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Abstract. The thermal noise associated with mechanical dissipation is a
ubiquitous limitation to the sensitivity of precision experiments ranging from
frequency stabilization to gravitational wave interferometry. We report on the
thermal noise limits to the performance of 1 gm mirror oscillators that are part of
a cavity optomechanics experiment to observe quantum radiation pressure noise.
Thermal noise limits the observed cavity displacement spectrum from 80 Hz to
5 kHz. We present a calculation of the thermal noise, based on finite element
analysis of the dissipation due to structural damping, and find it to be in excellent
agreement with the experimental result. We conclude with the predicted thermal
noise for an improved oscillator design, which should be capable of revealing
the noise that arises from quantum backaction in this system.
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1. Introduction

All mechanical systems exhibit thermally driven fluctuations. Callen and Greene give a general
description of thermal noise, the fluctuation dissipation theorem, which relates the level of
thermal noise at each frequency to the amount of damping at that frequency [1]. Such damping
is well modeled with a complex spring constant k → k(1 + iφ( f )), where φ( f ) is known as the
loss angle. When dissipation arises from the familiar velocity-dependent damping force due to,
for instance, air resistance, it results in viscous damping, with /( f ) ∝ f . However, Saulson [2]
proposed that in high vacuum with appropriate isolation, the damping in a mirror-suspension
system (such as those used in gravitational wave detectors) would likely be structural: that is,
dominated by internal friction in the suspension and mirror materials, with φ( f ) constant over
the frequency band of interest. While the displacement noise due to either form of damping is
identical near a mechanical resonance, away from resonance the two forms look quite different,
with the amplitude spectral density of the structural form steeper by a factor of f −1/2. The
thermal noise spectrum of mechanical resonance has been well studied, but in fact it is the
off-resonant behavior that reveals the underlying dissipation mechanism.

This thermal noise due to mechanical dissipation provides a fundamental limitation to
many precision measurement experiments, such as gravitational wave detectors [3], frequency
stabilization [4, 5], opto and electro-mechanics [6] and tests of deviations from Newtonian
gravity via torsion pendulum. Most measurements of thermal noise exhibit non-structural
damping [6, 7]. The exceptions to date include measurements at very low frequencies, below
10 Hz, in reference cavities [4, 5] and in torsion pendulums used for testing deviations from
Newtonian gravity [8].

Here we report on an interferometric displacement measurement limited by off-resonance
suspension thermal noise in the broad frequency band 80–5000 Hz, achieving a maximum

displacement sensitivity of 2 × 10−17 m
√

Hz
−1

at 5 kHz. Our measurement over that band
matches thermal noise predictions made from a finite element model of the mirror and its
suspension. Our experiment is uniquely sensitive to structural thermal noise at frequencies
below a few kHz due to the mm-scale optical beam diameter, which reduces the impact of
coating thermal noise and thermoelastic substrate noise [9]. This is in strong contrast to previous
thermal noise measurements, where much smaller beam sizes (<0.1 mm) were used in order to
magnify the effect of thermal noise [10–12]. Moreover, in the 80–200 Hz band our thermal
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noise is primarily due to above-resonance thermal noise. Our results should, therefore, be
of interest both to those in the cavity optomechanics community working toward quantum
noise limited experiments [6] and those in the gravitational wave community contending with
structural thermal noise in the design of mirror suspensions for interferometric gravitational
wave detectors [3].

