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Incorporation of iodine into apatite
structure: a crystal chemistry
approach using Artificial Neural
Network
Jianwei Wang*

Department of Geology and Geophysics, Center for Computation and Technology, Louisiana State University, Baton Rouge,

LA, USA

Materials with apatite crystal structure have a great potential for incorporating the
long-lived radioactive iodine isotope (129I) in the form of iodide (I−) from nuclear waste
streams. Because of its durability and potentially high iodine content, the apatite waste
form can reduce iodine release rate and minimize the waste volume. Crystal structure
and composition of apatite (A5(XO4)3Z) was investigated for iodide incorporation into
the channel of the structure using Artificial Neural Network. A total of 86 experimentally
determined apatite crystal structures of different compositions were compiled from
literature, and 44 of them were used to train the networks and 42 were used to test
the performance of the trained networks. The results show that the performances of the
networks are satisfactory for predictions of unit cell parameters a and c and channel size
of the structure. The trained and tested networks were then used to predict unknown
compositions of apatite that incorporates iodide. With a crystal chemistry consideration,
chemical compositions that lead to matching the size of the structural channel to the size
of iodide were then predicted to be able to incorporate iodide in the structural channel.
The calculations suggest that combinations of A site cations of Ag+, K+, Sr2+, Pb2+,
Ba2+, and Cs+, and X site cations, mostly formed tetrahedron, of Mn5+, As5+, Cr5+,
V5+, Mo5+, Si4+, Ge4+, and Re7+ are possible apatite compositions that are able to
incorporate iodide. The charge balance of different apatite compositions can be achieved
by multiple substitutions at a single site or coupled substitutions at both A and X sites.
The results give important clues for designing experiments to synthesize new apatite
compositions and also provide a fundamental understanding how iodide is incorporated
in the apatite structure. This understanding can provide important insights for apatite
waste forms design by optimizing the chemical composition and synthesis procedure.

Keywords: apatite, iodine, nuclear waste forms, fission products, crystal chemistry, Artificial Neural Network, unit

cell parameters, channel size

Introduction

Production of nuclear energy generates radioactive nuclear wastes. Depending on the fuel cycle
option, novel chemical reprocessing and transmutation strategies can result in complicated waste
streams with a number of radionuclides including heavy alkaline and alkaline earth elements,
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transition metals, minor actinides, and lanthanides. Among
volatile radionuclides, 129I is particular challenging because
iodine is highly mobile either in gas form or in its reduced form,
with a long a half-life of 1.57×107 years. In its reduced oxidation
state, i.e., I−, iodide is highly mobile in the environment because
it is stable in a wide range of redox potential and pH conditions,
and is weakly bounded to the surfaces of silicate minerals and
rocks commonly occurring in the environment. Because of these
unique properties, iodine deserves special attention for designing
durable waste forms for long-term disposal in a geological setting.

A number of waste forms have been considered for 129I.
Silver iodide (AgI), with a melting point of 558◦C, density of
5.7 g/cm3, has a very low solubility in water, with a solubility
product constant of 8.52 × 10−17 at standard condition (Lide,
2014), which suggests it could be a good candidate for long-term
storage. However, AgI itself is not a waste form, and it must
be incorporated and packaged into a dense and mechanically
durable solid waste form for long-term disposal. Its relatively
high vapor pressure at moderate temperature is an issue that
limits the thermal processing temperature (Garino et al., 2011a).
Because of its low melting point, the temperatures to reach
a vapor pressure of 1, 10, 100 Pa are 594, 686, and 803◦C
respectively (Lide, 2014). The vapor pressures are considered
high in terms of the waste processing at high temperature (often
greater than 800◦C). In addition, AgI is photosensitive, and
the ionic silver in AgI may be reduced to metallic silver upon
exposed to light. This photochemical process reduces the stability
of AgI and increases the cost and environmental risk during
the processing, transport, and disposal. Borosilicate glasses have
been the most widely adopted material at industrial scales for
the immobilization of nuclear wastes (Donald et al., 1997), but
it is not a choice for iodine because high iodine loss at the
required processing temperature (Garino et al., 2011a). In order
to use a glass waste form for iodine, low temperature sintering
glasses, which can be processed below the melting point of AgI,
are recommended. There are a number of glass waste forms
proposed for iodine in the literature including vanadium and lead
oxide glasses (Nishi et al., 1996), low temperature sintering Bi-
Si-Zn-oxide glasses (Garino et al., 2011b), Bi-P-Zn-oxide glasses
(Yang et al., 2013), AgI and Ag4P2O7 glass (Sakuragi et al.,
2008), and silver aluminophosphate glasses (Lemesle et al., 2014).
In many of those low temperature sintering glasses, AgI is
still the phase that contains iodine and the glass functions as
a matrix that encapsulates AgI. In addition to glasses, other
waste forms for iodine have also been considered, including
iodide sodalite (Sheppard et al., 2006; Maddrell et al., 2014),
hydrotalcite-like layered bismuth-iodine-oxide (Krumhansl and
Nenoff, 2011), organic frameworks (MOFs) materials (Sava et al.,
2012), cyclodextrins compounds (Szente et al., 1999), uranyl
borates (Wu et al., 2011), and apatites (Audubert et al., 1997;
Carpena et al., 2001; Uno et al., 2001; Zhang et al., 2007; Le
Gallet et al., 2010; Campayo et al., 2011; Stennett et al., 2011;
Redfern et al., 2012; Lu et al., 2013; Yao et al., 2014). Each of above
proposed waste forms for iodine has its unique advantages and
limitations that in some part depend on the disposal condition.
Since conditions and settings of a long-term geological disposal
may vary, more than one candidate waste form for iodine would

