. This enables early termination of testing, if the reliability of the software is low. The 

optimal release policy also contains a control limit structure with monotonicity properties, which 

allows the release option to be considered immediately if the software is found to be reliable 

enough. The dynamic policies have been shown to reduce testing time, which consequently 

minimizes the cost of testing.  

The policies established in this research can be applied to any individual or integrated 

software modules. This means, smaller modules can be independently tested for reliability before 

they are incorporated into a complete package. The integrated package of many small modules 

can again be tested using the optimal policies to ensure completeness and better quality of the 

developed software. 

The optimal policies will allow software developers to crash unreliable software before 

major costs have been incurred, or to release sufficiently reliable software prior to initially 

projected deadline. In a competitive software industry nowadays, implementing the optimal 

policies will give software developing companies a competitive advantage, by allowing them to 

cut down on developmental cost and to release the product before their competitors in the 

market. 

Many  industrial  and  commercial  processes  are  governed by innovative software these  
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days, and it is becoming increasingly important for software companies to develop reliable 

software. Future research could be directed toward the development of further general debugging 

models, where self-generating processes are of great interest, and optimal stopping formulation is 

likely to be applicable. 
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APPENDIX: MATLAB CODE 

Module 1: VntSolution_Alternative_Full.m - Computes ௡ܸሺݐሻ under a fixed release time. 

global N Cp CR Cr Ct mu UMax UMin t V N_Bugs TN 
  
parameters_Uniform; 
 
N=50; 
  
TMax=40.9434; 
  
N_Bugs=N+1; 
  
gtd=mu*exp(-mu*TMax); 
Gtd=1-gtd/mu; 
  
for i = 1:N+1          
   Vntd(i)= CR*FuncEXnt(i,TMax)*(1-Gtd); 
end 
  
hold on; 
  
j=N_Bugs; 
if j==N+1 
    [t_n,V_n] = ode45('dVntdt_Alternative', [TMax 0.1], Vntd(j)); 
    V=V_n; 
    t=t_n; 
    plot(t, V,'r-') 
    X=Cp-Cr; 
    plot(t, X, 'b-') 
end 
  
for j=N:-1:1 
    N_Bugs=j 
    [t_n,V_n] = ode45('dVntdt_Alternative', [TMax 0.1], Vntd(j)); 
    for i=1:size(V) 
        if V(i)<Cp 
        else 
            V(i)=Cp; 
        end 
    end 
  
    V_temp1=zeros(size(t_n)); 
    V_temp2=zeros(size(t_n)); 
 
    for i=1:size(t_n) 
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        V_temp1(i)=V_n(i); 
        V_temp2(i)=spline(t,V,t_n(i)); 
    end 
 
    V=zeros(size(t_n)); 
    V=min(V_temp1, V_temp2); 
    t=t_n; 
    plot(t, V,'r-') 
end 

 
Module 2: VntSolution_Alternative_Full2.m - Computes ௡ܸሺݐሻ under the optimal policies. 

global N Cp CR Cr Ct mu UMax UMin t V N_Bugs TN 
  
beginTime=clock; 
  
parameters_Uniform; 
 
N=50; 
  
Crash_Times=zeros(1,N+1); 
 
TMax=40.9434; 
  
N_Bugs=N+1; 
  
TN=zeros(1,N+1); 
  
FindTN; 
  
TN(N_Bugs)=min(TN(N_Bugs), TMax); 
  
gtd=mu*exp(-mu*TN(N_Bugs)); 
Gtd=1-gtd/mu; 
  
j=N_Bugs 
  
    Vntd(j)= CR*FuncEXnt(j,TN(j))*(1-Gtd); 
 
hold on; 
  
if j==N+1 
    [t_n,V_n] = ode45('dVntdt_Alternative', [TN(j) 0.1], Vntd(j)); 
    V=V_n; 
    t=t_n; 
    X=Cp-Cr; 
    plot(t, X, 'r-') 
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    plot(t, V,'b-') 
end 
  