2. Theory

The fluctuation dissipation theorem provides a unified way of understanding thermal noise.
It relates the power spectral density Sx of fluctuations in a generalized coordinate x to its
dissipation into a coupled thermal reservoir at temperature T as:

Sx( f ) =
kBT

π2 f 2
|<[Y ( f )]|, (1)

where kB is Boltzmann’s constant, and Y ( f ) is the generalized mechanical admittance at
frequency f . The admittance acquires a real part when the system has some loss. It is
computed from the complex velocity response v( f ) of the coordinate to an oscillating driving
force F( f ):

Y ( f ) = v( f )/F( f ) = i(2π f )x( f )/F( f ). (2)

For systems with a single degree of freedom, the admittance can be calculated exactly from
its equation of motion, and then equation (1) yields the exact thermal noise spectrum. For
multi-mode or continuous systems, one may often obtain a good approximation to the measured
thermal noise by summing the thermal noise power spectral density due to each mode, but only
if the normal modes are reasonably orthogonal (a condition dependent on the modal Qs and
frequencies) and sufficiently many modes are included in the sum. This approximation may be
written as:

Sx( f ) ≈

∑
moden

4kBT

8π 3mn f

(
f 2
n φn

( f 2 − f 2
n )2 + f 4

n φ2
n

)
, (3)

where mn is the modal mass of the nth mode with frequency fn and loss angle φn. Typically at
least the lowest 100 modes must be included to obtain good estimates for the mirror substrate
thermal noise in a gravitational wave interferometer [13].

The extent to which each normal mode couples to the generalized coordinate x of interest
is quantified by its change 1xn under maximal expansion of that mode, via its modal mass
mn = U/(1

2ω
2
n1x2

n), where U is the stored energy in the mode. For a system made of several
materials, the loss angle φn of mode n is the sum over the loss angles θi of the materials weighted
by αn,i , the fraction of energy stored in that material at maximal expansion:

φn = 1/Qn =

∑
material i

θiαn,i . (4)

Based on the fluctuation dissipation theorem, Levin derived a ‘direct approach’ to calculate the
exact thermal noise spectrum of mirror position as measured by an incident laser beam, as in an
interferometer [14]. One calculates the mechanical admittance by applying a generalized force
F , oscillating at frequency f , that drives only the generalized coordinate x . As measured by a
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Figure 1. Schematic layout of the experiment. Several watts of 1064 nm laser
power are incident on a Michelson interferometer that has Fabry–Perot cavities
in each arm. The beam splitter (BS) and input mirrors (ITM) are 250 gm mirrors,
while the end mirrors (ETM) are 1 gm mirrors suspended as pendulums. An
electro-optic modulator (EOM) driven by a crystal oscillator (OSC) applies
phase modulation sidebands on the laser light to generate Pound–Drever–Hall
error signals for the arm cavities. Photodetectors (PD) at the different output
ports are demodulated by mixers (MX) to derive error signals for the arm
cavities and for the Michelson interferometer. Control signals generated using
hybrid digital and analogue servo loops are fed back to the interferometer mirror
positions and to the laser frequency.

laser, the mirror position is x(t) =
∫

d2
Erw(Er)y(Er , t), where w(r) is the intensity weight of the

beam at radius r , and y(Er , t) is the deformation of the surface at position Er in the x̂-direction
at time t . For a Gaussian beam, we have w(r) = e−(r/r0)

2
/(πr 2

0 ), where r0 is the radius at which
the intensity has dropped to 1/e2. After finding the admittance, the power spectral density of
the thermal noise is computed with equation (1). This formulation is particularly amenable to
numerical calculation with finite element simulations.

In our analysis, we use Levin’s direct approach to calculate predicted thermal noise levels,
but the normal mode method provides a simple way to interpret those results qualitatively. For
instance, thermal noise due to a particular mode often dominates in a particular frequency band,
and knowledge of which mode is the culprit may suggest a route to mitigating it. Further, in
a multi-material system, the thermal noise from the lossiest (highest φ) material may often
completely overwhelm the thermal noise from lower loss components (see equation (4)) over
certain frequency bands, even if the amount of lossy material is minuscule in comparison. We
also observed that computing thermal noise via the normal modes approach with finite element
models is about an order of magnitude faster than the Levin approach, and with the inclusion of
the lowest ∼100 modes, agreed at the ∼30% level.
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Figure 2. Left panel: COMSOL model of a 1 gm mirror suspended by fused
silica fibers, showing the fibers that taper in the middle and are thicker at the
ends where the epoxy bonding is done. The 1 gm mirror pendulum is attached to
a fused silica ring that is itself suspended as a pendulum. This double pendulum
system provides greater isolation from seismic noise, but has little impact on
the accuracy of the model due to the much greater mass of the outer ring. Right
panel: photograph of the 1 gm mirror suspension.