be ideal, which would provide flexibility in choosing the strategy
for a disposal of the nuclear waste.

Among ceramic waste forms for iodine, materials with apatite
structure have a number of advantageous properties including
long-term durability and structural and chemical flexibility. Its
long-term durability is demonstrated by stability of natural
apatite samples over billions of years in earth’s history (Gauthier-
Lafaye et al., 1996). Its structural and chemical flexibilities are
shown in a wide range of chemical substitutions at both a
single and different crystallographic sites, and its adaptability
of symmetries other than hexagonal symmetry (White and
ZhiLi, 2003; White et al., 2005). These flexibilities offer an
opportunity to incorporate multiple radionuclides in a single
phase ceramics. Because apatite waste forms are single phase, it
is relatively simpler to characterize its durability and to evaluate
its performance than a multiphase waste form. In addition, the
flexibility of chemical substitutions in apatite may be beneficial
for incorporating both radionuclides and their decay products.
Because its multiple crystallographic sites can be occupied by
elements with different charges, changes associated with the
valance and identity of the radioactive elements resulting from
radioactive decay of those β emitters, e.g., 137-Cs and 90-Sr,
could be potentially offset by a charge transfer between the
sites and structural distortions within the same phase. This
charge transfer and structural distortion, preferably local within a
couple of bond distance, would prevent likely phase transition or
decomposition due to radioactive decay without compromising
the integrity of the phase. For 129-I, the isotope β decays to 129-
Xe. The emitted electron could be captured by a variable valance
metal ion in the structure and the 129-Xe could remain in the
structure as a defect or diffuse away as a gas molecule. Thus,
apatite-structured phases may be tolerant against or has potential
to mitigate the aging effect of radionuclides from a process so-
called radioparagenesis (Jiang et al., 2009, 2010), a structural
and chemical transformation process resulting from radioactive
decay of radionuclides in a solid phase.

Natural mineral apatite has a chemical composition of
Ca5(PO4)3(OH, F, Cl) (Naray-Szabo, 1930; Pan and Fleet, 2002;
White et al., 2005; Pasero et al., 2010). Apatite is also one
of few minerals produced and used by biological systems.
Hydroxyleapatite is the major mineral component of tooth
and bone (Wopenka and Pasteris, 2005). The extended apatite
subgroup describes minerals with the same crystal structure as
apatite but with different compositions by chemical substitutions.
There are a large collection of synthetic materials with apatite
structure. In this paper, apatite-structured material, or simply
apatite, is used for materials having apatite structure. The general
formula for apatite-structuredmaterials is A5(XO4)3Z, often with
hexagonal P63/m symmetry (space group number 176). Apatite
could also adapt symmetries of P63, P-3, P-6, P21/m, and P21
while keeping the same structural topology (White and ZhiLi,
2003). The crystal structure is depicted in Figure 1. The A cation
occupies two crystallographic sites Ca(I) and Ca(II). The molar
ratio Ca(I)/Ca(II) is 2:3. The A cation can be substituted by a
number of cations including Na+, K+, Cs+, Mg2+, Ca2+, Ba2+,
Sr2+, Cd 2+, Pb2+, Fe2+, Fe3+, REE3+, and Ac4+ (REE: rare
earth elements, Ac: actinides). For Ca5(PO4)3F, Ca(I) site has
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FIGURE 1 | Apatite structure, project on to the (001) plane. The thin
dashed blue lines highlight the unit cell. Red ball are oxygen, light blue
polyhedrons are Ca(I) cations, the light blue balls are Ca(II) cations, the green
balls are channel anions, the purple tetrahedrons are X site cations. The thin
light blue lines highlight bonds.

