


where

B` =

∫ 6`

4`

(q − 4`)4(q − 6`)4dq (2.3)

for each constant ` > 0. The constant B` is chosen such that ϕ` is a compactly

supported smoothed indicator function for the interval [−6`, 6`]; see Figure 2.1 for

examples of ϕ` for different choices of `.

FIGURE 2.1. Compactly Supported Smoothed Indicator Functions
Solid and Red: ϕ1. Dashed and Blue: ϕ2.

In fact, we have the following key properties of σ` and ϕ`:

Lemma 2.1. For each constant ` > 0, we have (a) σ′`(x) ∈ [0, 1] for all x ∈ R, (b)

σ`(x) ≥ 0.75x for all x ∈ [0, `/4], (c) |σ`(x)| ≤ ` for all x ∈ R, (d) ϕ` : R→ [0, 1]

is C4 and even, (e) ϕ`(x) = 1 on [−4`, 4`], (f) ϕ`(x) = 0 when |x| ≥ 6`, and (g)

` supx∈R |ϕ′`(x)| = 315
256

.

Property (g) holds because B` = 256`9

315
, so

` sup
x∈R
|ϕ′`(x)| =

`

B`

max
q∈[4`,6`]

(q − 4`)4(q − 6`)4 =
315

256
. (2.4)

The rest of Lemma 2.1 follows from simple calculations, and by matching the left

and right derivatives of ϕ` at 4`, −4`, 6`, and −6`.

Remark 2.2. The results in this chapter remain true if our functions σ` and ϕ`

from (2.1)-(2.2) are replaced by any C4 functions σ` : R → R and ϕ` : R → R
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that satisfy the requirements from Lemma 2.1. Our strategy of using integrals to

smooth corners to approximate indicator functions has been used in other contexts.

See for example [30] where this is done to approximate the opening and closing of

a microlectromechanical relay.

Lemma 2.1 implies that the functions ϕ`(x)x and ϕ
(i)
` (x)x are all bounded for

each derivative i = 1, 2, 3. Also, for each constant ` > 0, we can use properties (c)

and (g) of Lemma 2.1 to define the function U` : R2 → R by

U`(Z) =
−σ`

(
2Z2 + σ`(`Z1)ϕ`(Z2)

)
− `σ′`(`Z1)ϕ`(Z2)Z2

2 + σ`(`Z1)ϕ′`(Z2)
. (2.5)

Using the compact support of ϕ` from Lemma 2.1, we can easily prove:

Lemma 2.3. For each constant ` > 0, (I) the functions

∂U`
∂Z

(Z), Z2
∂U`
∂Z1

(Z), Z2
2

∂2U`
∂Z2

1

(Z),
∂2U`
∂Z2

2

(Z), and Z2
∂2U`

∂Z1∂Z2

(Z) (2.6)

are all bounded and (II) supZ∈R2 |U`(Z)| ≤ 2(6`2 + `).

2.2 Statement of Theorem

Here is our key bounded backstepping theorem:

Theorem 2.4. Let Θ : [0,+∞) × R2 → R be any C1 function that admits a

constant ` > 0 such that

sup
t≥0
|Θ(t,X)| ≤ `

16
min{1, |X1|} for all X = (X1, X2) ∈ R2 . (2.7)

Let Ṡ = E(t, S) be any system on some Euclidean state space Rp that is UGAS and

ULES, with E ∈ C1. Assume that ∂E/∂S is bounded. Let L : [0,+∞)×R2×Rp →

R be any C1 function that admits a constant L̄ such that |L(t,X, S)| ≤ L̄|S| for
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all t ≥ 0, X ∈ R2, and S ∈ Rp. Let η̄ ≥ 0 be any constant. Then
Ẋ1 = X2 + Θ(t,X)

Ẋ2 = β`,η̄(t,X) + L(t,X, S) + η

Ṡ = E(t, S)

(2.8)

in closed loop with the bounded C1 feedback

β`,η̄(t,X) =

−
[
1 + 172η̄

`

]
σ`
(
2X2 + σ`(`X1)ϕ`(X2)

)
− `σ′`(`X1)ϕ`(X2)

[
X2 + Θ(t,X)

]
2 + σ`(`X1)ϕ′`(X2)

(2.9)

admits a function α ∈ K∞ ∩ C1 and a constant c > 0 such that

|Y (t)| ≤ α(|Y (to)|)e−c(t−to)/16 + 12
c

√
`2 + 1

(
1 +

√
2
`c

)
|η|∞ (2.10)

along all trajectories Y = (X,S) of (2.8) for all to ≥ 0, t ≥ to, and measurable

functions η : [0,+∞) → η̄B1, and therefore is UGAS and ULES when η ≡ 0, and

ISS with respect to disturbances η : [0,+∞)→ Bη̄. �

The preceding result implies that for any constant η̄ > 0, we can choose the

feedback such that (2.8) is ISS with respect to disturbances that are bounded by

η̄. Moreover, η̄ can be taken as large as we desire, so we get ISS with respect to

disturbances of arbitrarily large amplitude through an appropriate choice of η̄ in

the feedback. Also, the estimate

|β`,η̄(t,X)| ≤ 2`

(
1 +

172η̄

`

)
(1 + 7`) (2.11)

holds throughout its domain, and (∂/∂X)β`,η̄(t,X) is bounded if (∂/∂X)Θ(t,X)

is bounded.

2.3 Proof of Theorem

The strategy of the proof of Theorem 2.4 is to use asymptotic quadratic strict

Lyapunov functions, which are defined in the same way as standard strict Lyapunov
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functions except the Lyapunov decay estimate along trajectories is only required

for large enough times. We use this consequence of Gronwall’s Inequality:

Lemma 2.5. Assume that the C1 system

Ẏ = f(t, Y ), Y ∈ Rn (2.12)

is ULES and UGAS, and that ∂f/∂Y is bounded. Then there is a constant c >

0 and a function α ∈ K∞ ∩ C1 such that for each initial condition Y (to) =

Yo ∈ Rn, the corresponding solution Y (t, to, Yo) of (2.12) satisfies |Y (t, to, Yo)| ≤

α(|Yo|)e−c(t−to) for all t ≥ to.

Proof. Assume that (2.12) is ULES on some closed ball ∆Bn of some radius ∆ > 0

centered at the origin. The UGAS assumption provides a constant ∆1 ∈ (0,∆]

such that all trajectories of (2.12) with initial states Y (to) ∈ ∆1Bn remain in

∆Bn for all t ≥ to, as well as a C1 increasing function γ∆ : [0,+∞) → [0,+∞)

satisfying the following condition: If Yo ∈ Rn and if to ≥ 0 is any constant, then

Y (t, to, Yo) ∈ ∆1Bn for all t ≥ to + γ∆(|Yo|). Pick any constants c > 0 and K̄ > 1

such that

|Y (s, so, p)| ≤ K̄|p|e−c(s−so) (2.13)

for all p ∈ ∆Bn, so ≥ 0, and s ≥ so. Since ∂f/∂Y is bounded by some constant

f̄ > 0 and f(t, 0) = 0 for all t ≥ 0, we have

|Y (t, to, Yo)| ≤ |Yo|+
∫ t
to

∣∣f(s, Y (s, to, Yo))
∣∣ds

≤ |Yo|+
∫ t
to
f̄ |Y (s, to, Yo)|ds

(2.14)

for all t ≥ to ≥ 0 and Yo ∈ Rn. This follows from the Mean Value Theorem

applied to Gs(Y ) = f(s, Y ) for each s ≥ to, which gives |f(s, Y (s, to, Yo))| =

|f(s, Y (s, to, Yo)) − f(s, 0)| ≤ f̄ |Y (s, to, Yo)|. Hence, Gronwall’s Inequality [24,

Appendix A] gives |Y (t, to, Yo)| ≤ αo(|Yo|) for all Yo ∈ Rn, to ≥ 0, and t ∈
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[to, to + γ∆(|Yo|)] if we take αo(r) = ref̄γ∆(r). If t ≥ to + γ∆(|Yo|), and if we set

t∗ = to + γ∆(|Yo|), then the weak semigroup property Y (t, s, p) = Y (t, r, Y (r, s, p))

for all p ∈ Rn and t ≥ r ≥ s ≥ 0 gives

|Y (t, to, Yo)| = |Y (t, t∗, Y (t∗, to, Yo))|

≤ K̄|Y (t∗, to, Yo)|e−c(t−t∗)

≤ K̄αo(|Yo|)e−c(t−to−γ∆(|Yo|)).

Also, |Y (t, to, Yo)| ≤ αo(|Yo|)e−c(t−to)ecγ∆(|Yo|) for all t ∈ [to, to+γ∆(|Yo|)]. Therefore,

we can satisfy the requirements with α(r) = K̄αo(r)e
cγ∆(r).

We now return to the proof of Theorem 2.4. Using our bound (2.11) on β`,η̄(t,X),

it follows from our growth conditions on Θ and L that (2.8) is forward complete.

We can use Lemma 2.5 to fix a constant

c ∈
(
0,min{0.75, 0.5`}

)
(2.15)

and a function αS ∈ C1 ∩ K∞ such that

|S(t)| ≤ αS(|S(to)|)e−c(t−to) (2.16)

along all trajectories of Ṡ = E(t, S) in the rest of the proof. We construct a function

α ∈ K∞ ∩ C1 such that (2.10) holds along all trajectories Y = (X,S) of (2.8) for

all to ≥ 0 and t ≥ to when |η|∞ ≤ η̄, which will give the UGAS, ULES, and ISS

properties.

The variable Z1 = 2X2 + σ`(`X1)ϕ`(X2) satisfies

Ż1 =
[
2 + σ`(`X1)ϕ′`(X2)

][
β`,η̄(t,X) + L(t,X, S) + η

]
+ `σ′`(`X1)ϕ`(X2)

[
X2 + Θ(t,X)

] (2.17)

along all trajectories of (2.8). Our choice (2.9) of the feedback β`,η̄ therefore gives

Ż1 = −
[
1 + 172η̄

`

]
σ`(Z1) +

[
2 + σ`(`X1)ϕ′`(X2)

]
[L(t,X, S) + η] . (2.18)
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We now consider trajectories (X1(t),Z1(t), S(t)) of the dynamics of the variable

(X1,Z1, S) for any fixed measurable function η : [0,+∞) → η̄B1. In all of what

follows, we use to to denote the initial time of our trajectories. Also, all inequalities

should be understood to hold for all t ≥ to, unless otherwise indicated.

Step 1: We first construct a C1 function αZ ∈ K∞ such that

|Z1(t)| ≤ αZ(|(Z1(to), S(to))|)e−0.5c(t−to) + 6
c
|η|∞ (2.19)

for all t ≥ to and all trajectories Z1. To this end, we first build a C1 function

To ∈ K∞ such that for all to ≥ 0, all trajectories Z1 : [to,+∞) → R, and all t ≥

to +To(|(Z1(to), S(to))|), we have |Z1(t)| ≤ `/32. If t ≥ to is such that |Z1(t)| ≥ `
32

,

then parts (b), (c), and (g) of Lemma 2.1 give |σ`(Z1(t))| ≥ |σ`(`/32)| ≥ 3`
128

and

|σ`(`X1(t))ϕ′`(X2(t))| ≤ 2, and (2.16) and (2.18) give

sign{Z1(t)}Ż1(t) ≤ − 3`
128

[
1 + 172 η̄

`

]
+ 4

(
L̄|S(t)|+ |η(t)|

)
≤ − `

128
+ 4L̄αS(|S(to)|)e−c(t−to).

(2.20)

Therefore, d
dt
|Z1(t)| < 0 at all times t ≥ to+T∗(|(Z1(to), S(to))|) for which |Z1(t)| ≥

`/32, where

T∗(r) = 2
c

ln
(

512L̄
`
αS(r) + 1

)
,

because −`/128 + 4L̄αS(|S(to)|)e−c(t−to) < 0 for such values of t. If |Z1(t̄ )| > `/32

at some time t̄ ≥ to, and if t is the smallest time on [to, t̄ ] such that |Z1(r)| ≥ `/32

for all r ∈ [t, t̄ ], then either |Z1(t)| = `/32 or else t = to. (The first possibility

occurs if there is a time r ∈ [to, t̄ ) at which |Z1(r)| < `/32, and the second occurs

if there is no such time.) Hence, |Z1(t)| ≤ `
32

+ |Z1(to)|, so integrating (2.20) over

[t, t̄ ] gives

`
32
≤ |Z1(t̄)|

≤ |Z1(t)| − `
128

(t̄− t) + 4L̄
c
αS(|S(to)|)

≤ `
32

+ |Z1(to)| − `
128

(t̄− t) + 4L̄
c
αS(|S(to)|) .

(2.21)
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Then canceling `/32 from both sides of (2.21) gives

t̄− t ≤
[
|Z1(to)|+ 4L̄

c
αS(|S(to)|)

]
128
`
. (2.22)

Hence, we can take

To(r) = 2T∗(r) +
[
r + 4L̄

c
αS(r)

]
128
`
.

In fact, if (Z1(to), S(to)) 6= 0, and if there were a time t̄ ≥ to + To(|(Z1(to), S(to))|)

such that |Z1(t̄ )| > `/32, and if t is the smallest time on [to, t̄] such that |Z1(r)| ≥

`/32 for all r ∈ [t, t̄ ], then |Z1(t)| decreases on [t, t̄ ], since (2.22) gives t− to = t̄−

t0−(t̄−t) > T∗(|(Z1(to), S(to))|) > 0, but then |Z1(t)| = `/32 and |Z1(t)| is strictly

decreasing in a neighborhood of t, which is a contradiction. If (Z1(to), S(to)) = 0,

then (2.20) gives d
dt
|Z1(t)| < 0 for all times t > to for which |Z1(t)| ≥ `

32
, so |Z1(t)|

never goes above `/32. We conclude that |Z1(t)| ≤ `
32

if t−to ≥ To(|(Z1(to), S(to))|).

Setting t∗ = to + To(|(Z1(to), S(to))|), it follows that since |Z1(t)| ≤ `/32 for all

t ≥ t∗, part (b) of Lemma 2.1 and our choice of c ∈ (0, 0.75) give Z1(t)σ`(Z1(t)) ≥

cZ2
1 (t) for all t ≥ t∗. Then the choice W (Z1) = 1

2
Z2

1 and (2.18) give

Ẇ (Z1) ≤ −Z1σ`(Z1) + 4|Z1|
(
L̄|S(t)|+ |η(t)|

)
≤ −cW (Z1) + 16

c

[
L̄2|S(t)|2 + η2(t)

] (2.23)

for all t ≥ t∗, where the second inequality used Hölder’s Inequality to get

4|Z1|(L̄|S(t)|+ |η(t)|) ≤ 0.5cZ2
1 + 8

c
(L̄|S(t)|+ |η(t)|)2

≤ 0.5cZ2
1 + 16

c
[L̄2|S(t)|2 + η2(t)].

(2.24)

Also, (2.18) and the Fundamental Theorem of Calculus give

|Z1(t∗)| ≤ |Z1(to)|+ (t∗ − to)
{
`+ 172η̄ + 4

[
L̄αS(|S(to)|) + η̄

]}
. (2.25)

Hence, multiplying both sides of the last inequality from (2.23) by ec(t−t∗) and

integrating the result on [t∗, t] for any t ≥ t∗, taking square roots, and then using
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(2.16) and the general relation
√
p+ q ≤ √p+

√
q for all p ≥ 0 and q ≥ 0 gives

|Z1(t)| ≤
[
|Z1(t∗)|+ 6L̄

c
αS(|S(to)|)

]
e−0.5c(t−t∗) + 6

c
|η|∞

≤
[
αo(|(Z1(to), S(to))|)+ 6L̄

c
αS(|S(to)|)

]
×e−0.5c(t−t∗)ecTo(|(Z1(to),S(to))|)e−0.5c(t∗−to)

+6
c
|η|∞,

(2.26)

where αo(r) = r + To(r)[` + 176η̄ + 4L̄αS(r)]. Hence, (2.19) holds with αZ(r) =

[αo(r) + 6
c
L̄αS(r)]ecTo(r).

