Hopf algebras of dimension pq

Siu Hung Ng
Iowa State University

Follow this and additional works at: https://digitalcommons.lsu.edu/mathematics_pubs

Recommended Citation
Hopf algebras of dimension \(pq \)

Siu-Hung Ng \(^a,b\)

\(^a\) Mathematics Department, Iowa State University, Ames, IA 50011, USA
\(^b\) Mathematics Department, Towson University, Baltimore, MD 21252, USA

Received 12 May 2003
Communicated by Susan Montgomery

Abstract

Let \(H \) be a non-semisimple Hopf algebra with antipode \(S \) of dimension \(pq \) over an algebraically closed field of characteristic 0 where \(p \leq q \) are odd primes. We prove that \(\text{Tr}(S^2p) = p^2d \) where \(d \equiv pq \ (\mod 4) \). As a consequence, if \(p, q \) are twin primes, then any Hopf algebra of dimension \(pq \) is semisimple.

© 2004 Elsevier Inc. All rights reserved.

1. Introduction

Let \(p \) be an odd prime and \(k \) an algebraically closed field of characteristic 0. If \(H \) is a semisimple Hopf algebra of dimension \(p^2 \) over \(k \), then \(H \) is isomorphic to \(k[\mathbb{Z}_p^2] \) or \(k[\mathbb{Z}_p \times \mathbb{Z}_p] \) by [8]. A more general result for semisimple Hopf algebras of dimension \(pq \), where \(p, q \) are primes, was obtained by [4]. In [10], the author proved that non-semisimple Hopf algebras of dimension \(p^2 \) over \(k \) are Taft algebras and hence completed the classification of Hopf algebras of dimension \(p^2 \). However, if \(p, q \) are distinct primes, there is still no example of non-semisimple Hopf algebras of dimension \(pq \). In fact, it was shown in [1] and [3] that there is no non-semisimple Hopf algebras over \(k \) of dimension 14, 15, 21, 35, 55, 77, 65, 91 or 143.

By [10], if \(p \leq q \) are odd primes and \(H \) is a non-semisimple Hopf algebra with antipode \(S \) of dimension \(pq \), then \(S^3p = \text{id}_H \) and \(\text{Tr}(S^2p) = p^2d \) for some odd integer \(d \). In this paper, we prove that \(d \equiv pq \ (\mod 4) \). As a consequence, we prove that if \(p, q \) are twin primes, any Hopf algebra of dimension \(pq \) over \(k \) is semisimple. Recently, Etingof

E-mail addresses: rng@math.iastate.edu, rng@towson.edu.
and Gelaki also announce an even more general result [5] which covers the cases when $p < q \leq 2p + 1$.

2. Notation and preliminaries

Throughout this paper, $p \leq q$ are odd primes, k denotes an algebraically closed field of characteristic 0, and H denotes a finite-dimensional Hopf algebra over k with antipode S. Its comultiplication and counit are, respectively, denoted by Δ and ε. We will use Sweedler’s notation [16]:

$$\Delta(x) = \sum x_{(1)} \otimes x_{(2)}.$$

A non-zero element $a \in H$ is called group-like if $\Delta(a) = a \otimes a$. The set of all group-like elements $G(H)$ of H is a linearly independent set, and it forms a group under the multiplication of H. For the details of elementary aspects for finite-dimensional Hopf algebras, readers are referred to [9,16].

Let $\lambda \in H^*$ be a non-zero right integral of H^* and $\Lambda \in H$ a non-zero left integral of H. There exists $\alpha \in \text{Alg}(H, k) = G(H^*)$, independent of the choice of Λ, such that $\Lambda a = \alpha(a) \Lambda$ for $a \in H$. Likewise, there is a group-like element $g \in H$, independent of the choice of λ, such that $\beta\lambda = \beta(g)\lambda$ for $\beta \in H^*$. We call g the distinguished group-like element of H and α the distinguished group-like element of H^*. Then we have a formula for S^4 in terms of α and g [11]:

$$S^4(a) = g(\alpha \rightarrow a \leftarrow \alpha^{-1})g^{-1} \quad \text{for } a \in H, \quad (2.1)$$

where \rightarrow and \leftarrow denote the natural actions of the Hopf algebra H^* on H described by

$$\beta \rightarrow a = \sum a_{(1)}\beta(a_{(2)}) \quad \text{and} \quad a \leftarrow \beta = \sum \beta(a_{(1)})a_{(2)}$$

for $\beta \in H^*$ and $a \in H$. There are some useful formulae for the trace of a linear endomorphism on H in terms of λ and Λ.

