Cellular uptake and lysosomal delivery of galactocerebrosidase tagged with the HIV Tat protein transduction domain

Xian Yang Zhang
LSU Health Sciences Center - New Orleans

Annie Dinh
LSU Health Sciences Center - New Orleans

James Cronin
LSU Health Sciences Center - New Orleans

Su Chen Li
Tulane University School of Medicine

Jakob Reiser
LSU Health Sciences Center - New Orleans

Follow this and additional works at: https://digitalcommons.lsu.edu/biosci_pubs

Recommended Citation

This Article is brought to you for free and open access by the Department of Biological Sciences at LSU Digital Commons. It has been accepted for inclusion in Faculty Publications by an authorized administrator of LSU Digital Commons. For more information, please contact ir@lsu.edu.
Galactocerebrosidase (GALC, EC 3.2.1.46) is a lysosomal hydrolase that degrades galactosylceramide, a lipid component of myelin, and its deficiency results in demyelination. The resulting disease, known as globoid cell leukodystrophy (GLD) or Krabbe disease, affects the CNS and is inherited in an autosomal recessive manner (Wenger et al. 2000). Galactosylceramide is found mostly in the brain, particularly in myelin sheaths. Unmetabolized galactosylceramide does accumulate in macrophages, which form characteristic globoid cells. Galactosylceramide is unique among the sphingolipids in its ability to elicit globoid cells (Suzuki 1985). Another substrate of GALC, psychosine (galactosylsphingosine), accumulates in neural tissues. The psychosine metabolism is impaired in patients with Krabbe disease and the brains of patients affected with this disease may contain 10–100 times the normal amount of psychosine (Suzuki 1998). Psychosine is highly cytotoxic primarily affecting oligodendrocytes, the myelin forming cells and causing their apoptotic death (Taniike et al. 1999; Zaka and Wenger 2004). Human GALC has been purified from urine and lymphocytes (Chen and Wenger 1993; Sakai et al. 1994a) and its cDNA and genomic sequences have been determined (Chen et al. 1993; Sakai et al. 1994b; Luzi et al. 1995). GALC cDNA sequences from other species including

Received July 18, 2007; revised manuscript received September 27, 2007; accepted September 27, 2007.

Address correspondence and reprint requests to Jakob Reiser, Gene Therapy Program, Department of Medicine, LSU Health Sciences Center, Clinical Sciences Research Building 606, 533 Bolivar Street, New Orleans, LA 70112, USA. E-mail: reiser@lsuhsc.edu

Abbreviations used: BSA, bovine serum albumin; CMV, cytomegalovirus; ERT, enzyme replacement therapy; FBs, fibroblasts; GALC, galactocerebrosidase; GLD, globoid cell leukodystrophy; GUS, glucuronidase; Lamp-1, lysosomal-associated protein-1; HBSS, Hank’s balanced salt solution; LSDs, lysosomal storage diseases; M6PR, mannose-6-phosphate receptor; MPS, mucopolysaccharidosis; PBS, phosphate-buffered saline; PBST, phosphate buffered saline with 0.05% Tween 20; PTD, protein transduction domain; TMH, Tat-PTD, a myc epitope and 6 consecutive His residues; WT, wild type.

© 2007 The Authors
mice, dogs, and rhesus monkeys have also been characterized (Sakai et al. 1996; Luzi et al. 1997). The human GALC cDNA codes for 669 amino acids including a 26 amino acid leader peptide. This correlates with an estimated molecular mass of 80 kDa of the purified enzyme (Chen and Wenger 1993). The 80-kDa version of human GALC has been found to undergo proteolysis, resulting in 30- and 50-kDa fragments in the extracellular medium (Nagano et al. 1998).

Over 60 disease-causing mutations have been characterized in human patients with Krabbe disease (Wenger et al. 2000). A mutation causing GLD in mice has also been identified (Wenger 2000). These mice are referred to as twitcher mice. Twitcher mice are the most widely used animal model of Krabbe disease to date.