Step 2: We next construct a function αX ∈ C1 ∩ K∞ such that

|X1(t)| ≤ αX(|(X1(to),Z1(to), S(to))|)e−c(t−to)/16

+
√

2
`

12
c3/2
|η|∞ ∀t ≥ to

(2.27)

along all trajectories X1 from (2.8). First note that (2.8) and our choice Z1 =

2X2 + σ`(`X1)φ`(X2) give

Ẋ1 = −0.5σ`(`X1) + Θ(t,X) + d(t), (2.28)

where d(t) = 0.5Z1(t)−0.5σ`(`X1(t))[ϕ`(X2(t))−1]. Since |σ`(`X1(t))ϕ`(X2(t))| ≤

` for all t, and since

|Z1(t)| =
∣∣2X2 + σ`(`X1(t))ϕ`(X2(t))

∣∣ ≤ `

32
(2.29)

when t−to ≥ To(|(Z1(to), S(to))|), we also have |X2(t)| ≤ 4` and so also ϕ`(X2(t)) =

1 when t − to ≥ To(|(Z1(to), S(to))|), by part (e) of Lemma 2.1. It follows that

|d(t)| = 0.5|Z1(t)| ≤ `/64 when t − to ≥ To(|(Z1(to), S(to))|). Moreover, the time

derivative of V (X1) = 1
2
X2

1 along all trajectories of (2.8) is

V̇ = −0.5X1σ`(`X1) +X1Θ(t,X) +X1d(t) . (2.30)

We consider these two possible cases:
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1) |X1| ≥ 1/4. Then X1σ`(`X1) ≥ |X1|σ`(`/4) ≥ 3`
16
|X1|, by part (b) of Lemma

2.1. Therefore, our bound `/16 on Θ from (2.7) and (2.30) give

V̇ ≤ − 3`
32
|X1|+X1Θ(t,X) +X1d(t)

≤ − 3`
32
|X1|+ `

16
|X1|+ |X1||d(t)|

≤
[
− `

32
+ |d(t)|

]
|X1| .

(2.31)

2) |X1| ≤ 1/4. Then X1σ`(`X1) ≥ 0.75`X2
1 , by part (b) of Lemma 2.1. By

(2.7), we have |Θ(t,X)| ≤ (`/16)|X1| everywhere, so Hölder’s Inequality

X1d(t) ≤ `
4
X2

1 + 1
`
d2(t) applied to (2.30) gives

V̇ ≤ −3`
8
X2

1 +X1Θ(t,X) +X1d(t)

≤ −3`
8
X2

1 + `
16
X2

1 +X1d(t)

≤ − `
16
X2

1 + 1
`
d2(t) .

(2.32)

Arguing as we did to construct To, we can build a function T1 ∈ K∞ ∩ C1

such that |X1(t)| ≤ 1/4 for all t ≥ to + T1(|(X1(to),Z1(to), S(to))|). In fact,

V̇ ≤ −`|X1(t)|/64 < 0, when |X1(t)| ≥ 1/4 and t−to ≥ To(|(X1(to),Z1(to), S(to))|)

both hold, by Case 1) and the fact that |d(t)| = 0.5|Z1(t)| ≤ `/64 for such t. (In

particular, |X1(t)| never goes above 1/4 if (X1(to),Z1(to), S(to)) = 0.) On the other

hand, if |X1(t)| ≥ 1/4 for all t on some interval [t, t̄ ] with t ≥ t∗, and if t is the

smallest time r ≥ t∗ such that |X1(t)| ≥ 1/4 for all t ∈ [r, t̄ ], then either t = t∗, or

else |X1(t)| = 1/4, so Case 1), (2.19), and (2.28) combine to give

1
32
≤ V (X1(t̄ ))

≤ V (X1(t))− `
64

1
4
(t̄− t)

≤ V (X1(t∗)) + 1
32
− `

256
(t̄− t)

≤ 0.5

[
|X1(to)|+ To(|(Z1(to), S(to))|)

{
2`+ αZ(|(Z1(to), S(to))|) + 6η̄

c

}]2

+ 1
32
− `

256
(t̄− t),
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since |d(t)| ≤ `/64 for all t ≥ t∗. Hence, canceling 1/32 from both sides gives

t̄− t ≤ (128/`)[|X1(to)|+ To(|(Z1(to), S(to))|){2`+ αZ(|(Z1(to), S(to))|) + 6η̄/c}]2.

Therefore, we can take T1(r) = 2To(r) + (128/`)[r + To(r){2`+ αZ(r) + 6η̄/c}]2.

To show why this choice of T1 works, notice that if there existed a time t̄ such

that t̄− t0 ≥ T1(|(X1(to),Z1(to), S(to))|) 6= 0 and |X1(t̄)| ≥ 1/4, then our formula

for T1 implies that t̄ ≥ t∗. Hence, choosing t as in the previous paragraph and

setting W(t0) = (X1(to),Z1(to), S(to)) for brevity gives

128
`

[
|W1(to)|+ To(|W(to)|){2`+ αZ(|W(to)|) + 6η̄

c
}
]2

+ t− t0

≥ t̄− t+ t− t0

≥ T1(|W1(t0)|) .

(2.33)

This gives t− t0 ≥ 2T0(|(X1(to),Z1(to), S(to))|) and therefore also t > t∗, so Case

1) gives V̇ < 0 on [t, t̄] which is a contradiction because |X1(t)| = 1/4. On the

other hand, if t̄ − t0 ≥ T1(|(X1(to),Z1(to), S(to))|) = 0 and |X1(t̄)| ≥ 1/4, then

|Z1(t)| never goes above `/32, so Case 1) gives V̇ < 0 when X1(t) = 1/4 so |X1|

cannot go above 1/4.

Hence, |X1(t)| ≤ 1
4

on [tq,+∞), where tq = to + T1(|(X1(to),Z1(to), S(to))|). On

this interval, Case 2) gives

V̇ ≤ − c
8
V +

d2(t)

`
= − c

8
V +

1

4`
Z2

1 (t) , (2.34)

since we chose c ∈ (0, `). Multiplying (2.34) through by ec(t−tq)/8, using (2.19) and

(2.28), integrating over [tq, t], and taking square roots gives

|X1(t)| ≤
[
|X1(tq)|+ 3√

`c
αZ(|(X1(to),Z1(to), S(to))|)

]
e−c(t−tq)/16 +

√
2
`

12
c3/2
|η|∞

≤ e−c(t−tq)/16α3

(
|(X1(to),Z1(to), S(to))|

)
+
√

2
`

12
c3/2
|η|∞,

where

α3(r) = r + T1(r)

(
2`+ αZ(r) +

6η̄

c

)
+

3αZ(r)√
`c

. (2.35)
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This gives (2.27) with αX(r) = α3(r)ecT1(r)/16.

Step 3: Combining the estimates (2.16), (2.19), and (2.27) gives a function αX,Z ∈

C1 ∩ K∞ such that∣∣(Z1(t), X1(t), S(t))
∣∣ ≤ αX,Z (|(Z1(to), X1(to), S(to))|) e−c(t−to)/16

+12
c

{
1 +

√
2
`c

}
|η|∞

along all trajectories (Z1, X1, S) for all initial times to ≥ 0 and all t ≥ to. The

construction of α to satisfy (2.10) follows, because Lemma 2.1 gives

∣∣(X,S)
∣∣ ≤ √

`2 + 1
∣∣(Z1, X1, S)

∣∣ ≤ 3(`2 + 1)
∣∣(X,S)

∣∣ (2.36)

everywhere. This proves Theorem 2.4.

Remark 2.6. The following observations will be useful in Section 3.7, in our anal-

ysis of tracking problems for PVTOL aircraft models where velocity observations

may not be available. The preceding proof shows that when η ≡ 0, the function

G`(X) =
1

2
X2

1 +
1

`c`

{
2X2 + σ`(`X1)ϕ`(X2)

}2

(2.37)

satisfies

d
dt
G`(X(t)) ≤ −d`|X(t)|2 + 32L̄2

c2` `
|S(t)|2

and G`(X(t)) ≥ d`|X(t)|2 along all trajectories of (2.8) for all times t ≥ to +

T1(|(X1(to), S(to))|) and all initial times to ≥ 0, where

d` = min
{
c`
16
, 1

2`

}
min

{
`2, 0.5, 1

2`2

}
and c` = min{0.75, 0.5`}. To see why, notice that if |`X1| ≤ |X2|, then X2

1 +Z2
1 =

X2
1 + [2X2 + σ`(`X1)ϕ`(X2)]2 ≥ |X|2; while if |`X1| ≥ |X2|, then we instead have

X2
1 + Z2

1 ≥ (2`2X2
1 + Z2

1 ) min
{

1
2`2
, 1
}

≥ (`2X2
1 +X2

2 ) min
{

1
2`2
, 1
}

≥ min
{

0.5, `2, 1
2`2

}
|X|2.
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Also, G`(X) = 1
2
X2

1 + 1
c``
Z2

1 = V (X1) + 2
`c`
W (Z1) everywhere. The estimates now

follow from (2.23) and (2.34), because

d

dt
G`(X(t)) ≤ −min

{
c`
16
,

1

2`

}
(X2

1 + Z2
1 ) +

32L̄2

c2
``
|S(t)|2

along all trajectories of (2.8) for all times t ≥ to + T1(|(X1(to),Z1(to), S(to))|) and

all initial times to ≥ 0.
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Chapter 3
Planar Vertical Takeoff and Landing
Model

In this chapter, we use our bounded backstepping theorem from page 18 of Chapter

2 to design controllers that ensure tracking for a broad class of PVTOL trajecto-

ries. First we consider the case where the full state is available for measurement.

Then, we combine our results with the observer approach from [12] to generate

tracking controllers that do not require velocity measurements.

3.1 Discussion on Model

Since its introduction in [22], the planar vertical takeoff and landing (PVTOL) air-

craft model has become a benchmark dynamical system in aerospace engineering,

and it is of continuing ongoing research interest [3, 10, 15]. Recall from Section

1.4.1 above that the PVTOL model is
ẍ = −ū1 sin(θ) + εu2 cos(θ)

ÿ = ū1 cos(θ) + εu2 sin(θ)− g

θ̈ = u2,

(3.1)

where (x, y) gives the lateral and vertical coordinates of the center of mass of the

aircraft, θ is the roll angle relative to the horizon, the control ū1 is the thrust

directed out of the bottom, g is the gravitational constant, the control u2 is the

rolling moment, and the constant ε gives the coupling between the roll moment

and the lateral force [3].

It is a simplified model with the minimal number of states and inputs that has

the main features needed to design controllers for real aircraft [22]; see Figure 3.1.
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y(t)

x(t)

θ(t)
u2(t)

ū1(t) εu2(t)

FIGURE 3.1. PVTOL Airplane

We are using a bar on the thrust controller because it is convenient to use a change

of feedback to decouple the coordinates. In fact, the coordinates z1 = x− ε sin(θ),

z2 = ẋ − εθ̇ cos(θ), w1 = y + ε(cos(θ)− 1), w2 = ẏ − εθ̇ sin(θ), ξ1 = θ, and ξ2 = θ̇

and new input u1 = ū1 − εξ2
2 from [38] transform (3.1) into [38]

ż1 = z2

ż2 = −u1 sin(ξ1)

ẇ1 = w2

ẇ2 = u1 cos(ξ1)− g

ξ̇1 = ξ2

ξ̇2 = u2.

(3.2)

The main literature on (3.2) is divided into set point stabilization (e.g., [38, 44, 54]),

and tracking or path following (e.g., [10, 11, 12, 26, 31, 32]). The challenges in

designing PVTOL stabilizers are that u1 must be nonnegative and that the system

is underactuated. Much of the PVTOL literature uses output feedbacks that only

depend on (z1, w1, ξ1). One can design globally exponentially stable observers for

the velocities; see [12] and Section 3.7 below, and [3, 55] for recent work on state

feedback tracking controllers.
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Given a reference trajectory for (3.2), it is natural to ask whether we can design

feedback controllers u1 and u2 that force all trajectories of (3.2) to track the refer-

ence trajectory, for all initial configurations. This is the problem of rendering the

tracking error dynamics for (3.2) uniformly globally asymptotically stable. Recall

from p.13 that the tracking error encodes the difference between the current state

and the reference trajectory vector at each time t. Several significant papers gave

sufficient conditions guaranteeing that such controllers can be constructed [3, 12].

However, one would hope to establish uniform global asymptotic stability of the

tracking dynamics by globally bounded controllers. Also, it is important for the con-

trollers to perform well under uncertainty, so it is also important to have controllers

that give ISS with respect to actuator errors, which are additive uncertainties on

the controllers. In this chapter, we use our bounded backstepping theorem from

Chapter 2 to achieve these additional boundedness and key robustness objectives.

3.2 Literature Review

The fundamental importance of the PVTOL model has led to a vast PVTOL lit-

erature involving a variety of techniques. In their original work [22], Hauser et al.

used approximate input-output linearization to get bounded tracking and asymp-

totic stability for (3.2). Later work [52] by Teel developed small gain theory for

systems in feedforward form that gives stabilization results for the PVTOL model

as a special case, including robustness to uncertainty in the coupling parameter ε.

In [32], Martin et al. extended [22] by giving output tracking results for a class of

slightly or strongly non-minimum phase systems that includes the PVTOL. The

main idea in [32] was to use the output at the Huygens center of oscillation, which is

a fixed point with respect to the aircraft body, and then the controller was defined

on a suitable subset of the state space. Also, [46, Section 6.1] designed PVTOL
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aircraft state feedbacks under the assumption that the coupling parameter ε is

zero and then selected the controller parameters to mitigate the effects of nonzero

values of ε. Then [26] gave optimal control methods that led to nonlinear state

feedback controllers that give hovering control that is robust to uncertainty in the

coupling parameter ε. See [6, Section VI.C] for stabilization of equilibrium points

under linear dynamic stabilizers.

Subsequent work [38] by Olfati-Saber from 2002 used a change of coordinates

from [37] to design a state controller that stabilizes a zero velocity configuration

and allows larger values of the parameter ε. Also in 2002, Marconi et al. [31] used

an internal-based model approach and nested saturations to design an autopilot for

the autonomous landing of a PVTOL aircraft on a ship whose deck oscillates under

high seas. See [4] for output tracking along a circle. Later work [13] by Francisco et

al. used forwarding results from [36] to design distributed delay nested saturation

feedbacks that give global asymptotic stability.

The PVTOL literature on path following can be summarized as follows. Track-

ing leads to controllers that have an a priori parametrization of the curve to be

followed, while path following does not involve such a parametrization. See [10]

for path following of Jordan curves using continuous feedback based on finite time

stabilization for initial states near the desired configuration. An advantage of path

following is that it can mitigate the effects of moving along a path too quickly [10].

However, the PVTOL tracking error dynamics are amenable to global Lyapunov

function methods. Lyapunov methods have the advantage that they can lead to

ISS proofs, which is important for certifying good performance under worst case

disturbances. Therefore, tracking and path following are both important.

One natural approach to the PVTOL dynamics involves backstepping [12]. See

[54], whose feedback law leads to a cascade structure that minimizes the norm
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of the interconnection term between subsystems. When designing PVTOL con-

trollers, it is important to take the maximum amplitude of the feedbacks into

account. On the other hand, standard backstepping techniques do not in general

lead to bounded feedback stabilizers. There have been several generalizations of

backstepping that give bounded feedbacks [14, 29, 33]. See [29, Chapter 7] where

bounded backstepping was used to track certain sinusoidal PVTOL trajectories.

The work [3] gave globally stabilizing tracking controllers for a specific class

of reference trajectories when u1 is bounded, and semiglobal stability when both

u1 and u2 are bounded. The PVTOL output feedback tracking controllers in [12]

were based on several changes of coordinates, Lyapunov’s direct method, Bar-

balat’s Lemma, and backstepping. However, the controllers in [12] are not bounded.

Moreover, the thrust control ū1 in [12] is not guaranteed to be bounded below by

a positive constant. Since the existing work on global tracking for (3.2) is based

on Barbalat’s Lemma, it does not lend itself to ISS. Our controllers for (3.2) are

necessarily more complex than those of [3, 12]. However, to the best of our knowl-

edge, the results to follow are original and significant because of (a) the global

boundedness of our controllers u1 and u2 and the uniform positive lower bound

on ū1, (b) the applicability of our work to cases where the velocity measurements

may not be available, (c) the uniform global asymptotic stability and uniform lo-

cal exponential stability of our closed loop tracking dynamics, (d) our allowing a

rather general class of reference trajectories, and (e) our use of ISS to quantify the

performance under actuator errors of arbitrarily large amplitude.

3.3 Tracking Objective

We begin by choosing any reference trajectory Er = (z1r, z2r, w1r, w2r, ξ1r, ξ2r) :

[0,+∞)→ R6. This means that there exists a reference input ur = (u1r, u2r) such
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that for all t ≥ 0, we have

ż1r(t) = z2r(t)

ż2r(t) = −u1r(t) sin(ξ1r(t))

ẇ1r(t) = w2r(t)

ẇ2r(t) = u1r(t) cos(ξ1r(t))− g

ξ̇1r(t) = ξ2r(t)

ξ̇2r(t) = u2r(t) .