Theorem 2.1 [13, Theorem 1]. Let H be a finite-dimensional Hopf algebra with antipode S over the field k. Suppose that λ is a right integral of H^*, and that Λ is a left integral of H such that $\lambda(\Lambda) = 1$. Then for any $f \in \text{End}_k(H)$,

$$\text{Tr}(f) = \sum \lambda((S \circ f)(A_{(2)})A_{(1)}) = \sum \lambda((f \circ S)(A_{(2)})A_{(1)}) = \sum \lambda((f \circ S)(A_{(2)})A_{(1)}).$$

Following [10, Section 2], the index of H is the least positive integer n such that

$$S^{4n} = \text{id}_H \quad \text{and} \quad g^n = 1.$$
Suppose that H is a finite-dimensional non-semisimple Hopf algebra of odd index n, and that $\omega \in k$ is a primitive nth root of unity. Since $g^n = 1$ and α is an algebra map, $\alpha(g)$ is a nth root of unity. There exists a unique element $x(\omega, H) \in \mathbb{Z}_n$ such that

$$\alpha(g) = \omega^{x(\omega, H)}.$$

Following the notation in [10], we let $H^\omega_{a,i,j} = \{ u \in H \mid S^2(u) = (-1)^{a} \omega^i u \text{ and } ug = \omega^j u \}$ for any $(a, i, j) \in \mathbb{Z}_2 \times \mathbb{Z}_n \times \mathbb{Z}_n$. Since $r(g) \in \text{End}_k(H)$, defined by $r(g)(a) = ag$ for $a \in H$, commutes with S^2, we have

$$H = \bigoplus_{a \in K_n} H^\omega_a,$$

(2.2)

where K_n denotes the group $\mathbb{Z}_2 \times \mathbb{Z}_n \times \mathbb{Z}_n$.

Using the eigenspace decomposition of H in (2.2), the diagonalization of a left integral Λ of H admits the following form (cf. [10]),

$$\Delta(\Lambda) = \sum_{a \in K_n} \left(\sum_{u} u_a \otimes v_{-a+x} \right),$$

(2.3)

where $\sum u_a \otimes v_{-a+x} \in H^\omega_a \otimes H^\omega_{-a+x}$ and $x = (0, -x(\omega, H), x(\omega, H))$ in K_n.

In the sequel, we will call the expression in Eq. (2.3) the normal form of $\Delta(\Lambda)$ associated with ω. We will simply write $u_a \otimes v_{-a+x}$ for the sum $\sum u_a \otimes v_{-a+x}$ in the normal form of $\Delta(\Lambda)$.

Let E^ω_a, $a \in K_n$, be the set of orthogonal projections associated with the decomposition (2.2). Then

$$\dim(H^\omega_a) = \text{Tr}(E^\omega_a)$$

and we have the following lemma.

Lemma 2.2. Let H be a finite-dimensional non-semisimple Hopf algebra with antipode S of odd index n over k, and $\omega \in k$ a primitive nth root of unity. Then we have

$$\dim(H^\omega_a) = \dim(H^{\omega_a})$$

for all $a \in K_n$ where $x = (0, -x(\omega, H), x(\omega, H))$.

Proof. Let Λ be a left integral of H and let λ be a right integral of H^* such that $\lambda(\Lambda) = 1$. Using the normal form of $\Delta(\Lambda)$ associated with ω in (2.3) and Theorem 2.1, we have

$$\text{Tr}(E^\omega_a) = \sum_{b \in K_n} \lambda(S(v_{-b+x})E^\omega_a(u_b)) = \lambda(S(v_{-a+x})u_a).$$
By Theorem 2.1 again, we also have

$$\text{Tr}(E_{a+i}^\omega) = \sum_{b \in K} \lambda(S(E_{a+i}^\omega)(v-b+x)u_b) = \lambda(S(v-a+x)u_a).$$

Therefore, $\text{Tr}(E_{a+i}^\omega) = \text{Tr}(E_{a-i}^\omega)$. Since $\dim(H_{a+i}^\omega) = \text{Tr}(E_{a+i}^\omega)$ for any $a \in K_n$, the result follows.

