2006

Agriscience program - using the No Child Left Behind principles of education

Tiffany Ann Popps
Louisiana State University and Agricultural and Mechanical College, tpopps1@lsu.edu

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses

Part of the Human Resources Management Commons

Recommended Citation
https://digitalcommons.lsu.edu/gradschool_theses/1343

This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact gradetd@lsu.edu.
AGRISCIENCE PROGRAM – USING THE NO CHILD LEFT BEHIND PRINCIPLES OF EDUCATION

A Thesis
Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the Requirements for the degree of Master of Science in The School of Human Resource Education and Workforce Development

by
Tiffany Ann Popps
B.S., Louisiana State University, 2004
May, 2006
DEDICATION

I would like to dedicate this thesis to all of the individuals who have helped me achieve my dream of becoming an Agriscience teacher. The journey has been long and the road winding but I would not have traded one tearful moment that God has bestowed upon me for I know that this is my calling from above. To Gloria and Russell Popps, I could not have asked for two more wonderful individuals to have been my parents. Throughout my life you have both shown me the importance of living up to my potential and have provided me with the love and support that comes from a stable atmosphere. Mom, your love is inspirational and dad, your generosity amazing. I thank you both for the trips to Wal-Mart and Otter Lake. The lessons and love you both have shown me are immeasurable and I could never kiss or hug you tight enough to show you the deep appreciation I feel of being your daughter.

This thesis is also dedicated to my grandfather, the late Albert “Judge” Kimball, who inspired me more then he could ever know. Anyone can be a grandfather, but it takes a special individual to be called a “paw-paw” and I’m proud that he was mine. On many occasions he was there to listen and provide a joke to make me laugh. He taught me that it was all right to fail as long as a lesson was learned. I will always treasure his love for plowing a field and will remember fondly all the family stories he’s shared with me. I will always cherish every second I had with him and he will live in my heart forever.

Together, these three individuals have taught me the true meaning of love for others, for myself, and for agriculture. I appreciate their undying love for me and I’m blessed to have their love flowing through my veins.
ACKNOWLEDGMENTS

I would like to acknowledge the support and expertise given to me by my thesis committee: Dr. Machtmes, I thank you for all the knowledge you have bestowed upon me and I especially want to express my gratitude for the supporting way you taught Statistics. Dr. Burnett, I would like to extend a gracious thank you for hiring me as an undergraduate worker in your office. I learned many important skills while there and look up to you for the wonderful individual you are.

Special acknowledgment is given to Dr. Geraldine Johnson for her untiring efforts in counseling, consoling, and educating me. You truly are one of the inspirational women in my life and I will always love and look up to you.

Also, special acknowledgment is extended to Mr. Hals Beard, for welcoming and introducing me into the wonder of the FFA organization. You opened the door to me for a bright future in high school and helped me develop into an accomplished individual. Thank you for reaching out to a shy ninth grader who had only dreams and showing her that with hard work and determination those dreams can come true. I hope that I can become as influential to my students as you and your family have been to me.

I would like to extend special acknowledgment to Dr. Bradley Leger, you helped me to achieve one of my ultimate goals of working for the state FFA office and I will be forever grateful. The many talks that we had further opened my eyes to the wonder of the FFA organization and I am pleased to share that love with you.

Finally, I would like to acknowledge a very special woman who has helped me more then she could ever realize, Ms. Carlene Dupuis. The simple words ‘thank you’ could never be enough to express the gratitude I feel for just
knowing you. I would never be the person I am without you. May God bless you for the prayers, the tears, and the continued support you always provide me. In my eyes you truly are an angel walking on earth.
TABLE OF CONTENTS

DEDICATION ... ii
ACKNOWLEDGMENTS .. iii
LIST OF TABLES ... vii
LIST OF GRAPHS ... viii
ABSTRACT ... ix

CHAPTER I
INTRODUCTION ... 1
Rationale for the Study ... 2
Problem Statement .. 6
Purpose of the Study .. 6
Research Objectives ... 6

CHAPTER II
LITERATURE REVIEW .. 8
Introduction ... 8
Old World vs. New World Traditions of Agriculture 8
Advantages of Agriscience Education 10
Importance of Agriculture .. 12
Eight Principles of the No Child Left Behind Act and Their Relationship to Teaching ... 13
Principle One .. 14
Principle Two ... 15
Principle Three ... 19
Principle Four .. 20
Principle Five .. 22
Principle Six .. 23
Principle Seven ... 25
Principle Eight ... 26
Summary .. 28

CHAPTER III
METHODOLOGY .. 30
Population ... 30
Instrumentation ... 30
Data Collection ... 31
Data Analysis ... 32

CHAPTER IV
RESULTS .. 34
Introduction .. 34
Objective #1 .. 34
Objective #2 .. 38
Objective #3 .. 39
Objective #4 .. 45
CHAPTER V
SUMMARY, CONCLUSIONS, IMPLICATIONS AND RECOMMENDATIONS 48
Introduction .. 48
Purpose and Objectives ... 48
Conclusions, Implications, and Recommendations ... 49
Objective 1 ... 49
Objective 2 ... 51
Objective 3 ... 52
Objective 4 ... 52
Objective 5 ... 54
Summary of Conclusions, Implications and Recommendations 56

REFERENCES .. 58

APPENDIX A: FFA CREED .. 62

APPENDIX B: SCRIPT FOR MEASURING INSTRUMENT .. 63

APPENDIX C: AREAS OF LOUISIANA .. 65

APPENDIX D: PRINCIPLE QUESTIONS ... 66

APPENDIX E: SURVEY INSTRUMENT .. 67

APPENDIX F: INCOME OF GRADUATES ... 73

APPENDIX G: MODELS ... 74
Three Ring Teaching Model ... 75
Three Models of Teaching ... 76
Leadership Model of National FFA Organization ... 77
Personal Growth Classroom Instruction Model ... 78

APPENDIX H: INSTITUTIONAL REVIEW BOARD APPLICATION FOR EXEMPTION FROM INSTRUCTIONAL OVERSIGHT .. 79

VITA ... 81
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>35</td>
</tr>
<tr>
<td>3</td>
<td>35</td>
</tr>
<tr>
<td>4</td>
<td>36</td>
</tr>
<tr>
<td>5</td>
<td>36</td>
</tr>
<tr>
<td>6</td>
<td>37</td>
</tr>
<tr>
<td>7</td>
<td>38</td>
</tr>
<tr>
<td>8</td>
<td>40</td>
</tr>
<tr>
<td>9</td>
<td>43</td>
</tr>
<tr>
<td>10</td>
<td>46</td>
</tr>
<tr>
<td>11</td>
<td>47</td>
</tr>
</tbody>
</table>
LIST OF GRAPHS

<table>
<thead>
<tr>
<th>Graphs</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Three Ring Model</td>
<td>75</td>
</tr>
<tr>
<td>2 Career Success Three Ring Model of Teaching</td>
<td>76</td>
</tr>
<tr>
<td>3 Leadership Model for National FFA Organization</td>
<td>77</td>
</tr>
<tr>
<td>4 Personal Growth Classroom Instruction Model</td>
<td>78</td>
</tr>
</tbody>
</table>
ABSTRACT

The purpose of this study was to determine the extent of use of the eight educational principles included in the No Child Left Behind act (NCLB) by currently employed Agriscience teachers in Louisiana. Specific objectives formulated to guide the research were to describe: 1) Louisiana’s Agriscience teachers on selected demographics; 2) professional activities of Louisiana’s Agriscience teachers; 3) how often Louisiana’s Agriscience teachers ascribe to the NCLB principles; 4) determine if a relationship exist between the NCLB principles and selected demographics and, finally, 5) determine if a relationship exist between the NCLB principles and selected professional activities of Louisiana’s Agriscience teachers. Data was collected using a survey instrument that was developed by the researcher to measure use of the eight NCLB principles, professional activity associations, and selected demographic characteristics. The target population was defined as Agriscience teachers present on June 7, 2005, at the General Meeting of the Louisiana State FFA Convention. The survey was conducted confidentially. The outcome of the measurements indicated that the more years teaching experience the less the Agriscience teachers used the eight principles. Also, the higher degree of the Agriscience teacher the less likely they were to use the principles. In addition, teachers who were involved in extracurricular activities were more apt to use the principles then teachers who were not.
CHAPTER I
INTRODUCTION

Johann Pestalozzi, the father of Vocational Education, recognized that by educating every individual, the world would be changed for the betterment of all. (Old and Sold Antique Digest, 1915) In turn, this influenced the adding of vocational training and educational classes into the regular school system curriculum. Today, programs such as these are referred to as Career and Technical Education. Classes include the following areas: Business Education, Family and Consumer Science Education, Agriculture Education, and Technology Education.

By providing Agriscience Education classes, students can achieve a more broadened education. The Agriscience class shapes students’ lives by providing them with opportunities that they may not have had otherwise. Many of these prospects include working in the community, job shadowing, and career placement. The president of the National Council for Agricultural Education states that:

Half of the nation’s high school students take at least one career and technical education course, and 25 percent take at least three classes. For the almost 40 percent of high school graduates who receive no further education, career and technical education is often their best opportunity to prepare for a modern workforce (Stagg, 2005).

Career and Technical Education (CTE) classes broaden the high school curriculum. The National Assessment of Vocational Education (NVATA) found that CTE classes foster many important concepts that are not taught by the regular core curriculum, as stated in the Department of Education’s NAVE report (2004).
The report outlined three prominent benefits of career and technical education: 1) high school students who participate in career and technical education (CTE) have increased their academic course-taking; 2) CTE students’ scores on academic achievement exams have gone up; and 3) CTE students reap short- and long-term earning gains.” p. 9

Rationale for the Study

Agriscience Education is a major contributor to the voice of the Career and Technical Education Field. Founded by the Smith-Hughes National Vocational Education Act in 1917, the first class was taught in 1920 (ACTE, 2005). The United States alone has over 700,000 students that are currently enrolled in an Agriscience class. In addition, there are over 10,000 FFA members in the state of Louisiana and over 100 FFA chapters, Dr. Bradley Leger (personal communication, September 12, 2004).

From the beginning of students’ first history classes in elementary school, they learn about how America originated. This origination came from the birth of Agriculture given to us by the American Indians. In the 1900’s the United States was a country literally living off of the land resources. These resources included crops such as corn, cotton and wheat. Also, the raising of cattle and other livestock helped the country to flourish into the nation that we know today (Williams & Alston, 2004).

Thirty years ago, it was common that a student with a high school diploma did not necessarily have to acquire a college degree in order to find a job. A young person could enter the job market in a particular field, receive on-the-job training and become successful in that area. Today young people are finding it necessary to increase their levels of education after they leave the high school setting. Classes such as Agriscience education offer the student a chance to
gain important knowledge and skills that are already being used in the workplace. These include welding, small engines, and electricity components as well as business accounting procedures (Reese, 2005). Agriscience teachers welcome into their classrooms the student who desires to be a cultivator of the land, yet also strives to educate the future banker, teacher, doctor, scientist, veterinarian, and president of the United States of America.

As stated by the Louisiana State Educational School Board System, (BESE):

The mission of the agriculture education program is to prepare and support individuals for careers, build awareness of and develop leadership for the food fiber and natural resource systems, and to sustain the viability of earth and people through education in agriculture. The school board system values and desires to achieve this mission by:

1. Providing instruction in and about Agriscience, food and natural resource systems
2. Serving all populations
3. Developing the whole person
4. Responding to the needs of the economic and educational marketplace
5. Advocating free enterprise and entrepreneurship education
6. Functioning as a part of the total educational system
7. Connecting classroom and laboratory instruction with real-world life and career experiences
8. Utilizing proven educational process which includes:
 a. Formal instruction in classrooms and laboratories;
b. Site-based, experiential learning in supervised agricultural experience programs; and
c. Leadership and personal development through the FFA (Louisiana Department of Education, n.d.).

The Agriscience program fosters premier leadership, personal growth, and career success within the high school student (National FFA Organization, 2005). Currently, there is a movement for education to become more math and science-based. Agriscience education has always held both of these curriculums at the root of its focus. Distinguished governmental officials, state educational representatives, and local school administrators must be made more aware of the various opportunities that the Agriscience program currently has available for students. Without this knowledge, the future of the organization may well be uncertain.

Recently, Congress was asked to block the funding for Career and Technical Education programs (The National Council for Agricultural Education, 2005). Louisiana alone would stand to lose over 24 million dollars of funding for programs such as Agriscience education which, in essence, would shut down a majority of Agriculture education departments across the state (ACTE, 2005).