A potential treatment option for Krabbe disease may involve supplying sufficient GALC activity to still functioning oligodendrocytes by enzyme replacement therapy (ERT) or using gene therapy-based approaches to degrade the psychosine that is starting to accumulate (Wenger et al. 2000; Lee et al. 2005b). A problem for treating GLD, and other lysosomal storage diseases (LSDs), is that virtually all cells in an organism are affected. Clearly, it is not feasible to correct all cells using gene-based approaches. Fortunately, however, this is not necessary when cross-correction can occur. It has been demonstrated that several lysosomal enzymes, including GALC can be secreted by cells producing the enzyme and taken up by other cells via the mannose-6-phosphate receptor (M6PR) (Kornfeld 1987; Nagano et al. 1998). For example, GALC released from GALC-over-expressing cells was shown to be taken up by fibroblasts (FBs) derived from Krabbe patients (Rafi et al. 1996) or by twitcher mouse-derived glial cells (Ludii et al. 2001). In principle, a limited number of overproducing cells should be able to provide sufficient enzyme to the rest of the organism. However, the delivery of therapeutic proteins into tissues and across the blood–brain barrier can be limited due to their size and their biochemical properties. Schwarze et al. (1999) described the successful uptake of functional Escherichia coli β-galactosidase fused to a short cationic peptide derived from the HIV-1 Tat protein through the blood–brain barrier involving a mechanism known as protein transduction (Schwarze and Dowdy 2000). In subsequent studies, Xia et al. (2001), Elliger et al. (2002), and Orii et al. (2005) tested how the Tat protein transduction domain (PTD) affected secretion, uptake and biodistribution of β-glucuronidase (GUS), the enzyme that is defective in mucopolysaccharidosis type VII (MPS VII). The Tat motif allowed for M6PR-independent uptake of the enzyme in vitro and significantly increased the distribution of GUS secreted from transduced cells after intravenous or direct brain injection of recombinant adenovirus vectors encoding GUS tagged with the Tat-PTD (Xia et al. 2001; Elliger et al. 2002). Improved intracellular delivery of glucocerebrosidase (the enzyme that is defective in Gaucher disease) mediated by the HIV-1 Tat-PTD was also observed (Lee et al. 2005a). Thus, enzymes modified to contain protein transduction motifs may represent a general strategy for improving the distribution of secreted proteins following in vivo gene transfer.

The optimal pH for GALC is around 4.2 (Sakai et al. 1994a), a feature that strengthens the feasibility of applying Tat-PTD-modification to GALC as PTD-mediated uptake is into endosomes with reduced pH. At least a portion of Tat-PTD-modified GALC in endosomes is expected to proceed to lysosomes.

With a view towards establishing improved therapeutic strategies for GLD, we analyzed in this report the impacts of a Tat-PTD on enzymatic function, cellular uptake and intracellular location of mouse GALC.

Experimental procedures

Cell culture

Human embryonic kidney 293 (CRL-1573) and 293T (CRL-11268) cells, African green monkey COS-7 cells (CRL-1651), and HeLa cells (CCL-2) were obtained from the American Type Culture Collection (Manassas, VA, USA). Cells were maintained in Dulbecco’s modified Eagle’s medium (Invitrogen–Gibco, Gaithersburg, MD, USA) with 10% heat inactivated fetal bovine serum (Hyclone, Logan, UT, USA), 2.5 mmol/L L-glutamine, and 100 μg/mL streptomycin (all from Invitrogen–Gibco). Primary cultures of mouse skin FBs were established from 4-week-old B6.CE-Galctwittw twitcher mice (The Jackson Laboratory, Bar Harbor, ME, USA) and from wild-type mice. The genotypes of animals were determined by PCR analysis using tail DNA isolated from 1-week-old mice as described (Sakai et al. 1996). Skin FBs were maintained in Dulbecco’s modified Eagle’s medium with 15% heat inactivated fetal bovine serum, 2.5 mmol/L L-glutamine, 100 μg/mL penicillin, and 100 μg/mL streptomycin. Mouse brain cortex neurons (M-CX-300; Cambrex Bio Science Walkersville, Inc., Walkersville, MD, USA) were plated on plates coated with poly-D-lysine and laminin and maintained in neurobasal medium containing 2% B27 supplement, 2 mmol/L L-glutamine, 100 μg/mL penicillin, and 100 μg/mL streptomycin (Invitrogen–Gibco).

