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the cases predict ejecta concentrated between 10−3 and
10−2Me, the high-spin results allow for larger median ejecta
values in general—maximum values can exceed a tenth of a
solar mass. Since the DU17 fits for Mej neglect spin, the
differences in ejecta for the cases shown in Figure 1 are driven
by the imprint of the spin choices inherent in the GW analysis
that was input into this analysis.

Figure 2 shows the distribution of ejecta masses using the
SLy EOS, illustrating how the ejecta mass tends to scale with
the component mass distribution. Among the EOSs tested,
SLy is closer to the lower side of ejecta distributions in both
the estimated median and maximum ejecta. The fits
themselves imply an ejecta distribution strongly dependent
on the mass of the primary (m1) and the difference between
the primary and secondary masses. However, applying the fit
uncertainty smears the ejecta distribution over the difference
of the component masses. This effect is most evident in the
marginal distributions plotted as histograms on the sides of
the Figure 2 panels. Since the high-spin distribution has more
posterior samples away from equal mass systems, as well as
larger primary masses overall, more samples give rise to
larger ejecta masses. While this only affects the high-spin
case, those EOSs that allow for larger maximum masses also
allow for a larger maximum ejecta values, typically >Mej

-
M10 1 (above the maximum ejecta mass of 6.5×10−2Me

in the simulations to which the Mej fit has been calibrated).
This is a natural consequence of larger maximum masses
corresponding to larger differences between m1 and m2, as
illustrated in Figure 2.

3. Kilonova Light Curve Models

Current kilonova emission models (Li & Paczynski 1998;
Barnes et al. 2016; Metzger 2017; Tanaka et al. 2017) produce
spectral energy distributions between the ultraviolet (UV) and
the near-infrared (NIR). Generally, there are two different

physical processes that require modeling. First, the conversion
of dynamical and wind ejecta material into r-process elements
(i.e., the nucleosynthesis; Kasen et al. 2013, 2015; Barnes
et al. 2016; Metzger 2017; Rosswog et al. 2017), and second,
the production of an associated EM transient (Metzger
et al. 2010; Kasen et al. 2013; Barnes et al. 2016; Rosswog
et al. 2017). Beyond these considerations, there are still several
important nuclear physics ingredients that are unknown, such
as opacity and heating rate, and can lead to large uncertainties
in light curve prediction (see, e.g., Rosswog et al. 2017). We do
not attempt to model these uncertainties.
We briefly describe here three parameterized models used to

generate light curves in this work. Wollaeger et al. (2017) use
radiative transfer simulations and provide analytic fits for the
peak time, bolometric luminosity, and color corrections as a
function of ejecta parameters. The Wollaeger et al. (2017) light
curves are scaled as a function of ejecta mass and velocity,
which changes both the time of peak luminosity as well as peak
magnitude. We obtain the velocity from additional fits
in DU17, and assume an opacity of 10 cm2 g−1, thus modeling
the presences of lanthanides. Conversely, Metzger (2017)
provide a toy model for blue kilonova with opacity 0.1 cm2 g−1

for lanthanide-free matter. DU17 use the radiative Monte-Carlo
(MC) simulations of Tanaka & Hotokezaka (2013) and derive
an analytical model for kilonova emission driven by dynamical
ejecta from a BNS merger. No wind contribution is included
in DU17, although winds can potentially dominate (Kiuchi
et al. 2015; Ciolfi et al. 2017; Siegel & Metzger 2017). The
dynamical ejecta models tend to predict redder and more
slowly rising NIR than wind-driven models.
Light curves from dynamical ejecta models depend sig-

nificantly on the thermalization efficiency, the radiation
transport simulations used, and other assumptions (Metzger
& Fernandez 2014; Coughlin et al. 2017; Rosswog et al. 2017).
In our analysis we do not consider observational error from

Figure 2. The left (high-spin prior) and right (low-spin prior) panels above show the distribution of the primary (m1) and secondary (m2) masses from GW
measurements. The color of each point indicates the predicted dynamical ejecta mass for each sample that the SLy EOS allows. In the left-hand plot, black markers
correspond to m1 values that are disallowed by the maximum mass of the EOS (marked by a vertical line). The underlying black histograms to the top and right of each
plot are the one-dimensional marginalized histograms of the masses. The stacked histograms on top of them in various colors show the binary masses that create ejecta
masses above logarithmically spaced thresholds of 1×10−3, 3×10−3, 8×10−3, 2×10−2, 6×10−2, and 2×10−1 Me, where only the first four are nonzero in
the right-hand plot.
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extinction in the light curve prediction, as it is likely
smaller than the systematic error of the models (Kawaguchi
et al. 2016).