Table 1. Material properties and their assumed values.

Property Fused silica Vac-Seal epoxy

Density 2.20 g cm−3 1.01 g cm−3

Young’s modulus 73.1 GPa 2.75 GPaa

Poisson’s ratio 0.17 0.25b

Loss angle 3 × 10−7 c 0.035d

a Per manufacturer specification for comparable epoxies: http://www.masterbond.com
b The predicted thermal noise level depends very weakly on the Poisson ratio. The expected
value is between 0 and 0.5, here we use the average.
c All fused silica loss occurs in the fibers where surface losses dominate. With minimum
diameter ∼150 µm, Gretarsson and Harry find this value [16].
d See discussion in text.

3. Experiment

A schematic of the experimental setup is shown in figure 1. The optomechanical system consists
of two Fabry–Perot cavities with movable mirrors, embedded in the arms of a Michelson
interferometer. The Michelson enables a sensitive readout of the differential displacement of
the two cavities. A 1 gm mirror oscillator forms the end mirror of each cavity. The primary
goal of the experiment is to observe the quantum backaction of the differential displacement
measurement on the 1 gm mirrors. Details of the experimental design can be found in [15].

Central to the present work are the 1 gm mirror oscillators, which are suspended from fused
silica fibers, as shown in figure 2. The fibers are bonded to the mirror with Vac-Seal epoxy (Tra-
Con), see table 1. Each fiber is 40 mm in length, and tapers from a maximum diameter of 3 mm
to a minimum of ∼150 µm. A thicker region, called the ‘ear’, is located at the bottom, and is

New Journal of Physics 14 (2012) 115008 (http://www.njp.org/)

http://www.masterbond.com
http://www.njp.org/


6

Figure 3. Left panel: 1 gm mirror suspension shown with the COMSOL mesh.
The model was generated from high-resolution photographs of the mirror and
ears. Right panel: image of the displacement of the twisting ear mode, with blue
being least displaced and red being most displaced.

about 10 mm long and 1.5 mm in diameter. The shape of the ear was informed by the need for
a steep spatial gradient at the transition between the small diameter fiber and the large diameter
ear, which allows for better decoupling of ear and mirror motion. See figure 3, for a close-up of
the ear region.

The purpose of the tapering fibers is to minimize the thermal noise of the fundamental
mode of oscillation (which occurs at about 10 Hz), by ensuring that it stores energy mostly
in the pristine fused silica near the middle of the fiber, and not in the lossy epoxy at either
end. Quality factors of 106 or greater are measured for the 10 Hz mode, suggesting that the
thermal noise of this mode is far better than what is required to observe the quantum backaction.
However, another thermal noise floor limits the measured displacement noise spectrum in the
80–5000 Hz band, as shown in figure 4. In the next section, we present the results of finite
element simulations confirming that the ear-mirror epoxy bond is the origin of the observed
thermal noise.

