HERschel Inventory of the Agents of Galaxy Evolution (HERITAGE): The Large Magellanic Cloud dust

M. Meixner
Space Telescope Science Institute

F. Galliano
Astrophysique, Instrumentation et Modélisation de Paris-Saclay

S. Hony
Astrophysique, Instrumentation et Modélisation de Paris-Saclay

J. Roman-Duval
Space Telescope Science Institute

T. Robitaille
Harvard University

See next page for additional authors

Follow this and additional works at: https://digitalcommons.lsu.edu/physics_astronomy_pubs

Recommended Citation

Herschel Inventory of The Agents of Galaxy Evolution (HERITAGE): The Large Magellanic Cloud dust

(Affiliations are available in the online edition)

Received 31 March 2010 / Accepted 14 April 2010

ABSTRACT

The HERschel Inventory of The Agents of Galaxy Evolution (HERITAGE) of the Magellanic Clouds will use dust emission to investigate the life cycle of matter in both the Large and Small Magellanic Clouds (LMC and SMC). Using the Herschel Space Observatory’s PACS and SPIRE photometry cameras, we imaged a 2×8° strip through the LMC, at a position angle of $\sim22.5^\circ$ as part of the science demonstration phase of the Herschel mission. We present the data in all 5 Herschel bands: PACS 100 and 160 μm and SPIRE 250, 350 and 500 μm. We present two dust models that both adequately fit the spectral energy distribution for the entire strip and both reveal that the SPIRE 500 μm emission is in excess of the models by ~6 to 17%. The SPIRE emission follows the distribution of the dust mass, which is derived from the model. The PAH-to-dust mass (F_{PAH}) image of the strip reveals a possible enhancement in the LMC bar in agreement with previous work. We compare the gas mass distribution derived from the HI 21 cm and CO J = 1–0 line emission maps to the dust mass map from the models and derive gas-to-dust mass ratios (GDRs). The dust model, which uses the standard graphite and silicate optical properties for Galactic dust, has a very low GDR making it an unrealistic dust model for the LMC. Our second dust model, which uses amorphous carbon instead of graphite, has a flatter emissivity index in the submillimeter and results in a GDR = 28^{+23}_{-12} that is more consistent with a GDR inferred from extinction.

Key words. Magellanic Clouds – dust, extinction – submillimeter: galaxies – submillimeter: ISM

1. Introduction

The Large Magellanic Cloud (LMC) and the Small Magellanic Cloud (SMC) are the best astrophysical laboratories to study the lifecycle of the interstellar medium (ISM), because their proximity (50 kpc, e.g. Schaefer 2008, 61 kpc, Szewczyk et al. 2009) permits detailed studies of resolved ISM clouds and their relation to stellar populations on global scales, in an unambiguous manner, and as a controlled function of environment. Their sub-solar metallicities (Z_{LMC} $\approx 0.5 \times Z_\odot$, Z_{SMC} $\approx 0.2 \times Z_\odot$; Dufour et al. 1982; Bernard et al. 2006) permit investigations on how processes governing galaxy evolution depend on metallicity. The Herschel Observatory (Pilbratt et al. 2010) open-time key program, entitled HERschel Inventory of The Agents of Galaxy Evolution (HERITAGE) in the Magellanic Clouds, will perform a uniform survey of the LMC ($8^\circ \times 8.5^\circ$), SMC ($5^\circ \times 5^\circ$), and the Magellanic Bridge ($4^\circ \times 3^\circ$) with the Spectral and Photometric Imaging REceiver (SPIRE) at 250, 350, and 500 μm (Griffin et al. 2010) and with the Photodetector Array Camera and Spectrometer (PACS) at 100 and 160 μm (Poglitsch et al. 2010). The HERITAGE science goals are to study the life cycle of matter in the Magellanic Clouds by probing the dust emission from the ISM and stars, which are the agents of galaxy evolution. Herschel SPIRE and PACS images provide key insights into the life cycle of galaxies because the far-infrared and submillimeter emission from dust grains is an effective tracer of the ISM dust, the most deeply embedded young stellar objects, and the dust ejected by evolved massive stars and supernovae.

During the science demonstration phase (SDP), we imaged a long strip across the LMC that covers the entire range of interesting objects we expect to study with HERITAGE: giant molecular and diffuse HI clouds (Roman-Duval et al. 2010; Kim et al. 2010), HI II regions (Hony et al. 2010), young stellar objects (Sewiło et al. 2010), supernova remnants (Otsuka et al. 2010), and evolved stars (Boyer et al. 2010). In this paper, we present the observing strategy, processing and resulting data set (Sect. 2), the spectral energy distribution (SED) of the strip (Sect. 3) and the global spatial distribution of the dust and gas (Sect. 4).