In turn, that money would be given to fund the No Child Left Behind Act (NCLB). The principles of this act originated from the Brown v. Board of Education case which stresses the idea that accountability and flexibility of all schools need to be addressed (U.S. Department of Education, 2004a).

Congress recently voted down the proposal to block the CTE funding (National Council for Agricultural Education, 2005). However, educators in the vocational field have one imperative question that needs to be addressed: How
much longer will it be before the legislation not choose to stand by the program that founded the United States in the first place?

With the onset of national standards such as the No Child Left Behind Act (NCLB), members of state education departments, state governments, and local communities need to be aware of the opportunities that organizations such as the Agriscience program facilitate. As taken from A Guide to Education and No Child Left Behind, the eight principles that addressed all curricula are as follows:

1. Improving the academic achievement of the economically disadvantaged;
2. Preparing, training, and recruiting highly qualified teachers and principals;
3. Language instruction for limited English proficient and immigrant students;
4. Giving parents choices and creating innovative education programs;
5. Making the education system accountable;
6. Making the system responsive to local needs;
7. Helping all children learn to read; and

The Agriscience curriculum, along with the other career and technical courses are designed to incorporate the eight principles of the NCLB Act. Agriscience Education in particular offers courses such as Small Animal Care, Welding, and Agricultural Business. These courses provide effective skill building and academic opportunities as well as foster a well-trained work force that possesses adequate people skills (ACTE, 2005).
The governmental system has specified that all eight of the principles need to be given the utmost importance in order for the proper education of an individual to take place. This study will investigate the use of the eight principles by Agriscience teachers.

Problem Statement

The future of the Agriscience program will rely on educating the community about the depth of its program and how it currently implements the eight NCLB principles. In order for the program to continue to prosper, we have to redefine its role in the community and increase this awareness with pivotal government leaders in mind.

Purpose of the Study

The primary purpose of this study was to determine the extent of use of the educational principles and practices included in the No Child Left Behind Act in high school Agriscience programs as perceived by currently employed Agriscience teachers in Louisiana.

Research Objectives

The research objectives that were examined in the study are as follows:

1. To describe Louisiana’s Agriscience teachers on the following selected demographics:
 a. Years of teaching;
 b. Highest degree held;
 c. Area of FFA chapter (Area I, Area II, Area III, Area IV);
 d. Location of FFA chapter (rural, small town, suburban, urban, other);
 e. Whether or not the teachers possess certification in Agriscience;
 and
 f. Other areas of teacher certification.
2. To describe professional activities of Louisiana’s Agriscience teachers.

3. To determine how often Louisiana’s Agriscience teachers ascribed to the No Child Left Behind principles as measured by the mean of the 43-item scale. This mean was designated as NCLB8.

4. To determine if a relationship exists between NCLB8 and selected demographics of Louisiana’s Agriscience teachers:
 a. Years of teaching;
 b. Highest degree held;
 c. Location of FFA chapter (rural, small town, suburban, urban, other);
 and
 d. Other areas of teacher certification.

5. To determine if a relationship exists between NCLB8 and selected professional activities of Louisiana’s Agriscience teachers.
 a. Food for Families
 b. Adopt a Road
 c. Coats for Kids
 d. Recycle America
 e. Other

The study attempted to answer these objectives by administering a questionnaire to the practicing Agriscience teachers of the state of Louisiana. The questions asked in the study examined the extent that the teachers used the eight principles.
CHAPTER II
LITERATURE REVIEW

Introduction

Chapter two will discuss the following concepts: the changing educational field of agriculture, the advantages of agriculture education, the importance of agriculture, and the eight principles of the No Child Left Behind Act and their relationship to teaching.

Old World vs. New World Traditions of Agriculture

The primary problem lies within how people view the antiquated ideas and perceptions about the Agriscience program. Governmental regulations for students and education are based on yesterday’s model. The old curriculum stressed farming techniques and crop yields whereas the Agriscience classroom of the future will stress the importance of computer, math, English and science skills. Tolbert, Conroy, and Dailey (2000) states that “a change to science-based programming would help improve the image of agricultural education.” (p.58) They further discuss the uniquely experiential learning and leadership components of the program that no other curriculum stresses.

In addition to the old techniques of teaching agriculture, women in the field are new addition as well. Women were not allowed to join FFA until the year of 1969 (Agriculture Education, 2005, p. 6) now they make up over half of the entire population. A study entitled, Choices: A Dilemma of Women Agricultural Education Teachers (2001) attempted to examine the position female agriculture teachers are in when dealing with both job and family. When asked if they could have both a family and their agriculture career many feel that this is where the tension builds. One ag. teacher surveyed stated, “I have chosen to place my family first. I believe there is much negativism toward us (female) by
the male ag. teachers when we choose this route.” (Foster, 2001, p.5) With the addition of female Agriscience teachers comes many new challenges and innovative concerns to the classroom environment.

As anyone can see, the role of the modern farmer has changed and with it, the curriculum of the Agriscience class. Every student must learn the FFA Creed in his/her first year of the course. The FFA Creed symbolizes the old world traditions of agriculture and combines them with the promises of new traditions through FFA education. The following is an excerpt from the Creed. See Appendix A for the entire Creed:

I believe in the future of agriculture, with a faith born not of words but of deeds achievements won by the present and past generations of agriculturists; in the promise of better days through better ways, even as the better things we now enjoy have come to us from the struggles of former years.

I believe in leadership from ourselves and respect from others. I believe in my own ability to work efficiently and think clearly, with such knowledge and skill as I can secure, and in the ability of progressive agriculturists to serve our own and the public interest in producing and marketing the product of our toil.

I believe that American agriculture can and will hold true to the best traditions of our national life and that I can exert and influence in my home and community which will stand solid for my part in that inspiring task (Agriculture Education, 2005, p. 13).

The FFA Creed symbolizes the tie between old-world traditions and new-world concepts. With each paragraph, students learn and understand the importance of agriculture and its relative value in their individual lives.
Advantages of Agriscience Education

Agriscience Education is based on the following three principles of the CTE program:

1. Provide high school students with high-quality skills that prepare them for in-demand jobs.
2. Make education relevant, strive to keep youth in school and close the skills gap.
3. Enhance student achievement. Students who compete in rigorous academic core studies coupled with a career concentration have test scores that equal or exceed “college prep” students (The National Council for Agricultural Education, 2005, p. 2).

Cross’s 1999 article entitled, *What Do We Know About Student’s Learning, and How Do We Know it* discussed the many ways in which students learn. Extensive research identifies that students’ learning styles vary and the best way to educate a pupil is by incorporating various methods of instruction. One of the learning strategies that was addressed in the article was called cooperative learning which involves small groups of students working on assigned projects under the guidance of the teacher. The task of the groups is for them to work to the correct answer. This teaching strategy enables students to learn together helping one another.

Agriscience courses offer an alternative for many of the failing students. In most cases, the students feel that the core curricula classes are either difficult or boring. Many students desire a class in which the knowledge learned and applied today, can be used tomorrow. In Reese’s article, *The Role of Career and Technical Education in Dropout Prevention* in the March 2005 issue of *Technique* magazine, he stated that there are four key aspects of courses
such as Agriscience education that help to keep students in school. These include: “early interventions with family, service learning projects, making the most of instruction, and career education” (pp. 18-19).

The Agriscience classroom is one in which family is always included. The teacher acts not only as an instructor of knowledge, but as an advisor to the students. This approach formulates a trusting relationship that the students can rely on in times of stressful situations.

The Agriscience teacher has resources available to help students learn other than the structure of a classroom such as the hands-on experiences from workshops and the manipulation of the greenhouse. In turn, students are able to utilize their newly learned skills at a quicker pace, which helps them to remember the concepts better.

Agriscience Education is continually concerned with students’ career opportunities. After each lesson the instructor emphasizes the types of jobs available in the particular field of area being taught. Service learning projects show the students the many job/work opportunities that are available in their communities which can motivate them to achieve higher personal goals. Also, many Career Development Events (CDE’s) take place throughout the year which broaden a student’s job spectrum. (National FFA Organization, 2005) These activities provide students with the opportunity to use the skills learned in the classroom and also apply the concepts to real life situations.

Classes such as Agriscience education promote a productive student work ethic which in turn prepares students for the realities of today’s workforce environment. As Predmore (2005) stated in the March 2005 Techniques journal, employees want from their workers “people who show up on time, who can be counted on, and who get along with their fellow employees” (p. 53).
Skills of this nature are currently being implemented in the Agriscience classroom by such lessons as Leadership and Job Interviewing.

Unlike regular classes, the Agriscience class uses both classroom instruction and shop work to incorporate skills. The students are given opportunities for hands-on experience which equates to learning while they are doing. A 1990 study that was conducted by Riesenbergs and Lancaster at the University of Idaho found that students who were enrolled in an Agriscience class vs. students who had never taken an agriculture class when compared by college scoring indicated that no change was present. They went on to state that, “the findings seem to indicate that the Agriscience students were just as prepared if not more then the other students.” (p.30)

Importance of Agriculture

Agriculture is the nation’s largest single employer with more than 24 million people working in some phase of the industry including over 300 careers in the fields of science, business, and technology (Case, 2005). The national average of agriculture related exports exceeds $53 billion a year (American Farm Bureau Federation, 2004, p. 16). According to the LSU Agricultural Center’s 2005 Summary of Agriculture and Natural Resources, the net profit produced for 2004 in Louisiana was $5 billion in agricultural commodities with processing adding another $5.6 billion to the value of those products. With this vast impact on the economy of our state, Agriscience education becomes a major priority for Louisiana students who seek to learn more about our state’s economy and its place on the global front.

The job market continues to change and Louisianans need to better themselves by understanding the implications of receiving a higher education versus the money made per year. The National Center for Education Statistics
(NCES) states that “both male and female workers ages 25-34 earnings increase with education. In addition, males with a bachelor’s degree or higher had earnings 19 percent higher then male high school completers” (NCES, 2005). A chart found by the U.S. Department of Education (Appendix F: Income of Graduates) that illustrates the median annual earnings of full-time, full year wage and salary workers at all education levels is included.

The National FFA Organization reports that Agriscience students around the nation earn $4 billion a year through hands-on work experience by participating in over 49 national proficiency areas ranging from food science and technology to agricultural communications. Eighty-one percent of high school students are interested in college preparation while the other 19% of the students are interested in technology innovations (National FFA Organization, 2005). As one can see, the National FFA Organization strives to develop individuals for their future endeavors.

Eight Principles of the No Child Left Behind Act and Their Relationship to Teaching

With the onset of new educational standards such as the NCLB Act, Agriscience educators must understand the implications these eight principles will have on their classroom instruction. No studies were found that addressed the relationships between teacher characteristics and the use of the eight principles of the No Child Left Behind Act but one study by Brauchle and Azam (2004) found that when comparing demographics such as gender, level of education, age, and length of employment a significant relationship occurred. Dependability and length of full time employment showed a significant correlation at the p< 0.026 level to job satisfaction. The results showed that when employees possessed less than eight years of full-time employment they are less dependable when compared to an employee with more years. Also
the study pointed out that the more years of education that the employee possessed the more ambitious they were on the job. Goldhaber and Anthony’s (2004) report discussed teacher quality and teacher credentials.

While researchers tend to agree that teacher quality is an important determining factor in influencing student outcomes, there is little consensus about the relationships between specific teacher credentials (e.g., experience and degree level) and characteristics (e.g., age, race, and ethnicity) and teacher effectiveness... There is a seeming contradiction between the fact that teachers have a large impact on student achievement, but specific teacher attributes are not consistently found to directly impact student achievement, p. 5.

Principle One. The first principle stresses improving the academic achievements of the economically disadvantaged. North Central Regional Educational Laboratory (1997) addressed the issue of educating teachers for diversity:

As the student population in American schools becomes increasingly diverse, educators must respond with school reform efforts that meet the needs of all students. They must develop culturally sensitive curricula that integrate multicultural viewpoints and histories, apply instructional strategies that encourage all students to achieve, and review school and district policies related to educational equity....” ¶1

Even though some students may be from low income families, every student will be given the appropriate instruction and opportunity to learn. As reported in the article, Improving the Academic Achievement of the Disadvantaged, “closing the achievement gap between high-and low-income
children and between minority and non-minority students is of valued importance” (United States Government, 2005b, ¶ 2).

In recent years, it has been difficult to attract highly qualified teachers to low-income schools. President Bush strives to remedy the situation by attracting highly qualified teachers to low income schools by providing them with Federal Perkins Loan Teacher Cancellations of Debt. To qualify for the program, a teacher must be employed in a low income school as sanctioned by the government for five consecutive years. In turn, the teacher may be able to cancel up to 100% of their loan debt (Federal Student Aid FSA, 2004).