4. Predicted Kilonova Light Curves

In conjunction with the mass and tidal estimates for the low-
spin case, we calculate the mass and velocity of dynamical
ejecta as described in Section 2. Using the light curve models
of DU17, Metzger (2017), and Wollaeger et al. (2017), we
show the absolute and apparent magnitudes consistent with
these estimates of dynamical ejecta in Figure 3. Here, we
employ the DZ2 model from Wollaeger et al. (2017), and set
40Mpc (near the median of the GW distance posterior (Abbott
et al. 2017a, 2017c)) as the fiducial distance to the event for
calculating the apparent magnitudes. DU17 exhibits the
features of most lanthanide-rich dynamical ejecta models, with
a rapid fade in the blue and a late rise in the NIR. Wollaeger
et al. (2017), which also considers the contribution from the
wind ejecta of 0.005Me, is brighter, has a slower fade in the
blue, and a faster fade in the NIR. The model in Metzger (2017)
—adopted here only considering dynamical ejecta—is between
these two models, originally brighter in the blue and NIR bands

(g, r, i, z) than either of these models, but fades more quickly
than Wollaeger et al. (2017).
Employing the lower-opacity blue-peaked model in

Metzger (2017) and GW inferred distance, we can calculate
the distribution of peak times and observed peak magnitudes
in a given photometric band. As the source resides at a low
redshift, we neglect the cosmological redshift of the source.
Figure 4 shows the peak i-band magnitudes from those light
curves versus the time of peak i-band magnitude when
considering the low-spin distribution. The samples from the
high-spin distribution produce the peaks that are brighter by
one magnitude on average. This is understood from the ejecta
distributions in Figure 2—the low-spin distribution tends to
produce less ejecta and hence is less luminous. We note again
that the light curves in Figure 3 are calculated with a distance
fixed to the source, while the magnitudes in Figure 4 fold in
the distance inferred from the GW data. Thus, a wider spread
arises from the variance in the GW-only distance posterior
distribution. Including the distance values from the GW
posteriors provides a better estimation of the variation that
would arise in a prediction from GW information alone, as
opposed to having constraints from EM measurements.
The estimates presented here are a proof-of-principle study

with which to illustrate what is presently possible with forward
modeling from GW observations. In particular, if it is available
before EM observations begin, or in a situation before a
confident counterpart has been identified (e.g., due to poor sky
localization), analysis driven by the GW data can inform EM
follow-up observations and interpretation, particularly in cases
where (due to geometric effects and observational delays) the
effect of dynamical ejectas on the light curve is enhanced.
Predictions of peak times in the emission and the color
evolution are useful for comparison with early observations,
and provide falsifiable predictions with which to evaluate
models of the source.

Figure 3. Absolute (left vertical axis) and apparent (right vertical axis)
magnitudes of light curves consistent with parameter estimation for
astrophysical spins for the kilonova models of DU17, Metzger (2017),
Wollaeger et al. (2017) in grizyJHK filters. In particular, the DZ2 model is
employed from Wollaeger et al. (2017). The dashed lines show the median
light curve, while the shaded intervals show the 90% intervals. In addition to
including the average relative error (72%) of the ejecta-mass fitting formula, we
include 1 mag errors on the intervals to account for errors in the models
themselves (Coughlin et al. 2017). The lower percentiles are not conservative
as we cannot definitively exclude zero ejecta mass due to unmodeled
systematics. The fiducial distance to the event is 40 Mpc.

Figure 4. Inferred peak i-band apparent magnitude vs. time of peak i-band
magnitude with the blue model in Metzger (2017) and low-spin sample
distribution (marginal distributions on Mej and time of peak shown on the top
and right). Apparent magnitudes are calculated from the dynamical ejecta only,
using the GW inferred distance.
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5. Abundance of r-process Material

The r-process and s-process are the two known mechanisms
by which heavy elements can be synthesized (Burbidge
et al. 1957). To assess the contribution of the r-process to the
observed abundances of heavy elements (Arnould et al. 2007;
Sneden et al. 2008), one can identify the abundances expected
from the s-process alone, and hence the r-process residual. SNe
II can produce r-process elements, but they may not produce
the observed abundance patterns (e.g., Freiburghaus et al.
1999). BNS mergers could also account for these elements.
However, quantifying the contribution of those mergers has
remained elusive due to poor constraints on both the rate of
mergers as well as the amount of matter ejected in each merger.
With GW170817, we are able to constrain both of these
quantities significantly from data.