GALC expression constructs

The lentiviral plasmid pNL-GALC-ires-neo containing a mouse GALC cDNA sequence (Sakai et al. 1996), driven by the human cytomegalovirus (CMV)-IE promoter was constructed by inserting a 2.3 kb Smal–BamHI fragment derived from pSVL/MGAL (kindly provided by Norio Sakai, Osaka University) into pNL-IREs-neo cut with EcoRI and BamHI. pNL-IREs-Neo was derived from pNL-Neo (Mochizuki et al. 1998) by substituting the Neo sequence with an IRES-Neo fragment derived from pIRE1-Neo (Clontech, Palo Alto, CA, USA). To construct pNL-GALC-MH/CMV, a 1.1-kb mouse GALC cDNA fragment was generated by PCR, using a forward primer (5'-GAGACGGGGCAATCTAGAGAA-3') and a reverse primer (5'-TTGTCAGGGCCCGACAGCAGTTTC-3'). This 1.1-kb fragment encodes the C-terminal part of the mouse GALC protein (amino acids 348–668) and also contains a GGG codon replacing the TAG stop codon. The fragment
was cloned into the Xbal/Apal sites of pcDNA3.1/myc-His (Invitrogen, Carlsbad, CA, USA) resulting in pcDNA-GALC(FC)MH encoding GALC with in-frame myc epitope and His tag sequences. A 1.2-kb Xbal fragment containing the 5‘ part of the GALC cDNA (encoding amino acids 1–347) from pLITMUS-GALC (generated by cloning the GALC cDNA into the Ncol/BamHI sites of pLITMUS 29, New England Biolabs, Beverly, MA, USA) was then inserted into the Xbal site of pcDNA-GALC(FC)MH to generate pcDNA-GALC-MH. Finally, the SnaBI/Pmel fragment derived from pcDNA-GALC-MH was cloned into the SnaBI/Xhol sites of pNL-EGFP/CMV (Reiser et al. 2000) resulting in pNL-GALC-MH/CMV. To generate pcDNA-GALC-MHAMH, a 2.1-kb KpnI/FspI fragment from pLITMUS-GALC-MHAMH was cloned into the KpnI/Xhol sites of pcDNA3.1/myc-His. To construct pNL-GALC-TMH/CMV, the pcDNA3.1/Tat-myc-His plasmid was modified by replacing the pcDNA3.1/myc-His-derived myc-His epitope-encoding sequence with a sequence encoding a HIV-1 Tat-PTD. This sequence consisted of a 104-bp oligonucleotide encoding the HIV-1 Tat-PTD (YGRKKR-GRRRGG; Green and Loewenstein 1988) in frame with a myc-His epitope sequence. The primers used in the overlap extension reaction were: 5‘-GAGGCGCCCACTGAGCGACGAAAGGTCGCGCTGAGGTCG-3‘; reverse, 5‘-ATGCCGATGATCAGCGCTTCTGATCTCTTGTCACTTCTCGTCCGGTGC-3‘. This fragment with an Apal site at the 5‘-end and an AgeI site at 3‘-end was cloned into the Apal/AgeI sites of pcDNA3.1/myc-His, resulting in pcDNA3.1/Tat-myc-His. Next, the XbaI/Apal fragment from pcDNA-GALC-MH was cloned into the XbaI/Apal sites of pcDNA3.1/Tat-myc-His resulting in pcDNA-GALC-MH/CMV. Finally, the SnaBI/Pmel fragment derived from pcDNA-GALC(FC)MH was cloned into the SnaBI/Xhol sites of pNL-EGFP/CMV, resulting in pNL-GALC-TMH/CMV.

Test of recombinant GALC proteins by transient transfection

293T cells were subjected to transient transfection as described (Reiser et al. 1996). Plasmid pNL-LacZ(co) (Kuroda and Reiser, unpublished) encoding E. coli β-galactosidase was co-transfected to monitor transfection efficiencies. β-Galactosidase activity was determined as described by Bao et al. (2004).

Lentivirus vector production and transduction of cells

Lentivirus vector stocks were prepared as described previously (Reiser 2000). Virus titers and vector copies in transduced cells were determined by real-time PCR using primers and probes specific for the HIV-1 group-specific antigen (Gag)coding region (Zhang et al. 2004). Target cells were transduced with lentiviral vectors using multiplicities of infection of 30.