(3.3)

We wish to design bounded tracking controllers that ensure tracking for reference

trajectories that satisfy the following:

Assumption 1. (1) The functions Er and ur are C2. (2) There is a constant

c1 ∈ (0, π/2) such that ξ1r(t) ∈ [−π/2 + c1, π/2 − c1] for all t ≥ 0. (3) The

functions ξ̇1r, ξ̈1r, ur, u̇r, and ür are all bounded. (4) There is a constant c2 > 0

such that inft≥0 u1r(t) ≥ c2.

Equivalently, we must design bounded C1 feedbacks ui to drive the error variables

z̃i(t) = zi(t)−zir(t), w̃i(t) = wi(t)−wir(t), and ξ̃i(t) = ξi(t)−ξir(t) to 0 for i = 1, 2.

This means that the ui’s must render the tracking dynamics

˙̃z1 = z̃2

˙̃z2 = −u1 sin(ξ1) + u1r(t) sin(ξ1r(t))

˙̃w1 = w̃2

˙̃w2 = u1 cos(ξ1)− u1r(t) cos(ξ1r(t))

˙̃ξ1 = ξ̃2

˙̃ξ2 = u2 − u2r(t)

(3.4)

UGAS.

Remark 3.1. The physical and technical constraints of the system provide input

restrictions. Hence, there are positive constants ũi such that ũ0 ≤ u1r(t) ≤ ũ1
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and |u2r(t)| ≤ ũ2 must hold for all t ≥ 0. The positive lower bound ũ0 is used

to avoid the 0 thrust. We can use these actuator constraints to give sufficient

conditions for a trajectory to be trackable. In fact, take any C4 function Rr =

(z1r, z2r, w1r, w2r, ξ1r, ξ2r) : [0,+∞)→ R6 whose first four derivatives are bounded,

and assume that inft≥0[ẅ1r(t) + g] > 0. Then the following conditions are easily

shown to be equivalent:

[C1] Rr satisfies (3.3) for all t ≥ 0 for some C2 input ur = (u1r, u2r) : [0,+∞)→

R2 for which u1r(t) is nonnegative for all t ≥ 0.

[C2] ξ1r(t) = arcsin(−z̈1r(t)/{(z̈1r(t))
2+(ẅ1r(t)+g)2}1/2), ż1r(t) = z2r(t), ẇ1r(t) =

w2r(t), and ξ̇1r(t) = ξ2r(t) hold for all t ≥ 0.

The implication [C1] ⇒ [C2] follows by using the second and fourth equations in

(3.3) to solve for u1r. In this case, (3.3) holds for all t ≥ 0 with u1r(t) = {(z̈1r(t))
2 +

(ẅ1r(t) + g)2}1/2 and u2r(t) = ξ̈1r(t), and there are constants c1 ∈ (0, π/2) and

c2 > 0 such that ξ1r(t) ∈ [−π/2 + c1, π/2− c1] for all t ≥ 0 and inft≥0 u1r(t) ≥ c2.

Hence, the trajectory satisfies all of our assumptions. Moreover, we satisfy the

input restrictions if we also have ũ0 ≤ {(z̈1r(t))
2 + (ẅ1r(t) + g)2}1/2 ≤ ũ1 and

|ξ̈1r(t)| ≤ ũ2 for all t ≥ 0. See Sections 3.9-3.10 for more details and an application

to a specific tracking problem.

3.4 Thrust Control Out of the Bottom

Recall the functions ϕ`, σ`, and U` we defined in Section 2.1. Using part (II)

of Lemma 2.3 on page 18 and the constants ci > 0 defined above, we have

inft≥0{u1r(t) cos(ξ1r(t))} > 0, and we can fix a small enough constant λ > 0 such

that

v(t, z̃) = arctan

(
tan (ξ1r(t))−

Uλ(z̃)

u1r(t) cos(ξ1r(t))

)
(3.5)
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admits a constant c3 ∈ (0, c1) such that v(t, z̃) ∈ [−π/2 + c3, π/2− c3] for all t ≥ 0

and z̃ ∈ R2. We choose the control component

u1(t, z̃, w̃) =
1

cos(v)

[
u1r(t) cos(ξ1r(t)) + Uλ(w̃)

]
(3.6)

for the thrust controller. By reducing λ > 0 without relabeling and again using

part (II) of Lemma 2.3, we can assume that u1 is everywhere nonnegative. We then

set

K(t, z̃) =
1

1 + tan2(v)

1

u1r(t) cos(ξ1r(t))
, (3.7)

and we define the functions Sλ and Tλ by

Sλ(t, z̃, w̃) = − ξ̇1r(t) +
{1 + tan2(ξ1r(t))}ξ̇1r(t)

1 + tan2(v)

+K(t, z̃)

[
Uλ(z̃) d

dt
{u1r(t) cos(ξ1r(t))}

u1r(t) cos(ξ1r(t))
− ∂Uλ(z̃)

∂z̃1
z̃2

]

−K(t, z̃)
∂Uλ(z̃)

∂z̃2

[
sin(ξ1r(t))u1r(t)− sin(v)u1

]
(3.8)

and

Tλ(t,$1, z̃, w̃) = u1K(t, z̃)
∂Uλ(z̃)

∂z̃2

[
sin($1 + v)− sin(v)

]
, (3.9)

where $1 = ξ1 − v, and where v and u1 are from (3.5)-(3.6). Since ˙̃z2 and ˙̃w2 are

bounded, Lemma 2.3 and our Assumption 1 on Er implies that the time derivative

Ṡλ along all trajectories of (3.4) is bounded. Fix a constant a > 0 such that

max

{∣∣∣∣ ∂Tλ∂$1

(t,$1, z̃, w̃)

∣∣∣∣ , ∣∣Tλ(t,$1, z̃, w̃)
∣∣} ≤ a

16
(3.10)
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everywhere. Notice that our tracking dynamics (3.4) with the choices (3.6) and

$2 = ξ̃2 − Sλ can be rewritten as

˙̃z1 = z̃2

˙̃z2 = − sin($1+v)
cos(v)

[
u1r(t) cos(ξ1r(t)) + Uλ(w̃)

]
+ u1r(t) sin(ξ1r(t))

˙̃w1 = w̃2

˙̃w2 =
[

cos($1+v)
cos(v)

− 1
]
u1r(t) cos(ξ1r(t)) + Uλ(w̃) cos($1+v)

cos(v)

$̇1 = $2 − Tλ(t,$1, z̃, w̃)

$̇2 = u3

(3.11)

where u3 = u2 − u2r(t) − Ṡλ and v depends on (t, z̃). Then the UGAS and ULES

properties for (3.4) are equivalent to those of (3.11), so we have reduced the sta-

bilization problems for (3.4) to those for (3.11).

3.5 Main Tracking Theorem

Since Ṡλ, u2r, and (3.6) are C1 and bounded, we will have our bounded feedbacks

for the PVTOL tracking dynamics, once we design a C1 bounded feedback u3 that

renders (3.11) UGAS and ULES. Our construction of u3 is:

Theorem 3.2. Let the constants a > 0 and λ > 0 satisfy the requirements from

Section 3.4. Then

u3(t, z̃, w̃, $) =

−σa
(
2$2 + σa(a$1)ϕa($2)

)
− aσ′a(a$1)ϕa($2)

[
$2 − Tλ(t,$1, z̃, w̃)

]
2 + σa(a$1)ϕ′a($2)

(3.12)

is bounded and C1 and renders (3.11) UGAS and ULES. Hence, the controller u1

from (3.6) and the rolling moment controller u2 = u3 + u2r(t) + Ṡλ render (3.4)

UGAS and ULES. �
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Proof. The dynamics (3.11) in closed loop with (3.12) is forward complete because

its right side grows linearly in the state uniformly in t. Therefore, the fact that

there exist a function α1 ∈ C1 ∩ K∞ and a constant c̃1 > 0 such that the UGAS

and ULES estimate

|$(t)| ≤ α1(|$(to)|)e−c̃1(t−to) (3.13)

holds along all trajectories of (3.11) follows from our bounded backstepping the-

orem (Theorem 2.4) with the choice S(t) ≡ 0, (3.10), and the fact that (3.12)

agrees with the controller (2.9) when we take L ≡ 0, ` = a, X = $, η̄ = 0, and

Θ(t,$) = −Tλ(t,$1, z̃(t), w̃(t)).

Next note that the w̃ dynamics in (3.11) can be written as
˙̃w1 = w̃2

˙̃w2 = Uλ(w̃) + L(t, w̃, $)
(3.14)

for an appropriate function L that admits a constant L̄ > 0 so that |L(t, w̃, $)| ≤

L̄|$1| for all t ≥ 0. The time variable in L includes the effects of z̃, which enter

through the function v(t, z̃). Hence, the fact that there exist a function α2 ∈

C1 ∩ K∞ and a constant c̃2 > 0 such that the UGAS and ULES estimate∣∣(w̃(t), $(t)
)∣∣ ≤ α2

(
|(w̃(to), $(to))|

)
e−c̃2(t−to) (3.15)

holds all trajectories of the (w̃,$) subsystem of (3.11) also follows from Theorem

2.4, this time applied with X = w̃, Θ ≡ 0, η̄ = 0, and S = $.

Finally, notice that Uλ(z̃) = [tan(ξ1r(t)) − tan(v)]u1r(t) cos(ξ1r(t)) everywhere.

Hence, the z̃ subdynamics in (3.11) can be rewritten as
˙̃z1 = z̃2

˙̃z2 = Uλ(z̃) + L(t, z̃, w̃, $) ,
(3.16)

where

L(t, z̃, w̃, $) =
sin(v)− sin(ξ1)

cos(v)

[
u1r(t) cos(ξ1r(t)) + Uλ(w̃)

]
− tan(v)Uλ(w̃).
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Using the properties of v and Uλ, we can find a constant L̄ > 0 such that

|L(t, z̃, w̃, $)| ≤ L̄|(w̃,$)| everywhere. Then the assumptions of Theorem 2.4 are

satisfied with X = z̃, S = (w̃,$), L = L, L̄ = L̄, Θ ≡ 0, and η̄ = 0, so Theorem

2.4 gives a function α3 ∈ C1 ∩ K∞ and a constant c̃3 > 0 such that

∣∣(z̃(t), w̃(t), $(t)
)∣∣ ≤ α3

(∣∣(z̃(to), w̃(to), $(to))
∣∣) e−c̃3(t−to)

along all trajectories of (3.11), which gives the desired conclusions.

Remark 3.3. See Section 3.8 for our extension to cases where there are actuator

errors. We cannot eliminate Tλ the way we eliminated Sλ, because the unbound-

edness of $̇1 implies that Ṫλ is unbounded.

3.6 Input Constraints and Controller Bounds

Remark 3.4. We can derive explicit global bounds on our controllers ui. To get

the bound on the controller u1 from (3.6), first pick any constant b ∈ (0, 1). By

reducing the constant λ > 0 from Section 3.4, we can assume that

0 < λ < min
{

1, bc2
14

cos(π/2− c1)
}
, (3.17)

where the ci’s satisfy Assumption 1. Then part (II) of Lemma 2.3 implies that

|Uλ(Z)|
u1r(t) cos(ξ1r(t))

≤ 2λ(6λ+ 1)

c2 cos(π/2− c1)
≤ b (3.18)

for all Z ∈ R2 and all t ≥ 0. Since cos(arctan(q)) = 1/(1+q2)1/2 holds for all q ∈ R,

we conclude from our formula (3.5) for v(t, z̃) that 1/ cos(v) = (1 + tan2(v))1/2 =

(1 + [Uλ(z̃)/{u1r(t) cos(ξ1r(t))}− tan(ξ1r(t))]
2)1/2 ∈ [1, 1 + [tan(π/2− c1) + b]2] and

u1r(t) cos(ξ1r(t)) + Uλ(w̃) ∈ [(1 − b)c2 cos(π/2 − c1), (1 + b) sup{u1r(p) : p ≥ 0}]

hold for all t ≥ 0, z̃ ∈ R2, and w̃ ∈ R2. Combining the preceding estimates gives
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the controller bounds

(1− b)c2 cos(π/2− c1)

≤ u1(t, z̃, w̃)

≤
{

1 + [tan(π/2− c1) + b]2
}

(1 + b) sup{u1r(p) : p ≥ 0}

(3.19)

for all t ≥ 0 and (z̃, w̃) ∈ R4. Hence, for all constants ũ0 ∈ (0, (1−b)c2 cos(π/2−c1))

and ũ1 ≥ {1 + [tan(π/2 − c1) + b]2}(1 + b) sup{u1r(p) : p ≥ 0}, we satisfy ũ0 ≤

u1(t, z̃, w̃) ≤ ũ1 for all t ≥ 0, z̃ ∈ R2, and w̃ ∈ R2. Taking the constant c1 from

Assumption 1 close enough to π/2 (which can be done by restricting to reference

trajectories such that inft≥0[ẅ1r(t) + g] is large enough and arguing as in Remark

3.1) and b close enough to 0, we can then satisfy the actuator constraints on u1

if ũ0 < c2 and ũ1 > sup{u1r(p) : p ≥ 0}. Also, u1(t, z̃, w̃) has a uniform positive

lower bound, which is important for avoiding the zero thrust. This differs from [12],

where the controller u1 is not necessarily bounded away from zero. See Remark 3.6

for analogous bounds for u2.

Remark 3.5. Recall from our decoupling change of coordinates from p.29 that

the thrust out of the bottom is ū1 = u1 + εξ2
2 . This will not be globally bounded,

because ξ2 is unbounded. However, simple calculations allow us to combine our

UGAS estimate for (3.11), the triangle inequality, and the coordinate changes that

transformed (3.4) into (3.11) to construct a function α? ∈ K∞ such that

|ξ2(t)| ≤ |ξ2r(t)|+ |ξ̃2(t)| ≤ |ξ2r(t)|+ α?
(∣∣(z̃, w̃, ξ̃)(t0)

∣∣) (3.20)

along all trajectories of (3.4). Hence,

u1(t, z̃(t), w̃(t)) ≤ ū1(t, z̃(t), w̃(t), ξ2(t))

≤ u1(t, z̃(t), w̃(t)) + 2ε
{
ξ2

2r(t) +
[
α?(|(z̃, w̃, ξ̃)(t0)|)

]2} (3.21)

holds along all trajectories of (3.4). Since ξ2r is bounded, this gives finite positive

upper and lower bounds on ū1 in terms of our bounds on u1 from Remark 3.4 and
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the norm of the initial state of (3.4). We can use α? ∈ K∞ to ensure that the

overflow term 2ε{ξ2
2r(t) + [α?(|(z̃, w̃, ξ̃)(t0)|)]2} is small enough, either by further

restricting the reference trajectory such that sup{|ξ2r(t)| : t ≥ 0} is small enough,

or by restricting to state trajectories that start close enough to the reference tra-

jectory to make |(z̃, w̃, ξ̃)(t0)| small enough. In fact, if ũ1 is the maximum allowable

thrust out of the bottom, and if we further restrict the reference trajectories as in

Remark 3.4 such that sup{u1(t, z̃, w̃) : t ≥ 0, (z̃, w̃) ∈ R4} < ũ1, then ū1 is also

bounded above ũ1 if

2ε
{
ξ2

2r(t) + [α?(|(z̃, w̃, ξ̃)(t0)|)]2
}
≤

ũ1 − sup
{
u1(p, z̃, w̃) : p ≥ 0, (z̃, w̃) ∈ R4

}
.

(3.22)

Combined with our positive lower bound on u1 from Remark 3.4, we conclude that

our actuator envelope is satisfied.