If BNS mergers are to produce most of the observed
r-process elements in the Milky Way (MW), the mergers must
occur with a sufficiently high rate and eject significant amounts
of r-process material. Assuming dynamical ejecta dominate
over winds, the mass fraction Xrp of r-process nuclei in the
MW should be proportional to the merger rate density  and
dynamical ejecta mass Mej, with a proportionality constant
set by the local galaxy density and the MW age and
mass. Following Qian (2000), we estimate that the merger
rate and ejecta per event are approximately related by
 - - - - ( )f M M600 10 Gpc yrrp ej

2 1 3 1. In this relationship,
ºf M Mrp rp ej is the fraction of matter dynamically ejected in

NS mergers that is converted to heavy r-process elements
rather than lighter products, e.g., α particles. The value of frp
depends on details of the dynamics, geometry, and neutrino
illumination of the ejected matter, all of which change the
electron fraction (Ye) distribution of ejected matter (see, e.g.,
Goriely et al. 2015; Kasen et al. 2015). However, various
studies have suggested significant r-processing of ejecta
material (e.g., Goriely et al. 2011, 2015; Wanajo et al. 2014;
Just et al. 2015; Radice et al. 2016). The red band in the left
panel of Figure 5 shows this relationship between  and Mej

for Î [ ]f 0.5, 1rp (e.g., Goriely et al. 2015). Also shown in the
left panel are the constraints on the local rate density of BNS

mergers from GW170817 (gray) and the range of ejecta masses
typically considered in the literature (blue). The overlap of
these constraints suggests that BNS mergers could account for
all of the observed r-process abundance.
A more detailed calculation of r-process enrichment from the

dynamical ejecta of BNS mergers can be done using the
specific distributions of Mej and  inferred from GW170817.
Under the assumption that all binary mergers have the same
ejecta mass as that inferred from GW170817, we calculate the
average dynamically ejected local r-process material density
according to
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where th is the Hubble time.164

In this expression,
*
ṙ is the cosmological star formation rate,

assumed to follow Madau & Dickinson (2014); pdelay is the
delay time distribution of NS mergers, pdelay(t)∝t−1 (see, e.g.,
O’Shaughnessy et al. 2008; Dominik et al. 2012), with a
minimum delay time of 10 Myr; and  is the present-day
merger rate density for NS mergers. The denominator is a
normalization factor that scales the present-day merger rate
density to .
In the right panel of Figure 5, we plot the distribution of

r frp rp for a few representative EOSs using our Mej distributions
and the rates inferred from GW170817. On the top axis, we
also show

*
r r= ( )X f frp rp rp rp , where

* *òr r= ˙ ( )t dt
t

0

h . If

frp=1, the range - -
 –M M10 Mpc 10 Mpc1.7 3 3.2 3 brackets

our 90% credible intervals on ρrp for all EOSs. Both ρrp and Xrp

are shown normalized to frp, as frp depends on unknown details
of the merger. The gray band in the right panel of Figure 5
shows the MW mass abundance of r-process elements, derived
from Arnould et al. (2007). As long as frp10% of the
dynamically ejected mass is converted to heavy r-process
elements, dynamical ejecta could account for all of the MW

Figure 5. Left panel: plot of the present-day BNS merger rate density  vs. dynamical ejecta masses Mej. The solid gray band corresponds to the event rate range
deduced from GW170817. The solid blue band shows the approximate range of conceivable dynamical ejecta masses, based on the ejecta models used in this work.
The red band shows the approximate range of r-process elements per unit volume, based on Galactic observations, an approximate density of MW-like galaxies
(0.01 Mpc−3), a range of Galactic masses, and r-process formation efficiencies frp between 0.5 and 1. Configurations in the intersection of all three bands correspond to
cases where dynamical ejecta from BNS mergers are solely responsible for r-process element formation. Right panel: probability distributions of r-process material
density and abundance (normalized by frp) from dynamical ejecta for different EOSs at z=0. The lower (upper) bound on the 90% credible interval for ρrp/frp over all
EOSs is 101.7 Me Mpc−3 (103.2 Me Mpc−3). The vertical gray band shows the Solar r-process abundance (Arnould et al. 2007).