Western blot analysis

Cell culture supernatant aliquots (200 μg) from 293T and Hela cells transduced with GALC-encoding lentiviral vectors were collected by centrifugation and concentrated using Strataclean Resin (Stratagene, La Jolla, CA, USA). Concentrated proteins were subjected to sodium dodecyl sulfate–polyacrylamide gel electrophoresis using 4–12% NuPAGE Bis–Tris gels (Invitrogen) and then blotted onto a polyvinylidene difluoride membrane (Millipore, Bedford, MA, USA). The membrane was blocked with 3% non-fat milk in Tris buffered saline with Tween 20, TBST (Sigma-Aldrich, St Louis, MO, USA) buffer, and incubated with a monoclonal anti-myc antibody (Invitrogen) followed by alkaline phosphatase conjugated goat anti-mouse IgG (Bio-Rad, Hercules, CA, USA). Blots were treated with the Lumi-Phos WB reagent (Pierce Biotechnology Inc., Rockford, IL, USA) and then exposed to X-ray films.

GALC assay

Cultured cells were harvested from tissue culture plates using a cell lifter and washed twice with phosphate-buffered saline (PBS). Cell pellets were resuspended and homogenized in H2O containing 1 mmol/L phenylmethylsulfonyl fluoride (Sigma–Aldrich) at 4°C. Cell extracts were centrifuged (22 088 g for 15 min, 4°C). Protein concentrations were determined using the bicinchoninic acid protein assay kit (Pierce). GALC activity was determined using 3H-galactosylceramide (American Radiolabeled Chemicals, St Louis, MO, USA) as a substrate as described by Raghavan and Krusz (1986). Twenty micrograms of cell extract or 50 μL of cell culture supernatant from lentivirus-transduced cells were used for the assay. GALC units are defined as nmol of 3H-galactosylceramide hydrolyzed per hour.

Determination of GALC uptake

For GALC production, COS-7 cells were transduced with lentiviral vectors encoding GALC-MH or GALC-TMH for 22 h in the presence of 8 μg/mL polybrene (Sigma–Aldrich). Transduced cells were passaged twice and cell culture supernatants were collected. To determine GALC uptake, 4 mL of conditioned media containing GALC-MH or GALC-TMH (60–120 GALC units) were added to 4 × 105 untransduced cells including 293T cells, COS-7 cells or twitcher mouse FBs (Twi FBs) in the presence or absence of 5 mmol/L M6P (Sigma–Aldrich). For GALC uptake by mouse brain cortex neurons, GALC-MH or GALC-TMH (90 GALC units) were added in the presence or absence of 5 mmol/L M6P. Twenty-four hours later, the cells were washed with PBS and harvested, and cell extracts prepared and GALC activities determined.

Immunofluorescence labeling and microscopy

To assess the subcellular distribution of the GALC-TMH protein, transduced Twi FBs were plated on coverslips in six-well plates, fixed using 3% paraformaldehyde in PBS for 20 min and blocked with PBS containing 10% saponin (both from Sigma–Aldrich) for 1 h. The coverslips were incubated with mouse monoclonal anti-myc (Invitrogen; 1 : 250 dilution) or rat monoclonal anti-mouse IgG (Invitrogen; 1 : 500 dilution) followed by alkaline phosphatase conjugated secondary antibodies (Bio-Rad, Hercules, CA, USA) and then exposed to X-ray films. Alexa 488-conjugated goat anti-rat-IgG or Alexa 568-conjugated goat anti-mouse-IgG were used as secondary antibodies. Primary antibodies were used at 1 : 500 dilution. The samples were mounted with ProLong Gold anti-fade reagent with 0.05% Diamidino-2-phenylindole (Molecular Probes).

To analyze uptake of GALC-TMH by Twi FBs, 2 mL of conditioned media containing GALC-TMH protein (43 GALC units) were added to 2 × 105 twi FBs plated on coverslips in six-well
plates. Twenty-eight hours later, cells were fixed using 3% paraformaldehyde in PBS for 20 min and blocked with PBS containing 10% goat serum and 0.05% saponin for 1 h. The coverslips were incubated with affinity-purified rabbit anti-GALC polyclonal antibodies (CL1475 1:800) (Lee et al. 2005b, 2007) or rat monoclonal anti-mouse Lamp-1 (BD Biosciences; 1:500), for 2 h at 25°C followed by three washes with PBST. Alexa 488-conjugated goat anti-rabbit-IgG (1:500 dilution) or Alexa 568-conjugated goat anti-rat-IgG (1:1000 dilution) were then applied and the cells incubated for 2 h at 25°C followed by three 10-min washes with PBST.