Remark 3.6. We can combine the ideas from Remarks 3.4-3.5 to derive global

bounds on our controller u2 from Theorem 3.2. In fact, Lemma 2.3 implies that

the time derivative Ṡλ of Sλ along all trajectories of (3.4) has some finite global

bound S̄λ. Hence, Lemmas 2.1 and 2.3 and the bound on Tλ from (3.10) give

sup
{
|u2(t, z̃, w̃, $)| : t ≥ 0, (z̃, w̃, $) ∈ R6

}
≤ 2a(6a+ 1) + a2

8
+ sup{|u2r(p)| : p ≥ 0}+ S̄λ ,

(3.23)

where the a2

8
term comes from the estimate∣∣∣∣aσ′a(a$1)ϕa($2)Tλ(t,$1, z̃, w̃)

2 + σa(a$1)ϕ′a($2)

∣∣∣∣ ≤ a2

8
. (3.24)

While finite, the upper bound in (3.23) could exceed the physical constraints of the

system, but we can get a tighter bound by using the UGAS estimate on (3.11) as in

Remark 3.5. This gives an upper bound depending on a K∞ function of the norm

of the initial state of the tracking dynamics (3.11). The details are as follows. Our

41



controller u2 is such that u2(t, 0, 0, 0) = u2r(t) for all t ≥ 0. Therefore, we can use

our bounds on the reference trajectories and reference inputs and their derivatives

to find a function α̃ ∈ K∞ such that

|u2(t, z̃, w̃, $)| ≤ sup{|u2r(p)| : p ≥ 0}+ α̃(|(z̃, w̃, $)|) (3.25)

for all t ≥ 0 and all (z̃, w̃, $) ∈ R6. Combining (3.25) with the UGAS estimate on

(3.11) therefore gives a function α∗∗ ∈ K∞ such that

|u2(t, z̃(t), w̃(t), $(t))| ≤ sup{|u2r(p)| : p ≥ 0}

+α∗∗(|(z̃(t0), w̃(t0), $(t0))|)
(3.26)

along all trajectories of (3.11). Hence, given any bound ũ2 > 0 on the rolling mo-

ment, and given a reference trajectory for which the corresponding control compo-

nent u2r = ξ̇2r satisfies sup{|u2r(p)| : p ≥ 0} < ũ2, we can find a region Rb in the

state space containing the reference trajectory such that |u2(t, z̃(t), w̃(t), $(t))| ≤

ũ2 along all trajectories of (3.11) and all values attained by the rolling moment

controller satisfy the actuator envelope, when the system starts in Rb. This is done

by simply choosing Rb such that α∗∗(|(z̃(t0), w̃(t0), $(t0))|) ≤ ũ2 − sup{|u2r(p)| :

p ≥ 0} for all trajectories starting in Rb. We leave the construction of α∗∗ to the

reader, but we demonstrate in our simulations in Section 3.10 how the control

inputs satisfy the input restrictions.

3.7 Tracking Without Velocity Measurements

If only the variables z1, w1, and ξ1 are measured, then we can achieve our tracking

objective using the observer approach from [12]. We apply the approach as follows.

First, the proofs of our bounded backstepping theorem (Theorem 2.4 on page 18)

with η̄ = 0 and Theorem 3.2 provide a positive definite proper function Vo(z̃, w̃, $)
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and a C1 function Γo : [0,+∞)→ (0,+∞) such that V̇o is negative definite along

all trajectories of the tracking dynamics (3.11) in closed loop with (3.12) for all

times t ≥ to + Γo(|(z̃, w̃, $)(to)|), and such that V1 = ln(1 + Vo) has a bounded

gradient. To construct Vo, notice that the proof of Theorem 2.4 implies that the

positive definite function

G`(X) = 0.5X2
1 +

1

`c`

{
2X2 + σ`(`X1)ϕ`(X2)

}2
(3.27)

has a positive definite quadratic lower bound and admits a function Γ ∈ K∞ ∩ C1

and a constant d` > 0 such that

d

dt
G`(X(t)) ≤ −d`|X(t)|2 +

32L̄2

c2
``
|S(t)|2 (3.28)

along all trajectories of (2.8) when η = 0 and t−to ≥ Γ(|(X(to), S(to))|), where c` =

min{0.75, 0.5`}; see Remark 2.6. Applying the preceding construction successively

with (X,S) = ($, 0), then (X,S) = (w̃,$), and finally with (X,S) = (z̃, (w̃,$)) as

in the proof of Theorem 3.2 provides positive constants Ai such that Vo(z̃, w̃, $) =

Gλ(z̃) + A2

[
A1Ga($) + Gλ(w̃)

]
satisfies the requirements, where the constant A1

is chosen to cancel the term 32L̄2|$(t)|2
c2aa

in the decay estimate on Gλ(w̃), and then

the constant A2 is chosen to cancel the term 32L̄2|(w̃,$)(t)|2
c2aa

in the decay estimate for

Gλ(z̃).

Using the coordinate changes that we used to transform (3.4) into (3.11), one

easily checks that the feedback u1,s(t, z̃, w̃) defined in (3.6) and

u2,s

(
t, z̃, w̃, ξ̃) = u3

(
t, z̃, w̃, ξ̃1 + ξ1r(t)− v(t, z̃), ξ̃2 − Sλ(t, z̃, w̃)

)
+u2r(t) + Ṡλ(t, z̃, w̃)

are globally Lipschitz in the state (z̃, w̃, ξ̃) uniformly in t and admit a proper posi-

tive function V2(t, z̃, w̃, ξ̃) and a C1 function Γ2 : [0,+∞)→ (0,+∞) such that V̇2 is

negative definite along all of the closed loop trajectories of (3.4) with u1 = u1,s and
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u2 = u2,s for all times t ≥ to+Γ2(|(z̃, w̃, ξ̃)(to)|), and such that |(∂V2/∂z̃)(t, z̃, w̃, ξ̃)|,

|(∂V2/∂w̃)(t, z̃, w̃, ξ̃)|, and |(∂V2/∂ξ̃)(t, z̃, w̃, ξ̃)| are all bounded. In fact, we can take

V2(t, z̃, w̃, ξ̃) = V1

(
z̃, w̃, ξ̃1 + ξ1r(t)− v(t, z̃), ξ̃2 − Sλ(t, z̃, w̃)

)
. (3.29)

Next consider the augmented dynamics

˙̃z1 = z̃2

˙̃z2 = −u1,s(t, ẑ, ŵ) sin(ξ1) + u1r(t) sin(ξ1r(t))

˙̃w1 = w̃2

˙̃w2 = u1,s(t, ẑ, ŵ) cos(ξ1)− u1r(t) cos(ξ1r(t))

˙̃ξ1 = ξ̃2

˙̃ξ2 = u2,s(t, ẑ, ŵ, ξ̂)− u2r(t)

˙̂z1 = ẑ2 + k1(z̃1 − ẑ1)

˙̂z2 = −u1,s(t, ẑ, ŵ) sin(ξ1) + u1r(t) sin(ξ1r(t)) + k2(z̃1 − ẑ1)

˙̂w1 = ŵ2 + k3(w̃1 − ŵ1)

˙̂w2 = u1,s(t, ẑ, ŵ) cos(ξ1)− u1r(t) cos(ξ1r(t)) + k4(w̃1 − ŵ1)

˙̂
ξ1 = ξ̂2 + k5(ξ̃1 − ξ̂1)

˙̂
ξ2 = u2,s(t, ẑ, ŵ, ξ̂)− u2r(t) + k6(ξ̃1 − ξ̂1)

(3.30)

where the ki are any positive constants and the hats indicate estimates (so ẑ1

represents an estimate of z̃1 and likewise for the other components). We prove:

Theorem 3.7. The dynamics (3.30) are UGAS and ULES to the origin.

Proof. The system (3.30) is forward complete, because its right side grows linearly

in the state uniformly in t. Also, the linear time invariant dynamics for the error

Ye =
(
z̃ − ẑ, w̃ − ŵ, ξ̃ − ξ̂

)
(3.31)

is uniformly globally exponentially stable to zero. This and the boundedness of the

gradient of V2 in the state imply that the (z̃, w̃, ξ̃) dynamics satisfies the necessary

44



UGAS and ULES estimates, using an integral ISS argument. To get the integral

ISS estimate, notice that the (z̃, w̃, ξ̃) subdynamics in (3.30) can be written as(
˙̃z, ˙̃w, ˙̃ξ

)
= F(t, z̃, w̃, ξ̃) +

(
0,∆u1,s sin(ξ1), 0,−∆u1,s cos(ξ1), 0,−∆u2,s

)
, (3.32)

where ∆ui,s = ui,s(t, z̃, w̃, ξ̃) − ui,s(t, ẑ, ŵ, ξ̂) for i = 1, 2 and F(t, z̃, w̃, ξ̃) is the

right side of (3.4) in closed loop with the feedbacks u1,s and u2,s defined above.

We can find a positive definite function α∗ and a constant Ū > 0 such that V̇2 ≤

−α∗(|(z̃, w̃, ξ̃)|) along all trajectories of (3.4) for all t ≥ to + Γ2(|(z̃, w̃, ξ̃)(to)|), and

such that |∆ui,s| ≤ Ū |Ye| everywhere for i = 1, 2, where V2 and Γ2 are from the

previous paragraph. Since V2 has a uniformly bounded gradient in the state, we

can then find a constant B̄ > 0 such that

V̇2 ≤ −α∗(|(z̃, w̃, ξ̃)|) + B̄|Ye(t)| (3.33)

along all trajectories of (3.30) for all times such that t ≥ to + Γ2(|(z̃, w̃, ξ̃)(to)|). In

fact, we can take B̄ = 3V̄ Ū where V̄ is the uniform bound on the state gradient

for V2. Condition (3.33) is the standard integral ISS Lyapunov function decay

condition except it is only required for large times. Since Ye converges exponentially

to zero, and since similar reasoning applies to the (ẑ, ŵ, ξ̂) dynamics, the result

follows from standard arguments, which we summarize next.

Standard integral ISS arguments [5] construct functions β ∈ KL and γ1 ∈ K∞

such that γ1

(
|(z̃, w̃, ξ̃)(t)|

)
≤ β

(
|(z̃, w̃, ξ̃)(t)|, t− t

)
+ 2B̄

∫ t
t
|Ye(r)|dr when t ≥

t ≥ to + Γ2(|(z̃, w̃, ξ̃)(to)|). Through a suitable choice of the constants ki in (3.30),

we can assume that |Ye(t)| ≤ |Ye(to)|exp(−(t− to)) everywhere. Let S̄ > 0 be any

constant, and choose Γ3 ∈ C1 ∩ K∞ depending on S̄ such that

2B̄
∫ t
t
|Ye(r)|dr ≤ 2B̄

∫∞
t
|Ye(r)|dr

≤ 2B̄
[∣∣∣(z̃, w̃, ξ̃) (to)

∣∣∣+
∣∣∣(ẑ, ŵ, ξ̂) (to)

∣∣∣] e−(t−to)

≤ S̄
2

(3.34)

45



if we fix t = to + Γ3(|(z̃, w̃, ξ̃, ẑ, ŵ, ξ̂)(to)|). By enlarging Γ3 as needed without

relabeling, we can assume that Γ3(|(z̃, w̃, ξ̃, ẑ, ŵ, ξ̂)(to)|) ≥ Γ2(|(z̃, w̃, ξ̃)(to)|) every-

where. We can use Gronwall’s Inequality to find a function H ∈ C1 ∩ K∞ so that∣∣(z̃, w̃, ξ̃)(t)∣∣ ≤ H(|(z̃, w̃, ξ̃, ẑ, ŵ, ξ̂)(to)|). This provides a function Γ4 ∈ C1 ∩ K∞

depending on S̄ such that

β

(
|(z̃, w̃, ξ̃)(t)|, t− t

)
≤ β

(
H(|(z̃, w̃, ξ̃, ẑ, ŵ, ξ̂)(to)|), t− t

)
≤ S̄

2
(3.35)

when t − t ≥ Γ4(|(z̃, w̃, ξ̃, ẑ, ŵ, ξ̂)(to)|). Combining (3.34) and (3.35) shows that

γ1(|(z̃, w̃, ξ̃)(t)|) ≤ S̄ if t − to = (t − t) + (t − to) ≥ Γ4(|(z̃, w̃, ξ̃, ẑ, ŵ, ξ̂)(to)|) +

Γ3(|(z̃, w̃, ξ̃, ẑ, ŵ, ξ̂)(to)|), so the (z̃, w̃, ξ̃) subsystem satisfies the UGAS estimate.

Similar arguments show that the (ẑ, ŵ, ξ̂) subsystem of (3.30) satisfies the UGAS

estimate. Finally, analyzing the local properties of (3.30) and recalling the ULES

property from Theorem 3.2 shows that (3.30) is ULES. This uses the fact that

ULES systems admit quadratic Lyapunov functions in a neighborhood of the origin

[24].

3.8 Input-to-State Stability of Tracking

Dynamics

We can also use our bounded backstepping theorem to show that the perturbed

PVTOL error dynamics

˙̃z1 = z̃2

˙̃z2 = −[u1 + δ1] sin(ξ1) + u1r(t) sin(ξ1r(t))

˙̃w1 = w̃2

˙̃w2 = [u1 + δ1] cos(ξ1)− u1r(t) cos(ξ1r(t))

˙̃ξ1 = ξ̃2

˙̃ξ2 = u2 − u2r(t) + δ2

(3.36)
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with actuator errors δi, in closed loop with the feedbacks we designed above, is ISS

with respect to measurable essentially bounded actuator errors δ : [0,+∞)→ η̄B2,

where the feedback formulas must now depend on the bound η̄ on the disturbance.

The argument is similar to the proof of Theorem 3.2 except with actuator errors

added in the control channels. We can allow any bound η̄, through a proper choice

of the feedbacks. We illustrate this robustness property in Section 3.10.

3.9 Trackable Reference Trajectories

Our Assumption 1 from p.33 holds for a broad class of reference trajectories and

corresponding reference inputs, and so is not too restrictive. For example, assume

that (z1r, w1r) : [0,+∞) → R2 is any bounded C4 (but not necessarily periodic)

function such that inft≥0[ẅ1r(t)+g] > 0 and whose first four derivatives are globally

bounded. Then Remark 3.1 from p.34 shows that the PVTOL reference dynamics

(3.3) are satisfied with the reference inputs

u1r =
√

(z̈1r)2 + (ẅ1r + g)2 and u2r = ξ̈1r , (3.37)

and with ξ2r = ξ̇1r, z2r = ż1r, w2r = ẇ1r, and

ξ1r = arcsin

(
−z̈1r√

(z̈1r)2+(ẅ1r+g)2

)
. (3.38)

Also, ur ∈ C2 because (z1r, w1r) ∈ C4. Therefore, our assumptions are satisfied by

the corresponding reference trajectory (z1r, z2r, w1r, w2r, ξ1r, ξ2r) : [0,+∞) → R6.

Positivity of ẅ1r(t) + g holds for circular trajectories (z1r(t), w1r(t)) = go(K̄ +

cos(t), K̄ + sin(t)) for any constants K̄ ≥ 1 and go ∈ (0, g), so we can track

trajectories along these circles. In the next section, we illustrate this tracking in

simulations.
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3.10 Simulating the Tracking Dynamics

To illustrate our method, we ran several Mathematica simulations. We took the

reference profile

(
z1r(t), w1r(t)

)
= 5

(
1.5 + cos(t), 1.5 + sin(t)

)
, (3.39)

the coupling parameter ε = 1, and the actuator envelopes 4 ≤ ū1 ≤ 16 and

−10 ≤ u2 ≤ 2. As we saw in the preceding section, the corresponding reference

trajectory is obtained by taking z2r = ż1r, w2r = ẇ1r, ξ1r as defined in (3.38), and

ξ2r = ξ̇1r. The reference inputs are

u1r =
√

(z̈1r)2 + (ẅ1r + 9.81)2 and u2r = ξ̈1r. (3.40)

They satisfy

4.81 ≤ u1r(t) ≤ 14.81 and |u2r(t)| ≤ 1.42781 (3.41)

for all t ≥ 0. Simple calculations show that the requirements from Section 3.4 are

satisfied with λ = .266 and a = 10.14, so Theorem 3.2 gives UGAS and ULES of

the corresponding PVTOL tracking error dynamics (3.11) in closed loop with the

feedback (3.12).

Using the preceding data, we performed two simulations. First, we simulated

(3.11) with the initial state

(z̃1(0), z̃2(0), w̃1(0), w̃2(0), $1(0), $2(0)) =

(0.31, 0.31, 0.31, 0.21, 0.41, 0.41)
(3.42)

at the initial time t0 = 0, the disturbance δ ≡ 0 ∈ R2, and the controller

u3 =

−[1+172η̄/a]σa

(
2$2+σa(a$1)ϕa($2)

)
−aσ′a(a$1)ϕa($2)

[
$2−Tλ(t,$1,z̃,w̃)

]
2+σa(a$1)ϕ′a($2)

(3.43)

corresponding to the disturbance bound η̄ = 0.5, in accordance with Section 3.8. In

the following figures, we report our numerical results. In Figure 3.2, the reference
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trajectory (z1r(t), w1r(t)) from (3.39) is blue and dashed, the simulated trajectory

(z1(t), w1(t)) is red and solid, and the plot covers the tracking times t = 20 to

t = 50; Figure 3.3 shows the trajectory for the roll angle θ = $1 + v; and Figure

3.4 shows the closed loop thrust input ū1 and the closed loop rolling moment

control u2.