The Guide to Local Program Success states that Agriscience teachers are meeting the first principle’s needs by “engaging all students across all ability levels” (National Council for Agricultural Education, 2000, pp. 1-11). The teacher achieves this by allowing all students to have a voice in the classroom. In addition to the class work, each student has a personalized Supervised Agricultural Experience program (SAE). The program incorporates the student’s major interests and allows work on the project to be done at home in the student’s spare time.

Principle Two. The second principle stresses preparing, training, and recruiting highly qualified teachers and principals. The National Partnership for Teaching in At-Risk Schools (2005) defined effective and well-qualified teachers:

“...as those who are able to consistently assist their students in making significant academic progress. To do this, teachers must have a command of their subject matter, understand how students learn, and have a broad repertoire of teaching methods to meet the diverse needs of students. Teachers should have, at a minimum, full certification in their
main teaching field, though full certification does not ensure that a teacher will have the deep grasp of subject matter and the repertoire of instructional skills necessary to be effective with all students. And while teaching experience also does not guarantee effectiveness, research does indicate that teachers who have limited experience are generally less effective than teachers who have at least several years of teaching experience under their belts” p. 6.

Educators must be well-trained in the subject matter being presented. This is very important within the school setting as each educator holds the future of the student in his/her hands. The Southeast Center for Teaching Quality (2005) states that, “NCLB must focus not only on teachers’ content knowledge but also on their ability to teach by requiring preparation and performance based assessment before a teacher is considered highly qualified.” (p. 3) Goldhaber and Anthony (2004) stated in their article, _Can Teacher Quality Be Effectively Assessed?_ that “...teachers prior to becoming certified, were more effective than their non-certified counterparts.” (p.1). They also discussed the importance of teacher applicants’ success by “demonstrating mastery of a set of standards laid out by the National Board” p. 5. The definition of a highly qualified teacher as specified by the Louisiana State Educational Board is defined as:

A teacher who demonstrates content mastery in what they are teaching. This can be achieved in the following ways: course work equivalent to a major, national board certification in the content area, a master’s degree in the content area, or passing the Praxis content area exam (Louisiana Department of Education, 2005, ¶ 1).
The National Partnership for Teaching in At-Risk Schools (2005) examined the “impact of strategies and initiatives currently being implemented to address the problem of staffing at-risk schools.” (p. 15) They concluded that when schools worked with the communities as well as local, regional and national organizations the strength of the schools improved dramatically.

The Spring 2004 issue of *The Louisiana Board Member* magazine addressed ways Louisiana is successfully hiring, “highly qualified teachers.” One of the projects addressed in the article is entitled, *The New Teacher Project (TNTP)*. The TNTP project partners with school districts, colleges of education and state departments of education to enhance capacity to recruit, select, and train outstanding new teachers” (Scott, 2004, p.7).

Dr. Hess of the White House Conference on Preparing Tomorrow’s Teachers (2005) stated that, “despite the best efforts of many groups, they have been unable to establish a specific measurable body of skills that teachers must master” (p. 1). He also discussed many different measures that could be taken to ensure that teachers were qualified to teach the subject matter. For instance, Louisiana incorporates many different programs in efforts to improve teacher quality. These include testing of new value-added teacher preparation assessment models, developing electronic portfolios, implementation of new praxis examination scores and full implementation of TEACH Louisiana. All of these state programs are in effect to make sure that all teachers in Louisiana are able to properly teach their subject matter (United States Government, 2005).

Agriscience teachers in Louisiana operate on a twelve-month pay period. During the summer months teachers attend various workshops throughout the state on topics such as horticulture, equine science, and welding. Not only do
teachers gain valuable knowledge that they can use in the classroom but they also acquire Continuing Learning Units (CLU) points that can be used to be classified as highly qualified instructors.

Florida Agriscience programs offer Agriscience education professionals a program on leadership development. The mission of the program is as follows, “Develops agriscience teachers and administrators’ ability to improve their Agriscience programs and refine their leadership capabilities in order to provide quality agricultural education for students” (NSTA, 2005 ¶ 1). This program helps train teachers in Agriscience education on professional development plans and is included in Title II grant funds available for science education.

“The Agricultural Education mission prepares students for successful careers and a lifetime of informed choices in the global agriculture, food, fiber, and natural resources systems” (National FFA Organization, 2005, p. 4). The Agriscience education class teaches on a three ring model that stresses the following components: classroom instruction, FFA leadership and supervised agricultural experience (SAE) (See Appendix G - Graph 1: Three Ring Teaching Model). The three components combine to formulate a plan for the curriculum. This type of format is currently not being used in other classroom disciplines such as math, English, and history. On the other hand, in the Agriscience classroom instruction is the first of the three ring components. For example, in a lesson on welding, the instructor teaches students in a classroom setting about the rules and regulations involved in welding. The second component is the supervised agricultural experience program (SAE) in which students use the information learned in the classroom and then apply it in a hands-on learning environment. The FFA component of the model takes place at the Welding Career Development Event where students’ expertise is
evaluated and critiqued by state welding inspectors. The various CDE activities allow students to fully develop in their learning environment and also provides them with the opportunity to win various prizes, such as a welding machine or welding tools.

Principle Three. Language instruction for limited English proficient and immigrant students is the third principle of the NCLB act. This is currently a growing problem as communities are becoming extensively more diverse. The NCLB guide defines this as a “law that ensures all children – from every ethnic and cultural background – receive a quality education and the chance to achieve their academic potential” (The National Council for Agricultural Education, 2005, p. 8).

According to the future demand of the United States job market, the health of our economy will rely on individuals who are strong in math, English, and science (U.S. Department of Education, 2004, p. 22). In order to help those with limited English proficiency, the National Department of Education places great importance on the three core classes. In addition, President Bush is offering to pay those teachers who instruct in these three disciplines at a higher pay scale rate.

The Agriscience education curriculum uses the three core classes as the foundation of all of its lessons. Every lesson, as approved by the Louisiana State Educational board, has math, science, and English benchmarks governing the lesson (Picard, 2003). The codes shown in the mathematics, science, and English language arts columns in Table 1 were taken from the mathematics, science, and English language arts frameworks developed by the Louisiana Department of Education (Kotrlik & Arnould, 1999, p. 15-16). Teachers can encourage the development of the three core skills in a student,
for example, by stressing math skills when building picnic tables; English skills when writing or delivering a paper; and science skills when discussing plant genetics. By following identified benchmarks when writing lesson plans, an example is shown in Table 1, the Agriscience teacher demonstrates the implementation of some form of the three core curricula classes.

Table 1
Agricultural Literacy Benchmarks for Agriscience Awareness

<table>
<thead>
<tr>
<th>Benchmarks</th>
<th>Components</th>
<th>Math</th>
<th>Science</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag. Awareness</td>
<td>Discussing the history and industry of agriculture</td>
<td>N1/2/3/4/5/6/7/8/9</td>
<td>PS-A1/2/3/4/5</td>
<td>1- E1/2/5/6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M1/2/3/4/5</td>
<td>B1/2/3/4</td>
<td>3 – E3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G1/5/6</td>
<td>C3/4/6/7</td>
<td>4 – E1/2/3/4/5/6/7</td>
</tr>
</tbody>
</table>

Principle Four. Giving parents choices and creating innovative education programs is the concern of the fourth principle of the NCLB act. Parental involvement motivates students to achieve higher grades and to take more pride in their work. The General Provisions of the NCLB act address this need of parental involvement in children’s school activities by requiring each school district to provide parents with a detailed report card that reveals the school’s progress. If the growth is deemed not satisfactory by a parent then he/she is free to remove the child from the school and chose another educational establishment.

The Agriscience education classroom strives to motivate parental involvement by inviting parents into the learning environment. In turn, parents feel that they have a voice in what their particular child is being taught. They are
often requested to accompany their children on field trips and career
development events sponsored by the FFA organization. Parents have a right
to be included in what the children are learning and, in the free environment of
the FFA classroom; any parent can do just that.

Many of the Supervised Agricultural Experience Programs (SAE) integrate
the use of the students' parents to aid them on projects. For instance, the
Wildlife Management Proficiency Award concerns the tracking of game and
monitoring of feed plots in a wildlife refuge or hunting club. This activity allows
parents to become involved in the program by helping with the construction of
wood duck boxes and deer stands.

The FFA is based on family tradition. Many of the agriculture teachers
and students that are currently in the program are involved because of the
impact FFA had on the previous generation of learners in that family. Parents
who themselves were in FFA, will encourage their own children to join. In turn
these same children are motivated by their Agriscience teachers and foster
long term development and appreciation for agriculture.

Principle four is not only concerned with giving parents choices in their
childrens’ education but also is interested in conducting innovative programs.
The Agriscience education classroom is filled with many interesting topics for
study that creates innovative programs. These include such topics as public
speaking, farm business management, small engines, and equine science. The
FFA chapter strives to provide individuals with a curriculum that is
representative of all curricula classes. As shown from Louisiana’s state
curriculum guide, the courses that are currently being offered to all students are
as follows:

1. Exploratory Agriscience
2. Agribusiness
3. Agricultural Education Elective
4. Agriscience I, II, III, IV
5. Agriscience laboratory
6. Agriscience construction
7. Agriscience entrepreneurship
8. Agriscience internship
9. Leadership development
10. Welding systems
11. Animal systems
12. Aquaculture
13. Biotechnology
14. Small Engines
15. Electricity (Picard, 2003)

The Agriscience education classroom has something for all individuals, male and female. With such an array of subject matter being provided in the school system, all students can benefit from the skills that will be learned.

Principle Five. Making the education system accountable is the fifth principle of the NCLB act. In order for teachers and educators to determine if the system is working, all must be held accountable and to the same standards. This will ensure that no child falls behind or through the cracks of the educational system. The national government views this accountability as a yearly progress rate of improvement, but problems lie in the current way of thinking. Students cannot continue to take standardized tests and score higher every time; scores will eventually plateau which will make the system seem to be less effective (McElwee, 2005, p. 2).
Another problem was pointed out in the Spring 2004 issue of *The Louisiana Board Member* magazine which states that, “In the absence of other measures, current status indicators may be invalid and potentially misleading” (Louisiana School Board, 2004, p. 21). The problem lies in the fact that all students do not respond well to standardized tests. Thus they can by no means be a correct indicator of all student ability. Many different assessments must be conducted, such as those being implemented in the Agriscience classroom.

The *Louisiana Board Member* magazine declares that the state of Louisiana uses many different forms of assessment to achieve accountability for all students. As stated in the article *Assessment, Accountability and Alignment* “Currently there is no perfect test that measures everyone. Programs such as Agriscience education have a better means of gauging the potential of students” (LSBA, 2002, p. 16). Teachers can measure classroom skills, test taking abilities, and applied knowledge in the form of paper tests, skills tests, and on the applied level, by competing in a CDE event.

The state of Louisiana has also begun implementing new criteria for Teacher Preparation Accountability Systems. It partners with the National Council for Accreditation of Teacher Education (NCATE) which addresses the need for diversity, knowledge, skills and dispositions. In 2003-2004 a goal of 15% increase in programs was established and Louisiana achieved an “A+” status for quantity (Title II, 2005).

Principle Six. Making the system responsive to local needs is principle number six of the NCLB act. If a program is to be considered viable to the community in which it is located, it must meet all needs of the individual. The
Agriscience education courses provide this type of instruction by implementing programs such as Adopt A Road, Food for Families, and Coats for Kids.

The Adopt A Road project is a task in which the FFA chapter adopts a section of road or highway and is responsible for keeping that area clean. Students take a trip to the road or highway at least once a month to pick up any trash and also to beautify the area by planting shrubbery and flowers. This activity fosters the development of pride in a community and teaches the value of recycling. Also, the FFA chapter is recognized by having that section of road named after its school, thus broadening the community’s awareness of the FFA program.

Food for America, which began in 1975 was “designed to help introduce first through sixth-grade students to the fascinating world of agriculture and to make elementary students more aware of the world of agriculture and how it affects their daily lives” (National FFA Organization, 2004). This program teaches the younger generation of students about various domestic animals and agriculture plants. It also explains to them how the food eaten today originates from these plants and animals.

The Coats for Kids project takes place during the winter months. This activity focuses on the collection of coats and other winter items such as socks, hats, and gloves for needy families in the area. This is an important activity for each chapter to participate in as it teaches students about actively demonstrating compassion and charity towards others. It also exhibits a means of providing for the needs of the chapter’s community.