a coordination number of six at Ca(I)-O distance of 2.5 Å and
nine at 2.8 Å, and Ca(II) site has a coordination number of
six at Ca(I)-O/F distance of 2.5 Å and seven at 2.7 Å (Hughes
et al., 1989; White and ZhiLi, 2003). The X cation often forms
a tetrahedron with four oxygen atoms and can be substituted by
P5+, Si4+, S6+, V5+, Cr5+, As5+, Mn5+, Ge4+. In some cases,
the tetrahedron anion group can replaced by non-tetrahedron
anions such as ReO3−

5 (Baud et al., 1979) and BO3−
3 (Campayo

et al., 2011). The Z anion in the structural channel can be
substituted by OH−, F−, Cl−, Br, I−, O2−, CO2−

3 , and IO−

3 . The
chemical substitutions are often coupled between multiple sites.
For instance, Ca2+ substitution by RE3+ at Ca(I)/Ca(II) site is
coupled with tetrahedron cation substitution of PO3−

4 by SiO4−
4

(e.g., Ca2+ + PO3−
4 = RE3+ + SiO4−

4 ). This kind of coupled
substitutions involving multiple crystallographic sites is common
for apatite and gives apatite-structured materials a unique
property that can lead to simultaneous incorporations of multiple
radionuclides. For instance, Sr8CsNd(PO4)6F2.3, including both
Sr and Cs in its structure, was synthesized by a precipitation
reaction method (Burakov, 2005). In addition to be used as a
host material for storage of nuclear wastes (Audubert et al., 1997;
Carpena et al., 2001; Ewing, 2001; Uno et al., 2001; Carpena and
Lacout, 2005; Kim et al., 2005; Zhang et al., 2007; Le Gallet et al.,
2010; Campayo et al., 2011; Stennett et al., 2011; Redfern et al.,
2012; Lu et al., 2013), apatite materials have a number of other
applications including bone tissues (Vallet-Regi and Gonzalez-
Calbet, 2004), ionic conductors (Arikawa et al., 2000; Kharton
et al., 2004), fertilizer (Easterwood et al., 1989), and fission track
dating of geological record (Gallagher, 1995; Gallagher et al.,
1998). For nuclear waste applications, apatite has be suggested
for storage of a number of nuclear wastes including I, Cs, Sr, rare
earth elements, and actinides (e.g., U, Th) (Rakovan and Hughes,
2000; Ewing, 2001; Pan and Fleet, 2002; Rakovan et al., 2002; Luo
et al., 2009). For iodine incorporation, a lead vanado-iodoapatite
Pb10(VO4)6I2, a synthetic apatite inspired by a chemically

similar natural apatite, lead vanado-chlorapatite (mineral name
vanadinite) Pb10(VO4)6Cl2, was prepared from Pb3(VO4)2 and
PbI2 in stoichiometric amounts using hot-pressing method at a
temperature above the melting temperature of PbI2 (Audubert
et al., 1997). Later, lead vanado-iodoapatite was also synthesized
by a microwave dielectric heating method using a modified
domestic microwave (Stennett et al., 2011). AgPb9(VO4)6I and
AgBa9(VO4)6I were synthesized using a solid state reaction
method starting with stoichiometric amounts of Pb3(VO4)2 and
AgI, and Ba3(VO4)2 and AgI in a sealed quartz vessels in
vacuum and heat-treated at 973K for 5 h (Uno et al., 2004).
Since mineral mimetite (Pb5(AsO4)3Cl) has a similar chemical
composition as vanadinite, its iodide form, Pb5(AsO4)3I, may
also be synthesized. Recently, iodate (IO−