for j=N:-1:0 
    N_Bugs=j     
    FindTN; 
    TN(N_Bugs)=min(TN(N_Bugs), TMax); 
    gtd=mu*exp(-mu*TN(N_Bugs)); 
    Gtd=1-gtd/mu; 
    Vntd(j)= CR*FuncEXnt(j,TN(N_Bugs))*(1-Gtd); 
    [t_n,V_n] = ode45('dVntdt_Alternative', [TN(N_Bugs) 0.1], Vntd(j)); 
    for i=1:size(V) 
        if V(i)<Cp 
        else 
            V(i)=Cp; 
        end 
        if V(i)<Cp-Cr 
               Crash_Times(j)=t(i)*(V(i+1)-(Cp-Cr))/(V(i+1)-V(i))+t(i+1)*(1-(V(i+1)-(Cp-
Cr))/(V(i+1)-V(i))); 
        end  
    end 
    V_temp1=zeros(size(t_n)); 
    V_temp2=zeros(size(t_n)); 
    for i=1:size(t_n) 
        V_temp1(i)=V_n(i); 
        V_temp2(i)=spline(t,V,t_n(i)); 
    end 
    V=zeros(size(t_n)); 
    V=min(V_temp1, V_temp2); 
    t=t_n; 
L=min(V_n); 
plot(t, V,'b-') 
end 
  
RunTime=clock-beginTime 

 
Module 3: dVntdt_Alternative.m - Computes the derivative. 

function y  = dVntdt_Alternative(w,z) 
global N Cp Cr Ct CR mu UMax t V N_Bugs 
  
if N_Bugs==(N+1) 
    y=-FuncEXnt(N_Bugs,w)*mu*exp(-mu*w)*(min(z+Cr,Cp)-z)-Ct; 
else 
    V_NPlus1=spline(t,V,w); 
    y=-FuncEXnt(N_Bugs,w)*mu*exp(-mu*w)*(min(V_NPlus1+Cr,Cp)-z)-Ct; 
end 
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Module 4: FuncEXnt.m - Computes ܧሺܺ|ܰሺݐሻ ൌ  ݊ሻ. 

function y=FuncEXnt(n, t) 
global N Cp CR Cr Ct TD mu UMax UMin 
 
Gt=1-exp(-mu*t); 
 
y=(n+1)/Gt*(gammainc(UMax*Gt, n+2)-gammainc(UMin*Gt, 
n+2))/(gammainc(UMax*Gt, n+1)-gammainc(UMin*Gt, n+1)); 

 
Module 5: FindTN.m - Computes the sub-optimal and optimal release/crash times. 

global t V UMax Ct Cr CR mu N_Bugs TN TMax 
  
xU=TMax; 
xL=0; 
x=xU; 
  
Det=xU-xL; 
  
for k=1:30 
  
if N_Bugs==N+1 
    y1=min(CR*FuncEXnt(N_Bugs+1,x)*exp(-mu*x), (Cp-Cr)); 
    y2=CR*FuncEXnt(N_Bugs+1,x)*exp(-mu*x); %  
 
else 
    y1=min(spline(t, V, x), (Cp-Cr)); 
    y2=CR*FuncEXnt(N_Bugs+1,x)*exp(-mu*x);  
end 
 
y=y2-y1+(CR-Cr); 
Det=Det/2; 
check=y*FuncEXnt(N_Bugs,x)*mu*exp(-mu*x)-Ct; 
 
if check <0 
    xU=xU-Det; 
    x=xU; 
else 
    xU=xU+Det; 
    x=xU; 
end 
 
end 
  
if N_Bugs>0 
    TN(N_Bugs)=x; 
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    y=y2-y1+(CR-Cr); 
end 

 
Module 6: parameters_Uniform.m – Defines the uniform parameters. 

global Cp CR Cr Ct TD mu UMax UMin N 
  
Cp=2000; 
CR=200;  
Cr=15; 
Ct=20; 
mu=0.1; 
UMax=200; 
UMin=0; 
N=200;  
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