Patricia Cross (1990) found that the more interrelated curriculum is to a student’s cultural environment, the more the student will internalize the
material. The Agriscience classroom does a great job at this by implementing the community related projects.

Principle Seven. Principle seven addresses the concern of helping all children learn to read. Teachers must incorporate more reading into lesson plans. The more students read, the more they learn to enjoy reading. The FFA chapter instills in all its members a desire to read literature such as magazines, on line articles, and research journals. CDE’s such as Extemporaneous Public Speaking challenge the student to research a topic and prepare a six minute speech on the issue presented. These types of CDE’s keep students up-to-date on the current world events and teach them the means of researching information.

President Bush’s plan calls for teachers to use scientifically based reading material at the high school level by incorporating extra reading of research journal articles in the classroom. The Agriscience education class embraces this concept by providing access to computers to be utilized as tools for research. Various magazines on topics such as plants, animals, or mechanics are usually on display for students to read when class work is finished.

In addition, the FFA organization has established a program called Partners in Active Learning Support (PALS). “The program builds confidence, trust, and self-esteem in both older and younger students while keeping them excited about reading and learning” (Miner, 2003, p. 47). This activity allows FFA members and other students to visit local elementary and middle school students and nursing home residents in order to read books to them. This activity motivates others to read and experience new adventures through their reading.
Extensive research has been conducted and proven to link computer usage and higher reading ability. A study conducted at Walter F. Dexter Junior high school in Whittier, California found that students ranging in the ages of 12-14 years old improved their reading speed ability when given computer activities then did students that were not. The study concluded that when comparing reading abilities before and after the use of the computer program the students scores improved by 27%. (Mullan, 1997, ch. 5 p.6)

In addition another study conducted by Kotrlik, Harrison, and Redmann (2000) which dealt with the number and usage of computers by vocational education teachers found that out of the 57 Agriscience teachers surveyed, the teachers indicated that they had internet connection at their school. Sixty-seven percent stated that all teachers should know how to use the computer and 88% stated that they should know how to operate the internet. The study also indicated that 95% of the Agriscience teachers surveyed integrated computer-based teaching material into their lessons. The authors further emphasized the importance of reading and computer skills by the Agriscience community.

Principle Eight. The last principle, helping children with disabilities, is concerned with the Individuals with Disabilities Education Act of 1997. This act requires that students with disabilities participate in regular assessments and classes as normal students.

An online article by the Bureau of Education and Research states that one strategy that will maximize learning in an inclusive classroom is by cooperative teaching. (Bureau of Education & Research, 2005 ¶ 1) This teaching style incorporates two individuals teaching together. In the Agriscience classroom this is done on a regular basis. Half of the Ag. departments in Louisiana are two person establishments. One of the teachers may be wonderful at
classroom instruction while the other in the workshop area. In this give and take relationship all students benefit.

Many states are now requiring college students to take at least one course in special education before graduation. As taken from the National Education Association (NEA) website Sharon O'Donnell a student at Brown University, stated that when she observed a teacher, the individual told her “Oh don’t try to do much with him. It won’t work, he’s a crack baby.” (NEA, 2001 ¶ 3) Results have shown that when teachers are certified in both special education and their own discipline the students benefit.

President Bush is not only concerned about students who have physical or mental disabilities, but also the gifted students as well. The students who fall under the gifted category show “high achievement capability in areas such as intellectual, creative, artistic or leadership capacity that need more academic challenges in order to refine those skills” (United States Government, 2005, p. 5). The article entitled, Differentiating Curriculum for Gifted Students states that “Gifted students need time for in-depth exploration, they manipulate ideas and draw generalizations about seemingly unconnected concepts, and they ask provocative questions.” (Berger, 1996 ¶ 3) Gifted students should be provided with a chance to grow beyond the subject matter being taught in the classroom and agriscience teachers provide a wonderful conducive environment for this type of learning.

In the Agriscience classroom, gifted students can experience more curricula development by competing in career development events (CDE). An example being, the student is studying a lesson on soil science, once the lesson is finished the student can then take that knowledge and expand on it by competing in the soil judging competition. In addition the student can plan
his/her supervised agriculture experience (SAE) project around the knowledge gained from the soil lesson.

Summary

Agriscience and FFA stress three models of teaching that incorporate the values needed to create effective leaders in successful careers. (Graph three: Three Models of Teaching) The three methods of teaching are personal growth, leadership, and career success. These models are valuable because it allows the teacher to be able to instruct to all levels of the individuals in his/her classroom.

The Personal Growth model emphasizes the following areas of growth: mental, social, physical, professional, spiritual, and emotional. Teachers that incorporate the model instill in the students the ability to be self-fulfilled individuals. The concepts learned not only benefit gifted students, but also students with disabilities.

The second model is concerned with leadership of an individual and emphasizes the following areas: action, awareness, character, continuous improvement, relationships and vision. The FFA organization understands that all individuals have different levels of leadership abilities and strive to develop those qualities in the students. The curricula taught in this section helps the students to become viable individuals in their communities and also motivates them to improve their self-esteem through learning.

The goal of education is to prepare students for the workforce. The third model addresses this by focusing on career success and emphasizes the following areas: communication, flexibility/adaptability, decision making, and technical functioning. By implementing the four skills the students will be better prepared for the challenges of the job market (Croom, 2004).
The models are designed to aid teachers in developing students to the highest possible potential in order to produce effective citizens who are interested in promoting FFA. Inclusion of the classroom has brought about many different challenges for all teachers; it is with effective teaching skills, that all individuals are able to learn to the best of their abilities.

As stated by former President H.W. Bush on July 27, 1989: “We know what to call the FFA. We call it America at her best; America at her most generous. An America embodied by the FFA motto, Learning to do, Doing to learn, Earning to live, Living to serve” (Miner, 2003, p. 61).

The students of the FFA organization learn valuable math, science, and English skills by computing measurements, running experiments on the weather, and writing research reports. They master the material by actually doing, building, and constructing, in effect, using the knowledge learned. In turn, this knowledge can be used to earn a living, making it possible to generate a difference in the people around them. “You can teach kids to dream of a bright future or you can teach them to build it with their own hands” (Miner, 2003). This is the concept that the Agriscience advisors/teachers strive to communicate to the entire world.
CHAPTER III
METHODOLOGY

This chapter will discuss the methods used for the present research study. The methodology for the research included the following: a) identification of sample population, b) instrumentation e) data collection and, d) data analysis procedures.

Population

This study examined the 257 currently employed Agriscience teachers in the state of Louisiana. The sample population was defined as the Agriscience teachers who attended the general meeting of the 76th State FFA Convention. The researcher noted that it is a state mandate for all Agriscience teachers to attend the annual convention.

Instrumentation

The instrument was constructed by the researcher since no instrument was found to correlate with the eight NCLB principles. Cronbach’s alpha, which is a measure of internal consistency, was run to see if the 43 items measured the same construct. The result of Cronbach’s alpha was 0.882. Since this number was much closer to 1 than 0, it was considered to be a good indication that the items were reliable and measuring the same construct. Also, the instrument was reviewed and critiqued by three professors and four graduate students. Their comments and concerns were added to formulate a better instrument model. The questionnaire consisted of five sections and was designed to measure the participants’ frequency of use by certain skills or ways of thinking.

1. Section 1 contained 43 items (Items 1-43) designed to collect information on the teacher’s implementation of the eight principles of
the NCLB in the classroom. The questions investigated were evaluated by using a five point anchored scale with numerical ratings as follows: 5=Always, 4=Usually, 3=About half the time, 2=Seldom, and 1=Never

2. Section 2 contained 7 items (Items 44-51) which focused on the occurrence the teachers engaged in certain activities. This segment of questions used time to measure the frequency of occurrence by each event: 1=Never, 2=Daily, 3=Bi Weekly, 4=Weekly, and 5=Monthly.

3. Section 3 contained 9 items (Items 52-60) that collected demographic information about the Agriscience teachers.

4. Section 4 contained 9 items (Items 61-69) that asked questions that dealt with issues such as: special learners, state funding, parental involvement policy, and assessment measures.

5. Section 5 contained 4 items (70-73) that collected information concerning the teachers' and their chapters' involvement in various professional activities.

Data Collection

The general meeting of the 76th Annual State FFA Convention was used as the place to collect data. The researcher chose this location because the Agriscience teachers in the state were required to attend. Of the 257 currently employed Agriscience teachers in the state of Louisiana, 190 attended the convention. All were invited to participate. The surveys, which consisted of 73 items, were distributed to each of the Agriscience teachers that were present. Of the 181 returned surveys, the researcher eliminated seven questionnaires.
due to incomplete data. Data was collected and analyzed using the remaining 174 questionnaires.

Data Analysis

The data collected was analyzed using descriptive statistics and correlation analysis using the Statistical Package for the Social Sciences SPSS® software package. The strength of the correlations was interpreted using Davis’ proposed set of descriptors (1971). The coefficients and their descriptive scale are as follows:

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>.70 or higher</td>
<td>Very strong association</td>
</tr>
<tr>
<td>.50 to .69</td>
<td>Substantial association</td>
</tr>
<tr>
<td>.30 to .49</td>
<td>Moderate association</td>
</tr>
<tr>
<td>.10 to .29</td>
<td>Low association</td>
</tr>
<tr>
<td>.01 to .09</td>
<td>Negligible association</td>
</tr>
</tbody>
</table>

Specific objectives formulated to guide the researcher were measured using distinct questions designed for the survey instrument. Objective #1 of the study was to: “Describe Louisiana’s Agriscience teachers on the following selected demographics: a) years of teaching, b) highest degree held, c) area of FFA chapter, d) location of FFA chapter, and e) certification in Agriscience f) other areas of teacher certification.” The information was collected by the answers to questions 52-60. Data were reported using descriptive statistics.

Objective #2 of the study was to: “Describe professional activities of Louisiana’s Agriscience teachers.” Objective #2 was measured by questions 70-73 of the teacher survey. Data were reported using descriptive statistics.

Objective #3 of the study was to: “Describe how often Louisiana’s Agriscience teachers ascribe to the No Child Left Behind principles.” Objective
#3 was measured by survey questions 1-43. The teachers were asked to rate their individual response. Each question of the survey corresponds with a set of the eight principles. (For a list of the questions and principles see Appendix C). In order to gather more information on the teachers’ use of the eight principles, additional related questions from Items 44-51 and Items 61-69 were asked. Data were reported using descriptive statistics.

Objective #4 of the study was to: “Determine if a relationship exist between the No Child Left Behind principles and selected demographics of Louisiana’s Agriscience teachers: a) years of teaching, b) highest degree held, c) area of FFA chapter, d) location of FFA chapter, e) certification in Agriscience, and f) other areas of teacher certification.

Objective #5 of the study was to: “Determine if a relationship exist between the No Child Left Behind principles and selected professional activities of Louisiana’s Agriscience teachers.” Objectives #4 and #5 were measured by using correlation coefficients.
CHAPTER IV
RESULTS

Introduction

The research survey examined the use of the eight principles of the No Child Left Behind Act as perceived by currently employed Agriscience teachers in the state of Louisiana. A total of 190 surveys were distributed at the convention. Of the total amount distributed, 181 were returned with seven being excluded due to insufficient information resulting in an overall response rate of 92%. The findings of the survey are presented in this chapter and are organized by the objectives of the study.

Objective #1

Objective #1 was to describe Louisiana’s Agriscience teachers on the following selected demographic: years of teaching experience, highest degree held, area of FFA chapter (Area I, Area II, Area III, and Area IV), location of FFA chapter (rural, small town, suburban, urban, other), teacher certification and additional certifications in other areas.

Participants were asked “How many years have you been teaching?” The teachers had been teaching from 1-38 years. Teachers had been teaching for an average of 16 years (sd = 10.8). For presentation purposes, the data is presented in ten year increments. Table 2 indicates that the most frequently occurring response was that the responding teachers had been teaching from 1 to 10 years (n = 66, 38.2%). The smallest percentage of teaching experience were teachers that had 31 to 38 years (n = 20, 11.5%).