FIGURE 3.2. PVTOL Center of Mass Tracking Without Disturbances

Blue and Dashed: Reference States (z1r(t), w1r(t)). Red and Solid: Closed Loop States

(z1(t), w1(t)). Plot Covers Times t = 20 to t = 50.

FIGURE 3.3. PVTOL Rolling Angle Tracking Without Disturbances

FIGURE 3.4. Closed Loop PVTOL Controls Without Disturbances

Left: Thrust Control ū1. Right: Rolling Moment Control u2.
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In Figure 3.5, we plot the convergence of the states z̃1, z̃2, w̃1, w̃2, $1, and $2

from (3.11) to 0 without disturbances.

FIGURE 3.5. Convergence of PVTOL States Without Disturbances

States: z̃1 (Top Left), z̃2 (Top Right), w̃1 (Second Row from Top), w̃2 (Third Row from

Top, Left), $1 (Third Row from Top, Right), and $2 (Bottom)

Our second simulation was done in the same way as our first, except we added

the sinusoidal actuator error

δ2(t) = 0.25 sin(t) (3.44)
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in the u3 channel in (3.11) such that instead of $̇2 = u3, we now have $̇2 =

u3 + 0.25 sin(t). The next figures show our numerical results under the actuator

error. In Figure 3.6, we plot the tracking of (z1r(t), w1r(t)) over times t = 20 to

t = 50, and Figure 3.7 shows the closed loop control values for ū1 and u2.

FIGURE 3.6. PVTOL Center of Mass Tracking With Disturbances.

Blue and Dashed: Reference States (z1r(t), w1r(t)). Red and Solid: Closed Loop States

(z1(t), w1(t)). Plot Covers Times t = 20 to t = 50.

FIGURE 3.7. PVTOL Controls With Disturbances

Left: Thrust Control ū1. Right: Rolling Moment Control u2.

The plot for the rolling angle θ was similar to the one from our first simulation,

and therefore is not shown. However, the corresponding trajectory components

for (3.11) exhibited a sinusoidal motion that is similar to the disturbance (3.44).

Figure 3.8 shows the corresponding trajectory components of (3.11).
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FIGURE 3.8. Convergence of PVTOL States With Disturbances

States: z̃1 (Top Left), z̃2 (Top Right), w̃1 (Second Row from Top), w̃2 (Third Row from

Top, Left), $1 (Third Row from Top, Right), and $2 (Bottom)

Comparing the simulations for the undisturbed and disturbed cases illustrates

how introducing the sinusoidal disturbance keeps the tracking errors from con-

verging to zero, although our theory guarantees ISS properties with respect to δ2.

Moreover, our controllers respect the prescribed actuator envelopes and therefore

are physically viable.

Remark 3.8. Our simulations show how the thrust controller ū1 = u1 + εξ2
2 is

bounded away from zero, since ū1 remains above 4. In fact, our assumptions from

Section 3.3 are satisfied with c1 = 1.0359 and c2 = 4.81, so our choice λ = 0.266
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for the constant in the feedback formula (3.6) for u1 and the choice b = 0.9 give

0 < λ < min{1, bc2 cos(π/2−c1)/14}. It follows from Remark 3.4 that the controller

u1 satisfies u1(t, z̃, w̃) ≥ (1− b)c2 cos(π/2− c1) = 0.480979 on [0,+∞)× R4, so

we have a guaranteed positive lower bound on the thrust ū1 out of the bottom. By

reducing λ further, we can satisfy 0 < λ < min{1, bc2 cos(π/2− c1)/14} for smaller

values of b and thereby get much larger lower bounds for u1. For example, with

b = 0.05, the uniform lower bound on u1 is (1− b)c2 cos(π/2− c1) = 4.569301. This

differs from [12], where there is no guaranteed positive lower bound on u1.

Remark 3.9. We can also track along Cassini’s Oval [10]

(
z1r(t), w1r(t)

)
= R(t)

(
cos(t), sin(t)

)
, (3.45)

where

R(t) =

√
a2
∗ cos(2t) +

√
b4
∗ − (a2

∗ sin(2t))2 , (3.46)

for certain choices of the constants a∗ > 0 and b∗ > a∗ when we take the gravita-

tional constant g = 9.81. For example, with the choices a∗ = 2.65 and b∗ = 2.9,

Mathematica gives ẅ1r(t) + g ≥ 0.552321 for all t ≥ 0. It follows from our discus-

sion from Section 3.9 that we can track reference trajectories with the center of

mass profile (3.45) using the parameter values a∗ = 2.65 and b∗ = 2.9. See Figure

3.9 for a Mathematica plot of Cassini’s Oval for these values of the parameters.

FIGURE 3.9. Cassini’s Oval
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Chapter 4
Lemmas on ISS and Trackability

We next provide key lemmas that we need in our analysis of our UAV tracking

problems in the next chapter. The first gives general conditions under which an

iISS Lyapunov function can be used to prove ISS under a suitably small bound on

the admissible disturbances. Then we give several criteria that ensure that certain

trajectories are trackable in our four state UAV model.

4.1 Using iISS Lyapunov Functions to Prove

ISS

We again consider nonlinear systems

Ẋ = G(t,X, δ(t)), X ∈ X (4.1)

under our assumptions from Chapter 1. As noted in Chapter 1, standard arguments

[51] show that (4.1) is ISS (resp., integral ISS) when it admits an ISS (resp., integral

ISS) Lyapunov function. Also, ISS implies integral ISS but not conversely. For

example,

Ẋ = − X

1 +X2
+ δ (4.2)

with the state and disturbance set X = D = R admits the integral ISS Lyapunov

function V (X) = ln(1 +X2). However, it is not ISS, even if we restrict the distur-

bance set D, because for any constant disturbance δ̄ ∈ (0, 0.5) the trajectory for

the system starting at X0 = 4/δ̄ is unbounded. It is therefore natural to search for

nondegeneracy conditions on an iISS Lyapunov function for a system of the form
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(4.1) that ensure that (4.1) is also ISS with respect to disturbances of sufficiently

small magnitude. The following lemma provides such conditions:

Lemma 4.1. Assume that (4.1) is integral ISS for X = Rn and D = Rm, and that

there exist an integral ISS Lyapunov function V , a positive definite function α, a

function γ ∈ K∞, and constants ρ0 > 0 and ρ∗ > 0 such that:

(a) V̇ ≤ −α(X) + γ(|δ|) along all trajectories of (4.1) and

(b) α(X) > ρ∗ for all X ∈ Rn \ ρ0Bn.

Then for each constant λ ∈ (0, 1), the system (4.1) is ISS with respect to distur-

bances valued in γ−1(λρ∗)Bm. �

Proof. Fix any constant λ ∈ (0, 1), and set δM = γ−1(λρ∗). Pick α, ᾱ ∈ K∞ such

that α(|X|) ≤ V (t,X) ≤ ᾱ(|X|) for all t ≥ 0 and X ∈ Rn. Our assumptions

provide constants ρi > 0 and a function α0 ∈ K∞ such that if |δ|∞ ≤ δM , then:

(i) V̇ ≤ −ρ2 whenever V (t,X) ≥ ρ1 and (ii) V̇ ≤ −α0(|X|) + γ(|δ|) whenever

V (t,X) ≤ ρ1. For example, we can satisfy the requirements by choosing ρ1 = ᾱ(ρ0),

ρ2 = (1− λ)ρ∗, and

α0(r) = r
1+α−1(ρ1)

min

{
α(p) : min {r, α−1(ρ1)} ≤ |p| ≤ α−1(ρ1)

}
, (4.3)

because if V (t,X) ≥ ρ1, then ᾱ(|X|) ≥ ᾱ(ρ0) and then condition (b) applies. Set

T (r) = ᾱ(r)/ρ2, and take any trajectory X(t) of (4.1) with any δ ∈ M[−δM ,δM ]

for any initial time t0 ≥ 0. If V (t0, X(t0)) ≥ ρ1, then V (t,X(t)) ≤ ρ1 for all

t ≥ t0 + T (|X(t0)|), because V (t,X(t)) ≤ V (t0, X(t0)) − ρ2(t − t0) as long as

t ≥ t0 is such that V (t,X(t)) ≥ ρ1 and because V is nonnegative valued. (We

used the fact that if V (t∗, X(t∗)) ≤ ρ1 for some t∗ ≥ 0, then condition (i) gives

V (t,X(t)) ≤ ρ1 for all t ≥ t∗.)
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Condition (ii) and standard ISS arguments [51] now allow us to construct func-

tions β∗ ∈ KL and α5 ∈ K∞ such that |X(t)| ≤ β∗(|X(t)|, t − t) + α5(|δ|[t,t]) for

all t ≥ t ≥ 0, all δ ∈ M[−δM ,δM ], and all t ≥ 0 such that V (t,X(t)) ≤ ρ1. Hence,

if V (t0, X(t0)) ≤ ρ1, then |X(t)| ≤ β∗(|X(t0)|, t − t0) + α5(|δ|[t0,t]) for all t ≥ t0.

If V (t0, X(t0)) ≥ ρ1 and t ≥ t0 + T (|X(t0)|), then take t = t0 + T (|X(t0)|) to get

|X(t)| ≤ β∗
(
α−1(ᾱ(|X(t0)|)), t− t0−T (|X(t0)|)

)
+α5(|δ|[t,t]), because V (t,X(t)) ≤

V (t0, X(t0)) for all t ≥ t0. If V (t0, X(t0)) ≥ ρ1 and t − t0 ∈ [0, T (|X(t0)|)], then

we have

|X(t)| ≤ α−1(ᾱ(|X(t0)|)exp(T (|X(t0)|)− t+ t0)). (4.4)

Combining all three cases gives

|X(t)| ≤ β](|X(t0)|, t− t0) + α5(|δ|[t0,t]) (4.5)

along all trajectories of (4.1) with δ ∈M[−δM ,δM ], where

β](s, t) = β∗(s, t) + β∗
(
α−1(ᾱ(s)),max{0, t− T (s)}

)
+ α−1

(
ᾱ(s)exp(T (s)− t)

)
is KL. Therefore, (4.5) is the desired ISS estimate.

4.2 Sufficient Conditions for Trackability

Recall from Section 1.4.2 that the four state UAV model is

ẋ = v cos(θ)

ẏ = v sin(θ)

θ̇ = αθ(θc − θ + ∆)

v̇ = αv(vc − v + δ)

(4.6)

where δ and ∆ are uncertainties and θc and vc are the controllers we are to design.

The states are the center of mass (x, y), the heading angle θ, and the velocity v. The
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positive constants αv and αθ are associated with the autopilots. One of our aims is

to design controllers such that the tracking dynamics for (4.6) for suitable reference

trajectories enjoys ISS properties with respect to (δ,∆). In this dissertation, we

are interested in tracking UAV trajectories that satisfy the following conditions:

Assumption 2. The C2 function R∗ = (x∗, y∗, θ∗, v∗) : R→ R3× (0,+∞) is such

that (A) x∗, y∗, θ̇∗, θ̈∗, v∗, and v̇∗ are bounded, (B) ẋ∗(t) = v∗(t) cos(θ∗(t)) and

ẏ∗(t) = v∗(t) sin(θ∗(t)) hold for all t ∈ R, and (C) there is a constant c > 0 such

that min{inf{v∗(t) : t ∈ R}, inf{v∗(t) + v̇∗(t)/αv : t ∈ R}} ≥ c. �

Condition (C) combines the no-stall condition that v∗ has a uniform positive

lower bound with a nondegeneracy condition on v∗(t) + v̇∗(t)/αv which will be

needed to design velocity controllers with uniform positive lower bounds. We post-

pone the design of the controllers until the next chapter. Instead, we use the rest

of this chapter to explore the set of all reference trajectories R∗ = (x∗, y∗, θ∗, v∗)

that satisfy Assumption 2. We will see show how Assumption 2 holds for many

standard and more complex figures that prevail in real UAV applications.

To this end, we first give a useful preliminary result. Given any reference trajec-

tory R∗ = (x∗, y∗, θ∗, v∗) satisfying Assumption 2, we can easily express θ∗(t) and

v∗(t) in terms of x∗(t) and y∗(t), using the relations

ẋ∗(t) = v∗(t) cos(θ∗(t)), ẏ∗(t) = v∗(t) sin(θ∗(t)) (4.7)

from Assumption 2(B). In fact, we can square both equations in (4.7) and sum

the results and take square roots to get v∗. Also, if we differentiate both sides of

the equations in (4.7), then multiply the new first equation by − sin(θ∗(t)) and

the new second equation by cos(θ∗(t)), then add the results, and then substitute

in cos(θ∗(t)) = ẋ∗(t)/v∗(t) and sin(θ∗(t)) = ẏ∗(t)/v∗(t), then we can solve for θ̇∗(t).
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Doing so gives θ̇∗ = ẋ∗ÿ∗−ẏ∗ẍ∗
v2
∗

and therefore also

v∗(t) =
√

[ẋ∗(t)]2 + [ẏ∗(t)]2 and (4.8a)

θ∗(t) = ± arccos [ẋ∗(0)/v∗(0)] +

∫ t

0

1

v2
∗(s)

[ẋ∗(s)ÿ∗(s)− ẏ∗(s)ẍ∗(s)]ds (4.8b)

where the “+” (respectively, “−”) is used when ẏ∗(0) is nonnegative (respectively,

negative), although we can add any integer multiple of 2π to θ∗(t) to get other

solutions θ∗(t). Conversely, given any C3 function (x∗, y∗) : R → R2 for which

v∗(t) =
√

[ẋ∗(t)]2 + [ẏ∗(t)]2 satisfies part (C) of Assumption 2, we can show that

the formulas from (4.8a)-(4.8b) satisfy (4.7) for all t ∈ R. This gives the following

sufficient conditions for reference paths (x∗, y∗) : R → R2 to be the first two

components of trackable UAV reference trajectories:

Proposition 4.2. Let (x∗, y∗) : R → R2 be any bounded C3 function whose first

three derivatives are bounded, and define v∗ as in (4.8a). If part (C) of Assumption

2 holds, then (x∗, y∗, θ∗, v∗) with the choices (4.8a)-(4.8b) satisfies Assumption 2.

�

Proof. It suffices to verify (4.7) for all t ∈ R. For all real values t̄ and c∗ for which

(ẋ∗(t̄ ), ẏ∗(t̄ )) = v∗(t̄ )(cos(c∗), sin(c∗)), the Implicit Function Theorem, applied to

the function G(t, λ) = (ẋ∗(t) − v∗(t) cos(λ), ẏ∗(t) − v∗(t) sin(λ)), gives an open

interval It̄ and a C1 function λ∗ : It̄ → R such that λ∗(t̄ ) = c∗ and

ẋ∗(t) = v∗(t) cos(λ∗(t)) and ẏ∗(t) = v∗(t) sin(λ∗(t)) (4.9)

hold for all t ∈ It̄. Solving for λ̇∗ as above (except with θ̇∗ replaced by λ̇∗) gives

λ̇∗(t) = [ẋ∗(t)ÿ∗(t)−ẏ∗(t)ẍ∗(t)]/v2
∗(t) for each t ∈ It̄. Hence, if we have a C1 solution

λ∗ : [0, tmax) → R for (4.9) such that λ∗(0) = ± arccos[ẋ∗(0)/v∗(0)], defined up to

some maximal time tmax > 0, then it agrees with the formula for θ∗ from (4.8b) on
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[0, tmax). If tmax < +∞, then the Implicit Function Theorem gives a constant ε > 0

and a C1 solution Γ∗ : (tmax−ε, tmax+ε)→ R of the system ẋ∗(t) = v∗(t) cos(Γ∗(t))

and ẏ∗(t) = v∗(t) sin(Γ∗(t)) that satisfies λ∗(t
−
max) = Γ∗(tmax). Solving for Γ̇∗ on

(tmax − ε, tmax + ε) as we did for λ̇∗ gives

λ̇∗(t) = ẋ∗(t)ÿ∗(t)−ẏ∗(t)ẍ∗(t)
v2
∗(t)

= Γ̇∗(t) (4.10)

on (tmax − ε, tmax). Hence, λ∗(t) = Γ∗(t) on (tmax − ε, tmax), so we can extend

the solution λ∗ of (4.9) to [0, tmax + ε), contradicting maximality of tmax. Similar

arguments apply for negative times. Hence, we have a solution of (4.9) on R that

agrees with θ∗, so (4.8a)-(4.8b) satisfy (4.7) for all t ∈ R.