Analysis of cells using fluorescent lipids

Twi FBs, wild-type FBs or lentiviral vector NL-GALC-TMH/CMV-transduced FBs plated on Cell-Tak adhesive-treated coverslips (BD Biosciences) were incubated with a solution containing BODIPY-FLC12-galactoceramide (BODIPY-GalCer; Molecular Probes) and BSA (5 μmol/L each in Hanks’-buffered salt solution, containing 10 mmol/L HEPES, pH 7.4; Hanks’ balanced salt solution (HBSS)/HEPES) for 45 min at 37°C. Cells were washed twice with HBSS/HEPES and incubated with fresh medium for 1 h at 37°C, followed by a ‘back-exchange’ with 5% BSA (fatty acid free, Sigma–Aldrich) in HBSS/HEPES at 10°C (Martin and Pagano 1994). The coverslips were rinsed with PBS and mounted with ProLong Gold anti-fade reagent. Images were taken using an Olympus TH 4–100 inverted fluorescence microscope. Similar analyses were conducted using Twi FBs incubated with conditioned medium collected from 293 cells stably expressing GALC-TMH before applying BODIPY-GalCer.

Results

C-terminal addition of a Tat-PTD does not impair GALC activity

To distinguish recombinant mouse GALC from endogenous GALC and to assess the effects of the Tat-PTD on the activity of recombinant GALC, a number of different GALC expression constructs were prepared. These constructs encoded 24 additional amino acids at the C-terminus of the GALC protein including a myc epitope sequence and six consecutive His residues. Another construct encoded an eleven amino acid PTD derived from the HIV-1 Tat protein (Green and Loewenstein 1988; Schwarze and Dowdy 2000) in addition to the myc epitope sequence and six His residues (Fig. 1a). The corresponding GALC proteins are referred to as GALC-MH and GALC-TMH, respectively. The results presented in Fig. 1b show that the specific activity of the GALC-MH enzyme in total cell extracts was similar to that of the unmodified (untagged) recombinant GALC enzyme following transient transfection of 293T cells using GALC and GALC-MH-encoding plasmids. However, the specific activity of GALC fused to the Tat-PTD was reduced by about 37% relative to that of GALC-MH (Fig. 1b). A similar reduction in GALC-TMH activity relative to GALC-MH (about 40%) was observed when GALC levels were normalized based on β-galactosidase expression following co-transfection using the pNL-LacZ(co) plasmid (data not shown). Also, a GALC expression construct with the last 11 amino acid residues of GALC deleted lacked enzymatic activity altogether (Fig. 1b). This indicates that the mouse GALC protein can tolerate C-terminal extensions and that a full-length GALC C-terminus is critical for GALC activity.

Impact of the Tat-PTD on the release of GALC into the extracellular medium

To assess the impact of the Tat-PTD on the release of recombinant GALC into the extracellular medium, lentiviral vectors encoding GALC-MH and GALC-TMH were generated. The GALC activity in transduced African green...
monkey kidney-derived COS-7 cells is shown in Table 1. A higher proportion of the enzyme activity was found in the extracellular medium of GALC-TMH-transduced cells (72.5 ± 3.7%) compared with GALC-MH-transduced cells (58.8 ± 8.3%) (Table 1). These results indicate that fusion of Tat-PTD with the mouse GALC protein facilitated the release of the recombinant enzyme into the extracellular medium.

To further analyze the recombinant GALC enzyme released from the transduced cells into the extracellular medium, a western blot analysis of concentrated cell culture supernatants using a monoclonal antibody directed against the myc epitope was carried out. As shown in Fig. 2, a single band consistent with a molecular weight around 80 kDa was detected in the culture medium harvested from transduced cells including 293T and HeLa cells. The size of the myc-tagged recombinant protein was close to that reported for unmodified human GALC (Chen and Wenger 1993; Nagano et al. 1998). Interestingly, the recombinant GALC-TMH protein secreted by 293T and HeLa cells displayed a slightly slower electrophoretic mobility compared with the recombinant GALC-MH protein lacking a Tat-PTD. The same mobility shift was observed with GALC-containing supernatants collected from transduced COS-7 cells (data not shown). The reason for this lower than expected electrophoretic mobility of GALC-TMH relative to GALC-MH is not clear.

Tat-PTD facilitated uptake of recombinant GALC by COS-7 cells, twitcher mouse FBs and by primary mouse neurons.