The participants were asked “Indicate the highest degree held.” One hundred and eight (62.4%) of the respondents indicated that they had
either a B.S. /B.A. degree, while only three had a Ph.D or Ed.D. degree. (1.7%)
(See Table 3)

Table 2

<table>
<thead>
<tr>
<th>Years</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-10 years</td>
<td>66</td>
<td>38.2</td>
</tr>
<tr>
<td>11-20 years</td>
<td>44</td>
<td>25.4</td>
</tr>
<tr>
<td>21-30 years</td>
<td>43</td>
<td>24.9</td>
</tr>
<tr>
<td>31-38 years</td>
<td>20</td>
<td>11.5</td>
</tr>
<tr>
<td>Total</td>
<td>173</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Note: Data was missing for 1 participant. \(m=16.2, \) \(sd = 10.8 \)

Table 3

<table>
<thead>
<tr>
<th>Degree</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.S./B.A.</td>
<td>108</td>
<td>62.4</td>
</tr>
<tr>
<td>M.S.</td>
<td>32</td>
<td>18.5</td>
</tr>
<tr>
<td>M.S. + 30</td>
<td>24</td>
<td>13.9</td>
</tr>
<tr>
<td>Ed. Specialist</td>
<td>6</td>
<td>3.5</td>
</tr>
<tr>
<td>Ph.D./Ed.D.</td>
<td>3</td>
<td>1.7</td>
</tr>
<tr>
<td>Total</td>
<td>173</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Note: Data was missing for 1 participant.

There are four distinct geographical regions of the state that are called areas. See Appendix B for the chart of areas. When responding to the question “Please indicate what area of the state your high school is located in” the majority of the respondents were from 2 areas; Area III \((n = 67, 38.8\%) \) and Area IV \((n = 47, 27.7\%) \) as shown in Table 4.
Table 4

Four Areas of High School FFA Chapters as Reported by Louisiana’s Agriscience Teachers

<table>
<thead>
<tr>
<th>Area</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area I</td>
<td>28</td>
<td>16.7</td>
</tr>
<tr>
<td>Area II</td>
<td>29</td>
<td>16.8</td>
</tr>
<tr>
<td>Area III</td>
<td>67</td>
<td>38.8</td>
</tr>
<tr>
<td>Area IV</td>
<td>47</td>
<td>27.7</td>
</tr>
<tr>
<td>Total</td>
<td>171</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Note: Data were missing for 3 participants.

Question fifty-eight asked the teachers to “indicate what area is your high school/FFA chapter located?” Eighty (46.5%) respondents indicated that the location of their high school FFA chapter was in a rural setting. No teacher indicated “Other” as a response. (See Table 5)

Table 5

Location of High School/FFA Chapter as Reported by Louisiana’s Agriscience Teachers

<table>
<thead>
<tr>
<th>Location</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rural</td>
<td>80</td>
<td>46.5</td>
</tr>
<tr>
<td>Small Town</td>
<td>60</td>
<td>34.9</td>
</tr>
<tr>
<td>Suburban</td>
<td>19</td>
<td>11.0</td>
</tr>
<tr>
<td>Urban</td>
<td>13</td>
<td>7.6</td>
</tr>
<tr>
<td>Total</td>
<td>172</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Note: Data were missing for 2 participants.

Question fifty-nine asked “Are you a certified Agriscience teacher?” One hundred and sixty-nine (97.8%) of the responding teachers indicated that they were certified to teach Agriscience Education. Only three (2.2%) teachers indicated they were not certified. One of the Agriscience teachers did not
respond when asked to identify if he/she was certified to teach Agriscience Education.

The teachers were asked to indicate if they were certified to teach other subjects besides Agriscience education. One hundred and fourteen of the responding teachers (65.6%) indicated that they were not certified in any other subject area.

In contrast, fifty-eight of the teachers specified that they were certified to teach a subject in addition to Agriscience education. Thirty-one (53.4%) of the teachers were certified in science-related subjects as shown in Table 6. In addition, 12 teachers were certified to teach in multiple discipline areas.

Table 6

<table>
<thead>
<tr>
<th>Subjects</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>French</td>
<td>1</td>
<td>33.3</td>
</tr>
<tr>
<td>1st Responder</td>
<td>2</td>
<td>66.7</td>
</tr>
<tr>
<td>Social Studies</td>
<td>3</td>
<td>75.0</td>
</tr>
<tr>
<td>Special education</td>
<td>3</td>
<td>25.0</td>
</tr>
<tr>
<td>Elementary education</td>
<td>3</td>
<td>5.2</td>
</tr>
<tr>
<td>Physical education</td>
<td>3</td>
<td>5.2</td>
</tr>
<tr>
<td>Biology</td>
<td>4</td>
<td>6.9</td>
</tr>
<tr>
<td>General Science</td>
<td>5</td>
<td>8.6</td>
</tr>
<tr>
<td>Earth Science</td>
<td>9</td>
<td>15.5</td>
</tr>
<tr>
<td>More than 2 areas</td>
<td>12</td>
<td>20.7</td>
</tr>
<tr>
<td>Life Science</td>
<td>13</td>
<td>22.4</td>
</tr>
<tr>
<td>Total</td>
<td>58</td>
<td>100.0</td>
</tr>
</tbody>
</table>
Objective #2

Objective #2 of the study was to describe the professional activities of the Louisiana Agriscience teachers. Respondents were asked to identify the conferences attended in the 2004-2005 school year by checking all that applied to them. The list included the following conferences: National FFA Convention, State FFA Convention, Leadership Camp, and Louisiana Vocational Agricultural Teacher Association (LVATA) conference. Seventy-two percent (n = 122) of the teachers that responded did not check that they had attended or were planning to attend the National FFA Convention.

Participants were given the option of adding other conferences they had attended that were not included on the list provided. Forty-five of the teachers selected that option. When selecting “Other” the teachers wrote more than one activity. Some of the activities listed under “Other” were: Washington Leadership Conference (WLC) (1 teacher), Summer Institute (7 teachers), Urban Agriscience Conference (2 teachers), Region II (11 teachers), and ACTE (42 teachers) (See Table 7).

Table 7

2004-2005 Conferences Attended/Planned to Attend as Reported by Louisiana Agriscience Teachers

<table>
<thead>
<tr>
<th>Conferences</th>
<th>Did not attend</th>
<th>Attended</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>National</td>
<td>122</td>
<td>72.2</td>
</tr>
<tr>
<td>State Convention</td>
<td>6</td>
<td>3.6</td>
</tr>
<tr>
<td>Leadership Camp</td>
<td>12</td>
<td>7.0</td>
</tr>
<tr>
<td>LVATA</td>
<td>14</td>
<td>8.8</td>
</tr>
<tr>
<td>Other</td>
<td>124</td>
<td>73.0</td>
</tr>
</tbody>
</table>
Note: Data were missing for 5 participants. Choices that were written when “Other” was selected included: Washington Leadership Conference (WLC), Summer Institute, Urban Agriscience Conference, Region II, and ACTE

Objective #3

Objective 3 was to determine how often Louisiana’s Agriscience teachers ascribed to the No Child Left Behind principles as measured by the mean of the 43-item scale. This mean was designated as NCLB8. The result of Cronbach’s alpha on the 43 items was 0.92. The following interpretive scale was developed by the researcher to interpret the results:

- 1.0 - 1.5 Never
- 1.6 - 2.5 Seldom
- 2.6 - 3.5 About half the time
- 3.6 - 4.5 Usually
- 4.6 - 5.0 Always

The overall mean of the 43 items was 4.12 (sd = 0.42). According to the interpretive scale, this score indicated that Louisiana’s Agriscience teachers “Usually” subscribed to the No Child Left Behind principles. Nine items (Q27, Q20, Q38, Q8, Q17, Q39, Q32, Q19, Q1) were interpreted as “Always” as shown on Table 8. The scores of the Agriscience teachers indicated that they always used the principles to some degree.
Table 8

Means and Standard Deviations of the 43 Items that Measured Louisiana Agricscience Teachers’ Usage of the No Child Left Behind Act

<table>
<thead>
<tr>
<th>Item#</th>
<th>Mean (X)</th>
<th>Standard Deviation (sd)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q27</td>
<td>4.76</td>
<td>0.49</td>
</tr>
<tr>
<td>Q20</td>
<td>4.75</td>
<td>0.46</td>
</tr>
<tr>
<td>Q38</td>
<td>4.72</td>
<td>0.64</td>
</tr>
<tr>
<td>Q8</td>
<td>4.66</td>
<td>0.59</td>
</tr>
<tr>
<td>Q17</td>
<td>4.59</td>
<td>0.67</td>
</tr>
<tr>
<td>Q39</td>
<td>4.57</td>
<td>0.63</td>
</tr>
<tr>
<td>Q32</td>
<td>4.55</td>
<td>0.62</td>
</tr>
<tr>
<td>Q19</td>
<td>4.53</td>
<td>0.65</td>
</tr>
<tr>
<td>Q1</td>
<td>4.53</td>
<td>0.62</td>
</tr>
<tr>
<td>Q42</td>
<td>4.40</td>
<td>0.67</td>
</tr>
<tr>
<td>Q29</td>
<td>4.37</td>
<td>0.70</td>
</tr>
<tr>
<td>Q6</td>
<td>4.35</td>
<td>0.77</td>
</tr>
<tr>
<td>Q33</td>
<td>4.34</td>
<td>0.73</td>
</tr>
<tr>
<td>Q16</td>
<td>4.34</td>
<td>0.84</td>
</tr>
<tr>
<td>Q28</td>
<td>4.30</td>
<td>0.74</td>
</tr>
<tr>
<td>Q18</td>
<td>4.26</td>
<td>0.91</td>
</tr>
<tr>
<td>Q5</td>
<td>4.22</td>
<td>0.74</td>
</tr>
<tr>
<td>Q2</td>
<td>4.20</td>
<td>0.76</td>
</tr>
<tr>
<td>Q37</td>
<td>4.18</td>
<td>0.81</td>
</tr>
<tr>
<td>Q35</td>
<td>4.17</td>
<td>0.75</td>
</tr>
<tr>
<td>Q22</td>
<td>4.16</td>
<td>0.80</td>
</tr>
<tr>
<td>Q24</td>
<td>4.16</td>
<td>0.78</td>
</tr>
<tr>
<td>Q3</td>
<td>4.13</td>
<td>0.82</td>
</tr>
</tbody>
</table>

(Table Continued)
In order to gather additional information, the teachers were asked further questions that measured the frequency of use they used distinct teaching strategies and procedures. The researcher formulated the questions to go along with the eight No Child Left Behind Principles.

Question #46 asked “How often do you ask students to discuss key concepts about your lessons with other students whose backgrounds and
viewpoints are different from their own?” Teachers were asked to select the frequency of occurrence by selecting: 1=Never, 2=Daily, 3=Bi Weekly, 4=Weekly, and 5=Monthly. Three teachers did not respond to the question. The most frequently occurring responses were Bi Weekly (n=50, 28.7%) and Weekly (n=43, 24.7%).

Question #53 asked “Indicate the number of students you have in your class who are classified as having English as a second language (ESL).” Three teachers did not respond to the question. The majority (n=137, 80.1%) of the responding teachers indicated that they did not have any students who were classified as having English as a second language. Thirteen (7.6%) of the responding teachers indicated that they had one ESL student.

Questions 63, 64, and 65 of the instrument asked the teachers to indicate various disadvantages of their students. One hundred fifty-nine (91.4%) of the responding teachers indicated that they were teaching students who were economically disadvantaged. In addition, one hundred fifty-two (90.5%) were teaching students who had disabilities and ninety-one (56.2%) were teaching students who were in the gifted program.

The teachers were asked six questions that dealt with classroom management issues. The first question stated, “How often do you meet with students who fall behind to discuss their study habits, schedules and other commitments?” Sixty-six (38.8%) of the teachers surveyed indicated that they met with students on a weekly basis.

Question # 45 asked the teachers, “How often do you have a teacher’s aide in the class with you?” As Table 9 shows, 134 (77.5%) teachers had a teachers aide available for assistance when needed. In addition, the teachers were asked to indicate, “How often do you give quizzes?” The majority (n= 117,
67.6%) of the teachers responded that they used quizzes on a weekly basis. When asked “how often do you give homework” 53 (31.0%) of the teachers responded that they give homework on a daily basis.