164 We assume ΛCDM cosmology with TT+lowP+lensing+ext parameters
from Ade et al. (2016).
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r-process abundance. We have not factored in modeling details
such as the relative abundance pattern of r-process elements,
the value of frp, the relative contribution of dynamical versus
wind ejecta, and uncertainties in the star formation history of
the Universe.

6. Conclusions

In this Letter, we derive estimates for the dynamical ejecta
mass produced by the BNS merger GW170817, as well as the
corresponding kilonovae light curves and r-process nucleosynth-
esis yields, without additional photometric or EM spectral data.
These estimates have the GW data as their foundation and use a
fit to a wide variety of simulations to obtain dynamical ejecta
masses from these data. Our predictions for light curves include
a range of possible magnitudes and timescales of emission. In
general, for the blue model in Metzger (2017) in the i-band, we
predict peak magnitudes concentrated between ∼19 and ∼17 for
a merger consistent with our low-spin results, and peak
magnitude between ∼19 and ∼16—typically lasting twice as
long—for mergers consistent with high-spin results. Such
predictions can guide expectation as to whether or not future,
perhaps more distant, counterparts would be observable with a
given facility. The predictions from the GW inference for the
dynamically unbound matter depend strongly on the allowed
spin configurations in the GWmodel, which in turn influence the
predicted light curves. The low-spin results predict smaller ejecta
masses on the whole, and as such, a bright kilonova event (e.g.,
>16 magnitude) may indicate a faster spinning NS component.
We stress that the phenomenological fits used to predict Mej
themselves are not corrected for spin effects, so this increased
brightness occurs because of degeneracies in the GW parameter
estimates between spin and mass ratio.

We have also presented predicted light curves derived from
other models in the literature. Our results show that when large
amounts of ejecta mass are allowed, the light curves have
brighter peaks and are longer-lived. They differ in color
evolution, however (compare DU17 and Wollaeger et al. 2017,
for example) and EM observations combined with these curves
could hint at mixtures of different ejecta material compositions
(Metzger 2017). For example, strong emission observed in both
blue and red bands could imply sectors of material containing
both high and low electron fractions. However, the Metzger
model, as implemented here, neglects post-merger wind effects,
and in general, these conclusions only hold under the
assumption that dynamical ejecta dominate the mass ejection.

Our results suggest that dynamical ejecta from rare NS
mergers could be an important and inhomogeneous source of
r-process elements in the Galaxy (Beniamini et al. 2016; Ji et al.
2016). If more than f 10%rp of the mass ejected from mergers
is converted to r-process elements, our prediction for average
r-process density in the local universe is consistent with the
Galactic abundance. Our approach does not address the
contribution from winds, which could eject a substantial overall
mass but may (Siegel & Metzger 2017) or may not (Rosswog
et al. 2017) have the wide range of Ye needed to produce all
r-process abundances (i.e., the second and third r-process peak).
Our approach is also not as detailed as full multi-species
chemical enrichment calculations used to interpret observations
of individual elements in targeted populations (see, e.g., Côté
et al. 2017). As Advanced LIGO and Virgo approach design
sensitivity, these observational constraints should rapidly
shrink, enabling more precise tests of the BNS r-process

nucleosynthesis paradigm. Additionally, present and future EM
observations should provide complementary information to
directly constrain those parameters that our analysis cannot.
Finally, if EM measurements are consistent with a total ejecta

mass (dynamical and wind) of 0.01 Me, and if we require
consistency with low neutron star spins, then one possible
conclusion is that winds contribute significantly to the total
ejected mass. However, if winds dominate, then the dynamical
ejecta mass will be an important but potentially difficult to
measure component in the light curve, which our calculations can
supply. Additionally, with so much material ejected per event, to
be consistent with our inferred detection rate, we would predict
that only a fraction of the ejecta can form r-process elements.
The coincidence of GW170817 and GRB 170817A was an

exceptionally rare event, allowing for a unique set of
measurements to be made about the processes driven by the
BNS merger. Future observations should facilitate the refine-
ment of these measurements. The observation of GW170817
suggests that in the upcoming year-long third observing run
(Abbott et al. 2016b) with a three-instrument GW network,
there will likely be more GW observations of BNSs. In the
coming years, GW measurements will allow for better
understanding of populations of kilonova events.
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