3 ) was incorporated in
hydroxyapaptite structure by precipitation in water (Campayo
et al., 2011). High-temperature breakdown of the synthetic
Pb5(VO4)3I was characterized and the apatite was observed
to be stable until temperature reaches as high as 540◦C. A
new development of synthesizing iodide-apatite was to combine
high energy ball milling and Sparking plasma Sintering (SPS)
to synthesize a single phase, almost stoichiometric Pb5(VO4)3I
apatite at low temperature with minimum iodine loss (Yao
et al., 2014). Excellent radiation resistant and thermal recovery
properties were reported for vanadate-phosphate fluorapatite (Lu
et al., 2013), silicate-apatite structures (Weber et al., 2012a,b), and
actinide-bearing apatites (Weber et al., 1997). A low iodine leach
rate of 0.0025 g/m2/day was reported for synthetic Pb5(VO4)3I
apatite at pH 6 and 90◦C (Stennett et al., 2011).

As these studies show, apatite has a great potential for storage
of a number of radioactive nuclear waste elements because
of its long-term durability and irradiation stability. Although
materials with apatite structure show excellent properties for
various radionuclides, these properties may vary with their
chemical compositions. In order to optimize the nuclear waste
performance, there is a need to explore the chemical and physical
properties and durability of different apatite compositions.
However, the chemical substitutions occur at all sites in apatite
(i.e., A, X, and Z sites of A5(XO4)3Z) and each of these sites
can be occupied by a number of elements. The possible apatite
compositions could easily reach an unmanageable number only
for the end-members. Even for iodide apatite where the iodide
is the only Z anion, there are over a hundred possible end-
member compositions. It is expected that not all of them
are thermodynamically stable and are suitable as waste forms.
Experimentally, trying all the combinations would be not only
expensive but also time consuming. Thus, it is necessary to
be selective by ruling out those that do not meet some basic
requirements of the structure and crystal chemistry of apatite.
For iodide incorporation in the structural channel, size of the
channel in the apatite structure has to fit the size of iodide
ion. Currently, only a few iodide apatite compositions have
been synthesized experimentally (Audubert et al., 1997; Uno
et al., 2004; Campayo et al., 2011; Stennett et al., 2011; Yao
et al., 2014). In order to explore other possible compositions,
all combinations of elements from the periodic table that meet a
basic consideration of the crystal structure and chemical formula
should be considered. One of efficient methods to explore a large
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number of apatite compositions is Artificial Neural Network
(ANN). The method has been previously used to predict the
crystallographic cell parameters (Wu et al., 2004; Kockan and
Evis, 2010; Kockan et al., 2014) and hardness and fracture
toughness (Evis and Arcaklioglu, 2011) of apatite using the
average ionic radii of ions at different crystallographic sites. The
method has also been used for other crystalline phases (Asadi-
Eydivand et al., 2014).

Purpose of this study is to apply Artificial Neural Network
method for apatite to predict the size of the structural channel
and unknown iodide apatite compositions. By including electron
negativity as an additional input parameter in addition to ionic
radius, the accuracy of predicted channel size is improved. The
simulations provide an understanding of crystal chemistry of
apatite and explore unknown apatite with iodide as the channel
anion. The results demonstrate that Artificial Neural Network
simulation is an effective tool to explore large number of apatite
chemical compositions and can be used to predict unknown
apatite chemical compositions.

Method—Artificial Neural Networks
Simulation

Artificial Neural Network (ANN) approach is inspired from
biological neuron assemblies and their way of encoding and
solving problems. The philosophy of the approach is to abstract
some key ingredients from biology and out of those to construct
simple mathematical models. The network consists of an input
layer, one or more hidden layers, and an output layer. First,
the input data are passed to the input layer with a weight and
a bias, and then the results are passed to the neurons in the
hidden layers and processed by a training function, and finally
the data are passed to the output neuron. There are weighting
factors between the neurons of each layer. The predicted output
results are compared with actual results, which are used to
adjust the weights and biases till the difference between predicted
and actual results reaches a predefined criterion (Zhang and
Friedrich, 2003). For function approximation, in order to deduce
the relationship between the input and the output, a neural
network is first trained using a given set of input-output data
(typically through supervised learning). After training, such a
network can be used as a trained network with an input-output
characteristic approximately equal to the relationship of the
training problems. Because of the modular and non-linear nature
of Artificial Neural Networks, they are considered to be able
to approximate any arbitrary function to an arbitrary degree of
accuracy, which is particularly useful for non-linear relations.
Typically, available data are divided to two subsets, training set
and testing set. Validation is needed to calculate the error after
each epoch (one cycle of training data). The testing dataset is
used to check the ability of the network to predict new data at
the end of the training process before the network can be used
for predictions (Zhang and Friedrich, 2003; Samarasinghe, 2006;
Lucon and Donovan, 2007).