4.3 Tracking Circles and Figure 8’s

Let αv > 0 be the autopilot constant from our UAV dynamics (4.6). The following

result on trackability of ellipses is an easy consequence of Proposition 4.2:

Proposition 4.3. Let a > 0 and b > 0 be any constants such that

αv >
|b2 − a2|

min{a2, b2}
. (4.11)

Let cx ∈ R and cy ∈ R be any constants and choose the elliptical trajectory

(x∗, y∗)(t) = (cx, cy) +
(
a cos(t),−b sin(t)

)
. (4.12)

Then (x∗, y∗, θ∗, v∗), with v∗ and θ∗ given by (4.8a)-(4.8b), satisfies Assumption 2.

�

Proof. The inequalities v∗(t) =
√

[ẋ∗(t)]2 + [ẏ∗(t)]2 ≥ min{a, b} and

v∗(t) + v̇∗(t)
αv

≥ 1
v∗(t)

[a2 sin2(t) + b2 cos2(t) + 1
αv

(a2 − b2) sin(t) cos(t)]

≥ 1
max{a,b}

[
min{a2, b2} − 1

αv
|b2 − a2|

]
> 0

(4.13)

hold for all t ∈ R, by (4.11). Hence, the result follows from Proposition 4.2.
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Here is an analogue for tracking figure 8’s:

Proposition 4.4. Let d > 1/4 be any constant. Assume that

αv >
16d(4d+ 1)

8d− 1
. (4.14)

Choose

(x∗, y∗)(t) =
(√

d cos(t), d cos(t) sin(t)
)
. (4.15)

Then (x∗, y∗, θ∗, v∗), with v∗ and θ∗ given by (4.8a)-(4.8b), satisfies Assumption 2.

�

Proof. On the interval [0, 1], the polynomial Q(p) = 4d2p2 + (d − 4d2)p + d2 has

the unique minimum

Q

(
4d− 1

8d

)
=

8d− 1

16
. (4.16)

Hence,

v2
∗(t) = 4d2 sin4(t) + (d− 4d2) sin2(t) + d2 ≥ 8d− 1

16
(4.17)

for all t ∈ R. Also,

v∗(t) + v̇∗(t)
αv

≥ 1
αvv∗(t)

{
αv[4d

2 sin4(t) + (d− 4d2) sin2(t) + d2]

+8d2 sin3(t) cos(t) + (d− 4d2) sin(t) cos(t)
}

≥ 1
αvv∗(t)

{
αv(8d−1)

16
− |4d2(2 sin2(t)− 1) + d|

}
≥ 1

αvv∗(t)

{
αv(8d−1)

16
− d(4d+ 1)

}
,

(4.18)

which has a uniform positive lower bound over R, by our lower bound assumption

(4.14) on αv. The result now follows from Proposition 4.2 as in Proposition 4.3.

Proposition 4.3 covers all circles of any radius r > 0 for all choices of αv, by taking

a = b = r. By enlarging a, b, and d in Propositions 4.3-4.4, we get arbitrarily large

elliptical and figure eight paths that lie along the relations[
x− cx
a

]2

+

[
y − cy
b

]2

= 1 and y2 = x2(d− x2). (4.19)

60



Then Propositions 4.3-4.4 give lower bounds on the values of the autopilot constant

αv for which the ellipses and figure eights are trackable. See Figure 4.1 for trackable

figure 8’s for different values of the parameter d.

FIGURE 4.1. Trackable Figure 8’s

Plots of (x∗, y∗)(t) =
(√
d cos(t), d cos(t) sin(t)

)
for d = 2 (Red and Solid),

d = 6 (Blue and Dashed) and d = 10 (Black and Dotted)

4.4 Tracking Bounded Trajectories and Swirls

Our work applies to much more complex trackable reference trajectories as well. For

example, one can also find bounded trajectories satisfying Assumption 2, as follows.

For simplicity, we first take v∗(t) ≡ 10. Let σ : R→ R be any odd C2 function that

admits a constant c∗ ∈ (π/2, π) such that lims→+∞ σ(s) = c∗, fix any constant R >

0, and consider the functions Fk(t) = σ(k sin(Rt)) and I(k) =
∫ π/R

0
cos(Fk(m))dm

parameterized by constants k ≥ 0. Then I(0) = π/R, and the Lebesgue Dominated

Convergence Theorem gives limk→+∞ I(k) = π cos(c∗)/R < 0. Since k 7→ I(k) is

continuous, the Intermediate Value Theorem gives a constant ḡ > 0 such that

I(ḡ) = 0. Take θ∗ = Fḡ. Since θ∗ is odd, we get∫ π/R

−π/R
v∗(t) sin(θ∗(t))dt =

∫ π/R

−π/R
v∗(t) cos(θ∗(t))dt = 0 . (4.20)
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Hence, x∗(t) =
∫ t

0
v∗(s) cos(θ∗(s))ds and y∗(t) =

∫ t
0
v∗(s) sin(θ∗(s))ds are bounded,

by the 2π/R periodicity of their integrands, so we get a bounded pair (x∗, y∗) sat-

isfying requirement (B) from Assumption 2. If, in addition, σ′ and σ′′ are bounded,

then the corresponding bounded reference trajectory R∗ = (x∗, y∗, θ∗, 10) satisfies

all requirements from Assumption 2. We can use numerical methods such as bi-

section to solve for g. For example, if we take R = 0.24 and σ(s) = 1.5 arctan(s),

then
∫ π/R
−π/R sin(θ∗(t))dt =

∫ π/R
−π/R cos(θ∗(t))dt = 0 when ḡ = 3.38321412225, and all

of our requirements are met.

Here is a different construction of a bounded reference trajectoryR∗ that satisfies

Assumption 2. Take

C(t) =
1− kt6(t− π)6

1 + kt6(t− π)6
, (4.21)

where k = 0.040905 is chosen such that
∫ π

0
C(t)dt = 0, and define θ∗ : [0, π]→ R by

θ∗(t) = arccos(C(t)). We extend θ∗ to R by requiring it to be odd and have period

2π. This extension, which we also call θ∗, is easily shown to be C2, by checking

that its one-sided first and second derivatives are 0 at all integer multiples of π.

Moreover, it satisfies (4.20) when we pick R = 1 and v∗(t) ≡ 10, so the arguments

above show that the corresponding trajectory R∗ is bounded. Also, condition (C)

from Assumption 2 holds, so all of our requirements are met. The corresponding

trajectory (x∗(t), y∗(t)) = (
∫ t

0
v∗(s) cos(θ∗(s))ds,

∫ t
0
v∗(s) sin(θ∗(s))ds) does a figure

eight.

Finally, taking nonconstant velocities v∗ gives more complex reference trajec-

tories where the path for (x∗, y∗) is neither an ellipse nor a figure eight. For

example, take v∗(t) = 20 − 10 cos2(0.2t), θ∗(t) = t, and the autopilot constant

αv = 0.192 from [43]. Then Assumption 2 holds with x∗(t) = −4.16667 sin(0.6t) +

15 sin(t) − 1.78571 sin(1.4t) and y∗(t) = 9.04762 + 4.16667 cos(0.6t) − 15 cos(t) +
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1.78571 cos(1.4t). Figure 4.2 gives a sketch of this “swirl” reference position tra-

jectory, using Mathematica.

FIGURE 4.2. Trackable Swirl Position Trajectory for UAV

Parametric Plot of x∗(t) = −4.16667 sin(0.6t) + 15 sin(t)− 1.78571 sin(1.4t) and

y∗(t) = 9.04762 + 4.16667 cos(0.6t)− 15 cos(t) + 1.78571 cos(1.4t)

In the next chapter, we use some of these observations to illustrate our tracking

results.
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Chapter 5
Tracking for the UAV Model

In this chapter, we design tracking controllers for the UAV model from Section

1.4.2. We show how to track trajectories satisfying our Assumption 2 from Section

4.2 while satisfying several important constraints. These constraints are (a) admis-

sible ranges on the controller values, (b) admissible ranges for the command rates,

which are the time derivatives of the controllers along the closed loop trajectories,

and (c) bounds on the heading angle rate that are relevant for UAVs operating

under coordinated turning conditions. As we saw in the preceding chapter, As-

sumption 2 holds for many trajectories. However, it is far from clear how to design

the tracking controllers to ensure ISS of the UAV tracking dynamics with respect

to additive uncertainty on the controllers, under our constraints. We will overcome

this challenge using a strictification of a nonstrict Lyapunov function. We begin

with some background on UAV models and UAV control problems.

5.1 Literature Review

The constrained nonlinear tracking control problem for fixed wing small UAV is a

challenging topic that is of continuing ongoing research interest [2, 21, 25, 43]. The

constraints stem from the positive lower and upper bounds on the velocity (which

are related to the airspeed) and saturation constraints on the heading rate (which

come from restrictions on the pitch rate and roll angle). While the UAV dynamics

are related to those of nonholonomic mobile robots, standard mobile robot tracking

designs, such as those of [23], do not apply because the UAV velocity must remain

positive [43].
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As in [40, 43], we assume that the UAVs have standard autopilots, so the models

are first order for heading and Mach hold and second order for altitude hold. As

we saw in Section 1.4.2, this gives the important benchmark model [40]

ẋ = v cos(θ)

ẏ = v sin(θ)

θ̇ = αθ(θc − θ)

v̇ = αv(vc − v + δ)

(5.1)

where we omit the altitude subdynamics ḧ = −αhḣ + αh(h
c − h) since altitude

controllers hc are available [7]. As before, (x, y) is the position of the UAV with

respect to an inertial coordinate system, θ is the heading (course) angle, the ground

speed v is the inertial velocity, αθ and αv are positive constants associated with

the autopilot, the controllers θc and vc are to be determined, and the unknown

perturbation δ can be expected under model uncertainty [43] or actuator errors.

For simplicity, we only added uncertainty to the velocity controller, but see Section

5.6 for extensions to cases where there is additive uncertainty on both controls.

The paper [40] was one of the first works on close formation flight control, and

more complex UAV models now exist. However, the underactuated kino-dynamic

representation (5.1) is justifiable for high-level formation flight control of UAVs

and therefore is of considerable importance [43].

When αv in (5.1) is large relative to αθ and δ is negligible, v converges to vc

quickly relative to the total response time, and then one can consider the three

dimensional reduced dynamics for (x, y, θ) obtained by setting v ≡ vc in (5.1) and

dropping the velocity dynamics [2, 43]. There are bounded tracking controllers

available for this reduced model. For example, [43] proves the key input-to-state

stability (ISS) property with respect to additive uncertainty on the controls, lead-
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ing to velocity controllers for the reduced model with positive upper and lower

bounds. Also, [43] experimentally validated controllers for the three state model,

by simulating a more complex UAV model for transitioning through targets un-

der multiple dynamic threats. See also [2] for bounds on both controls for the

reduced model and exponential stability for teams of UAVs [9, 16]. Many other

methods have been proposed for UAVs, e.g., cooperative games, differential flat-

ness, and linearization; see [19, 41, 47, 53], which include pursuit of targets and

collision avoidance. However, the theoretical analysis in [2, 43] is very specific to

the three state model, and to the best of our knowledge, there are no known track-

ing controllers that respect given amplitude and command rate or state dependent

constraints and achieve ISS or integral ISS with respect to uncertainties for general

classes of reference trajectories in the important model (5.1). This necessitates our

ISS analysis for (5.1).

In this chapter, we build controllers θc and vc for (5.1) that apply for all values

of αθ and αv and all reference trajectories satisfying Assumption 2. Unlike the

existing results for UAV models, we use ‘strictification’ [29, 34]. This is a Ma-

trosov approach for transforming a nonstrict Lyapunov function for the tracking

dynamics into a strict Lyapunov function, which then gives ISS under suitable

restrictions on the magnitude of the disturbances. Our work is primarily focused

on a methodological and mathematical development, rather than being focused on

a specific real-world UAV application or experiments. However, three important

features of our controllers are that they (a) fulfill amplitude and rate constraints,

including positive lower bounds on vc which arise from the physical constraints of

the aircraft, (b) give integral ISS or ISS with respect to additive uncertainties on

the controls under appropriate restrictions on their sup norms, and (c) can track

a wide class of reference trajectories for which a suitable weighted sum of the ref-
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erence velocities and accelerations satisfies a mild nondegeneracy condition. The

command amplitude and rate constraint sets for vc are intervals [va, v̄a] and [vr, v̄r]

respectively with constant endpoints and va > 0, and similarly for θc except θc will

not be bounded unless the reference angle θ∗(t) is a bounded function and θc has

no sign constraint; see Section 5.5 for more details on our command amplitude and

rate constraints, as well as results for state dependent constraints. Moreover, our

simulations will illustrate good controller performance. Therefore, our work has

significant theoretical novelty.

5.2 Tracking Dynamics

In this section, we obtain the tracking dynamics corresponding to (5.1) and ref-

erence trajectories satisfying Assumption 2. For the convenience of the reader, we

repeat the assumption here:

Assumption 2. The C2 function R∗ = (x∗, y∗, θ∗, v∗) : R→ R3× (0,+∞) is such

that (A) x∗, y∗, θ̇∗, θ̈∗, v∗, and v̇∗ are bounded, (B) ẋ∗(t) = v∗(t) cos(θ∗(t)) and

ẏ∗(t) = v∗(t) sin(θ∗(t)) hold for all t ∈ R, and (C) there is a constant c > 0 such

that min{inf{v∗(t) : t ∈ R}, inf{v∗(t) + v̇∗(t)/αv : t ∈ R}} ≥ c. �

It is convenient to use the new coordinates ψ = − sin(θ)x + cos(θ)y and ξ =

cos(θ)x+ sin(θ)y to transform (5.1) into



ψ̇ = −αθξ(θc − θ)

ξ̇ = αθψ(θc − θ) + v

θ̇ = αθ(θc − θ)

v̇ = αv(vc − v + δ) .

(5.2)
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We also take ψ∗ = − sin(θ∗)x∗ + cos(θ∗)y∗, ξ∗ = cos(θ∗)x∗ + sin(θ∗)y∗, and the

changes of feedbacks

vc(t, S) = vN(S − (ψ∗, ξ∗, θ∗, v∗)) + v∗(t) + v̇∗(t)
αv

and

θc(t, S) = θN(t, S − (ψ∗, ξ∗, θ∗, v∗)) + θ∗(t) + θ̇∗(t)
αθ

,
(5.3)

where S = (ψ, ξ, θ, v), and where the new controls vN and θN will be constructed

such that vN(0) = θN(t, 0) = 0 for all t ∈ R; see (5.9). Recalling part (B) of

Assumption 2 gives ψ̇∗(t) = −θ̇∗(t)ξ∗(t) and ξ̇∗(t) = θ̇∗(t)ψ∗(t) + v∗(t) for all t ∈ R.

Taking the tracking variables ψ̃ = ψ − ψ∗(t), ξ̃ = ξ − ξ∗(t), θ̃ = θ − θ∗(t), and

ṽ = v− v∗(t), it follows that the dynamics of the tracking error E = (ψ̃, ξ̃, θ̃, ṽ) are

˙̃ψ = −θ̇∗(t)ξ̃ + αθ[ξ̃ + ξ∗(t)][θ̃ − θN ],

˙̃ξ = θ̇∗(t)ψ̃ + ṽ − αθ[ψ̃ + ψ∗(t)][θ̃ − θN ]

˙̃θ = αθ(−θ̃ + θN)

˙̃v = αv(−ṽ + vN + δ) .

(5.4)

Hence, we can achieve all of our tracking objectives by designing the new con-

trollers θN and vN for (5.4).

5.3 Persistency of Excitation

The following consequence of Assumption 2 will be key to our strictification pro-

cedure:

Lemma 5.1. If R∗ = (x∗, y∗, θ∗, v∗) : R → R3 × (0,+∞) satisfies Assumption 2,

then there exist constants c0 > 0 and T > 0 such that∫ t+T

t

[θ̇∗(s)]
2ds ≥ c0 (5.5)

for all t ∈ R. �

Proof. We prove the lemma by contradiction. Suppose that there were no constants

c0 > 0 and T > 0 such that
∫ t+T
t

[θ̇∗(s)]
2ds ≥ c0 for all t ∈ R. Then for each p ∈ N,

68



we could find a tp ∈ R such that
∫ tp+p

tp

[
θ̇∗(s)

]2

ds ≤ 1
p5 . Hence, for all p ∈ N and

sp ∈ [tp, tp + p], Jensen’s Inequality gives(
θ∗(sp)− θ∗(tp)

)2
=
[∫ sp

tp
θ̇∗(s)ds

]2

≤
[∫ tp+p

tp
|θ̇∗(s)|ds

]2

≤ p
∫ tp+p

tp
[θ̇∗(s)]

2ds

≤ 1
p4 .