2. Observations and data reduction

We observed a $2^\circ \times 8^\circ$ strip through the LMC, at a position angle of $\sim22.5^\circ$ using the Herschel Observatory instruments SPIRE and PACS in parallel observing mode. Observations...
Two astronomical observation requests (AORs) were constructed back-to-back in time to cover the region. The observation began on November 22, 2009 at \(23:00\) h UT and lasted \(~18\) h. Two 9 h astronomical observation requests (AORs) were constructed back-to-back in time to cover the region. The observed wavelength bands include PACS 100 and 160 \(\mu m\) bands. However, severe striping appeared along the scan direction of the PACS maps. To mitigate the stripes, we subtracted an image of the striping, produced by unambiguously identifying the power spectrum associated with the stripes, from the PACS images. The peak-to-peak variation was reduced from 0.021 to 0.011 in the PACS 100 and 160 \(\mu m\) images (Fig. 1). We do not use the PACS data for analysis in this paper, but anticipate that with cross-scans the PACS data will be viable for an extended map of the diffuse ISM. Nevertheless, the de-striping was effective for small regions (Otsuka et al. 2010) and revealing point sources (Sewiło et al. 2010; Boyer et al. 2010).

The PACS brightness values are systematically 15% lower than the corresponding MIPS 160 \(\mu m\) values from Meixner et al. (2006) using the adopted HIPE 1.2 calibration tree which is consistent with the 20% absolute flux calibration error for PACS (Poglitsch et al. 2010). The accuracy of the PACS astrometry was estimated by comparing the positions of point sources detected in Spitzer and PACS images of the LMC. We find offsets up to 6.5\(\arcsec\), with no preferred direction, which have been traced to issues with the star trackers during very large scan maps.

2.2. SPIRE data reduction

The SPIRE data were processed with HIPE version 2 (Ott 2010) and updated calibration products provided by the SPIRE team. Using custom routines, we removed jumps in the timeline caused by co-occurring glitches that affect all detectors of a single array simultaneously and by jumps in the thermistor voltages. We include the data at the end of each raster leg, during which the telescope turns around, in order to increase the coverage.
For each scan, for each detector, we derived the median, baseline value of the measured flux at each end of the scan and subtract a linear baseline fitted to the two end points from the scans. Images at 250, 350 and 500 μm were constructed using the same reference point near the map center and are shown in Fig. 1. In order to remove any instrumental residuals in the SPIRE images, we use regions at the ends of the map, assume they should have zero emission and subtract a linear gradient from the images. This process was done in a consistent way for all ancillary data (MIPS, IRAC images and HI 21 cm emission images) so that comparisons between the data sets during the analysis are done in a consistent fashion.

As recommended by the SPIRE ICC we multiplied the maps by the flux calibration correction factors 1.02, 1.05, 0.94 for 250, 350 and 500 μm, respectively. The uncertainty in the final absolute point source flux calibration is ±15% (Swinyard et al. 2010). The final SPIRE maps were converted from Jy per beam to MJy/sr using the effective beam areas of 9.28 × 10⁻⁵, 1.74 × 10⁻⁵, and 3.57 × 10⁻⁸ sr for 250, 350, and 500 μm. The positions of point sources in the 250 μm map were compared with their positions at 24 μm from MIPS revealing offsets up to 10″, similar to PACS. We corrected this problem with a small spherical rotation of the map, although some small residual astrometry errors remained, particularly far from the map centers.

3. Spectral energy distribution of the strip

TheSED of the whole strip (Fig. 2) is fit with a comprehension of the strip (Fig. 2) is fit with a comprehen-3. Spectral energy distribution of the strip

sitive point source flux calibration is ±15% (Swinyard et al. 2010). The final SPIRE maps were converted from Jy per beam to MJy/sr using the effective beam areas of 9.28 × 10⁻⁵, 1.74 × 10⁻⁵, and 3.57 × 10⁻⁸ sr for 250, 350, and 500 μm. The positions of point sources in the 250 μm map were compared with their positions at 24 μm from MIPS revealing offsets up to 10″, similar to PACS. We corrected this problem with a small spherical rotation of the map, although some small residual astrometry errors remained, particularly far from the map centers.

The SED of the whole strip (Fig. 2) is fit with a comprehen-3. Spectral energy distribution of the strip

sitive point source flux calibration is ±15% (Swinyard et al. 2010). The final SPIRE maps were converted from Jy per beam to MJy/sr using the effective beam areas of 9.28 × 10⁻⁵, 1.74 × 10⁻⁵, and 3.57 × 10⁻⁸ sr for 250, 350, and 500 μm. The positions of point sources in the 250 μm map were compared with their positions at 24 μm from MIPS revealing offsets up to 10″, similar to PACS. We corrected this problem with a small spherical rotation of the map, although some small residual astrometry errors remained, particularly far from the map centers.