To show that the recombinant GALC enzyme secreted from transduced cells could be taken up by cells through M6PR-mediated endocytosis, enzyme uptake assays were performed. The results presented in Fig. 3 and Table 2 indicate that COS-7 cells, Twi FBs and mouse cortical neurons were capable of taking up GALC from the conditioned medium of transduced COS-7 cells expressing GALC-MH or GALC-TMH. Fig. 3 shows that GALC-MH and GALC-TMH in the absence of M6P were taken up as efficiently as unmodified GALC, indicating that modification of the C-terminus of GALC did not affect the enzymes’ uptake. As shown in

Table 1 Distribution of recombinant galactocerebrosidase (GALC) activity in COS-7 cells

<table>
<thead>
<tr>
<th>Recombinant enzyme</th>
<th>GALC activity in cell extract (%)</th>
<th>GALC activity released into cell culture medium (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GALC-MH</td>
<td>41.2 ± 8.3</td>
<td>58.8 ± 8.3</td>
</tr>
<tr>
<td>GALC-TMH</td>
<td>27.5 ± 3.7</td>
<td>72.5 ± 3.7</td>
</tr>
</tbody>
</table>

GALC activities in cell extracts and cell culture supernatants of COS-7 cells expressing GALC-MH or GALC-TMH. Activities were determined 5 days after the cells were plated. The data shown are from four independent experiments and displayed as mean values ± SD. Endogenous GALC activity in transduced COS-7 cells amounted to 3% of that observed with the recombinant enzyme. GALC activity released is presented as daily GALC activity released into the culture medium.
Fig. 3 and Table 2, uptake of recombinant GALC-MH was largely blocked (67% for COS-7 cells, 77% for Twi FBs, and up to 68% for primary neurons) in the presence of an excess of M6P indicating that uptake was mostly mediated by M6PR-mediated internalization. Uptake of GALC bearing a Tat-PTD (GALC-TMH) was only partially inhibited by M6P (35% in COS-7 cells and in Twi FBs and up to 17% in mouse neurons). Taken together, these results provide evidence that the recombinant GALC enzyme maintained the features of the native GALC enzyme and that the Tat-PTD motif facilitated M6PR-independent GALC uptake.

Localization of Tat-PTD-modified GALC protein and Lamp-1 in twitcher mouse FBs

To assess the effects of the myc epitope and the Tat-PTD on the subcellular distribution of GALC, the intracellular location of the recombinant GALC-TMH protein in transduced cells was analyzed by antibody staining using anti-myc antibody and an antibody directed against the Lamp-1. The confocal images shown in Fig. 4 indicate that the punctate staining observed after incubation with monoclonal anti-myc antibody followed by Alexa 488-labeled secondary antibody overlapped in part with that of Lamp-1 indicating that at least some of the Tat-PTD-modified GALC enzyme was associated with lysosomes. To better resolve the subcellular proximity and potential cross-over of myc-tagged GALC and Lamp-1, a deconvolution analysis was performed. Careful examination of optical sectioning throughout the z-axis revealed that even though the majority of the myc label would apparently yield a negative Pearson’s correlation with respect to Lamp-1, a generous amount of signal was in close proximity to the lysosomal compartments (data not shown).

Table 2 Cellular uptake of recombinant galactocerebrosidase (GALC)

<table>
<thead>
<tr>
<th>Recombinant enzyme</th>
<th>Cells</th>
<th>GALC uptake in absence of M6P</th>
<th>GALC uptake in presence of M6P</th>
<th>% Inhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>17.62 ± 1.53</td>
<td>5.9 ± 0.59</td>
<td>66.97 ± 5.67</td>
</tr>
<tr>
<td>GALC-MH</td>
<td>COS-7</td>
<td>26.35 ± 2.37</td>
<td>18.19 ± 3.34</td>
<td>34.60 ± 11.82</td>
</tr>
<tr>
<td>GALC-MH</td>
<td>Twi FBs</td>
<td>11.44 ± 2.14</td>
<td>2.61 ± 1.18</td>
<td>77.19 ± 4.51</td>
</tr>
<tr>
<td>GALC-MH</td>
<td>Mouse neurons</td>
<td>13.80 ± 1.22</td>
<td>4.1 ± 2.30</td>
<td>35.03 ± 12.91</td>
</tr>
</tbody>
</table>

Fig. 3 and Table 2, uptake of recombinant GALC-MH was largely blocked (67% for COS-7 cells, 77% for Twi FBs, and up to 68% for primary neurons) in the presence of an excess of M6P indicating that uptake was mostly mediated by M6PR-mediated internalization. Uptake of GALC bearing a Tat-PTD (GALC-TMH) was only partially inhibited by M6P (35% in COS-7 cells and in Twi FBs and up to 17% in mouse neurons). Taken together, these results provide evidence that the recombinant GALC enzyme maintained the features of the native GALC enzyme and that the Tat-PTD motif facilitated M6PR-independent GALC uptake.