(5.6)

Since v∗ is bounded, condition (B) of Assumption 2 and (5.6) then give

x∗(tp + p)− x∗(tp) =
∫ tp+p

tp
v∗(s) cos(θ∗(s))ds

=
∫ tp+p

tp
v∗(s) cos(θ∗(tp))ds+ J(p)

(5.7)

for some function J for which |J(p)| ≤ sup{v∗(s) : s ∈ R}/p → 0 as p → +∞.

If there were a subsequence Lpj of the sequence Lp = cos(θ∗(tp)) converging to

some nonzero limit L∗, then
∫ tpj+pj
tpj

v∗(s) cos(θ∗(tpj))ds → ±∞ as j → +∞ (by

our positive lower bound on v∗). Combining these limits with (5.7) contradicts

the boundedness of x∗, so limp→+∞ cos(θ∗(tp)) = 0. Using ẏ∗(t) = v∗(t) sin(θ∗(t))

and similar reasoning shows that limp→+∞ sin(θ∗(tp)) = 0, which is a contradiction

because |(cos(θ∗(tp)), sin(θ∗(tp)))| = 1 for all p.

We refer to the conclusion of Lemma 5.1 as the persistency of excitation (PE)

condition. By reducing c0 from Lemma 5.1 or the constant c > 0 from Assumption

2 without relabeling, we will assume that c = c0.

5.4 Main UAV Theorem

It remains to design the control components θN and vN in (5.3). Fix any tuning

design constant k > 0. We introduce the functions

Q1 = 0.5[ψ̃2 + ξ̃2], Q2 = 0.5ṽ2, Q3 = 0.5θ̃2,

Q4 = Q3(θ̃) +Q2(ṽ) + k
√
Q1 + 1− k,

M = ξ̃ṽ, N = −θ̇∗(t)ψ̃ξ̃, and P = N +
(

1
T

∫ t
t−T

∫ t
s
θ̇2
∗(`)d` ds

)
ψ̃2,

(5.8)
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where T is from Lemma 5.1 and the reference trajectory (x∗, y∗, θ∗, v∗) satisfies

Assumption 2. We prove:

Theorem 5.2. The dynamics (5.4) for the tracking error E = (ψ̃, ξ̃, θ̃, ṽ), in closed

loop with

vN(E) = −k ξ̃

2αv
√
Q1 + 1

and θN(t, E) = k
ψ̃ξ∗(t)− ξ̃ψ∗(t)

2
√
Q1 + 1

, (5.9)

are integral ISS with respect to δ ∈ MR. Also, we can find a constant δM > 0

such that the closed loop dynamics are ISS with respect to δ ∈ M[−δM ,δM ], and a

constant c̃ > 0 and a polynomial G such that

U ]
(
t, E
)

= [U(t, E) + 1]1/3 − 1, where

U(t, E) = P
(
t, E
)

+ c̃[Q4(E) + k]M
(
E
)

+ G
(
Q4

(
E
)) (5.10)

is an integral ISS Lyapunov function for the closed loop dynamics with δ ∈ MR.

In particular, the controllers (5.3) uniformly globally asymptotically stabilize all

trajectories of (5.1) to R∗ when δ ≡ 0. �

Proof. Step 1: Nonstrict Lyapunov Decay. We will refer to (5.4) in closed loop with

(5.9) as the closed loop tracking dynamics. Along all of its trajectories, our functions

from (5.8) satisfy Q̇1 = ξ̃ṽ+αθ[ψ̃ξ∗(t)− ξ̃ψ∗(t)][θ̃− θN ], Q̇2 = αv(−ṽ2 + ṽvN + ṽδ),

and Q̇3 = αθ[−θ̃ + θN ]θ̃. Hence, our choices (5.9) of θN and vN give

Q̇4 = −αvṽ2 +
[
αvvN + k ξ̃

2
√
Q1+1

]
ṽ

+αθ[θN − θ̃]
[
θ̃ + k ξ̃ψ∗(t)−ψ̃ξ∗(t)

2
√
Q1+1

]
+ αvṽδ

= −W + αvṽδ

(5.11)

along the closed loop tracking dynamics, where

W = αθ[θ̃ − θN ]2 + αvṽ
2, (5.12)

so Q4 is a weak Lyapunov function, because Q̇4 ≤ 0 when δ = 0. We will transform

Q4 into the desired strict Lyapunov function.
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Step 2: Decay Estimates on N , P , and M from (5.8). Since we can use Fubini’s

Theorem to get (d/dt)
∫ t
t−T

∫ t
s
θ̇2
∗(`)d`ds = T θ̇2

∗(t) −
∫ t
t−T θ̇

2
∗(`)d` for all t ∈ R, it

follows that along all trajectories of the closed loop tracking dynamics, we have

Ṗ = − 1
T

∫ t
t−T θ̇

2
∗(`)d`ψ̃

2 − θ̈∗(t)ψ̃ξ̃

− θ̇∗(t)[−θ̇∗(t)ξ̃ + αθ[ξ̃ + ξ∗(t)]{θ̃ − θN}]ξ̃

− θ̇∗(t)ψ̃
[
ṽ − αθ[ψ̃ + ψ∗(t)]{θ̃ − θN}

]
+ 2

T

∫ t
t−T

[∫ t
s
θ̇2
∗(`)d`

]
ds ψ̃[−θ̇∗(t)ξ̃ + αθ[ξ̃ + ξ∗(t)]{θ̃ − θN}] .

(5.13)

Recalling the PE condition (5.5) from Lemma 5.1 (with c = c0 without loss of

generality) and setting a1 = ||θ̈∗|| + T ||θ̇∗||3, a2 =
√
αθ(||θ̇∗|| + T ||θ̇2

∗||)(1 + ||ξ∗|| +

||ψ∗||
)

+ ||θ̇∗||√
αv

, a3 = ||θ̇2
∗|| +

Ta2
1

c
, a4 = a3 + c

8T
+ a2

2, a5 =
32Ta2

2

c
and a6 = 1 +

8Ta2
2

c
,

condition (5.13) and our choice of W give

Ṗ ≤ − cψ̃2

T
+ a1|ψ̃ξ̃|+ ||θ̇2

∗||ξ̃2 + a2

[
|ξ̃|+ ξ̃2 + |ψ̃|+ ψ̃2 + |ξ̃ψ̃|

]√
W

≤ −3cψ̃2

4T
+ a3ξ̃

2 + a2

[
|ξ̃|+ ξ̃2 + |ψ̃|+ ψ̃2 + |ξ̃ψ̃|

]√
W

≤ − cψ̃2

2T
+ a4ξ̃

2 + a5

[
ξ̃2 + ψ̃2

]
W + a6W ,

(5.14)

where the first inequality used

max{√αθ|θ̃ − θN |,
√
αv|ṽ|} ≤

√
W and∫ t

t−T

∫ t
s
θ̇2
∗(`)d`ds ≤

T 2||θ̇2
∗||

2
,

(5.15)

and the next two used Hölder’s Inequality to get a1|ψ̃ξ̃| ≤ c
4T
ψ̃2 + T

c
a2

1ξ̃
2, |ξ̃ψ̃| ≤

ξ̃2 + ψ̃2, a2(|ξ̃|+ |ψ̃|)
√
W ≤ a2

2ξ̃
2 + c

8T
ψ̃2 +W

(
1 + 8T

c
a2

2

)
, and 2a2(ξ2 + ψ̃2)

√
W ≤

2a2(ξ̃2 + ψ̃2)
{

c
16Ta2

+ 16Ta2

c
W
}

.

By (5.9),

Ṁ = − 0.5kξ̃2
√
Q1+1

+ θ̇∗(t)ψ̃ṽ

+ṽ2 − αθ{ψ̃ + ψ∗(t)}(θ̃ − θN)ṽ − αv ξ̃ṽ + ξ̃αvδ,
(5.16)
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so

Ṁ ≤ − 0.5kξ̃2
√
Q1+1

+ ||θ̇∗|| |ψ̃ṽ|+ a7[|ψ̃|+ 1]W + αv|ξ̃ṽ|+ αv ξ̃δ

≤ − 0.25kξ̃2
√
Q1+1

+ ||θ̇∗|| |ψ̃ṽ|+ a7[|ψ̃|+ 1]W

+α2
v

√
Q1 + 1ṽ2/k + αv ξ̃δ

≤ − 0.25kξ̃2
√
Q1+1

+ 1√
αv
||θ̇∗|| |ψ̃|

√
W + a8

√
Q1 + 1W + αv ξ̃δ

(5.17)

along all trajectories of the closed loop tracking dynamics, using max{√αθ|θ̃ −

θN |,
√
αv|ṽ|} ≤

√
W , |ψ̃| + 1 ≤ 3(ψ̃2/2 + 1)1/2 ≤ 3

√
Q1 + 1, and the special case

αv|ξ̃ṽ| ≤ kξ̃2

4
√
Q1+1

+ α2
v

k

√
Q1 + 1ṽ2 of Hölder’s Inequality, and where a7 =

√
αθ
αv

(1 +

||ψ∗||) + 1
αv

and a8 = 3a7 + αv/k.

Step 3: Constructing the Polynomial G in (5.10). Set a9 = ||θ̇∗||/
√
αv. Since

Q4 + k ≥ k
√
Q1 + 1, (5.17) gives

4[a4+1]
k2 (Q4 + k)Ṁ ≤ − [a4 + 1]ξ̃2 + [a4 + 1]4a9

k2 (Q4 + k)|ψ̃|
√
W

+ [a4 + 1]4a8

k2 (Q4 + k)
√
Q1 + 1W

+αv(a4 + 1) 4
k2 (Q4 + k)|ξ̃||δ| .

(5.18)

Taking α1(s) = 4
k2 [a4 +1](s+k), we deduce from adding (5.14) and (5.18) and then

using the special case [a4+1]4a9

k2 (Q4+k)|ψ̃|
√
W ≤ c

4T
ψ̃2+ 16T

c
[a4+1]2

a2
9

k4 (Q4+k)2W

of Hölder’s Inequality that

Ṗ + α1(Q4)Ṁ ≤ − c
2T
ψ̃2 − ξ̃2 + (a6 + a5[ξ̃2 + ψ̃2])W

+[a4 + 1]4a9

k2 (Q4 + k)|ψ̃|
√
W

+ [a4 + 1]4a8

k2 (Q4 + k)
√
Q1 + 1W

+αv(a4 + 1) 4
k2 (Q4 + k)|ξ̃||δ|

≤ − c
4T
ψ̃2 − ξ̃2 + 0(E)W

+αv(a4 + 1) 4
k2 (Q4 + k)|ξ̃||δ| ,

(5.19)

where 0(E) = a5[ξ̃2 + ψ̃2] + a6 + 16T
c

[a4 + 1]2
a2

9

k4 (Q4 + k)2 + [a4 + 1]4a8(Q4 +

k)
√
Q1 + 1/k2.
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Using the inequality k
√
Q1 + 1 ≤ k +Q4, we also have ξ̃2 + ψ̃2 = 2Q1 ≤ 2{(k +

Q4)2/k2 − 1}, so

Ṗ + c̃(Q4 + k)Ṁ = Ṗ + α1(Q4)Ṁ

≤ − c
4T
ψ̃2 − ξ̃2 + 0N(Q4)W + c̃αv(Q4 + k)|ξ̃||δ| ,

(5.20)

where c̃ = 4
k2 (a4 + 1) and 0N(m) = a6 +

[
2a5

k2 + 16T
c

[a4 + 1]2
a2

9

k4 + c̃a8

k

]
(k + m)2.

Choose the third degree polynomial

G(l) = 2α2(l) + 2l + 2

∫ l

0

[
0N(m) + c̃

{
m+ (m+ k)2/k2

}]
dm, (5.21)

where α2(l) = (α1(l) + ||θ̇∗||) {(k + l)2/k2 − 1} + lα1(l) and α1(l) = c̃(l + k) as

before. Since |M(ṽ, ξ̃)| = |ṽξ̃| ≤ 1
2
ṽ2 + 1

2
ξ̃2 ≤ Q4 + 1

k2 (k + Q4)2, it follows from

(5.11) and (5.20) that the function U from (5.10) satisfies

U̇ ≤ − c
4T
ψ̃2 − ξ̃2 +

[
−G ′(Q4) + 0N(Q4) + c̃

{
Q4 + (Q4+k)2

k2

}]
W

+
[
c̃|M |+ G ′(Q4)

]
αv|ṽδ|+ c̃αv(Q4 + k)|ξ̃||δ| .

(5.22)

Step 4: Stability Properties Using U ] from (5.10). Since

|N | ≤ ||θ̇∗|||ψ̃ξ̃| ≤ ||θ̇∗||
{

(k +Q4)2

k2
− 1

}
(5.23)

and

|M | ≤ Q4 +

{
(k +Q4)2

k2
− 1

}
, (5.24)

we have P + α1(Q4)M ≥ N + α1(Q4)M ≥ −α2(Q4). Hence, the above choice

(5.21) of G gives constants c0 ∈ (0, 1) and d0 > 0 such that d0(Q3
4 + 1) ≥ U ≥ c0Q

3
4

everywhere. Also, (5.22) gives U̇ ≤ − c
4T
ψ̃2 − ξ̃2 + αv c̃(Q4 + k)|ξ̃||δ| − 1

2
G ′(Q4)W +

αv[c̃{Q4 + 1
k2 (k + Q4)2} + G ′(Q4)]|ṽδ| along the closed loop tracking dynamics.

Since |ξ̃| ≤ 2(1 +Q4/k) holds everywhere, we can then use our choice W = αθ[θ̃−
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θN ]2 + αvṽ
2 to find constants c1 > 0 and c2 > 0 such that G ′(l) ≤ c2[1 + l2] and

U̇ ≤ − c
4T
ψ̃2 − ξ̃2 + c1G ′(Q4)

[
|ṽδ|+ |δ|

]
− 1

2
G ′(Q4)

[
αθ[θ̃ − θN ]2 + αvṽ

2
]

≤ − c
4T
ψ̃2 − ξ̃2 + c1c2[1 +Q2

4]
[
c1
αv
δ2 + |δ|

]
−1

4
G ′(Q4)

[
αθ[θ̃ − θN ]2 + αvṽ

2
] (5.25)

hold everywhere, where we used the inequality |ṽδ| ≤ αv
4c1
ṽ2 + c1

αv
δ2.

Therefore, U ] = (1+U)1/3−1 satisfies U̇ ] ≤ −α3(E)+α4(|δ|) along all trajectories

of the closed loop tracking dynamics, where

α3(E) = inf

{
H(t, E)

3[1 + U(t, E)]2/3
: t ≥ 0

}
, (5.26)

and with the choices

α4(l) =
c1c2

c
2/3
0

(
c1

αv
+ 1

)
{l + l2} (5.27)

and

H(t, E) =
c

4T
ψ̃2 + ξ̃2 +

1

4
G ′(Q4(E))

[
αθ[θ̃ − θN ]2 + αvṽ

2
]
. (5.28)

The formula for α4 follows by recalling that U ≥ c0Q
3
4 with c0 ∈ (0, 1), and then

separately considering points E where Q4 ≤ 1 and Q4 ≥ 1 (to cancel the [1 + Q2
4]

in (5.25) with 1/{3[1 + U ]2/3}). By our choice of θN from (5.9), the function α3 is

positive definite, and U ] is proper and positive definite. Hence, U ] is an integral

ISS Lyapunov function for the closed loop tracking dynamics, which are therefore

integral ISS.

We can also find constants ρ0 > 0 and ρ∗ > 0 such that α3(E) > ρ∗ for all

E ∈ R4 \ ρ0B4. This is because for each constant ρ0 > 0, we have

inf

{
G ′(Q4(E))

[1 + U(t, E)]2/3
: t ∈ R, |E| ≥ ρ0

}
> 0, (5.29)

using the bounds

d0(Q3
4 + 1) ≥ U ≥ c0Q

3
4, (5.30)
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and by separately considering the cases where |(θ̃, ṽ)| → +∞, or |(θ̃, ṽ)| stays

bounded and |(ψ̃, ξ̃)| → +∞. Hence, ISS follows from Lemma 4.1 from the preced-

ing chapter. This proves the theorem.