The SED of the whole strip (Fig. 2) is fit with a comprehen-3. Spectral energy distribution of the strip

sitive point source flux calibration is ±15% (Swinyard et al. 2010). The final SPIRE maps were converted from Jy per beam to MJy/sr using the effective beam areas of 9.28 × 10⁻⁵, 1.74 × 10⁻⁵, and 3.57 × 10⁻⁸ sr for 250, 350, and 500 μm. The positions of point sources in the 250 μm map were compared with their positions at 24 μm from MIPS revealing offsets up to 10″, similar to PACS. We corrected this problem with a small spherical rotation of the map, although some small residual astrometry errors remained, particularly far from the map centers.
coincides with the peaks in the gas mass (Fig. 3) and two molecular clouds are discussed in more detail by Roman-Duval et al. (2010). The average starlight intensity heating the dust, $\langle U \rangle$, approximately follows the IRAC 3.6 μm image (e.g. Meixner et al. 2006) being enhanced in the stellar bar, and in the giant HII region complexes, such as N44, which is just north of the stellar bar. The spatial distribution of f_{PAH} derived by the model appears to be enhanced toward the stellar bar relative to the rest of the ISM (Fig. 3) in agreement with the findings of Paradis et al. (2009). We calculate that this enhancement is equivalent to $\lesssim 2000 M_\odot$ (model 1) or $\lesssim 300 M_\odot$ (model 2) in PAH. However, it could be the result of the increased hardness of the starlight along the bar, mistaken for an increased abundance.

Over the area in common between the gas and dust mass images, we calculate the total gas mass and divide by the total dust mass to derive a GDR. For model 1, we calculate a GDR $= 65^{+15}_{-18}$. This value is less than the Galactic GDR value of 157 from Zubko et al. (2004) which would be unexpected given the LMC's lower metallicity. In fact, the model 1 GDR is a factor of 3 lower than the SAGE-LMC ISM study by Bernard et al. (2008), who adopted similar Galactic dust properties. It is also too low by a factor of three compared to UV extinction measurements of Gordon et al. (2003). Thus, the addition of the SPIRE data demands too much dust, if we assume standard graphite and silicate optical properties which have been successfully used for Galactic dust models. For model 2, we calculate a GDR $= 287^{+35}_{-42}$ which is much more consistent with prior observations. Essentially the required dust mass for model 2 is smaller by a factor ~ 3 because it requires a larger fraction of the dust to be illuminated by intenser radiation fields and therefore less dust mass to account for the observed SPIRE measurements. The fact that the pixel to pixel averaged intensity $\langle U \rangle = 7.6^{+3.8}_{-1.7}$ for model 2 is higher than for model 1 ($\langle U \rangle = 1.0^{+0.4}_{-0.3}$) makes model 2 more consistent with the expected intense radiation conditions within the LMC. The amorphous carbon emissivity is flatter in the submillimeter ($\beta < 2$) which is in agreement with the independent approach taken by Gordon et al. (2010) for this data set and with the independent analysis of the TOPHAT and DIRBE measurements of the LMC by Aguirre et al. (2003).

Although our results indicate that the standard graphite and silicate optical properties for Galactic dust are not appropriate for the LMC dust, our suggested amorphous carbon and silicate dust model is not necessarily unique or the best model. The analysis of dust models begun in this paper will need to be revisited when the full HERITAGE data set is available. In particular a full exploration of parameter space for dust properties including composition and size distribution can be investigated in terms of ISM environment and metallicity.

References

Fig. 3. Analysis images of the SDP strip based on model 2 (amorphous carbon, see Sect. 4) with color bars for each on top, described from left to right. Dust surface mass, Σ_{dust}, in red color arcsinh scale ranging from 0 to 0.255, in tick steps of 0.05 M_\odot pc$^{-2}$ with HI contours at levels 1, 2 and 4 $\times 10^{22}$ H cm$^{-2}$ from Kim et al. (2003). Gas surface mass, Σ_{gas}, in jet color arcsinh scale ranging from 0 to 90, with steps of 10 in M_\odot pc$^{-2}$ with CO contours at levels 0.8, 2, 4, 6 and 8 K km s$^{-1}$ from Fukui et al. (2008). Average intensity of the radiation field, $\langle U \rangle$, in rainbow arcsinh color scale ranging from 0 to 20, with steps of 4 in units of the local solar neighborhood intensity. Distribution of the PAH-to-dust mass fraction, f_{PAH}, in units of the Galactic fraction of 0.046, as measured in the pixel based dust modeling with a rainbow color linear scale ranging from 0 to 0.8 in steps of 0.2 with the comparable f_{PAH} from Paradis et al. (2009) in black contours levels of 0.007, 0.2 and 2.

Page 5 is available in the electronic edition of the journal at http://www.aanda.org