Table 9

Frequency of the Implementation by Six Additional Questions of No Child Left Behind Act of 2001

<table>
<thead>
<tr>
<th>Question</th>
<th>Never</th>
<th>Daily</th>
<th>Biweekly</th>
<th>Weekly</th>
<th>Monthly</th>
<th>Tot</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>%</td>
<td>n</td>
<td>%</td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>Never meet with students</td>
<td>4</td>
<td>2.4</td>
<td>38</td>
<td>22.4</td>
<td>38</td>
<td>22.4</td>
</tr>
<tr>
<td>Aide</td>
<td>134</td>
<td>77.5</td>
<td>8</td>
<td>4.6</td>
<td>1</td>
<td>0.6</td>
</tr>
<tr>
<td>Extra Material</td>
<td>9</td>
<td>5.3</td>
<td>23</td>
<td>13.5</td>
<td>46</td>
<td>27.1</td>
</tr>
<tr>
<td>Quizzes</td>
<td>4</td>
<td>2.3</td>
<td>7</td>
<td>4.0</td>
<td>34</td>
<td>19.7</td>
</tr>
<tr>
<td>Homework</td>
<td>31</td>
<td>18.1</td>
<td>53</td>
<td>31.0</td>
<td>33</td>
<td>19.3</td>
</tr>
<tr>
<td>Return Work</td>
<td>4</td>
<td>2.4</td>
<td>14</td>
<td>8.4</td>
<td>22</td>
<td>13.2</td>
</tr>
</tbody>
</table>

Note: Question 44. How often do you meet with students who fall behind to discuss their study habits, schedules, and other commitments? Question 45. How often do you have a teacher’s aide in the class with you? Question 47. How often do you provide extra material or exercises for students who lack essential background knowledge or skills? Question 48. How often do you give quizzes? Question 49. How often do you give homework assignments? Question 50. How often do you return assignments?

Question #67 asked, “Does your school have a parental involvement policy?” Over 75% (n=131) of the responding teachers indicated yes, 24 (13.8%) said no and 12 (6.8%) indicated that they did not know. Seven teachers did not respond to the question. In response to question # 68, “Does your school provide information to parents concerning the performance of their child’s school?” Five teachers did not respond to the question. Almost 99%
of the teachers indicated yes, while 1 (0.6%) responded No and 1 (0.6%) indicated that he/she did not know.

Question #52 asked “In a given school year how many students do you teach?” Two teachers did not respond to the question. The responding teachers most frequently (n = 74, 42.5%) indicated that they taught between 51 and 100 students. Sixty-six (37.9%) teachers indicated that they taught between 101-150 students.

Question #66 was “Do you take part in assessment measures at your school?” While the majority (n=140, 80.5%) of the responding teachers indicated that they did, 26 (14.9%) indicated that they did not and 2 individuals did not know if they had taken part or not. There were six individuals who did not answer the question.

Question #69 asked “Does your school offer tutoring for students who may be having academic problems?” One hundred fifty-three (87.9%) of the responding teachers indicated that they took part in school tutoring. While 11 (6.3%) indicated that they did not take part in school tutoring. Two individuals stated that they did not know if the school participated in this activity.

Question #61 asked “Do you currently receive the state $50/student supply/equipment funding?” The majority (n = 148, 85.1%) of the teachers surveyed indicated that they were receiving the funding. While 10 individuals stated that they were not and another 10 indicated that they “didn’t know”. There were six individuals who did not respond to the question.

Question #62 asked “Do you receive the full 12/9 of your parish supplement?” Approximately 66% (n = 115) of the teachers indicated that they did receive the funding while 41 or 23.6% of the teachers “did not” receive the
supplement and 7.5% indicated that they “did not know”. A total of five teachers did not respond when asked the question.

Question #56 asked “Please indicate the number of computers you have available for your students in your agriculture classroom.” Two teachers did not respond to the question. Responses ranged from 0 computers to 37. Ten teachers (5.8%) reported having 0 computers, while the majority (n=129, 75%) of the responding teachers had between 1 and 10 computers. One teacher reported having 37 computers in his/her classroom.

Objective #4

Objective #4 of the study was to determine if a relationship exists between NCLB8 and selected demographics of Louisiana’s Agriscience teachers:

1. Years of teaching;
2. Highest degree held;
3. Location of FFA chapter (rural, small town, suburban, urban, other); and
4. Other areas of teacher certification.

The researcher examined the information by using the Pearson Correlation model. The SPSS software was used to correlate the four variables discussed about with the NCLB8.

A weak negative correlation was found when the researcher examined years taught against the NCLB8. This indicated that the teachers that were surveyed who had less years of teaching experience were more likely to use the principles than the older generation teachers.

In addition, between highest degree held and the NCLB8 the survey indicated that the less education a teacher received the more they used the principles. Also the relationship between where the FFA chapter is located in
played an inverse effect as well. Rural and Urban locations of FFA chapters were found to use the principle more than the other areas would.

Table 10

Relationship Between NCLB8 and Selected Demographics of Louisiana Agriscience Teachers

<table>
<thead>
<tr>
<th></th>
<th>r</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Years of teaching</td>
<td>-0.066</td>
<td>0.404</td>
</tr>
<tr>
<td>Highest degree</td>
<td>0.080</td>
<td>0.858</td>
</tr>
<tr>
<td>Rural</td>
<td>-0.046</td>
<td>0.562</td>
</tr>
<tr>
<td>Small town</td>
<td>0.053</td>
<td>0.504</td>
</tr>
<tr>
<td>Suburban</td>
<td>0.076</td>
<td>0.340</td>
</tr>
<tr>
<td>Urban</td>
<td>-0.098</td>
<td>0.217</td>
</tr>
</tbody>
</table>

Objective #5

Objective #5 of the study was to determine if a relationship exists between NCLB8 and selected professional activities of Louisiana’s Agriscience teachers:

a. Food for Families
b. Adopt a Road
c. Coats for Kids
d. Recycle America
e. Other

Sixty-two percent \((n=105) \) of the responding teachers surveyed responded that they had never participated in the Food for Families program. Sixty-four (38%) of the responding teachers indicated participation in the Food for Families program. Five teachers surveyed did not respond to the question.

Note: * indicates correlation is significant at the 0.05 level. Data were missing for 5 participants.
A blank labeled as “other” was provided for teachers to write additional responses if they chose. Twenty-five (25) Agriscience teachers chose this option. In addition to the programs that were specified teachers indicated that their individual chapters participated in events such as toy drives, coastal erosion projects, food drives, community beatification projects and helping out in hospitals and nursing homes. The list also included such charities as St. Judes, Shriners Hospitals, Relay for Life, and Adopt a Family.

In regards to Food for Families and Coats for Kids a correlation at the .020 level was found that indicated if a chapter participated in the two events the teacher was more likely to use NCLB8 principles.

Conversely, if the chapter participated in Adopt a Road or Recycle America it was found to have a negative association between the NCLB8 principles. One reason why this could have occurred is the fact that the NCLB8 does not reflect this as important in their standards. The eight principles of the No Child Left Behind Act do not stress the goals sanctioned by the Adopt a Road and Recycle America FFA programs. Instead they focus on the academics and not on the procedures of the real world application of work related services.

Table 11

<table>
<thead>
<tr>
<th></th>
<th>r</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food for Families</td>
<td>0.186</td>
<td>0.020*</td>
</tr>
<tr>
<td>Adopt a Road</td>
<td>0.004</td>
<td>0.956</td>
</tr>
<tr>
<td>Coats for Kids</td>
<td>0.178</td>
<td>0.026*</td>
</tr>
<tr>
<td>Recycle America</td>
<td>-0.004</td>
<td>0.956</td>
</tr>
</tbody>
</table>

Note: Twenty-five teachers indicated “other” as a response.
CHAPTER V
SUMMARY, CONCLUSIONS, IMPLICATIONS AND RECOMMENDATIONS

Introduction

This chapter presents an overview of the study followed by major conclusions, implications, and recommendations of the research. The five objectives of the study served as a format for the presentation of the conclusions and recommendations. Suggestions for future research are also addressed.

Purpose and Objectives

The overall purpose of the study was to determine the extent of use of the eight No Child Left Behind principles as perceived by currently employed Agriscience teachers in Louisiana. Specific objectives formulated to guide the research included the following: First, to describe Louisiana’s Agriscience teachers on selected demographics as measured by the personal questions asked in the survey. Second, to describe professional activities of Louisiana Agriscience teachers. Third, to describe how often Louisiana’s Agriscience teachers ascribed to the No Child Left Behind principles. The researcher formulated questions that dealt with each principle. The teachers were not told which question corresponded with what principle; this allowed the researcher to correctly gauge the response given. Fourth, the researcher examined if a relationship existed between the No Child Left Behind principles and selected demographics of Louisiana’s Agriscience teachers. A Pearson correlation was calculated examining the relationship between the No Child Left Behind principles, selected demographics, and selected professional activities.
Conclusions, Implications, and Recommendations

Objective 1. Objective 1 of the study, was to: “describe Louisiana’s Agriscience teachers on the following selected demographics: a) years of teaching b) highest degree held c) area of FFA chapter d) location of FFA chapter e) certification in Agriscience f) other areas of teacher certification.” The majority of the teachers present at the State FFA Convention were teachers who had been teaching for 1 to 10 years whose highest degree held was a B.S/B.A.

Almost 98% of the teachers were certified to teach Agriscience Education while over 33% were also certified to teach other science related courses such as biology, general science, earth science and life science. Almost 9% of the teachers were certified to teach in areas that were not related to science. Being able to teach many different disciplines is a sought after skill and will make teachers more valuable resources in their own classrooms as well as to the learning environment of the student. As stated by Sharon O’Donnell of Brown University, a teacher who is both certified in Special Education as well other disciplines of education is better prepared to handle the inclusion classroom.

The Louisiana State FFA Association is segmented into four distinct areas. All four areas of the state were not equally distributed by the teachers who were present at the 76th State FFA Convention. The list of the currently employed teachers was published by the Louisiana FFA Association entitled Telephone Chapter Directory. By examining the demographic instrument questions, the researcher concluded that the attendance of State Convention by the Agriscience teachers from their respected areas was the following: Area I 68%, Area II 64%, Area III 84%, and Area IV 70%. The questions needs to be answered, “Why aren't more teachers attending this mandatory meeting?” and
“Since the convention is currently being held in the Area I and II location, why are those teachers missing more then the rest?” More research needs to be conducted in order to find out why there is such a low turnout depending on which part of the state the Agriscience teacher is located. Further research on the matter could be sending a questionnaire to the teachers that did not attend to possibly understand the reason.

Traditionally, Agriscience programs have been viewed as rural community needs. This research supports this premise since over 80% of the teachers attending the conference were from small towns and rural areas. In the school year of 2003-2004 there were 180 FFA chapters (personal communication, Dr. Bradley Leger, September 12, 2004). The Louisiana FFA Association reported that the 2004-2005 school year saw a growth rate of about 6 urban FFA chapters. Since only a little over 18% of the teachers attending the conference were from suburban and urban areas, additional research needs to be conducted to examine the representation of the urban vs. rural settings of Agriscience education.

As found by the National FFA Association website in reference to national membership comparisons, “27% of FFA members live in rural, farm areas; the remainder live in rural non-farm (39%), urban and suburban areas (34%). (FFA, 2005) The growth of urban and suburban FFA chapters can be increased further by allowing the constructive evidence of the programs to be shared. Teachers, school administrators, governmental officials, and parents need to voice what the FFA curriculum is accomplishing in their classrooms. School boards need to understand the importance the Agriscience community has on the entire picture of a students education. This will be the only way for Agriscience education to expand into urban and suburban areas.
Objective 2. Objective 2 of the study was to: “describe professional activities of Louisiana’s Agriscience teachers.” Teachers were asked to indicate conferences attended from a list of four FFA state wide conferences. A blank space was provided for teachers to list additional workshops attended. This information is important to the researcher because it allowed the researcher to examine the extent the Agriscience educators take part in activities besides their teaching endeavors. When Agriscience teachers take advantage of extra course materials such as summer institution classes and workshops, the students benefit by learning new up-to-date information.

The Louisiana Association of FFA under the direction of Dr. Bradley Leger specifies that agriscience teachers must attend State FFA Convention, Leadership Camp, and Louisiana Vocational Agriculture Teachers Association (LVATA) conference in order to be in good standing with the state. Six teachers indicated that they had never been to a State FFA Convention. As stated by the demographic question of the survey instrument, (years of teaching experience), the researcher identified that these individuals were in their first year of teaching Agriscience. Twelve teachers indicated that they had never been to Leadership Camp and 14 had never attended LVATA. Even though this is a small number, more research needs to be conducted in order to find out why this is occurring. By attending conferences such as the ones listed, teachers will gain new and innovative teaching strategies that they can incorporate into their classroom curriculum. Also, the Louisiana FFA Association has made it mandatory for teachers to attend the two functions because it provides Agriscience teachers a chance to gain important knowledge and new skills.
In regards to National FFA Convention, 122 of the agriscience teachers indicated that they had never attended. The Louisiana Association of FFA does not require its teachers to attend the annual convention. The amount of teachers that had never attended is alarming, the foundation of the organization is at the national level and the question as to why more of Louisiana’s agriscience teachers do not attend needs to be addressed.