5.5 Satisfying Input and State Constraints

The expressions for our commands are obtained by substituting the control compo-

nents vN and θN from (5.9) into (5.3), where αθ and αv are the autopilot constants

from (5.1). They only depend on t, x, y, and θ. In real UAV applications, there

are restrictions on the admissible control values, e.g., amplitude constraints for

the controls requiring all values of the controller to lie in suitable intervals, rate

constraints that restrict the admissible values of the time derivative of the controls

along the closed loop trajectories, and state constraints that could require positive

lower bounds on the velocity state or other conditions. In this section, we show how

to use the tuning parameter k from our controls to satisfy all of these constraints.

5.5.1 Command Amplitude Constraints

To see how we can satisfy control amplitude constraints, first note that the relation

max{|ξ̃|, |ψ̃|} ≤
√

2
√
Q1 + 1 (5.31)

gives |vN | ≤ v̄k and |θN | ≤ θ̄k on the entire state space, where v̄k = k√
2αv

and

θ̄k =
√

2kmax{||ξ∗||, ||ψ∗||} tend to 0 as k → 0+. Hence, if [va, v̄a] is a desired

velocity actuator amplitude envelope (with constant positive endpoints) and if we

choose the trackable trajectory R∗ such that it admits a constant ε > 0 such that

va + ε < v∗(t) +
v̇∗(t)

αv
< v̄a − ε (5.32)
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for all t ∈ R, then we can choose k small enough such that va < vc < v̄a on the full

state space to satisfy the amplitude constraints. Analogous considerations apply

to θc, except θc is only bounded when θ∗ is bounded; see (5.3).

5.5.2 Command Rate Constraints

To satisfy command rate constraints, take any bound δM on the disturbance δ

(e.g., the ISS bound from Theorem 5.2). By reducing k, we assume that

max
{
||vN ||, ||θN ||

}
≤ 0.5. (5.33)

Then |ṽ(t)| ≤ 1 + |ṽ(t0)| + δM and |θ̃(t)| ≤ 1 + |θ̃(t0)| along all trajectories of the

UAV tracking dynamics (5.4). Hence, Assumption 2 and simple calculations based

on the estimate max{|ξ̃|, |ψ̃|} ≤
√

2
√
Q1 + 1 prove that

max{|v̇N |, |θ̇N |} ≤ kH̄(1 + |(θ̃, ṽ)(t0)|+ δM) (5.34)

along all trajectories of (5.4) with disturbances bounded by δM , where

H̄ = max

{
3,

2

αv

}(
1 + ||θ̇∗||+ ||ξ∗||+ ||ψ̇∗||+ ||ψ∗||+ ||ξ̇∗||

)2

(9αθ + 4). (5.35)

Assume that [θr, θ̄r] and [vr, v̄r] are the desired command rate envelopes (with

constant endpoints) and that there is a constant ε > 0 such that

θr + ε < θ̇∗(t) + θ̈∗(t)/αθ < θ̄r − ε and

vr + ε < v̇∗(t) + v̈∗(t)/αv < v̄r − ε
(5.36)

hold for all t ∈ R. Then for each constant B > 0, we can find a constant K̄(B)

such that: For all k ∈ (0, K̄(B)), we have

θr < θ̇c < θ̄r and vr < v̇c < v̄r (5.37)

along all trajectories of (5.4) for which |(θ̃, ṽ)(t0)| ≤ B and |δ|∞ ≤ δM . This is done

by picking k such that max{||v̇N ||, ||θ̇N ||} is small enough. This semiglobal bound
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on the command rates is useful because |(θ̃, ṽ)(t0)| is known.

5.5.3 State Dependent Constraints and State Constraints

We can also ensure that the closed loop system satisfies state dependent constraints,

i.e., for a given constant c∗ > 0, we can design the controller such that |θ̇| ≤ c∗
v

holds along all admissible trajectories. This is important for UAVs operating under

coordinated turning conditions, where θ cannot change too quickly when v is large.

To see how this can be done, note that |θ̃(t)| ≤ ||θN || + |θ̃(t0)|, |ṽ(t)| ≤ ||vN || +

|ṽ(t0)|+ |δ|∞, and so also

|θ̇| = αθ|θc − θ|

= αθ|θN + θ∗ + θ̇∗/αθ − θ|

≤ αθ|θN − θ̃|+ ||θ̇∗||

≤ 2αθ||θN ||+ ||θ̇∗||+ αθ|θ̃(t0)|

and v ≤ ||vN ||+ |ṽ(t0)|+ |δ|∞+ ||v∗|| hold along all of the closed loop trajectories.

Hence, the constraint |θ̇| ≤ c∗
v

holds if

||θ̇∗||+ αθ|θ̃(t0)| ≤ c∗
2(||v∗||+|ṽ(t0)|) and |δ|∞ ≤ ||v∗||+|ṽ(t0)|

6
, (5.38)

and k is small enough. In fact, if k is chosen small enough such that vN and θN

satisfy the state dependent input constraint

max{||θN ||, ||vN ||} ≤ min

{
c∗

8αθ[||v∗||+ |ṽ(t0)|]
,
||v∗||+ |ṽ(t0)|

6

}
, (5.39)

then our bounds on |δ|∞ and vN give v ≤ 4
3
(||v∗||+ |ṽ(t0)|), hence

|θ̇| ≤ 2αθ||θN ||+ c∗
2(||v∗||+|ṽ(t0)|) ≤

3c∗
3(||v∗||+|ṽ(t0)|) ≤ c∗/v. (5.40)

For the important special case where (θ̃(t0), ṽ(t0)) = 0, it follows that the state

constraint |θ̇| ≤ c∗/v holds if R∗ satisfies ||θ̇∗|| ≤ c∗
2||v∗|| and |δ|∞ and k are small
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enough. In that case, we also have v∗ − |δ|∞ − ||vN || ≤ v ≤ ||vN || + |δ|∞ + v∗, so

keeping k and |δ|∞ small also ensures the state constraint that v stays close to v∗.

5.6 Additive Uncertainty on Both Controls

We can also prove practical iISS and practical ISS properties for the tracking

dynamics for the more complex UAV model

ẋ = v cos(θ)

ẏ = v sin(θ)

θ̇ = αθ(θc − θ + ∆)

v̇ = αv(vc − v + δ)

(5.41)

with additive uncertainty on both controls, provided we assume that ∆ is bounded

by some constant ∆̄ > 0 satisfying the smallness condition

αθ||θ̇∗||∆̄ <
c

2T
, (5.42)

where c and T are from the PE condition. This is done by noting that |(θ̃, ṽ)(t)| ≤

2(1 + |(θ̃, ṽ)(t0)| + δM + ∆̄) along the corresponding tracking dynamics when the

tuning parameter k > 0 is small enough, and allowing the constants in the ISS

estimate to depend on |(θ̃, ṽ)(t0)|, which is a semiglobal ISS because the overshoot

terms in the estimates depend on |(θ̃, ṽ)(t0)|.

Here is a sketch of how to prove the extension. We indicate the changes needed

in the proof of Theorem 5.2. The disturbance ∆ adds αθ(θ̃− θN)∆ to Q̇4 in (5.11),

and {θ̇∗αθ[(ξ̃ + ξ∗)ξ̃ − (ψ̃ + ψ∗)ψ̃]− (2αθ/T )
∫ t
t−T

[∫ t
s
θ̇2
∗(`)d`

]
dsψ̃(ξ̃ + ξ∗)}∆ to Ṗ

in (5.13). Hölder’s Inequality gives a constant b0 > 0 such that the terms added

to Ṗ are bounded by 2||θ̇∗||αθ∆̄ψ̃2 + b0[ξ̃2 + |ψ̃ξ̃|+ ∆2], so analogous reasoning to

the argument that gave (5.14) and our smallness condition (5.42) on ∆̄ provides
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constants bi > 0 such that Ṗ ≤ −b1ψ̃
2+b2(ξ̃2+[ξ̃2+ψ̃2]W+W+∆2). Similarly, the

term αθ(ψ̃+ψ∗)ṽ∆ we must add to Ṁ is bounded above by ∆̄αθ|ψ̃ṽ|+αθ||ψ∗||ṽ2 +

αθ||ψ∗||∆2, so (5.17) must be replaced by

Ṁ ≤ − kξ̃2

4
√
Q1 + 1

+ b3(|ψ̃|
√
W +

√
Q1 + 1W + αv|ξ̃δ|+ ∆2) (5.43)

for a suitable constant b3 > 0. Combining the decay estimates on P and M as

in the proof of Theorem 5.2 gives Ṗ + α1(Q4)Ṁ ≤ −b4ψ̃
2 − ξ̃2 + 0

]
N(Q4)W +

b5(Q4 + k)[|ξ̃||δ| + ∆2] for suitable constants bi > 0 and a suitable second degree

polynomial 0
]
N . Then we can find a third degree polynomial G1 and constants

c̃1 > 0 and bi > 0 such that the time derivative of U1 = P + c̃1(Q4 + k)M +G1(Q4)

satisfies U̇1 ≤ −b6ψ̃
2 − ξ̃2 + b7(1 + Q2

4)(δ2 + |δ| + ∆2 + |∆|) − b6G ′1(Q4)W along

the new closed loop tracking dynamics, where b7 depends on |(θ̃, ṽ)(t0)|. Then

U ]
1 = (U1 + 1)1/3− 1 is the desired integral ISS Lyapunov function. This also gives

ISS, under a smaller bound ∆̄ on ∆, by reasoning as in the last part of the proof

of Theorem 5.2. The argument is very similar to the proof of Theorem 5.2, so we

leave the details to the reader.

5.7 Simulating the UAV Tracking Dynamics

We first took the reference trajectory (x∗(t), y∗(t), θ∗(t), v∗(t)) = (10 sin(t), 10 −

10 cos(t), t, 10) where the command is for the UAV to orbit a point at the constant

speed of 10m/s. We simulated the UAV tracking dynamics (5.4) in closed loop with

our controllers vN and θN from (5.9), with the initial error E(0) = (1, 1, 1, 1) and

δ = 0.15 sin(0.05t). Following [43, Section 5], we took αv = 0.192 and αθ = 0.55,

the actuator envelope [7, 13] for vc, and the tuning constant k = 1 for our controls.

The controller θc is unbounded because θ∗ is unbounded; see our controller formulas
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(5.3). In Figure 5.1, we plot (x(t), y(t)), the tracking errors, and the closed loop

controller values. As in [43], the units are radians, seconds, and meters.

FIGURE 5.1. UAV Tracking Circle with Uncertainty in Velocity Control

Top Panels: Center of Mass Path (x(t), y(t)) (Left) and Tracking Errors x− x∗ (Right).

Second Row from Top: y − y∗ (Left) and θ − θ∗ (Right). Third Row from Top: v − v∗
(Left) and Closed Loop Control θc (Right). Bottom Panel: Closed Loop Control vc. Units

are Seconds, Radians, and Meters.

In our second simulation, we took the reference angle

θ∗(t) = 1.5 arctan(3.38321412225 sin(0.24t)) (5.44)

from Section 4.4 and v∗(t) ≡ 10 with initial state (x∗(0), y∗(0)) = (1, 1). We again

simulated (5.4) with the feedbacks (5.9) and E(0) = (1, 1, 1, 1), with the same

choices of αv, αθ, k, δ, and the vc actuator envelope as in our first simulation, but

this time we also added the wind disturbance ∆ = 0.1 to the angle controller θc
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and the actuator envelope [−2, 3.1] on θc. Since θ∗ and θ̇∗ are bounded, we can

satisfy an actuator envelope on θc; see our control formulas (5.3). In Figure 5.2,

we plot the simulated trajectory (x(t), y(t)) on [250, 350], and the corresponding

error components (x(t)−x∗(t), y(t)−y∗(t), θ(t)− θ∗(t), v(t)− v∗(t)) and the closed

loop controller values.

FIGURE 5.2. UAV Tracking Figure 8 with Uncertainties in Both Controls

Top Panels: Center of Mass Path (x(t), y(t)) (Left) and Tracking Errors x− x∗ (Right).

Second Row from Top: y − y∗ (Left) and θ − θ∗ (Right). Third Row from Top: v − v∗
(Left) and Closed Loop Control θc (Right). Bottom Panel: Closed Loop Control vc. Units

are Seconds, Radians, and Meters.

The units are the same as in Figure 5.1. Due to the disturbances, the tracking

errors no longer converge to zero. This illustrates the effect of the disturbances.

Nevertheless, our simulations show the good tracking performance and robustness

under the actuator disturbances. Moreover, the controlled velocities are bounded

away from zero and so respect the no-stall constraint.
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Chapter 6
Future Research Topics

We proved tracking results for important benchmark aerospace models using novel

asymptotic Lyapunov function, bounded backstepping, and strictification methods

under realistic input constraints. In this chapter, we present some remarks about

possible extensions and possible techniques for proving the extensions.

6.1 Tracking Under Input Delays

Our PVTOL aircraft and UAV controllers are functions of the current value of

the state and the current time, possibly after augmenting the system with an ob-

server. However, current state values might not always be available for use in the

controllers. This motivates the search for controllers that only depend on the cur-

rent time and time delayed values of the state, which produce closed loop systems

of the form

Ẋ(t) = f
(
t,X(t), u(t,X(t− τ)), δ(t)

)
, X(t) ∈ Rn (6.1)

with disturbances δ and a constant delay τ > 0. The Lyapunov function machinery

we used in the preceding chapters does not apply to time delayed systems such as

(6.1). However, we have the following definition from [35], in which Xt is defined by

Xt(θ) = X(t+ θ) for all θ ∈ [−r, 0], and Cn(I) is the set of all continuous functions

h : I → Rn on any interval I:

Definition 6.1. A continuous functional U : [0,∞)×Cn(R)→ [0,∞) is called an

ISS Lyapunov-Krasovski functional (ISS-LKF) for (6.1) provided that for all trajec-

tories X(t)
.

= X(t, t0, X0, δ) of (6.1) corresponding to all possible initial conditions
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X(t0) = X0 and all measurable essentially bounded disturbances δ, the function

t 7→ U(t,Xt) is locally absolutely continuous and there exist functions αi ∈ K∞

for i = 1, 2, 3, 4 such that for all φ ∈ Cn([−τ, 0]), all trajectories X(t) of (6.1), and

all t ≥ t0 + τ , we have (a) α1(|φ(0)|) ≤ U(t, φ) ≤ α2(|φ|[−τ,0]) and (b) the time

derivative DtU(t,Xt) of U(t,Xt) satisfies DtU(t,Xt) ≤ −α3(U(t,Xt)) +α4(|δ|[t0,t])

almost everywhere.

A key difference between an ISS-LKF U(t, φ) and a standard ISS Lyapunov

function is that U(t, φ) is evaluated at continuous Rn-valued functions φ ∈ Cn(R)

defined on the real line and times t ≥ 0, which is why we use the term functional

instead of function. Under standard conditions on the dynamics [35], the existence

of an ISS-LKF implies ISS in the following sense:

Definition 6.2. We call (6.1) input-to-state stable (ISS) provided there exist func-

tions β ∈ KL and γ ∈ K∞ such that

|X(t, to, Xo, δ)| ≤ β(|Xo|[to−τ,to], t− to) + γ(|δ|[to,t]) (6.2)

for all to ≥ 0, Xo ∈ Cn([to − τ, to]), t ≥ to, and measurable essentially bounded

disturbances δ.

Unlike the undelayed case, we have initial functions in the ISS estimate (6.2), in-

stead of initial states. However, just as in the undelayed case, knowing an ISS-LKF

makes it possible to construct the comparison functions in the ISS estimate. There-

fore, one possible extension of our work would be to use strictification methods

to build ISS-LKF’s and to prove ISS properties of the UAV and PVTOL aircraft

tracking dynamics with respect to additive uncertainty on the controllers, under

delayed feedback controls.
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6.2 Other Extensions

In many applications, teams of UAVs are used for cooperative surveillance. This

gives rise to more complex tracking problems whose possible control objectives

could include (a) forcing all trajectories of all of the UAVs to track prescribed ref-

erence trajectories or (b) forcing the UAVs to maintain a formation while achieving

some other control objective. Then the problem of collision avoidance becomes im-

portant. This motivates the search for tracking controllers for teams of UAVs that

maintain state constraints under time delays in the controls, or under additive un-

certainty on the controllers. Moreover, the autopilot constants in UAV models or

other model parameters might not be known. This suggests the problem of using

adaptive control methods for parameter identification in UAV models, in conjunc-

tion with an ISS analysis under time delays in, and additive uncertainty on, the

controls. We leave these extensions for future work.
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