In this study, the available data were divided roughly to
half and half, and the training dataset was strategically selected
in order to cover the end members of available chemical

compositions and some important solid solutions of apatite.
A multilayer perception model with supervised learning and
batch training was used. A single hidden layer with different
numbers of processing units and various learning methods were
tested in order to achieve the best network performance and
prediction reliability. In the hidden layer, there are a number
of commonly used non-linear activation functions. And in this
study, hyperbolic tangent sigmoid transfer function was used.
The backpropagation algorithm was used. A linear function was
used for the output layer. The sigmoid function has a number
of advantages for the transfer function in the hidden layer. Its
continuity makes it differentiable and minimization of the mean-
square error with respect to the weighted sums can be used to
adjust the weights of the network during the backpropagation
of errors. It has upper and lower bounds, which means even
if the inputs are very large, the outputs will never reach large
values. Non-linearity makes the functions a natural choice for
complex non-linear correlations between inputs and outputs
(Samarasinghe, 2006).

The Artificial Neural Network toolbox from Matlab program
package was used (The MathWorks, 2011; Demuth and Beale,
2013). A number of training functions have been tried.
Levenberg-Marquardt backpropagation is a network training
function that updates weight and bias values according to
Levenberg-Marquardt optimization. It is often the fastest
backpropagation algorithm in the toolbox, and was tested
first. Other algorithms tested include resilient backpropagation,
BFGS quasi-Newton backpropagation, and Bayesian regulation
backpropagation among other algorithms. Using mean-square
error with respect to weight and bias as the performance
function, the Bayesian regulation backpropagation has the
best performance. Bayesian regularization minimizes a linear
combination of squared errors and weights. It also modifies the
linear combination so that at the end of training, the resulting
network has good generalization qualities.

Results and Discussion

Crystallographic Data Set of Apatite-Structured
Materials
In order for ANNs to predict properties of unknown apatite
of various chemical compositions, a dataset, including
chemical composition and crystal structure, of known apatite
compositions has to be constructed. The dataset is based on a
large number of publications in the open literature and crystal
structure databases about apatite. For the iodide incorporation,
the channel size is important since the iodide radius is large,
2.2 Å (Shannon, 1976). In order for iodide to be incorporated
in the structural channel, the channel size has to be compatible
with the size of the ion. Since the coordinates of Ca(II) site in the
crystal structure is needed to calculate the channel size, crystal
structure information, i.e., chemical composition, occupancies
and coordinates of the sites, are needed for the construction of
the dataset.

A dataset of 86 apatite compositions was compiled from
inorganic crystal structure database (ICSD) and the literature
(Wu et al., 2004; ICSD, 2010; Kockan and Evis, 2010), listed in
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Supplementary Table 1. The average ion radius is calculated based
on the chemical formula and is molar fraction weight-averaged.
Because the interaction between the channel anion and Ca(II) site
cation in apatite structure is mainly ionic, ionic radii for A and
Z ions are used. Ionic radii of all the elements in the periodic
table have been compiled in the literature (Shannon, 1976;
Henderson, 2000). Ionic radius depends on the coordination
number, which in turn is dependent on cutoff bond distance.
For apatite, coordination numbers of Ca(I) and Ca(II) sites in
Ca5(PO4)3F are 6 at 2.5 Å, or 9 and 7 at 2.8 Å respectively. For
this study, two A cation sites are not distinguished. For the
consistency between the two sites and across different apatite
compositions, coordination number of 6 was used for the ionic
radius of A cation when choosing the ionic radius values from the
literature. For X site, crystal radius was used, largely because the X
cation has a strong covalent bond with oxygen and coordination
number is 4 in most of the cases. However, the use of crystal
radius should not make difference in ANN simulations because
crystal radius differs from ionic radius by a constant of 0.14Å
(Shannon, 1976). The coordination number of the channel Z
anion depends on the location of the channel ion, and it is 3 if
the ion is positioned in the same (001) plane of the Ca(II) or 6 if
in the plane of the Ca(I). Some channel anions can have multiple
occupies positioned in a range between the two planes, which are
largely dependent on the relative size of the channel anion with
respect to the channel size and interactions between the channel
anion and Ca(II) cations. For consistency, coordination number
of 6 was used for ionic radius parameter of the channel anion.
In the previous ANNs studies of apatite (Wu et al., 2004; Kockan
and Evis, 2010), ionic radius with a coordination number of 6 was
used for the tetrahedron-forming cations, which is not consistent
with the structure and coordination of the cations. In the present
study, the size of ions was based on the actual coordination
and bonding character of the concerned ions, resulting in better
overall predictions of the cell parameters. In addition to ionic
radius, electronegativity was used as an input parameter because
it is important for defining chemical bonding character between
the atoms, which in turn affects both the unit cell parameters
and channel size. Electronegativity was not used previously in
predicting the unit cell parameters (Wu et al., 2004; Kockan
and Evis, 2010). We will show in the next section that using
electronegativity as an additional input improves the accuracies
of the predictions of the channel size and the unit cell parameters.
Electron configuration, valence electron, electron localization
and delocalization, and electron spin state are all important when
considering chemical bonding. However, since these properties
are already largely reflected in ionic radius and electronegativity,
they are not considered in the present study.