4. Thermal noise analysis

The finite element method is an approach to solving for continuum dynamics in various
physical scenarios by discretizing the geometry. We perform finite element simulations with
the COMSOL Multiphysics package, using its structural mechanics module. With that software
we model the three-dimensional geometry and then implement the Levin approach [14]. We
apply a Gaussian load to the mirror face, and solve for the steady-state mirror response to the
load oscillating at a set of frequencies { f }, yielding the complex admittance Y ({ f }) directly. See
table 1 for the material parameters used in the simulations. Using experimental data for different
quantities of glue we infer the loss angle, φepoxy = 0.035, of the epoxy from the amplitude
spectra density. This value results in excellent agreement between our experimental data and
the output from the model. We take this result as confirmation that our displacement noise floor
is dominated in the 80–5000 Hz band by structural thermal noise. The 80–200 Hz band is in the
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Figure 4. Thermal noise calculated from COMSOL model with normal mode
method, along with the measured sensitivity, and the predicted sensitivity with a
0 and −1 mm vertical beam offset from the mirror center. Non-uniform optical
losses over the mirror surface prevented us from exploring the full space of beam
offsets. Experimental upgrades underway should allow us to explore a wider
range of beam offsets in the future.

above-resonance ‘wing’ of the 80 Hz pitch mode. If all the pitch modal energy were in the very
low loss fused silica, then we would expect to measure Q = 1/φfusedsilica ∼ 3 × 106. However,
we measure only ∼5 × 105, indicating both that pitch thermal noise is setting our noise floor in
that band, and that epoxy loss is dominating that noise. In the 200–5000 Hz band the spectrum
shows the characteristic f −1/2 below-resonance thermal noise spectrum of a structurally damped
oscillator, which is well reproduced by simulations. The modes responsible for this noise are
the bending modes of the ear–mirror joint, with resonant frequencies starting around 30 kHz,
outside the band of our measurement. See figure 3, for an example of one such ear–mirror
bending mode.

5. Thermal noise mitigation

Various schemes have been presented to reduce the level of thermal noise in an
interferometer [17–20], relying either on carefully tuned passive cancelations or multiple
measurements to disentangle the thermal noise from displacement signal. Our modeling results
suggest several simpler geometric ways to lower our noise floor.

In the 80–200 Hz band, the measured spectrum is dominated by the thermal noise from
the pitch mode of the oscillator. Introducing a vertical offset of the incident laser beam [14],
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Figure 5. COMSOL model of chopped mirror suspended with square ears.

Figure 6. Predicted thermal noise for various alternative ear geometries from
COMSOL simulations.

shifting it ≈1 mm from the center of the mirror, places the beam near the node of the pitch mode.
This offset should decrease the sensed pitch thermal noise (by increasing the modal mass), as
depicted in figure 4.

Above 200 Hz, the thermal noise of the mirror–ear bending modes takes over. As the
loss angle φepoxy is five orders of magnitude larger than φfusedsilica (for ∼150 µm fibers [16]),
it is the epoxy that dominates both the pitch and the mirror–ear bending thermal noise. To
minimize the effect of this thermal noise in our measurement band, we studied alternative
mirror–ear geometries to maximize the strength of the ear–mirror bond per amount of epoxy.
By maximizing this quantity, we redistribute the thermal noise of the mirror–ear modes to
higher frequencies, out of the measurement band. This quantity of merit is optimized in the
case of plane-on-plane contact, and we propose a design that incorporates ears with square
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cross-section, and ‘chopped’ mirrors with flattened regions on the circular edge. Figure 5 shows
a model of this square-ears/chopped-mirror geometry, and figure 6 shows the thermal noise
for variations on that geometry predicted from our modeling. We expect these square ears to
be the most expedient path forward, and are pursuing this design for the next iteration of the
end mirror suspension. This chopped geometry is also compatible with other adhesives such as
silicate bonding [21].

6. Conclusion

We have experimentally demonstrated and theoretically analyzed the structural thermal noise-
limited performance of a 1 gm mirror oscillator, finding excellent agreement between the model
and the measurement. We have also proposed some avenues to reduce the thermal noise floor
in this experiment. The observation of off-resonance thermal noise has importance for a broad
class of experiments in cavity optomechanics and gravitational wave interferometry. Accurate
modeling of these complex structures depends on detailed knowledge of their geometry and
material properties, but lets us better understand and optimize their mechanical design. The
optimizations we have presented should permit our experiment to enter the quantum backaction-
limited regime.
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