Theorem 2.3 [10]. Let H be a non-semisimple Hopf algebra of dimension pq over k with antipode S, where $p \leq q$ are odd primes. Then the index of H and the order of S^4 are equal to p, and $\text{Tr}(S^2p) = p^2d$ for some odd integer d.

Lemma 2.4. Suppose that H is a non-semisimple Hopf algebra of dimension pq over k where $p \leq q$ are odd primes, and that $\omega \in k$ is a primitive pth root of unity. Let g and α be the distinguished group-like elements of H and H^*, respectively. If g is non-trivial, then the integer d in Theorem 2.3 is given by

$$\dim(H_{a,i,j}^\omega) - \dim(H_{a,i,j}^\sigma) = d$$

for all $i, j \in \mathbb{Z}_p$. Moreover, if both g and α are not trivial, then

$$\dim(H_{a,i,j}^\sigma) = \dim(H_{a,i,j}^\omega)$$

for any $a \in \mathbb{Z}_2$ and $i, j, j' \in \mathbb{Z}_p$.

Proof. If α is trivial and $g \neq 1$, then by [10, Lemma 4.3],

$$\dim(H_{0,i,j}^\omega) - \dim(H_{1,i,j}^\sigma) = d.$$

If both g and α are non-trivial, then by the proof of [10, Proposition 5.3], H is isomorphic to the biproduct

$$R \times B$$

as Hopf algebras (cf. [12]) where $B = k[g]$ and R is a left B-comodule subalgebra of H. It was shown in [2, Section 4] that R is invariant under S^2. Moreover, in the identification $H \cong R \otimes B$ given by multiplication, one has

$$S^2 = T \otimes \text{id}_B,$$

where T is the restriction of S^2 on R. Let

$$R_{a,i} = \{ x \in R \mid S^2(x) = (-1)^a \omega^i x \}$$

for any $(a, i) \in \mathbb{Z}_2 \times \mathbb{Z}_p$. It follows from the proof of [10, Proposition 5.3] that

$$\dim(R_{0,i}) = \dim(R_{1,i}) = d.$$
By (2.4),
\[H_{a,i,j}^\omega = R_{a,i} \otimes e_j \]
for all \((a, i, j) \in \mathcal{K}_p\) where \(e_j\) is the central idempotent of \(B\) such that \(e_j g = \omega^i e_j\). Thus,
\[\dim(H_{a,i,j}^\omega) = R_{a,i} \]
for all \((a, i, j) \in \mathcal{K}_p\) and hence
\[\dim(H_{0,i,j}^\omega) - \dim(H_{1,i,j}^\omega) = d. \]

3. Proofs of main results

Lemma 3.1. Let \(H\) be a finite-dimensional non-semisimple Hopf algebra with antipode \(S\) of odd index \(n\) over \(k\), and \(\omega \in k\) a primitive \(n\)th root of unity. Let \(\ell \in \mathbb{Z}\) such that \(2\ell = x(\omega, H)\). Then
\[\dim(H_{1, -\ell, \ell}^\omega) \]
is even.

Proof. Let \(V\) be the space of all \(f \in H^*\) such that \(f(H_{a,i,j}^\omega) = \{0\}\) whenever \((a, i, j) \neq (1, -\ell, \ell)\). Obviously, \(V\) is isomorphic to \((H_{1, -\ell, \ell}^\omega)^*\) and so \(\dim(V) = \dim(H_{1, -\ell, \ell}^\omega)\). Let \(\Lambda\) be a non-zero left integral of \(H\) and
\[\Delta(\Lambda) = \sum_{a \in \mathcal{K}_n} u_a \otimes v_{-a + x} \]
the normal form of \(\Delta(\Lambda)\) associated with \(\omega\) where \(x = (0, -2\ell, 2\ell)\). Then
\[(f, h) = (f \otimes h)\Delta(\Lambda) \]
defines a non-degenerate bilinear form on \(H^*\). Let \(f \in V\) such that \((f, h) = 0\) for all \(h \in V\). For any \(h' \in H^*\), there exists \(h \in V\) such that \(h'(u) = h(u)\) for all \(u \in H_{1, -\ell, \ell}^\omega\). Thus
\[(f, h') = \sum_{a \in \mathcal{K}_n} f(u_a)h'(v_{-a + x}) = f(u_{1, -\ell, \ell})h'(v_{1, -\ell, \ell}) = (f, h) = 0. \]