Localization of Tat-PTD-modified GALC protein and Lamp-1 in twitcher mouse FBs

To assess the effects of the myc epitope and the Tat-PTD on the subcellular distribution of GALC, the intracellular location of the recombinant GALC-TMH protein in transduced cells was analyzed by antibody staining using anti-myc antibody and an antibody directed against the Lamp-1. The confocal images shown in Fig. 4 indicate that the punctate staining observed after incubation with monoclonal anti-myc antibody followed by Alexa 488-labeled secondary antibody overlapped in part with that of Lamp-1 indicating that at least some of the Tat-PTD-modified GALC enzyme was associated with lysosomes. To better resolve the subcellular proximity and potential cross-over of myc-tagged GALC and Lamp-1, a deconvolution analysis was performed. Careful examination of optical sectioning throughout the z-axis revealed that even though the majority of the myc label would apparently yield a negative Pearson’s correlation with respect to Lamp-1, a generous amount of signal was in close proximity to the lysosomal compartments (data not shown).

Correction of galactosylceramide accumulation in twitcher mouse FBs after transduction using lentiviral vectors encoding GALC-TMH or following GALC-TMH uptake

To show that GALC-TMH retained its enzymatic function in vivo, the degradation of galactosylceramide in Twi FBs following transduction using lentiviral vectors encoding GALC-TMH was analyzed. FBs were loaded with BO-DIPY-GalCer, a fluorescent analog of galactosylceramide
The distribution and accumulation of BODIPY-GalCer in FBs from affected mice (Twi FBs), wild type mice (WT FBs) and FBs from affected mice transduced with lentiviral vectors encoding GALC-TMH (Twi FBs + GALC-TMH) were compared (Fig. 5a). In WT FBs, BODIPY-GalCer was cleared, mediated by the endogenous GALC enzyme. However, residual fluorescence was detected in perinuclear structures. In Twi FBs, there was heavy accumulation of unhydrolyzed BODIPY-GalCer all over the cells, presumably because of the lack of GALC activity. The distribution of BODIPY-GalCer in Twi FBs expressing GALC-TMH was similar to that seen in WT FBs, indicating that Twi FBs expressing GALC-TMH rapidly cleared BODIPY-GalCer (Fig. 5a). When Twi FBs were incubated with conditioned medium containing GALC-TMH, Twi FBs were also able to clear BODIPY-GalCer (Fig. 5b, right panel), while Twi FBs incubated with control medium lacking GALC did not (Fig. 5b, middle panel), indicating that clearing was mediated by the exogenously added GALC. To provide more direct evidence for GALC uptake, Twi FBs were incubated with conditioned medium containing GALC-TMH and then stained using polyclonal anti-GALC antibodies (Lee et al. 2005b, 2007). The results presented in Fig. 6 show that the staining pattern following incubation with the anti-GALC antibody overlapped at least in part with that obtained with the anti-Lamp-1 antibody. This indicates that following uptake, recombinant GALC was associated at least in part with lysosomes.

Discussion

Enzyme replacement therapy was first proposed as a therapeutic strategy for LSDs soon after the enzymatic defects were elucidated in the human sphingolipid storage disorders Gaucher disease and Niemann-Pick disease (Brady 1966). Currently, ERT is a treatment option for Gaucher disease type I, Fabry disease, and MPS I, and clinical
investigations are underway for Pompe disease, MPS II, and MPS VI (Desnick and Schuchman 2002). This approach is based on the fact that lysosomal enzymes contain oligosaccharide residues (e.g. mannose and/or M6P) that bind to cellular receptors (e.g. mannose or M6PR), leading to internalization of the enzymes by clathrin-mediated endocytosis and subsequent trafficking to lysosomes (Desnick and Schuchman 2002). Inadequate glycosylation of recombinant enzymes and/or lack of appropriate receptors in LSD target cells are obstacles that may affect enzyme delivery and the efficacy of ERT.