Objective 3. Objective 3 of the study was to: “to determine how often Louisiana’s Agriscience teachers ascribed to the No Child Left Behind principles as measured by the mean of the 43-item scale. Cronbach’s alpha, which is a measure of internal consistency, was run to see if the 43 items measured the same construct. The result of Cronbach’s alpha was 0.92. Since this number was much closer to 1 than 0, it was considered to be a good indication that the items were reliable and measuring the same construct. Each question was weighted with a five point scale: 1= Never, 2= Seldom, 3= About half the time, 4= Usually, and 5= Always.

The teachers indicated that their use of the NCLB8 principles ranged from “Always” to “Usually.” The supplemental questions that were asked indicated that many of the teachers worked with students that had various learner differences and addressed those differences on a regular basis (bi-weekly). In addition, the research found that the younger years of teaching experience and education level, the more the teacher used the principles. The researches believes that coupled with older modes of education, the teachers were not equipped with the new knowledge that their younger counter parts possessed. More training and education could be done for the teachers in this area.

Objective 4. Objective 4 of the study was to: “determine if a relationship exists between NCLB8 and selected demographics of Louisiana’s Agriscience
teachers: Years of teaching, Highest degree held, Location of FFA chapter (rural, small town, suburban, urban, other), and Other areas of teacher certification. The researcher examined the information by using the Pearson Correlation model. The SPSS software was used to correlate the five variables discussed above with the eight No Child Left Behind principles of education.

A weak negative correlation was found when the researcher examined years taught against Principle 4 of the NCLB act. This indicated that the teachers that were surveyed who had less years of teaching experience were more likely to use Principle 4 than the older generation teachers. The principle which states, “Giving parents choices and creating innovative education programs” seems to be used at a greater level by younger generation agriscience teachers. In many aspects this could be because of the new information learned in the college courses which could emphasis that the college courses are doing their job when educating their teachers. More research would need to be conducted in order to see if this is indeed the case.

The other correlations that were studied indicated a negative response rate which signified to the researcher a reverse effect of what was expected to occur. The study indicated that for Principles, 1, 3, 8, 2, 4, 6, and 7; the less years taught the greater the individual used the principles. These principles dealt with educating the disabled, giving parents choices, making the system responsive to local needs and helping all children learn to read. With the reverse effect that was found one can only assume that with the new method of college instruction coupled with the independent study classes, teachers are getting a more well-rounded education.

In addition, between highest degree held and principles, 2, 4, 6, and 7; the survey indicated that the less education a teacher received the more they used
the NCLB principles. The instrument indicated that when teachers had a M.S. degree or higher, they were more likely to not use the principle than someone who only had a B.S./B.A. degree. This could have occurred because the teachers had been educating for a while and had received their degrees later in life or the implication could mean that as the students education career grows, colleges tend to not stress the importance of a well rounded education.

Also, the relationship between where the FFA chapter is located in played an inverse effect as well. Principle 4 was found to have a negative association to location of FFA chapter the researcher felt that this was due to the insufficient number of participants from each area. To combat this problem a descriptive study of the Agriscience teachers could be conducted to determine if they are implementing the principles. On the other hand, the review of literature indicates that the more education a person receives the more they will likely use the eight NCLB principles, my study found that the more education a person possess the less they use the principles of the No Child Left Behind Act. More extensive research needs to be conducted as to why this inverse of relationship occurred.

Objective 5. Objective 5 of the study was to: “determine if a relationship exists between NCLB8 and selected professional activities of Louisiana’s Agriscience teachers.” The activities are as follows: Food for Families, Adopt a Road, Coats for Kids, and Recycle America.

The teachers were provided with three different questions that instructed them to check all that applied. A blank characterized as “other” was provided for teachers to write additional responses if they chose. In addition to the programs that were specified teachers indicated that their individual chapters participated in events such as toy drives, coastal erosion projects, food drives,
community beautification projects and helping out in hospitals and nursing homes. By coordinating and taking part in extra curricula projects it provides not only the students and teachers satisfaction but also the community as well.

The first question asked teachers to indicate what teaching activities/strategies they regularly used in their classrooms. Over 94% of the teachers indicated that they did in fact use textbooks in their classroom. Another 138 respondents indicated the use of magazines/brochures in their teaching activities. Individual and group work was also used. There were only three teachers who indicated that they did not use individual work and four that had not used group work.

The second question asked the teachers to check activities in which their chapter participated. These activities included the following: Food for Families, Adopt A Road, Coats for Kids, and Recycle America. In regards to Food for Families and Coats for Kids a correlation was found that indicated that if a chapter participated in the two events the teacher was more likely to use principle 2 of the NCLB which deals with recruiting highly qualified teachers and principals.

Adopt a Road was found to have a negative association between six of the NCLB principles. The relationship showed that individuals who participated in the programs did not participate in some of the principles. This information is interesting and should be addressed in more detail. One reason why this could have occurred is the fact that not many chapters participated in the Adopt a Road program. In addition, as perceived by the NCLB8, the principles do not stress the importance of the Adopt A Road program to the educational curriculum which could have accounted for the low correlation rate but more research needs to be conducted before a true indication is reached.
Recycle America was found to have a similar significance in relation to chapter activities participated and the eight No Child Left Behind principles. This program also had low numbers of Ag. chapter participation which could have inertly effected the use of the principles. But the extent of the difference between the NCLB8 and the goals and values of the Recycle America program were not deemed appropriate in the inclusion of the principles.

The last question asked the teachers to indicate which other sponsored events they attended and participated in at their school. The list included clubs such as 4-H, BETA, FCCLA, and FBLA. The researcher found that many of the chapters did not participate in other activities. 4-H was the only exception with 113 teachers stating that their chapter regularly participated in the program.

Summary of Conclusions, Implications and Recommendations

The objective posed by this research was to “determine the extent of use of the eight No Child Left Behind principles as perceived by currently employed Agriscience teachers in Louisiana.” Based on the findings of the study, a number of general conclusions, implications and recommendations can be made.

First, the researcher concluded that the No Child Left Behind Education Act in reference to the Agriscience classroom is very important. The curriculum that the teachers are accustomed to covers a broad range of material. Agriscience teachers have to be skilled in all aspects of subject matter since they teach curriculums that deal with all areas of disciplines. The agriscience curriculum fosters development of each of the core curriculums. As stated earlier, a student would not be able to complete a wood working project without measuring procedures found by math skills and he/she would not be able to
write an agriculture journal article without writing abilities learned in English class.

The results of this study are encouraging. However, the findings are sample specific. Therefore, the researcher recommends that this study be replicated in other settings and with other groups such as FCCLA and FBLA to determine if these findings can be confirmed for their disciplines.

The researcher also recommends that question #2 of the survey be revised to include one choice for Food for Families. This was an oversight when formulating the information.

In addition, further studies conducted should include the variable of sex of the individual agriscience teachers and their use of the eight principles. The review of literature specified that in a non-traditional field, the concept of feminist research provides additional information. Additional information can be gained from the additional demographic.

It is the researcher’s belief that Agriscience educators are ascribing to the eight No Child Left Behind principles of education. The principles must be incorporated collectively with parents, family, teachers, schools, community, and government agencies.

In conclusion, there was once was a young girl who could not use simple math skills, was scared of gerbils, and could not speak in public. She scheduled an Agriscience class and enhanced her proficiency in the scientific procedure of feed ration equations and became an agriscience educator herself. The FFA/Agriscience dream for future generations can only continue by the voices of those whose lives have been changed.
REFERENCES

Croom, B. (2004, Jan-Feb). FFA Members, Why Are We Here?: Standards-Based Accountability in the FFA. The Agricultural Education Magazine, 76, 9-11.

Department of Louisiana Education. (n.d.). In CLUs Meeting Requirements of the NCLB Highly Qualified (HOUSSE) Definition (). Retrieved April 15, 2005, from http://www.doe.state.la.us/lde/tsac/1785.html Par. 10

Louisiana Association of FFA. *Agriscience Teacher Directory*. LSU.

LSU Ag Center (2004). *Louisiana Summary of Agriculture & Natural Resources 2003* (Rev. ed.). Baton Rouge, LA:

APPENDIX A: FFA CREED

I believe in the future of agriculture, with a faith born not of words but of deeds achievements won by the present and past generations of agriculturists; in the promise of better days through better ways, even as the better things we now enjoy have come to us from the struggles of former years.

I believe that to live and work on a good farm, or to be engaged in other agricultural pursuits, is pleasant as well as challenging; for I know the joys and discomforts of agricultural life and hold an inborn fondness for those associations which, even in hours of discouragement, I cannot deny.

I believe in leadership from ourselves and respect from others. I believe in my own ability to work efficiently and think clearly, with such knowledge and skill as I can secure, and in the ability of progressive agriculturists to serve our own and the public interest in producing and marketing the product of our toil.

I believe in less dependence on begging and more power in bargaining; in the life abundant and enough honest wealth to help make it so—for others as well as myself; in less need for charity and more of it when needed; in being happy myself and playing square with those whose happiness depends upon me.

I believe that American agriculture can and will hold true to the best traditions of our national life and that I can exert and influence in my home and community which will stand solid for my part in that inspiring task.
APPENDIX B: SCRIPT FOR MEASURING INSTRUMENT

Script for Measuring Instrument

The following will act as the script that the researcher will use to administer the test to the Agriscience teachers. There will be three parts to the testing procedure: introduction, body, and conclusion.

Introduction

The researcher will address the group of Agriscience teachers by stating the following dialogue:

Good afternoon, my name is Tiffany Popps and I am conducting a study that will be submitted to the graduate faculty of Louisiana State University in the school of Human Resource Education and Workforce Development in December 2005 for the requirement of my masters’ degree.

As many of you may be aware, recently Congress was asked to block the funding for Career and Technology Education programs. Louisiana alone would stand to lose over 24 million dollars of funding for our programs. The No Child Left Behind Act has changed the way governmental and educational officials view programs such as Agriscience Education. The NCLB act incorporates eight principles into the educational curriculum. My study will examine the use of the eight principles by currently employed Agriscience teachers in Louisiana. While you are not required to respond to the survey, I would really appreciate your input. The findings of my study are important because the fate of the Agriscience curriculum relies heavily on the use of the eight principles of the NCLB act. The questionnaire that has been passed out to you will be used as the means that I will collect the data that will be used in my study. All information will be anonymous. Please take a few minutes and fill the survey out to the best of your ability. Answer the questions using the numbers and knowledge attained from the 2004-2005 school year. After you have completed the survey, please drop it in any of the marked boxes that are located at each exit.

Body

There are three sections to the questionnaire. The first section asks the responder to circle the number that best represents their thoughts on the questions presented.

The second section of the questionnaire addresses the frequency of occurrence that the respondents participate in certain activities. Please circle the choice that corresponds to your activity.

The third and final section addresses standard demographic questions.

If you have any questions while filling out the instrument please raise your hand and I will come to you.
Conclusion

Again, please remember to drop your responses in the boxes by the exit doors. Thank you for your corporation and participation in the study.
APPENDIX C: AREAS OF LOUISIANA

By: Louisiana FFA Association
APPENDIX D: PRINCIPLE QUESTIONS

<table>
<thead>
<tr>
<th>Principles</th>
<th>Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,3,8</td>
<td>4,5,8,19,23,31, 46, 53, 63-65</td>
</tr>
<tr>
<td>2</td>
<td>1,2,3,12,15,20,21,25,27,28,32,34,35,39,40, 44, 45, 47-50</td>
</tr>
<tr>
<td>4</td>
<td>10,14,17,18,22,67,68</td>
</tr>
<tr>
<td>5</td>
<td>11,16,24,33,29,36, 52, 66,69</td>
</tr>
<tr>
<td>6</td>
<td>13,30,37,43,61,62</td>
</tr>
<tr>
<td>7</td>
<td>6,7,9,26,38,41,42, 56</td>
</tr>
</tbody>
</table>
APPENDIX E: SURVEY INSTRUMENT
For each of the following teaching behaviors/activities please circle the number that best represents the frequency that you use that behavior/activity in your Agriscience classroom.