Artificial Neural Network Simulations
The dataset from experimental crystal structure data is divided
to two, one for training the networks (i.e., the first 44 apatites in
Supplementary Table 1) and one for testing the networks (i.e., the
rest, 42 apatites). The training dataset includes the end members
of apatite compositions and some of the solid solutions, and the
rest of them are included in the testing dataset. This strategy

allows the ANNs to be well trained for the predictions of apatite
compositions.

Figure 2 illustrates the ANN method used to simulate the
cell parameters and channel size of apatite. There are six input
parameters, average radius and average electronegativity for each
of the three cation sites. There is a hidden layer with four neurons
and an output layer. The output has one parameter. The ANN
simulations were carried out separately for unit cell parameters
a, c, and channel size.

Using Bayesian regularization (BR) algorithm, the training
simulation runs until the algorithm is converged, which
is indicated by the convergence of the effective number
of simulation parameters, maximum MU (a parameter for
controlling convergence algorithms), convergence of the
summed square error, and sum squared parameter. For unit
cell parameter a, the simulation took 130 epochs, and the sum
of squared errors (SSE) was converged to 0.0613. The effective
number of parameters was found to be 21, and the sum squared
parameter was converged to 7.08. These results indicate the BR
method successfully minimized the error function and a higher
generalization was achieved. Similar results were obtained for
unit cell parameter c and channel size.

The performance of the ANNs is judged by the errors and
the error distributions between predicted and target experimental
values. It can be evaluated by the coefficient (i.e., R) of a linear
regression between predicted and target experimental values.
In contrast to previously studies (Wu et al., 2004; Kockan and
Evis, 2010), electronegativity was used as an input in the present
study for each of the ions in the ANNs. The results show
that, by including the electronegativity, with the same settings
of the ANN simulations, the R values are increased by 1.2,
1.3, and 8.8% for the testing set of cell parameters a, c, and
channel size respectively, suggesting that the performance of the
ANNs is improved over without using electronegativity as an
input parameter. This improvement is especially true for the
prediction of the channel size, which is more sensitive to the
electronegativity of the atoms.

Prediction of Unit Cell Parameters
For unit cell parameter a, the ANN simulation result is shown in
Figure 3 and listed in Supplementary Table 1. The dashed-lines
are perfect prediction lines and solid lines are linear regression
lines. The fitting coefficient R values of the linear regression

FIGURE 2 | The Artificial Neural Network used for the predictions of

apatite compositions and structure parameters. There are six input
parameters and one output parameter, one output layer, and one hidden layer.
There are 4 neurons used in the hidden layer for the networks.
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FIGURE 3 | The results of Artificial Neural Network simulations of

unit cell parameter a. The upper figures show the correlations between
predicted and actual values. The bottom figures show the error
distributions around the vertical red bars of zero error. The dashed lines

correspond to Y = T when the predicted and actual are the same. The
solid lines correspond to linear fitting with a fitting coefficient of R. Open
circles are experimental data. (A,B) are the result of training, (C,D) are of
testing, and (E,F) are of the total.