Alternative strategies aimed at improving enzyme uptake were described recently. These focus on chimeric enzymes containing alternative targeting moieties including a peptide derived from insulin-like growth factor II (LeBowitz et al. 2004), the receptor-associated protein targeting the low-density lipoprotein receptor (Prince et al. 2004), or the tetanus toxin C fragment (Jiang et al. 2005). However, chimeric enzymes often exhibit diminished activity. Also, the M6PR and low-density lipoprotein receptor family receptors are internalized via clathrin-mediated pathways, which are defective in some lysosomal enzyme-deficient cells (Dhami and Schuchman 2004). Other strategies have focused on chimeric enzymes involving PTDs including the HIV Tat-PTD (Xia et al. 2001; Elliger et al. 2002; Lee et al. 2005a).

Schwarze et al. (1999) were the first to show that denatured proteins bearing the Tat-PTD, as large as E. coli β-galactosidase, could translocate across membranes and even enter the brain following intraperitoneal injection involving a mechanism known as protein transduction (Schwarze and Dowdy 2000). However, these results are difficult to apply to mammalian lysosomal enzymes in general, in part because hydrophilic oligosaccharide side chains on the glycosylated acid hydrolases prevent proper refolding and assembly of multimeric enzymes following denaturation. Thus, their translocation across cell membranes may be impeded (Orii et al. 2005). Results reported by Xia et al. (2001), Elliger et al. (2002), and Orii et al. (2005) showed that the Tat-PTD affected secretion, uptake and biodistribution of native GUS. Furthermore, the Tat motif significantly increased the distribution of GUS secreted from transduced cells after intravenous or direct brain injection in mice with recombinant adenoassociated virus vectors (Xia et al. 2001; Elliger et al. 2002; Alisky et al. 2006).

It is evident from our studies that mouse GALC can also be modified to bear a Tat-PTD without diminishing its function. Our results indicate that the recombinant GALC protein containing a Tat-PTD domain not only maintained the features of the native GALC protein including enzymatic function in vitro and in situ and intracellular transport, but it also displayed more efficient intercellular uptake via a M6PR-independent pathway.

It was previously shown that BODIPY-lactosylceramide and BODIPY-GalCer are taken up by cells and transferred to the Golgi compartment (Chen et al. 1999). Interestingly, in several LSDs including Krabbe disease, these fluorescent lipids were found to accumulate in late endosomes/lysosomes (Chen et al. 1999; Puri et al. 1999). Our results show that clearance of accumulated BODIPY-GalCer in Twi FBs did occur following expression (Fig. 5a) or uptake (Fig. 5b) of GALC-TMH by such cells. The residual perinuclear fluorescence seen in WT FBs (Fig. 5a, middle panel) may indicate non-hydrolyzed BODIPY-GalCer residing in a vesicular compartment to which endogenous GALC does not have access. Interestingly, in Twi FBs expressing GALC, this perinuclear fluorescence was not as pronounced possibly because GALC levels in such cells were at least 10 times higher compared with those in WT FBs.

The mechanism(s) affecting Tat-PTD-mediated uptake and distribution of recombinant proteins need to be clarified. Several lines of evidence suggest that the PTDs only mediate cell surface adherence, a property shared with many other positively charged macromolecules. The cell surface adherence results in endocytosis and accumulation of proteins in endosomes. As eight of the 11 amino acid residues of the Tat-PTD are positively charged, Tat may bind negatively charged phospholipids of cell membranes and glycosaminoglycans on the cell surface which may mediate adsorptive endocytosis of Tat-modified proteins (Lundberg et al. 2003). This view is supported by recent findings obtained with GUS-Tat fusion proteins (Orii et al. 2005). Preliminary studies indicate that the uptake of GALC-TMH was blocked in the presence of heparin (Zhang, unpublished). This supports the view that GALC-TMH may also be taken up by adsorptive endocytosis.

In conclusion, in this study we show that Tat-modified GALC retains enzymatic activity, is efficiently secreted from cells, and is taken up by other cells via M6PR-dependent and independent mechanisms. We expect these findings to ultimately lead to improved therapies for GLD.

Acknowledgements

This work was supported by NIH grant R01 NS04832 to J. Reiser and by NIH grant R01 NS09626 to S.-C. Li. We thank Drs C. B. Eckman and W. C. Lee for providing us with anti-GALC polyclonal antibodies. We are grateful to the staff of the LSUHSC Vector and Morphology Cores for their help.

References

Lysosomal uptake of galactocerebrosidase