By the non-degeneracy of \((\cdot, \cdot)\), \(f = 0\). Therefore, \((\cdot, \cdot)\) induces a non-degenerate bilinear form on \(V\). Using [14, Theorem 3(d)], we have
\[\Delta^{op}(\Lambda) = \sum_{(a, i, j) \in \mathcal{K}_n} (-1)^a \omega^{-i-j} \left(\sum_{a, i, j} u_{a,i,j} \otimes v_{a,-2\ell-i,2\ell-j} \right). \]
Therefore, for any \(f, h \in V \),

\[
(h, f) = (f \otimes h)\Delta^\text{op}(A) = -f(u_1, -\ell, \ell)h(v_1, -\ell, \ell) = -(f, h).
\]

Hence, \(V \) admits a non-degenerate alternating form and so \(\dim(V) \) is even. \(\square \)

If \(H \) is a finite-dimensional Hopf algebra of index \(n \), we define

\[
H^- := \{ u \in H \mid S^2(u) = -u \}, \\
H^+ := \{ u \in H \mid S^2(u) = u \}.
\]

Corollary 3.2. Suppose \(H \) is a finite-dimensional non-semisimple Hopf algebra with antipode \(S \) of odd index \(n \) over \(k \). Then, the subspace \(H^- \) is of even dimension.

Proof. Let \(\omega \in k \) be an \(n \)th root of unity and \(\ell \in \mathbb{Z} \) such that \(2\ell = x(\omega, H) \). We then have

\[
H^- = \bigoplus_{i,j \in \mathbb{Z}_n} H^\omega_{1, i, j} = H^\omega_{1, -\ell, \ell} \oplus \left(\bigoplus_{(i,j) \neq (-\ell, \ell)} H^\omega_{1, i, j} \oplus H^\omega_{1, -2\ell-i, 2\ell-j} \right).
\]

It follows from Lemmas 2.2 and 3.1 that \(\dim(H^-) \) is even. \(\square \)

Theorem 3.3. Let \(H \) be a non-semisimple Hopf algebra with antipode \(S \) of dimension \(pq \) where \(p \leq q \) are odd primes. Then

\[
\text{Tr}(S^{2p}) = p^2 d \quad \text{and} \quad d \equiv pq \pmod{4}.
\]

Proof. By Theorem 2.3, \(H \) is of index \(p \) and \(\text{Tr}(S^{2p}) = p^2 d \) for some odd integer \(d \). Since

\[
\dim(H^+) + \dim(H^-) = pq
\]

and

\[
\text{Tr}(S^{2p}) = \dim(H^+) - \dim(H^-) = p^2 d,
\]

we have

\[
\dim(H^-) = p(q - pd)/2.
\]

By Corollary 3.2, \(p(q - pd) \equiv 0 \pmod{4} \) or \(d \equiv pq \pmod{4} \). \(\square \)

Theorem 3.4. For any pair of twin primes \(p < q \), if \(H \) is a Hopf algebra of dimension \(pq \), then \(H \) is semisimple.
Proof. Suppose there is a non-semisimple Hopf algebra H of dimension pq. By [6], H^* is also non-semisimple. Since $\dim(H)$ is odd, by [7, Theorem 2.1], H and H^* cannot be both unimodular. By duality, we may simply assume that H^* is not unimodular. It follows from Theorem 2.3 that $|G(H)| = p$ and so

$$\dim(C) \geq p,$$

where C is the coradical of H. If $\dim(C) = p$, then H is pointed and hence, by [15, Corollary 4], H is semisimple. Therefore, $\dim(C) > p$ and so we have

$$\text{Tr}(S^p|_{H/C}) \geq -(pq - \dim(C)) > -pq + p = -p^2 - p.$$

It follows from [6, Lemma 3.2] that

$$\text{Tr}(S^p|_C) \geq p.$$

Thus, we have

$$\text{Tr}(S^p) = \text{Tr}(S^p|_C) + \text{Tr}(S^p|_{H/C}) > -p^2.$$ \hspace{1cm} (3.1)

Since $pq \equiv -1 \pmod{4}$, by Theorem 3.3,

$$\text{Tr}(S^p) = -p^2$$

but this contradicts (3.1). □

Acknowledgment

The author thanks P. Etingof for his useful suggestions for Theorem 3.4 and bringing the author’s attention to his recent work [5] with S. Gelaki.

References