between the predicted and actual value are 0.997, 0.966, and
0.983 for the training, testing, and overall ANN simulations
respectively. The average error between the predicted and actual
value is 0.22%, 0.65%, and 0.43% for training, testing and overall
dataset respectively. Themaximum error is 1.05% for the training
dataset and 2.23% for the testing dataset. For unit cell parameter
c, results are shown in Figure 4 and also listed in Supplementary
Table 1. The coefficient R values are 0.998, 0.977, and 0.989 for
the training, testing, and overall ANN simulations respectively.
The average errors are 0.20%, 0.67%, and 0.43% for training,
testing and overall dataset respectively. The maximum error is
1.35% for the training dataset and 2.29% for the testing. As
shown by the error distributions in Figures 3, 4, the errors for
the predictions of a and c are distributed around the averages
normally, except a couple of exceptions. These results suggest that
the trained and tested ANNs are satisfactory for predicting the
apatite cell parameters a and c of unknown apatite compositions.
The results are similar to previous studies using average ionic
radii at different sites (i.e., A, X, Z of A5(XO4)3Z) to predict the
crystallographic unit cell parameters (Wu et al., 2004; Kockan
and Evis, 2010).

Figure 5 illustrates how a trained and tested ANN is used for
predicting unit cell parameter a of unknown apatite compositions
with iodide in the channel of the structure. As shown, for any
given average radii of A and X site cations, the cell parameter a (or
c) can be predicted by reading into the figure. Since the A and X
cations are unknown, their electronegativities have to be assumed
(i.e., 2.33 and 1.63 for A and X respectively), which will need to be
adjusted for an actual composition. For instance, for A site radius

of 1.2 Å and X site radius of 0.4, the predicted a cell parameter
is ∼10.17Å. For an actual prediction, compositions have to be
given and average radii and electronegativities at all sites will
need to be calculated and supplied to the trained and tested ANN.
This approach is applicable to any apatite compositions with or
without iodide in the channel. Giving the flexibility of apatite
structure, there is a large number of cations that can occupy A
and X cites. Similar figures like Figure 5 can be generated from
ANN simulations to show predictions of the cell parameters as a
function of the cation radius.

Although trained and tested ANNs could take any chemical
compositions for predicting properties of the apatite, constraints
exist as not any combinations of elements at A, X, and Z sites
are possible apatite compositions. First, any substitutions at one
site or coupled substitutions at multiple sites are constrained
by charge balance. For the Z anion, in addition to F, OH, Cl,
Br, I, O and vacancy are also possible, and poly-oxyanion are
also possible but rare. For the A cation, the valance can deviate
from +2 to +1, +3 and +4, indicating a great flexibility of the
site incorporating various charged species. For the X cation, in
addition to tetrahedral forming cations, cations that can form
pyramidal polyhedron like ReO3−

5 (Baud et al., 1979) and trigonal
pyramidal iodate IO−

3 are also possible in the tetrahedral site
(Campayo et al., 2011).

Prediction of Channel Size of Apatite Structure
for Iodide Incorporation
For iodide apatite, the channel size of the structure has to be large
enough to incorporate iodide ion. For instance, the synthetic
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iodide chemical compositions are those that their X and A site
cation average radii fall within the pink curves at X-A plane
in Figure 8. The corresponding channel size falls at the surface
within the pink curves. As it is projected on to the radius-X
and radius-A plane, the region between the pink lines is possible
average X andA site cations. Thus, possible A site cations include:
Ag+, Sr2+, Pb2+, K2+, Ba2+, and Cs2+ and possible X site

FIGURE 6 | Correlation between the channel size and ionic radius of

the channel anion. The open circles are actual experimental data. The
horizontal bars correspond to the range of channel size of experimental
determined crystal structures. The dashed line corresponds to when predicted
and actual values are equal.

cations include Si4+, Mn5+, As5+, Cr5+, V5+, Re7+, Ge4+, and
Mo5+, which are mainly tetrahedron forming cations. Therefore,
combinations of A site = Sr2+, Pb2+, Cd2+, Ba2+ of 2+ charged
cations with ionic radius larger than or close to 1.2 Å, and X
site = V5+, As5+, Cr5+, and Mo5+ of 5+ charged tetrahedral
anion may provide suitable channel size for iodide. In addition, if
Si and Ge form the X site tetrahedrons, 3+ charge cations are
needed for charge balance at A site. Rare earth cations of the
first few elements such as La with ionic radius close or larger

FIGURE 8 | Prediction of unknown apatite compositions with iodide ion

in the structural channel. The region between pink lines is possible average
radii of A and X cations. The two pink lines define channel size that fits iodide
in the structure, which is calculated based on ionic radius of iodide 2.20Å and
3.5% error prediction. The region is also both projected on to the radius –A
and radius-X plane and on to the surface of predicted channel size.