Legend:

1 = Never (1)
2 = Seldom (2)
3 = About half the time (3)
4 = Usually (4)
5 = Always (5)

1. I expect people to enhance their self-esteem through my teaching.
 1 2 3 4 5

2. I compliment everyone’s work.
 1 2 3 4 5

3. I encourage students to praise each other for their accomplishments.
 1 2 3 4 5

4. I actively seek out my students’ learning styles at the beginning of each course.
 1 2 3 4 5

5. I provide teaching activities that address the diverse needs of my students.
 1 2 3 4 5

6. I encourage students to rehearse in advance when oral reports or class presentations are being used.
 1 2 3 4 5

7. I recommend extra reading assignments.
 1 2 3 4 5

8. I discourage student classroom behaviors that may embarrass other students such as (snide remarks, sarcasm and kidding).
 1 2 3 4 5

9. I encourage students to read magazines, newspaper articles or books related to the lesson that I am presenting.
 1 2 3 4 5

10. I require my students to use computers on their class projects.
 1 2 3 4 5

11. I discuss my program with my principal on a regular basis.
 1 2 3 4 5

12. I integrate guest speakers into my lessons.
 1 2 3 4 5

13. I incorporate the use of the news media to publicly call attention to my FFA chapters’ accomplishments.
 1 2 3 4 5

14. I have developed computer assisted learning alternatives to use in my courses.
 1 2 3 4 5

15. I encourage my students to suggest other course activities that would help the lesson.
 1 2 3 4 5

16. I believe that each person’s grade should be independent of the others in the class.
 1 2 3 4 5

17. I encourage students to join at least one high school organization.
 1 2 3 4 5

18. I involve the parents of my students by inviting them to attend events sponsored by my FFA chapter.
 1 2 3 4 5

19. I provide accommodations for students with disabilities.
 1 2 3 4 5

20. I demonstrate how to perform the skills learned in class.
 1 2 3 4 5
1= Never (1) 2= Seldom (2) 3= About half the time (3) 4= Usually (4) 5= Always(5)

21. I explain interrelated concepts to my students.
 1 2 3 4 5
22. I provide parents with data on where their child stands academically in my class.
 1 2 3 4 5
23. I question students about their views on society.
 1 2 3 4 5
24. I give students detailed evaluations of their work as they progress through the school year.
 1 2 3 4 5
25. I request my students to schedule conferences with me to discuss their progress.
 1 2 3 4 5
26. I give my students written comments on their strengths and weaknesses on exams and papers.
 1 2 3 4 5
27. I ask my students questions during class.
 1 2 3 4 5
28. I set aside a portion of my time to advise my students about career opportunities.
 1 2 3 4 5
29. I align my assessments with state academic content and achievement standards.
 1 2 3 4 5
30. I work with student leaders on issues related to student extracurricular life.
 1 2 3 4 5
31. I make special efforts to be available to students of a culture or race different from my own.
 1 2 3 4 5
32. I serve as a mentor or informal advisor to students.
 1 2 3 4 5
33. I teach by the course objectives.
 1 2 3 4 5
34. I clearly communicate to my students the amount of time they should spend preparing for classes.
 1 2 3 4 5
35. I actively work with my students to help them set challenging goals for their own learning.
 1 2 3 4 5
36. I provide alternative versions of assessments used in my class.
 1 2 3 4 5
37. I cooperate with other teachers on curriculum issues.
 1 2 3 4 5
38. I encourage students to ask questions when they don't understand.
 1 2 3 4 5
39. I give my students concrete, real-life situations to analyze.
 1 2 3 4 5
40. I request my students to summarize similarities among different research findings.
 1 2 3 4 5
41. I encourage students to write on a daily basis.
 1 2 3 4 5
42. I provide students feedback on how well they do on class activities.
 1 2 3 4 5
43. I align my course material as much as possible with other teachers at my school.
 1 2 3 4 5
For the following questions please indicate the frequency that you participate in these activities by circling the response that best meets your needs.
Legend: 1 = Never (1) 2= Monthly (2) 3 = Bi weekly (3) 4 = Weekly (4) 5 = Daily (5)

44. How often do you meet with students who fall behind to discuss their study habits, schedules, and other commitments? 1 2 3 4 5

45. How often do you have a teacher’s aide in the class with you? 1 2 3 4 5

46. How often do you ask students to discuss key concepts about your lessons with other students whose backgrounds and viewpoints are different from their own? 1 2 3 4 5

47. How often do you provide extra material or exercises for students who lack essential background knowledge or skills? 1 2 3 4 5

48. How often do you give quizzes? 1 2 3 4 5

49. How often do you give homework assignments? 1 2 3 4 5

50. How often do you return assignments? 1 2 3 4 5

51. How often do you take students to professional meetings or other events in your field? 1 2 3 4 5

For the following questions please write your response in the blanks that are provided.

Demographic Questions:

52. In a given school year how many students do you teach? ______________

53. Indicate the number of students you have in your class who are classified as having English as a second language. If none, enter 0 in the blank provided.________

54. How many years have you been teaching? ______________

56. Please indicate the number of computers you have available for your students in your agriculture classroom.________

57. Please indicate what area of the state your high school is located in by checking the box that corresponds with your location:
 A. Area I
 B. Area II
 C. Area III
 D. Area IV

58. What area is your high school located?
 A. Rural B. Small Town C. Suburban D. Urban E. Other:________

59. Are you a certified Agriscience teacher? Yes No

60. If applicable, please indicate other subjects you are certified to teach.
For the following questions please circle Yes, No or Don’t Know.

61. Do you currently receive the state $50/student supply/equipment funding?
 Yes No Don’t know

62. Do you receive the full 12/9 of your parish supplement?
 Yes No Don’t know

63. Are you currently teaching economically disadvantaged students?
 Yes No Don’t know

64. Are you currently teaching students with disabilities?
 Yes No Don’t know

65. Do you teach students who are in the gifted program?
 Yes No Don’t know

66. Do you take part in assessment measures at your school?
 Yes No Don’t know

67. Does your school have a parental involvement policy?
 Yes No Don’t know

68. Does your school provide information to parents concerning the performance of their child’s school?
 Yes No Don’t know

69. Does your school offer tutoring for students who may be having academic problems?
 Yes No Don’t know

For the following questions please check all that apply.

70. Check all of the conferences you have attended in 2004-2005:
 A. National Convention □
 B. State Convention □
 C. Leadership Camp □
 D. LVATA Conference □
 E. Other: __

71. Check all of the teaching activities/strategies you use to address the diverse needs of your students:
 A. Textbook □
 B. Magazines/Brochures □
 C. Individual work □
 D. Group work □
 E. Homework □
 F. Other: __
72. Check all of the activities that your chapter participated in 2004-2005:

A. Food for Families □
B. Adopt a Road □
C. Coats for Kids □
D. Food for Families □
E. Recycle America □
F. Other: ________________________________

73. Indicate by checking which events you attended in 2004-2005 that were sponsored by a different student group than your own:

A. 4-H □
B. BETA □
C. FCCLA □
D. FBLA □
E. Other: □ ________________________________
APPENDIX F: INCOME OF GRADUATES

Median annual Earnings (in constant 2002 dollars) of all full-time, full-year wage and salary workers ages 25-34 by sex and education level: Selected years, 1980 to 2002

<table>
<thead>
<tr>
<th>Year</th>
<th>All Education Levels</th>
<th>High School diploma or GED</th>
<th>Bachelor’s Degree or Higher</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
<td>$38,693</td>
<td>$36,922</td>
<td>$44,109</td>
</tr>
<tr>
<td>1990</td>
<td>34,973</td>
<td>30,441</td>
<td>43,799</td>
</tr>
<tr>
<td>1995</td>
<td>32,524</td>
<td>28,302</td>
<td>44,201</td>
</tr>
<tr>
<td>2000</td>
<td>36,026</td>
<td>30,759</td>
<td>48,506</td>
</tr>
<tr>
<td>2002</td>
<td>35,487</td>
<td>29,647</td>
<td>48,955</td>
</tr>
</tbody>
</table>

Female

<table>
<thead>
<tr>
<th>Year</th>
<th>All Education Levels</th>
<th>High School diploma or GED</th>
<th>Bachelor’s Degree or Higher</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
<td>$26,307</td>
<td>$24,258</td>
<td>$32,509</td>
</tr>
<tr>
<td>1990</td>
<td>27,495</td>
<td>22,547</td>
<td>36,912</td>
</tr>
<tr>
<td>1995</td>
<td>26,229</td>
<td>20,720</td>
<td>35,514</td>
</tr>
<tr>
<td>2000</td>
<td>28,629</td>
<td>22,369</td>
<td>37,980</td>
</tr>
<tr>
<td>2002</td>
<td>30,093</td>
<td>23,458</td>
<td>40,021</td>
</tr>
</tbody>
</table>

National Center for Education Statistic. (2005)
APPENDIX G: MODELS

Three-Ring Teaching Model

Career Success SAE - Model of Teaching

Leadership Model FFA - Model of Teaching

Classroom Instruction Personal Growth- Model of Teaching
Graph 1: Three Ring Teaching Model
Louisiana School Board (2004)
Graph 2: Career Success SAE - Three Models of Teaching

Louisiana School Board (2004)

Figure 3: Career Success and Its Defining Precepts
Graph 3: Leadership Model of National FFA Organization
Louisiana School Board (2004)

Figure 1: Leadership Model for National FFA Organization
Graph 4: Personal Growth Classroom Instruction Model
Louisiana School Board (2004)
APPENDIX H:

INSTITUTIONAL REVIEW BOARD APPLICATION FOR EXEMPTION FROM INSTRUCTIONAL OVERSIGHT
APPLICATION FOR EXEMPTION FROM INSTITUTIONAL OVERSIGHT

Institutional Review Board (IRB) for Human Research Subject Protection

Study exempted by Louisiana State University

Robert C. Mathews, Chair

Instructions: Complete this form.

Exemption Applicant: If it appears that your study qualifies for exemption, send:

(A) Two copies of this completed form,
(B) a brief project description (adequate to evaluate risks to subjects and to explain your responses to Parts A & B),
(C) copies of all instruments to be used. If this proposal is part of a grant proposal, include a copy of the proposal and all recruitment materials.
(D) the consent form that you will use in the study. A Waiver of Written Informed Consent is attached and must be completed only if you do not intend to have a signed consent form.

Exemption Category: [] [] []

If exemption seems likely, submit it. If not, submit regular IRB application. Help is available from Dr. Robert Mathews, 578-8892, irt@lsu.edu or any screening committee member.

Principal Investigator: Tiffany Ann Poppa
Student: Y

Ph: 337-423-3421 Email: tannpoppal@lsu.edu Dept/Unit: Human Resource Education

If Student, name supervising professor: Dr. Gerri Johnson
Ph: 578-2461

Mailing Address: 140 Old Forestry Bldg, Baton Rouge, LA
Ph: 578-5748

Project Title: Agricultural Program - Using the As Child Lift Behind

Principles of Education

Agency expected to fund project: N/A

Subject pool (e.g., Psychology Students), Agricultural Teachers

Circle any "vulnerable populations" to be used: [] children <18, the mentally impaired, pregnant women, the aged, others. Projects with incarcerated persons cannot be exempted.

I certify my responses are accurate and complete. If the project scope or design is later changed, I will resubmit for review. I will obtain written approval from the Authorized Representative of all non-LSU institutions in which the study is conducted.

PI Signature: Tiffany Ann Poppa Date: May 23, 2005

Reviewer: Michael Keenan Signature: Michael Keenan Date: 6-1-05

Part A: DETERMINATION OF "RESEARCH" and POTENTIAL FOR RISK

This section determines whether the project meets the Department of Health and Human Services (HHS) definition of research involving human subjects, and if not, whether it nevertheless presents more than "minimal risk" to human subjects:
VITA

Tiffany Ann Popps is an agriscience education teacher/advisor. For the past months, she has been educating eighth, eleventh, and twelfth graders at the Louisiana School for Agriscience (LaSAS) on the joys of agriculture. Her teaching accomplishments include training a 1st place team for the Soil Career Development Event and the team is now training for Nationals to be held in Oklahoma City. Also in 2005, she was inducted into the honor society of agriculture, Gamma Sigma Delta. Currently a master’s student at Louisiana State University (LSU) in Baton Rouge, Louisiana, Tiffany Popps received her bachelor’s degree in vocational education. She received her Associate of Science degree from Louisiana State University at Eunice (LSUE) in the spring of 2002. In 2000, Tiffany received the coveted American FFA Degree and in 1997-1998 she reigned as the first female FFA President for her FFA chapter. She aspires to one day become the Louisiana Association of FFA state advisor and looks forward to the many challenges and opportunities that will come her way. In her spare time, she enjoys writing poetry and currently has three published on the internet. She loves spending time with her family and friends and walking her four dogs. When she is not studying or teaching she can be found sewing, singing, or lending a helping hand around her community. Tiffany’s motto is “If you can believe it, you can achieve it.”