FIGURE 7 | The results of Artificial Neural Network simulations of

the channel size. The upper figures show the correlations between
predicted and actual values. The bottom figures show the error
distributions around the vertical red bars of zero error. The dashed lines

correspond to Y = T when the predicted and actual are the same. The
solid lines correspond to linear fitting with a fitting coefficient of R. Open
circles are experimental data. (A,B) are the result of training, (C,D) are of
testing, and (E,F) are of the total.
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than 1.2 Å are considered. It is also possible that 1+ charged
cations such as Ag+, Cs+, K+ at A site should be able to be
incorporated in the apatite structure by coupled substitutions in
one or more sites with higher charged ions. Indeed, Ag-Pb-V-I
apatite was synthesized using a solid state reaction method (Uno
et al., 2004) with the topology of the apatite structure but with
a monoclinic symmetry, which is not unusual for apatite group
materials (White and ZhiLi, 2003).

Concluding Remarks

Artificial Neural Network simulations of apatite show that the
unit cell parameters and the detail of crystal structure (i.e.,
channel size) can be predicted from its chemical compositions.
The results lead to a prediction of a number of possible
apatite compositions with iodide incorporated in the structure.
Although it is yet to see the accuracy of the prediction, the
results provide important clues for designing experiments to
synthesize new apatite compositions. It needs to be mentioned
that the Artificial Neural Network simulations only consider
crystallographic information and doesn’t explicitly predict
thermodynamics stability of the predicted compositions. The
purpose of the simulations is to narrow down potential apatite
chemical compositions from over hundreds of possibilities.
These small groups of compositions are expected to be
manageable by experiments. In order to further narrow down
the list using a computational approach, thermodynamic
stability of the predicted chemical compositions will need to
be estimated by, for instance, first-principles thermodynamics
calculations.

The ability to predict the properties of apatite structure
using Artificial Neural Network is originated from the fact that
there is a strong correlation, although non-linear, between the
structure and chemical composition of apatite. In addition, a
large structural and compositional database of apatite allows
adequate training and testing of the Artificial Neural Networks
before predictions can be made. The availability of a large
database stems from the facts that there is a wide range
of applications of apatite structured materials, and structural
and compositional flexibilities of apatite structure, which are
demonstrated from the fact that the apatite structure can even
be deviated from hexagonal symmetry while maintaining the
topology of apatite structure. However, such flexibilities, both

structural and compositional, are not unique to apatite structure.
Many natural minerals with potential interests to nuclear waste
forms have structural and compositional flexibilities similar
to apatite, such as powellite related minerals—scheelite and
fergusonite ABO4 (A = Ca, Pb, Ba, Y, La, Ce, Nd, B = Mo, W,
Nb, Ti), hollandite AB8O16 (A = Cs, Sr, Ba, Rb, B = Al, Ti, Fe,
Mn), crichtonite (Ca, Sr, La, Ce, Y) (Ti, Fe, Mn)21O38, murataite
(Y, Na)6(Zn, Fe)5(Ti, Nb)12O29(O, F)14, to name a few. It is
expected that the approach of using Artificial Neural Network
to predict possible compositions of apatite of incorporating
iodide could also be useful for the understanding of the
relationship between chemical composition and crystal structure
of other crystalline phases including those aforementioned
for incorporating various fission products. For non-crystalline
materials such as glass nuclear waste form, the structure is often
defined at short and intermediate ranges. The local structure
surrounding incorporated radionuclides is expected to vary with
the composition of the glass as well as the waste composition
and level of waste loading. Such variations of the local structure,
mostly defined by coordination, bond distances and angles of
the glass structural units, suggest structural flexibility of the
glasses. The relationship between the structure and incorporated
radionuclides in the glasses could then be modeled using similar
approaches like Artificial Neural Network as for crystalline
phases. This kind of modeling, although often challenging for
glasses, is practical for crystalline phases and is imperative to the
understanding of the composition-structure-property relation.
The results could provide important insights for nuclear waste
forms design by optimizing the chemical composition and
properties for optimal performance for various nuclear waste
elements.
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